xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 8b0adbe3e38dbe5aae9edf6f5159ffdca7cfbdf1)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24 
25 #include "m_can.h"
26 
27 /* registers definition */
28 enum m_can_reg {
29 	M_CAN_CREL	= 0x0,
30 	M_CAN_ENDN	= 0x4,
31 	M_CAN_CUST	= 0x8,
32 	M_CAN_DBTP	= 0xc,
33 	M_CAN_TEST	= 0x10,
34 	M_CAN_RWD	= 0x14,
35 	M_CAN_CCCR	= 0x18,
36 	M_CAN_NBTP	= 0x1c,
37 	M_CAN_TSCC	= 0x20,
38 	M_CAN_TSCV	= 0x24,
39 	M_CAN_TOCC	= 0x28,
40 	M_CAN_TOCV	= 0x2c,
41 	M_CAN_ECR	= 0x40,
42 	M_CAN_PSR	= 0x44,
43 	/* TDCR Register only available for version >=3.1.x */
44 	M_CAN_TDCR	= 0x48,
45 	M_CAN_IR	= 0x50,
46 	M_CAN_IE	= 0x54,
47 	M_CAN_ILS	= 0x58,
48 	M_CAN_ILE	= 0x5c,
49 	M_CAN_GFC	= 0x80,
50 	M_CAN_SIDFC	= 0x84,
51 	M_CAN_XIDFC	= 0x88,
52 	M_CAN_XIDAM	= 0x90,
53 	M_CAN_HPMS	= 0x94,
54 	M_CAN_NDAT1	= 0x98,
55 	M_CAN_NDAT2	= 0x9c,
56 	M_CAN_RXF0C	= 0xa0,
57 	M_CAN_RXF0S	= 0xa4,
58 	M_CAN_RXF0A	= 0xa8,
59 	M_CAN_RXBC	= 0xac,
60 	M_CAN_RXF1C	= 0xb0,
61 	M_CAN_RXF1S	= 0xb4,
62 	M_CAN_RXF1A	= 0xb8,
63 	M_CAN_RXESC	= 0xbc,
64 	M_CAN_TXBC	= 0xc0,
65 	M_CAN_TXFQS	= 0xc4,
66 	M_CAN_TXESC	= 0xc8,
67 	M_CAN_TXBRP	= 0xcc,
68 	M_CAN_TXBAR	= 0xd0,
69 	M_CAN_TXBCR	= 0xd4,
70 	M_CAN_TXBTO	= 0xd8,
71 	M_CAN_TXBCF	= 0xdc,
72 	M_CAN_TXBTIE	= 0xe0,
73 	M_CAN_TXBCIE	= 0xe4,
74 	M_CAN_TXEFC	= 0xf0,
75 	M_CAN_TXEFS	= 0xf4,
76 	M_CAN_TXEFA	= 0xf8,
77 };
78 
79 /* napi related */
80 #define M_CAN_NAPI_WEIGHT	64
81 
82 /* message ram configuration data length */
83 #define MRAM_CFG_LEN	8
84 
85 /* Core Release Register (CREL) */
86 #define CREL_REL_SHIFT		28
87 #define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
88 #define CREL_STEP_SHIFT		24
89 #define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
90 #define CREL_SUBSTEP_SHIFT	20
91 #define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
92 
93 /* Data Bit Timing & Prescaler Register (DBTP) */
94 #define DBTP_TDC		BIT(23)
95 #define DBTP_DBRP_SHIFT		16
96 #define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
97 #define DBTP_DTSEG1_SHIFT	8
98 #define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
99 #define DBTP_DTSEG2_SHIFT	4
100 #define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
101 #define DBTP_DSJW_SHIFT		0
102 #define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
103 
104 /* Transmitter Delay Compensation Register (TDCR) */
105 #define TDCR_TDCO_SHIFT		8
106 #define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
107 #define TDCR_TDCF_SHIFT		0
108 #define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
109 
110 /* Test Register (TEST) */
111 #define TEST_LBCK		BIT(4)
112 
113 /* CC Control Register(CCCR) */
114 #define CCCR_CMR_MASK		0x3
115 #define CCCR_CMR_SHIFT		10
116 #define CCCR_CMR_CANFD		0x1
117 #define CCCR_CMR_CANFD_BRS	0x2
118 #define CCCR_CMR_CAN		0x3
119 #define CCCR_CME_MASK		0x3
120 #define CCCR_CME_SHIFT		8
121 #define CCCR_CME_CAN		0
122 #define CCCR_CME_CANFD		0x1
123 #define CCCR_CME_CANFD_BRS	0x2
124 #define CCCR_TXP		BIT(14)
125 #define CCCR_TEST		BIT(7)
126 #define CCCR_DAR		BIT(6)
127 #define CCCR_MON		BIT(5)
128 #define CCCR_CSR		BIT(4)
129 #define CCCR_CSA		BIT(3)
130 #define CCCR_ASM		BIT(2)
131 #define CCCR_CCE		BIT(1)
132 #define CCCR_INIT		BIT(0)
133 #define CCCR_CANFD		0x10
134 /* for version >=3.1.x */
135 #define CCCR_EFBI		BIT(13)
136 #define CCCR_PXHD		BIT(12)
137 #define CCCR_BRSE		BIT(9)
138 #define CCCR_FDOE		BIT(8)
139 /* only for version >=3.2.x */
140 #define CCCR_NISO		BIT(15)
141 
142 /* Nominal Bit Timing & Prescaler Register (NBTP) */
143 #define NBTP_NSJW_SHIFT		25
144 #define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
145 #define NBTP_NBRP_SHIFT		16
146 #define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
147 #define NBTP_NTSEG1_SHIFT	8
148 #define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
149 #define NBTP_NTSEG2_SHIFT	0
150 #define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
151 
152 /* Timestamp Counter Configuration Register (TSCC) */
153 #define TSCC_TCP_MASK		GENMASK(19, 16)
154 #define TSCC_TSS_MASK		GENMASK(1, 0)
155 #define TSCC_TSS_DISABLE	0x0
156 #define TSCC_TSS_INTERNAL	0x1
157 #define TSCC_TSS_EXTERNAL	0x2
158 
159 /* Timestamp Counter Value Register (TSCV) */
160 #define TSCV_TSC_MASK		GENMASK(15, 0)
161 
162 /* Error Counter Register(ECR) */
163 #define ECR_RP			BIT(15)
164 #define ECR_REC_SHIFT		8
165 #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
166 #define ECR_TEC_SHIFT		0
167 #define ECR_TEC_MASK		0xff
168 
169 /* Protocol Status Register(PSR) */
170 #define PSR_BO		BIT(7)
171 #define PSR_EW		BIT(6)
172 #define PSR_EP		BIT(5)
173 #define PSR_LEC_MASK	0x7
174 
175 /* Interrupt Register(IR) */
176 #define IR_ALL_INT	0xffffffff
177 
178 /* Renamed bits for versions > 3.1.x */
179 #define IR_ARA		BIT(29)
180 #define IR_PED		BIT(28)
181 #define IR_PEA		BIT(27)
182 
183 /* Bits for version 3.0.x */
184 #define IR_STE		BIT(31)
185 #define IR_FOE		BIT(30)
186 #define IR_ACKE		BIT(29)
187 #define IR_BE		BIT(28)
188 #define IR_CRCE		BIT(27)
189 #define IR_WDI		BIT(26)
190 #define IR_BO		BIT(25)
191 #define IR_EW		BIT(24)
192 #define IR_EP		BIT(23)
193 #define IR_ELO		BIT(22)
194 #define IR_BEU		BIT(21)
195 #define IR_BEC		BIT(20)
196 #define IR_DRX		BIT(19)
197 #define IR_TOO		BIT(18)
198 #define IR_MRAF		BIT(17)
199 #define IR_TSW		BIT(16)
200 #define IR_TEFL		BIT(15)
201 #define IR_TEFF		BIT(14)
202 #define IR_TEFW		BIT(13)
203 #define IR_TEFN		BIT(12)
204 #define IR_TFE		BIT(11)
205 #define IR_TCF		BIT(10)
206 #define IR_TC		BIT(9)
207 #define IR_HPM		BIT(8)
208 #define IR_RF1L		BIT(7)
209 #define IR_RF1F		BIT(6)
210 #define IR_RF1W		BIT(5)
211 #define IR_RF1N		BIT(4)
212 #define IR_RF0L		BIT(3)
213 #define IR_RF0F		BIT(2)
214 #define IR_RF0W		BIT(1)
215 #define IR_RF0N		BIT(0)
216 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
217 
218 /* Interrupts for version 3.0.x */
219 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
220 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
221 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
222 			 IR_RF1L | IR_RF0L)
223 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
224 /* Interrupts for version >= 3.1.x */
225 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
226 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
227 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
228 			 IR_RF1L | IR_RF0L)
229 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
230 
231 /* Interrupt Line Select (ILS) */
232 #define ILS_ALL_INT0	0x0
233 #define ILS_ALL_INT1	0xFFFFFFFF
234 
235 /* Interrupt Line Enable (ILE) */
236 #define ILE_EINT1	BIT(1)
237 #define ILE_EINT0	BIT(0)
238 
239 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
240 #define RXFC_FWM_SHIFT	24
