1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/netdevice.h> 17 #include <linux/of.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/iopoll.h> 22 #include <linux/can/dev.h> 23 #include <linux/pinctrl/consumer.h> 24 25 #include "m_can.h" 26 27 /* registers definition */ 28 enum m_can_reg { 29 M_CAN_CREL = 0x0, 30 M_CAN_ENDN = 0x4, 31 M_CAN_CUST = 0x8, 32 M_CAN_DBTP = 0xc, 33 M_CAN_TEST = 0x10, 34 M_CAN_RWD = 0x14, 35 M_CAN_CCCR = 0x18, 36 M_CAN_NBTP = 0x1c, 37 M_CAN_TSCC = 0x20, 38 M_CAN_TSCV = 0x24, 39 M_CAN_TOCC = 0x28, 40 M_CAN_TOCV = 0x2c, 41 M_CAN_ECR = 0x40, 42 M_CAN_PSR = 0x44, 43 /* TDCR Register only available for version >=3.1.x */ 44 M_CAN_TDCR = 0x48, 45 M_CAN_IR = 0x50, 46 M_CAN_IE = 0x54, 47 M_CAN_ILS = 0x58, 48 M_CAN_ILE = 0x5c, 49 M_CAN_GFC = 0x80, 50 M_CAN_SIDFC = 0x84, 51 M_CAN_XIDFC = 0x88, 52 M_CAN_XIDAM = 0x90, 53 M_CAN_HPMS = 0x94, 54 M_CAN_NDAT1 = 0x98, 55 M_CAN_NDAT2 = 0x9c, 56 M_CAN_RXF0C = 0xa0, 57 M_CAN_RXF0S = 0xa4, 58 M_CAN_RXF0A = 0xa8, 59 M_CAN_RXBC = 0xac, 60 M_CAN_RXF1C = 0xb0, 61 M_CAN_RXF1S = 0xb4, 62 M_CAN_RXF1A = 0xb8, 63 M_CAN_RXESC = 0xbc, 64 M_CAN_TXBC = 0xc0, 65 M_CAN_TXFQS = 0xc4, 66 M_CAN_TXESC = 0xc8, 67 M_CAN_TXBRP = 0xcc, 68 M_CAN_TXBAR = 0xd0, 69 M_CAN_TXBCR = 0xd4, 70 M_CAN_TXBTO = 0xd8, 71 M_CAN_TXBCF = 0xdc, 72 M_CAN_TXBTIE = 0xe0, 73 M_CAN_TXBCIE = 0xe4, 74 M_CAN_TXEFC = 0xf0, 75 M_CAN_TXEFS = 0xf4, 76 M_CAN_TXEFA = 0xf8, 77 }; 78 79 /* napi related */ 80 #define M_CAN_NAPI_WEIGHT 64 81 82 /* message ram configuration data length */ 83 #define MRAM_CFG_LEN 8 84 85 /* Core Release Register (CREL) */ 86 #define CREL_REL_SHIFT 28 87 #define CREL_REL_MASK (0xF << CREL_REL_SHIFT) 88 #define CREL_STEP_SHIFT 24 89 #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT) 90 #define CREL_SUBSTEP_SHIFT 20 91 #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT) 92 93 /* Data Bit Timing & Prescaler Register (DBTP) */ 94 #define DBTP_TDC BIT(23) 95 #define DBTP_DBRP_SHIFT 16 96 #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT) 97 #define DBTP_DTSEG1_SHIFT 8 98 #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT) 99 #define DBTP_DTSEG2_SHIFT 4 100 #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT) 101 #define DBTP_DSJW_SHIFT 0 102 #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT) 103 104 /* Transmitter Delay Compensation Register (TDCR) */ 105 #define TDCR_TDCO_SHIFT 8 106 #define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT) 107 #define TDCR_TDCF_SHIFT 0 108 #define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT) 109 110 /* Test Register (TEST) */ 111 #define TEST_LBCK BIT(4) 112 113 /* CC Control Register(CCCR) */ 114 #define CCCR_CMR_MASK 0x3 115 #define CCCR_CMR_SHIFT 10 116 #define CCCR_CMR_CANFD 0x1 117 #define CCCR_CMR_CANFD_BRS 0x2 118 #define CCCR_CMR_CAN 0x3 119 #define CCCR_CME_MASK 0x3 120 #define CCCR_CME_SHIFT 8 121 #define CCCR_CME_CAN 0 122 #define CCCR_CME_CANFD 0x1 123 #define CCCR_CME_CANFD_BRS 0x2 124 #define CCCR_TXP BIT(14) 125 #define CCCR_TEST BIT(7) 126 #define CCCR_DAR BIT(6) 127 #define CCCR_MON BIT(5) 128 #define CCCR_CSR BIT(4) 129 #define CCCR_CSA BIT(3) 130 #define CCCR_ASM BIT(2) 131 #define CCCR_CCE BIT(1) 132 #define CCCR_INIT BIT(0) 133 #define CCCR_CANFD 0x10 134 /* for version >=3.1.x */ 135 #define CCCR_EFBI BIT(13) 136 #define CCCR_PXHD BIT(12) 137 #define CCCR_BRSE BIT(9) 138 #define CCCR_FDOE BIT(8) 139 /* only for version >=3.2.x */ 140 #define CCCR_NISO BIT(15) 141 142 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 143 #define NBTP_NSJW_SHIFT 25 144 #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT) 145 #define NBTP_NBRP_SHIFT 16 146 #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT) 147 #define NBTP_NTSEG1_SHIFT 8 148 #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT) 149 #define NBTP_NTSEG2_SHIFT 0 150 #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT) 151 152 /* Timestamp Counter Configuration Register (TSCC) */ 153 #define TSCC_TCP_MASK GENMASK(19, 16) 154 #define TSCC_TSS_MASK GENMASK(1, 0) 155 #define TSCC_TSS_DISABLE 0x0 156 #define TSCC_TSS_INTERNAL 0x1 157 #define TSCC_TSS_EXTERNAL 0x2 158 159 /* Timestamp Counter Value Register (TSCV) */ 160 #define TSCV_TSC_MASK GENMASK(15, 0) 161 162 /* Error Counter Register(ECR) */ 163 #define ECR_RP BIT(15) 164 #define ECR_REC_SHIFT 8 165 #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT) 166 #define ECR_TEC_SHIFT 0 167 #define ECR_TEC_MASK 0xff 168 169 /* Protocol Status Register(PSR) */ 170 #define PSR_BO BIT(7) 171 #define PSR_EW BIT(6) 172 #define PSR_EP BIT(5) 173 #define PSR_LEC_MASK 0x7 174 175 /* Interrupt Register(IR) */ 176 #define IR_ALL_INT 0xffffffff 177 178 /* Renamed bits for versions > 3.1.x */ 179 #define IR_ARA BIT(29) 180 #define IR_PED BIT(28) 181 #define IR_PEA BIT(27) 182 183 /* Bits for version 3.0.x */ 184 #define IR_STE BIT(31) 185 #define IR_FOE BIT(30) 186 #define IR_ACKE BIT(29) 187 #define IR_BE BIT(28) 188 #define IR_CRCE BIT(27) 189 #define IR_WDI BIT(26) 190 #define IR_BO BIT(25) 191 #define IR_EW BIT(24) 192 #define IR_EP BIT(23) 193 #define IR_ELO BIT(22) 194 #define IR_BEU BIT(21) 195 #define IR_BEC BIT(20) 196 #define IR_DRX BIT(19) 197 #define IR_TOO BIT(18) 198 #define IR_MRAF BIT(17) 199 #define IR_TSW BIT(16) 200 #define IR_TEFL BIT(15) 201 #define IR_TEFF BIT(14) 202 #define IR_TEFW BIT(13) 203 #define IR_TEFN BIT(12) 204 #define IR_TFE BIT(11) 205 #define IR_TCF BIT(10) 206 #define IR_TC BIT(9) 207 #define IR_HPM BIT(8) 208 #define IR_RF1L BIT(7) 209 #define IR_RF1F BIT(6) 210 #define IR_RF1W BIT(5) 211 #define IR_RF1N BIT(4) 212 #define IR_RF0L BIT(3) 213 #define IR_RF0F BIT(2) 214 #define IR_RF0W BIT(1) 215 #define IR_RF0N BIT(0) 216 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 217 218 /* Interrupts for version 3.0.x */ 219 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 220 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \ 221 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 222 IR_RF1L | IR_RF0L) 223 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 224 /* Interrupts for version >= 3.1.x */ 225 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 226 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \ 227 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 228 IR_RF1L | IR_RF0L) 229 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 230 231 /* Interrupt Line Select (ILS) */ 232 #define ILS_ALL_INT0 0x0 233 #define ILS_ALL_INT1 0xFFFFFFFF 234 235 /* Interrupt Line Enable (ILE) */ 236 #define ILE_EINT1 BIT(1) 237 #define ILE_EINT0 BIT(0) 238 239 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 240 #define RXFC_FWM_SHIFT 24 241 #define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT) 242 #define RXFC_FS_SHIFT 16 243 #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT) 244 245 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 246 #define RXFS_RFL BIT(25) 247 #define RXFS_FF BIT(24) 248 #define RXFS_FPI_SHIFT 16 249 #define RXFS_FPI_MASK 0x3f0000 250 #define RXFS_FGI_SHIFT 8 251 #define RXFS_FGI_MASK 0x3f00 252 #define RXFS_FFL_MASK 0x7f 253 254 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 