1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/netdevice.h> 17 #include <linux/of.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/iopoll.h> 22 #include <linux/can/dev.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/phy/phy.h> 25 26 #include "m_can.h" 27 28 /* registers definition */ 29 enum m_can_reg { 30 M_CAN_CREL = 0x0, 31 M_CAN_ENDN = 0x4, 32 M_CAN_CUST = 0x8, 33 M_CAN_DBTP = 0xc, 34 M_CAN_TEST = 0x10, 35 M_CAN_RWD = 0x14, 36 M_CAN_CCCR = 0x18, 37 M_CAN_NBTP = 0x1c, 38 M_CAN_TSCC = 0x20, 39 M_CAN_TSCV = 0x24, 40 M_CAN_TOCC = 0x28, 41 M_CAN_TOCV = 0x2c, 42 M_CAN_ECR = 0x40, 43 M_CAN_PSR = 0x44, 44 /* TDCR Register only available for version >=3.1.x */ 45 M_CAN_TDCR = 0x48, 46 M_CAN_IR = 0x50, 47 M_CAN_IE = 0x54, 48 M_CAN_ILS = 0x58, 49 M_CAN_ILE = 0x5c, 50 M_CAN_GFC = 0x80, 51 M_CAN_SIDFC = 0x84, 52 M_CAN_XIDFC = 0x88, 53 M_CAN_XIDAM = 0x90, 54 M_CAN_HPMS = 0x94, 55 M_CAN_NDAT1 = 0x98, 56 M_CAN_NDAT2 = 0x9c, 57 M_CAN_RXF0C = 0xa0, 58 M_CAN_RXF0S = 0xa4, 59 M_CAN_RXF0A = 0xa8, 60 M_CAN_RXBC = 0xac, 61 M_CAN_RXF1C = 0xb0, 62 M_CAN_RXF1S = 0xb4, 63 M_CAN_RXF1A = 0xb8, 64 M_CAN_RXESC = 0xbc, 65 M_CAN_TXBC = 0xc0, 66 M_CAN_TXFQS = 0xc4, 67 M_CAN_TXESC = 0xc8, 68 M_CAN_TXBRP = 0xcc, 69 M_CAN_TXBAR = 0xd0, 70 M_CAN_TXBCR = 0xd4, 71 M_CAN_TXBTO = 0xd8, 72 M_CAN_TXBCF = 0xdc, 73 M_CAN_TXBTIE = 0xe0, 74 M_CAN_TXBCIE = 0xe4, 75 M_CAN_TXEFC = 0xf0, 76 M_CAN_TXEFS = 0xf4, 77 M_CAN_TXEFA = 0xf8, 78 }; 79 80 /* napi related */ 81 #define M_CAN_NAPI_WEIGHT 64 82 83 /* message ram configuration data length */ 84 #define MRAM_CFG_LEN 8 85 86 /* Core Release Register (CREL) */ 87 #define CREL_REL_MASK GENMASK(31, 28) 88 #define CREL_STEP_MASK GENMASK(27, 24) 89 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 90 91 /* Data Bit Timing & Prescaler Register (DBTP) */ 92 #define DBTP_TDC BIT(23) 93 #define DBTP_DBRP_MASK GENMASK(20, 16) 94 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 95 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 96 #define DBTP_DSJW_MASK GENMASK(3, 0) 97 98 /* Transmitter Delay Compensation Register (TDCR) */ 99 #define TDCR_TDCO_MASK GENMASK(14, 8) 100 #define TDCR_TDCF_MASK GENMASK(6, 0) 101 102 /* Test Register (TEST) */ 103 #define TEST_LBCK BIT(4) 104 105 /* CC Control Register (CCCR) */ 106 #define CCCR_TXP BIT(14) 107 #define CCCR_TEST BIT(7) 108 #define CCCR_DAR BIT(6) 109 #define CCCR_MON BIT(5) 110 #define CCCR_CSR BIT(4) 111 #define CCCR_CSA BIT(3) 112 #define CCCR_ASM BIT(2) 113 #define CCCR_CCE BIT(1) 114 #define CCCR_INIT BIT(0) 115 /* for version 3.0.x */ 116 #define CCCR_CMR_MASK GENMASK(11, 10) 117 #define CCCR_CMR_CANFD 0x1 118 #define CCCR_CMR_CANFD_BRS 0x2 119 #define CCCR_CMR_CAN 0x3 120 #define CCCR_CME_MASK GENMASK(9, 8) 121 #define CCCR_CME_CAN 0 122 #define CCCR_CME_CANFD 0x1 123 #define CCCR_CME_CANFD_BRS 0x2 124 /* for version >=3.1.x */ 125 #define CCCR_EFBI BIT(13) 126 #define CCCR_PXHD BIT(12) 127 #define CCCR_BRSE BIT(9) 128 #define CCCR_FDOE BIT(8) 129 /* for version >=3.2.x */ 130 #define CCCR_NISO BIT(15) 131 /* for version >=3.3.x */ 132 #define CCCR_WMM BIT(11) 133 #define CCCR_UTSU BIT(10) 134 135 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 136 #define NBTP_NSJW_MASK GENMASK(31, 25) 137 #define NBTP_NBRP_MASK GENMASK(24, 16) 138 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 139 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 140 141 /* Timestamp Counter Configuration Register (TSCC) */ 142 #define TSCC_TCP_MASK GENMASK(19, 16) 143 #define TSCC_TSS_MASK GENMASK(1, 0) 144 #define TSCC_TSS_DISABLE 0x0 145 #define TSCC_TSS_INTERNAL 0x1 146 #define TSCC_TSS_EXTERNAL 0x2 147 148 /* Timestamp Counter Value Register (TSCV) */ 149 #define TSCV_TSC_MASK GENMASK(15, 0) 150 151 /* Error Counter Register (ECR) */ 152 #define ECR_RP BIT(15) 153 #define ECR_REC_MASK GENMASK(14, 8) 154 #define ECR_TEC_MASK GENMASK(7, 0) 155 156 /* Protocol Status Register (PSR) */ 157 #define PSR_BO BIT(7) 158 #define PSR_EW BIT(6) 159 #define PSR_EP BIT(5) 160 #define PSR_LEC_MASK GENMASK(2, 0) 161 162 /* Interrupt Register (IR) */ 163 #define IR_ALL_INT 0xffffffff 164 165 /* Renamed bits for versions > 3.1.x */ 166 #define IR_ARA BIT(29) 167 #define IR_PED BIT(28) 168 #define IR_PEA BIT(27) 169 170 /* Bits for version 3.0.x */ 171 #define IR_STE BIT(31) 172 #define IR_FOE BIT(30) 173 #define IR_ACKE BIT(29) 174 #define IR_BE BIT(28) 175 #define IR_CRCE BIT(27) 176 #define IR_WDI BIT(26) 177 #define IR_BO BIT(25) 178 #define IR_EW BIT(24) 179 #define IR_EP BIT(23) 180 #define IR_ELO BIT(22) 181 #define IR_BEU BIT(21) 182 #define IR_BEC BIT(20) 183 #define IR_DRX BIT(19) 184 #define IR_TOO BIT(18) 185 #define IR_MRAF BIT(17) 186 #define IR_TSW BIT(16) 187 #define IR_TEFL BIT(15) 188 #define IR_TEFF BIT(14) 189 #define IR_TEFW BIT(13) 190 #define IR_TEFN BIT(12) 191 #define IR_TFE BIT(11) 192 #define IR_TCF BIT(10) 193 #define IR_TC BIT(9) 194 #define IR_HPM BIT(8) 195 #define IR_RF1L BIT(7) 196 #define IR_RF1F BIT(6) 197 #define IR_RF1W BIT(5) 198 #define IR_RF1N BIT(4) 199 #define IR_RF0L BIT(3) 200 #define IR_RF0F BIT(2) 201 #define IR_RF0W BIT(1) 202 #define IR_RF0N BIT(0) 203 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 204 205 /* Interrupts for version 3.0.x */ 206 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 207 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \ 208 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 209 IR_RF1L | IR_RF0L) 210 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 211 212 /* Interrupts for version >= 3.1.x */ 213 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 214 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \ 215 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 216 IR_RF1L | IR_RF0L) 217 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 218 219 /* Interrupt Line Select (ILS) */ 220 #define ILS_ALL_INT0 0x0 221 #define ILS_ALL_INT1 0xFFFFFFFF 222 223 /* Interrupt Line Enable (ILE) */ 224 #define ILE_EINT1 BIT(1) 225 #define ILE_EINT0 BIT(0) 226 227 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 228 #define RXFC_FWM_MASK GENMASK(30, 24) 229 #define RXFC_FS_MASK GENMASK(22, 16) 230 231 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 232 #define RXFS_RFL BIT(25) 233 #define RXFS_FF BIT(24) 234 #define RXFS_FPI_MASK GENMASK(21, 16) 235 #define RXFS_FGI_MASK GENMASK(13, 8) 236 #define RXFS_FFL_MASK GENMASK(6, 0) 237 238 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 239 #define RXESC_RBDS_MASK GENMASK(10, 8) 240 #define RXESC_F1DS_MASK GENMASK(6, 4) 241 #define RXESC_F0DS_MASK GENMASK(2, 0) 242 #define RXESC_64B 0x7 243 244 /* Tx Buffer Configuration (TXBC) */ 245 #define TXBC_TFQS_MASK GENMASK(29, 24) 246 #define TXBC_NDTB_MASK GENMASK(21, 16) 247 248 /* Tx FIFO/Queue Status (TXFQS) */ 249 #define TXFQS_TFQF BIT(21) 250 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 251 #define TXFQS_TFGI_MASK GENMASK(12, 8) 252 #define TXFQS_TFFL_MASK GENMASK(5, 0) 253 254 /* Tx Buffer Element Size Configuration (TXESC) */ 255 #define TXESC_TBDS_MASK GENMASK(2, 0) 256 #define TXESC_TBDS_64B 0x7 257 258 /* Tx Event FIFO Configuration (TXEFC) */ 259 #define TXEFC_EFS_MASK GENMASK(21, 16) 260 261 /* Tx Event FIFO Status (TXEFS) */ 262 #define TXEFS_TEFL BIT(25) 