xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 91db9311)
1 /*
2  * CAN bus driver for Bosch M_CAN controller
3  *
4  * Copyright (C) 2014 Freescale Semiconductor, Inc.
5  *	Dong Aisheng <b29396@freescale.com>
6  *
7  * Bosch M_CAN user manual can be obtained from:
8  * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9  * mcan_users_manual_v302.pdf
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/iopoll.h>
28 #include <linux/can/dev.h>
29 #include <linux/pinctrl/consumer.h>
30 
31 /* napi related */
32 #define M_CAN_NAPI_WEIGHT	64
33 
34 /* message ram configuration data length */
35 #define MRAM_CFG_LEN	8
36 
37 /* registers definition */
38 enum m_can_reg {
39 	M_CAN_CREL	= 0x0,
40 	M_CAN_ENDN	= 0x4,
41 	M_CAN_CUST	= 0x8,
42 	M_CAN_DBTP	= 0xc,
43 	M_CAN_TEST	= 0x10,
44 	M_CAN_RWD	= 0x14,
45 	M_CAN_CCCR	= 0x18,
46 	M_CAN_NBTP	= 0x1c,
47 	M_CAN_TSCC	= 0x20,
48 	M_CAN_TSCV	= 0x24,
49 	M_CAN_TOCC	= 0x28,
50 	M_CAN_TOCV	= 0x2c,
51 	M_CAN_ECR	= 0x40,
52 	M_CAN_PSR	= 0x44,
53 /* TDCR Register only available for version >=3.1.x */
54 	M_CAN_TDCR	= 0x48,
55 	M_CAN_IR	= 0x50,
56 	M_CAN_IE	= 0x54,
57 	M_CAN_ILS	= 0x58,
58 	M_CAN_ILE	= 0x5c,
59 	M_CAN_GFC	= 0x80,
60 	M_CAN_SIDFC	= 0x84,
61 	M_CAN_XIDFC	= 0x88,
62 	M_CAN_XIDAM	= 0x90,
63 	M_CAN_HPMS	= 0x94,
64 	M_CAN_NDAT1	= 0x98,
65 	M_CAN_NDAT2	= 0x9c,
66 	M_CAN_RXF0C	= 0xa0,
67 	M_CAN_RXF0S	= 0xa4,
68 	M_CAN_RXF0A	= 0xa8,
69 	M_CAN_RXBC	= 0xac,
70 	M_CAN_RXF1C	= 0xb0,
71 	M_CAN_RXF1S	= 0xb4,
72 	M_CAN_RXF1A	= 0xb8,
73 	M_CAN_RXESC	= 0xbc,
74 	M_CAN_TXBC	= 0xc0,
75 	M_CAN_TXFQS	= 0xc4,
76 	M_CAN_TXESC	= 0xc8,
77 	M_CAN_TXBRP	= 0xcc,
78 	M_CAN_TXBAR	= 0xd0,
79 	M_CAN_TXBCR	= 0xd4,
80 	M_CAN_TXBTO	= 0xd8,
81 	M_CAN_TXBCF	= 0xdc,
82 	M_CAN_TXBTIE	= 0xe0,
83 	M_CAN_TXBCIE	= 0xe4,
84 	M_CAN_TXEFC	= 0xf0,
85 	M_CAN_TXEFS	= 0xf4,
86 	M_CAN_TXEFA	= 0xf8,
87 };
88 
89 /* m_can lec values */
90 enum m_can_lec_type {
91 	LEC_NO_ERROR = 0,
92 	LEC_STUFF_ERROR,
93 	LEC_FORM_ERROR,
94 	LEC_ACK_ERROR,
95 	LEC_BIT1_ERROR,
96 	LEC_BIT0_ERROR,
97 	LEC_CRC_ERROR,
98 	LEC_UNUSED,
99 };
100 
101 enum m_can_mram_cfg {
102 	MRAM_SIDF = 0,
103 	MRAM_XIDF,
104 	MRAM_RXF0,
105 	MRAM_RXF1,
106 	MRAM_RXB,
107 	MRAM_TXE,
108 	MRAM_TXB,
109 	MRAM_CFG_NUM,
110 };
111 
112 /* Core Release Register (CREL) */
113 #define CREL_REL_SHIFT		28
114 #define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
115 #define CREL_STEP_SHIFT		24
116 #define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
117 #define CREL_SUBSTEP_SHIFT	20
118 #define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
119 
120 /* Data Bit Timing & Prescaler Register (DBTP) */
121 #define DBTP_TDC		BIT(23)
122 #define DBTP_DBRP_SHIFT		16
123 #define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
124 #define DBTP_DTSEG1_SHIFT	8
125 #define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
126 #define DBTP_DTSEG2_SHIFT	4
127 #define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
128 #define DBTP_DSJW_SHIFT		0
129 #define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
130 
131 /* Transmitter Delay Compensation Register (TDCR) */
132 #define TDCR_TDCO_SHIFT		8
133 #define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
134 #define TDCR_TDCF_SHIFT		0
135 #define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
136 
137 /* Test Register (TEST) */
138 #define TEST_LBCK		BIT(4)
139 
140 /* CC Control Register(CCCR) */
141 #define CCCR_CMR_MASK		0x3
142 #define CCCR_CMR_SHIFT		10
143 #define CCCR_CMR_CANFD		0x1
144 #define CCCR_CMR_CANFD_BRS	0x2
145 #define CCCR_CMR_CAN		0x3
146 #define CCCR_CME_MASK		0x3
147 #define CCCR_CME_SHIFT		8
148 #define CCCR_CME_CAN		0
149 #define CCCR_CME_CANFD		0x1
150 #define CCCR_CME_CANFD_BRS	0x2
151 #define CCCR_TXP		BIT(14)
152 #define CCCR_TEST		BIT(7)
153 #define CCCR_MON		BIT(5)
154 #define CCCR_CSR		BIT(4)
155 #define CCCR_CSA		BIT(3)
156 #define CCCR_ASM		BIT(2)
157 #define CCCR_CCE		BIT(1)
158 #define CCCR_INIT		BIT(0)
159 #define CCCR_CANFD		0x10
160 /* for version >=3.1.x */
161 #define CCCR_EFBI		BIT(13)
162 #define CCCR_PXHD		BIT(12)
163 #define CCCR_BRSE		BIT(9)
164 #define CCCR_FDOE		BIT(8)
165 /* only for version >=3.2.x */
166 #define CCCR_NISO		BIT(15)
167 
168 /* Nominal Bit Timing & Prescaler Register (NBTP) */
169 #define NBTP_NSJW_SHIFT		25
170 #define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
171 #define NBTP_NBRP_SHIFT		16
172 #define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
173 #define NBTP_NTSEG1_SHIFT	8
174 #define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
175 #define NBTP_NTSEG2_SHIFT	0
176 #define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
177 
178 /* Error Counter Register(ECR) */
179 #define ECR_RP			BIT(15)
180 #define ECR_REC_SHIFT		8
181 #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
182 #define ECR_TEC_SHIFT		0
183 #define ECR_TEC_MASK		0xff
184 
185 /* Protocol Status Register(PSR) */
186 #define PSR_BO		BIT(7)
187 #define PSR_EW		BIT(6)
188 #define PSR_EP		BIT(5)
189 #define PSR_LEC_MASK	0x7
190 
191 /* Interrupt Register(IR) */
192 #define IR_ALL_INT	0xffffffff
193 
194 /* Renamed bits for versions > 3.1.x */
195 #define IR_ARA		BIT(29)
196 #define IR_PED		BIT(28)
197 #define IR_PEA		BIT(27)
198 
199 /* Bits for version 3.0.x */
200 #define IR_STE		BIT(31)
201 #define IR_FOE		BIT(30)
202 #define IR_ACKE		BIT(29)
203 #define IR_BE		BIT(28)
204 #define IR_CRCE		BIT(27)
205 #define IR_WDI		BIT(26)
206 #define IR_BO		BIT(25)
207 #define IR_EW		BIT(24)
208 #define IR_EP		BIT(23)
209 #define IR_ELO		BIT(22)
210 #define IR_BEU		BIT(21)
211 #define IR_BEC		BIT(20)
212 #define IR_DRX		BIT(19)
213 #define IR_TOO		BIT(18)
214 #define IR_MRAF		BIT(17)
215 #define IR_TSW		BIT(16)
216 #define IR_TEFL		BIT(15)
217 #define IR_TEFF		BIT(14)
218 #define IR_TEFW		BIT(13)
219 #define IR_TEFN		BIT(12)
220 #define IR_TFE		BIT(11)
221 #define IR_TCF		BIT(10)
222 #define IR_TC		BIT(9)
223 #define IR_HPM		BIT(8)
224 #define IR_RF1L		BIT(7)
225 #define IR_RF1F		BIT(6)
226 #define IR_RF1W		BIT(5)
227 #define IR_RF1N		BIT(4)
228 #define IR_RF0L		BIT(3)
229 #define IR_RF0F		BIT(2)
230 #define IR_RF0W		BIT(1)
231 #define IR_RF0N		BIT(0)
232 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
233 
234 /* Interrupts for version 3.0.x */
235 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
236 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
237 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
238 			 IR_RF1L | IR_RF0L)
239 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
240 /* Interrupts for version >= 3.1.x */
241 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
242 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