255 #define M_CAN_RXESC_8BYTES 0x0 256 #define M_CAN_RXESC_64BYTES 0x777 257 258 /* Tx Buffer Configuration(TXBC) */ 259 #define TXBC_NDTB_SHIFT 16 260 #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT) 261 #define TXBC_TFQS_SHIFT 24 262 #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT) 263 264 /* Tx FIFO/Queue Status (TXFQS) */ 265 #define TXFQS_TFQF BIT(21) 266 #define TXFQS_TFQPI_SHIFT 16 267 #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT) 268 #define TXFQS_TFGI_SHIFT 8 269 #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT) 270 #define TXFQS_TFFL_SHIFT 0 271 #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT) 272 273 /* Tx Buffer Element Size Configuration(TXESC) */ 274 #define TXESC_TBDS_8BYTES 0x0 275 #define TXESC_TBDS_64BYTES 0x7 276 277 /* Tx Event FIFO Configuration (TXEFC) */ 278 #define TXEFC_EFS_SHIFT 16 279 #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT) 280 281 /* Tx Event FIFO Status (TXEFS) */ 282 #define TXEFS_TEFL BIT(25) 283 #define TXEFS_EFF BIT(24) 284 #define TXEFS_EFGI_SHIFT 8 285 #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT) 286 #define TXEFS_EFFL_SHIFT 0 287 #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT) 288 289 /* Tx Event FIFO Acknowledge (TXEFA) */ 290 #define TXEFA_EFAI_SHIFT 0 291 #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT) 292 293 /* Message RAM Configuration (in bytes) */ 294 #define SIDF_ELEMENT_SIZE 4 295 #define XIDF_ELEMENT_SIZE 8 296 #define RXF0_ELEMENT_SIZE 72 297 #define RXF1_ELEMENT_SIZE 72 298 #define RXB_ELEMENT_SIZE 72 299 #define TXE_ELEMENT_SIZE 8 300 #define TXB_ELEMENT_SIZE 72 301 302 /* Message RAM Elements */ 303 #define M_CAN_FIFO_ID 0x0 304 #define M_CAN_FIFO_DLC 0x4 305 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2)) 306 307 /* Rx Buffer Element */ 308 /* R0 */ 309 #define RX_BUF_ESI BIT(31) 310 #define RX_BUF_XTD BIT(30) 311 #define RX_BUF_RTR BIT(29) 312 /* R1 */ 313 #define RX_BUF_ANMF BIT(31) 314 #define RX_BUF_FDF BIT(21) 315 #define RX_BUF_BRS BIT(20) 316 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 317 318 /* Tx Buffer Element */ 319 /* T0 */ 320 #define TX_BUF_ESI BIT(31) 321 #define TX_BUF_XTD BIT(30) 322 #define TX_BUF_RTR BIT(29) 323 /* T1 */ 324 #define TX_BUF_EFC BIT(23) 325 #define TX_BUF_FDF BIT(21) 326 #define TX_BUF_BRS BIT(20) 327 #define TX_BUF_MM_SHIFT 24 328 #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT) 329 330 /* Tx event FIFO Element */ 331 /* E1 */ 332 #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT 333 #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT) 334 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 335 336 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 337 { 338 return cdev->ops->read_reg(cdev, reg); 339 } 340 341 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 342 u32 val) 343 { 344 cdev->ops->write_reg(cdev, reg, val); 345 } 346 347 static u32 m_can_fifo_read(struct m_can_classdev *cdev, 348 u32 fgi, unsigned int offset) 349 { 350 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 351 offset; 352 353 return cdev->ops->read_fifo(cdev, addr_offset); 354 } 355 356 static void m_can_fifo_write(struct m_can_classdev *cdev, 357 u32 fpi, unsigned int offset, u32 val) 358 { 359 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 360 offset; 361 362 cdev->ops->write_fifo(cdev, addr_offset, val); 363 } 364 365 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev, 366 u32 fpi, u32 val) 367 { 368 cdev->ops->write_fifo(cdev, fpi, val); 369 } 370 371 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset) 372 { 373 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 374 offset; 375 376 return cdev->ops->read_fifo(cdev, addr_offset); 377 } 378 379 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 380 { 381 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); 382 } 383 384 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 385 { 386 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 387 u32 timeout = 10; 388 u32 val = 0; 389 390 /* Clear the Clock stop request if it was set */ 391 if (cccr & CCCR_CSR) 392 cccr &= ~CCCR_CSR; 393 394 if (enable) { 395 /* enable m_can configuration */ 396 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 397 udelay(5); 398 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 399 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 400 } else { 401 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 402 } 403 404 /* there's a delay for module initialization */ 405 if (enable) 406 val = CCCR_INIT | CCCR_CCE; 407 408 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 409 if (timeout == 0) { 410 netdev_warn(cdev->net, "Failed to init module\n"); 411 return; 412 } 413 timeout--; 414 udelay(1); 415 } 416 } 417 418 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 419 { 420 /* Only interrupt line 0 is used in this driver */ 421 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 422 } 423 424 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 425 { 426 m_can_write(cdev, M_CAN_ILE, 0x0); 427 } 428 429 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 430 * width. 431 */ 432 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 433 { 434 u32 tscv; 435 u32 tsc; 436 437 tscv = m_can_read(cdev, M_CAN_TSCV); 438 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 439 440 return (tsc << 16); 441 } 442 443 static void m_can_clean(struct net_device *net) 444 { 445 struct m_can_classdev *cdev = netdev_priv(net); 446 447 if (cdev->tx_skb) { 448 int putidx = 0; 449 450 net->stats.tx_errors++; 451 if (cdev->version > 30) 452 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & 453 TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT); 454 455 can_free_echo_skb(cdev->net, putidx, NULL); 456 cdev->tx_skb = NULL; 457 } 458 } 459 460 /* For peripherals, pass skb to rx-offload, which will push skb from 461 * napi. For non-peripherals, RX is done in napi already, so push 462 * directly. timestamp is used to ensure good skb ordering in 463 * rx-offload and is ignored for non-peripherals. 464 */ 465 static void m_can_receive_skb(struct m_can_classdev *cdev, 466 struct sk_buff *skb, 467 u32 timestamp) 468 { 469 if (cdev->is_peripheral) 470 can_rx_offload_queue_sorted(&cdev->offload, skb, timestamp); 471 else 472 netif_receive_skb(skb); 473 } 474 475 static void m_can_read_fifo(struct net_device *dev, u32 rxfs) 476 { 477 struct net_device_stats *stats = &dev->stats; 478 struct m_can_classdev *cdev = netdev_priv(dev); 479 struct canfd_frame *cf; 480 struct sk_buff *skb; 481 u32 id, fgi, dlc; 482 u32 timestamp = 0; 483 int i; 484 485 /* calculate the fifo get index for where to read data */ 486 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT; 487 dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC); 488 if (dlc & RX_BUF_FDF) 489 skb = alloc_canfd_skb(dev, &cf); 490 else 491 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 492 if (!skb) { 493 stats->rx_dropped++; 494 return; 495 } 496 497 if (dlc & RX_BUF_FDF) 498 cf->len = can_fd_dlc2len((dlc >> 16) & 0x0F); 499 else 500 cf->len = can_cc_dlc2len((dlc >> 16) & 0x0F); 501 502 id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID); 503 if (id & RX_BUF_XTD) 504 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 505 else 506 cf->can_id = (id >> 18) & CAN_SFF_MASK; 507 508 if (id & RX_BUF_ESI) { 509 cf->flags |= CANFD_ESI; 510 netdev_dbg(dev, "ESI Error\n"); 511 } 512 513 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) { 514 cf->can_id |= CAN_RTR_FLAG; 515 } else { 516 if (dlc & RX_BUF_BRS) 517 cf->flags |= CANFD_BRS; 518 519 for (i = 0; i < cf->len; i += 4) 520 *(u32 *)(cf->data + i) = 521 m_can_fifo_read(cdev, fgi, 522 M_CAN_FIFO_DATA(i / 4)); 523 } 524 525 /* acknowledge rx fifo 0 */ 526 m_can_write(cdev, M_CAN_RXF0A, fgi); 527 528 stats->rx_packets++; 529 stats->rx_bytes += cf->len; 530 531 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, dlc); 532 533 m_can_receive_skb(cdev, skb, timestamp); 534 } 535 536 static int m_can_do_rx_poll(struct net_device *dev, int quota) 537 { 538 struct m_can_classdev *cdev = netdev_priv(dev); 539 u32 pkts = 0; 540 u32 rxfs; 541 542 rxfs = m_can_read(cdev, M_CAN_RXF0S); 543 if (!