263 #define TXEFS_EFF BIT(24) 264 #define TXEFS_EFGI_MASK GENMASK(12, 8) 265 #define TXEFS_EFFL_MASK GENMASK(5, 0) 266 267 /* Tx Event FIFO Acknowledge (TXEFA) */ 268 #define TXEFA_EFAI_MASK GENMASK(4, 0) 269 270 /* Message RAM Configuration (in bytes) */ 271 #define SIDF_ELEMENT_SIZE 4 272 #define XIDF_ELEMENT_SIZE 8 273 #define RXF0_ELEMENT_SIZE 72 274 #define RXF1_ELEMENT_SIZE 72 275 #define RXB_ELEMENT_SIZE 72 276 #define TXE_ELEMENT_SIZE 8 277 #define TXB_ELEMENT_SIZE 72 278 279 /* Message RAM Elements */ 280 #define M_CAN_FIFO_ID 0x0 281 #define M_CAN_FIFO_DLC 0x4 282 #define M_CAN_FIFO_DATA 0x8 283 284 /* Rx Buffer Element */ 285 /* R0 */ 286 #define RX_BUF_ESI BIT(31) 287 #define RX_BUF_XTD BIT(30) 288 #define RX_BUF_RTR BIT(29) 289 /* R1 */ 290 #define RX_BUF_ANMF BIT(31) 291 #define RX_BUF_FDF BIT(21) 292 #define RX_BUF_BRS BIT(20) 293 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 294 295 /* Tx Buffer Element */ 296 /* T0 */ 297 #define TX_BUF_ESI BIT(31) 298 #define TX_BUF_XTD BIT(30) 299 #define TX_BUF_RTR BIT(29) 300 /* T1 */ 301 #define TX_BUF_EFC BIT(23) 302 #define TX_BUF_FDF BIT(21) 303 #define TX_BUF_BRS BIT(20) 304 #define TX_BUF_MM_MASK GENMASK(31, 24) 305 #define TX_BUF_DLC_MASK GENMASK(19, 16) 306 307 /* Tx event FIFO Element */ 308 /* E1 */ 309 #define TX_EVENT_MM_MASK GENMASK(31, 24) 310 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 311 312 /* The ID and DLC registers are adjacent in M_CAN FIFO memory, 313 * and we can save a (potentially slow) bus round trip by combining 314 * reads and writes to them. 315 */ 316 struct id_and_dlc { 317 u32 id; 318 u32 dlc; 319 }; 320 321 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 322 { 323 return cdev->ops->read_reg(cdev, reg); 324 } 325 326 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 327 u32 val) 328 { 329 cdev->ops->write_reg(cdev, reg, val); 330 } 331 332 static int 333 m_can_fifo_read(struct m_can_classdev *cdev, 334 u32 fgi, unsigned int offset, void *val, size_t val_count) 335 { 336 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 337 offset; 338 339 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); 340 } 341 342 static int 343 m_can_fifo_write(struct m_can_classdev *cdev, 344 u32 fpi, unsigned int offset, const void *val, size_t val_count) 345 { 346 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 347 offset; 348 349 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); 350 } 351 352 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, 353 u32 fpi, u32 val) 354 { 355 return cdev->ops->write_fifo(cdev, fpi, &val, 1); 356 } 357 358 static int 359 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) 360 { 361 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 362 offset; 363 364 return cdev->ops->read_fifo(cdev, addr_offset, val, 1); 365 } 366 367 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 368 { 369 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); 370 } 371 372 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 373 { 374 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 375 u32 timeout = 10; 376 u32 val = 0; 377 378 /* Clear the Clock stop request if it was set */ 379 if (cccr & CCCR_CSR) 380 cccr &= ~CCCR_CSR; 381 382 if (enable) { 383 /* enable m_can configuration */ 384 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 385 udelay(5); 386 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 387 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 388 } else { 389 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 390 } 391 392 /* there's a delay for module initialization */ 393 if (enable) 394 val = CCCR_INIT | CCCR_CCE; 395 396 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 397 if (timeout == 0) { 398 netdev_warn(cdev->net, "Failed to init module\n"); 399 return; 400 } 401 timeout--; 402 udelay(1); 403 } 404 } 405 406 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 407 { 408 /* Only interrupt line 0 is used in this driver */ 409 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 410 } 411 412 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 413 { 414 m_can_write(cdev, M_CAN_ILE, 0x0); 415 } 416 417 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 418 * width. 419 */ 420 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 421 { 422 u32 tscv; 423 u32 tsc; 424 425 tscv = m_can_read(cdev, M_CAN_TSCV); 426 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 427 428 return (tsc << 16); 429 } 430 431 static void m_can_clean(struct net_device *net) 432 { 433 struct m_can_classdev *cdev = netdev_priv(net); 434 435 if (cdev->tx_skb) { 436 int putidx = 0; 437 438 net->stats.tx_errors++; 439 if (cdev->version > 30) 440 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 441 m_can_read(cdev, M_CAN_TXFQS)); 442 443 can_free_echo_skb(cdev->net, putidx, NULL); 444 cdev->tx_skb = NULL; 445 } 446 } 447 448 /* For peripherals, pass skb to rx-offload, which will push skb from 449 * napi. For non-peripherals, RX is done in napi already, so push 450 * directly. timestamp is used to ensure good skb ordering in 451 * rx-offload and is ignored for non-peripherals. 452 */ 453 static void m_can_receive_skb(struct m_can_classdev *cdev, 454 struct sk_buff *skb, 455 u32 timestamp) 456 { 457 if (cdev->is_peripheral) { 458 struct net_device_stats *stats = &cdev->net->stats; 459 int err; 460 461 err = can_rx_offload_queue_sorted(&cdev->offload, skb, 462 timestamp); 463 if (err) 464 stats->rx_fifo_errors++; 465 } else { 466 netif_receive_skb(skb); 467 } 468 } 469 470 static int m_can_read_fifo(struct net_device *dev, u32 rxfs) 471 { 472 struct net_device_stats *stats = &dev->stats; 473 struct m_can_classdev *cdev = netdev_priv(dev); 474 struct canfd_frame *cf; 475 struct sk_buff *skb; 476 struct id_and_dlc fifo_header; 477 u32 fgi; 478 u32 timestamp = 0; 479 int err; 480 481 /* calculate the fifo get index for where to read data */ 482 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 483 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); 484 if (err) 485 goto out_fail; 486 487 if (fifo_header.dlc & RX_BUF_FDF) 488 skb = alloc_canfd_skb(dev, &cf); 489 else 490 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 491 if (!skb) { 492 stats->rx_dropped++; 493 return 0; 494 } 495 496 if (fifo_header.dlc & RX_BUF_FDF) 497 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); 498 else 499 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); 500 501 if (fifo_header.id & RX_BUF_XTD) 502 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; 503 else 504 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; 505 506 if (fifo_header.id & RX_BUF_ESI) { 507 cf->flags |= CANFD_ESI; 508 netdev_dbg(dev, "ESI Error\n"); 509 } 510 511 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { 512 cf->can_id |= CAN_RTR_FLAG; 513 } else { 514 if (fifo_header.dlc & RX_BUF_BRS) 515 cf->flags |= CANFD_BRS; 516 517 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, 518 cf->data, DIV_ROUND_UP(cf->len, 4)); 519 if (err) 520 goto out_fail; 521 } 522 523 /* acknowledge rx fifo 0 */ 524 m_can_write(cdev, M_CAN_RXF0A, fgi); 525 526 stats->rx_packets++; 527 stats->rx_bytes += cf->len; 528 529 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc); 530 531 m_can_receive_skb(cdev, skb, timestamp); 532 533 return 0; 534 535 out_fail: 536 netdev_err(dev, "FIFO read returned %d\n", err); 537 return err; 538 } 539 540 static int m_can_do_rx_poll(struct net_device *dev, int quota) 541 { 542 struct m_can_classdev *cdev = netdev_priv(dev); 543 u32 pkts = 0; 544 u32 rxfs; 545 int err; 546 547 rxfs = m_can_read(cdev, M_CAN_RXF0S); 548 if (!