243 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
244 			 IR_RF1L | IR_RF0L)
245 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
246 
247 /* Interrupt Line Select (ILS) */
248 #define ILS_ALL_INT0	0x0
249 #define ILS_ALL_INT1	0xFFFFFFFF
250 
251 /* Interrupt Line Enable (ILE) */
252 #define ILE_EINT1	BIT(1)
253 #define ILE_EINT0	BIT(0)
254 
255 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
256 #define RXFC_FWM_SHIFT	24
257 #define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
258 #define RXFC_FS_SHIFT	16
259 #define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
260 
261 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
262 #define RXFS_RFL	BIT(25)
263 #define RXFS_FF		BIT(24)
264 #define RXFS_FPI_SHIFT	16
265 #define RXFS_FPI_MASK	0x3f0000
266 #define RXFS_FGI_SHIFT	8
267 #define RXFS_FGI_MASK	0x3f00
268 #define RXFS_FFL_MASK	0x7f
269 
270 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
271 #define M_CAN_RXESC_8BYTES	0x0
272 #define M_CAN_RXESC_64BYTES	0x777
273 
274 /* Tx Buffer Configuration(TXBC) */
275 #define TXBC_NDTB_SHIFT		16
276 #define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
277 #define TXBC_TFQS_SHIFT		24
278 #define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
279 
280 /* Tx FIFO/Queue Status (TXFQS) */
281 #define TXFQS_TFQF		BIT(21)
282 #define TXFQS_TFQPI_SHIFT	16
283 #define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
284 #define TXFQS_TFGI_SHIFT	8
285 #define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
286 #define TXFQS_TFFL_SHIFT	0
287 #define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
288 
289 /* Tx Buffer Element Size Configuration(TXESC) */
290 #define TXESC_TBDS_8BYTES	0x0
291 #define TXESC_TBDS_64BYTES	0x7
292 
293 /* Tx Event FIFO Configuration (TXEFC) */
294 #define TXEFC_EFS_SHIFT		16
295 #define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
296 
297 /* Tx Event FIFO Status (TXEFS) */
298 #define TXEFS_TEFL		BIT(25)
299 #define TXEFS_EFF		BIT(24)
300 #define TXEFS_EFGI_SHIFT	8
301 #define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
302 #define TXEFS_EFFL_SHIFT	0
303 #define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
304 
305 /* Tx Event FIFO Acknowledge (TXEFA) */
306 #define TXEFA_EFAI_SHIFT	0
307 #define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
308 
309 /* Message RAM Configuration (in bytes) */
310 #define SIDF_ELEMENT_SIZE	4
311 #define XIDF_ELEMENT_SIZE	8
312 #define RXF0_ELEMENT_SIZE	72
313 #define RXF1_ELEMENT_SIZE	72
314 #define RXB_ELEMENT_SIZE	72
315 #define TXE_ELEMENT_SIZE	8
316 #define TXB_ELEMENT_SIZE	72
317 
318 /* Message RAM Elements */
319 #define M_CAN_FIFO_ID		0x0
320 #define M_CAN_FIFO_DLC		0x4
321 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
322 
323 /* Rx Buffer Element */
324 /* R0 */
325 #define RX_BUF_ESI		BIT(31)
326 #define RX_BUF_XTD		BIT(30)
327 #define RX_BUF_RTR		BIT(29)
328 /* R1 */
329 #define RX_BUF_ANMF		BIT(31)
330 #define RX_BUF_FDF		BIT(21)
331 #define RX_BUF_BRS		BIT(20)
332 
333 /* Tx Buffer Element */
334 /* T0 */
335 #define TX_BUF_ESI		BIT(31)
336 #define TX_BUF_XTD		BIT(30)
337 #define TX_BUF_RTR		BIT(29)
338 /* T1 */
339 #define TX_BUF_EFC		BIT(23)
340 #define TX_BUF_FDF		BIT(21)
341 #define TX_BUF_BRS		BIT(20)
342 #define TX_BUF_MM_SHIFT		24
343 #define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
344 
345 /* Tx event FIFO Element */
346 /* E1 */
347 #define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
348 #define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
349 
350 /* address offset and element number for each FIFO/Buffer in the Message RAM */
351 struct mram_cfg {
352 	u16 off;
353 	u8  num;
354 };
355 
356 /* m_can private data structure */
357 struct m_can_priv {
358 	struct can_priv can;	/* must be the first member */
359 	struct napi_struct napi;
360 	struct net_device *dev;
361 	struct device *device;
362 	struct clk *hclk;
363 	struct clk *cclk;
364 	void __iomem *base;
365 	u32 irqstatus;
366 	int version;
367 
368 	/* message ram configuration */
369 	void __iomem *mram_base;
370 	struct mram_cfg mcfg[MRAM_CFG_NUM];
371 };
372 
373 static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
374 {
375 	return readl(priv->base + reg);
376 }
377 
378 static inline void m_can_write(const struct m_can_priv *priv,
379 			       enum m_can_reg reg, u32 val)
380 {
381 	writel(val, priv->base + reg);
382 }
383 
384 static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
385 				  u32 fgi, unsigned int offset)
386 {
387 	return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
388 		     fgi * RXF0_ELEMENT_SIZE + offset);
389 }
390 
391 static inline void m_can_fifo_write(const struct m_can_priv *priv,
392 				    u32 fpi, unsigned int offset, u32 val)
393 {
394 	writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
395 	       fpi * TXB_ELEMENT_SIZE + offset);
396 }
397 
398 static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
399 				      u32 fgi,
400 				      u32 offset) {
401 	return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
402 			fgi * TXE_ELEMENT_SIZE + offset);
403 }
404 
405 static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
406 {
407 		return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
408 }
409 
410 static inline void m_can_config_endisable(const struct m_can_priv *priv,
411 					  bool enable)
412 {
413 	u32 cccr = m_can_read(priv, M_CAN_CCCR);
414 	u32 timeout = 10;
415 	u32 val = 0;
416 
417 	if (enable) {
418 		/* enable m_can configuration */
419 		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
420 		udelay(5);
421 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
422 		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
423 	} else {
424 		m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
425 	}
426 
427 	/* there's a delay for module initialization */
428 	if (enable)
429 		val = CCCR_INIT | CCCR_CCE;
430 
431 	while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
432 		if (timeout == 0) {
433 			netdev_warn(priv->dev, "Failed to init module\n");
434 			return;
435 		}
436 		timeout--;
437 		udelay(1);
438 	}
439 }
440 
441 static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
442 {
443 	/* Only interrupt line 0 is used in this driver */
444 	m_can_write(priv, M_CAN_ILE, ILE_EINT0);
445 }
446 
447 static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
448 {
449 	m_can_write(priv, M_CAN_ILE, 0x0);
450 }
451 
452 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
453 {
454 	struct net_device_stats *stats = &dev->stats;
455 	struct m_can_priv *priv = netdev_priv(dev);
456 	struct canfd_frame *cf;
