xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 801b27e8)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/can/dev.h>
13 #include <linux/ethtool.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/phy/phy.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 
28 #include "m_can.h"
29 
30 /* registers definition */
31 enum m_can_reg {
32 	M_CAN_CREL	= 0x0,
33 	M_CAN_ENDN	= 0x4,
34 	M_CAN_CUST	= 0x8,
35 	M_CAN_DBTP	= 0xc,
36 	M_CAN_TEST	= 0x10,
37 	M_CAN_RWD	= 0x14,
38 	M_CAN_CCCR	= 0x18,
39 	M_CAN_NBTP	= 0x1c,
40 	M_CAN_TSCC	= 0x20,
41 	M_CAN_TSCV	= 0x24,
42 	M_CAN_TOCC	= 0x28,
43 	M_CAN_TOCV	= 0x2c,
44 	M_CAN_ECR	= 0x40,
45 	M_CAN_PSR	= 0x44,
46 	/* TDCR Register only available for version >=3.1.x */
47 	M_CAN_TDCR	= 0x48,
48 	M_CAN_IR	= 0x50,
49 	M_CAN_IE	= 0x54,
50 	M_CAN_ILS	= 0x58,
51 	M_CAN_ILE	= 0x5c,
52 	M_CAN_GFC	= 0x80,
53 	M_CAN_SIDFC	= 0x84,
54 	M_CAN_XIDFC	= 0x88,
55 	M_CAN_XIDAM	= 0x90,
56 	M_CAN_HPMS	= 0x94,
57 	M_CAN_NDAT1	= 0x98,
58 	M_CAN_NDAT2	= 0x9c,
59 	M_CAN_RXF0C	= 0xa0,
60 	M_CAN_RXF0S	= 0xa4,
61 	M_CAN_RXF0A	= 0xa8,
62 	M_CAN_RXBC	= 0xac,
63 	M_CAN_RXF1C	= 0xb0,
64 	M_CAN_RXF1S	= 0xb4,
65 	M_CAN_RXF1A	= 0xb8,
66 	M_CAN_RXESC	= 0xbc,
67 	M_CAN_TXBC	= 0xc0,
68 	M_CAN_TXFQS	= 0xc4,
69 	M_CAN_TXESC	= 0xc8,
70 	M_CAN_TXBRP	= 0xcc,
71 	M_CAN_TXBAR	= 0xd0,
72 	M_CAN_TXBCR	= 0xd4,
73 	M_CAN_TXBTO	= 0xd8,
74 	M_CAN_TXBCF	= 0xdc,
75 	M_CAN_TXBTIE	= 0xe0,
76 	M_CAN_TXBCIE	= 0xe4,
77 	M_CAN_TXEFC	= 0xf0,
78 	M_CAN_TXEFS	= 0xf4,
79 	M_CAN_TXEFA	= 0xf8,
80 };
81 
82 /* message ram configuration data length */
83 #define MRAM_CFG_LEN	8
84 
85 /* Core Release Register (CREL) */
86 #define CREL_REL_MASK		GENMASK(31, 28)
87 #define CREL_STEP_MASK		GENMASK(27, 24)
88 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
89 
90 /* Data Bit Timing & Prescaler Register (DBTP) */
91 #define DBTP_TDC		BIT(23)
92 #define DBTP_DBRP_MASK		GENMASK(20, 16)
93 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
94 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
95 #define DBTP_DSJW_MASK		GENMASK(3, 0)
96 
97 /* Transmitter Delay Compensation Register (TDCR) */
98 #define TDCR_TDCO_MASK		GENMASK(14, 8)
99 #define TDCR_TDCF_MASK		GENMASK(6, 0)
100 
101 /* Test Register (TEST) */
102 #define TEST_LBCK		BIT(4)
103 
104 /* CC Control Register (CCCR) */
105 #define CCCR_TXP		BIT(14)
106 #define CCCR_TEST		BIT(7)
107 #define CCCR_DAR		BIT(6)
108 #define CCCR_MON		BIT(5)
109 #define CCCR_CSR		BIT(4)
110 #define CCCR_CSA		BIT(3)
111 #define CCCR_ASM		BIT(2)
112 #define CCCR_CCE		BIT(1)
113 #define CCCR_INIT		BIT(0)
114 /* for version 3.0.x */
115 #define CCCR_CMR_MASK		GENMASK(11, 10)
116 #define CCCR_CMR_CANFD		0x1
117 #define CCCR_CMR_CANFD_BRS	0x2
118 #define CCCR_CMR_CAN		0x3
119 #define CCCR_CME_MASK		GENMASK(9, 8)
120 #define CCCR_CME_CAN		0
121 #define CCCR_CME_CANFD		0x1
122 #define CCCR_CME_CANFD_BRS	0x2
123 /* for version >=3.1.x */
124 #define CCCR_EFBI		BIT(13)
125 #define CCCR_PXHD		BIT(12)
126 #define CCCR_BRSE		BIT(9)
127 #define CCCR_FDOE		BIT(8)
128 /* for version >=3.2.x */
129 #define CCCR_NISO		BIT(15)
130 /* for version >=3.3.x */
131 #define CCCR_WMM		BIT(11)
132 #define CCCR_UTSU		BIT(10)
133 
134 /* Nominal Bit Timing & Prescaler Register (NBTP) */
135 #define NBTP_NSJW_MASK		GENMASK(31, 25)
136 #define NBTP_NBRP_MASK		GENMASK(24, 16)
137 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
138 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
139 
140 /* Timestamp Counter Configuration Register (TSCC) */
141 #define TSCC_TCP_MASK		GENMASK(19, 16)
142 #define TSCC_TSS_MASK		GENMASK(1, 0)
143 #define TSCC_TSS_DISABLE	0x0
144 #define TSCC_TSS_INTERNAL	0x1
145 #define TSCC_TSS_EXTERNAL	0x2
146 
147 /* Timestamp Counter Value Register (TSCV) */
148 #define TSCV_TSC_MASK		GENMASK(15, 0)
149 
150 /* Error Counter Register (ECR) */
151 #define ECR_RP			BIT(15)
152 #define ECR_REC_MASK		GENMASK(14, 8)
153 #define ECR_TEC_MASK		GENMASK(7, 0)
154 
155 /* Protocol Status Register (PSR) */
156 #define PSR_BO		BIT(7)
157 #define PSR_EW		BIT(6)
158 #define PSR_EP		BIT(5)
159 #define PSR_LEC_MASK	GENMASK(2, 0)
160 #define PSR_DLEC_MASK	GENMASK(10, 8)
161 
162 /* Interrupt Register (IR) */
163 #define IR_ALL_INT	0xffffffff
164 
165 /* Renamed bits for versions > 3.1.x */
166 #define IR_ARA		BIT(29)
167 #define IR_PED		BIT(28)
168 #define IR_PEA		BIT(27)
169 
170 /* Bits for version 3.0.x */
171 #define IR_STE		BIT(31)
172 #define IR_FOE		BIT(30)
173 #define IR_ACKE		BIT(29)
174 #define IR_BE		BIT(28)
175 #define IR_CRCE		BIT(27)
176 #define IR_WDI		BIT(26)
177 #define IR_BO		BIT(25)
178 #define IR_EW		BIT(24)
179 #define IR_EP		BIT(23)
180 #define IR_ELO		BIT(22)
181 #define IR_BEU		BIT(21)
182 #define IR_BEC		BIT(20)
183 #define IR_DRX		BIT(19)
184 #define IR_TOO		BIT(18)
185 #define IR_MRAF		BIT(17)
186 #define IR_TSW		BIT(16)
187 #define IR_TEFL		BIT(15)
188 #define IR_TEFF		BIT(14)
189 #define IR_TEFW		BIT(13)
190 #define IR_TEFN		BIT(12)
191 #define IR_TFE		BIT(11)
192 #define IR_TCF		BIT(10)
193 #define IR_TC		BIT(9)
194 #define IR_HPM		BIT(8)
195 #define IR_RF1L		BIT(7)
196 #define IR_RF1F		BIT(6)
197 #define IR_RF1W		BIT(5)
198 #define IR_RF1N		BIT(4)
199 #define IR_RF0L		BIT(3)
200 #define IR_RF0F		BIT(2)
201 #define IR_RF0W		BIT(1)
202 #define IR_RF0N		BIT(0)
203 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
204 
205 /* Interrupts for version 3.0.x */
206 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
207 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
208 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
209 			 IR_RF0L)
210 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
211 
212 /* Interrupts for version >= 3.1.x */
213 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
214 #define IR_ERR_BUS_31X	(IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
215 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
216 			 IR_RF0L)
217 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
218 
219 /* Interrupt Line Select (ILS) */
220 #define ILS_ALL_INT0	0x0
221 #define ILS_ALL_INT1	0xFFFFFFFF
222 
223 /* Interrupt Line Enable (ILE) */
224 #define ILE_EINT1	BIT(1)
225 #define ILE_EINT0	BIT(0)
226 
227 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
228 #define RXFC_FWM_MASK	GENMASK(30, 24)
229 #define RXFC_FS_MASK	GENMASK(22, 16)
230 
231 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
232 #define RXFS_RFL	BIT(25)
233 #define RXFS_FF		BIT(24)
234 #define RXFS_FPI_MASK	GENMASK(21, 16)
235 #define RXFS_FGI_MASK	GENMASK(13, 8)
