xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 6774def6)
1 /*
2  * CAN bus driver for Bosch M_CAN controller
3  *
4  * Copyright (C) 2014 Freescale Semiconductor, Inc.
5  *	Dong Aisheng <b29396@freescale.com>
6  *
7  * Bosch M_CAN user manual can be obtained from:
8  * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9  * mcan_users_manual_v302.pdf
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 
27 #include <linux/can/dev.h>
28 
29 /* napi related */
30 #define M_CAN_NAPI_WEIGHT	64
31 
32 /* message ram configuration data length */
33 #define MRAM_CFG_LEN	8
34 
35 /* registers definition */
36 enum m_can_reg {
37 	M_CAN_CREL	= 0x0,
38 	M_CAN_ENDN	= 0x4,
39 	M_CAN_CUST	= 0x8,
40 	M_CAN_FBTP	= 0xc,
41 	M_CAN_TEST	= 0x10,
42 	M_CAN_RWD	= 0x14,
43 	M_CAN_CCCR	= 0x18,
44 	M_CAN_BTP	= 0x1c,
45 	M_CAN_TSCC	= 0x20,
46 	M_CAN_TSCV	= 0x24,
47 	M_CAN_TOCC	= 0x28,
48 	M_CAN_TOCV	= 0x2c,
49 	M_CAN_ECR	= 0x40,
50 	M_CAN_PSR	= 0x44,
51 	M_CAN_IR	= 0x50,
52 	M_CAN_IE	= 0x54,
53 	M_CAN_ILS	= 0x58,
54 	M_CAN_ILE	= 0x5c,
55 	M_CAN_GFC	= 0x80,
56 	M_CAN_SIDFC	= 0x84,
57 	M_CAN_XIDFC	= 0x88,
58 	M_CAN_XIDAM	= 0x90,
59 	M_CAN_HPMS	= 0x94,
60 	M_CAN_NDAT1	= 0x98,
61 	M_CAN_NDAT2	= 0x9c,
62 	M_CAN_RXF0C	= 0xa0,
63 	M_CAN_RXF0S	= 0xa4,
64 	M_CAN_RXF0A	= 0xa8,
65 	M_CAN_RXBC	= 0xac,
66 	M_CAN_RXF1C	= 0xb0,
67 	M_CAN_RXF1S	= 0xb4,
68 	M_CAN_RXF1A	= 0xb8,
69 	M_CAN_RXESC	= 0xbc,
70 	M_CAN_TXBC	= 0xc0,
71 	M_CAN_TXFQS	= 0xc4,
72 	M_CAN_TXESC	= 0xc8,
73 	M_CAN_TXBRP	= 0xcc,
74 	M_CAN_TXBAR	= 0xd0,
75 	M_CAN_TXBCR	= 0xd4,
76 	M_CAN_TXBTO	= 0xd8,
77 	M_CAN_TXBCF	= 0xdc,
78 	M_CAN_TXBTIE	= 0xe0,
79 	M_CAN_TXBCIE	= 0xe4,
80 	M_CAN_TXEFC	= 0xf0,
81 	M_CAN_TXEFS	= 0xf4,
82 	M_CAN_TXEFA	= 0xf8,
83 };
84 
85 /* m_can lec values */
86 enum m_can_lec_type {
87 	LEC_NO_ERROR = 0,
88 	LEC_STUFF_ERROR,
89 	LEC_FORM_ERROR,
90 	LEC_ACK_ERROR,
91 	LEC_BIT1_ERROR,
92 	LEC_BIT0_ERROR,
93 	LEC_CRC_ERROR,
94 	LEC_UNUSED,
95 };
96 
97 enum m_can_mram_cfg {
98 	MRAM_SIDF = 0,
99 	MRAM_XIDF,
100 	MRAM_RXF0,
101 	MRAM_RXF1,
102 	MRAM_RXB,
103 	MRAM_TXE,
104 	MRAM_TXB,
105 	MRAM_CFG_NUM,
106 };
107 
108 /* Test Register (TEST) */
109 #define TEST_LBCK	BIT(4)
110 
111 /* CC Control Register(CCCR) */
112 #define CCCR_TEST	BIT(7)
113 #define CCCR_MON	BIT(5)
114 #define CCCR_CCE	BIT(1)
115 #define CCCR_INIT	BIT(0)
116 
117 /* Bit Timing & Prescaler Register (BTP) */
118 #define BTR_BRP_MASK		0x3ff
119 #define BTR_BRP_SHIFT		16
120 #define BTR_TSEG1_SHIFT		8