(rxfs & RXFS_FFL_MASK)) { 544 netdev_dbg(dev, "no messages in fifo0\n"); 545 return 0; 546 } 547 548 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { 549 m_can_read_fifo(dev, rxfs); 550 551 quota--; 552 pkts++; 553 rxfs = m_can_read(cdev, M_CAN_RXF0S); 554 } 555 556 if (pkts) 557 can_led_event(dev, CAN_LED_EVENT_RX); 558 559 return pkts; 560 } 561 562 static int m_can_handle_lost_msg(struct net_device *dev) 563 { 564 struct m_can_classdev *cdev = netdev_priv(dev); 565 struct net_device_stats *stats = &dev->stats; 566 struct sk_buff *skb; 567 struct can_frame *frame; 568 u32 timestamp = 0; 569 570 netdev_err(dev, "msg lost in rxf0\n"); 571 572 stats->rx_errors++; 573 stats->rx_over_errors++; 574 575 skb = alloc_can_err_skb(dev, &frame); 576 if (unlikely(!skb)) 577 return 0; 578 579 frame->can_id |= CAN_ERR_CRTL; 580 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 581 582 if (cdev->is_peripheral) 583 timestamp = m_can_get_timestamp(cdev); 584 585 m_can_receive_skb(cdev, skb, timestamp); 586 587 return 1; 588 } 589 590 static int m_can_handle_lec_err(struct net_device *dev, 591 enum m_can_lec_type lec_type) 592 { 593 struct m_can_classdev *cdev = netdev_priv(dev); 594 struct net_device_stats *stats = &dev->stats; 595 struct can_frame *cf; 596 struct sk_buff *skb; 597 u32 timestamp = 0; 598 599 cdev->can.can_stats.bus_error++; 600 stats->rx_errors++; 601 602 /* propagate the error condition to the CAN stack */ 603 skb = alloc_can_err_skb(dev, &cf); 604 if (unlikely(!skb)) 605 return 0; 606 607 /* check for 'last error code' which tells us the 608 * type of the last error to occur on the CAN bus 609 */ 610 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 611 612 switch (lec_type) { 613 case LEC_STUFF_ERROR: 614 netdev_dbg(dev, "stuff error\n"); 615 cf->data[2] |= CAN_ERR_PROT_STUFF; 616 break; 617 case LEC_FORM_ERROR: 618 netdev_dbg(dev, "form error\n"); 619 cf->data[2] |= CAN_ERR_PROT_FORM; 620 break; 621 case LEC_ACK_ERROR: 622 netdev_dbg(dev, "ack error\n"); 623 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 624 break; 625 case LEC_BIT1_ERROR: 626 netdev_dbg(dev, "bit1 error\n"); 627 cf->data[2] |= CAN_ERR_PROT_BIT1; 628 break; 629 case LEC_BIT0_ERROR: 630 netdev_dbg(dev, "bit0 error\n"); 631 cf->data[2] |= CAN_ERR_PROT_BIT0; 632 break; 633 case LEC_CRC_ERROR: 634 netdev_dbg(dev, "CRC error\n"); 635 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 636 break; 637 default: 638 break; 639 } 640 641 stats->rx_packets++; 642 stats->rx_bytes += cf->len; 643 644 if (cdev->is_peripheral) 645 timestamp = m_can_get_timestamp(cdev); 646 647 m_can_receive_skb(cdev, skb, timestamp); 648 649 return 1; 650 } 651 652 static int __m_can_get_berr_counter(const struct net_device *dev, 653 struct can_berr_counter *bec) 654 { 655 struct m_can_classdev *cdev = netdev_priv(dev); 656 unsigned int ecr; 657 658 ecr = m_can_read(cdev, M_CAN_ECR); 659 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT; 660 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT; 661 662 return 0; 663 } 664 665 static int m_can_clk_start(struct m_can_classdev *cdev) 666 { 667 if (cdev->pm_clock_support == 0) 668 return 0; 669 670 return pm_runtime_resume_and_get(cdev->dev); 671 } 672 673 static void m_can_clk_stop(struct m_can_classdev *cdev) 674 { 675 if (cdev->pm_clock_support) 676 pm_runtime_put_sync(cdev->dev); 677 } 678 679 static int m_can_get_berr_counter(const struct net_device *dev, 680 struct can_berr_counter *bec) 681 { 682 struct m_can_classdev *cdev = netdev_priv(dev); 683 int err; 684 685 err = m_can_clk_start(cdev); 686 if (err) 687 return err; 688 689 __m_can_get_berr_counter(dev, bec); 690 691 m_can_clk_stop(cdev); 692 693 return 0; 694 } 695 696 static int m_can_handle_state_change(struct net_device *dev, 697 enum can_state new_state) 698 { 699 struct m_can_classdev *cdev = netdev_priv(dev); 700 struct net_device_stats *stats = &dev->stats; 701 struct can_frame *cf; 702 struct sk_buff *skb; 703 struct can_berr_counter bec; 704 unsigned int ecr; 705 u32 timestamp = 0; 706 707 switch (new_state) { 708 case CAN_STATE_ERROR_WARNING: 709 /* error warning state */ 710 cdev->can.can_stats.error_warning++; 711 cdev->can.state = CAN_STATE_ERROR_WARNING; 712 break; 713 case CAN_STATE_ERROR_PASSIVE: 714 /* error passive state */ 715 cdev->can.can_stats.error_passive++; 716 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 717 break; 718 case CAN_STATE_BUS_OFF: 719 /* bus-off state */ 720 cdev->can.state = CAN_STATE_BUS_OFF; 721 m_can_disable_all_interrupts(cdev); 722 cdev->can.can_stats.bus_off++; 723 can_bus_off(dev); 724 break; 725 default: 726 break; 727 } 728 729 /* propagate the error condition to the CAN stack */ 730 skb = alloc_can_err_skb(dev, &cf); 731 if (unlikely(!skb)) 732 return 0; 733 734 __m_can_get_berr_counter(dev, &bec); 735 736 switch (new_state) { 737 case CAN_STATE_ERROR_WARNING: 738 /* error warning state */ 739 cf->can_id |= CAN_ERR_CRTL; 740 cf->data[1] = (bec.txerr > bec.rxerr) ? 741 CAN_ERR_CRTL_TX_WARNING : 742 CAN_ERR_CRTL_RX_WARNING; 743 cf->data[6] = bec.txerr; 744 cf->data[7] = bec.rxerr; 745 break; 746 case CAN_STATE_ERROR_PASSIVE: 747 /* error passive state */ 748 cf->can_id |= CAN_ERR_CRTL; 749 ecr = m_can_read(cdev, M_CAN_ECR); 750 if (ecr & ECR_RP) 751 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 752 if (bec.txerr > 127) 753 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 754 cf->data[6] = bec.txerr; 755 cf->data[7] = bec.rxerr; 756 break; 757 case CAN_STATE_BUS_OFF: 758 /* bus-off state */ 759 cf->can_id |= CAN_ERR_BUSOFF; 760 break; 761 default: 762 break; 763 } 764 765 stats->rx_packets++; 766 stats->rx_bytes += cf->len; 767 768 if (cdev->is_peripheral) 769 timestamp = m_can_get_timestamp(cdev); 770 771 m_can_receive_skb(cdev, skb, timestamp); 772 773 return 1; 774 } 775 776 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 777 { 778 struct m_can_classdev *cdev = netdev_priv(dev); 779 int work_done = 0; 780 781 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 782 netdev_dbg(dev, "entered error warning state\n"); 783 