236 #define RXFS_FFL_MASK	GENMASK(6, 0)
237 
238 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
239 #define RXESC_RBDS_MASK		GENMASK(10, 8)
240 #define RXESC_F1DS_MASK		GENMASK(6, 4)
241 #define RXESC_F0DS_MASK		GENMASK(2, 0)
242 #define RXESC_64B		0x7
243 
244 /* Tx Buffer Configuration (TXBC) */
245 #define TXBC_TFQS_MASK		GENMASK(29, 24)
246 #define TXBC_NDTB_MASK		GENMASK(21, 16)
247 
248 /* Tx FIFO/Queue Status (TXFQS) */
249 #define TXFQS_TFQF		BIT(21)
250 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
251 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
252 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
253 
254 /* Tx Buffer Element Size Configuration (TXESC) */
255 #define TXESC_TBDS_MASK		GENMASK(2, 0)
256 #define TXESC_TBDS_64B		0x7
257 
258 /* Tx Event FIFO Configuration (TXEFC) */
259 #define TXEFC_EFS_MASK		GENMASK(21, 16)
260 
261 /* Tx Event FIFO Status (TXEFS) */
262 #define TXEFS_TEFL		BIT(25)
263 #define TXEFS_EFF		BIT(24)
264 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
265 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
266 
267 /* Tx Event FIFO Acknowledge (TXEFA) */
268 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
269 
270 /* Message RAM Configuration (in bytes) */
271 #define SIDF_ELEMENT_SIZE	4
272 #define XIDF_ELEMENT_SIZE	8
273 #define RXF0_ELEMENT_SIZE	72
274 #define RXF1_ELEMENT_SIZE	72
275 #define RXB_ELEMENT_SIZE	72
276 #define TXE_ELEMENT_SIZE	8
277 #define TXB_ELEMENT_SIZE	72
278 
279 /* Message RAM Elements */
280 #define M_CAN_FIFO_ID		0x0
281 #define M_CAN_FIFO_DLC		0x4
282 #define M_CAN_FIFO_DATA		0x8
283 
284 /* Rx Buffer Element */
285 /* R0 */
286 #define RX_BUF_ESI		BIT(31)
287 #define RX_BUF_XTD		BIT(30)
288 #define RX_BUF_RTR		BIT(29)
289 /* R1 */
290 #define RX_BUF_ANMF		BIT(31)
291 #define RX_BUF_FDF		BIT(21)
292 #define RX_BUF_BRS		BIT(20)
293 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
294 
295 /* Tx Buffer Element */
296 /* T0 */
297 #define TX_BUF_ESI		BIT(31)
298 #define TX_BUF_XTD		BIT(30)
299 #define TX_BUF_RTR		BIT(29)
300 /* T1 */
301 #define TX_BUF_EFC		BIT(23)
302 #define TX_BUF_FDF		BIT(21)
303 #define TX_BUF_BRS		BIT(20)
304 #define TX_BUF_MM_MASK		GENMASK(31, 24)
305 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
306 
307 /* Tx event FIFO Element */
308 /* E1 */
309 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
310 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
311 
312 /* Hrtimer polling interval */
313 #define HRTIMER_POLL_INTERVAL_MS		1
314 
315 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
316  * and we can save a (potentially slow) bus round trip by combining
317  * reads and writes to them.
318  */
319 struct id_and_dlc {
320 	u32 id;
321 	u32 dlc;
322 };
323 
324 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
325 {
326 	return cdev->ops->read_reg(cdev, reg);
327 }
328 
329 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
330 			       u32 val)
331 {
332 	cdev->ops->write_reg(cdev, reg, val);
333 }
334 
335 static int
336 m_can_fifo_read(struct m_can_classdev *cdev,
337 		u32 fgi, unsigned int offset, void *val, size_t val_count)
338 {
339 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
340 		offset;
341 
342 	if (val_count == 0)
343 		return 0;
344 
345 	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
346 }
347 
348 static int
349 m_can_fifo_write(struct m_can_classdev *cdev,
350 		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
351 {
352 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
353 		offset;
354 
355 	if (val_count == 0)
356 		return 0;
357 
358 	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
359 }
360 
361 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
362 					  u32 fpi, u32 val)
363 {
364 	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
365 }
366 
367 static int
368 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
369 {
370 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
371 		offset;
372 
373 	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
374 }
375 
376 static inline bool _m_can_tx_fifo_full(u32 txfqs)
377 {
378 	return !!(txfqs & TXFQS_TFQF);
379 }
380 
381 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
382 {
383 	return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS));
384 }
385 
386 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
387 {
388 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
389 	u32 timeout = 10;
390 	u32 val = 0;
391 
392 	/* Clear the Clock stop request if it was set */
393 	if (cccr & CCCR_CSR)
394 		cccr &= ~CCCR_CSR;
395 
396 	if (enable) {
397 		/* enable m_can configuration */
398 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
399 		udelay(5);
400 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
401 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
402 	} else {
403 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
404 	}
405 
406 	/* there's a delay for module initialization */
407 	if (enable)
408 		val = CCCR_INIT | CCCR_CCE;
409 
410 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
411 		if (timeout == 0) {
412 			netdev_warn(cdev->net, "Failed to init module\n");
413 			return;
414 		}
415 		timeout--;
416 		udelay(1);
417 	}
418 }
419 
420 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
421 {
422 	/* Only interrupt line 0 is used in this driver */
423 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
424 }
425 
426 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
427 {
428 	m_can_write(cdev, M_CAN_ILE, 0x0);
429 }
430 
431 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
432  * width.
433  */
434 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
435 {
436 	u32 tscv;
437 	u32 tsc;
438 
439 	tscv = m_can_read(cdev, M_CAN_TSCV);
440 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
441 
442 	return (tsc << 16);
443 }
444 
445 static void m_can_clean(struct net_device *net)
446 {
447 	struct m_can_classdev *cdev = netdev_priv(net);
448 
449 	if (cdev->tx_skb) {
450 		int putidx = 0;
451 
452 		net->stats.tx_errors++;
453 		if (cdev->version > 30)
454 			putidx = FIELD_GET(TXFQS_TFQPI_MASK,
455 					   m_can_read(cdev, M_CAN_TXFQS));
456 
457 		can_free_echo_skb(cdev->net, putidx, NULL);
458 		cdev->tx_skb = NULL;
459 	}
460 }
461 
462 /* For peripherals, pass skb to rx-offload, which will push skb from
463  * napi. For non-peripherals, RX is done in napi already, so push
464  * directly. timestamp is used to ensure good skb ordering in
465  * rx-offload and is ignored for non-peripherals.