241 #define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
242 #define RXFC_FS_SHIFT	16
243 #define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
244 
245 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
246 #define RXFS_RFL	BIT(25)
247 #define RXFS_FF		BIT(24)
248 #define RXFS_FPI_SHIFT	16
249 #define RXFS_FPI_MASK	0x3f0000
250 #define RXFS_FGI_SHIFT	8
251 #define RXFS_FGI_MASK	0x3f00
252 #define RXFS_FFL_MASK	0x7f
253 
254 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
255 #define M_CAN_RXESC_8BYTES	0x0
256 #define M_CAN_RXESC_64BYTES	0x777
257 
258 /* Tx Buffer Configuration(TXBC) */
259 #define TXBC_NDTB_SHIFT		16
260 #define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
261 #define TXBC_TFQS_SHIFT		24
262 #define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
263 
264 /* Tx FIFO/Queue Status (TXFQS) */
265 #define TXFQS_TFQF		BIT(21)
266 #define TXFQS_TFQPI_SHIFT	16
267 #define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
268 #define TXFQS_TFGI_SHIFT	8
269 #define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
270 #define TXFQS_TFFL_SHIFT	0
271 #define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
272 
273 /* Tx Buffer Element Size Configuration(TXESC) */
274 #define TXESC_TBDS_8BYTES	0x0
275 #define TXESC_TBDS_64BYTES	0x7
276 
277 /* Tx Event FIFO Configuration (TXEFC) */
278 #define TXEFC_EFS_SHIFT		16
279 #define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
280 
281 /* Tx Event FIFO Status (TXEFS) */
282 #define TXEFS_TEFL		BIT(25)
283 #define TXEFS_EFF		BIT(24)
284 #define TXEFS_EFGI_SHIFT	8
285 #define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
286 #define TXEFS_EFFL_SHIFT	0
287 #define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
288 
289 /* Tx Event FIFO Acknowledge (TXEFA) */
290 #define TXEFA_EFAI_SHIFT	0
291 #define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
292 
293 /* Message RAM Configuration (in bytes) */
294 #define SIDF_ELEMENT_SIZE	4
295 #define XIDF_ELEMENT_SIZE	8
296 #define RXF0_ELEMENT_SIZE	72
297 #define RXF1_ELEMENT_SIZE	72
298 #define RXB_ELEMENT_SIZE	72
299 #define TXE_ELEMENT_SIZE	8
300 #define TXB_ELEMENT_SIZE	72
301 
302 /* Message RAM Elements */
303 #define M_CAN_FIFO_ID		0x0
304 #define M_CAN_FIFO_DLC		0x4
305 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
306 
307 /* Rx Buffer Element */
308 /* R0 */
309 #define RX_BUF_ESI		BIT(31)
310 #define RX_BUF_XTD		BIT(30)
311 #define RX_BUF_RTR		BIT(29)
312 /* R1 */
313 #define RX_BUF_ANMF		BIT(31)
314 #define RX_BUF_FDF		BIT(21)
315 #define RX_BUF_BRS		BIT(20)
316 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
317 
318 /* Tx Buffer Element */
319 /* T0 */
320 #define TX_BUF_ESI		BIT(31)
321 #define TX_BUF_XTD		BIT(30)
322 #define TX_BUF_RTR		BIT(29)
323 /* T1 */
324 #define TX_BUF_EFC		BIT(23)
325 #define TX_BUF_FDF		BIT(21)
326 #define TX_BUF_BRS		BIT(20)
327 #define TX_BUF_MM_SHIFT		24
328 #define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
329 
330 /* Tx event FIFO Element */
331 /* E1 */
332 #define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
333 #define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
334 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
335 
336 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
337 {
338 	return cdev->ops->read_reg(cdev, reg);
339 }
340 
341 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
342 			       u32 val)
343 {
344 	cdev->ops->write_reg(cdev, reg, val);
345 }
346 
347 static u32 m_can_fifo_read(struct m_can_classdev *cdev,
348 			   u32 fgi, unsigned int offset)
349 {
350 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
351 		offset;
352 
353 	return cdev->ops->read_fifo(cdev, addr_offset);
354 }
355 
356 static void m_can_fifo_write(struct m_can_classdev *cdev,
357 			     u32 fpi, unsigned int offset, u32 val)
358 {
359 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
360 		offset;
361 
362 	cdev->ops->write_fifo(cdev, addr_offset, val);
363 }
364 
365 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
366 					   u32 fpi, u32 val)
367 {
368 	cdev->ops->write_fifo(cdev, fpi, val);
369 }
370 
371 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
372 {
373 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
374 		offset;
375 
376 	return cdev->ops->read_fifo(cdev, addr_offset);
377 }
378 
379 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
380 {
381 	return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
382 }
383 
384 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
385 {
386 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
387 	u32 timeout = 10;
388 	u32 val = 0;
389 
390 	/* Clear the Clock stop request if it was set */
391 	if (cccr & CCCR_CSR)
392 		cccr &= ~CCCR_CSR;
393 
394 	if (enable) {
395 		/* enable m_can configuration */
396 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
397 		udelay(5);
398 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
399 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
400 	} else {
401 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
402 	}
403 
404 	/* there's a delay for module initialization */
405 	if (enable)
406 		val = CCCR_INIT | CCCR_CCE;
407 
408 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
409 		if (timeout == 0) {
410 			netdev_warn(cdev->net, "Failed to init module\n");
411 			return;
412 		}
413 		timeout--;
414 		udelay(1);
415 	}
416 }
417 
418 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
419 {
420 	/* Only interrupt line 0 is used in this driver */
421 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
422 }
423 
424 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
425 {
426 	m_can_write(cdev, M_CAN_ILE, 0x0);
427 }
428 
429 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
430  * width.
431  */
432 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
433 {
434 	u32 tscv;
435 	u32 tsc;
436 
437 	tscv = m_can_read(cdev, M_CAN_TSCV);
438 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
439 
440 	return (tsc << 16);
441 }
442 
443 static void m_can_clean(struct net_device *net)
444 {
445 	struct m_can_classdev *cdev = netdev_priv(net);
446 
447 	if (cdev->tx_skb) {
448 		int putidx = 0;
449 
450 		net->stats.tx_errors++;
451 		if (cdev->version > 30)
452 			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
453 				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
454 
455 		can_free_echo_skb(cdev->net, putidx, NULL);
456 		cdev->tx_skb = NULL;
457 	}
458 }
459 
460 /* For peripherals, pass skb to rx-offload, which will push skb from
461  * napi. For non-peripherals, RX is done in napi already, so push
462  * directly. timestamp is used to ensure good skb ordering in
463  * rx-offload and is ignored for non-peripherals.