457 	struct sk_buff *skb;
458 	u32 id, fgi, dlc;
459 	int i;
460 
461 	/* calculate the fifo get index for where to read data */
462 	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
463 	dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
464 	if (dlc & RX_BUF_FDF)
465 		skb = alloc_canfd_skb(dev, &cf);
466 	else
467 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
468 	if (!skb) {
469 		stats->rx_dropped++;
470 		return;
471 	}
472 
473 	if (dlc & RX_BUF_FDF)
474 		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
475 	else
476 		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
477 
478 	id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
479 	if (id & RX_BUF_XTD)
480 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
481 	else
482 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
483 
484 	if (id & RX_BUF_ESI) {
485 		cf->flags |= CANFD_ESI;
486 		netdev_dbg(dev, "ESI Error\n");
487 	}
488 
489 	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
490 		cf->can_id |= CAN_RTR_FLAG;
491 	} else {
492 		if (dlc & RX_BUF_BRS)
493 			cf->flags |= CANFD_BRS;
494 
495 		for (i = 0; i < cf->len; i += 4)
496 			*(u32 *)(cf->data + i) =
497 				m_can_fifo_read(priv, fgi,
498 						M_CAN_FIFO_DATA(i / 4));
499 	}
500 
501 	/* acknowledge rx fifo 0 */
502 	m_can_write(priv, M_CAN_RXF0A, fgi);
503 
504 	stats->rx_packets++;
505 	stats->rx_bytes += cf->len;
506 
507 	netif_receive_skb(skb);
508 }
509 
510 static int m_can_do_rx_poll(struct net_device *dev, int quota)
511 {
512 	struct m_can_priv *priv = netdev_priv(dev);
513 	u32 pkts = 0;
514 	u32 rxfs;
515 
516 	rxfs = m_can_read(priv, M_CAN_RXF0S);
517 	if (!(rxfs & RXFS_FFL_MASK)) {
518 		netdev_dbg(dev, "no messages in fifo0\n");
519 		return 0;
520 	}
521 
522 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
523 		if (rxfs & RXFS_RFL)
524 			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
525 
526 		m_can_read_fifo(dev, rxfs);
527 
528 		quota--;
529 		pkts++;
530 		rxfs = m_can_read(priv, M_CAN_RXF0S);
531 	}
532 
533 	if (pkts)
534 		can_led_event(dev, CAN_LED_EVENT_RX);
535 
536 	return pkts;
537 }
538 
539 static int m_can_handle_lost_msg(struct net_device *dev)
540 {
541 	struct net_device_stats *stats = &dev->stats;
542 	struct sk_buff *skb;
543 	struct can_frame *frame;
544 
545 	netdev_err(dev, "msg lost in rxf0\n");
546 
547 	stats->rx_errors++;
548 	stats->rx_over_errors++;
549 
550 	skb = alloc_can_err_skb(dev, &frame);
551 	if (unlikely(!skb))
552 		return 0;
553 
554 	frame->can_id |= CAN_ERR_CRTL;
555 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
556 
557 	netif_receive_skb(skb);
558 
559 	return 1;
560 }
561 
562 static int m_can_handle_lec_err(struct net_device *dev,
563 				enum m_can_lec_type lec_type)
564 {
565 	struct m_can_priv *priv = netdev_priv(dev);
566 	struct net_device_stats *stats = &dev->stats;
567 	struct can_frame *cf;
568 	struct sk_buff *skb;
569 
570 	priv->can.can_stats.bus_error++;
571 	stats->rx_errors++;
572 
573 	/* propagate the error condition to the CAN stack */
574 	skb = alloc_can_err_skb(dev, &cf);
575 	if (unlikely(!skb))
576 		return 0;
577 
578 	/* check for 'last error code' which tells us the
579 	 * type of the last error to occur on the CAN bus
580 	 */
581 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
582 
583 	switch (lec_type) {
584 	case LEC_STUFF_ERROR:
585 		netdev_dbg(dev, "stuff error\n");
586 		cf->data[2] |= CAN_ERR_PROT_STUFF;
587 		break;
588 	case LEC_FORM_ERROR:
589 		netdev_dbg(dev, "form error\n");
590 		cf->data[2] |= CAN_ERR_PROT_FORM;
591 		break;
592 	case LEC_ACK_ERROR:
593 		netdev_dbg(dev, "ack error\n");
594 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
595 		break;
596 	case LEC_BIT1_ERROR:
597 		netdev_dbg(dev, "bit1 error\n");
598 		cf->data[2] |= CAN_ERR_PROT_BIT1;
599 		break;
600 	case LEC_BIT0_ERROR:
601 		netdev_dbg(dev, "bit0 error\n");
602 		cf->data[2] |= CAN_ERR_PROT_BIT0;
603 		break;
604 	case LEC_CRC_ERROR:
605 		netdev_dbg(dev, "CRC error\n");
606 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
607 		break;
608 	default:
609 		break;
610 	}
611 
612 	stats->rx_packets++;
613 	stats->rx_bytes += cf->can_dlc;
614 	netif_receive_skb(skb);
615 
616 	return 1;
617 }
618 
619 static int __m_can_get_berr_counter(const struct net_device *dev,
620 				    struct can_berr_counter *bec)
621 {
622 	struct m_can_priv *priv = netdev_priv(dev);
623 	unsigned int ecr;
624 
625 	ecr = m_can_read(priv, M_CAN_ECR);
626 	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
627 	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
628 
629 	return 0;
630 }
631 
632 static int m_can_clk_start(struct m_can_priv *priv)
633 {
634 	int err;
635 
636 	err = pm_runtime_get_sync(priv->device);
637 	if (err < 0) {
638 		pm_runtime_put_noidle(priv->device);
639 		return err;
640 	}
641 
642 	return 0;
643 }
644 
645 static void m_can_clk_stop(struct m_can_priv *priv)
646 {
647 	pm_runtime_put_sync(priv->device);
648 }
649 
650 static int m_can_get_berr_counter(const struct net_device *dev,
651 				  struct can_berr_counter *bec)
652 {
653 	struct m_can_priv *priv = netdev_priv(dev);
654 	int err;
655 
656 	err = m_can_clk_start(priv);
657 	if (err)
658 		return err;
659 
660 	__m_can_get_berr_counter(dev, bec);
661 
662 	m_can_clk_stop(priv);
663 
664 	return 0;
665 }
666 
667 static int m_can_handle_state_change(struct net_device *dev,
668 				     enum can_state new_state)
669 {
670 	struct m_can_priv *priv = netdev_priv(dev);
671 	struct net_device_stats *stats = &dev->stats;
672 	struct can_frame *cf;
673 	struct sk_buff *skb;
674 	struct can_berr_counter bec;
675 	unsigned int ecr;
676 
677 	switch (new_state) {
678 	case CAN_STATE_ERROR_ACTIVE:
679 		/* error warning state */
680 		priv->can.can_stats.error_warning++;
681 		priv->can.state = CAN_STATE_ERROR_WARNING;
682 		break;
683 	case CAN_STATE_ERROR_PASSIVE:
684 		/* error passive state */
685 		priv->can.can_stats.error_passive++;
686 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
687 		break;
688 	case CAN_STATE_BUS_OFF:
689 		/* bus-off state */
690 		priv->can.state = CAN_STATE_BUS_OFF;
691 		m_can_disable_all_interrupts(priv);
692 		priv->can.can_stats.bus_off++;
693 		can_bus_off(dev);
694 		break;
695 	default:
696 		break;
697 	}
698 
699 	/* propagate the error condition to the CAN stack */
700 	skb = alloc_can_err_skb(dev, &cf);
701 	if (unlikely(!skb))
702 		return 0;
703 
704 	__m_can_get_berr_counter(dev, &bec);
705 
706 	switch (new_state) {
707 	case CAN_STATE_ERROR_ACTIVE:
708 		/* error warning state */
709 		cf->can_id |= CAN_ERR_CRTL;
710 		cf->data[1] = (bec.txerr > bec.rxerr) ?