(rxfs & RXFS_FFL_MASK)) { 549 netdev_dbg(dev, "no messages in fifo0\n"); 550 return 0; 551 } 552 553 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { 554 err = m_can_read_fifo(dev, rxfs); 555 if (err) 556 return err; 557 558 quota--; 559 pkts++; 560 rxfs = m_can_read(cdev, M_CAN_RXF0S); 561 } 562 563 if (pkts) 564 can_led_event(dev, CAN_LED_EVENT_RX); 565 566 return pkts; 567 } 568 569 static int m_can_handle_lost_msg(struct net_device *dev) 570 { 571 struct m_can_classdev *cdev = netdev_priv(dev); 572 struct net_device_stats *stats = &dev->stats; 573 struct sk_buff *skb; 574 struct can_frame *frame; 575 u32 timestamp = 0; 576 577 netdev_err(dev, "msg lost in rxf0\n"); 578 579 stats->rx_errors++; 580 stats->rx_over_errors++; 581 582 skb = alloc_can_err_skb(dev, &frame); 583 if (unlikely(!skb)) 584 return 0; 585 586 frame->can_id |= CAN_ERR_CRTL; 587 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 588 589 if (cdev->is_peripheral) 590 timestamp = m_can_get_timestamp(cdev); 591 592 m_can_receive_skb(cdev, skb, timestamp); 593 594 return 1; 595 } 596 597 static int m_can_handle_lec_err(struct net_device *dev, 598 enum m_can_lec_type lec_type) 599 { 600 struct m_can_classdev *cdev = netdev_priv(dev); 601 struct net_device_stats *stats = &dev->stats; 602 struct can_frame *cf; 603 struct sk_buff *skb; 604 u32 timestamp = 0; 605 606 cdev->can.can_stats.bus_error++; 607 stats->rx_errors++; 608 609 /* propagate the error condition to the CAN stack */ 610 skb = alloc_can_err_skb(dev, &cf); 611 if (unlikely(!skb)) 612 return 0; 613 614 /* check for 'last error code' which tells us the 615 * type of the last error to occur on the CAN bus 616 */ 617 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 618 619 switch (lec_type) { 620 case LEC_STUFF_ERROR: 621 netdev_dbg(dev, "stuff error\n"); 622 cf->data[2] |= CAN_ERR_PROT_STUFF; 623 break; 624 case LEC_FORM_ERROR: 625 netdev_dbg(dev, "form error\n"); 626 cf->data[2] |= CAN_ERR_PROT_FORM; 627 break; 628 case LEC_ACK_ERROR: 629 netdev_dbg(dev, "ack error\n"); 630 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 631 break; 632 case LEC_BIT1_ERROR: 633 netdev_dbg(dev, "bit1 error\n"); 634 cf->data[2] |= CAN_ERR_PROT_BIT1; 635 break; 636 case LEC_BIT0_ERROR: 637 netdev_dbg(dev, "bit0 error\n"); 638 cf->data[2] |= CAN_ERR_PROT_BIT0; 639 break; 640 case LEC_CRC_ERROR: 641 netdev_dbg(dev, "CRC error\n"); 642 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 643 break; 644 default: 645 break; 646 } 647 648 stats->rx_packets++; 649 stats->rx_bytes += cf->len; 650 651 if (cdev->is_peripheral) 652 timestamp = m_can_get_timestamp(cdev); 653 654 m_can_receive_skb(cdev, skb, timestamp); 655 656 return 1; 657 } 658 659 static int __m_can_get_berr_counter(const struct net_device *dev, 660 struct can_berr_counter *bec) 661 { 662 struct m_can_classdev *cdev = netdev_priv(dev); 663 unsigned int ecr; 664 665 ecr = m_can_read(cdev, M_CAN_ECR); 666 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 667 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 668 669 return 0; 670 } 671 672 static int m_can_clk_start(struct m_can_classdev *cdev) 673 { 674 if (cdev->pm_clock_support == 0) 675 return 0; 676 677 return pm_runtime_resume_and_get(cdev->dev); 678 } 679 680 static void m_can_clk_stop(struct m_can_classdev *cdev) 681 { 682 if (cdev->pm_clock_support) 683 pm_runtime_put_sync(cdev->dev); 684 } 685 686 static int m_can_get_berr_counter(const struct net_device *dev, 687 struct can_berr_counter *bec) 688 { 689 struct m_can_classdev *cdev = netdev_priv(dev); 690 int err; 691 692 err = m_can_clk_start(cdev); 693 if (err) 694 return err; 695 696 __m_can_get_berr_counter(dev, bec); 697 698 m_can_clk_stop(cdev); 699 700 return 0; 701 } 702 703 static int m_can_handle_state_change(struct net_device *dev, 704 enum can_state new_state) 705 { 706 struct m_can_classdev *cdev = netdev_priv(dev); 707 struct net_device_stats *stats = &dev->stats; 708 struct can_frame *cf; 709 struct sk_buff *skb; 710 struct can_berr_counter bec; 711 unsigned int ecr; 712 u32 timestamp = 0; 713 714 switch (new_state) { 715 case CAN_STATE_ERROR_WARNING: 716 /* error warning state */ 717 cdev->can.can_stats.error_warning++; 718 cdev->can.state = CAN_STATE_ERROR_WARNING; 719 break; 720 case CAN_STATE_ERROR_PASSIVE: 721 /* error passive state */ 722 cdev->can.can_stats.error_passive++; 723 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 724 break; 725 case CAN_STATE_BUS_OFF: 726 /* bus-off state */ 727 cdev->can.state = CAN_STATE_BUS_OFF; 728 m_can_disable_all_interrupts(cdev); 729 cdev->can.can_stats.bus_off++; 730 can_bus_off(dev); 731 break; 732 default: 733 break; 734 } 735 736 /* propagate the error condition to the CAN stack */ 737 skb = alloc_can_err_skb(dev, &cf); 738 if (unlikely(!skb)) 739 return 0; 740 741 __m_can_get_berr_counter(dev, &bec); 742 743 switch (new_state) { 744 case CAN_STATE_ERROR_WARNING: 745 /* error warning state */ 746 cf->can_id |= CAN_ERR_CRTL; 747 cf->data[1] = (bec.txerr > bec.rxerr) ? 748 CAN_ERR_CRTL_TX_WARNING : 749 CAN_ERR_CRTL_RX_WARNING; 750 cf->data[6] = bec.txerr; 751 cf->data[7] = bec.rxerr; 752 break; 753 case CAN_STATE_ERROR_PASSIVE: 754 /* error passive state */ 755 cf->can_id |= CAN_ERR_CRTL; 756 ecr = m_can_read(cdev, M_CAN_ECR); 757 if (ecr & ECR_RP) 758 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 759 if (bec.txerr > 127) 760 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 761 cf->data[6] = bec.txerr; 762 cf->data[7] = bec.rxerr; 763 break; 764 case CAN_STATE_BUS_OFF: 765 /* bus-off state */ 766 cf->can_id |= CAN_ERR_BUSOFF; 767 break; 768 default: 769 break; 770 } 771 772 stats->rx_packets++; 773 stats->rx_bytes += cf->len; 774 775 if (cdev->is_peripheral) 776 timestamp = m_can_get_timestamp(cdev); 777 778 m_can_receive_skb(cdev, skb, timestamp); 779 780 return 1; 781 } 782 783 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 784 { 785 struct m_can_classdev *cdev = netdev_priv(dev); 786 int work_done = 0; 787 788 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 789 netdev_dbg(dev, "entered error warning state\n"); 790 work_done += m_can_handle_state_change(dev, 791 CAN_STATE_ERROR_WARNING); 792 } 793 794 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 795 netdev_dbg(dev, "entered error passive state\n"); 796 work_done += m_can_handle_state_change(dev, 797 CAN_STATE_ERROR_PASSIVE); 798 } 799 800 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 801 netdev_dbg(dev, "entered error bus off state\n"); 802 work_done += m_can_handle_state_change(dev, 803 CAN_STATE_BUS_OFF); 804 } 805 806 return work_done; 807 } 808 809 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 810 { 811 if (irqstatus & IR_WDI) 812 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 813 if (irqstatus & IR_ELO) 814 netdev_err(dev, "Error Logging Overflow\n"); 815 if (irqstatus & IR_BEU) 816 