464 */
465 static void m_can_receive_skb(struct m_can_classdev *cdev,
466 			      struct sk_buff *skb,
467 			      u32 timestamp)
468 {
469 	if (cdev->is_peripheral)
470 		can_rx_offload_queue_sorted(&cdev->offload, skb, timestamp);
471 	else
472 		netif_receive_skb(skb);
473 }
474 
475 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
476 {
477 	struct net_device_stats *stats = &dev->stats;
478 	struct m_can_classdev *cdev = netdev_priv(dev);
479 	struct canfd_frame *cf;
480 	struct sk_buff *skb;
481 	u32 id, fgi, dlc;
482 	u32 timestamp = 0;
483 	int i;
484 
485 	/* calculate the fifo get index for where to read data */
486 	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
487 	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
488 	if (dlc & RX_BUF_FDF)
489 		skb = alloc_canfd_skb(dev, &cf);
490 	else
491 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
492 	if (!skb) {
493 		stats->rx_dropped++;
494 		return;
495 	}
496 
497 	if (dlc & RX_BUF_FDF)
498 		cf->len = can_fd_dlc2len((dlc >> 16) & 0x0F);
499 	else
500 		cf->len = can_cc_dlc2len((dlc >> 16) & 0x0F);
501 
502 	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
503 	if (id & RX_BUF_XTD)
504 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
505 	else
506 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
507 
508 	if (id & RX_BUF_ESI) {
509 		cf->flags |= CANFD_ESI;
510 		netdev_dbg(dev, "ESI Error\n");
511 	}
512 
513 	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
514 		cf->can_id |= CAN_RTR_FLAG;
515 	} else {
516 		if (dlc & RX_BUF_BRS)
517 			cf->flags |= CANFD_BRS;
518 
519 		for (i = 0; i < cf->len; i += 4)
520 			*(u32 *)(cf->data + i) =
521 				m_can_fifo_read(cdev, fgi,
522 						M_CAN_FIFO_DATA(i / 4));
523 	}
524 
525 	/* acknowledge rx fifo 0 */
526 	m_can_write(cdev, M_CAN_RXF0A, fgi);
527 
528 	stats->rx_packets++;
529 	stats->rx_bytes += cf->len;
530 
531 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, dlc);
532 
533 	m_can_receive_skb(cdev, skb, timestamp);
534 }
535 
536 static int m_can_do_rx_poll(struct net_device *dev, int quota)
537 {
538 	struct m_can_classdev *cdev = netdev_priv(dev);
539 	u32 pkts = 0;
540 	u32 rxfs;
541 
542 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
543 	if (!(rxfs & RXFS_FFL_MASK)) {
544 		netdev_dbg(dev, "no messages in fifo0\n");
545 		return 0;
546 	}
547 
548 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
549 		m_can_read_fifo(dev, rxfs);
550 
551 		quota--;
552 		pkts++;
553 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
554 	}
555 
556 	if (pkts)
557 		can_led_event(dev, CAN_LED_EVENT_RX);
558 
559 	return pkts;
560 }
561 
562 static int m_can_handle_lost_msg(struct net_device *dev)
563 {
564 	struct m_can_classdev *cdev = netdev_priv(dev);
565 	struct net_device_stats *stats = &dev->stats;
566 	struct sk_buff *skb;
567 	struct can_frame *frame;
568 	u32 timestamp = 0;
569 
570 	netdev_err(dev, "msg lost in rxf0\n");
571 
572 	stats->rx_errors++;
573 	stats->rx_over_errors++;
574 
575 	skb = alloc_can_err_skb(dev, &frame);
576 	if (unlikely(!skb))
577 		return 0;
578 
579 	frame->can_id |= CAN_ERR_CRTL;
580 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
581 
582 	if (cdev->is_peripheral)
583 		timestamp = m_can_get_timestamp(cdev);
584 
585 	m_can_receive_skb(cdev, skb, timestamp);
586 
587 	return 1;
588 }
589 
590 static int m_can_handle_lec_err(struct net_device *dev,
591 				enum m_can_lec_type lec_type)
592 {
593 	struct m_can_classdev *cdev = netdev_priv(dev);
594 	struct net_device_stats *stats = &dev->stats;
595 	struct can_frame *cf;
596 	struct sk_buff *skb;
597 	u32 timestamp = 0;
598 
599 	cdev->can.can_stats.bus_error++;
600 	stats->rx_errors++;
601 
602 	/* propagate the error condition to the CAN stack */
603 	skb = alloc_can_err_skb(dev, &cf);
604 	if (unlikely(!skb))
605 		return 0;
606 
607 	/* check for 'last error code' which tells us the
608 	 * type of the last error to occur on the CAN bus
609 	 */
610 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
611 
612 	switch (lec_type) {
613 	case LEC_STUFF_ERROR:
614 		netdev_dbg(dev, "stuff error\n");
615 		cf->data[2] |= CAN_ERR_PROT_STUFF;
616 		break;
617 	case LEC_FORM_ERROR:
618 		netdev_dbg(dev, "form error\n");
619 		cf->data[2] |= CAN_ERR_PROT_FORM;
620 		break;
621 	case LEC_ACK_ERROR:
622 		netdev_dbg(dev, "ack error\n");
623 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
624 		break;
625 	case LEC_BIT1_ERROR:
626 		netdev_dbg(dev, "bit1 error\n");
627 		cf->data[2] |= CAN_ERR_PROT_BIT1;
628 		break;
629 	case LEC_BIT0_ERROR:
630 		netdev_dbg(dev, "bit0 error\n");
631 		cf->data[2] |= CAN_ERR_PROT_BIT0;
632 		break;
633 	case LEC_CRC_ERROR:
634 		netdev_dbg(dev, "CRC error\n");
635 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
636 		break;
637 	default:
638 		break;
639 	}
640 
641 	stats->rx_packets++;
642 	stats->rx_bytes += cf->len;
643 
644 	if (cdev->is_peripheral)
645 		timestamp = m_can_get_timestamp(cdev);
646 
647 	m_can_receive_skb(cdev, skb, timestamp);
648 
649 	return 1;
650 }
651 
652 static int __m_can_get_berr_counter(const struct net_device *dev,
653 				    struct can_berr_counter *bec)
654 {
655 	struct m_can_classdev *cdev = netdev_priv(dev);
656 	unsigned int ecr;
657 
658 	ecr = m_can_read(cdev, M_CAN_ECR);
659 	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
660 	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
661 
662 	return 0;
663 }
664 
665 static int m_can_clk_start(struct m_can_classdev *cdev)
666 {
667 	if (cdev->pm_clock_support == 0)
668 		return 0;
669 
670 	return pm_runtime_resume_and_get(cdev->dev);
671 }
672 
673 static void m_can_clk_stop(struct m_can_classdev *cdev)
674 {
675 	if (cdev->pm_clock_support)
676 		pm_runtime_put_sync(cdev->dev);
677 }
678 
679 static int m_can_get_berr_counter(const struct net_device *dev,
680 				  struct can_berr_counter *bec)
681 {
682 	struct m_can_classdev *cdev = netdev_priv(dev);
683 	int err;
684 
685 	err = m_can_clk_start(cdev);
686 	if (err)
687 		return err;
688 
689 	__m_can_get_berr_counter(dev, bec);
690 
691 	m_can_clk_stop(cdev);
692 
693 	return 0;
694 }
695 
696 static int m_can_handle_state_change(struct net_device *dev,
697 				     enum can_state new_state)
698 {
699 	struct m_can_classdev *cdev = netdev_priv(dev);
700 	struct net_device_stats *stats = &dev->stats;
701 	struct can_frame *cf;
702 	struct sk_buff *skb;
703 	struct can_berr_counter bec;
704 	unsigned int ecr;
705 	u32 timestamp = 0;
706 
707 	switch (new_state) {
708 	case CAN_STATE_ERROR_WARNING:
709 		/* error warning state */
710 		cdev->can.can_stats.error_warning++;
711 		cdev->can.state = CAN_STATE_ERROR_WARNING;
712 		break;
713 	case CAN_STATE_ERROR_PASSIVE:
714 		/* error passive state */
715 		cdev->can.can_stats.error_passive++;
716 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
717 		break;
718 	case CAN_STATE_BUS_OFF:
719 		/* bus-off state */
720 		cdev->can.state = CAN_STATE_BUS_OFF;
721 		m_can_disable_all_interrupts(cdev);
722 		cdev->can.can_stats.bus_off++;
723 		can_bus_off(dev);
724 		break;
725 	default:
726 		break;
727 	}
728 
729 	/* propagate the error condition to the CAN stack */
730 	skb = alloc_can_err_skb(dev, &cf);
731 	if (unlikely(!skb))
732 		return 0;
733 
734 	__m_can_get_berr_counter(dev, &bec);
735 
736 	switch (new_state) {
737 	case CAN_STATE_ERROR_WARNING:
738 		/* error warning state */
739 		cf->can_id |= CAN_ERR_CRTL;
740 		cf->data[1] = (bec.txerr > bec.rxerr) ?