711 			CAN_ERR_CRTL_TX_WARNING :
712 			CAN_ERR_CRTL_RX_WARNING;
713 		cf->data[6] = bec.txerr;
714 		cf->data[7] = bec.rxerr;
715 		break;
716 	case CAN_STATE_ERROR_PASSIVE:
717 		/* error passive state */
718 		cf->can_id |= CAN_ERR_CRTL;
719 		ecr = m_can_read(priv, M_CAN_ECR);
720 		if (ecr & ECR_RP)
721 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
722 		if (bec.txerr > 127)
723 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
724 		cf->data[6] = bec.txerr;
725 		cf->data[7] = bec.rxerr;
726 		break;
727 	case CAN_STATE_BUS_OFF:
728 		/* bus-off state */
729 		cf->can_id |= CAN_ERR_BUSOFF;
730 		break;
731 	default:
732 		break;
733 	}
734 
735 	stats->rx_packets++;
736 	stats->rx_bytes += cf->can_dlc;
737 	netif_receive_skb(skb);
738 
739 	return 1;
740 }
741 
742 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
743 {
744 	struct m_can_priv *priv = netdev_priv(dev);
745 	int work_done = 0;
746 
747 	if ((psr & PSR_EW) &&
748 	    (priv->can.state != CAN_STATE_ERROR_WARNING)) {
749 		netdev_dbg(dev, "entered error warning state\n");
750 		work_done += m_can_handle_state_change(dev,
751 						       CAN_STATE_ERROR_WARNING);
752 	}
753 
754 	if ((psr & PSR_EP) &&
755 	    (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
756 		netdev_dbg(dev, "entered error passive state\n");
757 		work_done += m_can_handle_state_change(dev,
758 						       CAN_STATE_ERROR_PASSIVE);
759 	}
760 
761 	if ((psr & PSR_BO) &&
762 	    (priv->can.state != CAN_STATE_BUS_OFF)) {
763 		netdev_dbg(dev, "entered error bus off state\n");
764 		work_done += m_can_handle_state_change(dev,
765 						       CAN_STATE_BUS_OFF);
766 	}
767 
768 	return work_done;
769 }
770 
771 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
772 {
773 	if (irqstatus & IR_WDI)
774 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
775 	if (irqstatus & IR_ELO)
776 		netdev_err(dev, "Error Logging Overflow\n");
777 	if (irqstatus & IR_BEU)
778 		netdev_err(dev, "Bit Error Uncorrected\n");
779 	if (irqstatus & IR_BEC)
780 		netdev_err(dev, "Bit Error Corrected\n");
781 	if (irqstatus & IR_TOO)
782 		netdev_err(dev, "Timeout reached\n");
783 	if (irqstatus & IR_MRAF)
784 		netdev_err(dev, "Message RAM access failure occurred\n");
785 }
786 
787 static inline bool is_lec_err(u32 psr)
788 {
789 	psr &= LEC_UNUSED;
790 
791 	return psr && (psr != LEC_UNUSED);
792 }
793 
794 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
795 				   u32 psr)
796 {
797 	struct m_can_priv *priv = netdev_priv(dev);
798 	int work_done = 0;
799 
800 	if (irqstatus & IR_RF0L)
801 		work_done += m_can_handle_lost_msg(dev);
802 
803 	/* handle lec errors on the bus */
804 	if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
805 	    is_lec_err(psr))
806 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
807 
808 	/* other unproccessed error interrupts */
809 	m_can_handle_other_err(dev, irqstatus);
810 
811 	return work_done;
812 }
813 
814 static int m_can_poll(struct napi_struct *napi, int quota)
815 {
816 	struct net_device *dev = napi->dev;
817 	struct m_can_priv *priv = netdev_priv(dev);
818 	int work_done = 0;
819 	u32 irqstatus, psr;
820 
821 	irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
822 	if (!irqstatus)
823 		goto end;
824 
825 	/* Errata workaround for issue "Needless activation of MRAF irq"
826 	 * During frame reception while the MCAN is in Error Passive state
827 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
828 	 * it may happen that MCAN_IR.MRAF is set although there was no
829 	 * Message RAM access failure.