work_done += m_can_handle_state_change(dev, 784 CAN_STATE_ERROR_WARNING); 785 } 786 787 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 788 netdev_dbg(dev, "entered error passive state\n"); 789 work_done += m_can_handle_state_change(dev, 790 CAN_STATE_ERROR_PASSIVE); 791 } 792 793 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 794 netdev_dbg(dev, "entered error bus off state\n"); 795 work_done += m_can_handle_state_change(dev, 796 CAN_STATE_BUS_OFF); 797 } 798 799 return work_done; 800 } 801 802 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 803 { 804 if (irqstatus & IR_WDI) 805 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 806 if (irqstatus & IR_ELO) 807 netdev_err(dev, "Error Logging Overflow\n"); 808 if (irqstatus & IR_BEU) 809 netdev_err(dev, "Bit Error Uncorrected\n"); 810 if (irqstatus & IR_BEC) 811 netdev_err(dev, "Bit Error Corrected\n"); 812 if (irqstatus & IR_TOO) 813 netdev_err(dev, "Timeout reached\n"); 814 if (irqstatus & IR_MRAF) 815 netdev_err(dev, "Message RAM access failure occurred\n"); 816 } 817 818 static inline bool is_lec_err(u32 psr) 819 { 820 psr &= LEC_UNUSED; 821 822 return psr && (psr != LEC_UNUSED); 823 } 824 825 static inline bool m_can_is_protocol_err(u32 irqstatus) 826 { 827 return irqstatus & IR_ERR_LEC_31X; 828 } 829 830 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 831 { 832 struct net_device_stats *stats = &dev->stats; 833 struct m_can_classdev *cdev = netdev_priv(dev); 834 struct can_frame *cf; 835 struct sk_buff *skb; 836 u32 timestamp = 0; 837 838 /* propagate the error condition to the CAN stack */ 839 skb = alloc_can_err_skb(dev, &cf); 840 841 /* update tx error stats since there is protocol error */ 842 stats->tx_errors++; 843 844 /* update arbitration lost status */ 845 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 846 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 847 cdev->can.can_stats.arbitration_lost++; 848 if (skb) { 849 cf->can_id |= CAN_ERR_LOSTARB; 850 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 851 } 852 } 853 854 if (unlikely(!skb)) { 855 netdev_dbg(dev, "allocation of skb failed\n"); 856 return 0; 857 } 858 859 if (cdev->is_peripheral) 860 timestamp = m_can_get_timestamp(cdev); 861 862 m_can_receive_skb(cdev, skb, timestamp); 863 864 return 1; 865 } 866 867 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 868 u32 psr) 869 { 870 struct m_can_classdev *cdev = netdev_priv(dev); 871 int work_done = 0; 872 873 if (irqstatus & IR_RF0L) 874 work_done += m_can_handle_lost_msg(dev); 875 876 /* handle lec errors on the bus */ 877 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 878 is_lec_err(psr)) 879 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); 880 881 /* handle protocol errors in arbitration phase */ 882 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 883 m_can_is_protocol_err(irqstatus)) 884 work_done += m_can_handle_protocol_error(dev, irqstatus); 885 886 /* other unproccessed error interrupts */ 887 m_can_handle_other_err(dev, irqstatus); 888 889 return work_done; 890 } 891 892 static int m_can_rx_handler(struct net_device *dev, int quota) 893 { 894 struct m_can_classdev *cdev = netdev_priv(dev); 895 int work_done = 0; 896 u32 irqstatus, psr; 897 898 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 899 if (!irqstatus) 900 goto end; 901 902 /* Errata workaround for issue "Needless activation of MRAF irq" 903 * During frame reception while the MCAN is in Error Passive state 904 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 905 * it may happen that MCAN_IR.MRAF is set although there was no 906 * Message RAM access failure. 907 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 908 * The Message RAM Access Failure interrupt routine needs to check 909 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 910 * In this case, reset MCAN_IR.MRAF. No further action is required. 911 */ 912 if (cdev->version <= 31 && irqstatus & IR_MRAF && 913 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 914 struct can_berr_counter bec; 915 916 __m_can_get_berr_counter(dev, &bec); 917 if (bec.rxerr == 127) { 918 m_can_write(cdev, M_CAN_IR, IR_MRAF); 919 irqstatus &= ~IR_MRAF; 920 } 921 } 922 923 psr = m_can_read(cdev, M_CAN_PSR); 924 925 if (irqstatus & IR_ERR_STATE) 926 work_done += m_can_handle_state_errors(dev, psr); 927 928 if (irqstatus & IR_ERR_BUS_30X) 929 work_done += m_can_handle_bus_errors(dev, irqstatus, psr); 930 931 if (irqstatus & IR_RF0N) 932 work_done += m_can_do_rx_poll(dev, (quota - work_done)); 933 end: 934 return work_done; 935 } 936 937 static int m_can_rx_peripheral(struct net_device *dev) 938 { 939 struct m_can_classdev *cdev = netdev_priv(dev); 940 941 m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT); 942 943 m_can_enable_all_interrupts(cdev); 944 945 return 0; 946 } 947 948 static int m_can_poll(struct napi_struct *napi, int quota) 949 { 950 struct net_device *dev = napi->dev; 951 struct m_can_classdev *cdev = netdev_priv(dev); 952 int work_done; 953 954 work_done = m_can_rx_handler(dev, quota); 955 if (work_done < quota) { 956 napi_complete_done(napi, work_done); 957 m_can_enable_all_interrupts(cdev); 958 } 959 960 return work_done; 961 } 962 963 /* Echo tx skb and update net stats. Peripherals use rx-offload for 964 * echo. timestamp is used for peripherals to ensure correct ordering 965 * by rx-offload, and is ignored for non-peripherals. 966 */ 967 static void m_can_tx_update_stats(struct m_can_classdev *cdev, 968 unsigned int msg_mark, 969 u32 timestamp) 970 { 971 struct net_device *dev = cdev->net; 972 struct net_device_stats *stats = &dev->stats; 973 974 if (cdev->is_peripheral) 975 stats->tx_bytes += 976 can_rx_offload_get_echo_skb(&cdev->offload, 977 msg_mark, 978 timestamp, 979 NULL); 980 else 981 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL); 982 983 stats->tx_packets++; 984 } 985 986 static void m_can_echo_tx_event(struct net_device *dev) 987 { 988 u32 txe_count = 0; 989 u32 m_can_txefs; 990 u32 fgi = 0; 991 int i = 0; 992 unsigned int msg_mark; 993 994 struct m_can_classdev *cdev = netdev_priv(dev); 995 996 /* read tx event fifo status */ 997 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 998 999 /* Get Tx Event fifo element count */ 1000 txe_count = (m_can_txefs & TXEFS_EFFL_MASK) >> TXEFS_EFFL_SHIFT; 1001 1002 /* Get and process all sent elements */ 1003 for (i = 0; i < txe_count; i++) { 1004 u32 txe, timestamp = 0; 1005 1006 /* retrieve get index */ 1007 fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK) >> 1008 TXEFS_EFGI_SHIFT; 1009 1010 /* get message marker, timestamp */ 1011 txe = m_can_txe_fifo_read(cdev, fgi, 4); 1012 msg_mark = (txe & TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT; 1013 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe); 1014 1015 /* ack txe element */ 1016 m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK & 1017 (fgi << TXEFA_EFAI_SHIFT))); 1018 1019 /* update stats */ 1020 m_can_tx_update_stats(cdev, msg_mark, timestamp); 1021 } 1022 } 1023 1024 static irqreturn_t m_can_isr(int irq, void *dev_id) 1025 { 1026 struct net_device *dev = (struct net_device *)dev_id; 