741 			CAN_ERR_CRTL_TX_WARNING :
742 			CAN_ERR_CRTL_RX_WARNING;
743 		cf->data[6] = bec.txerr;
744 		cf->data[7] = bec.rxerr;
745 		break;
746 	case CAN_STATE_ERROR_PASSIVE:
747 		/* error passive state */
748 		cf->can_id |= CAN_ERR_CRTL;
749 		ecr = m_can_read(cdev, M_CAN_ECR);
750 		if (ecr & ECR_RP)
751 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
752 		if (bec.txerr > 127)
753 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
754 		cf->data[6] = bec.txerr;
755 		cf->data[7] = bec.rxerr;
756 		break;
757 	case CAN_STATE_BUS_OFF:
758 		/* bus-off state */
759 		cf->can_id |= CAN_ERR_BUSOFF;
760 		break;
761 	default:
762 		break;
763 	}
764 
765 	stats->rx_packets++;
766 	stats->rx_bytes += cf->len;
767 
768 	if (cdev->is_peripheral)
769 		timestamp = m_can_get_timestamp(cdev);
770 
771 	m_can_receive_skb(cdev, skb, timestamp);
772 
773 	return 1;
774 }
775 
776 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
777 {
778 	struct m_can_classdev *cdev = netdev_priv(dev);
779 	int work_done = 0;
780 
781 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
782 		netdev_dbg(dev, "entered error warning state\n");
783 		work_done += m_can_handle_state_change(dev,
784 						       CAN_STATE_ERROR_WARNING);
785 	}
786 
787 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
788 		netdev_dbg(dev, "entered error passive state\n");
789 		work_done += m_can_handle_state_change(dev,
790 						       CAN_STATE_ERROR_PASSIVE);
791 	}
792 
793 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
794 		netdev_dbg(dev, "entered error bus off state\n");
795 		work_done += m_can_handle_state_change(dev,
796 						       CAN_STATE_BUS_OFF);
797 	}
798 
799 	return work_done;
800 }
801 
802 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
803 {
804 	if (irqstatus & IR_WDI)
805 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
806 	if (irqstatus & IR_ELO)
807 		netdev_err(dev, "Error Logging Overflow\n");
808 	if (irqstatus & IR_BEU)
809 		netdev_err(dev, "Bit Error Uncorrected\n");
810 	if (irqstatus & IR_BEC)
811 		netdev_err(dev, "Bit Error Corrected\n");
812 	if (irqstatus & IR_TOO)
813 		netdev_err(dev, "Timeout reached\n");
814 	if (irqstatus & IR_MRAF)
815 		netdev_err(dev, "Message RAM access failure occurred\n");
816 }
817 
818 static inline bool is_lec_err(u32 psr)
819 {
820 	psr &= LEC_UNUSED;
821 
822 	return psr && (psr != LEC_UNUSED);
823 }
824 
825 static inline bool m_can_is_protocol_err(u32 irqstatus)
826 {
827 	return irqstatus & IR_ERR_LEC_31X;
828 }
829 
830 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
831 {
832 	struct net_device_stats *stats = &dev->stats;
833 	struct m_can_classdev *cdev = netdev_priv(dev);
834 	struct can_frame *cf;
835 	struct sk_buff *skb;
836 	u32 timestamp = 0;
837 
838 	/* propagate the error condition to the CAN stack */
839 	skb = alloc_can_err_skb(dev, &cf);
840 
841 	/* update tx error stats since there is protocol error */
842 	stats->tx_errors++;
843 
844 	/* update arbitration lost status */
845 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
846 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
847 		cdev->can.can_stats.arbitration_lost++;
848 		if (skb) {
849 			cf->can_id |= CAN_ERR_LOSTARB;
850 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
851 		}
852 	}
853 
854 	if (unlikely(!skb)) {
855 		netdev_dbg(dev, "allocation of skb failed\n");
856 		return 0;
857 	}
858 
859 	if (cdev->is_peripheral)
860 		timestamp = m_can_get_timestamp(cdev);
861 
862 	m_can_receive_skb(cdev, skb, timestamp);
863 
864 	return 1;
865 }
866 
867 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
868 				   u32 psr)
869 {
870 	struct m_can_classdev *cdev = netdev_priv(dev);
871 	int work_done = 0;
872 
873 	if (irqstatus & IR_RF0L)
874 		work_done += m_can_handle_lost_msg(dev);
875 
876 	/* handle lec errors on the bus */
877 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
878 	    is_lec_err(psr))
879 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
880 
881 	/* handle protocol errors in arbitration phase */
882 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
883 	    m_can_is_protocol_err(irqstatus))
884 		work_done += m_can_handle_protocol_error(dev, irqstatus);
885 
886 	/* other unproccessed error interrupts */
887 	m_can_handle_other_err(dev, irqstatus);
888 
889 	return work_done;
890 }
891 
892 static int m_can_rx_handler(struct net_device *dev, int quota)
893 {
894 	struct m_can_classdev *cdev = netdev_priv(dev);
895 	int work_done = 0;
896 	u32 irqstatus, psr;
897 
898 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
899 	if (!irqstatus)
900 		goto end;
901 
902 	/* Errata workaround for issue "Needless activation of MRAF irq"
903 	 * During frame reception while the MCAN is in Error Passive state
904 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
905 	 * it may happen that MCAN_IR.MRAF is set although there was no
906 	 * Message RAM access failure.
907 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
908 	 * The Message RAM Access Failure interrupt routine needs to check
909 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
910 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
911 	 */
912 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
913 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
914 		struct can_berr_counter bec;
915 
916 		__m_can_get_berr_counter(dev, &bec);
917 		if (bec.rxerr == 127) {
918 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
919 			irqstatus &= ~IR_MRAF;
920 		}
921 	}
922 
923 	psr = m_can_read(cdev, M_CAN_PSR);
924 
925 	if (irqstatus & IR_ERR_STATE)
926 		work_done += m_can_handle_state_errors(dev, psr);
927 
928 	if (irqstatus & IR_ERR_BUS_30X)
929 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
930 
931 	if (irqstatus & IR_RF0N)
932 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
933 end:
934 	return work_done;
935 }
936 
937 static int m_can_rx_peripheral(struct net_device *dev)
938 {
939 	struct m_can_classdev *cdev = netdev_priv(dev);
940 
941 	m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT);
942 
943 	m_can_enable_all_interrupts(cdev);
944 
945 	return 0;
946 }
947 
948 static int m_can_poll(struct napi_struct *napi, int quota)
949 {
950 	struct net_device *dev = napi->dev;
951 	struct m_can_classdev *cdev = netdev_priv(dev);
952 	int work_done;
953 
954 	work_done = m_can_rx_handler(dev, quota);
955 	if (work_done < quota) {
956 		napi_complete_done(napi, work_done);
957 		m_can_enable_all_interrupts(cdev);
958 	}
959 
960 	return work_done;
961 }
962 
963 /* Echo tx skb and update net stats. Peripherals use rx-offload for
964  * echo. timestamp is used for peripherals to ensure correct ordering
965  * by rx-offload, and is ignored for non-peripherals.