466  */
467 static void m_can_receive_skb(struct m_can_classdev *cdev,
468 			      struct sk_buff *skb,
469 			      u32 timestamp)
470 {
471 	if (cdev->is_peripheral) {
472 		struct net_device_stats *stats = &cdev->net->stats;
473 		int err;
474 
475 		err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
476 						     timestamp);
477 		if (err)
478 			stats->rx_fifo_errors++;
479 	} else {
480 		netif_receive_skb(skb);
481 	}
482 }
483 
484 static int m_can_read_fifo(struct net_device *dev, u32 fgi)
485 {
486 	struct net_device_stats *stats = &dev->stats;
487 	struct m_can_classdev *cdev = netdev_priv(dev);
488 	struct canfd_frame *cf;
489 	struct sk_buff *skb;
490 	struct id_and_dlc fifo_header;
491 	u32 timestamp = 0;
492 	int err;
493 
494 	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
495 	if (err)
496 		goto out_fail;
497 
498 	if (fifo_header.dlc & RX_BUF_FDF)
499 		skb = alloc_canfd_skb(dev, &cf);
500 	else
501 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
502 	if (!skb) {
503 		stats->rx_dropped++;
504 		return 0;
505 	}
506 
507 	if (fifo_header.dlc & RX_BUF_FDF)
508 		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
509 	else
510 		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
511 
512 	if (fifo_header.id & RX_BUF_XTD)
513 		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
514 	else
515 		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
516 
517 	if (fifo_header.id & RX_BUF_ESI) {
518 		cf->flags |= CANFD_ESI;
519 		netdev_dbg(dev, "ESI Error\n");
520 	}
521 
522 	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
523 		cf->can_id |= CAN_RTR_FLAG;
524 	} else {
525 		if (fifo_header.dlc & RX_BUF_BRS)
526 			cf->flags |= CANFD_BRS;
527 
528 		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
529 				      cf->data, DIV_ROUND_UP(cf->len, 4));
530 		if (err)
531 			goto out_free_skb;
532 
533 		stats->rx_bytes += cf->len;
534 	}
535 	stats->rx_packets++;
536 
537 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
538 
539 	m_can_receive_skb(cdev, skb, timestamp);
540 
541 	return 0;
542 
543 out_free_skb:
544 	kfree_skb(skb);
545 out_fail:
546 	netdev_err(dev, "FIFO read returned %d\n", err);
547 	return err;
548 }
549 
550 static int m_can_do_rx_poll(struct net_device *dev, int quota)
551 {
552 	struct m_can_classdev *cdev = netdev_priv(dev);
553 	u32 pkts = 0;
554 	u32 rxfs;
555 	u32 rx_count;
556 	u32 fgi;
557 	int ack_fgi = -1;
558 	int i;
559 	int err = 0;
560 
561 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
562 	if (!(rxfs & RXFS_FFL_MASK)) {
563 		netdev_dbg(dev, "no messages in fifo0\n");
564 		return 0;
565 	}
566 
567 	rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
568 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
569 
570 	for (i = 0; i < rx_count && quota > 0; ++i) {
571 		err = m_can_read_fifo(dev, fgi);
572 		if (err)
573 			break;
574 
575 		quota--;
576 		pkts++;
577 		ack_fgi = fgi;
578 		fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
579 	}
580 
581 	if (ack_fgi != -1)
582 		m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
583 
584 	if (err)
585 		return err;
586 
587 	return pkts;
588 }
589 
590 static int m_can_handle_lost_msg(struct net_device *dev)
591 {
592 	struct m_can_classdev *cdev = netdev_priv(dev);
593 	struct net_device_stats *stats = &dev->stats;
594 	struct sk_buff *skb;
595 	struct can_frame *frame;
596 	u32 timestamp = 0;
597 
598 	netdev_err(dev, "msg lost in rxf0\n");
599 
600 	stats->rx_errors++;
601 	stats->rx_over_errors++;
602 
603 	skb = alloc_can_err_skb(dev, &frame);
604 	if (unlikely(!skb))
605 		return 0;
606 
607 	frame->can_id |= CAN_ERR_CRTL;
608 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
609 
610 	if (cdev->is_peripheral)
611 		timestamp = m_can_get_timestamp(cdev);
612 
613 	m_can_receive_skb(cdev, skb, timestamp);
614 
615 	return 1;
616 }
617 
618 static int m_can_handle_lec_err(struct net_device *dev,
619 				enum m_can_lec_type lec_type)
620 {
621 	struct m_can_classdev *cdev = netdev_priv(dev);
622 	struct net_device_stats *stats = &dev->stats;
623 	struct can_frame *cf;
624 	struct sk_buff *skb;
625 	u32 timestamp = 0;
626 
627 	cdev->can.can_stats.bus_error++;
628 	stats->rx_errors++;
629 
630 	/* propagate the error condition to the CAN stack */
631 	skb = alloc_can_err_skb(dev, &cf);
632 	if (unlikely(!skb))
633 		return 0;
634 
635 	/* check for 'last error code' which tells us the
636 	 * type of the last error to occur on the CAN bus
637 	 */
638 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
639 
640 	switch (lec_type) {
641 	case LEC_STUFF_ERROR:
642 		netdev_dbg(dev, "stuff error\n");
643 		cf->data[2] |= CAN_ERR_PROT_STUFF;
644 		break;
645 	case LEC_FORM_ERROR:
646 		netdev_dbg(dev, "form error\n");
647 		cf->data[2] |= CAN_ERR_PROT_FORM;
648 		break;
649 	case LEC_ACK_ERROR:
650 		netdev_dbg(dev, "ack error\n");
651 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
652 		break;
653 	case LEC_BIT1_ERROR:
654 		netdev_dbg(dev, "bit1 error\n");
655 		cf->data[2] |= CAN_ERR_PROT_BIT1;
656 		break;
657 	case LEC_BIT0_ERROR:
658 		netdev_dbg(dev, "bit0 error\n");
659 		cf->data[2] |= CAN_ERR_PROT_BIT0;
660 		break;
661 	case LEC_CRC_ERROR:
662 		netdev_dbg(dev, "CRC error\n");
663 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
664 		break;
665 	default:
666 		break;
667 	}
668 
669 	if (cdev->is_peripheral)
670 		timestamp = m_can_get_timestamp(cdev);
671 
672 	m_can_receive_skb(cdev, skb, timestamp);
673 
674 	return 1;
675 }
676 
677 static int __m_can_get_berr_counter(const struct net_device *dev,
678 				    struct can_berr_counter *bec)
679 {
680 	struct m_can_classdev *cdev = netdev_priv(dev);
681 	unsigned int ecr;
682 
683 	ecr = m_can_read(cdev, M_CAN_ECR);
684 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
685 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
686 
687 	return 0;
688 }
689 
690 static int m_can_clk_start(struct m_can_classdev *cdev)
691 {
692 	if (cdev->pm_clock_support == 0)
693 		return 0;
694 
695 	return pm_runtime_resume_and_get(cdev->dev);
696 }
697 
698 static void m_can_clk_stop(struct m_can_classdev *cdev)
699 {
700 	if (cdev->pm_clock_support)
701 		pm_runtime_put_sync(cdev->dev);
702 }
703 
704 static int m_can_get_berr_counter(const struct net_device *dev,
705 				  struct can_berr_counter *bec)
706 {
707 	struct m_can_classdev *cdev = netdev_priv(dev);
708 	int err;
709 
710 	err = m_can_clk_start(cdev);
711 	if (err)
712 		return err;
713 
714 	__m_can_get_berr_counter(dev, bec);
715 
716 	m_can_clk_stop(cdev);
717 
718 	return 0;
719 }
720 
721 static int m_can_handle_state_change(struct net_device *dev,
722 				     enum can_state new_state)
723 {
724 	struct m_can_classdev *cdev = netdev_priv(dev);
725 	struct can_frame *cf;
726 	struct sk_buff *skb;
727 	struct can_berr_counter bec;
728 	unsigned int ecr;
729 	u32 timestamp = 0;
730 
731 	switch (new_state) {
732 	case CAN_STATE_ERROR_WARNING:
733 		/* error warning state */
734 		cdev->can.can_stats.error_warning++;
735 		cdev->can.state = CAN_STATE_ERROR_WARNING;
736 		break;
737 	case CAN_STATE_ERROR_PASSIVE:
738 		/* error passive state */
739 		cdev->can.can_stats.error_passive++;
740 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
741 		break;
742 	case CAN_STATE_BUS_OFF:
743 		/* bus-off state */
744 		cdev->can.state = CAN_STATE_BUS_OFF;
745 		m_can_disable_all_interrupts(cdev);
746 		cdev->can.can_stats.bus_off++;
747 		can_bus_off(dev);
748 		break;
749 	default:
750 		break;
751 	}
752 
753 	/* propagate the error condition to the CAN stack */
754 	skb = alloc_can_err_skb(dev, &cf);
755 	if (unlikely(!skb))
756 		return 0;
757 
758 	__m_can_get_berr_counter(dev, &bec);
759 
760 	switch (new_state) {
761 	case CAN_STATE_ERROR_WARNING:
762 		/* error warning state */
763 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
764 		cf->data[1] = (bec.txerr > bec.rxerr) ?