1027 struct m_can_classdev *cdev = netdev_priv(dev); 1028 u32 ir; 1029 1030 if (pm_runtime_suspended(cdev->dev)) 1031 return IRQ_NONE; 1032 ir = m_can_read(cdev, M_CAN_IR); 1033 if (!ir) 1034 return IRQ_NONE; 1035 1036 /* ACK all irqs */ 1037 if (ir & IR_ALL_INT) 1038 m_can_write(cdev, M_CAN_IR, ir); 1039 1040 if (cdev->ops->clear_interrupts) 1041 cdev->ops->clear_interrupts(cdev); 1042 1043 /* schedule NAPI in case of 1044 * - rx IRQ 1045 * - state change IRQ 1046 * - bus error IRQ and bus error reporting 1047 */ 1048 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 1049 cdev->irqstatus = ir; 1050 m_can_disable_all_interrupts(cdev); 1051 if (!cdev->is_peripheral) 1052 napi_schedule(&cdev->napi); 1053 else 1054 m_can_rx_peripheral(dev); 1055 } 1056 1057 if (cdev->version == 30) { 1058 if (ir & IR_TC) { 1059 /* Transmission Complete Interrupt*/ 1060 u32 timestamp = 0; 1061 1062 if (cdev->is_peripheral) 1063 timestamp = m_can_get_timestamp(cdev); 1064 m_can_tx_update_stats(cdev, 0, timestamp); 1065 1066 can_led_event(dev, CAN_LED_EVENT_TX); 1067 netif_wake_queue(dev); 1068 } 1069 } else { 1070 if (ir & IR_TEFN) { 1071 /* New TX FIFO Element arrived */ 1072 m_can_echo_tx_event(dev); 1073 can_led_event(dev, CAN_LED_EVENT_TX); 1074 if (netif_queue_stopped(dev) && 1075 !m_can_tx_fifo_full(cdev)) 1076 netif_wake_queue(dev); 1077 } 1078 } 1079 1080 return IRQ_HANDLED; 1081 } 1082 1083 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1084 .name = KBUILD_MODNAME, 1085 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1086 .tseg1_max = 64, 1087 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1088 .tseg2_max = 16, 1089 .sjw_max = 16, 1090 .brp_min = 1, 1091 .brp_max = 1024, 1092 .brp_inc = 1, 1093 }; 1094 1095 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1096 .name = KBUILD_MODNAME, 1097 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1098 .tseg1_max = 16, 1099 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1100 .tseg2_max = 8, 1101 .sjw_max = 4, 1102 .brp_min = 1, 1103 .brp_max = 32, 1104 .brp_inc = 1, 1105 }; 1106 1107 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1108 .name = KBUILD_MODNAME, 1109 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1110 .tseg1_max = 256, 1111 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1112 .tseg2_max = 128, 1113 .sjw_max = 128, 1114 .brp_min = 1, 1115 .brp_max = 512, 1116 .brp_inc = 1, 1117 }; 1118 1119 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1120 .name = KBUILD_MODNAME, 1121 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1122 .tseg1_max = 32, 1123 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1124 .tseg2_max = 16, 1125 .sjw_max = 16, 1126 .brp_min = 1, 1127 .brp_max = 32, 1128 .brp_inc = 1, 1129 }; 1130 1131 static int m_can_set_bittiming(struct net_device *dev) 1132 { 1133 struct m_can_classdev *cdev = netdev_priv(dev); 1134 const struct can_bittiming *bt = &cdev->can.bittiming; 1135 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1136 u16 brp, sjw, tseg1, tseg2; 1137 u32 reg_btp; 1138 1139 brp = bt->brp - 1; 1140 sjw = bt->sjw - 1; 1141 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1142 tseg2 = bt->phase_seg2 - 1; 1143 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) | 1144 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT); 1145 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1146 1147 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1148 reg_btp = 0; 1149 brp = dbt->brp - 1; 1150 sjw = dbt->sjw - 1; 1151 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1152 tseg2 = dbt->phase_seg2 - 1; 1153 1154 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1155 * This is mentioned in the "Bit Time Requirements for CAN FD" 1156 * paper presented at the International CAN Conference 2013 1157 */ 1158 if (dbt->bitrate > 2500000) { 1159 u32 tdco, ssp; 1160 1161 /* Use the same value of secondary sampling point 1162 * as the data sampling point 1163 */ 1164 ssp = dbt->sample_point; 1165 1166 /* Equation based on Bosch's M_CAN User Manual's 1167 * Transmitter Delay Compensation Section 1168 */ 1169 tdco = (cdev->can.clock.freq / 1000) * 1170 ssp / dbt->bitrate; 1171 1172 /* Max valid TDCO value is 127 */ 1173 if (tdco > 127) { 1174 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1175 tdco); 1176 tdco = 127; 1177 } 1178 1179 reg_btp |= DBTP_TDC; 1180 m_can_write(cdev, M_CAN_TDCR, 1181 tdco << TDCR_TDCO_SHIFT); 1182 } 1183 1184 reg_btp |= (brp << DBTP_DBRP_SHIFT) | 1185 (sjw << DBTP_DSJW_SHIFT) | 1186 (tseg1 << DBTP_DTSEG1_SHIFT) | 1187 (tseg2 << DBTP_DTSEG2_SHIFT); 1188 1189 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1190 } 1191 1192 return 0; 1193 } 1194 1195 /* Configure M_CAN chip: 1196 * - set rx buffer/fifo element size 1197 * - configure rx fifo 1198 * - accept non-matching frame into fifo 0 1199 * - configure tx buffer 1200 * - >= v3.1.x: TX FIFO is used 1201 * - configure mode 1202 * - setup bittiming 1203 * - configure timestamp generation 1204 */ 1205 static void m_can_chip_config(struct net_device *dev) 1206 { 1207 struct m_can_classdev *cdev = netdev_priv(dev); 1208 u32 cccr, test; 1209 1210 m_can_config_endisable(cdev, true); 1211 1212 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1213 m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES); 1214 1215 /* Accept Non-matching Frames Into FIFO 0 */ 1216 m_can_write(cdev, M_CAN_GFC, 0x0); 1217 1218 if (cdev->version == 30) { 1219 /* only support one Tx Buffer currently */ 1220 m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) | 1221 cdev->mcfg[MRAM_TXB].off); 1222 } else { 1223 /* TX FIFO is used for newer IP Core versions */ 1224 m_can_write(cdev, M_CAN_TXBC, 1225 (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) | 1226 (cdev->mcfg[MRAM_TXB].off)); 1227 } 1228 1229 /* support 64 bytes payload */ 1230 m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES); 1231 1232 /* TX Event FIFO */ 1233 if (cdev->version == 30) { 1234 m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) | 1235 cdev->mcfg[MRAM_TXE].off); 1236 } else { 1237 /* Full TX Event FIFO is used */ 1238 m_can_write(cdev, M_CAN_TXEFC, 1239 ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT) 1240 & TXEFC_EFS_MASK) | 1241 cdev->mcfg[MRAM_TXE].off); 1242 } 1243 1244 /* rx fifo configuration, blocking mode, fifo size 1 */ 1245 m_can_write(cdev, M_CAN_RXF0C, 1246 (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) | 1247 cdev->mcfg[MRAM_RXF0].off); 1248 1249 m_can_write(cdev, M_CAN_RXF1C, 1250 (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) | 1251 cdev->mcfg[MRAM_RXF1].off); 1252 1253 cccr = m_can_read(cdev, M_CAN_CCCR); 1254 test = m_can_read(cdev, M_CAN_TEST); 1255 test &= ~TEST_LBCK; 1256 if (cdev->version == 30) { 1257 /* Version 3.0.x */ 1258 1259 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1260 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) | 1261 (CCCR_CME_MASK << CCCR_CME_SHIFT)); 1262 1263 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1264 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT; 1265 1266 } else { 1267 /* Version 3.1.x or 3.2.x */ 1268 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1269 