966 */
967 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
968 				  unsigned int msg_mark,
969 				  u32 timestamp)
970 {
971 	struct net_device *dev = cdev->net;
972 	struct net_device_stats *stats = &dev->stats;
973 
974 	if (cdev->is_peripheral)
975 		stats->tx_bytes +=
976 			can_rx_offload_get_echo_skb(&cdev->offload,
977 						    msg_mark,
978 						    timestamp,
979 						    NULL);
980 	else
981 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
982 
983 	stats->tx_packets++;
984 }
985 
986 static void m_can_echo_tx_event(struct net_device *dev)
987 {
988 	u32 txe_count = 0;
989 	u32 m_can_txefs;
990 	u32 fgi = 0;
991 	int i = 0;
992 	unsigned int msg_mark;
993 
994 	struct m_can_classdev *cdev = netdev_priv(dev);
995 
996 	/* read tx event fifo status */
997 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
998 
999 	/* Get Tx Event fifo element count */
1000 	txe_count = (m_can_txefs & TXEFS_EFFL_MASK) >> TXEFS_EFFL_SHIFT;
1001 
1002 	/* Get and process all sent elements */
1003 	for (i = 0; i < txe_count; i++) {
1004 		u32 txe, timestamp = 0;
1005 
1006 		/* retrieve get index */
1007 		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK) >>
1008 			TXEFS_EFGI_SHIFT;
1009 
1010 		/* get message marker, timestamp */
1011 		txe = m_can_txe_fifo_read(cdev, fgi, 4);
1012 		msg_mark = (txe & TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
1013 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe);
1014 
1015 		/* ack txe element */
1016 		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
1017 						(fgi << TXEFA_EFAI_SHIFT)));
1018 
1019 		/* update stats */
1020 		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1021 	}
1022 }
1023 
1024 static irqreturn_t m_can_isr(int irq, void *dev_id)
1025 {
1026 	struct net_device *dev = (struct net_device *)dev_id;
1027 	struct m_can_classdev *cdev = netdev_priv(dev);
1028 	u32 ir;
1029 
1030 	if (pm_runtime_suspended(cdev->dev))
1031 		return IRQ_NONE;
1032 	ir = m_can_read(cdev, M_CAN_IR);
1033 	if (!ir)
1034 		return IRQ_NONE;
1035 
1036 	/* ACK all irqs */
1037 	if (ir & IR_ALL_INT)
1038 		m_can_write(cdev, M_CAN_IR, ir);
1039 
1040 	if (cdev->ops->clear_interrupts)
1041 		cdev->ops->clear_interrupts(cdev);
1042 
1043 	/* schedule NAPI in case of
1044 	 * - rx IRQ
1045 	 * - state change IRQ
1046 	 * - bus error IRQ and bus error reporting
1047 	 */
1048 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1049 		cdev->irqstatus = ir;
1050 		m_can_disable_all_interrupts(cdev);
1051 		if (!cdev->is_peripheral)
1052 			napi_schedule(&cdev->napi);
1053 		else
1054 			m_can_rx_peripheral(dev);
1055 	}
1056 
1057 	if (cdev->version == 30) {
1058 		if (ir & IR_TC) {
1059 			/* Transmission Complete Interrupt*/
1060 			u32 timestamp = 0;
1061 
1062 			if (cdev->is_peripheral)
1063 				timestamp = m_can_get_timestamp(cdev);
1064 			m_can_tx_update_stats(cdev, 0, timestamp);
1065 
1066 			can_led_event(dev, CAN_LED_EVENT_TX);
1067 			netif_wake_queue(dev);
1068 		}
1069 	} else  {
1070 		if (ir & IR_TEFN) {
1071 			/* New TX FIFO Element arrived */
1072 			m_can_echo_tx_event(dev);
1073 			can_led_event(dev, CAN_LED_EVENT_TX);
1074 			if (netif_queue_stopped(dev) &&
1075 			    !m_can_tx_fifo_full(cdev))
1076 				netif_wake_queue(dev);
1077 		}
1078 	}
1079 
1080 	return IRQ_HANDLED;
1081 }
1082 
1083 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1084 	.name = KBUILD_MODNAME,
1085 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1086 	.tseg1_max = 64,
1087 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1088 	.tseg2_max = 16,
1089 	.sjw_max = 16,
1090 	.brp_min = 1,
1091 	.brp_max = 1024,
1092 	.brp_inc = 1,
1093 };
1094 
1095 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1096 	.name = KBUILD_MODNAME,
1097 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1098 	.tseg1_max = 16,
1099 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1100 	.tseg2_max = 8,
1101 	.sjw_max = 4,
1102 	.brp_min = 1,
1103 	.brp_max = 32,
1104 	.brp_inc = 1,
1105 };
1106 
1107 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1108 	.name = KBUILD_MODNAME,
1109 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1110 	.tseg1_max = 256,
1111 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1112 	.tseg2_max = 128,
1113 	.sjw_max = 128,
1114 	.brp_min = 1,
1115 	.brp_max = 512,
1116 	.brp_inc = 1,
1117 };
1118 
1119 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1120 	.name = KBUILD_MODNAME,
1121 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1122 	.tseg1_max = 32,
1123 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1124 	.tseg2_max = 16,
1125 	.sjw_max = 16,
1126 	.brp_min = 1,
1127 	.brp_max = 32,
1128 	.brp_inc = 1,
1129 };
1130 
1131 static int m_can_set_bittiming(struct net_device *dev)
1132 {
1133 	struct m_can_classdev *cdev = netdev_priv(dev);
1134 	const struct can_bittiming *bt = &cdev->can.bittiming;
1135 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1136 	u16 brp, sjw, tseg1, tseg2;
1137 	u32 reg_btp;
1138 
1139 	brp = bt->brp - 1;
1140 	sjw = bt->sjw - 1;
1141 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1142 	tseg2 = bt->phase_seg2 - 1;
1143 	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1144 		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1145 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1146 
1147 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1148 		reg_btp = 0;
1149 		brp = dbt->brp - 1;
1150 		sjw = dbt->sjw - 1;
1151 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1152 		tseg2 = dbt->phase_seg2 - 1;
1153 
1154 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1155 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1156 		 * paper presented at the International CAN Conference 2013
1157 		 */
1158 		if (dbt->bitrate > 2500000) {
1159 			u32 tdco, ssp;
1160 
1161 			/* Use the same value of secondary sampling point
1162 			 * as the data sampling point
1163 			 */
1164 			ssp = dbt->sample_point;
1165 
1166 			/* Equation based on Bosch's M_CAN User Manual's
1167 			 * Transmitter Delay Compensation Section
1168 			 */
1169 			tdco = (cdev->can.clock.freq / 1000) *
1170 				ssp / dbt->bitrate;
1171 
1172 			/* Max valid TDCO value is 127 */
1173 			if (tdco > 127) {
1174 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1175 					    tdco);
1176 				tdco = 127;
1177 			}
1178 
1179 			reg_btp |= DBTP_TDC;
1180 			m_can_write(cdev, M_CAN_TDCR,
1181 				    tdco << TDCR_TDCO_SHIFT);
1182 		}
1183 
1184 		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1185 			(sjw << DBTP_DSJW_SHIFT) |
1186 			(tseg1 << DBTP_DTSEG1_SHIFT) |
1187 			(tseg2 << DBTP_DTSEG2_SHIFT);
1188 
1189 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 /* Configure M_CAN chip:
1196  * - set rx buffer/fifo element size
1197  * - configure rx fifo
1198  * - accept non-matching frame into fifo 0
1199  * - configure tx buffer
1200  *		- >= v3.1.x: TX FIFO is used
1201  * - configure mode
1202  * - setup bittiming
1203  * - configure timestamp generation
1204  */
1205 static void m_can_chip_config(struct net_device *dev)
1206 {
1207 	struct m_can_classdev *cdev = netdev_priv(dev);
1208 	u32 cccr, test;
1209 
1210 	m_can_config_endisable(cdev, true);
1211 
1212 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1213 	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1214 
1215 	/* Accept Non-matching Frames Into FIFO 0 */
1216 	m_can_write(cdev, M_CAN_GFC, 0x0);
1217 
1218 	if (cdev->version == 30) {
1219 		/* only support one Tx Buffer currently */
1220 		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1221 			    cdev->mcfg[MRAM_TXB].off);
1222 	} else {
1223 		/* TX FIFO is used for newer IP Core versions */
1224 		m_can_write(cdev, M_CAN_TXBC,
1225 			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1226 			    (cdev->mcfg[MRAM_TXB].off));
1227 	}
1228 
1229 	/* support 64 bytes payload */