netdev_err(dev, "Bit Error Uncorrected\n"); 817 if (irqstatus & IR_BEC) 818 netdev_err(dev, "Bit Error Corrected\n"); 819 if (irqstatus & IR_TOO) 820 netdev_err(dev, "Timeout reached\n"); 821 if (irqstatus & IR_MRAF) 822 netdev_err(dev, "Message RAM access failure occurred\n"); 823 } 824 825 static inline bool is_lec_err(u32 psr) 826 { 827 psr &= LEC_UNUSED; 828 829 return psr && (psr != LEC_UNUSED); 830 } 831 832 static inline bool m_can_is_protocol_err(u32 irqstatus) 833 { 834 return irqstatus & IR_ERR_LEC_31X; 835 } 836 837 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 838 { 839 struct net_device_stats *stats = &dev->stats; 840 struct m_can_classdev *cdev = netdev_priv(dev); 841 struct can_frame *cf; 842 struct sk_buff *skb; 843 u32 timestamp = 0; 844 845 /* propagate the error condition to the CAN stack */ 846 skb = alloc_can_err_skb(dev, &cf); 847 848 /* update tx error stats since there is protocol error */ 849 stats->tx_errors++; 850 851 /* update arbitration lost status */ 852 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 853 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 854 cdev->can.can_stats.arbitration_lost++; 855 if (skb) { 856 cf->can_id |= CAN_ERR_LOSTARB; 857 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 858 } 859 } 860 861 if (unlikely(!skb)) { 862 netdev_dbg(dev, "allocation of skb failed\n"); 863 return 0; 864 } 865 866 if (cdev->is_peripheral) 867 timestamp = m_can_get_timestamp(cdev); 868 869 m_can_receive_skb(cdev, skb, timestamp); 870 871 return 1; 872 } 873 874 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 875 u32 psr) 876 { 877 struct m_can_classdev *cdev = netdev_priv(dev); 878 int work_done = 0; 879 880 if (irqstatus & IR_RF0L) 881 work_done += m_can_handle_lost_msg(dev); 882 883 /* handle lec errors on the bus */ 884 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 885 is_lec_err(psr)) 886 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); 887 888 /* handle protocol errors in arbitration phase */ 889 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 890 m_can_is_protocol_err(irqstatus)) 891 work_done += m_can_handle_protocol_error(dev, irqstatus); 892 893 /* other unproccessed error interrupts */ 894 m_can_handle_other_err(dev, irqstatus); 895 896 return work_done; 897 } 898 899 static int m_can_rx_handler(struct net_device *dev, int quota) 900 { 901 struct m_can_classdev *cdev = netdev_priv(dev); 902 int rx_work_or_err; 903 int work_done = 0; 904 u32 irqstatus, psr; 905 906 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 907 if (!irqstatus) 908 goto end; 909 910 /* Errata workaround for issue "Needless activation of MRAF irq" 911 * During frame reception while the MCAN is in Error Passive state 912 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 913 * it may happen that MCAN_IR.MRAF is set although there was no 914 * Message RAM access failure. 915 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 916 * The Message RAM Access Failure interrupt routine needs to check 917 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 918 * In this case, reset MCAN_IR.MRAF. No further action is required. 919 */ 920 if (cdev->version <= 31 && irqstatus & IR_MRAF && 921 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 922 struct can_berr_counter bec; 923 924 __m_can_get_berr_counter(dev, &bec); 925 if (bec.rxerr == 127) { 926 m_can_write(cdev, M_CAN_IR, IR_MRAF); 927 irqstatus &= ~IR_MRAF; 928 } 929 } 930 931 psr = m_can_read(cdev, M_CAN_PSR); 932 933 if (irqstatus & IR_ERR_STATE) 934 work_done += m_can_handle_state_errors(dev, psr); 935 936 if (irqstatus & IR_ERR_BUS_30X) 937 work_done += m_can_handle_bus_errors(dev, irqstatus, psr); 938 939 if (irqstatus & IR_RF0N) { 940 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); 941 if (rx_work_or_err < 0) 942 return rx_work_or_err; 943 944 work_done += rx_work_or_err; 945 } 946 end: 947 return work_done; 948 } 949 950 static int m_can_rx_peripheral(struct net_device *dev) 951 { 952 struct m_can_classdev *cdev = netdev_priv(dev); 953 int work_done; 954 955 work_done = m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT); 956 957 /* Don't re-enable interrupts if the driver had a fatal error 958 * (e.g., FIFO read failure). 959 */ 960 if (work_done >= 0) 961 m_can_enable_all_interrupts(cdev); 962 963 return work_done; 964 } 965 966 static int m_can_poll(struct napi_struct *napi, int quota) 967 { 968 struct net_device *dev = napi->dev; 969 struct m_can_classdev *cdev = netdev_priv(dev); 970 int work_done; 971 972 work_done = m_can_rx_handler(dev, quota); 973 974 /* Don't re-enable interrupts if the driver had a fatal error 975 * (e.g., FIFO read failure). 976 */ 977 if (work_done >= 0 && work_done < quota) { 978 napi_complete_done(napi, work_done); 979 m_can_enable_all_interrupts(cdev); 980 } 981 982 return work_done; 983 } 984 985 /* Echo tx skb and update net stats. Peripherals use rx-offload for 986 * echo. timestamp is used for peripherals to ensure correct ordering 987 * by rx-offload, and is ignored for non-peripherals. 988 */ 989 static void m_can_tx_update_stats(struct m_can_classdev *cdev, 990 unsigned int msg_mark, 991 u32 timestamp) 992 { 993 struct net_device *dev = cdev->net; 994 struct net_device_stats *stats = &dev->stats; 995 996 if (cdev->is_peripheral) 997 stats->tx_bytes += 998 can_rx_offload_get_echo_skb(&cdev->offload, 999 msg_mark, 1000 timestamp, 1001 NULL); 1002 else 1003 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL); 1004 1005 stats->tx_packets++; 1006 } 1007 1008 static int m_can_echo_tx_event(struct net_device *dev) 1009 { 1010 u32 txe_count = 0; 1011 u32 m_can_txefs; 1012 u32 fgi = 0; 1013 int i = 0; 1014 unsigned int msg_mark; 1015 1016 struct m_can_classdev *cdev = netdev_priv(dev); 1017 1018 /* read tx event fifo status */ 1019 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 1020 1021 /* Get Tx Event fifo element count */ 1022 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 1023 1024 /* Get and process all sent elements */ 1025 for (i = 0; i < txe_count; i++) { 1026 u32 txe, timestamp = 0; 1027 int err; 1028 1029 /* retrieve get index */ 1030 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS)); 1031 1032 /* get message marker, timestamp */ 1033 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); 1034 if (err) { 1035 netdev_err(dev, "TXE FIFO read returned %d\n", err); 1036 return err; 1037 } 1038 1039 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 1040 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe); 1041 1042 /* ack txe element */ 1043 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 1044 fgi)); 1045 1046 /* update stats */ 1047 m_can_tx_update_stats(cdev, msg_mark, timestamp); 1048 } 1049 1050 return 0; 1051 } 1052 1053 static irqreturn_t m_can_isr(int irq, void *dev_id) 1054 { 1055 struct net_device *dev = (struct net_device *)dev_id; 1056 struct m_can_classdev *cdev = netdev_priv(dev); 1057 u32 ir; 1058 1059 if (pm_runtime_suspended(cdev->dev)) 1060 return IRQ_NONE; 1061 ir = m_can_read(cdev, M_CAN_IR); 1062 if (!ir) 1063 return IRQ_NONE; 1064 1065 /* ACK all irqs */ 1066 if (ir & IR_ALL_INT) 1067 m_can_write(cdev, M_CAN_IR, ir); 1068 1069 if (cdev->ops->clear_interrupts) 1070 