CCCR_NISO | CCCR_DAR); 1270 1271 /* Only 3.2.x has NISO Bit implemented */ 1272 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1273 cccr |= CCCR_NISO; 1274 1275 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1276 cccr |= (CCCR_BRSE | CCCR_FDOE); 1277 } 1278 1279 /* Loopback Mode */ 1280 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1281 cccr |= CCCR_TEST | CCCR_MON; 1282 test |= TEST_LBCK; 1283 } 1284 1285 /* Enable Monitoring (all versions) */ 1286 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1287 cccr |= CCCR_MON; 1288 1289 /* Disable Auto Retransmission (all versions) */ 1290 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1291 cccr |= CCCR_DAR; 1292 1293 /* Write config */ 1294 m_can_write(cdev, M_CAN_CCCR, cccr); 1295 m_can_write(cdev, M_CAN_TEST, test); 1296 1297 /* Enable interrupts */ 1298 m_can_write(cdev, M_CAN_IR, IR_ALL_INT); 1299 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 1300 if (cdev->version == 30) 1301 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1302 ~(IR_ERR_LEC_30X)); 1303 else 1304 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1305 ~(IR_ERR_LEC_31X)); 1306 else 1307 m_can_write(cdev, M_CAN_IE, IR_ALL_INT); 1308 1309 /* route all interrupts to INT0 */ 1310 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1311 1312 /* set bittiming params */ 1313 m_can_set_bittiming(dev); 1314 1315 /* enable internal timestamp generation, with a prescalar of 16. The 1316 * prescalar is applied to the nominal bit timing */ 1317 m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf)); 1318 1319 m_can_config_endisable(cdev, false); 1320 1321 if (cdev->ops->init) 1322 cdev->ops->init(cdev); 1323 } 1324 1325 static void m_can_start(struct net_device *dev) 1326 { 1327 struct m_can_classdev *cdev = netdev_priv(dev); 1328 1329 /* basic m_can configuration */ 1330 m_can_chip_config(dev); 1331 1332 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1333 1334 m_can_enable_all_interrupts(cdev); 1335 } 1336 1337 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1338 { 1339 switch (mode) { 1340 case CAN_MODE_START: 1341 m_can_clean(dev); 1342 m_can_start(dev); 1343 netif_wake_queue(dev); 1344 break; 1345 default: 1346 return -EOPNOTSUPP; 1347 } 1348 1349 return 0; 1350 } 1351 1352 /* Checks core release number of M_CAN 1353 * returns 0 if an unsupported device is detected 1354 * else it returns the release and step coded as: 1355 * return value = 10 * <release> + 1 * <step> 1356 */ 1357 static int m_can_check_core_release(struct m_can_classdev *cdev) 1358 { 1359 u32 crel_reg; 1360 u8 rel; 1361 u8 step; 1362 int res; 1363 1364 /* Read Core Release Version and split into version number 1365 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1366 */ 1367 crel_reg = m_can_read(cdev, M_CAN_CREL); 1368 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT); 1369 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT); 1370 1371 if (rel == 3) { 1372 /* M_CAN v3.x.y: create return value */ 1373 res = 30 + step; 1374 } else { 1375 /* Unsupported M_CAN version */ 1376 res = 0; 1377 } 1378 1379 return res; 1380 } 1381 1382 /* Selectable Non ISO support only in version 3.2.x 1383 * This function checks if the bit is writable. 1384 */ 1385 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1386 { 1387 u32 cccr_reg, cccr_poll = 0; 1388 int niso_timeout = -ETIMEDOUT; 1389 int i; 1390 1391 m_can_config_endisable(cdev, true); 1392 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1393 cccr_reg |= CCCR_NISO; 1394 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1395 1396 for (i = 0; i <= 10; i++) { 1397 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1398 if (cccr_poll == cccr_reg) { 1399 niso_timeout = 0; 1400 break; 1401 } 1402 1403 usleep_range(1, 5); 1404 } 1405 1406 /* Clear NISO */ 1407 cccr_reg &= ~(CCCR_NISO); 1408 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1409 1410 m_can_config_endisable(cdev, false); 1411 1412 /* return false if time out (-ETIMEDOUT), else return true */ 1413 return !niso_timeout; 1414 } 1415 1416 static int m_can_dev_setup(struct m_can_classdev *cdev) 1417 { 1418 struct net_device *dev = cdev->net; 1419 int m_can_version; 1420 1421 m_can_version = m_can_check_core_release(cdev); 1422 /* return if unsupported version */ 1423 if (!m_can_version) { 1424 dev_err(cdev->dev, "Unsupported version number: %2d", 1425 m_can_version); 1426 return -EINVAL; 1427 } 1428 1429 if (!cdev->is_peripheral) 1430 netif_napi_add(dev, &cdev->napi, 1431 m_can_poll, M_CAN_NAPI_WEIGHT); 1432 1433 /* Shared properties of all M_CAN versions */ 1434 cdev->version = m_can_version; 1435 cdev->can.do_set_mode = m_can_set_mode; 1436 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1437 1438 /* Set M_CAN supported operations */ 1439 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1440 CAN_CTRLMODE_LISTENONLY | 1441 CAN_CTRLMODE_BERR_REPORTING | 1442 CAN_CTRLMODE_FD | 1443 CAN_CTRLMODE_ONE_SHOT; 1444 1445 /* Set properties depending on M_CAN version */ 1446 switch (cdev->version) { 1447 case 30: 1448 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1449 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1450 cdev->can.bittiming_const = cdev->bit_timing ? 1451 cdev->bit_timing : &m_can_bittiming_const_30X; 1452 1453 cdev->can.data_bittiming_const = cdev->data_timing ? 1454 cdev->data_timing : 1455 &m_can_data_bittiming_const_30X; 1456 break; 1457 case 31: 1458 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1459 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1460 cdev->can.bittiming_const = cdev->bit_timing ? 1461 cdev->bit_timing : &m_can_bittiming_const_31X; 1462 1463 cdev->can.data_bittiming_const = cdev->data_timing ? 1464 cdev->data_timing : 1465 &m_can_data_bittiming_const_31X; 1466 break; 1467 case 32: 1468 case 33: 1469 /* Support both MCAN version v3.2.x and v3.3.0 */ 1470 cdev->can.bittiming_const = cdev->bit_timing ? 1471 cdev->bit_timing : &m_can_bittiming_const_31X; 1472 1473 cdev->can.data_bittiming_const = cdev->data_timing ? 1474 cdev->data_timing : 1475 &m_can_data_bittiming_const_31X; 1476 1477 cdev->can.ctrlmode_supported |= 1478 (m_can_niso_supported(cdev) ? 1479 CAN_CTRLMODE_FD_NON_ISO : 0); 1480 break; 1481 default: 1482 dev_err(cdev->dev, "Unsupported version number: %2d", 1483 cdev->version); 1484 return -EINVAL; 1485 } 1486 1487 if (cdev->ops->init) 1488 cdev->ops->init(cdev); 1489 1490 return 0; 1491 } 1492 1493 static void m_can_stop(struct net_device *dev) 1494 { 1495 struct m_can_classdev *cdev = netdev_priv(dev); 1496 1497 /* disable all interrupts */ 1498 m_can_disable_all_interrupts(cdev); 1499 1500 /* Set init mode to disengage from the network */ 1501 m_can_config_endisable(cdev, true); 1502 1503 /* set the state as STOPPED */ 1504 cdev->can.state = CAN_STATE_STOPPED; 1505 } 1506 1507 static int m_can_close(struct net_device *dev) 1508 { 1509 struct m_can_classdev *cdev = netdev_priv(dev); 1510 1511 netif_stop_queue(dev); 1512 1513 if (!cdev->is_peripheral) 1514 napi_disable(&cdev->napi); 1515 1516 m_can_stop(dev); 1517 m_can_clk_stop(cdev); 1518 free_irq(dev->irq, dev); 1519 1520 if (cdev->is_peripheral) { 1521 cdev->tx_skb = NULL; 1522 destroy_workqueue(cdev->tx_wq); 1523 cdev->tx_wq = NULL; 1524 } 1525 1526 if (cdev->is_peripheral) 1527 can_rx_offload_disable(&cdev->offload); 1528 1529 close_candev(dev); 1530 can_led_event(dev, CAN_LED_EVENT_STOP); 1531 1532 return 0; 1533 } 1534 1535 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1536 { 1537 struct m_can_classdev *cdev = netdev_priv(dev); 1538 /*get wrap around for loopback skb index */ 1539 unsigned int wrap = cdev->can.echo_skb_max; 1540 int next_idx; 1541 1542 /* calculate next index */ 1543 next_idx = (++putidx >= wrap ? 