xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*
2  * CAN bus driver for Bosch M_CAN controller
3  *
4  * Copyright (C) 2014 Freescale Semiconductor, Inc.
5  *	Dong Aisheng <b29396@freescale.com>
6  *
7  * Bosch M_CAN user manual can be obtained from:
8  * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9  * mcan_users_manual_v302.pdf
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/iopoll.h>
27 #include <linux/can/dev.h>
28 
29 /* napi related */
30 #define M_CAN_NAPI_WEIGHT	64
31 
32 /* message ram configuration data length */
33 #define MRAM_CFG_LEN	8
34 
35 /* registers definition */
36 enum m_can_reg {
37 	M_CAN_CREL	= 0x0,
38 	M_CAN_ENDN	= 0x4,
39 	M_CAN_CUST	= 0x8,
40 	M_CAN_DBTP	= 0xc,
41 	M_CAN_TEST	= 0x10,
42 	M_CAN_RWD	= 0x14,
43 	M_CAN_CCCR	= 0x18,
44 	M_CAN_NBTP	= 0x1c,
45 	M_CAN_TSCC	= 0x20,
46 	M_CAN_TSCV	= 0x24,
47 	M_CAN_TOCC	= 0x28,
48 	M_CAN_TOCV	= 0x2c,
49 	M_CAN_ECR	= 0x40,
50 	M_CAN_PSR	= 0x44,
51 /* TDCR Register only available for version >=3.1.x */
52 	M_CAN_TDCR	= 0x48,
53 	M_CAN_IR	= 0x50,
54 	M_CAN_IE	= 0x54,
55 	M_CAN_ILS	= 0x58,
56 	M_CAN_ILE	= 0x5c,
57 	M_CAN_GFC	= 0x80,
58 	M_CAN_SIDFC	= 0x84,
59 	M_CAN_XIDFC	= 0x88,
60 	M_CAN_XIDAM	= 0x90,
61 	M_CAN_HPMS	= 0x94,
62 	M_CAN_NDAT1	= 0x98,
63 	M_CAN_NDAT2	= 0x9c,
64 	M_CAN_RXF0C	= 0xa0,
65 	M_CAN_RXF0S	= 0xa4,
66 	M_CAN_RXF0A	= 0xa8,
67 	M_CAN_RXBC	= 0xac,
68 	M_CAN_RXF1C	= 0xb0,
69 	M_CAN_RXF1S	= 0xb4,
70 	M_CAN_RXF1A	= 0xb8,
71 	M_CAN_RXESC	= 0xbc,
72 	M_CAN_TXBC	= 0xc0,
73 	M_CAN_TXFQS	= 0xc4,
74 	M_CAN_TXESC	= 0xc8,
75 	M_CAN_TXBRP	= 0xcc,
76 	M_CAN_TXBAR	= 0xd0,
77 	M_CAN_TXBCR	= 0xd4,
78 	M_CAN_TXBTO	= 0xd8,
79 	M_CAN_TXBCF	= 0xdc,
80 	M_CAN_TXBTIE	= 0xe0,
81 	M_CAN_TXBCIE	= 0xe4,
82 	M_CAN_TXEFC	= 0xf0,
83 	M_CAN_TXEFS	= 0xf4,
84 	M_CAN_TXEFA	= 0xf8,
85 };
86 
87 /* m_can lec values */
88 enum m_can_lec_type {
89 	LEC_NO_ERROR = 0,
90 	LEC_STUFF_ERROR,
91 	LEC_FORM_ERROR,
92 	LEC_ACK_ERROR,
93 	LEC_BIT1_ERROR,
94 	LEC_BIT0_ERROR,
95 	LEC_CRC_ERROR,
96 	LEC_UNUSED,
97 };
98 
99 enum m_can_mram_cfg {
100 	MRAM_SIDF = 0,
101 	MRAM_XIDF,
102 	MRAM_RXF0,
103 	MRAM_RXF1,
104 	MRAM_RXB,
105 	MRAM_TXE,
106 	MRAM_TXB,
107 	MRAM_CFG_NUM,
108 };
109 
110 /* Core Release Register (CREL) */
111 #define CREL_REL_SHIFT		28
112 #define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
113 #define CREL_STEP_SHIFT		24
114 #define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
115 #define CREL_SUBSTEP_SHIFT	20
116 #define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
117 
118 /* Data Bit Timing & Prescaler Register (DBTP) */
119 #define DBTP_TDC		BIT(23)
120 #define DBTP_DBRP_SHIFT		16
121 #define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
122 #define DBTP_DTSEG1_SHIFT	8
123 #define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
124 #define DBTP_DTSEG2_SHIFT	4
125 #define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
126 #define DBTP_DSJW_SHIFT		0
127 #define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
128 
129 /* Test Register (TEST) */
130 #define TEST_LBCK		BIT(4)
131 
132 /* CC Control Register(CCCR) */
133 #define CCCR_CMR_MASK		0x3
134 #define CCCR_CMR_SHIFT		10
135 #define CCCR_CMR_CANFD		0x1
136 #define CCCR_CMR_CANFD_BRS	0x2
137 #define CCCR_CMR_CAN		0x3
138 #define CCCR_CME_MASK		0x3
139 #define CCCR_CME_SHIFT		8
140 #define CCCR_CME_CAN		0
141 #define CCCR_CME_CANFD		0x1
142 #define CCCR_CME_CANFD_BRS	0x2
143 #define CCCR_TXP		BIT(14)
144 #define CCCR_TEST		BIT(7)
145 #define CCCR_MON		BIT(5)
146 #define CCCR_CSR		BIT(4)
147 #define CCCR_CSA		BIT(3)
148 #define CCCR_ASM		BIT(2)
149 #define CCCR_CCE		BIT(1)
150 #define CCCR_INIT		BIT(0)
151 #define CCCR_CANFD		0x10
152 /* for version >=3.1.x */
153 #define CCCR_EFBI		BIT(13)
154 #define CCCR_PXHD		BIT(12)
155 #define CCCR_BRSE		BIT(9)
156 #define CCCR_FDOE		BIT(8)
157 /* only for version >=3.2.x */
158 #define CCCR_NISO		BIT(15)
159 
160 /* Nominal Bit Timing & Prescaler Register (NBTP) */
161 #define NBTP_NSJW_SHIFT		25
162 #define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
163 #define NBTP_NBRP_SHIFT		16
164 #define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
165 #define NBTP_NTSEG1_SHIFT	8
166 #define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
167 #define NBTP_NTSEG2_SHIFT	0
168 #define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
169 
170 /* Error Counter Register(ECR) */
171 #define ECR_RP			BIT(15)
172 #define ECR_REC_SHIFT		8
173 #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
174 #define ECR_TEC_SHIFT		0
175 #define ECR_TEC_MASK		0xff
176 
177 /* Protocol Status Register(PSR) */
178 #define PSR_BO		BIT(7)
179 #define PSR_EW		BIT(6)
180 #define PSR_EP		BIT(5)
181 #define PSR_LEC_MASK	0x7
182 
183 /* Interrupt Register(IR) */
184 #define IR_ALL_INT	0xffffffff
185 
186 /* Renamed bits for versions > 3.1.x */
187 #define IR_ARA		BIT(29)
188 #define IR_PED		BIT(28)
189 #define IR_PEA		BIT(27)
190 
191 /* Bits for version 3.0.x */
192 #define IR_STE		BIT(31)
193 #define IR_FOE		BIT(30)
194 #define IR_ACKE		BIT(29)
195 #define IR_BE		BIT(28)
196 #define IR_CRCE		BIT(27)
197 #define IR_WDI		BIT(26)
198 #define IR_BO		BIT(25)
199 #define IR_EW		BIT(24)
200 #define IR_EP		BIT(23)
201 #define IR_ELO		BIT(22)
202 #define IR_BEU		BIT(21)
203 #define IR_BEC		BIT(20)
204 #define IR_DRX		BIT(19)
205 #define IR_TOO		BIT(18)
206 #define IR_MRAF		BIT(17)
207 #define IR_TSW		BIT(16)
208 #define IR_TEFL		BIT(15)
209 #define IR_TEFF		BIT(14)
210 #define IR_TEFW		BIT(13)
211 #define IR_TEFN		BIT(12)
212 #define IR_TFE		BIT(11)
213 #define IR_TCF		BIT(10)
214 #define IR_TC		BIT(9)
215 #define IR_HPM		BIT(8)
216 #define IR_RF1L		BIT(7)
217 #define IR_RF1F		BIT(6)
218 #define IR_RF1W		BIT(5)
219 #define IR_RF1N		BIT(4)
220 #define IR_RF0L		BIT(3)
221 #define IR_RF0F		BIT(2)
222 #define IR_RF0W		BIT(1)
223 #define IR_RF0N		BIT(0)
224 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
225 
226 /* Interrupts for version 3.0.x */
227 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
228 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
229 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
230 			 IR_RF1L | IR_RF0L)
231 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
232 /* Interrupts for version >= 3.1.x */
233 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
234 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
235 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
236 			 IR_RF1L | IR_RF0L)
237 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
238 
239 /* Interrupt Line Select (ILS) */
240 #define ILS_ALL_INT0	0x0