cdev->ops->clear_interrupts(cdev); 1071 1072 /* schedule NAPI in case of 1073 * - rx IRQ 1074 * - state change IRQ 1075 * - bus error IRQ and bus error reporting 1076 */ 1077 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 1078 cdev->irqstatus = ir; 1079 m_can_disable_all_interrupts(cdev); 1080 if (!cdev->is_peripheral) 1081 napi_schedule(&cdev->napi); 1082 else if (m_can_rx_peripheral(dev) < 0) 1083 goto out_fail; 1084 } 1085 1086 if (cdev->version == 30) { 1087 if (ir & IR_TC) { 1088 /* Transmission Complete Interrupt*/ 1089 u32 timestamp = 0; 1090 1091 if (cdev->is_peripheral) 1092 timestamp = m_can_get_timestamp(cdev); 1093 m_can_tx_update_stats(cdev, 0, timestamp); 1094 1095 can_led_event(dev, CAN_LED_EVENT_TX); 1096 netif_wake_queue(dev); 1097 } 1098 } else { 1099 if (ir & IR_TEFN) { 1100 /* New TX FIFO Element arrived */ 1101 if (m_can_echo_tx_event(dev) != 0) 1102 goto out_fail; 1103 1104 can_led_event(dev, CAN_LED_EVENT_TX); 1105 if (netif_queue_stopped(dev) && 1106 !m_can_tx_fifo_full(cdev)) 1107 netif_wake_queue(dev); 1108 } 1109 } 1110 1111 if (cdev->is_peripheral) 1112 can_rx_offload_threaded_irq_finish(&cdev->offload); 1113 1114 return IRQ_HANDLED; 1115 1116 out_fail: 1117 m_can_disable_all_interrupts(cdev); 1118 return IRQ_HANDLED; 1119 } 1120 1121 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1122 .name = KBUILD_MODNAME, 1123 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1124 .tseg1_max = 64, 1125 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1126 .tseg2_max = 16, 1127 .sjw_max = 16, 1128 .brp_min = 1, 1129 .brp_max = 1024, 1130 .brp_inc = 1, 1131 }; 1132 1133 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1134 .name = KBUILD_MODNAME, 1135 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1136 .tseg1_max = 16, 1137 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1138 .tseg2_max = 8, 1139 .sjw_max = 4, 1140 .brp_min = 1, 1141 .brp_max = 32, 1142 .brp_inc = 1, 1143 }; 1144 1145 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1146 .name = KBUILD_MODNAME, 1147 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1148 .tseg1_max = 256, 1149 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1150 .tseg2_max = 128, 1151 .sjw_max = 128, 1152 .brp_min = 1, 1153 .brp_max = 512, 1154 .brp_inc = 1, 1155 }; 1156 1157 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1158 .name = KBUILD_MODNAME, 1159 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1160 .tseg1_max = 32, 1161 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1162 .tseg2_max = 16, 1163 .sjw_max = 16, 1164 .brp_min = 1, 1165 .brp_max = 32, 1166 .brp_inc = 1, 1167 }; 1168 1169 static int m_can_set_bittiming(struct net_device *dev) 1170 { 1171 struct m_can_classdev *cdev = netdev_priv(dev); 1172 const struct can_bittiming *bt = &cdev->can.bittiming; 1173 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1174 u16 brp, sjw, tseg1, tseg2; 1175 u32 reg_btp; 1176 1177 brp = bt->brp - 1; 1178 sjw = bt->sjw - 1; 1179 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1180 tseg2 = bt->phase_seg2 - 1; 1181 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1182 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1183 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1184 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1185 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1186 1187 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1188 reg_btp = 0; 1189 brp = dbt->brp - 1; 1190 sjw = dbt->sjw - 1; 1191 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1192 tseg2 = dbt->phase_seg2 - 1; 1193 1194 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1195 * This is mentioned in the "Bit Time Requirements for CAN FD" 1196 * paper presented at the International CAN Conference 2013 1197 */ 1198 if (dbt->bitrate > 2500000) { 1199 u32 tdco, ssp; 1200 1201 /* Use the same value of secondary sampling point 1202 * as the data sampling point 1203 */ 1204 ssp = dbt->sample_point; 1205 1206 /* Equation based on Bosch's M_CAN User Manual's 1207 * Transmitter Delay Compensation Section 1208 */ 1209 tdco = (cdev->can.clock.freq / 1000) * 1210 ssp / dbt->bitrate; 1211 1212 /* Max valid TDCO value is 127 */ 1213 if (tdco > 127) { 1214 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1215 tdco); 1216 tdco = 127; 1217 } 1218 1219 reg_btp |= DBTP_TDC; 1220 m_can_write(cdev, M_CAN_TDCR, 1221 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1222 } 1223 1224 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1225 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1226 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1227 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1228 1229 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1230 } 1231 1232 return 0; 1233 } 1234 1235 /* Configure M_CAN chip: 1236 * - set rx buffer/fifo element size 1237 * - configure rx fifo 1238 * - accept non-matching frame into fifo 0 1239 * - configure tx buffer 1240 * - >= v3.1.x: TX FIFO is used 1241 * - configure mode 1242 * - setup bittiming 1243 * - configure timestamp generation 1244 */ 1245 static void m_can_chip_config(struct net_device *dev) 1246 { 1247 struct m_can_classdev *cdev = netdev_priv(dev); 1248 u32 cccr, test; 1249 1250 m_can_config_endisable(cdev, true); 1251 1252 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1253 m_can_write(cdev, M_CAN_RXESC, 1254 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1255 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1256 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1257 1258 /* Accept Non-matching Frames Into FIFO 0 */ 1259 m_can_write(cdev, M_CAN_GFC, 0x0); 1260 1261 if (cdev->version == 30) { 1262 /* only support one Tx Buffer currently */ 1263 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1264 cdev->mcfg[MRAM_TXB].off); 1265 } else { 1266 /* TX FIFO is used for newer IP Core versions */ 1267 m_can_write(cdev, M_CAN_TXBC, 1268 FIELD_PREP(TXBC_TFQS_MASK, 1269 cdev->mcfg[MRAM_TXB].num) | 1270 cdev->mcfg[MRAM_TXB].off); 1271 } 1272 1273 /* support 64 bytes payload */ 1274 m_can_write(cdev, M_CAN_TXESC, 1275 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1276 1277 /* TX Event FIFO */ 1278 if (cdev->version == 30) { 1279 m_can_write(cdev, M_CAN_TXEFC, 1280 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1281 cdev->mcfg[MRAM_TXE].off); 1282 } else { 1283 /* Full TX Event FIFO is used */ 1284 m_can_write(cdev, M_CAN_TXEFC, 1285 FIELD_PREP(TXEFC_EFS_MASK, 1286 cdev->mcfg[MRAM_TXE].num) | 1287 cdev->mcfg[MRAM_TXE].off); 1288 } 1289 1290 /* rx fifo configuration, blocking mode, fifo size 1 */ 1291 m_can_write(cdev, M_CAN_RXF0C, 1292 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1293 cdev->mcfg[MRAM_RXF0].off); 1294 1295 m_can_write(cdev, M_CAN_RXF1C, 1296 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1297 cdev->mcfg[MRAM_RXF1].off); 1298 1299 cccr = m_can_read(cdev, M_CAN_CCCR); 1300 test = m_can_read(cdev, M_CAN_TEST); 1301 test &= ~TEST_LBCK; 1302 if (cdev->version == 30) { 1303 /* Version 3.0.x */ 1304 1305 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1306 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1307 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1308 1309 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1310 