830 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
831 	 * The Message RAM Access Failure interrupt routine needs to check
832 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
833 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
834 	 */
835 	if ((priv->version <= 31) && (irqstatus & IR_MRAF) &&
836 	    (m_can_read(priv, M_CAN_ECR) & ECR_RP)) {
837 		struct can_berr_counter bec;
838 
839 		__m_can_get_berr_counter(dev, &bec);
840 		if (bec.rxerr == 127) {
841 			m_can_write(priv, M_CAN_IR, IR_MRAF);
842 			irqstatus &= ~IR_MRAF;
843 		}
844 	}
845 
846 	psr = m_can_read(priv, M_CAN_PSR);
847 	if (irqstatus & IR_ERR_STATE)
848 		work_done += m_can_handle_state_errors(dev, psr);
849 
850 	if (irqstatus & IR_ERR_BUS_30X)
851 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
852 
853 	if (irqstatus & IR_RF0N)
854 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
855 
856 	if (work_done < quota) {
857 		napi_complete_done(napi, work_done);
858 		m_can_enable_all_interrupts(priv);
859 	}
860 
861 end:
862 	return work_done;
863 }
864 
865 static void m_can_echo_tx_event(struct net_device *dev)
866 {
867 	u32 txe_count = 0;
868 	u32 m_can_txefs;
869 	u32 fgi = 0;
870 	int i = 0;
871 	unsigned int msg_mark;
872 
873 	struct m_can_priv *priv = netdev_priv(dev);
874 	struct net_device_stats *stats = &dev->stats;
875 
876 	/* read tx event fifo status */
877 	m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
878 
879 	/* Get Tx Event fifo element count */
880 	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
881 			>> TXEFS_EFFL_SHIFT;
882 
883 	/* Get and process all sent elements */
884 	for (i = 0; i < txe_count; i++) {
885 		/* retrieve get index */
886 		fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
887 			>> TXEFS_EFGI_SHIFT;
888 
889 		/* get message marker */
890 		msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
891 			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
892 
893 		/* ack txe element */
894 		m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
895 						(fgi << TXEFA_EFAI_SHIFT)));
896 
897 		/* update stats */
898 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
899 		stats->tx_packets++;
900 	}
901 }
902 
903 static irqreturn_t m_can_isr(int irq, void *dev_id)
904 {
905 	struct net_device *dev = (struct net_device *)dev_id;
906 	struct m_can_priv *priv = netdev_priv(dev);
907 	struct net_device_stats *stats = &dev->stats;
908 	u32 ir;
909 
910 	ir = m_can_read(priv, M_CAN_IR);
911 	if (!ir)
912 		return IRQ_NONE;
913 
914 	/* ACK all irqs */
915 	if (ir & IR_ALL_INT)
916 		m_can_write(priv, M_CAN_IR, ir);
917 
918 	/* schedule NAPI in case of
919 	 * - rx IRQ
920 	 * - state change IRQ
921 	 * - bus error IRQ and bus error reporting
922 	 */
923 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
924 		priv->irqstatus = ir;
925 		m_can_disable_all_interrupts(priv);
926 		napi_schedule(&priv->napi);
927 	}
928 
929 	if (priv->version == 30) {
930 		if (ir & IR_TC) {
931 			/* Transmission Complete Interrupt*/
932 			stats->tx_bytes += can_get_echo_skb(dev, 0);
933 			stats->tx_packets++;
934 			can_led_event(dev, CAN_LED_EVENT_TX);
935 			netif_wake_queue(dev);
936 		}
937 	} else  {
938 		if (ir & IR_TEFN) {
939 			/* New TX FIFO Element arrived */
940 			m_can_echo_tx_event(dev);
941 			can_led_event(dev, CAN_LED_EVENT_TX);
942 			if (netif_queue_stopped(dev) &&
943 			    !m_can_tx_fifo_full(priv))
944 				netif_wake_queue(dev);
945 		}
946 	}
947 
948 	return IRQ_HANDLED;
949 }
950 
951 static const struct can_bittiming_const m_can_bittiming_const_30X = {
952 	.name = KBUILD_MODNAME,
953 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
954 	.tseg1_max = 64,
955 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
956 	.tseg2_max = 16,
957 	.sjw_max = 16,
958 	.brp_min = 1,
959 	.brp_max = 1024,
960 	.brp_inc = 1,
961 };
962 
963 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
964 	.name = KBUILD_MODNAME,
965 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
966 	.tseg1_max = 16,
967 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
968 	.tseg2_max = 8,
969 	.sjw_max = 4,
970 	.brp_min = 1,
971 	.brp_max = 32,
972 	.brp_inc = 1,
973 };
974 
975 static const struct can_bittiming_const m_can_bittiming_const_31X = {
976 	.name = KBUILD_MODNAME,
977 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
978 	.tseg1_max = 256,
979 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
980 	.tseg2_max = 128,
981 	.sjw_max = 128,
982 	.brp_min = 1,
983 	.brp_max = 512,
984 	.brp_inc = 1,
985 };
986 
987 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
988 	.name = KBUILD_MODNAME,
989 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
990 	.tseg1_max = 32,
991 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
992 	.tseg2_max = 16,
993 	.sjw_max = 16,
994 	.brp_min = 1,
995 	.brp_max = 32,
996 	.brp_inc = 1,
997 };
998 
999 static int m_can_set_bittiming(struct net_device *dev)
1000 {
1001 	struct m_can_priv *priv = netdev_priv(dev);
1002 	const struct can_bittiming *bt = &priv->can.bittiming;
1003 	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1004 	u16 brp, sjw, tseg1, tseg2;
1005 	u32 reg_btp;
1006 
1007 	brp = bt->brp - 1;
1008 	sjw = bt->sjw - 1;
1009 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1010 	tseg2 = bt->phase_seg2 - 1;
1011 	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1012 		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1013 	m_can_write(priv, M_CAN_NBTP, reg_btp);
1014 
1015 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1016 		reg_btp = 0;
1017 		brp = dbt->brp - 1;
1018 		sjw = dbt->sjw - 1;
1019 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1020 		tseg2 = dbt->phase_seg2 - 1;
1021 
1022 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1023 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1024 		 * paper presented at the International CAN Conference 2013
1025 		 */
1026 		if (dbt->bitrate > 2500000) {
1027 			u32 tdco, ssp;
1028 
1029 			/* Use the same value of secondary sampling point
1030 			 * as the data sampling point
1031 			 */
1032 			ssp = dbt->sample_point;
1033 
1034 			/* Equation based on Bosch's M_CAN User Manual's
1035 			 * Transmitter Delay Compensation Section
1036 			 */
1037 			tdco = (priv->can.clock.freq / 1000) *
1038 			       ssp / dbt->bitrate;
1039 
1040 			/* Max valid TDCO value is 127 */
1041 			if (tdco > 127) {
1042 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1043 					    tdco);
1044 				tdco = 127;
1045 			}
1046 
1047 			reg_btp |= DBTP_TDC;
1048 			m_can_write(priv, M_CAN_TDCR,
1049 				    tdco << TDCR_TDCO_SHIFT);
1050 		}
1051 
1052 		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1053 			   (sjw << DBTP_DSJW_SHIFT) |
1054 			   (tseg1 << DBTP_DTSEG1_SHIFT) |
1055 			   (tseg2 << DBTP_DTSEG2_SHIFT);
1056 
1057 		m_can_write(priv, M_CAN_DBTP, reg_btp);
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 /* Configure M_CAN chip:
1064  * - set rx buffer/fifo element size
1065  * - configure rx fifo
1066  * - accept non-matching frame into fifo 0
1067  * - configure tx buffer
1068  *		- >= v3.1.x: TX FIFO is used
1069  * - configure mode
1070  * - setup bittiming
1071  */
1072 static void m_can_chip_config(struct net_device *dev)
1073 {
1074 	struct m_can_priv *priv = netdev_priv(dev);
1075 	u32 cccr, test;
1076 
1077 	m_can_config_endisable(priv, true);
1078 
1079 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1080 	m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1081 
1082 	/* Accept Non-matching Frames Into FIFO 0 */
1083 	m_can_write(priv, M_CAN_GFC, 0x0);