241 #define ILS_ALL_INT1	0xFFFFFFFF
242 
243 /* Interrupt Line Enable (ILE) */
244 #define ILE_EINT1	BIT(1)
245 #define ILE_EINT0	BIT(0)
246 
247 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
248 #define RXFC_FWM_SHIFT	24
249 #define RXFC_FWM_MASK	(0x7f < RXFC_FWM_SHIFT)
250 #define RXFC_FS_SHIFT	16
251 #define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
252 
253 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
254 #define RXFS_RFL	BIT(25)
255 #define RXFS_FF		BIT(24)
256 #define RXFS_FPI_SHIFT	16
257 #define RXFS_FPI_MASK	0x3f0000
258 #define RXFS_FGI_SHIFT	8
259 #define RXFS_FGI_MASK	0x3f00
260 #define RXFS_FFL_MASK	0x7f
261 
262 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
263 #define M_CAN_RXESC_8BYTES	0x0
264 #define M_CAN_RXESC_64BYTES	0x777
265 
266 /* Tx Buffer Configuration(TXBC) */
267 #define TXBC_NDTB_SHIFT		16
268 #define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
269 #define TXBC_TFQS_SHIFT		24
270 #define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
271 
272 /* Tx FIFO/Queue Status (TXFQS) */
273 #define TXFQS_TFQF		BIT(21)
274 #define TXFQS_TFQPI_SHIFT	16
275 #define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
276 #define TXFQS_TFGI_SHIFT	8
277 #define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
278 #define TXFQS_TFFL_SHIFT	0
279 #define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
280 
281 /* Tx Buffer Element Size Configuration(TXESC) */
282 #define TXESC_TBDS_8BYTES	0x0
283 #define TXESC_TBDS_64BYTES	0x7
284 
285 /* Tx Event FIFO Configuration (TXEFC) */
286 #define TXEFC_EFS_SHIFT		16
287 #define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
288 
289 /* Tx Event FIFO Status (TXEFS) */
290 #define TXEFS_TEFL		BIT(25)
291 #define TXEFS_EFF		BIT(24)
292 #define TXEFS_EFGI_SHIFT	8
293 #define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
294 #define TXEFS_EFFL_SHIFT	0
295 #define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
296 
297 /* Tx Event FIFO Acknowledge (TXEFA) */
298 #define TXEFA_EFAI_SHIFT	0
299 #define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
300 
301 /* Message RAM Configuration (in bytes) */
302 #define SIDF_ELEMENT_SIZE	4
303 #define XIDF_ELEMENT_SIZE	8
304 #define RXF0_ELEMENT_SIZE	72
305 #define RXF1_ELEMENT_SIZE	72
306 #define RXB_ELEMENT_SIZE	72
307 #define TXE_ELEMENT_SIZE	8
308 #define TXB_ELEMENT_SIZE	72
309 
310 /* Message RAM Elements */
311 #define M_CAN_FIFO_ID		0x0
312 #define M_CAN_FIFO_DLC		0x4
313 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
314 
315 /* Rx Buffer Element */
316 /* R0 */
317 #define RX_BUF_ESI		BIT(31)
318 #define RX_BUF_XTD		BIT(30)
319 #define RX_BUF_RTR		BIT(29)
320 /* R1 */
321 #define RX_BUF_ANMF		BIT(31)
322 #define RX_BUF_FDF		BIT(21)
323 #define RX_BUF_BRS		BIT(20)
324 
325 /* Tx Buffer Element */
326 /* T0 */
327 #define TX_BUF_ESI		BIT(31)
328 #define TX_BUF_XTD		BIT(30)
329 #define TX_BUF_RTR		BIT(29)
330 /* T1 */
331 #define TX_BUF_EFC		BIT(23)
332 #define TX_BUF_FDF		BIT(21)
333 #define TX_BUF_BRS		BIT(20)
334 #define TX_BUF_MM_SHIFT		24
335 #define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
336 
337 /* Tx event FIFO Element */
338 /* E1 */
339 #define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
340 #define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
341 
342 /* address offset and element number for each FIFO/Buffer in the Message RAM */
343 struct mram_cfg {
344 	u16 off;
345 	u8  num;
346 };
347 
348 /* m_can private data structure */
349 struct m_can_priv {
350 	struct can_priv can;	/* must be the first member */
351 	struct napi_struct napi;
352 	struct net_device *dev;
353 	struct device *device;
354 	struct clk *hclk;
355 	struct clk *cclk;
356 	void __iomem *base;
357 	u32 irqstatus;
358 	int version;
359 
360 	/* message ram configuration */
361 	void __iomem *mram_base;
362 	struct mram_cfg mcfg[MRAM_CFG_NUM];
363 };
364 
365 static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
366 {
367 	return readl(priv->base + reg);
368 }
369 
370 static inline void m_can_write(const struct m_can_priv *priv,
371 			       enum m_can_reg reg, u32 val)
372 {
373 	writel(val, priv->base + reg);
374 }
375 
376 static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
377 				  u32 fgi, unsigned int offset)
378 {
379 	return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
380 		     fgi * RXF0_ELEMENT_SIZE + offset);
381 }
382 
383 static inline void m_can_fifo_write(const struct m_can_priv *priv,
384 				    u32 fpi, unsigned int offset, u32 val)
385 {
386 	writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
387 	       fpi * TXB_ELEMENT_SIZE + offset);
388 }
389 
390 static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
391 				      u32 fgi,
392 				      u32 offset) {
393 	return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
394 			fgi * TXE_ELEMENT_SIZE + offset);
395 }
396 
397 static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
398 {
399 		return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
400 }
401 
402 static inline void m_can_config_endisable(const struct m_can_priv *priv,
403 					  bool enable)
404 {
405 	u32 cccr = m_can_read(priv, M_CAN_CCCR);
406 	u32 timeout = 10;
407 	u32 val = 0;
408 
409 	if (enable) {
410 		/* enable m_can configuration */
411 		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
412 		udelay(5);
413 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
414 		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
415 	} else {
416 		m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
417 	}
418 
419 	/* there's a delay for module initialization */
420 	if (enable)
421 		val = CCCR_INIT | CCCR_CCE;
422 
423 	while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
424 		if (timeout == 0) {
425 			netdev_warn(priv->dev, "Failed to init module\n");
426 			return;
427 		}
428 		timeout--;
429 		udelay(1);
430 	}
431 }
432 
433 static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
434 {
435 	/* Only interrupt line 0 is used in this driver */
436 	m_can_write(priv, M_CAN_ILE, ILE_EINT0);
437 }
438 
439 static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
440 {
441 	m_can_write(priv, M_CAN_ILE, 0x0);
442 }
443 
444 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
445 {
446 	struct net_device_stats *stats = &dev->stats;
447 	struct m_can_priv *priv = netdev_priv(dev);
448 	struct canfd_frame *cf;
449 	struct sk_buff *skb;
450 	u32 id, fgi, dlc;
451 	int i;
452 
453 	/* calculate the fifo get index for where to read data */
454 	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