0 : putidx); 1544 1545 /* check if occupied */ 1546 return !!cdev->can.echo_skb[next_idx]; 1547 } 1548 1549 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1550 { 1551 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1552 struct net_device *dev = cdev->net; 1553 struct sk_buff *skb = cdev->tx_skb; 1554 u32 id, cccr, fdflags; 1555 int i; 1556 int putidx; 1557 1558 /* Generate ID field for TX buffer Element */ 1559 /* Common to all supported M_CAN versions */ 1560 if (cf->can_id & CAN_EFF_FLAG) { 1561 id = cf->can_id & CAN_EFF_MASK; 1562 id |= TX_BUF_XTD; 1563 } else { 1564 id = ((cf->can_id & CAN_SFF_MASK) << 18); 1565 } 1566 1567 if (cf->can_id & CAN_RTR_FLAG) 1568 id |= TX_BUF_RTR; 1569 1570 if (cdev->version == 30) { 1571 netif_stop_queue(dev); 1572 1573 /* message ram configuration */ 1574 m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id); 1575 m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC, 1576 can_fd_len2dlc(cf->len) << 16); 1577 1578 for (i = 0; i < cf->len; i += 4) 1579 m_can_fifo_write(cdev, 0, 1580 M_CAN_FIFO_DATA(i / 4), 1581 *(u32 *)(cf->data + i)); 1582 1583 can_put_echo_skb(skb, dev, 0, 0); 1584 1585 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1586 cccr = m_can_read(cdev, M_CAN_CCCR); 1587 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT); 1588 if (can_is_canfd_skb(skb)) { 1589 if (cf->flags & CANFD_BRS) 1590 cccr |= CCCR_CMR_CANFD_BRS << 1591 CCCR_CMR_SHIFT; 1592 else 1593 cccr |= CCCR_CMR_CANFD << 1594 CCCR_CMR_SHIFT; 1595 } else { 1596 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT; 1597 } 1598 m_can_write(cdev, M_CAN_CCCR, cccr); 1599 } 1600 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1601 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1602 /* End of xmit function for version 3.0.x */ 1603 } else { 1604 /* Transmit routine for version >= v3.1.x */ 1605 1606 /* Check if FIFO full */ 1607 if (m_can_tx_fifo_full(cdev)) { 1608 /* This shouldn't happen */ 1609 netif_stop_queue(dev); 1610 netdev_warn(dev, 1611 "TX queue active although FIFO is full."); 1612 1613 if (cdev->is_peripheral) { 1614 kfree_skb(skb); 1615 dev->stats.tx_dropped++; 1616 return NETDEV_TX_OK; 1617 } else { 1618 return NETDEV_TX_BUSY; 1619 } 1620 } 1621 1622 /* get put index for frame */ 1623 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK) 1624 >> TXFQS_TFQPI_SHIFT); 1625 /* Write ID Field to FIFO Element */ 1626 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id); 1627 1628 /* get CAN FD configuration of frame */ 1629 fdflags = 0; 1630 if (can_is_canfd_skb(skb)) { 1631 fdflags |= TX_BUF_FDF; 1632 if (cf->flags & CANFD_BRS) 1633 fdflags |= TX_BUF_BRS; 1634 } 1635 1636 /* Construct DLC Field. Also contains CAN-FD configuration 1637 * use put index of fifo as message marker 1638 * it is used in TX interrupt for 1639 * sending the correct echo frame 1640 */ 1641 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC, 1642 ((putidx << TX_BUF_MM_SHIFT) & 1643 TX_BUF_MM_MASK) | 1644 (can_fd_len2dlc(cf->len) << 16) | 1645 fdflags | TX_BUF_EFC); 1646 1647 for (i = 0; i < cf->len; i += 4) 1648 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4), 1649 *(u32 *)(cf->data + i)); 1650 1651 /* Push loopback echo. 1652 * Will be looped back on TX interrupt based on message marker 1653 */ 1654 can_put_echo_skb(skb, dev, putidx, 0); 1655 1656 /* Enable TX FIFO element to start transfer */ 1657 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1658 1659 /* stop network queue if fifo full */ 1660 if (m_can_tx_fifo_full(cdev) || 1661 m_can_next_echo_skb_occupied(dev, putidx)) 1662 netif_stop_queue(dev); 1663 } 1664 1665 return NETDEV_TX_OK; 1666 } 1667 1668 static void m_can_tx_work_queue(struct work_struct *ws) 1669 { 1670 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1671 tx_work); 1672 1673 m_can_tx_handler(cdev); 1674 cdev->tx_skb = NULL; 1675 } 1676 1677 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1678 struct net_device *dev) 1679 { 1680 struct m_can_classdev *cdev = netdev_priv(dev); 1681 1682 if (can_dropped_invalid_skb(dev, skb)) 1683 return NETDEV_TX_OK; 1684 1685 if (cdev->is_peripheral) { 1686 if (cdev->tx_skb) { 1687 netdev_err(dev, "hard_xmit called while tx busy\n"); 1688 return NETDEV_TX_BUSY; 1689 } 1690 1691 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1692 m_can_clean(dev); 1693 } else { 1694 /* Need to stop the queue to avoid numerous requests 1695 * from being sent. Suggested improvement is to create 1696 * a queueing mechanism that will queue the skbs and 1697 * process them in order. 1698 */ 1699 cdev->tx_skb = skb; 1700 netif_stop_queue(cdev->net); 1701 queue_work(cdev->tx_wq, &cdev->tx_work); 1702 } 1703 } else { 1704 cdev->tx_skb = skb; 1705 return m_can_tx_handler(cdev); 1706 } 1707 1708 return NETDEV_TX_OK; 1709 } 1710 1711 static int m_can_open(struct net_device *dev) 1712 { 1713 struct m_can_classdev *cdev = netdev_priv(dev); 1714 int err; 1715 1716 err = m_can_clk_start(cdev); 1717 if (err) 1718 return err; 1719 1720 /* open the can device */ 1721 err = open_candev(dev); 1722 if (err) { 1723 netdev_err(dev, "failed to open can device\n"); 1724 goto exit_disable_clks; 1725 } 1726 1727 if (cdev->is_peripheral) 1728 can_rx_offload_enable(&cdev->offload); 1729 1730 /* register interrupt handler */ 1731 if (cdev->is_peripheral) { 1732 cdev->tx_skb = NULL; 1733 cdev->tx_wq = alloc_workqueue("mcan_wq", 1734 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1735 if (!cdev->tx_wq) { 1736 err = -ENOMEM; 1737 goto out_wq_fail; 1738 } 1739 1740 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1741 1742 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1743 IRQF_ONESHOT, 1744 dev->name, dev); 1745 } else { 1746 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1747 dev); 1748 } 1749 1750 if (err < 0) { 1751 netdev_err(dev, "failed to request interrupt\n"); 1752 goto exit_irq_fail; 1753 } 1754 1755 /* start the m_can controller */ 1756 m_can_start(dev); 1757 1758 can_led_event(dev, CAN_LED_EVENT_OPEN); 1759 1760 if (!cdev->is_peripheral) 1761 napi_enable(&cdev->napi); 1762 1763 netif_start_queue(dev); 1764 1765 return 0; 1766 1767 exit_irq_fail: 1768 if (cdev->is_peripheral) 1769 destroy_workqueue(cdev->tx_wq); 1770 out_wq_fail: 1771 if (cdev->is_peripheral) 1772 can_rx_offload_disable(&cdev->offload); 1773 close_candev(dev); 1774 exit_disable_clks: 1775 m_can_clk_stop(cdev); 1776 return err; 1777 } 1778 1779 static const struct net_device_ops m_can_netdev_ops = { 1780 .ndo_open = m_can_open, 1781 .ndo_stop = m_can_close, 1782 .ndo_start_xmit = m_can_start_xmit, 1783 .ndo_change_mtu = can_change_mtu, 1784 }; 1785 1786 static int register_m_can_dev(struct net_device *dev) 1787 { 1788 dev->flags |= IFF_ECHO; /* we support local echo */ 1789 dev->netdev_ops = &m_can_netdev_ops; 1790 1791 return register_candev(dev); 1792 } 1793 1794 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1795 const u32 *mram_config_vals) 1796 { 1797 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1798 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1799 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1800 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1801 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1802 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1803 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1804 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1805 (RXFC_FS_MASK >> RXFC_FS_SHIFT); 1806 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1807 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1808 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1809 (RXFC_FS_MASK >> RXFC_FS_SHIFT); 1810 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1811 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1812 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1813 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1814 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1815 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1816 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1817 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1818 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1819 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT); 1820 1821 dev_dbg(cdev->dev, 1822 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1823 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1824 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1825 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1826 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1827 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1828 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1829 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1830 } 1831 1832 void m_can_init_ram(struct m_can_classdev *cdev) 1833 { 1834 int end, i, start; 1835 1836 /* initialize the entire Message RAM in use to avoid possible 1837 * ECC/parity checksum errors when reading an uninitialized buffer 1838 */ 1839 start = cdev->mcfg[MRAM_SIDF].off; 1840 end = cdev->mcfg[MRAM_TXB].off + 1841 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1842 1843 for (i = start; i < end; i += 4) 1844 m_can_fifo_write_no_off(cdev, i, 0x0); 1845 } 1846 EXPORT_SYMBOL_GPL(m_can_init_ram); 1847 1848 int m_can_class_get_clocks(struct m_can_classdev *cdev) 1849 { 1850 int ret = 0; 1851 1852 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 1853 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 1854 1855 if (IS_ERR(cdev->cclk)) { 1856 dev_err(cdev->dev, "no clock found\n"); 1857 ret = -ENODEV; 1858 } 1859 1860 return ret; 1861 } 1862 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 1863 1864 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 1865 int sizeof_priv) 1866 { 1867 struct m_can_classdev *class_dev = NULL; 1868 u32 mram_config_vals[MRAM_CFG_LEN]; 1869 struct net_device *net_dev; 1870 u32 tx_fifo_size; 1871 int ret; 1872 1873 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 1874 "bosch,mram-cfg", 1875 mram_config_vals, 1876 sizeof(mram_config_vals) / 4); 1877 if (ret) { 1878 dev_err(dev, "Could not get Message RAM configuration."); 1879 goto out; 1880 } 1881 1882 /* Get TX FIFO size 1883 * Defines the total amount of echo buffers for loopback 1884 */ 1885 tx_fifo_size = mram_config_vals[7]; 1886 1887 /* allocate the m_can device */ 1888 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 1889 if (!net_dev) { 1890 dev_err(dev, "Failed to allocate CAN device"); 1891 goto out; 1892 } 1893 1894 class_dev = netdev_priv(net_dev); 1895 class_dev->net = net_dev; 1896 class_dev->dev = dev; 1897 SET_NETDEV_DEV(net_dev, dev); 1898 1899 m_can_of_parse_mram(class_dev, mram_config_vals); 1900 out: 1901 return class_dev; 1902 } 1903 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 1904 1905 void m_can_class_free_dev(struct net_device *net) 1906 { 1907 free_candev(net); 1908 } 1909 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 1910 1911 int m_can_class_register(struct m_can_classdev *cdev) 1912 { 1913 int ret; 1914 1915 if (cdev->pm_clock_support) { 1916 ret = m_can_clk_start(cdev); 1917 if (ret) 1918 return ret; 1919 } 1920 1921 if (cdev->is_peripheral) { 1922 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 1923 M_CAN_NAPI_WEIGHT); 1924 if (ret) 1925 goto clk_disable; 1926 } 1927 1928 ret = m_can_dev_setup(cdev); 1929 if (ret) 1930 goto rx_offload_del; 1931 1932 ret = register_m_can_dev(cdev->net); 1933 if (ret) { 1934 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 1935 cdev->net->name, ret); 1936 goto rx_offload_del; 1937 } 1938 1939 devm_can_led_init(cdev->net); 1940 1941 of_can_transceiver(cdev->net); 1942 1943 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 1944 KBUILD_MODNAME, cdev->net->irq, cdev->version); 1945 1946 /* Probe finished 1947 * Stop clocks. They will be reactivated once the M_CAN device is opened 1948 */ 1949 m_can_clk_stop(cdev); 1950 1951 return 0; 1952 1953 rx_offload_del: 1954 if (cdev->is_peripheral) 1955 can_rx_offload_del(&cdev->offload); 1956 clk_disable: 1957 m_can_clk_stop(cdev); 1958 1959 return ret; 1960 } 1961 EXPORT_SYMBOL_GPL(m_can_class_register); 1962 1963 void m_can_class_unregister(struct m_can_classdev *cdev) 1964 { 1965 if (cdev->is_peripheral) 1966 can_rx_offload_del(&cdev->offload); 1967 unregister_candev(cdev->net); 1968 } 1969 EXPORT_SYMBOL_GPL(m_can_class_unregister); 1970 1971 int m_can_class_suspend(struct device *dev) 1972 { 1973 struct m_can_classdev *cdev = dev_get_drvdata(dev); 1974 struct net_device *ndev = cdev->net; 1975 1976 if (netif_running(ndev)) { 1977 netif_stop_queue(ndev); 1978 netif_device_detach(ndev); 1979 m_can_stop(ndev); 1980 m_can_clk_stop(cdev); 1981 } 1982 1983 pinctrl_pm_select_sleep_state(dev); 1984 1985 cdev->can.state = CAN_STATE_SLEEPING; 1986 1987 return 0; 1988 } 1989 EXPORT_SYMBOL_GPL(m_can_class_suspend); 1990 1991 int m_can_class_resume(struct device *dev) 1992 { 1993 struct m_can_classdev *cdev = dev_get_drvdata(dev); 1994 struct net_device *ndev = cdev->net; 1995 1996 pinctrl_pm_select_default_state(dev); 1997 1998 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1999 2000 if (netif_running(ndev)) { 2001 int ret; 2002 2003 ret = m_can_clk_start(cdev); 2004 if (ret) 2005 return ret; 2006 2007 m_can_init_ram(cdev); 2008 m_can_start(ndev); 2009 netif_device_attach(ndev); 2010 netif_start_queue(ndev); 2011 } 2012 2013 return 0; 2014 } 2015 EXPORT_SYMBOL_GPL(m_can_class_resume); 2016 2017 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2018 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2019 MODULE_LICENSE("GPL v2"); 2020 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2021