765 			CAN_ERR_CRTL_TX_WARNING :
766 			CAN_ERR_CRTL_RX_WARNING;
767 		cf->data[6] = bec.txerr;
768 		cf->data[7] = bec.rxerr;
769 		break;
770 	case CAN_STATE_ERROR_PASSIVE:
771 		/* error passive state */
772 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
773 		ecr = m_can_read(cdev, M_CAN_ECR);
774 		if (ecr & ECR_RP)
775 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
776 		if (bec.txerr > 127)
777 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
778 		cf->data[6] = bec.txerr;
779 		cf->data[7] = bec.rxerr;
780 		break;
781 	case CAN_STATE_BUS_OFF:
782 		/* bus-off state */
783 		cf->can_id |= CAN_ERR_BUSOFF;
784 		break;
785 	default:
786 		break;
787 	}
788 
789 	if (cdev->is_peripheral)
790 		timestamp = m_can_get_timestamp(cdev);
791 
792 	m_can_receive_skb(cdev, skb, timestamp);
793 
794 	return 1;
795 }
796 
797 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
798 {
799 	struct m_can_classdev *cdev = netdev_priv(dev);
800 	int work_done = 0;
801 
802 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
803 		netdev_dbg(dev, "entered error warning state\n");
804 		work_done += m_can_handle_state_change(dev,
805 						       CAN_STATE_ERROR_WARNING);
806 	}
807 
808 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
809 		netdev_dbg(dev, "entered error passive state\n");
810 		work_done += m_can_handle_state_change(dev,
811 						       CAN_STATE_ERROR_PASSIVE);
812 	}
813 
814 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
815 		netdev_dbg(dev, "entered error bus off state\n");
816 		work_done += m_can_handle_state_change(dev,
817 						       CAN_STATE_BUS_OFF);
818 	}
819 
820 	return work_done;
821 }
822 
823 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
824 {
825 	if (irqstatus & IR_WDI)
826 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
827 	if (irqstatus & IR_BEU)
828 		netdev_err(dev, "Bit Error Uncorrected\n");
829 	if (irqstatus & IR_BEC)
830 		netdev_err(dev, "Bit Error Corrected\n");
831 	if (irqstatus & IR_TOO)
832 		netdev_err(dev, "Timeout reached\n");
833 	if (irqstatus & IR_MRAF)
834 		netdev_err(dev, "Message RAM access failure occurred\n");
835 }
836 
837 static inline bool is_lec_err(u8 lec)
838 {
839 	return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
840 }
841 
842 static inline bool m_can_is_protocol_err(u32 irqstatus)
843 {
844 	return irqstatus & IR_ERR_LEC_31X;
845 }
846 
847 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
848 {
849 	struct net_device_stats *stats = &dev->stats;
850 	struct m_can_classdev *cdev = netdev_priv(dev);
851 	struct can_frame *cf;
852 	struct sk_buff *skb;
853 	u32 timestamp = 0;
854 
855 	/* propagate the error condition to the CAN stack */
856 	skb = alloc_can_err_skb(dev, &cf);
857 
858 	/* update tx error stats since there is protocol error */
859 	stats->tx_errors++;
860 
861 	/* update arbitration lost status */
862 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
863 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
864 		cdev->can.can_stats.arbitration_lost++;
865 		if (skb) {
866 			cf->can_id |= CAN_ERR_LOSTARB;
867 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
868 		}
869 	}
870 
871 	if (unlikely(!skb)) {
872 		netdev_dbg(dev, "allocation of skb failed\n");
873 		return 0;
874 	}
875 
876 	if (cdev->is_peripheral)
877 		timestamp = m_can_get_timestamp(cdev);
878 
879 	m_can_receive_skb(cdev, skb, timestamp);
880 
881 	return 1;
882 }
883 
884 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
885 				   u32 psr)
886 {
887 	struct m_can_classdev *cdev = netdev_priv(dev);
888 	int work_done = 0;
889 
890 	if (irqstatus & IR_RF0L)
891 		work_done += m_can_handle_lost_msg(dev);
892 
893 	/* handle lec errors on the bus */
894 	if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
895 		u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
896 		u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
897 
898 		if (is_lec_err(lec)) {
899 			netdev_dbg(dev, "Arbitration phase error detected\n");
900 			work_done += m_can_handle_lec_err(dev, lec);
901 		}
902 
903 		if (is_lec_err(dlec)) {
904 			netdev_dbg(dev, "Data phase error detected\n");
905 			work_done += m_can_handle_lec_err(dev, dlec);
906 		}
907 	}
908 
909 	/* handle protocol errors in arbitration phase */
910 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
911 	    m_can_is_protocol_err(irqstatus))
912 		work_done += m_can_handle_protocol_error(dev, irqstatus);
913 
914 	/* other unproccessed error interrupts */
915 	m_can_handle_other_err(dev, irqstatus);
916 
917 	return work_done;
918 }
919 
920 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
921 {
922 	struct m_can_classdev *cdev = netdev_priv(dev);
923 	int rx_work_or_err;
924 	int work_done = 0;
925 
926 	if (!irqstatus)
927 		goto end;
928 
929 	/* Errata workaround for issue "Needless activation of MRAF irq"
930 	 * During frame reception while the MCAN is in Error Passive state
931 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
932 	 * it may happen that MCAN_IR.MRAF is set although there was no
933 	 * Message RAM access failure.
934 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
935 	 * The Message RAM Access Failure interrupt routine needs to check
936 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
937 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
938 	 */
939 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
940 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
941 		struct can_berr_counter bec;
942 
943 		__m_can_get_berr_counter(dev, &bec);
944 		if (bec.rxerr == 127) {
945 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
946 			irqstatus &= ~IR_MRAF;
947 		}
948 	}
949 
950 	if (irqstatus & IR_ERR_STATE)
951 		work_done += m_can_handle_state_errors(dev,
952 						       m_can_read(cdev, M_CAN_PSR));
953 
954 	if (irqstatus & IR_ERR_BUS_30X)
955 		work_done += m_can_handle_bus_errors(dev, irqstatus,
956 						     m_can_read(cdev, M_CAN_PSR));
957 
958 	if (irqstatus & IR_RF0N) {
959 		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
960 		if (rx_work_or_err < 0)
961 			return rx_work_or_err;
962 
963 		work_done += rx_work_or_err;
964 	}
965 end:
966 	return work_done;
967 }
968 
969 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus)
970 {
971 	struct m_can_classdev *cdev = netdev_priv(dev);
972 	int work_done;
973 
974 	work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus);
975 
976 	/* Don't re-enable interrupts if the driver had a fatal error
977 	 * (e.g., FIFO read failure).
978 	 */
979 	if (work_done < 0)
980 		m_can_disable_all_interrupts(cdev);
981 
982 	return work_done;
983 }
984 
985 static int m_can_poll(struct napi_struct *napi, int quota)
986 {
987 	struct net_device *dev = napi->dev;
988 	struct m_can_classdev *cdev = netdev_priv(dev);
989 	int work_done;
990 	u32 irqstatus;
991 
992 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
993 
994 	work_done = m_can_rx_handler(dev, quota, irqstatus);
995 
996 	/* Don't re-enable interrupts if the driver had a fatal error
997 	 * (e.g., FIFO read failure).
998 	 */
999 	if (work_done >= 0 && work_done < quota) {
1000 		napi_complete_done(napi, work_done);
1001 		m_can_enable_all_interrupts(cdev);
1002 	}
1003 
1004 	return work_done;
1005 }
1006 
1007 /* Echo tx skb and update net stats. Peripherals use rx-offload for
1008  * echo. timestamp is used for peripherals to ensure correct ordering
1009  * by rx-offload, and is ignored for non-peripherals.