455 	dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
456 	if (dlc & RX_BUF_FDF)
457 		skb = alloc_canfd_skb(dev, &cf);
458 	else
459 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
460 	if (!skb) {
461 		stats->rx_dropped++;
462 		return;
463 	}
464 
465 	if (dlc & RX_BUF_FDF)
466 		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
467 	else
468 		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
469 
470 	id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
471 	if (id & RX_BUF_XTD)
472 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
473 	else
474 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
475 
476 	if (id & RX_BUF_ESI) {
477 		cf->flags |= CANFD_ESI;
478 		netdev_dbg(dev, "ESI Error\n");
479 	}
480 
481 	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
482 		cf->can_id |= CAN_RTR_FLAG;
483 	} else {
484 		if (dlc & RX_BUF_BRS)
485 			cf->flags |= CANFD_BRS;
486 
487 		for (i = 0; i < cf->len; i += 4)
488 			*(u32 *)(cf->data + i) =
489 				m_can_fifo_read(priv, fgi,
490 						M_CAN_FIFO_DATA(i / 4));
491 	}
492 
493 	/* acknowledge rx fifo 0 */
494 	m_can_write(priv, M_CAN_RXF0A, fgi);
495 
496 	stats->rx_packets++;
497 	stats->rx_bytes += cf->len;
498 
499 	netif_receive_skb(skb);
500 }
501 
502 static int m_can_do_rx_poll(struct net_device *dev, int quota)
503 {
504 	struct m_can_priv *priv = netdev_priv(dev);
505 	u32 pkts = 0;
506 	u32 rxfs;
507 
508 	rxfs = m_can_read(priv, M_CAN_RXF0S);
509 	if (!(rxfs & RXFS_FFL_MASK)) {
510 		netdev_dbg(dev, "no messages in fifo0\n");
511 		return 0;
512 	}
513 
514 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
515 		if (rxfs & RXFS_RFL)
516 			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
517 
518 		m_can_read_fifo(dev, rxfs);
519 
520 		quota--;
521 		pkts++;
522 		rxfs = m_can_read(priv, M_CAN_RXF0S);
523 	}
524 
525 	if (pkts)
526 		can_led_event(dev, CAN_LED_EVENT_RX);
527 
528 	return pkts;
529 }
530 
531 static int m_can_handle_lost_msg(struct net_device *dev)
532 {
533 	struct net_device_stats *stats = &dev->stats;
534 	struct sk_buff *skb;
535 	struct can_frame *frame;
536 
537 	netdev_err(dev, "msg lost in rxf0\n");
538 
539 	stats->rx_errors++;
540 	stats->rx_over_errors++;
541 
542 	skb = alloc_can_err_skb(dev, &frame);
543 	if (unlikely(!skb))
544 		return 0;
545 
546 	frame->can_id |= CAN_ERR_CRTL;
547 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
548 
549 	netif_receive_skb(skb);
550 
551 	return 1;
552 }
553 
554 static int m_can_handle_lec_err(struct net_device *dev,
555 				enum m_can_lec_type lec_type)
556 {
557 	struct m_can_priv *priv = netdev_priv(dev);
558 	struct net_device_stats *stats = &dev->stats;
559 	struct can_frame *cf;
560 	struct sk_buff *skb;
561 
562 	priv->can.can_stats.bus_error++;
563 	stats->rx_errors++;
564 
565 	/* propagate the error condition to the CAN stack */
566 	skb = alloc_can_err_skb(dev, &cf);
567 	if (unlikely(!skb))
568 		return 0;
569 
570 	/* check for 'last error code' which tells us the
571 	 * type of the last error to occur on the CAN bus
572 	 */
573 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
574 
575 	switch (lec_type) {
576 	case LEC_STUFF_ERROR:
577 		netdev_dbg(dev, "stuff error\n");
578 		cf->data[2] |= CAN_ERR_PROT_STUFF;
579 		break;
580 	case LEC_FORM_ERROR:
581 		netdev_dbg(dev, "form error\n");
582 		cf->data[2] |= CAN_ERR_PROT_FORM;
583 		break;
584 	case LEC_ACK_ERROR:
585 		netdev_dbg(dev, "ack error\n");
586 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
587 		break;
588 	case LEC_BIT1_ERROR:
589 		netdev_dbg(dev, "bit1 error\n");
590 		cf->data[2] |= CAN_ERR_PROT_BIT1;
591 		break;
592 	case LEC_BIT0_ERROR:
593 		netdev_dbg(dev, "bit0 error\n");
594 		cf->data[2] |= CAN_ERR_PROT_BIT0;
595 		break;
596 	case LEC_CRC_ERROR:
597 		netdev_dbg(dev, "CRC error\n");
598 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
599 		break;
600 	default:
601 		break;
602 	}
603 
604 	stats->rx_packets++;
605 	stats->rx_bytes += cf->can_dlc;
606 	netif_receive_skb(skb);
607 
608 	return 1;
609 }
610 
611 static int __m_can_get_berr_counter(const struct net_device *dev,
612 				    struct can_berr_counter *bec)
613 {
614 	struct m_can_priv *priv = netdev_priv(dev);
615 	unsigned int ecr;
616 
617 	ecr = m_can_read(priv, M_CAN_ECR);
618 	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
619 	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
620 
621 	return 0;
622 }
623 
624 static int m_can_clk_start(struct m_can_priv *priv)
625 {
626 	int err;
627 
628 	err = clk_prepare_enable(priv->hclk);
629 	if (err)
630 		return err;
631 
632 	err = clk_prepare_enable(priv->cclk);
633 	if (err)
634 		clk_disable_unprepare(priv->hclk);
635 
636 	return err;
637 }
638 
639 static void m_can_clk_stop(struct m_can_priv *priv)
640 {
641 	clk_disable_unprepare(priv->cclk);
642 	clk_disable_unprepare(priv->hclk);
643 }
644 
645 static int m_can_get_berr_counter(const struct net_device *dev,
646 				  struct can_berr_counter *bec)
647 {
648 	struct m_can_priv *priv = netdev_priv(dev);
649 	int err;
650 
651 	err = m_can_clk_start(priv);
652 	if (err)
653 		return err;
654 
655 	__m_can_get_berr_counter(dev, bec);
656 
657 	m_can_clk_stop(priv);
658 
659 	return 0;
660 }
661 
662 static int m_can_handle_state_change(struct net_device *dev,
663 				     enum can_state new_state)
664 {
665 	struct m_can_priv *priv = netdev_priv(dev);
666 	struct net_device_stats *stats = &dev->stats;
667 	struct can_frame *cf;
668 	struct sk_buff *skb;
669 	struct can_berr_counter bec;
670 	unsigned int ecr;
671 
672 	switch (new_state) {
673 	case CAN_STATE_ERROR_ACTIVE:
674 		/* error warning state */
675 		priv->can.can_stats.error_warning++;
676 		priv->can.state = CAN_STATE_ERROR_WARNING;
677 		break;
678 	case CAN_STATE_ERROR_PASSIVE:
679 		/* error passive state */
680 		priv->can.can_stats.error_passive++;
681 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
682 		break;
683 	case CAN_STATE_BUS_OFF:
684 		/* bus-off state */
685 		priv->can.state = CAN_STATE_BUS_OFF;
686 		m_can_disable_all_interrupts(priv);
687 		priv->can.can_stats.bus_off++;
688 		can_bus_off(dev);
689 		break;
690 	default:
691 		break;
692 	}
693 
694 	/* propagate the error condition to the CAN stack */
695 	skb = alloc_can_err_skb(dev, &cf);
696 	if (unlikely(!skb))
697 		return 0;
698 
699 	__m_can_get_berr_counter(dev, &bec);
700 
701 	switch (new_state) {
702 	case CAN_STATE_ERROR_ACTIVE:
703 		/* error warning state */
704 		cf->can_id |= CAN_ERR_CRTL;
705 		cf->data[1] = (bec.txerr > bec.rxerr) ?