1084 
1085 	if (priv->version == 30) {
1086 		/* only support one Tx Buffer currently */
1087 		m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1088 				priv->mcfg[MRAM_TXB].off);
1089 	} else {
1090 		/* TX FIFO is used for newer IP Core versions */
1091 		m_can_write(priv, M_CAN_TXBC,
1092 			    (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1093 			    (priv->mcfg[MRAM_TXB].off));
1094 	}
1095 
1096 	/* support 64 bytes payload */
1097 	m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1098 
1099 	/* TX Event FIFO */
1100 	if (priv->version == 30) {
1101 		m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1102 				priv->mcfg[MRAM_TXE].off);
1103 	} else {
1104 		/* Full TX Event FIFO is used */
1105 		m_can_write(priv, M_CAN_TXEFC,
1106 			    ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1107 			     & TXEFC_EFS_MASK) |
1108 			    priv->mcfg[MRAM_TXE].off);
1109 	}
1110 
1111 	/* rx fifo configuration, blocking mode, fifo size 1 */
1112 	m_can_write(priv, M_CAN_RXF0C,
1113 		    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1114 		     priv->mcfg[MRAM_RXF0].off);
1115 
1116 	m_can_write(priv, M_CAN_RXF1C,
1117 		    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1118 		     priv->mcfg[MRAM_RXF1].off);
1119 
1120 	cccr = m_can_read(priv, M_CAN_CCCR);
1121 	test = m_can_read(priv, M_CAN_TEST);
1122 	test &= ~TEST_LBCK;
1123 	if (priv->version == 30) {
1124 	/* Version 3.0.x */
1125 
1126 		cccr &= ~(CCCR_TEST | CCCR_MON |
1127 			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1128 			(CCCR_CME_MASK << CCCR_CME_SHIFT));
1129 
1130 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1131 			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1132 
1133 	} else {
1134 	/* Version 3.1.x or 3.2.x */
1135 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1136 			  CCCR_NISO);
1137 
1138 		/* Only 3.2.x has NISO Bit implemented */
1139 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1140 			cccr |= CCCR_NISO;
1141 
1142 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1143 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1144 	}
1145 
1146 	/* Loopback Mode */
1147 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1148 		cccr |= CCCR_TEST | CCCR_MON;
1149 		test |= TEST_LBCK;
1150 	}
1151 
1152 	/* Enable Monitoring (all versions) */
1153 	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1154 		cccr |= CCCR_MON;
1155 
1156 	/* Write config */
1157 	m_can_write(priv, M_CAN_CCCR, cccr);
1158 	m_can_write(priv, M_CAN_TEST, test);
1159 
1160 	/* Enable interrupts */
1161 	m_can_write(priv, M_CAN_IR, IR_ALL_INT);
1162 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1163 		if (priv->version == 30)
1164 			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1165 				    ~(IR_ERR_LEC_30X));
1166 		else
1167 			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1168 				    ~(IR_ERR_LEC_31X));
1169 	else
1170 		m_can_write(priv, M_CAN_IE, IR_ALL_INT);
1171 
1172 	/* route all interrupts to INT0 */
1173 	m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
1174 
1175 	/* set bittiming params */
1176 	m_can_set_bittiming(dev);
1177 
1178 	m_can_config_endisable(priv, false);
1179 }
1180 
1181 static void m_can_start(struct net_device *dev)
1182 {
1183 	struct m_can_priv *priv = netdev_priv(dev);
1184 
1185 	/* basic m_can configuration */
1186 	m_can_chip_config(dev);
1187 
1188 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1189 
1190 	m_can_enable_all_interrupts(priv);
1191 }
1192 
1193 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1194 {
1195 	switch (mode) {
1196 	case CAN_MODE_START:
1197 		m_can_start(dev);
1198 		netif_wake_queue(dev);
1199 		break;
1200 	default:
1201 		return -EOPNOTSUPP;
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 /* Checks core release number of M_CAN
1208  * returns 0 if an unsupported device is detected
1209  * else it returns the release and step coded as:
1210  * return value = 10 * <release> + 1 * <step>
1211  */
1212 static int m_can_check_core_release(void __iomem *m_can_base)
1213 {
1214 	u32 crel_reg;
1215 	u8 rel;
1216 	u8 step;
1217 	int res;
1218 	struct m_can_priv temp_priv = {
1219 		.base = m_can_base
1220 	};
1221 
1222 	/* Read Core Release Version and split into version number
1223 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1224 	 */
1225 	crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
1226 	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1227 	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1228 
1229 	if (rel == 3) {
1230 		/* M_CAN v3.x.y: create return value */
1231 		res = 30 + step;
1232 	} else {
1233 		/* Unsupported M_CAN version */
1234 		res = 0;
1235 	}
1236 
1237 	return res;
1238 }
1239 
1240 /* Selectable Non ISO support only in version 3.2.x
1241  * This function checks if the bit is writable.
1242  */
1243 static bool m_can_niso_supported(const struct m_can_priv *priv)
1244 {
1245 	u32 cccr_reg, cccr_poll;
1246 	int niso_timeout;
1247 
1248 	m_can_config_endisable(priv, true);
1249 	cccr_reg = m_can_read(priv, M_CAN_CCCR);
1250 	cccr_reg |= CCCR_NISO;
1251 	m_can_write(priv, M_CAN_CCCR, cccr_reg);
1252 
1253 	niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
1254 					  (cccr_poll == cccr_reg), 0, 10);
1255 
1256 	/* Clear NISO */
1257 	cccr_reg &= ~(CCCR_NISO);
1258 	m_can_write(priv, M_CAN_CCCR, cccr_reg);
1259 
1260 	m_can_config_endisable(priv, false);
1261 
1262 	/* return false if time out (-ETIMEDOUT), else return true */
1263 	return !niso_timeout;
1264 }
1265 
1266 static int m_can_dev_setup(struct platform_device *pdev, struct net_device *dev,
1267 			   void __iomem *addr)
1268 {
1269 	struct m_can_priv *priv;
1270 	int m_can_version;
1271 
1272 	m_can_version = m_can_check_core_release(addr);
1273 	/* return if unsupported version */
1274 	if (!m_can_version) {
1275 		dev_err(&pdev->dev, "Unsupported version number: %2d",
1276 			m_can_version);
1277 		return -EINVAL;
1278 	}
1279 
1280 	priv = netdev_priv(dev);
1281 	netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
1282 
1283 	/* Shared properties of all M_CAN versions */
1284 	priv->version = m_can_version;
1285 	priv->dev = dev;
1286 	priv->base = addr;
1287 	priv->can.do_set_mode = m_can_set_mode;
1288 	priv->can.do_get_berr_counter = m_can_get_berr_counter;
1289 
1290 	/* Set M_CAN supported operations */
1291 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1292 					CAN_CTRLMODE_LISTENONLY |
1293 					CAN_CTRLMODE_BERR_REPORTING |
1294 					CAN_CTRLMODE_FD;
1295 
1296 	/* Set properties depending on M_CAN version */
1297 	switch (priv->version) {
1298 	case 30:
1299 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1300 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1301 		priv->can.bittiming_const = &m_can_bittiming_const_30X;
1302 		priv->can.data_bittiming_const =
1303 				&m_can_data_bittiming_const_30X;
1304 		break;
1305 	case 31:
1306 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1307 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1308 		priv->can.bittiming_const = &m_can_bittiming_const_31X;
1309 		priv->can.data_bittiming_const =
1310 				&m_can_data_bittiming_const_31X;
1311 		break;
1312 	case 32:
1313 		priv->can.bittiming_const = &m_can_bittiming_const_31X;
1314 		priv->can.data_bittiming_const =
1315 				&m_can_data_bittiming_const_31X;
1316 		priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
1317 						? CAN_CTRLMODE_FD_NON_ISO
1318 						: 0);
1319 		break;
1320 	default:
1321 		dev_err(&pdev->dev, "Unsupported version number: %2d",
1322 			priv->version);