1010  */
1011 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
1012 				  unsigned int msg_mark,
1013 				  u32 timestamp)
1014 {
1015 	struct net_device *dev = cdev->net;
1016 	struct net_device_stats *stats = &dev->stats;
1017 
1018 	if (cdev->is_peripheral)
1019 		stats->tx_bytes +=
1020 			can_rx_offload_get_echo_skb(&cdev->offload,
1021 						    msg_mark,
1022 						    timestamp,
1023 						    NULL);
1024 	else
1025 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1026 
1027 	stats->tx_packets++;
1028 }
1029 
1030 static int m_can_echo_tx_event(struct net_device *dev)
1031 {
1032 	u32 txe_count = 0;
1033 	u32 m_can_txefs;
1034 	u32 fgi = 0;
1035 	int ack_fgi = -1;
1036 	int i = 0;
1037 	int err = 0;
1038 	unsigned int msg_mark;
1039 
1040 	struct m_can_classdev *cdev = netdev_priv(dev);
1041 
1042 	/* read tx event fifo status */
1043 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1044 
1045 	/* Get Tx Event fifo element count */
1046 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1047 	fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1048 
1049 	/* Get and process all sent elements */
1050 	for (i = 0; i < txe_count; i++) {
1051 		u32 txe, timestamp = 0;
1052 
1053 		/* get message marker, timestamp */
1054 		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1055 		if (err) {
1056 			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1057 			break;
1058 		}
1059 
1060 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1061 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1062 
1063 		ack_fgi = fgi;
1064 		fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1065 
1066 		/* update stats */
1067 		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1068 	}
1069 
1070 	if (ack_fgi != -1)
1071 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1072 							  ack_fgi));
1073 
1074 	return err;
1075 }
1076 
1077 static irqreturn_t m_can_isr(int irq, void *dev_id)
1078 {
1079 	struct net_device *dev = (struct net_device *)dev_id;
1080 	struct m_can_classdev *cdev = netdev_priv(dev);
1081 	u32 ir;
1082 
1083 	if (pm_runtime_suspended(cdev->dev))
1084 		return IRQ_NONE;
1085 	ir = m_can_read(cdev, M_CAN_IR);
1086 	if (!ir)
1087 		return IRQ_NONE;
1088 
1089 	/* ACK all irqs */
1090 	m_can_write(cdev, M_CAN_IR, ir);
1091 
1092 	if (cdev->ops->clear_interrupts)
1093 		cdev->ops->clear_interrupts(cdev);
1094 
1095 	/* schedule NAPI in case of
1096 	 * - rx IRQ
1097 	 * - state change IRQ
1098 	 * - bus error IRQ and bus error reporting
1099 	 */
1100 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1101 		cdev->irqstatus = ir;
1102 		if (!cdev->is_peripheral) {
1103 			m_can_disable_all_interrupts(cdev);
1104 			napi_schedule(&cdev->napi);
1105 		} else if (m_can_rx_peripheral(dev, ir) < 0) {
1106 			goto out_fail;
1107 		}
1108 	}
1109 
1110 	if (cdev->version == 30) {
1111 		if (ir & IR_TC) {
1112 			/* Transmission Complete Interrupt*/
1113 			u32 timestamp = 0;
1114 
1115 			if (cdev->is_peripheral)
1116 				timestamp = m_can_get_timestamp(cdev);
1117 			m_can_tx_update_stats(cdev, 0, timestamp);
1118 			netif_wake_queue(dev);
1119 		}
1120 	} else  {
1121 		if (ir & IR_TEFN) {
1122 			/* New TX FIFO Element arrived */
1123 			if (m_can_echo_tx_event(dev) != 0)
1124 				goto out_fail;
1125 
1126 			if (netif_queue_stopped(dev) &&
1127 			    !m_can_tx_fifo_full(cdev))
1128 				netif_wake_queue(dev);
1129 		}
1130 	}
1131 
1132 	if (cdev->is_peripheral)
1133 		can_rx_offload_threaded_irq_finish(&cdev->offload);
1134 
1135 	return IRQ_HANDLED;
1136 
1137 out_fail:
1138 	m_can_disable_all_interrupts(cdev);
1139 	return IRQ_HANDLED;
1140 }
1141 
1142 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1143 	.name = KBUILD_MODNAME,
1144 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1145 	.tseg1_max = 64,
1146 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1147 	.tseg2_max = 16,
1148 	.sjw_max = 16,
1149 	.brp_min = 1,
1150 	.brp_max = 1024,
1151 	.brp_inc = 1,
1152 };
1153 
1154 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1155 	.name = KBUILD_MODNAME,
1156 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1157 	.tseg1_max = 16,
1158 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1159 	.tseg2_max = 8,
1160 	.sjw_max = 4,
1161 	.brp_min = 1,
1162 	.brp_max = 32,
1163 	.brp_inc = 1,
1164 };
1165 
1166 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1167 	.name = KBUILD_MODNAME,
1168 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1169 	.tseg1_max = 256,
1170 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1171 	.tseg2_max = 128,
1172 	.sjw_max = 128,
1173 	.brp_min = 1,
1174 	.brp_max = 512,
1175 	.brp_inc = 1,
1176 };
1177 
1178 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1179 	.name = KBUILD_MODNAME,
1180 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1181 	.tseg1_max = 32,
1182 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1183 	.tseg2_max = 16,
1184 	.sjw_max = 16,
1185 	.brp_min = 1,
1186 	.brp_max = 32,
1187 	.brp_inc = 1,
1188 };
1189 
1190 static int m_can_set_bittiming(struct net_device *dev)
1191 {
1192 	struct m_can_classdev *cdev = netdev_priv(dev);
1193 	const struct can_bittiming *bt = &cdev->can.bittiming;
1194 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1195 	u16 brp, sjw, tseg1, tseg2;
1196 	u32 reg_btp;
1197 
1198 	brp = bt->brp - 1;
1199 	sjw = bt->sjw - 1;
1200 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1201 	tseg2 = bt->phase_seg2 - 1;
1202 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1203 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1204 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1205 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1206 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1207 
1208 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1209 		reg_btp = 0;
1210 		brp = dbt->brp - 1;
1211 		sjw = dbt->sjw - 1;
1212 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1213 		tseg2 = dbt->phase_seg2 - 1;
1214 
1215 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1216 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1217 		 * paper presented at the International CAN Conference 2013
1218 		 */
1219 		if (dbt->bitrate > 2500000) {
1220 			u32 tdco, ssp;
1221 
1222 			/* Use the same value of secondary sampling point
1223 			 * as the data sampling point
1224 			 */
1225 			ssp = dbt->sample_point;
1226 
1227 			/* Equation based on Bosch's M_CAN User Manual's
1228 			 * Transmitter Delay Compensation Section
1229 			 */
1230 			tdco = (cdev->can.clock.freq / 1000) *
1231 				ssp / dbt->bitrate;
1232 
1233 			/* Max valid TDCO value is 127 */
1234 			if (tdco > 127) {
1235 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1236 					    tdco);
1237 				tdco = 127;
1238 			}
1239 
1240 			reg_btp |= DBTP_TDC;
1241 			m_can_write(cdev, M_CAN_TDCR,
1242 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1243 		}
1244 
1245 		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1246 			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1247 			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1248 			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1249 
1250 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 /* Configure M_CAN chip:
1257  * - set rx buffer/fifo element size
1258  * - configure rx fifo
1259  * - accept non-matching frame into fifo 0
1260  * - configure tx buffer
1261  *		- >= v3.1.x: TX FIFO is used
1262  * - configure mode
1263  * - setup bittiming
1264  * - configure timestamp generation
1265  */
1266 static int m_can_chip_config(struct net_device *dev)
1267 {
1268 	struct m_can_classdev *cdev = netdev_priv(dev);
1269 	u32 interrupts = IR_ALL_INT;
1270 	u32 cccr, test;
1271 	int err;
1272 
1273 	err = m_can_init_ram(cdev);
1274 	if (err) {
1275 		dev_err(cdev->dev, "Message RAM configuration failed\n");
1276 		return err;
1277 	}
1278 
1279 	/* Disable unused interrupts */
1280 	interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TEFW | IR_TFE |
1281 			IR_TCF | IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N |
1282 			IR_RF0F | IR_RF0W);
1283 
1284 	m_can_config_endisable(cdev, true);
1285 
1286 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1287 	m_can_write(cdev, M_CAN_RXESC,
1288 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1289 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1290 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1291 