706 			CAN_ERR_CRTL_TX_WARNING :
707 			CAN_ERR_CRTL_RX_WARNING;
708 		cf->data[6] = bec.txerr;
709 		cf->data[7] = bec.rxerr;
710 		break;
711 	case CAN_STATE_ERROR_PASSIVE:
712 		/* error passive state */
713 		cf->can_id |= CAN_ERR_CRTL;
714 		ecr = m_can_read(priv, M_CAN_ECR);
715 		if (ecr & ECR_RP)
716 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
717 		if (bec.txerr > 127)
718 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
719 		cf->data[6] = bec.txerr;
720 		cf->data[7] = bec.rxerr;
721 		break;
722 	case CAN_STATE_BUS_OFF:
723 		/* bus-off state */
724 		cf->can_id |= CAN_ERR_BUSOFF;
725 		break;
726 	default:
727 		break;
728 	}
729 
730 	stats->rx_packets++;
731 	stats->rx_bytes += cf->can_dlc;
732 	netif_receive_skb(skb);
733 
734 	return 1;
735 }
736 
737 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
738 {
739 	struct m_can_priv *priv = netdev_priv(dev);
740 	int work_done = 0;
741 
742 	if ((psr & PSR_EW) &&
743 	    (priv->can.state != CAN_STATE_ERROR_WARNING)) {
744 		netdev_dbg(dev, "entered error warning state\n");
745 		work_done += m_can_handle_state_change(dev,
746 						       CAN_STATE_ERROR_WARNING);
747 	}
748 
749 	if ((psr & PSR_EP) &&
750 	    (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
751 		netdev_dbg(dev, "entered error passive state\n");
752 		work_done += m_can_handle_state_change(dev,
753 						       CAN_STATE_ERROR_PASSIVE);
754 	}
755 
756 	if ((psr & PSR_BO) &&
757 	    (priv->can.state != CAN_STATE_BUS_OFF)) {
758 		netdev_dbg(dev, "entered error bus off state\n");
759 		work_done += m_can_handle_state_change(dev,
760 						       CAN_STATE_BUS_OFF);
761 	}
762 
763 	return work_done;
764 }
765 
766 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
767 {
768 	if (irqstatus & IR_WDI)
769 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
770 	if (irqstatus & IR_ELO)
771 		netdev_err(dev, "Error Logging Overflow\n");
772 	if (irqstatus & IR_BEU)
773 		netdev_err(dev, "Bit Error Uncorrected\n");
774 	if (irqstatus & IR_BEC)
775 		netdev_err(dev, "Bit Error Corrected\n");
776 	if (irqstatus & IR_TOO)
777 		netdev_err(dev, "Timeout reached\n");
778 	if (irqstatus & IR_MRAF)
779 		netdev_err(dev, "Message RAM access failure occurred\n");
780 }
781 
782 static inline bool is_lec_err(u32 psr)
783 {
784 	psr &= LEC_UNUSED;
785 
786 	return psr && (psr != LEC_UNUSED);
787 }
788 
789 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
790 				   u32 psr)
791 {
792 	struct m_can_priv *priv = netdev_priv(dev);
793 	int work_done = 0;
794 
795 	if (irqstatus & IR_RF0L)
796 		work_done += m_can_handle_lost_msg(dev);
797 
798 	/* handle lec errors on the bus */
799 	if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
800 	    is_lec_err(psr))
801 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
802 
803 	/* other unproccessed error interrupts */
804 	m_can_handle_other_err(dev, irqstatus);
805 
806 	return work_done;
807 }
808 
809 static int m_can_poll(struct napi_struct *napi, int quota)
810 {
811 	struct net_device *dev = napi->dev;
812 	struct m_can_priv *priv = netdev_priv(dev);
813 	int work_done = 0;
814 	u32 irqstatus, psr;
815 
816 	irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
817 	if (!irqstatus)
818 		goto end;
819 
820 	psr = m_can_read(priv, M_CAN_PSR);
821 	if (irqstatus & IR_ERR_STATE)
822 		work_done += m_can_handle_state_errors(dev, psr);
823 
824 	if (irqstatus & IR_ERR_BUS_30X)
825 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
826 
827 	if (irqstatus & IR_RF0N)
828 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
829 
830 	if (work_done < quota) {
831 		napi_complete_done(napi, work_done);
832 		m_can_enable_all_interrupts(priv);
833 	}
834 
835 end:
836 	return work_done;
837 }
838 
839 static void m_can_echo_tx_event(struct net_device *dev)
840 {
841 	u32 txe_count = 0;
842 	u32 m_can_txefs;
843 	u32 fgi = 0;
844 	int i = 0;
845 	unsigned int msg_mark;
846 
847 	struct m_can_priv *priv = netdev_priv(dev);
848 	struct net_device_stats *stats = &dev->stats;
849 
850 	/* read tx event fifo status */
851 	m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
852 
853 	/* Get Tx Event fifo element count */
854 	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
855 			>> TXEFS_EFFL_SHIFT;
856 
857 	/* Get and process all sent elements */
858 	for (i = 0; i < txe_count; i++) {
859 		/* retrieve get index */
860 		fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
861 			>> TXEFS_EFGI_SHIFT;
862 
863 		/* get message marker */
864 		msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
865 			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
866 
867 		/* ack txe element */
868 		m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
869 						(fgi << TXEFA_EFAI_SHIFT)));
870 
871 		/* update stats */
872 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
873 		stats->tx_packets++;
874 	}
875 }
876 
877 static irqreturn_t m_can_isr(int irq, void *dev_id)
878 {
879 	struct net_device *dev = (struct net_device *)dev_id;
880 	struct m_can_priv *priv = netdev_priv(dev);
881 	struct net_device_stats *stats = &dev->stats;
882 	u32 ir;
883 
884 	ir = m_can_read(priv, M_CAN_IR);
885 	if (!ir)
886 		return IRQ_NONE;
887 
888 	/* ACK all irqs */
889 	if (ir & IR_ALL_INT)
890 		m_can_write(priv, M_CAN_IR, ir);
891 
892 	/* schedule NAPI in case of
893 	 * - rx IRQ
894 	 * - state change IRQ
895 	 * - bus error IRQ and bus error reporting
896 	 */
897 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
898 		priv->irqstatus = ir;
899 		m_can_disable_all_interrupts(priv);
900 		napi_schedule(&priv->napi);
901 	}
902 
903 	if (priv->version == 30) {
904 		if (ir & IR_TC) {