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1311 1312 } else { 1313 /* Version 3.1.x or 3.2.x */ 1314 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1315 CCCR_NISO | CCCR_DAR); 1316 1317 /* Only 3.2.x has NISO Bit implemented */ 1318 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1319 cccr |= CCCR_NISO; 1320 1321 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1322 cccr |= (CCCR_BRSE | CCCR_FDOE); 1323 } 1324 1325 /* Loopback Mode */ 1326 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1327 cccr |= CCCR_TEST | CCCR_MON; 1328 test |= TEST_LBCK; 1329 } 1330 1331 /* Enable Monitoring (all versions) */ 1332 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1333 cccr |= CCCR_MON; 1334 1335 /* Disable Auto Retransmission (all versions) */ 1336 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1337 cccr |= CCCR_DAR; 1338 1339 /* Write config */ 1340 m_can_write(cdev, M_CAN_CCCR, cccr); 1341 m_can_write(cdev, M_CAN_TEST, test); 1342 1343 /* Enable interrupts */ 1344 m_can_write(cdev, M_CAN_IR, IR_ALL_INT); 1345 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 1346 if (cdev->version == 30) 1347 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1348 ~(IR_ERR_LEC_30X)); 1349 else 1350 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1351 ~(IR_ERR_LEC_31X)); 1352 else 1353 m_can_write(cdev, M_CAN_IE, IR_ALL_INT); 1354 1355 /* route all interrupts to INT0 */ 1356 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1357 1358 /* set bittiming params */ 1359 m_can_set_bittiming(dev); 1360 1361 /* enable internal timestamp generation, with a prescalar of 16. The 1362 * prescalar is applied to the nominal bit timing 1363 */ 1364 m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf)); 1365 1366 m_can_config_endisable(cdev, false); 1367 1368 if (cdev->ops->init) 1369 cdev->ops->init(cdev); 1370 } 1371 1372 static void m_can_start(struct net_device *dev) 1373 { 1374 struct m_can_classdev *cdev = netdev_priv(dev); 1375 1376 /* basic m_can configuration */ 1377 m_can_chip_config(dev); 1378 1379 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1380 1381 m_can_enable_all_interrupts(cdev); 1382 } 1383 1384 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1385 { 1386 switch (mode) { 1387 case CAN_MODE_START: 1388 m_can_clean(dev); 1389 m_can_start(dev); 1390 netif_wake_queue(dev); 1391 break; 1392 default: 1393 return -EOPNOTSUPP; 1394 } 1395 1396 return 0; 1397 } 1398 1399 /* Checks core release number of M_CAN 1400 * returns 0 if an unsupported device is detected 1401 * else it returns the release and step coded as: 1402 * return value = 10 * <release> + 1 * <step> 1403 */ 1404 static int m_can_check_core_release(struct m_can_classdev *cdev) 1405 { 1406 u32 crel_reg; 1407 u8 rel; 1408 u8 step; 1409 int res; 1410 1411 /* Read Core Release Version and split into version number 1412 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1413 */ 1414 crel_reg = m_can_read(cdev, M_CAN_CREL); 1415 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1416 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1417 1418 if (rel == 3) { 1419 /* M_CAN v3.x.y: create return value */ 1420 res = 30 + step; 1421 } else { 1422 /* Unsupported M_CAN version */ 1423 res = 0; 1424 } 1425 1426 return res; 1427 } 1428 1429 /* Selectable Non ISO support only in version 3.2.x 1430 * This function checks if the bit is writable. 1431 */ 1432 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1433 { 1434 u32 cccr_reg, cccr_poll = 0; 1435 int niso_timeout = -ETIMEDOUT; 1436 int i; 1437 1438 m_can_config_endisable(cdev, true); 1439 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1440 cccr_reg |= CCCR_NISO; 1441 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1442 1443 for (i = 0; i <= 10; i++) { 1444 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1445 if (cccr_poll == cccr_reg) { 1446 niso_timeout = 0; 1447 break; 1448 } 1449 1450 usleep_range(1, 5); 1451 } 1452 1453 /* Clear NISO */ 1454 cccr_reg &= ~(CCCR_NISO); 1455 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1456 1457 m_can_config_endisable(cdev, false); 1458 1459 /* return false if time out (-ETIMEDOUT), else return true */ 1460 return !niso_timeout; 1461 } 1462 1463 static int m_can_dev_setup(struct m_can_classdev *cdev) 1464 { 1465 struct net_device *dev = cdev->net; 1466 int m_can_version; 1467 1468 m_can_version = m_can_check_core_release(cdev); 1469 /* return if unsupported version */ 1470 if (!m_can_version) { 1471 dev_err(cdev->dev, "Unsupported version number: %2d", 1472 m_can_version); 1473 return -EINVAL; 1474 } 1475 1476 if (!cdev->is_peripheral) 1477 netif_napi_add(dev, &cdev->napi, 1478 m_can_poll, M_CAN_NAPI_WEIGHT); 1479 1480 /* Shared properties of all M_CAN versions */ 1481 cdev->version = m_can_version; 1482 cdev->can.do_set_mode = m_can_set_mode; 1483 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1484 1485 /* Set M_CAN supported operations */ 1486 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1487 CAN_CTRLMODE_LISTENONLY | 1488 CAN_CTRLMODE_BERR_REPORTING | 1489 CAN_CTRLMODE_FD | 1490 CAN_CTRLMODE_ONE_SHOT; 1491 1492 /* Set properties depending on M_CAN version */ 1493 switch (cdev->version) { 1494 case 30: 1495 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1496 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1497 cdev->can.bittiming_const = &m_can_bittiming_const_30X; 1498 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X; 1499 break; 1500 case 31: 1501 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1502 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1503 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1504 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1505 break; 1506 case 32: 1507 case 33: 1508 /* Support both MCAN version v3.2.x and v3.3.0 */ 1509 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1510 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1511 1512 cdev->can.ctrlmode_supported |= 1513 (m_can_niso_supported(cdev) ? 1514 CAN_CTRLMODE_FD_NON_ISO : 0); 1515 break; 1516 default: 1517 dev_err(cdev->dev, "Unsupported version number: %2d", 1518 cdev->version); 1519 return -EINVAL; 1520 } 1521 1522 if (cdev->ops->init) 1523 cdev->ops->init(cdev); 1524 1525 return 0; 1526 } 1527 1528 static void m_can_stop(struct net_device *dev) 1529 { 1530 struct m_can_classdev *cdev = netdev_priv(dev); 1531 1532 /* disable all interrupts */ 1533 m_can_disable_all_interrupts(cdev); 1534 1535 /* Set init mode to disengage from the network */ 1536 m_can_config_endisable(cdev, true); 1537 1538 /* set the state as STOPPED */ 1539 cdev->can.state = CAN_STATE_STOPPED; 1540 } 1541 1542 static int m_can_close(struct net_device *dev) 1543 { 1544 struct m_can_classdev *cdev = netdev_priv(dev); 1545 1546 netif_stop_queue(dev); 1547 1548 if (!cdev->is_peripheral) 1549 napi_disable(&cdev->napi); 1550 1551 m_can_stop(dev); 1552 m_can_clk_stop(cdev); 1553 free_irq(dev->irq, dev); 1554 1555 if (cdev->is_peripheral) { 1556 cdev->tx_skb = NULL; 1557 destroy_workqueue(cdev->tx_wq); 1558 cdev->tx_wq = NULL; 1559 } 1560 1561 if (cdev->is_peripheral) 1562 can_rx_offload_disable(&cdev->offload); 1563 1564 close_candev(dev); 1565 can_led_event(dev, CAN_LED_EVENT_STOP); 1566 1567 phy_power_off(cdev->transceiver); 1568 1569 return 0; 1570 } 1571 1572 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1573 { 1574 struct m_can_classdev *cdev = netdev_priv(dev); 1575 /*get wrap around for loopback skb index */ 1576 unsigned int wrap = cdev->can.echo_skb_max; 1577 int next_idx; 1578 1579 /* calculate next index */ 1580 next_idx = (++putidx >= wrap ? 