1292 	/* Accept Non-matching Frames Into FIFO 0 */
1293 	m_can_write(cdev, M_CAN_GFC, 0x0);
1294 
1295 	if (cdev->version == 30) {
1296 		/* only support one Tx Buffer currently */
1297 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1298 			    cdev->mcfg[MRAM_TXB].off);
1299 	} else {
1300 		/* TX FIFO is used for newer IP Core versions */
1301 		m_can_write(cdev, M_CAN_TXBC,
1302 			    FIELD_PREP(TXBC_TFQS_MASK,
1303 				       cdev->mcfg[MRAM_TXB].num) |
1304 			    cdev->mcfg[MRAM_TXB].off);
1305 	}
1306 
1307 	/* support 64 bytes payload */
1308 	m_can_write(cdev, M_CAN_TXESC,
1309 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1310 
1311 	/* TX Event FIFO */
1312 	if (cdev->version == 30) {
1313 		m_can_write(cdev, M_CAN_TXEFC,
1314 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1315 			    cdev->mcfg[MRAM_TXE].off);
1316 	} else {
1317 		/* Full TX Event FIFO is used */
1318 		m_can_write(cdev, M_CAN_TXEFC,
1319 			    FIELD_PREP(TXEFC_EFS_MASK,
1320 				       cdev->mcfg[MRAM_TXE].num) |
1321 			    cdev->mcfg[MRAM_TXE].off);
1322 	}
1323 
1324 	/* rx fifo configuration, blocking mode, fifo size 1 */
1325 	m_can_write(cdev, M_CAN_RXF0C,
1326 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1327 		    cdev->mcfg[MRAM_RXF0].off);
1328 
1329 	m_can_write(cdev, M_CAN_RXF1C,
1330 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1331 		    cdev->mcfg[MRAM_RXF1].off);
1332 
1333 	cccr = m_can_read(cdev, M_CAN_CCCR);
1334 	test = m_can_read(cdev, M_CAN_TEST);
1335 	test &= ~TEST_LBCK;
1336 	if (cdev->version == 30) {
1337 		/* Version 3.0.x */
1338 
1339 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1340 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1341 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1342 
1343 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1344 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1345 
1346 	} else {
1347 		/* Version 3.1.x or 3.2.x */
1348 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1349 			  CCCR_NISO | CCCR_DAR);
1350 
1351 		/* Only 3.2.x has NISO Bit implemented */
1352 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1353 			cccr |= CCCR_NISO;
1354 
1355 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1356 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1357 	}
1358 
1359 	/* Loopback Mode */
1360 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1361 		cccr |= CCCR_TEST | CCCR_MON;
1362 		test |= TEST_LBCK;
1363 	}
1364 
1365 	/* Enable Monitoring (all versions) */
1366 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1367 		cccr |= CCCR_MON;
1368 
1369 	/* Disable Auto Retransmission (all versions) */
1370 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1371 		cccr |= CCCR_DAR;
1372 
1373 	/* Write config */
1374 	m_can_write(cdev, M_CAN_CCCR, cccr);
1375 	m_can_write(cdev, M_CAN_TEST, test);
1376 
1377 	/* Enable interrupts */
1378 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1379 		if (cdev->version == 30)
1380 			interrupts &= ~(IR_ERR_LEC_30X);
1381 		else
1382 			interrupts &= ~(IR_ERR_LEC_31X);
1383 	}
1384 	m_can_write(cdev, M_CAN_IE, interrupts);
1385 
1386 	/* route all interrupts to INT0 */
1387 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1388 
1389 	/* set bittiming params */
1390 	m_can_set_bittiming(dev);
1391 
1392 	/* enable internal timestamp generation, with a prescaler of 16. The
1393 	 * prescaler is applied to the nominal bit timing
1394 	 */
1395 	m_can_write(cdev, M_CAN_TSCC,
1396 		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1397 		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1398 
1399 	m_can_config_endisable(cdev, false);
1400 
1401 	if (cdev->ops->init)
1402 		cdev->ops->init(cdev);
1403 
1404 	return 0;
1405 }
1406 
1407 static int m_can_start(struct net_device *dev)
1408 {
1409 	struct m_can_classdev *cdev = netdev_priv(dev);
1410 	int ret;
1411 
1412 	/* basic m_can configuration */
1413 	ret = m_can_chip_config(dev);
1414 	if (ret)
1415 		return ret;
1416 
1417 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1418 
1419 	m_can_enable_all_interrupts(cdev);
1420 
1421 	if (!dev->irq) {
1422 		dev_dbg(cdev->dev, "Start hrtimer\n");
1423 		hrtimer_start(&cdev->hrtimer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
1424 			      HRTIMER_MODE_REL_PINNED);
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1431 {
1432 	switch (mode) {
1433 	case CAN_MODE_START:
1434 		m_can_clean(dev);
1435 		m_can_start(dev);
1436 		netif_wake_queue(dev);
1437 		break;
1438 	default:
1439 		return -EOPNOTSUPP;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 /* Checks core release number of M_CAN
1446  * returns 0 if an unsupported device is detected
1447  * else it returns the release and step coded as:
1448  * return value = 10 * <release> + 1 * <step>
1449  */
1450 static int m_can_check_core_release(struct m_can_classdev *cdev)
1451 {
1452 	u32 crel_reg;
1453 	u8 rel;
1454 	u8 step;
1455 	int res;
1456 
1457 	/* Read Core Release Version and split into version number
1458 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1459 	 */
1460 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1461 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1462 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1463 
1464 	if (rel == 3) {
1465 		/* M_CAN v3.x.y: create return value */
1466 		res = 30 + step;
1467 	} else {
1468 		/* Unsupported M_CAN version */
1469 		res = 0;
1470 	}
1471 
1472 	return res;
1473 }
1474 
1475 /* Selectable Non ISO support only in version 3.2.x
1476  * This function checks if the bit is writable.
1477  */
1478 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1479 {
1480 	u32 cccr_reg, cccr_poll = 0;
1481 	int niso_timeout = -ETIMEDOUT;
1482 	int i;
1483 
1484 	m_can_config_endisable(cdev, true);
1485 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1486 	cccr_reg |= CCCR_NISO;
1487 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1488 
1489 	for (i = 0; i <= 10; i++) {
1490 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1491 		if (cccr_poll == cccr_reg) {
1492 			niso_timeout = 0;
1493 			break;
1494 		}
1495 
1496 		usleep_range(1, 5);
1497 	}
1498 
1499 	/* Clear NISO */
1500 	cccr_reg &= ~(CCCR_NISO);
1501 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1502 
1503 	m_can_config_endisable(cdev, false);
1504 
1505 	/* return false if time out (-ETIMEDOUT), else return true */
1506 	return !niso_timeout;
1507 }
1508 
1509 static int m_can_dev_setup(struct m_can_classdev *cdev)
1510 {
1511 	struct net_device *dev = cdev->net;
1512 	int m_can_version, err;
1513 
1514 	m_can_version = m_can_check_core_release(cdev);
1515 	/* return if unsupported version */
1516 	if (!m_can_version) {
1517 		dev_err(cdev->dev, "Unsupported version number: %2d",
1518 			m_can_version);
1519 		return -EINVAL;
1520 	}
1521 
1522 	if (!cdev->is_peripheral)
1523 		netif_napi_add(dev, &cdev->napi, m_can_poll);
1524 
1525 	/* Shared properties of all M_CAN versions */
1526 	cdev->version = m_can_version;
1527 	cdev->can.do_set_mode = m_can_set_mode;
1528 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1529 
1530 	/* Set M_CAN supported operations */
1531 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1532 		CAN_CTRLMODE_LISTENONLY |
1533 		CAN_CTRLMODE_BERR_REPORTING |
1534 		CAN_CTRLMODE_FD |
1535 		CAN_CTRLMODE_ONE_SHOT;
1536 
1537 	/* Set properties depending on M_CAN version */
1538 	switch (cdev->version) {
1539 	case 30:
1540 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1541 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1542 		if (err)
1543 			return err;
1544 		cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1545 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1546 		break;
1547 	case 31:
1548 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1549 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1550 		if (err)
1551 			return err;
1552 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1553 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1554 		break;
1555 	case 32:
1556 	case 33:
1557 		/* Support both MCAN version v3.2.x and v3.3.0 */
1558 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1559 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1560 
1561 		cdev->can.ctrlmode_supported |=
1562 			(m_can_niso_supported(cdev) ?