905 			/* Transmission Complete Interrupt*/
906 			stats->tx_bytes += can_get_echo_skb(dev, 0);
907 			stats->tx_packets++;
908 			can_led_event(dev, CAN_LED_EVENT_TX);
909 			netif_wake_queue(dev);
910 		}
911 	} else  {
912 		if (ir & IR_TEFN) {
913 			/* New TX FIFO Element arrived */
914 			m_can_echo_tx_event(dev);
915 			can_led_event(dev, CAN_LED_EVENT_TX);
916 			if (netif_queue_stopped(dev) &&
917 			    !m_can_tx_fifo_full(priv))
918 				netif_wake_queue(dev);
919 		}
920 	}
921 
922 	return IRQ_HANDLED;
923 }
924 
925 static const struct can_bittiming_const m_can_bittiming_const_30X = {
926 	.name = KBUILD_MODNAME,
927 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
928 	.tseg1_max = 64,
929 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
930 	.tseg2_max = 16,
931 	.sjw_max = 16,
932 	.brp_min = 1,
933 	.brp_max = 1024,
934 	.brp_inc = 1,
935 };
936 
937 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
938 	.name = KBUILD_MODNAME,
939 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
940 	.tseg1_max = 16,
941 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
942 	.tseg2_max = 8,
943 	.sjw_max = 4,
944 	.brp_min = 1,
945 	.brp_max = 32,
946 	.brp_inc = 1,
947 };
948 
949 static const struct can_bittiming_const m_can_bittiming_const_31X = {
950 	.name = KBUILD_MODNAME,
951 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
952 	.tseg1_max = 256,
953 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
954 	.tseg2_max = 128,
955 	.sjw_max = 128,
956 	.brp_min = 1,
957 	.brp_max = 512,
958 	.brp_inc = 1,
959 };
960 
961 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
962 	.name = KBUILD_MODNAME,
963 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
964 	.tseg1_max = 32,
965 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
966 	.tseg2_max = 16,
967 	.sjw_max = 16,
968 	.brp_min = 1,
969 	.brp_max = 32,
970 	.brp_inc = 1,
971 };
972 
973 static int m_can_set_bittiming(struct net_device *dev)
974 {
975 	struct m_can_priv *priv = netdev_priv(dev);
976 	const struct can_bittiming *bt = &priv->can.bittiming;
977 	const struct can_bittiming *dbt = &priv->can.data_bittiming;
978 	u16 brp, sjw, tseg1, tseg2;
979 	u32 reg_btp;
980 
981 	brp = bt->brp - 1;
982 	sjw = bt->sjw - 1;
983 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
984 	tseg2 = bt->phase_seg2 - 1;
985 	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
986 		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
987 	m_can_write(priv, M_CAN_NBTP, reg_btp);
988 
989 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
990 		brp = dbt->brp - 1;
991 		sjw = dbt->sjw - 1;
992 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
993 		tseg2 = dbt->phase_seg2 - 1;
994 		reg_btp = (brp << DBTP_DBRP_SHIFT) | (sjw << DBTP_DSJW_SHIFT) |
995 			(tseg1 << DBTP_DTSEG1_SHIFT) |
996 			(tseg2 << DBTP_DTSEG2_SHIFT);
997 		m_can_write(priv, M_CAN_DBTP, reg_btp);
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 /* Configure M_CAN chip:
1004  * - set rx buffer/fifo element size
1005  * - configure rx fifo
1006  * - accept non-matching frame into fifo 0
1007  * - configure tx buffer
1008  *		- >= v3.1.x: TX FIFO is used
1009  * - configure mode
1010  * - setup bittiming
1011  */
1012 static void m_can_chip_config(struct net_device *dev)
1013 {
1014 	struct m_can_priv *priv = netdev_priv(dev);
1015 	u32 cccr, test;
1016 
1017 	m_can_config_endisable(priv, true);
1018 
1019 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1020 	m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1021 
1022 	/* Accept Non-matching Frames Into FIFO 0 */
1023 	m_can_write(priv, M_CAN_GFC, 0x0);
1024 
1025 	if (priv->version == 30) {
1026 		/* only support one Tx Buffer currently */
1027 		m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1028 				priv->mcfg[MRAM_TXB].off);
1029 	} else {
1030 		/* TX FIFO is used for newer IP Core versions */
1031 		m_can_write(priv, M_CAN_TXBC,
1032 			    (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1033 			    (priv->mcfg[MRAM_TXB].off));
1034 	}
1035 
1036 	/* support 64 bytes payload */
1037 	m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1038 
1039 	/* TX Event FIFO */
1040 	if (priv->version == 30) {
1041 		m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1042 				priv->mcfg[MRAM_TXE].off);
1043 	} else {
1044 		/* Full TX Event FIFO is used */
1045 		m_can_write(priv, M_CAN_TXEFC,
1046 			    ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1047 			     & TXEFC_EFS_MASK) |
1048 			    priv->mcfg[MRAM_TXE].off);
1049 	}
1050 
1051 	/* rx fifo configuration, blocking mode, fifo size 1 */
1052 	m_can_write(priv, M_CAN_RXF0C,
1053 		    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1054 		     priv->mcfg[MRAM_RXF0].off);
1055 
1056 	m_can_write(priv, M_CAN_RXF1C,
1057 		    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1058 		     priv->mcfg[MRAM_RXF1].off);
1059 
1060 	cccr = m_can_read(priv, M_CAN_CCCR);
1061 	test = m_can_read(priv, M_CAN_TEST);
1062 	test &= ~TEST_LBCK;
1063 	if (priv->version == 30) {
1064 	/* Version 3.0.x */
1065 
1066 		cccr &= ~(CCCR_TEST | CCCR_MON |
1067 			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1068 			(CCCR_CME_MASK << CCCR_CME_SHIFT));
1069 
1070 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1071 			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1072 
1073 	} else {
1074 	/* Version 3.1.x or 3.2.x */
1075 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE);
1076 
1077 		/* Only 3.2.x has NISO Bit implemented */
1078 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1079 			cccr |= CCCR_NISO;
1080 
1081 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1082 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1083 	}