1230 	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1231 
1232 	/* TX Event FIFO */
1233 	if (cdev->version == 30) {
1234 		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1235 			    cdev->mcfg[MRAM_TXE].off);
1236 	} else {
1237 		/* Full TX Event FIFO is used */
1238 		m_can_write(cdev, M_CAN_TXEFC,
1239 			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1240 			     & TXEFC_EFS_MASK) |
1241 			    cdev->mcfg[MRAM_TXE].off);
1242 	}
1243 
1244 	/* rx fifo configuration, blocking mode, fifo size 1 */
1245 	m_can_write(cdev, M_CAN_RXF0C,
1246 		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1247 		    cdev->mcfg[MRAM_RXF0].off);
1248 
1249 	m_can_write(cdev, M_CAN_RXF1C,
1250 		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1251 		    cdev->mcfg[MRAM_RXF1].off);
1252 
1253 	cccr = m_can_read(cdev, M_CAN_CCCR);
1254 	test = m_can_read(cdev, M_CAN_TEST);
1255 	test &= ~TEST_LBCK;
1256 	if (cdev->version == 30) {
1257 		/* Version 3.0.x */
1258 
1259 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1260 			  (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1261 			  (CCCR_CME_MASK << CCCR_CME_SHIFT));
1262 
1263 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1264 			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1265 
1266 	} else {
1267 		/* Version 3.1.x or 3.2.x */
1268 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1269 			  CCCR_NISO | CCCR_DAR);
1270 
1271 		/* Only 3.2.x has NISO Bit implemented */
1272 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1273 			cccr |= CCCR_NISO;
1274 
1275 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1276 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1277 	}
1278 
1279 	/* Loopback Mode */
1280 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1281 		cccr |= CCCR_TEST | CCCR_MON;
1282 		test |= TEST_LBCK;
1283 	}
1284 
1285 	/* Enable Monitoring (all versions) */
1286 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1287 		cccr |= CCCR_MON;
1288 
1289 	/* Disable Auto Retransmission (all versions) */
1290 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1291 		cccr |= CCCR_DAR;
1292 
1293 	/* Write config */
1294 	m_can_write(cdev, M_CAN_CCCR, cccr);
1295 	m_can_write(cdev, M_CAN_TEST, test);
1296 
1297 	/* Enable interrupts */
1298 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1299 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1300 		if (cdev->version == 30)
1301 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1302 				    ~(IR_ERR_LEC_30X));
1303 		else
1304 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1305 				    ~(IR_ERR_LEC_31X));
1306 	else
1307 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1308 
1309 	/* route all interrupts to INT0 */
1310 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1311 
1312 	/* set bittiming params */
1313 	m_can_set_bittiming(dev);
1314 
1315 	/* enable internal timestamp generation, with a prescalar of 16. The
1316 	 * prescalar is applied to the nominal bit timing */
1317 	m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf));
1318 
1319 	m_can_config_endisable(cdev, false);
1320 
1321 	if (cdev->ops->init)
1322 		cdev->ops->init(cdev);
1323 }
1324 
1325 static void m_can_start(struct net_device *dev)
1326 {
1327 	struct m_can_classdev *cdev = netdev_priv(dev);
1328 
1329 	/* basic m_can configuration */
1330 	m_can_chip_config(dev);
1331 
1332 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1333 
1334 	m_can_enable_all_interrupts(cdev);
1335 }
1336 
1337 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1338 {
1339 	switch (mode) {
1340 	case CAN_MODE_START:
1341 		m_can_clean(dev);
1342 		m_can_start(dev);
1343 		netif_wake_queue(dev);
1344 		break;
1345 	default:
1346 		return -EOPNOTSUPP;
1347 	}
1348 
1349 	return 0;
1350 }
1351 
1352 /* Checks core release number of M_CAN
1353  * returns 0 if an unsupported device is detected
1354  * else it returns the release and step coded as:
1355  * return value = 10 * <release> + 1 * <step>
1356  */
1357 static int m_can_check_core_release(struct m_can_classdev *cdev)
1358 {
1359 	u32 crel_reg;
1360 	u8 rel;
1361 	u8 step;
1362 	int res;
1363 
1364 	/* Read Core Release Version and split into version number
1365 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1366 	 */
1367 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1368 	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1369 	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1370 
1371 	if (rel == 3) {
1372 		/* M_CAN v3.x.y: create return value */
1373 		res = 30 + step;
1374 	} else {
1375 		/* Unsupported M_CAN version */
1376 		res = 0;
1377 	}
1378 
1379 	return res;
1380 }
1381 
1382 /* Selectable Non ISO support only in version 3.2.x
1383  * This function checks if the bit is writable.
1384  */
1385 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1386 {
1387 	u32 cccr_reg, cccr_poll = 0;
1388 	int niso_timeout = -ETIMEDOUT;
1389 	int i;
1390 
1391 	m_can_config_endisable(cdev, true);
1392 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1393 	cccr_reg |= CCCR_NISO;
1394 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1395 
1396 	for (i = 0; i <= 10; i++) {
1397 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1398 		if (cccr_poll == cccr_reg) {
1399 			niso_timeout = 0;
1400 			break;
1401 		}
1402 
1403 		usleep_range(1, 5);
1404 	}
1405 
1406 	/* Clear NISO */
1407 	cccr_reg &= ~(CCCR_NISO);
1408 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1409 
1410 	m_can_config_endisable(cdev, false);
1411 
1412 	/* return false if time out (-ETIMEDOUT), else return true */
1413 	return !niso_timeout;
1414 }
1415 
1416 static int m_can_dev_setup(struct m_can_classdev *cdev)
1417 {
1418 	struct net_device *dev = cdev->net;
1419 	int m_can_version;
1420 
1421 	m_can_version = m_can_check_core_release(cdev);
1422 	/* return if unsupported version */
1423 	if (!m_can_version) {
1424 		dev_err(cdev->dev, "Unsupported version number: %2d",
1425 			m_can_version);
1426 		return -EINVAL;
1427 	}
1428 
1429 	if (!cdev->is_peripheral)
1430 		netif_napi_add(dev, &cdev->napi,
1431 			       m_can_poll, M_CAN_NAPI_WEIGHT);
1432 
1433 	/* Shared properties of all M_CAN versions */
1434 	cdev->version = m_can_version;
1435 	cdev->can.do_set_mode = m_can_set_mode;
1436 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1437 
1438 	/* Set M_CAN supported operations */
1439 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1440 		CAN_CTRLMODE_LISTENONLY |
1441 		CAN_CTRLMODE_BERR_REPORTING |
1442 		CAN_CTRLMODE_FD |
1443 		CAN_CTRLMODE_ONE_SHOT;
1444 
1445 	/* Set properties depending on M_CAN version */
1446 	switch (cdev->version) {
1447 	case 30:
1448 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1449 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1450 		cdev->can.bittiming_const = cdev->bit_timing ?
1451 			cdev->bit_timing : &m_can_bittiming_const_30X;
1452 
1453 		cdev->can.data_bittiming_const = cdev->data_timing ?
1454 			cdev->data_timing :
1455 			&m_can_data_bittiming_const_30X;
1456 		break;
1457 	case 31:
1458 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1459 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1460 		cdev->can.bittiming_const = cdev->bit_timing ?
1461 			cdev->bit_timing : &m_can_bittiming_const_31X;
1462 
1463 		cdev->can.data_bittiming_const = cdev->data_timing ?
1464 			cdev->data_timing :
1465 			&m_can_data_bittiming_const_31X;
1466 		break;
1467 	case 32:
1468 	case 33:
1469 		/* Support both MCAN version v3.2.x and v3.3.0 */
1470 		cdev->can.bittiming_const = cdev->bit_timing ?
1471 			cdev->bit_timing : &m_can_bittiming_const_31X;
1472 
1473 		cdev->can.data_bittiming_const = cdev->data_timing ?
1474 			cdev->data_timing :
1475 			&m_can_data_bittiming_const_31X;
1476 
1477 		cdev->can.ctrlmode_supported |=
1478 			(m_can_niso_supported(cdev) ?