1563 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1564 		break;
1565 	default:
1566 		dev_err(cdev->dev, "Unsupported version number: %2d",
1567 			cdev->version);
1568 		return -EINVAL;
1569 	}
1570 
1571 	if (cdev->ops->init)
1572 		cdev->ops->init(cdev);
1573 
1574 	return 0;
1575 }
1576 
1577 static void m_can_stop(struct net_device *dev)
1578 {
1579 	struct m_can_classdev *cdev = netdev_priv(dev);
1580 
1581 	if (!dev->irq) {
1582 		dev_dbg(cdev->dev, "Stop hrtimer\n");
1583 		hrtimer_cancel(&cdev->hrtimer);
1584 	}
1585 
1586 	/* disable all interrupts */
1587 	m_can_disable_all_interrupts(cdev);
1588 
1589 	/* Set init mode to disengage from the network */
1590 	m_can_config_endisable(cdev, true);
1591 
1592 	/* set the state as STOPPED */
1593 	cdev->can.state = CAN_STATE_STOPPED;
1594 }
1595 
1596 static int m_can_close(struct net_device *dev)
1597 {
1598 	struct m_can_classdev *cdev = netdev_priv(dev);
1599 
1600 	netif_stop_queue(dev);
1601 
1602 	if (!cdev->is_peripheral)
1603 		napi_disable(&cdev->napi);
1604 
1605 	m_can_stop(dev);
1606 	m_can_clk_stop(cdev);
1607 	free_irq(dev->irq, dev);
1608 
1609 	if (cdev->is_peripheral) {
1610 		cdev->tx_skb = NULL;
1611 		destroy_workqueue(cdev->tx_wq);
1612 		cdev->tx_wq = NULL;
1613 		can_rx_offload_disable(&cdev->offload);
1614 	}
1615 
1616 	close_candev(dev);
1617 
1618 	phy_power_off(cdev->transceiver);
1619 
1620 	return 0;
1621 }
1622 
1623 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1624 {
1625 	struct m_can_classdev *cdev = netdev_priv(dev);
1626 	/*get wrap around for loopback skb index */
1627 	unsigned int wrap = cdev->can.echo_skb_max;
1628 	int next_idx;
1629 
1630 	/* calculate next index */
1631 	next_idx = (++putidx >= wrap ? 0 : putidx);
1632 
1633 	/* check if occupied */
1634 	return !!cdev->can.echo_skb[next_idx];
1635 }
1636 
1637 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1638 {
1639 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1640 	struct net_device *dev = cdev->net;
1641 	struct sk_buff *skb = cdev->tx_skb;
1642 	struct id_and_dlc fifo_header;
1643 	u32 cccr, fdflags;
1644 	u32 txfqs;
1645 	int err;
1646 	int putidx;
1647 
1648 	cdev->tx_skb = NULL;
1649 
1650 	/* Generate ID field for TX buffer Element */
1651 	/* Common to all supported M_CAN versions */
1652 	if (cf->can_id & CAN_EFF_FLAG) {
1653 		fifo_header.id = cf->can_id & CAN_EFF_MASK;
1654 		fifo_header.id |= TX_BUF_XTD;
1655 	} else {
1656 		fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1657 	}
1658 
1659 	if (cf->can_id & CAN_RTR_FLAG)
1660 		fifo_header.id |= TX_BUF_RTR;
1661 
1662 	if (cdev->version == 30) {
1663 		netif_stop_queue(dev);
1664 
1665 		fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1666 
1667 		/* Write the frame ID, DLC, and payload to the FIFO element. */
1668 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1669 		if (err)
1670 			goto out_fail;
1671 
1672 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1673 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1674 		if (err)
1675 			goto out_fail;
1676 
1677 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1678 			cccr = m_can_read(cdev, M_CAN_CCCR);
1679 			cccr &= ~CCCR_CMR_MASK;
1680 			if (can_is_canfd_skb(skb)) {
1681 				if (cf->flags & CANFD_BRS)
1682 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1683 							   CCCR_CMR_CANFD_BRS);
1684 				else
1685 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1686 							   CCCR_CMR_CANFD);
1687 			} else {
1688 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1689 			}
1690 			m_can_write(cdev, M_CAN_CCCR, cccr);
1691 		}
1692 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1693 
1694 		can_put_echo_skb(skb, dev, 0, 0);
1695 
1696 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1697 		/* End of xmit function for version 3.0.x */
1698 	} else {
1699 		/* Transmit routine for version >= v3.1.x */
1700 
1701 		txfqs = m_can_read(cdev, M_CAN_TXFQS);
1702 
1703 		/* Check if FIFO full */
1704 		if (_m_can_tx_fifo_full(txfqs)) {
1705 			/* This shouldn't happen */
1706 			netif_stop_queue(dev);
1707 			netdev_warn(dev,
1708 				    "TX queue active although FIFO is full.");
1709 
1710 			if (cdev->is_peripheral) {
1711 				kfree_skb(skb);
1712 				dev->stats.tx_dropped++;
1713 				return NETDEV_TX_OK;
1714 			} else {
1715 				return NETDEV_TX_BUSY;
1716 			}
1717 		}
1718 
1719 		/* get put index for frame */
1720 		putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs);
1721 
1722 		/* Construct DLC Field, with CAN-FD configuration.
1723 		 * Use the put index of the fifo as the message marker,
1724 		 * used in the TX interrupt for sending the correct echo frame.
1725 		 */
1726 
1727 		/* get CAN FD configuration of frame */
1728 		fdflags = 0;
1729 		if (can_is_canfd_skb(skb)) {
1730 			fdflags |= TX_BUF_FDF;
1731 			if (cf->flags & CANFD_BRS)
1732 				fdflags |= TX_BUF_BRS;
1733 		}
1734 
1735 		fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1736 			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1737 			fdflags | TX_BUF_EFC;
1738 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1739 		if (err)
1740 			goto out_fail;
1741 
1742 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1743 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1744 		if (err)
1745 			goto out_fail;
1746 
1747 		/* Push loopback echo.
1748 		 * Will be looped back on TX interrupt based on message marker
1749 		 */
1750 		can_put_echo_skb(skb, dev, putidx, 0);
1751 
1752 		/* Enable TX FIFO element to start transfer  */
1753 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1754 
1755 		/* stop network queue if fifo full */
1756 		if (m_can_tx_fifo_full(cdev) ||
1757 		    m_can_next_echo_skb_occupied(dev, putidx))
1758 			netif_stop_queue(dev);
1759 	}
1760 
1761 	return NETDEV_TX_OK;
1762 
1763 out_fail:
1764 	netdev_err(dev, "FIFO write returned %d\n", err);
1765 	m_can_disable_all_interrupts(cdev);
1766 	return NETDEV_TX_BUSY;
1767 }
1768 
1769 static void m_can_tx_work_queue(struct work_struct *ws)
1770 {
1771 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1772 						   tx_work);
1773 
1774 	m_can_tx_handler(cdev);
1775 }
1776 
1777 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1778 				    struct net_device *dev)
1779 {
1780 	struct m_can_classdev *cdev = netdev_priv(dev);
1781 
1782 	if (can_dev_dropped_skb(dev, skb))
1783 		return NETDEV_TX_OK;
1784 
1785 	if (cdev->is_peripheral) {
1786 		if (cdev->tx_skb) {
1787 			netdev_err(dev, "hard_xmit called while tx busy\n");
1788 			return NETDEV_TX_BUSY;
1789 		}
1790 
1791 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1792 			m_can_clean(dev);
1793 		} else {
1794 			/* Need to stop the queue to avoid numerous requests
1795 			 * from being sent.  Suggested improvement is to create
1796 			 * a queueing mechanism that will queue the skbs and
1797 			 * process them in order.