1323 		return -EINVAL;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static int m_can_open(struct net_device *dev)
1330 {
1331 	struct m_can_priv *priv = netdev_priv(dev);
1332 	int err;
1333 
1334 	err = m_can_clk_start(priv);
1335 	if (err)
1336 		return err;
1337 
1338 	/* open the can device */
1339 	err = open_candev(dev);
1340 	if (err) {
1341 		netdev_err(dev, "failed to open can device\n");
1342 		goto exit_disable_clks;
1343 	}
1344 
1345 	/* register interrupt handler */
1346 	err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1347 			  dev);
1348 	if (err < 0) {
1349 		netdev_err(dev, "failed to request interrupt\n");
1350 		goto exit_irq_fail;
1351 	}
1352 
1353 	/* start the m_can controller */
1354 	m_can_start(dev);
1355 
1356 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1357 	napi_enable(&priv->napi);
1358 	netif_start_queue(dev);
1359 
1360 	return 0;
1361 
1362 exit_irq_fail:
1363 	close_candev(dev);
1364 exit_disable_clks:
1365 	m_can_clk_stop(priv);
1366 	return err;
1367 }
1368 
1369 static void m_can_stop(struct net_device *dev)
1370 {
1371 	struct m_can_priv *priv = netdev_priv(dev);
1372 
1373 	/* disable all interrupts */
1374 	m_can_disable_all_interrupts(priv);
1375 
1376 	/* set the state as STOPPED */
1377 	priv->can.state = CAN_STATE_STOPPED;
1378 }
1379 
1380 static int m_can_close(struct net_device *dev)
1381 {
1382 	struct m_can_priv *priv = netdev_priv(dev);
1383 
1384 	netif_stop_queue(dev);
1385 	napi_disable(&priv->napi);
1386 	m_can_stop(dev);
1387 	m_can_clk_stop(priv);
1388 	free_irq(dev->irq, dev);
1389 	close_candev(dev);
1390 	can_led_event(dev, CAN_LED_EVENT_STOP);
1391 
1392 	return 0;
1393 }
1394 
1395 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1396 {
1397 	struct m_can_priv *priv = netdev_priv(dev);
1398 	/*get wrap around for loopback skb index */
1399 	unsigned int wrap = priv->can.echo_skb_max;
1400 	int next_idx;
1401 
1402 	/* calculate next index */
1403 	next_idx = (++putidx >= wrap ? 0 : putidx);
1404 
1405 	/* check if occupied */
1406 	return !!priv->can.echo_skb[next_idx];
1407 }
1408 
1409 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1410 				    struct net_device *dev)
1411 {
1412 	struct m_can_priv *priv = netdev_priv(dev);
1413 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1414 	u32 id, cccr, fdflags;
1415 	int i;
1416 	int putidx;
1417 
1418 	if (can_dropped_invalid_skb(dev, skb))
1419 		return NETDEV_TX_OK;
1420 
1421 	/* Generate ID field for TX buffer Element */
1422 	/* Common to all supported M_CAN versions */
1423 	if (cf->can_id & CAN_EFF_FLAG) {
1424 		id = cf->can_id & CAN_EFF_MASK;
1425 		id |= TX_BUF_XTD;
1426 	} else {
1427 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1428 	}
1429 
1430 	if (cf->can_id & CAN_RTR_FLAG)
1431 		id |= TX_BUF_RTR;
1432 
1433 	if (priv->version == 30) {
1434 		netif_stop_queue(dev);
1435 
1436 		/* message ram configuration */
1437 		m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1438 		m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
1439 				 can_len2dlc(cf->len) << 16);
1440 
1441 		for (i = 0; i < cf->len; i += 4)
1442 			m_can_fifo_write(priv, 0,
1443 					 M_CAN_FIFO_DATA(i / 4),
1444 					 *(u32 *)(cf->data + i));
1445 
1446 		can_put_echo_skb(skb, dev, 0);
1447 
1448 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1449 			cccr = m_can_read(priv, M_CAN_CCCR);
1450 			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1451 			if (can_is_canfd_skb(skb)) {
1452 				if (cf->flags & CANFD_BRS)
1453 					cccr |= CCCR_CMR_CANFD_BRS <<
1454 						CCCR_CMR_SHIFT;
1455 				else
1456 					cccr |= CCCR_CMR_CANFD <<
1457 						CCCR_CMR_SHIFT;
1458 			} else {
1459 				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1460 			}
1461 			m_can_write(priv, M_CAN_CCCR, cccr);
1462 		}
1463 		m_can_write(priv, M_CAN_TXBTIE, 0x1);
1464 		m_can_write(priv, M_CAN_TXBAR, 0x1);
1465 		/* End of xmit function for version 3.0.x */
1466 	} else {
1467 		/* Transmit routine for version >= v3.1.x */
1468 
1469 		/* Check if FIFO full */
1470 		if (m_can_tx_fifo_full(priv)) {
1471 			/* This shouldn't happen */
1472 			netif_stop_queue(dev);
1473 			netdev_warn(dev,
1474 				    "TX queue active although FIFO is full.");
1475 			return NETDEV_TX_BUSY;
1476 		}
1477 
1478 		/* get put index for frame */
1479 		putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1480 				  >> TXFQS_TFQPI_SHIFT);
1481 		/* Write ID Field to FIFO Element */
1482 		m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1483 
1484 		/* get CAN FD configuration of frame */
1485 		fdflags = 0;
1486 		if (can_is_canfd_skb(skb)) {
1487 			fdflags |= TX_BUF_FDF;
1488 			if (cf->flags & CANFD_BRS)
1489 				fdflags |= TX_BUF_BRS;
1490 		}
1491 
1492 		/* Construct DLC Field. Also contains CAN-FD configuration
1493 		 * use put index of fifo as message marker
1494 		 * it is used in TX interrupt for
1495 		 * sending the correct echo frame
1496 		 */
1497 		m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
1498 				 ((putidx << TX_BUF_MM_SHIFT) &
1499 				  TX_BUF_MM_MASK) |
1500 				 (can_len2dlc(cf->len) << 16) |
1501 				 fdflags | TX_BUF_EFC);
1502 
1503 		for (i = 0; i < cf->len; i += 4)
1504 			m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
1505 					 *(u32 *)(cf->data + i));
1506 
1507 		/* Push loopback echo.
1508 		 * Will be looped back on TX interrupt based on message marker
1509 		 */
1510 		can_put_echo_skb(skb, dev, putidx);
1511 
1512 		/* Enable TX FIFO element to start transfer  */
1513 		m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
1514 
1515 		/* stop network queue if fifo full */
1516 			if (m_can_tx_fifo_full(priv) ||
1517 			    m_can_next_echo_skb_occupied(dev, putidx))
1518 				netif_stop_queue(dev);
1519 	}
1520 
1521 	return NETDEV_TX_OK;
1522 }
1523 
1524 static const struct net_device_ops m_can_netdev_ops = {
1525 	.ndo_open = m_can_open,
1526 	.ndo_stop = m_can_close,
1527 	.ndo_start_xmit = m_can_start_xmit,
1528 	.ndo_change_mtu = can_change_mtu,
1529 };
1530 
1531 static int register_m_can_dev(struct net_device *dev)
1532 {
1533 	dev->flags |= IFF_ECHO;	/* we support local echo */
1534 	dev->netdev_ops = &m_can_netdev_ops;
1535 
1536 	return register_candev(dev);
1537 }
1538 
1539 static void m_can_init_ram(struct m_can_priv *priv)
1540 {
1541 	int end, i, start;
1542 
1543 	/* initialize the entire Message RAM in use to avoid possible
1544 	 * ECC/parity checksum errors when reading an uninitialized buffer
1545 	 */
1546 	start = priv->mcfg[MRAM_SIDF].off;
1547 	end = priv->mcfg[MRAM_TXB].off +
1548 		priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1549 	for (i = start; i < end; i += 4)
1550 		writel(0x0, priv->mram_base + i);
1551 }
1552 
1553 static void m_can_of_parse_mram(struct m_can_priv *priv,
1554 				const u32 *mram_config_vals)
1555 {
1556 	priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1557 	priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1558 	priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1559 			priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1560 	priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1561 	priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1562 			priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1563 	priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1564 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1565 	priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1566 			priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1567 	priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1568 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1569 	priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1570 			priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1571 	priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1572 	priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1573 			priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1574 	priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1575 	priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1576 			priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1577 	priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1578 			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1579 