1084 
1085 	/* Loopback Mode */
1086 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1087 		cccr |= CCCR_TEST | CCCR_MON;
1088 		test |= TEST_LBCK;
1089 	}
1090 
1091 	/* Enable Monitoring (all versions) */
1092 	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1093 		cccr |= CCCR_MON;
1094 
1095 	/* Write config */
1096 	m_can_write(priv, M_CAN_CCCR, cccr);
1097 	m_can_write(priv, M_CAN_TEST, test);
1098 
1099 	/* Enable interrupts */
1100 	m_can_write(priv, M_CAN_IR, IR_ALL_INT);
1101 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1102 		if (priv->version == 30)
1103 			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1104 				    ~(IR_ERR_LEC_30X));
1105 		else
1106 			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1107 				    ~(IR_ERR_LEC_31X));
1108 	else
1109 		m_can_write(priv, M_CAN_IE, IR_ALL_INT);
1110 
1111 	/* route all interrupts to INT0 */
1112 	m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
1113 
1114 	/* set bittiming params */
1115 	m_can_set_bittiming(dev);
1116 
1117 	m_can_config_endisable(priv, false);
1118 }
1119 
1120 static void m_can_start(struct net_device *dev)
1121 {
1122 	struct m_can_priv *priv = netdev_priv(dev);
1123 
1124 	/* basic m_can configuration */
1125 	m_can_chip_config(dev);
1126 
1127 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1128 
1129 	m_can_enable_all_interrupts(priv);
1130 }
1131 
1132 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1133 {
1134 	switch (mode) {
1135 	case CAN_MODE_START:
1136 		m_can_start(dev);
1137 		netif_wake_queue(dev);
1138 		break;
1139 	default:
1140 		return -EOPNOTSUPP;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static void free_m_can_dev(struct net_device *dev)
1147 {
1148 	free_candev(dev);
1149 }
1150 
1151 /* Checks core release number of M_CAN
1152  * returns 0 if an unsupported device is detected
1153  * else it returns the release and step coded as:
1154  * return value = 10 * <release> + 1 * <step>
1155  */
1156 static int m_can_check_core_release(void __iomem *m_can_base)
1157 {
1158 	u32 crel_reg;
1159 	u8 rel;
1160 	u8 step;
1161 	int res;
1162 	struct m_can_priv temp_priv = {
1163 		.base = m_can_base
1164 	};
1165 
1166 	/* Read Core Release Version and split into version number
1167 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1168 	 */
1169 	crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
1170 	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1171 	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1172 
1173 	if (rel == 3) {
1174 		/* M_CAN v3.x.y: create return value */
1175 		res = 30 + step;
1176 	} else {
1177 		/* Unsupported M_CAN version */
1178 		res = 0;
1179 	}
1180 
1181 	return res;
1182 }
1183 
1184 /* Selectable Non ISO support only in version 3.2.x
1185  * This function checks if the bit is writable.
1186  */
1187 static bool m_can_niso_supported(const struct m_can_priv *priv)
1188 {
1189 	u32 cccr_reg, cccr_poll;
1190 	int niso_timeout;
1191 
1192 	m_can_config_endisable(priv, true);
1193 	cccr_reg = m_can_read(priv, M_CAN_CCCR);
1194 	cccr_reg |= CCCR_NISO;
1195 	m_can_write(priv, M_CAN_CCCR, cccr_reg);
1196 
1197 	niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
1198 					  (cccr_poll == cccr_reg), 0, 10);
1199 
1200 	/* Clear NISO */
1201 	cccr_reg &= ~(CCCR_NISO);
1202 	m_can_write(priv, M_CAN_CCCR, cccr_reg);
1203 
1204 	m_can_config_endisable(priv, false);
1205 
1206 	/* return false if time out (-ETIMEDOUT), else return true */
1207 	return !niso_timeout;
1208 }
1209 
1210 static struct net_device *alloc_m_can_dev(struct platform_device *pdev,
1211 					  void __iomem *addr, u32 tx_fifo_size)
1212 {
1213 	struct net_device *dev;
1214 	struct m_can_priv *priv;
1215 	int m_can_version;
1216 	unsigned int echo_buffer_count;
1217 
1218 	m_can_version = m_can_check_core_release(addr);
1219 	/* return if unsupported version */
1220 	if (!m_can_version) {
1221 		dev = NULL;
1222 		goto return_dev;
1223 	}
1224 
1225 	/* If version < 3.1.x, then only one echo buffer is used */
1226 	echo_buffer_count = ((m_can_version == 30)
1227 				? 1U
1228 				: (unsigned int)tx_fifo_size);
1229 
1230 	dev = alloc_candev(sizeof(*priv), echo_buffer_count);
1231 	if (!dev) {
1232 		dev = NULL;
1233 		goto return_dev;
1234 	}
1235 	priv = netdev_priv(dev);
1236 	netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
1237 
1238 	/* Shared properties of all M_CAN versions */
1239 	priv->version = m_can_version;
1240 	priv->dev = dev;
1241 	priv->base = addr;
1242 	priv->can.do_set_mode = m_can_set_mode;
1243 	priv->can.do_get_berr_counter = m_can_get_berr_counter;
1244 
1245 	/* Set M_CAN supported operations */
1246 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1247 					CAN_CTRLMODE_LISTENONLY |
1248 					CAN_CTRLMODE_BERR_REPORTING |
1249 					CAN_CTRLMODE_FD;
1250 
1251 	/* Set properties depending on M_CAN version */
1252 	switch (priv->version) {
1253 	case 30:
1254 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1255 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1256 		priv->can.bittiming_const = &m_can_bittiming_const_30X;
1257 		priv->can.data_bittiming_const =
1258 				&m_can_data_bittiming_const_30X;
1259 		break;
1260 	case 31:
1261 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1262 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1263 		priv->can.bittiming_const = &m_can_bittiming_const_31X;
1264 		priv->can.data_bittiming_const =
1265 				&m_can_data_bittiming_const_31X;
1266 		break;
1267 	case 32:
1268 		priv->can.bittiming_const = &m_can_bittiming_const_31X;
1269 		priv->can.data_bittiming_const =
1270 				&m_can_data_bittiming_const_31X;