0 : putidx); 1581 1582 /* check if occupied */ 1583 return !!cdev->can.echo_skb[next_idx]; 1584 } 1585 1586 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1587 { 1588 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1589 struct net_device *dev = cdev->net; 1590 struct sk_buff *skb = cdev->tx_skb; 1591 struct id_and_dlc fifo_header; 1592 u32 cccr, fdflags; 1593 int err; 1594 int putidx; 1595 1596 cdev->tx_skb = NULL; 1597 1598 /* Generate ID field for TX buffer Element */ 1599 /* Common to all supported M_CAN versions */ 1600 if (cf->can_id & CAN_EFF_FLAG) { 1601 fifo_header.id = cf->can_id & CAN_EFF_MASK; 1602 fifo_header.id |= TX_BUF_XTD; 1603 } else { 1604 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18); 1605 } 1606 1607 if (cf->can_id & CAN_RTR_FLAG) 1608 fifo_header.id |= TX_BUF_RTR; 1609 1610 if (cdev->version == 30) { 1611 netif_stop_queue(dev); 1612 1613 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16; 1614 1615 /* Write the frame ID, DLC, and payload to the FIFO element. */ 1616 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2); 1617 if (err) 1618 goto out_fail; 1619 1620 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, 1621 cf->data, DIV_ROUND_UP(cf->len, 4)); 1622 if (err) 1623 goto out_fail; 1624 1625 can_put_echo_skb(skb, dev, 0, 0); 1626 1627 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1628 cccr = m_can_read(cdev, M_CAN_CCCR); 1629 cccr &= ~CCCR_CMR_MASK; 1630 if (can_is_canfd_skb(skb)) { 1631 if (cf->flags & CANFD_BRS) 1632 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1633 CCCR_CMR_CANFD_BRS); 1634 else 1635 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1636 CCCR_CMR_CANFD); 1637 } else { 1638 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1639 } 1640 m_can_write(cdev, M_CAN_CCCR, cccr); 1641 } 1642 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1643 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1644 /* End of xmit function for version 3.0.x */ 1645 } else { 1646 /* Transmit routine for version >= v3.1.x */ 1647 1648 /* Check if FIFO full */ 1649 if (m_can_tx_fifo_full(cdev)) { 1650 /* This shouldn't happen */ 1651 netif_stop_queue(dev); 1652 netdev_warn(dev, 1653 "TX queue active although FIFO is full."); 1654 1655 if (cdev->is_peripheral) { 1656 kfree_skb(skb); 1657 dev->stats.tx_dropped++; 1658 return NETDEV_TX_OK; 1659 } else { 1660 return NETDEV_TX_BUSY; 1661 } 1662 } 1663 1664 /* get put index for frame */ 1665 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 1666 m_can_read(cdev, M_CAN_TXFQS)); 1667 1668 /* Construct DLC Field, with CAN-FD configuration. 1669 * Use the put index of the fifo as the message marker, 1670 * used in the TX interrupt for sending the correct echo frame. 1671 */ 1672 1673 /* get CAN FD configuration of frame */ 1674 fdflags = 0; 1675 if (can_is_canfd_skb(skb)) { 1676 fdflags |= TX_BUF_FDF; 1677 if (cf->flags & CANFD_BRS) 1678 fdflags |= TX_BUF_BRS; 1679 } 1680 1681 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1682 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | 1683 fdflags | TX_BUF_EFC; 1684 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2); 1685 if (err) 1686 goto out_fail; 1687 1688 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA, 1689 cf->data, DIV_ROUND_UP(cf->len, 4)); 1690 if (err) 1691 goto out_fail; 1692 1693 /* Push loopback echo. 1694 * Will be looped back on TX interrupt based on message marker 1695 */ 1696 can_put_echo_skb(skb, dev, putidx, 0); 1697 1698 /* Enable TX FIFO element to start transfer */ 1699 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1700 1701 /* stop network queue if fifo full */ 1702 if (m_can_tx_fifo_full(cdev) || 1703 m_can_next_echo_skb_occupied(dev, putidx)) 1704 netif_stop_queue(dev); 1705 } 1706 1707 return NETDEV_TX_OK; 1708 1709 out_fail: 1710 netdev_err(dev, "FIFO write returned %d\n", err); 1711 m_can_disable_all_interrupts(cdev); 1712 return NETDEV_TX_BUSY; 1713 } 1714 1715 static void m_can_tx_work_queue(struct work_struct *ws) 1716 { 1717 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1718 tx_work); 1719 1720 m_can_tx_handler(cdev); 1721 } 1722 1723 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1724 struct net_device *dev) 1725 { 1726 struct m_can_classdev *cdev = netdev_priv(dev); 1727 1728 if (can_dropped_invalid_skb(dev, skb)) 1729 return NETDEV_TX_OK; 1730 1731 if (cdev->is_peripheral) { 1732 if (cdev->tx_skb) { 1733 netdev_err(dev, "hard_xmit called while tx busy\n"); 1734 return NETDEV_TX_BUSY; 1735 } 1736 1737 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1738 m_can_clean(dev); 1739 } else { 1740 /* Need to stop the queue to avoid numerous requests 1741 * from being sent. Suggested improvement is to create 1742 * a queueing mechanism that will queue the skbs and 1743 * process them in order. 1744 */ 1745 cdev->tx_skb = skb; 1746 netif_stop_queue(cdev->net); 1747 queue_work(cdev->tx_wq, &cdev->tx_work); 1748 } 1749 } else { 1750 cdev->tx_skb = skb; 1751 return m_can_tx_handler(cdev); 1752 } 1753 1754 return NETDEV_TX_OK; 1755 } 1756 1757 static int m_can_open(struct net_device *dev) 1758 { 1759 struct m_can_classdev *cdev = netdev_priv(dev); 1760 int err; 1761 1762 err = phy_power_on(cdev->transceiver); 1763 if (err) 1764 return err; 1765 1766 err = m_can_clk_start(cdev); 1767 if (err) 1768 goto out_phy_power_off; 1769 1770 /* open the can device */ 1771 err = open_candev(dev); 1772 if (err) { 1773 netdev_err(dev, "failed to open can device\n"); 1774 goto exit_disable_clks; 1775 } 1776 1777 if (cdev->is_peripheral) 1778 can_rx_offload_enable(&cdev->offload); 1779 1780 /* register interrupt handler */ 1781 if (cdev->is_peripheral) { 1782 cdev->tx_skb = NULL; 1783 cdev->tx_wq = alloc_workqueue("mcan_wq", 1784 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1785 if (!cdev->tx_wq) { 1786 err = -ENOMEM; 1787 goto out_wq_fail; 1788 } 1789 1790 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1791 1792 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1793 IRQF_ONESHOT, 1794 dev->name, dev); 1795 } else { 1796 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1797 dev); 1798 } 1799 1800 if (err < 0) { 1801 netdev_err(dev, "failed to request interrupt\n"); 1802 goto exit_irq_fail; 1803 } 1804 1805 /* start the m_can controller */ 1806 m_can_start(dev); 1807 1808 can_led_event(dev, CAN_LED_EVENT_OPEN); 1809 1810 if (!cdev->is_peripheral) 1811 napi_enable(&cdev->napi); 1812 1813 netif_start_queue(dev); 1814 1815 return 0; 1816 1817 exit_irq_fail: 1818 if (cdev->is_peripheral) 1819 destroy_workqueue(cdev->tx_wq); 1820 out_wq_fail: 1821 if (cdev->is_peripheral) 1822 can_rx_offload_disable(&cdev->offload); 1823 close_candev(dev); 1824 exit_disable_clks: 1825 m_can_clk_stop(cdev); 1826 out_phy_power_off: 1827 phy_power_off(cdev->transceiver); 1828 return err; 1829 } 1830 1831 static const struct