1580 	dev_dbg(priv->device,
1581 		"mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1582 		priv->mram_base,
1583 		priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1584 		priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1585 		priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1586 		priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1587 		priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1588 		priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1589 		priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1590 
1591 	m_can_init_ram(priv);
1592 }
1593 
1594 static int m_can_plat_probe(struct platform_device *pdev)
1595 {
1596 	struct net_device *dev;
1597 	struct m_can_priv *priv;
1598 	struct resource *res;
1599 	void __iomem *addr;
1600 	void __iomem *mram_addr;
1601 	struct clk *hclk, *cclk;
1602 	int irq, ret;
1603 	struct device_node *np;
1604 	u32 mram_config_vals[MRAM_CFG_LEN];
1605 	u32 tx_fifo_size;
1606 
1607 	np = pdev->dev.of_node;
1608 
1609 	hclk = devm_clk_get(&pdev->dev, "hclk");
1610 	cclk = devm_clk_get(&pdev->dev, "cclk");
1611 
1612 	if (IS_ERR(hclk) || IS_ERR(cclk)) {
1613 		dev_err(&pdev->dev, "no clock found\n");
1614 		ret = -ENODEV;
1615 		goto failed_ret;
1616 	}
1617 
1618 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1619 	addr = devm_ioremap_resource(&pdev->dev, res);
1620 	irq = platform_get_irq_byname(pdev, "int0");
1621 
1622 	if (IS_ERR(addr) || irq < 0) {
1623 		ret = -EINVAL;
1624 		goto failed_ret;
1625 	}
1626 
1627 	/* message ram could be shared */
1628 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1629 	if (!res) {
1630 		ret = -ENODEV;
1631 		goto failed_ret;
1632 	}
1633 
1634 	mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1635 	if (!mram_addr) {
1636 		ret = -ENOMEM;
1637 		goto failed_ret;
1638 	}
1639 
1640 	/* get message ram configuration */
1641 	ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1642 					 mram_config_vals,
1643 					 sizeof(mram_config_vals) / 4);
1644 	if (ret) {
1645 		dev_err(&pdev->dev, "Could not get Message RAM configuration.");
1646 		goto failed_ret;
1647 	}
1648 
1649 	/* Get TX FIFO size
1650 	 * Defines the total amount of echo buffers for loopback
1651 	 */
1652 	tx_fifo_size = mram_config_vals[7];
1653 
1654 	/* allocate the m_can device */
1655 	dev = alloc_candev(sizeof(*priv), tx_fifo_size);
1656 	if (!dev) {
1657 		ret = -ENOMEM;
1658 		goto failed_ret;
1659 	}
1660 
1661 	priv = netdev_priv(dev);
1662 	dev->irq = irq;
1663 	priv->device = &pdev->dev;
1664 	priv->hclk = hclk;
1665 	priv->cclk = cclk;
1666 	priv->can.clock.freq = clk_get_rate(cclk);
1667 	priv->mram_base = mram_addr;
1668 
1669 	platform_set_drvdata(pdev, dev);
1670 	SET_NETDEV_DEV(dev, &pdev->dev);
1671 
1672 	/* Enable clocks. Necessary to read Core Release in order to determine
1673 	 * M_CAN version
1674 	 */
1675 	pm_runtime_enable(&pdev->dev);
1676 	ret = m_can_clk_start(priv);
1677 	if (ret)
1678 		goto pm_runtime_fail;
1679 
1680 	ret = m_can_dev_setup(pdev, dev, addr);
1681 	if (ret)
1682 		goto clk_disable;
1683 
1684 	ret = register_m_can_dev(dev);
1685 	if (ret) {
1686 		dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1687 			KBUILD_MODNAME, ret);
1688 		goto clk_disable;
1689 	}
1690 
1691 	m_can_of_parse_mram(priv, mram_config_vals);
1692 
1693 	devm_can_led_init(dev);
1694 
1695 	of_can_transceiver(dev);
1696 
1697 	dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
1698 		 KBUILD_MODNAME, dev->irq, priv->version);
1699 
1700 	/* Probe finished
1701 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1702 	 */
1703 clk_disable:
1704 	m_can_clk_stop(priv);
1705 pm_runtime_fail:
1706 	if (ret) {
1707 		pm_runtime_disable(&pdev->dev);
1708 		free_candev(dev);
1709 	}
1710 failed_ret:
1711 	return ret;
1712 }
1713 
1714 static __maybe_unused int m_can_suspend(struct device *dev)
1715 {
1716 	struct net_device *ndev = dev_get_drvdata(dev);
1717 	struct m_can_priv *priv = netdev_priv(ndev);
1718 
1719 	if (netif_running(ndev)) {
1720 		netif_stop_queue(ndev);
1721 		netif_device_detach(ndev);
1722 		m_can_stop(ndev);
1723 		m_can_clk_stop(priv);
1724 	}
1725 
1726 	pinctrl_pm_select_sleep_state(dev);
1727 
1728 	priv->can.state = CAN_STATE_SLEEPING;
1729 
1730 	return 0;
1731 }
1732 
1733 static __maybe_unused int m_can_resume(struct device *dev)
1734 {
1735 	struct net_device *ndev = dev_get_drvdata(dev);
1736 	struct m_can_priv *priv = netdev_priv(ndev);
1737 
1738 	pinctrl_pm_select_default_state(dev);
1739 
1740 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1741 
1742 	if (netif_running(ndev)) {
1743 		int ret;
1744 
1745 		ret = m_can_clk_start(priv);
1746 		if (ret)
1747 			return ret;
1748 
1749 		m_can_init_ram(priv);
1750 		m_can_start(ndev);
1751 		netif_device_attach(ndev);
1752 		netif_start_queue(ndev);
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 static void unregister_m_can_dev(struct net_device *dev)
1759 {
1760 	unregister_candev(dev);
1761 }
1762 
1763 static int m_can_plat_remove(struct platform_device *pdev)
1764 {
1765 	struct net_device *dev = platform_get_drvdata(pdev);
1766 
1767 	unregister_m_can_dev(dev);
1768 
1769 	pm_runtime_disable(&pdev->dev);
1770 
1771 	platform_set_drvdata(pdev, NULL);
1772 
1773 	free_candev(dev);
1774 
1775 	return 0;
1776 }
1777 
1778 static int __maybe_unused m_can_runtime_suspend(struct device *dev)
1779 {
1780 	struct net_device *ndev = dev_get_drvdata(dev);
1781 	struct m_can_priv *priv = netdev_priv(ndev);
1782 
1783 	clk_disable_unprepare(priv->cclk);
1784 	clk_disable_unprepare(priv->hclk);
1785 
1786 	return 0;
1787 }
1788 
1789 static int __maybe_unused m_can_runtime_resume(struct device *dev)
1790 {
1791 	struct net_device *ndev = dev_get_drvdata(dev);
1792 	struct m_can_priv *priv = netdev_priv(ndev);
1793 	int err;
1794 
1795 	err = clk_prepare_enable(priv->hclk);
1796 	if (err)
1797 		return err;
1798 
1799 	err = clk_prepare_enable(priv->cclk);
1800 	if (err)
1801 		clk_disable_unprepare(priv->hclk);
1802 
1803 	return err;
1804 }
1805 
1806 static const struct dev_pm_ops m_can_pmops = {
1807 	SET_RUNTIME_PM_OPS(m_can_runtime_suspend,
1808 			   m_can_runtime_resume, NULL)
1809 	SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1810 };
1811 
1812 static const struct of_device_id m_can_of_table[] = {
1813 	{ .compatible = "bosch,m_can", .data = NULL },
1814 	{ /* sentinel */ },
1815 };
1816 MODULE_DEVICE_TABLE(of, m_can_of_table);
1817 
1818 static struct platform_driver m_can_plat_driver = {
1819 	.driver = {
1820 		.name = KBUILD_MODNAME,
1821 		.of_match_table = m_can_of_table,
1822 		.pm     = &m_can_pmops,
1823 	},
1824 	.probe = m_can_plat_probe,
1825 	.remove = m_can_plat_remove,
1826 };
1827 
1828 module_platform_driver(m_can_plat_driver);
1829 
1830 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1831 MODULE_LICENSE("GPL v2");
1832 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1833