1271 		priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
1272 						? CAN_CTRLMODE_FD_NON_ISO
1273 						: 0);
1274 		break;
1275 	default:
1276 		/* Unsupported device: free candev */
1277 		free_m_can_dev(dev);
1278 		dev_err(&pdev->dev, "Unsupported version number: %2d",
1279 			priv->version);
1280 		dev = NULL;
1281 		break;
1282 	}
1283 
1284 return_dev:
1285 	return dev;
1286 }
1287 
1288 static int m_can_open(struct net_device *dev)
1289 {
1290 	struct m_can_priv *priv = netdev_priv(dev);
1291 	int err;
1292 
1293 	err = m_can_clk_start(priv);
1294 	if (err)
1295 		return err;
1296 
1297 	/* open the can device */
1298 	err = open_candev(dev);
1299 	if (err) {
1300 		netdev_err(dev, "failed to open can device\n");
1301 		goto exit_disable_clks;
1302 	}
1303 
1304 	/* register interrupt handler */
1305 	err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1306 			  dev);
1307 	if (err < 0) {
1308 		netdev_err(dev, "failed to request interrupt\n");
1309 		goto exit_irq_fail;
1310 	}
1311 
1312 	/* start the m_can controller */
1313 	m_can_start(dev);
1314 
1315 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1316 	napi_enable(&priv->napi);
1317 	netif_start_queue(dev);
1318 
1319 	return 0;
1320 
1321 exit_irq_fail:
1322 	close_candev(dev);
1323 exit_disable_clks:
1324 	m_can_clk_stop(priv);
1325 	return err;
1326 }
1327 
1328 static void m_can_stop(struct net_device *dev)
1329 {
1330 	struct m_can_priv *priv = netdev_priv(dev);
1331 
1332 	/* disable all interrupts */
1333 	m_can_disable_all_interrupts(priv);
1334 
1335 	/* set the state as STOPPED */
1336 	priv->can.state = CAN_STATE_STOPPED;
1337 }
1338 
1339 static int m_can_close(struct net_device *dev)
1340 {
1341 	struct m_can_priv *priv = netdev_priv(dev);
1342 
1343 	netif_stop_queue(dev);
1344 	napi_disable(&priv->napi);
1345 	m_can_stop(dev);
1346 	m_can_clk_stop(priv);
1347 	free_irq(dev->irq, dev);
1348 	close_candev(dev);
1349 	can_led_event(dev, CAN_LED_EVENT_STOP);
1350 
1351 	return 0;
1352 }
1353 
1354 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1355 {
1356 	struct m_can_priv *priv = netdev_priv(dev);
1357 	/*get wrap around for loopback skb index */
1358 	unsigned int wrap = priv->can.echo_skb_max;
1359 	int next_idx;
1360 
1361 	/* calculate next index */
1362 	next_idx = (++putidx >= wrap ? 0 : putidx);
1363 
1364 	/* check if occupied */
1365 	return !!priv->can.echo_skb[next_idx];
1366 }
1367 
1368 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1369 				    struct net_device *dev)
1370 {
1371 	struct m_can_priv *priv = netdev_priv(dev);
1372 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1373 	u32 id, cccr, fdflags;
1374 	int i;
1375 	int putidx;
1376 
1377 	if (can_dropped_invalid_skb(dev, skb))
1378 		return NETDEV_TX_OK;
1379 
1380 	/* Generate ID field for TX buffer Element */
1381 	/* Common to all supported M_CAN versions */
1382 	if (cf->can_id & CAN_EFF_FLAG) {
1383 		id = cf->can_id & CAN_EFF_MASK;
1384 		id |= TX_BUF_XTD;
1385 	} else {
1386 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1387 	}
1388 
1389 	if (cf->can_id & CAN_RTR_FLAG)
1390 		id |= TX_BUF_RTR;
1391 
1392 	if (priv->version == 30) {
1393 		netif_stop_queue(dev);
1394 
1395 		/* message ram configuration */
1396 		m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1397 		m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
1398 				 can_len2dlc(cf->len) << 16);
1399 
1400 		for (i = 0; i < cf->len; i += 4)
1401 			m_can_fifo_write(priv, 0,
1402 					 M_CAN_FIFO_DATA(i / 4),
1403 					 *(u32 *)(cf->data + i));
1404 
1405 		can_put_echo_skb(skb, dev, 0);
1406 
1407 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1408 			cccr = m_can_read(priv, M_CAN_CCCR);
1409 			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1410 			if (can_is_canfd_skb(skb)) {
1411 				if (cf->flags & CANFD_BRS)
1412 					cccr |= CCCR_CMR_CANFD_BRS <<
1413 						CCCR_CMR_SHIFT;
1414 				else
1415 					cccr |= CCCR_CMR_CANFD <<
1416 						CCCR_CMR_SHIFT;
1417 			} else {
1418 				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1419 			}
1420 			m_can_write(priv, M_CAN_CCCR, cccr);
1421 		}
1422 		m_can_write(priv, M_CAN_TXBTIE, 0x1);
1423 		m_can_write(priv, M_CAN_TXBAR, 0x1);
1424 		/* End of xmit function for version 3.0.x */
1425 	} else {
1426 		/* Transmit routine for version >= v3.1.x */
1427 
1428 		/* Check if FIFO full */
1429 		if (m_can_tx_fifo_full(priv)) {
1430 			/* This shouldn't happen */
1431 			netif_stop_queue(dev);
1432 			netdev_warn(dev,
1433 				    "TX queue active although FIFO is full.");
1434 			return NETDEV_TX_BUSY;
1435 		}
1436 
1437 		/* get put index for frame */
1438 		putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1439 				  >> TXFQS_TFQPI_SHIFT);
1440 		/* Write ID Field to FIFO Element */
1441 		m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1442 
1443 		/* get CAN FD configuration of frame */
1444 		fdflags = 0;
1445 		if (can_is_canfd_skb(skb)) {
1446 			fdflags |= TX_BUF_FDF;
1447 			if (cf->flags & CANFD_BRS)
1448 				fdflags |= TX_BUF_BRS;
1449 		}
1450 
1451 		/* Construct DLC Field. Also contains CAN-FD configuration
1452 		 * use put index of fifo as message marker
1453 		 * it is used in TX interrupt for
1454 		 * sending the correct echo frame
1455 		 */
1456 		m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
1457 				 ((putidx << TX_BUF_MM_SHIFT) &
1458 				  TX_BUF_MM_MASK) |
1459 				 (can_len2dlc(cf->len) << 16) |
1460 				 fdflags | TX_BUF_EFC);
1461 
1462 		for (i = 0; i < cf->len; i += 4)
1463 			m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
1464 					 *(u32 *)(cf->data + i));
1465 
1466 		/* Push loopback echo.