1479 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1480 		break;
1481 	default:
1482 		dev_err(cdev->dev, "Unsupported version number: %2d",
1483 			cdev->version);
1484 		return -EINVAL;
1485 	}
1486 
1487 	if (cdev->ops->init)
1488 		cdev->ops->init(cdev);
1489 
1490 	return 0;
1491 }
1492 
1493 static void m_can_stop(struct net_device *dev)
1494 {
1495 	struct m_can_classdev *cdev = netdev_priv(dev);
1496 
1497 	/* disable all interrupts */
1498 	m_can_disable_all_interrupts(cdev);
1499 
1500 	/* Set init mode to disengage from the network */
1501 	m_can_config_endisable(cdev, true);
1502 
1503 	/* set the state as STOPPED */
1504 	cdev->can.state = CAN_STATE_STOPPED;
1505 }
1506 
1507 static int m_can_close(struct net_device *dev)
1508 {
1509 	struct m_can_classdev *cdev = netdev_priv(dev);
1510 
1511 	netif_stop_queue(dev);
1512 
1513 	if (!cdev->is_peripheral)
1514 		napi_disable(&cdev->napi);
1515 
1516 	m_can_stop(dev);
1517 	m_can_clk_stop(cdev);
1518 	free_irq(dev->irq, dev);
1519 
1520 	if (cdev->is_peripheral) {
1521 		cdev->tx_skb = NULL;
1522 		destroy_workqueue(cdev->tx_wq);
1523 		cdev->tx_wq = NULL;
1524 	}
1525 
1526 	if (cdev->is_peripheral)
1527 		can_rx_offload_disable(&cdev->offload);
1528 
1529 	close_candev(dev);
1530 	can_led_event(dev, CAN_LED_EVENT_STOP);
1531 
1532 	return 0;
1533 }
1534 
1535 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1536 {
1537 	struct m_can_classdev *cdev = netdev_priv(dev);
1538 	/*get wrap around for loopback skb index */
1539 	unsigned int wrap = cdev->can.echo_skb_max;
1540 	int next_idx;
1541 
1542 	/* calculate next index */
1543 	next_idx = (++putidx >= wrap ? 0 : putidx);
1544 
1545 	/* check if occupied */
1546 	return !!cdev->can.echo_skb[next_idx];
1547 }
1548 
1549 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1550 {
1551 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1552 	struct net_device *dev = cdev->net;
1553 	struct sk_buff *skb = cdev->tx_skb;
1554 	u32 id, cccr, fdflags;
1555 	int i;
1556 	int putidx;
1557 
1558 	/* Generate ID field for TX buffer Element */
1559 	/* Common to all supported M_CAN versions */
1560 	if (cf->can_id & CAN_EFF_FLAG) {
1561 		id = cf->can_id & CAN_EFF_MASK;
1562 		id |= TX_BUF_XTD;
1563 	} else {
1564 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1565 	}
1566 
1567 	if (cf->can_id & CAN_RTR_FLAG)
1568 		id |= TX_BUF_RTR;
1569 
1570 	if (cdev->version == 30) {
1571 		netif_stop_queue(dev);
1572 
1573 		/* message ram configuration */
1574 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1575 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1576 				 can_fd_len2dlc(cf->len) << 16);
1577 
1578 		for (i = 0; i < cf->len; i += 4)
1579 			m_can_fifo_write(cdev, 0,
1580 					 M_CAN_FIFO_DATA(i / 4),
1581 					 *(u32 *)(cf->data + i));
1582 
1583 		can_put_echo_skb(skb, dev, 0, 0);
1584 
1585 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1586 			cccr = m_can_read(cdev, M_CAN_CCCR);
1587 			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1588 			if (can_is_canfd_skb(skb)) {
1589 				if (cf->flags & CANFD_BRS)
1590 					cccr |= CCCR_CMR_CANFD_BRS <<
1591 						CCCR_CMR_SHIFT;
1592 				else
1593 					cccr |= CCCR_CMR_CANFD <<
1594 						CCCR_CMR_SHIFT;
1595 			} else {
1596 				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1597 			}
1598 			m_can_write(cdev, M_CAN_CCCR, cccr);
1599 		}
1600 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1601 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1602 		/* End of xmit function for version 3.0.x */
1603 	} else {
1604 		/* Transmit routine for version >= v3.1.x */
1605 
1606 		/* Check if FIFO full */
1607 		if (m_can_tx_fifo_full(cdev)) {
1608 			/* This shouldn't happen */
1609 			netif_stop_queue(dev);
1610 			netdev_warn(dev,
1611 				    "TX queue active although FIFO is full.");
1612 
1613 			if (cdev->is_peripheral) {
1614 				kfree_skb(skb);
1615 				dev->stats.tx_dropped++;
1616 				return NETDEV_TX_OK;
1617 			} else {
1618 				return NETDEV_TX_BUSY;
1619 			}
1620 		}
1621 
1622 		/* get put index for frame */
1623 		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1624 			  >> TXFQS_TFQPI_SHIFT);
1625 		/* Write ID Field to FIFO Element */
1626 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1627 
1628 		/* get CAN FD configuration of frame */
1629 		fdflags = 0;
1630 		if (can_is_canfd_skb(skb)) {
1631 			fdflags |= TX_BUF_FDF;
1632 			if (cf->flags & CANFD_BRS)
1633 				fdflags |= TX_BUF_BRS;
1634 		}
1635 
1636 		/* Construct DLC Field. Also contains CAN-FD configuration
1637 		 * use put index of fifo as message marker
1638 		 * it is used in TX interrupt for
1639 		 * sending the correct echo frame
1640 		 */
1641 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1642 				 ((putidx << TX_BUF_MM_SHIFT) &
1643 				  TX_BUF_MM_MASK) |
1644 				 (can_fd_len2dlc(cf->len) << 16) |
1645 				 fdflags | TX_BUF_EFC);
1646 
1647 		for (i = 0; i < cf->len; i += 4)
1648 			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1649 					 *(u32 *)(cf->data + i));
1650 
1651 		/* Push loopback echo.
1652 		 * Will be looped back on TX interrupt based on message marker
1653 		 */
1654 		can_put_echo_skb(skb, dev, putidx, 0);
1655 
1656 		/* Enable TX FIFO element to start transfer  */
1657 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1658 
1659 		/* stop network queue if fifo full */
1660 		if (m_can_tx_fifo_full(cdev) ||
1661 		    m_can_next_echo_skb_occupied(dev, putidx))
1662 			netif_stop_queue(dev);
1663 	}
1664 
1665 	return NETDEV_TX_OK;
1666 }
1667 
1668 static void m_can_tx_work_queue(struct work_struct *ws)
1669 {
1670 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1671 						   tx_work);
1672 
1673 	m_can_tx_handler(cdev);
1674 	cdev->tx_skb = NULL;
1675 }
1676 
1677 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1678 				    struct net_device *dev)
1679 {
1680 	struct m_can_classdev *cdev = netdev_priv(dev);
1681 
1682 	if (can_dropped_invalid_skb(dev, skb))
1683 		return NETDEV_TX_OK;
1684 
1685 	if (cdev->is_peripheral) {
1686 		if (cdev->tx_skb) {
1687 			netdev_err(dev, "hard_xmit called while tx busy\n");
1688 			return NETDEV_TX_BUSY;
1689 		}
1690 
1691 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1692 			m_can_clean(dev);
1693 		} else {
1694 			/* Need to stop the queue to avoid numerous requests
1695 			 * from being sent.  Suggested improvement is to create
1696 			 * a queueing mechanism that will queue the skbs and
1697 			 * process them in order.