net_device_ops m_can_netdev_ops = { 1832 .ndo_open = m_can_open, 1833 .ndo_stop = m_can_close, 1834 .ndo_start_xmit = m_can_start_xmit, 1835 .ndo_change_mtu = can_change_mtu, 1836 }; 1837 1838 static int register_m_can_dev(struct net_device *dev) 1839 { 1840 dev->flags |= IFF_ECHO; /* we support local echo */ 1841 dev->netdev_ops = &m_can_netdev_ops; 1842 1843 return register_candev(dev); 1844 } 1845 1846 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1847 const u32 *mram_config_vals) 1848 { 1849 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1850 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1851 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1852 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1853 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1854 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1855 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1856 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1857 FIELD_MAX(RXFC_FS_MASK); 1858 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1859 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1860 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1861 FIELD_MAX(RXFC_FS_MASK); 1862 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1863 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1864 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1865 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1866 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1867 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1868 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1869 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1870 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1871 FIELD_MAX(TXBC_NDTB_MASK); 1872 1873 dev_dbg(cdev->dev, 1874 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1875 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1876 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1877 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1878 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1879 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1880 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1881 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1882 } 1883 1884 int m_can_init_ram(struct m_can_classdev *cdev) 1885 { 1886 int end, i, start; 1887 int err = 0; 1888 1889 /* initialize the entire Message RAM in use to avoid possible 1890 * ECC/parity checksum errors when reading an uninitialized buffer 1891 */ 1892 start = cdev->mcfg[MRAM_SIDF].off; 1893 end = cdev->mcfg[MRAM_TXB].off + 1894 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1895 1896 for (i = start; i < end; i += 4) { 1897 err = m_can_fifo_write_no_off(cdev, i, 0x0); 1898 if (err) 1899 break; 1900 } 1901 1902 return err; 1903 } 1904 EXPORT_SYMBOL_GPL(m_can_init_ram); 1905 1906 int m_can_class_get_clocks(struct m_can_classdev *cdev) 1907 { 1908 int ret = 0; 1909 1910 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 1911 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 1912 1913 if (IS_ERR(cdev->cclk)) { 1914 dev_err(cdev->dev, "no clock found\n"); 1915 ret = -ENODEV; 1916 } 1917 1918 return ret; 1919 } 1920 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 1921 1922 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 1923 int sizeof_priv) 1924 { 1925 struct m_can_classdev *class_dev = NULL; 1926 u32 mram_config_vals[MRAM_CFG_LEN]; 1927 struct net_device *net_dev; 1928 u32 tx_fifo_size; 1929 int ret; 1930 1931 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 1932 "bosch,mram-cfg", 1933 mram_config_vals, 1934 sizeof(mram_config_vals) / 4); 1935 if (ret) { 1936 dev_err(dev, "Could not get Message RAM configuration."); 1937 goto out; 1938 } 1939 1940 /* Get TX FIFO size 1941 * Defines the total amount of echo buffers for loopback 1942 */ 1943 tx_fifo_size = mram_config_vals[7]; 1944 1945 /* allocate the m_can device */ 1946 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 1947 if (!net_dev) { 1948 dev_err(dev, "Failed to allocate CAN device"); 1949 goto out; 1950 } 1951 1952 class_dev = netdev_priv(net_dev); 1953 class_dev->net = net_dev; 1954 class_dev->dev = dev; 1955 SET_NETDEV_DEV(net_dev, dev); 1956 1957 m_can_of_parse_mram(class_dev, mram_config_vals); 1958 out: 1959 return class_dev; 1960 } 1961 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 1962 1963 void m_can_class_free_dev(struct net_device *net) 1964 { 1965 free_candev(net); 1966 } 1967 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 1968 1969 int m_can_class_register(struct m_can_classdev *cdev) 1970 { 1971 int ret; 1972 1973 if (cdev->pm_clock_support) { 1974 ret = m_can_clk_start(cdev); 1975 if (ret) 1976 return ret; 1977 } 1978 1979 if (cdev->is_peripheral) { 1980 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 1981 M_CAN_NAPI_WEIGHT); 1982 if (ret) 1983 goto clk_disable; 1984 } 1985 1986 ret = m_can_dev_setup(cdev); 1987 if (ret) 1988 goto rx_offload_del; 1989 1990 ret = register_m_can_dev(cdev->net); 1991 if (ret) { 1992 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 1993 cdev->net->name, ret); 1994 goto rx_offload_del; 1995 } 1996 1997 devm_can_led_init(cdev->net); 1998 1999 of_can_transceiver(cdev->net); 2000 2001 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 2002 KBUILD_MODNAME, cdev->net->irq, cdev->version); 2003 2004 /* Probe finished 2005 * Stop clocks. They will be reactivated once the M_CAN device is opened 2006 */ 2007 m_can_clk_stop(cdev); 2008 2009 return 0; 2010 2011 rx_offload_del: 2012 if (cdev->is_peripheral) 2013 can_rx_offload_del(&cdev->offload); 2014 clk_disable: 2015 m_can_clk_stop(cdev); 2016 2017 return ret; 2018 } 2019 EXPORT_SYMBOL_GPL(m_can_class_register); 2020 2021 void m_can_class_unregister(struct m_can_classdev *cdev) 2022 { 2023 if (cdev->is_peripheral) 2024 can_rx_offload_del(&cdev->offload); 2025 unregister_candev(cdev->net); 2026 } 2027 EXPORT_SYMBOL_GPL(m_can_class_unregister); 2028 2029 int m_can_class_suspend(struct device *dev) 2030 { 2031 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2032 struct net_device *ndev = cdev->net; 2033 2034 if (netif_running(ndev)) { 2035 netif_stop_queue(ndev); 2036 netif_device_detach(ndev); 2037 m_can_stop(ndev); 2038 m_can_clk_stop(cdev); 2039 } 2040 2041 pinctrl_pm_select_sleep_state(dev); 2042 2043 cdev->can.state = CAN_STATE_SLEEPING; 2044 2045 return 0; 2046 } 2047 EXPORT_SYMBOL_GPL(m_can_class_suspend); 2048 2049 int m_can_class_resume(struct device *dev) 2050 { 2051 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2052 struct net_device *ndev = cdev->net; 2053 2054 pinctrl_pm_select_default_state(dev); 2055 2056 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 2057 2058 if (netif_running(ndev)) { 2059 int ret; 2060 2061 ret = m_can_clk_start(cdev); 2062 if (ret) 2063 return ret; 2064 2065 m_can_init_ram(cdev); 2066 m_can_start(ndev); 2067 netif_device_attach(ndev); 2068 netif_start_queue(ndev); 2069 } 2070 2071 return 0; 2072 } 2073 EXPORT_SYMBOL_GPL(m_can_class_resume); 2074 2075 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2076 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2077 MODULE_LICENSE("GPL v2"); 2078 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2079