1467 		 * Will be looped back on TX interrupt based on message marker
1468 		 */
1469 		can_put_echo_skb(skb, dev, putidx);
1470 
1471 		/* Enable TX FIFO element to start transfer  */
1472 		m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
1473 
1474 		/* stop network queue if fifo full */
1475 			if (m_can_tx_fifo_full(priv) ||
1476 			    m_can_next_echo_skb_occupied(dev, putidx))
1477 				netif_stop_queue(dev);
1478 	}
1479 
1480 	return NETDEV_TX_OK;
1481 }
1482 
1483 static const struct net_device_ops m_can_netdev_ops = {
1484 	.ndo_open = m_can_open,
1485 	.ndo_stop = m_can_close,
1486 	.ndo_start_xmit = m_can_start_xmit,
1487 	.ndo_change_mtu = can_change_mtu,
1488 };
1489 
1490 static int register_m_can_dev(struct net_device *dev)
1491 {
1492 	dev->flags |= IFF_ECHO;	/* we support local echo */
1493 	dev->netdev_ops = &m_can_netdev_ops;
1494 
1495 	return register_candev(dev);
1496 }
1497 
1498 static void m_can_init_ram(struct m_can_priv *priv)
1499 {
1500 	int end, i, start;
1501 
1502 	/* initialize the entire Message RAM in use to avoid possible
1503 	 * ECC/parity checksum errors when reading an uninitialized buffer
1504 	 */
1505 	start = priv->mcfg[MRAM_SIDF].off;
1506 	end = priv->mcfg[MRAM_TXB].off +
1507 		priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1508 	for (i = start; i < end; i += 4)
1509 		writel(0x0, priv->mram_base + i);
1510 }
1511 
1512 static void m_can_of_parse_mram(struct m_can_priv *priv,
1513 				const u32 *mram_config_vals)
1514 {
1515 	priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1516 	priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1517 	priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1518 			priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1519 	priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1520 	priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1521 			priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1522 	priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1523 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1524 	priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1525 			priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1526 	priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1527 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1528 	priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1529 			priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1530 	priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1531 	priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1532 			priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1533 	priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1534 	priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1535 			priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1536 	priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1537 			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1538 
1539 	dev_dbg(priv->device,
1540 		"mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1541 		priv->mram_base,
1542 		priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1543 		priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1544 		priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1545 		priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1546 		priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1547 		priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1548 		priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1549 
1550 	m_can_init_ram(priv);
1551 }
1552 
1553 static int m_can_plat_probe(struct platform_device *pdev)
1554 {
1555 	struct net_device *dev;
1556 	struct m_can_priv *priv;
1557 	struct resource *res;
1558 	void __iomem *addr;
1559 	void __iomem *mram_addr;
1560 	struct clk *hclk, *cclk;
1561 	int irq, ret;
1562 	struct device_node *np;
1563 	u32 mram_config_vals[MRAM_CFG_LEN];
1564 	u32 tx_fifo_size;
1565 
1566 	np = pdev->dev.of_node;
1567 
1568 	hclk = devm_clk_get(&pdev->dev, "hclk");
1569 	cclk = devm_clk_get(&pdev->dev, "cclk");
1570 
1571 	if (IS_ERR(hclk) || IS_ERR(cclk)) {
1572 		dev_err(&pdev->dev, "no clock found\n");
1573 		ret = -ENODEV;
1574 		goto failed_ret;
1575 	}
1576 
1577 	/* Enable clocks. Necessary to read Core Release in order to determine
1578 	 * M_CAN version
1579 	 */
1580 	ret = clk_prepare_enable(hclk);
1581 	if (ret)
1582 		goto disable_hclk_ret;
1583 
1584 	ret = clk_prepare_enable(cclk);
1585 	if (ret)
1586 		goto disable_cclk_ret;
1587 
1588 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1589 	addr = devm_ioremap_resource(&pdev->dev, res);
1590 	irq = platform_get_irq_byname(pdev, "int0");
1591 
1592 	if (IS_ERR(addr) || irq < 0) {
1593 		ret = -EINVAL;
1594 		goto disable_cclk_ret;
1595 	}
1596 
1597 	/* message ram could be shared */
1598 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1599 	if (!res) {
1600 		ret = -ENODEV;
1601 		goto disable_cclk_ret;
1602 	}
1603 
1604 	mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1605 	if (!mram_addr) {
1606 		ret = -ENOMEM;
1607 		goto disable_cclk_ret;
1608 	}
1609 
1610 	/* get message ram configuration */
1611 	ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1612 					 mram_config_vals,
1613 					 sizeof(mram_config_vals) / 4);
1614 	if (ret) {
1615 		dev_err(&pdev->dev, "Could not get Message RAM configuration.");
1616 		goto disable_cclk_ret;
1617 	}
1618 
1619 	/* Get TX FIFO size
1620 	 * Defines the total amount of echo buffers for loopback
1621 	 */
1622 	tx_fifo_size = mram_config_vals[7];
1623 
1624 	/* allocate the m_can device */
1625 	dev = alloc_m_can_dev(pdev, addr, tx_fifo_size);
1626 	if (!dev) {
1627 		ret = -ENOMEM;
1628 		goto disable_cclk_ret;
1629 	}
1630 	priv = netdev_priv(dev);
1631 	dev->irq = irq;
1632 	priv->device = &pdev->dev;
1633 	priv->hclk = hclk;
1634 	priv->cclk = cclk;
1635 	priv->can.clock.freq = clk_get_rate(cclk);
1636 	priv->mram_base = mram_addr;
1637 
1638 	m_can_of_parse_mram(priv, mram_config_vals);
1639 
1640 	platform_set_drvdata(pdev, dev);
1641 	SET_NETDEV_DEV(dev, &pdev->dev);
1642 
1643 	ret = register_m_can_dev(dev);
1644 	if (ret) {
1645 		dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1646 			KBUILD_MODNAME, ret);
1647 		goto failed_free_dev;
1648 	}
1649 
1650 	devm_can_led_init(dev);
1651 
1652 	dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
1653 		 KBUILD_MODNAME, dev->irq, priv->version);
1654 
1655 	/* Probe finished
1656 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1657 	 */
1658 
1659 	goto disable_cclk_ret;
1660 
1661 failed_free_dev:
1662 	free_m_can_dev(dev);
1663 disable_cclk_ret:
1664 	clk_disable_unprepare(cclk);
1665 disable_hclk_ret:
1666 	clk_disable_unprepare(hclk);
1667 failed_ret:
1668 	return ret;
1669 }
1670 
1671 /* TODO: runtime PM with power down or sleep mode  */
1672 
1673 static __maybe_unused int m_can_suspend(struct device *dev)
1674 {
1675 	struct net_device *ndev = dev_get_drvdata(dev);
1676 	struct m_can_priv *priv = netdev_priv(ndev);
1677 
1678 	if (netif_running(ndev)) {
1679 		netif_stop_queue(ndev);
1680 		netif_device_detach(ndev);
1681 		m_can_stop(ndev);
1682 		m_can_clk_stop(priv);
1683 	}
1684 
1685 	priv->can.state = CAN_STATE_SLEEPING;
1686 
1687 	return 0;
1688 }
1689 
1690 static __maybe_unused int m_can_resume(struct device *dev)
1691 {
1692 	struct net_device *ndev = dev_get_drvdata(dev);
1693 	struct m_can_priv *priv = netdev_priv(ndev);
1694 
1695 	m_can_init_ram(priv);
1696 
1697 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1698 
1699 	if (netif_running(ndev)) {
1700 		int ret;
1701 
1702 		ret = m_can_clk_start(priv);
1703 		if (ret)
1704 			return ret;
1705 
1706 		m_can_start(ndev);
1707 		netif_device_attach(ndev);
1708 		netif_start_queue(ndev);
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 static void unregister_m_can_dev(struct net_device *dev)
1715 {
1716 	unregister_candev(dev);
1717 }
1718 
1719 static int m_can_plat_remove(struct platform_device *pdev)
1720 {
1721 	struct net_device *dev = platform_get_drvdata(pdev);
1722 
1723 	unregister_m_can_dev(dev);
1724 	platform_set_drvdata(pdev, NULL);
1725 
1726 	free_m_can_dev(dev);
1727 
1728 	return 0;
1729 }
1730 
1731 static const struct dev_pm_ops m_can_pmops = {
1732 	SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1733 };
1734 
1735 static const struct of_device_id m_can_of_table[] = {
1736 	{ .compatible = "bosch,m_can", .data = NULL },
1737 	{ /* sentinel */ },
1738 };
1739 MODULE_DEVICE_TABLE(of, m_can_of_table);
1740 
1741 static struct platform_driver m_can_plat_driver = {
1742 	.driver = {
1743 		.name = KBUILD_MODNAME,
1744 		.of_match_table = m_can_of_table,
1745 		.pm     = &m_can_pmops,
1746 	},
1747 	.probe = m_can_plat_probe,
1748 	.remove = m_can_plat_remove,
1749 };
1750 
1751 module_platform_driver(m_can_plat_driver);
1752 
1753 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1754 MODULE_LICENSE("GPL v2");
1755 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1756