1698 			 */
1699 			cdev->tx_skb = skb;
1700 			netif_stop_queue(cdev->net);
1701 			queue_work(cdev->tx_wq, &cdev->tx_work);
1702 		}
1703 	} else {
1704 		cdev->tx_skb = skb;
1705 		return m_can_tx_handler(cdev);
1706 	}
1707 
1708 	return NETDEV_TX_OK;
1709 }
1710 
1711 static int m_can_open(struct net_device *dev)
1712 {
1713 	struct m_can_classdev *cdev = netdev_priv(dev);
1714 	int err;
1715 
1716 	err = m_can_clk_start(cdev);
1717 	if (err)
1718 		return err;
1719 
1720 	/* open the can device */
1721 	err = open_candev(dev);
1722 	if (err) {
1723 		netdev_err(dev, "failed to open can device\n");
1724 		goto exit_disable_clks;
1725 	}
1726 
1727 	if (cdev->is_peripheral)
1728 		can_rx_offload_enable(&cdev->offload);
1729 
1730 	/* register interrupt handler */
1731 	if (cdev->is_peripheral) {
1732 		cdev->tx_skb = NULL;
1733 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1734 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1735 		if (!cdev->tx_wq) {
1736 			err = -ENOMEM;
1737 			goto out_wq_fail;
1738 		}
1739 
1740 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1741 
1742 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1743 					   IRQF_ONESHOT,
1744 					   dev->name, dev);
1745 	} else {
1746 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1747 				  dev);
1748 	}
1749 
1750 	if (err < 0) {
1751 		netdev_err(dev, "failed to request interrupt\n");
1752 		goto exit_irq_fail;
1753 	}
1754 
1755 	/* start the m_can controller */
1756 	m_can_start(dev);
1757 
1758 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1759 
1760 	if (!cdev->is_peripheral)
1761 		napi_enable(&cdev->napi);
1762 
1763 	netif_start_queue(dev);
1764 
1765 	return 0;
1766 
1767 exit_irq_fail:
1768 	if (cdev->is_peripheral)
1769 		destroy_workqueue(cdev->tx_wq);
1770 out_wq_fail:
1771 	if (cdev->is_peripheral)
1772 		can_rx_offload_disable(&cdev->offload);
1773 	close_candev(dev);
1774 exit_disable_clks:
1775 	m_can_clk_stop(cdev);
1776 	return err;
1777 }
1778 
1779 static const struct net_device_ops m_can_netdev_ops = {
1780 	.ndo_open = m_can_open,
1781 	.ndo_stop = m_can_close,
1782 	.ndo_start_xmit = m_can_start_xmit,
1783 	.ndo_change_mtu = can_change_mtu,
1784 };
1785 
1786 static int register_m_can_dev(struct net_device *dev)
1787 {
1788 	dev->flags |= IFF_ECHO;	/* we support local echo */
1789 	dev->netdev_ops = &m_can_netdev_ops;
1790 
1791 	return register_candev(dev);
1792 }
1793 
1794 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1795 				const u32 *mram_config_vals)
1796 {
1797 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1798 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1799 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1800 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1801 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1802 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1803 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1804 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1805 		(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1806 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1807 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1808 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1809 		(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1810 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1811 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1812 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1813 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1814 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1815 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1816 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1817 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1818 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1819 		(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1820 
1821 	dev_dbg(cdev->dev,
1822 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1823 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1824 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1825 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1826 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1827 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1828 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1829 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1830 }
1831 
1832 void m_can_init_ram(struct m_can_classdev *cdev)
1833 {
1834 	int end, i, start;
1835 
1836 	/* initialize the entire Message RAM in use to avoid possible
1837 	 * ECC/parity checksum errors when reading an uninitialized buffer
1838 	 */
1839 	start = cdev->mcfg[MRAM_SIDF].off;
1840 	end = cdev->mcfg[MRAM_TXB].off +
1841 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1842 
1843 	for (i = start; i < end; i += 4)
1844 		m_can_fifo_write_no_off(cdev, i, 0x0);
1845 }
1846 EXPORT_SYMBOL_GPL(m_can_init_ram);
1847 
1848 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1849 {
1850 	int ret = 0;
1851 
1852 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1853 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1854 
1855 	if (IS_ERR(cdev->cclk)) {
1856 		dev_err(cdev->dev, "no clock found\n");
1857 		ret = -ENODEV;
1858 	}
1859 
1860 	return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1863 
1864 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1865 						int sizeof_priv)
1866 {
1867 	struct m_can_classdev *class_dev = NULL;
1868 	u32 mram_config_vals[MRAM_CFG_LEN];
1869 	struct net_device *net_dev;
1870 	u32 tx_fifo_size;
1871 	int ret;
1872 
1873 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1874 					     "bosch,mram-cfg",
1875 					     mram_config_vals,
1876 					     sizeof(mram_config_vals) / 4);
1877 	if (ret) {
1878 		dev_err(dev, "Could not get Message RAM configuration.");
1879 		goto out;
1880 	}
1881 
1882 	/* Get TX FIFO size
1883 	 * Defines the total amount of echo buffers for loopback
1884 	 */
1885 	tx_fifo_size = mram_config_vals[7];
1886 
1887 	/* allocate the m_can device */
1888 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1889 	if (!net_dev) {
1890 		dev_err(dev, "Failed to allocate CAN device");
1891 		goto out;
1892 	}
1893 
1894 	class_dev = netdev_priv(net_dev);
1895 	class_dev->net = net_dev;
1896 	class_dev->dev = dev;
1897 	SET_NETDEV_DEV(net_dev, dev);
1898 
1899 	m_can_of_parse_mram(class_dev, mram_config_vals);
1900 out:
1901 	return class_dev;
1902 }
1903 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1904 
1905 void m_can_class_free_dev(struct net_device *net)
1906 {
1907 	free_candev(net);
1908 }
1909 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1910 
1911 int m_can_class_register(struct m_can_classdev *cdev)
1912 {
1913 	int ret;
1914 
1915 	if (cdev->pm_clock_support) {
1916 		ret = m_can_clk_start(cdev);
1917 		if (ret)
1918 			return ret;
1919 	}
1920 
1921 	if (cdev->is_peripheral) {
1922 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
1923 						M_CAN_NAPI_WEIGHT);
1924 		if (ret)
1925 			goto clk_disable;
1926 	}
1927 
1928 	ret = m_can_dev_setup(cdev);
1929 	if (ret)
1930 		goto rx_offload_del;
1931 
1932 	ret = register_m_can_dev(cdev->net);
1933 	if (ret) {
1934 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
1935 			cdev->net->name, ret);
1936 		goto rx_offload_del;
1937 	}
1938 
1939 	devm_can_led_init(cdev->net);
1940 
1941 	of_can_transceiver(cdev->net);
1942 
1943 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
1944 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
1945 
1946 	/* Probe finished
1947 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1948 	 */
1949 	m_can_clk_stop(cdev);
1950 
1951 	return 0;
1952 
1953 rx_offload_del:
1954 	if (cdev->is_peripheral)
1955 		can_rx_offload_del(&cdev->offload);
1956 clk_disable:
1957 	m_can_clk_stop(cdev);
1958 
1959 	return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(m_can_class_register);
1962 
1963 void m_can_class_unregister(struct m_can_classdev *cdev)
1964 {
1965 	if (cdev->is_peripheral)
1966 		can_rx_offload_del(&cdev->offload);
1967 	unregister_candev(cdev->net);
1968 }
1969 EXPORT_SYMBOL_GPL(m_can_class_unregister);
1970 
1971 int m_can_class_suspend(struct device *dev)
1972 {
1973 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
1974 	struct net_device *ndev = cdev->net;
1975 
1976 	if (netif_running(ndev)) {
1977 		netif_stop_queue(ndev);
1978 		netif_device_detach(ndev);
1979 		m_can_stop(ndev);
1980 		m_can_clk_stop(cdev);
1981 	}
1982 
1983 	pinctrl_pm_select_sleep_state(dev);
1984 
1985 	cdev->can.state = CAN_STATE_SLEEPING;
1986 
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(m_can_class_suspend);
1990 
1991 int m_can_class_resume(struct device *dev)
1992 {
1993 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
1994 	struct net_device *ndev = cdev->net;
1995 
1996 	pinctrl_pm_select_default_state(dev);
1997 
1998 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1999 
2000 	if (netif_running(ndev)) {
2001 		int ret;
2002 
2003 		ret = m_can_clk_start(cdev);
2004 		if (ret)
2005 			return ret;
2006 
2007 		m_can_init_ram(cdev);
2008 		m_can_start(ndev);
2009 		netif_device_attach(ndev);
2010 		netif_start_queue(ndev);
2011 	}
2012 
2013 	return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(m_can_class_resume);
2016 
2017 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2018 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2019 MODULE_LICENSE("GPL v2");
2020 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2021