1798 			 */
1799 			cdev->tx_skb = skb;
1800 			netif_stop_queue(cdev->net);
1801 			queue_work(cdev->tx_wq, &cdev->tx_work);
1802 		}
1803 	} else {
1804 		cdev->tx_skb = skb;
1805 		return m_can_tx_handler(cdev);
1806 	}
1807 
1808 	return NETDEV_TX_OK;
1809 }
1810 
1811 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
1812 {
1813 	struct m_can_classdev *cdev = container_of(timer, struct
1814 						   m_can_classdev, hrtimer);
1815 
1816 	m_can_isr(0, cdev->net);
1817 
1818 	hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
1819 
1820 	return HRTIMER_RESTART;
1821 }
1822 
1823 static int m_can_open(struct net_device *dev)
1824 {
1825 	struct m_can_classdev *cdev = netdev_priv(dev);
1826 	int err;
1827 
1828 	err = phy_power_on(cdev->transceiver);
1829 	if (err)
1830 		return err;
1831 
1832 	err = m_can_clk_start(cdev);
1833 	if (err)
1834 		goto out_phy_power_off;
1835 
1836 	/* open the can device */
1837 	err = open_candev(dev);
1838 	if (err) {
1839 		netdev_err(dev, "failed to open can device\n");
1840 		goto exit_disable_clks;
1841 	}
1842 
1843 	if (cdev->is_peripheral)
1844 		can_rx_offload_enable(&cdev->offload);
1845 
1846 	/* register interrupt handler */
1847 	if (cdev->is_peripheral) {
1848 		cdev->tx_skb = NULL;
1849 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1850 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1851 		if (!cdev->tx_wq) {
1852 			err = -ENOMEM;
1853 			goto out_wq_fail;
1854 		}
1855 
1856 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1857 
1858 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1859 					   IRQF_ONESHOT,
1860 					   dev->name, dev);
1861 	} else if (dev->irq) {
1862 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1863 				  dev);
1864 	}
1865 
1866 	if (err < 0) {
1867 		netdev_err(dev, "failed to request interrupt\n");
1868 		goto exit_irq_fail;
1869 	}
1870 
1871 	/* start the m_can controller */
1872 	err = m_can_start(dev);
1873 	if (err)
1874 		goto exit_irq_fail;
1875 
1876 	if (!cdev->is_peripheral)
1877 		napi_enable(&cdev->napi);
1878 
1879 	netif_start_queue(dev);
1880 
1881 	return 0;
1882 
1883 exit_irq_fail:
1884 	if (cdev->is_peripheral)
1885 		destroy_workqueue(cdev->tx_wq);
1886 out_wq_fail:
1887 	if (cdev->is_peripheral)
1888 		can_rx_offload_disable(&cdev->offload);
1889 	close_candev(dev);
1890 exit_disable_clks:
1891 	m_can_clk_stop(cdev);
1892 out_phy_power_off:
1893 	phy_power_off(cdev->transceiver);
1894 	return err;
1895 }
1896 
1897 static const struct net_device_ops m_can_netdev_ops = {
1898 	.ndo_open = m_can_open,
1899 	.ndo_stop = m_can_close,
1900 	.ndo_start_xmit = m_can_start_xmit,
1901 	.ndo_change_mtu = can_change_mtu,
1902 };
1903 
1904 static const struct ethtool_ops m_can_ethtool_ops = {
1905 	.get_ts_info = ethtool_op_get_ts_info,
1906 };
1907 
1908 static int register_m_can_dev(struct net_device *dev)
1909 {
1910 	dev->flags |= IFF_ECHO;	/* we support local echo */
1911 	dev->netdev_ops = &m_can_netdev_ops;
1912 	dev->ethtool_ops = &m_can_ethtool_ops;
1913 
1914 	return register_candev(dev);
1915 }
1916 
1917 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1918 				const u32 *mram_config_vals)
1919 {
1920 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1921 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1922 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1923 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1924 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1925 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1926 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1927 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1928 		FIELD_MAX(RXFC_FS_MASK);
1929 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1930 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1931 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1932 		FIELD_MAX(RXFC_FS_MASK);
1933 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1934 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1935 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1936 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1937 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1938 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1939 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1940 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1941 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1942 		FIELD_MAX(TXBC_NDTB_MASK);
1943 
1944 	dev_dbg(cdev->dev,
1945 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1946 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1947 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1948 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1949 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1950 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1951 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1952 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1953 }
1954 
1955 int m_can_init_ram(struct m_can_classdev *cdev)
1956 {
1957 	int end, i, start;
1958 	int err = 0;
1959 
1960 	/* initialize the entire Message RAM in use to avoid possible
1961 	 * ECC/parity checksum errors when reading an uninitialized buffer
1962 	 */
1963 	start = cdev->mcfg[MRAM_SIDF].off;
1964 	end = cdev->mcfg[MRAM_TXB].off +
1965 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1966 
1967 	for (i = start; i < end; i += 4) {
1968 		err = m_can_fifo_write_no_off(cdev, i, 0x0);
1969 		if (err)
1970 			break;
1971 	}
1972 
1973 	return err;
1974 }
1975 EXPORT_SYMBOL_GPL(m_can_init_ram);
1976 
1977 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1978 {
1979 	int ret = 0;
1980 
1981 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1982 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1983 
1984 	if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
1985 		dev_err(cdev->dev, "no clock found\n");
1986 		ret = -ENODEV;
1987 	}
1988 
1989 	return ret;
1990 }
1991 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1992 
1993 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1994 						int sizeof_priv)
1995 {
1996 	struct m_can_classdev *class_dev = NULL;
1997 	u32 mram_config_vals[MRAM_CFG_LEN];
1998 	struct net_device *net_dev;
1999 	u32 tx_fifo_size;
2000 	int ret;
2001 
2002 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2003 					     "bosch,mram-cfg",
2004 					     mram_config_vals,
2005 					     sizeof(mram_config_vals) / 4);
2006 	if (ret) {
2007 		dev_err(dev, "Could not get Message RAM configuration.");
2008 		goto out;
2009 	}
2010 
2011 	/* Get TX FIFO size
2012 	 * Defines the total amount of echo buffers for loopback
2013 	 */
2014 	tx_fifo_size = mram_config_vals[7];
2015 
2016 	/* allocate the m_can device */
2017 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2018 	if (!net_dev) {
2019 		dev_err(dev, "Failed to allocate CAN device");
2020 		goto out;
2021 	}
2022 
2023 	class_dev = netdev_priv(net_dev);
2024 	class_dev->net = net_dev;
2025 	class_dev->dev = dev;
2026 	SET_NETDEV_DEV(net_dev, dev);
2027 
2028 	m_can_of_parse_mram(class_dev, mram_config_vals);
2029 out:
2030 	return class_dev;
2031 }
2032 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2033 
2034 void m_can_class_free_dev(struct net_device *net)
2035 {
2036 	free_candev(net);
2037 }
2038 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2039 
2040 int m_can_class_register(struct m_can_classdev *cdev)
2041 {
2042 	int ret;
2043 
2044 	if (cdev->pm_clock_support) {
2045 		ret = m_can_clk_start(cdev);
2046 		if (ret)
2047 			return ret;
2048 	}
2049 
2050 	if (cdev->is_peripheral) {
2051 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2052 						NAPI_POLL_WEIGHT);
2053 		if (ret)
2054 			goto clk_disable;
2055 	}
2056 
2057 	if (!cdev->net->irq)
2058 		cdev->hrtimer.function = &hrtimer_callback;
2059 
2060 	ret = m_can_dev_setup(cdev);
2061 	if (ret)
2062 		goto rx_offload_del;
2063 
2064 	ret = register_m_can_dev(cdev->net);
2065 	if (ret) {
2066 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2067 			cdev->net->name, ret);
2068 		goto rx_offload_del;
2069 	}
2070 
2071 	of_can_transceiver(cdev->net);
2072 
2073 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2074 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2075 
2076 	/* Probe finished
2077 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2078 	 */
2079 	m_can_clk_stop(cdev);
2080 
2081 	return 0;
2082 
2083 rx_offload_del:
2084 	if (cdev->is_peripheral)
2085 		can_rx_offload_del(&cdev->offload);
2086 clk_disable:
2087 	m_can_clk_stop(cdev);
2088 
2089 	return ret;
2090 }
2091 EXPORT_SYMBOL_GPL(m_can_class_register);
2092 
2093 void m_can_class_unregister(struct m_can_classdev *cdev)
2094 {
2095 	if (cdev->is_peripheral)
2096 		can_rx_offload_del(&cdev->offload);
2097 	unregister_candev(cdev->net);
2098 }
2099 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2100 
2101 int m_can_class_suspend(struct device *dev)
2102 {
2103 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2104 	struct net_device *ndev = cdev->net;
2105 
2106 	if (netif_running(ndev)) {
2107 		netif_stop_queue(ndev);
2108 		netif_device_detach(ndev);
2109 		m_can_stop(ndev);
2110 		m_can_clk_stop(cdev);
2111 	}
2112 
2113 	pinctrl_pm_select_sleep_state(dev);
2114 
2115 	cdev->can.state = CAN_STATE_SLEEPING;
2116 
2117 	return 0;
2118 }
2119 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2120 
2121 int m_can_class_resume(struct device *dev)
2122 {
2123 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2124 	struct net_device *ndev = cdev->net;
2125 
2126 	pinctrl_pm_select_default_state(dev);
2127 
2128 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2129 
2130 	if (netif_running(ndev)) {
2131 		int ret;
2132 
2133 		ret = m_can_clk_start(cdev);
2134 		if (ret)
2135 			return ret;
2136 		ret  = m_can_start(ndev);
2137 		if (ret) {
2138 			m_can_clk_stop(cdev);
2139 
2140 			return ret;
2141 		}
2142 
2143 		netif_device_attach(ndev);
2144 		netif_start_queue(ndev);
2145 	}
2146 
2147 	return 0;
2148 }
2149 EXPORT_SYMBOL_GPL(m_can_class_resume);
2150 
2151 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2152 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2153 MODULE_LICENSE("GPL v2");
2154 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2155