121 #define BTR_TSEG1_MASK		(0x3f << BTR_TSEG1_SHIFT)
122 #define BTR_TSEG2_SHIFT		4
123 #define BTR_TSEG2_MASK		(0xf << BTR_TSEG2_SHIFT)
124 #define BTR_SJW_SHIFT		0
125 #define BTR_SJW_MASK		0xf
126 
127 /* Error Counter Register(ECR) */
128 #define ECR_RP			BIT(15)
129 #define ECR_REC_SHIFT		8
130 #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
131 #define ECR_TEC_SHIFT		0
132 #define ECR_TEC_MASK		0xff
133 
134 /* Protocol Status Register(PSR) */
135 #define PSR_BO		BIT(7)
136 #define PSR_EW		BIT(6)
137 #define PSR_EP		BIT(5)
138 #define PSR_LEC_MASK	0x7
139 
140 /* Interrupt Register(IR) */
141 #define IR_ALL_INT	0xffffffff
142 #define IR_STE		BIT(31)
143 #define IR_FOE		BIT(30)
144 #define IR_ACKE		BIT(29)
145 #define IR_BE		BIT(28)
146 #define IR_CRCE		BIT(27)
147 #define IR_WDI		BIT(26)
148 #define IR_BO		BIT(25)
149 #define IR_EW		BIT(24)
150 #define IR_EP		BIT(23)
151 #define IR_ELO		BIT(22)
152 #define IR_BEU		BIT(21)
153 #define IR_BEC		BIT(20)
154 #define IR_DRX		BIT(19)
155 #define IR_TOO		BIT(18)
156 #define IR_MRAF		BIT(17)
157 #define IR_TSW		BIT(16)
158 #define IR_TEFL		BIT(15)
159 #define IR_TEFF		BIT(14)
160 #define IR_TEFW		BIT(13)
161 #define IR_TEFN		BIT(12)
162 #define IR_TFE		BIT(11)
163 #define IR_TCF		BIT(10)
164 #define IR_TC		BIT(9)
165 #define IR_HPM		BIT(8)
166 #define IR_RF1L		BIT(7)
167 #define IR_RF1F		BIT(6)
168 #define IR_RF1W		BIT(5)
169 #define IR_RF1N		BIT(4)
170 #define IR_RF0L		BIT(3)
171 #define IR_RF0F		BIT(2)
172 #define IR_RF0W		BIT(1)
173 #define IR_RF0N		BIT(0)
174 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
175 #define IR_ERR_LEC	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
176 #define IR_ERR_BUS	(IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \
177 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
178 			 IR_RF1L | IR_RF0L)
179 #define IR_ERR_ALL	(IR_ERR_STATE | IR_ERR_BUS)
180 
181 /* Interrupt Line Select (ILS) */
182 #define ILS_ALL_INT0	0x0
183 #define ILS_ALL_INT1	0xFFFFFFFF
184 
185 /* Interrupt Line Enable (ILE) */
186 #define ILE_EINT0	BIT(0)
187 #define ILE_EINT1	BIT(1)
188 
189 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
190 #define RXFC_FWM_OFF	24
191 #define RXFC_FWM_MASK	0x7f
192 #define RXFC_FWM_1	(1 << RXFC_FWM_OFF)
193 #define RXFC_FS_OFF	16
194 #define RXFC_FS_MASK	0x7f
195 
196 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
197 #define RXFS_RFL	BIT(25)
198 #define RXFS_FF		BIT(24)
199 #define RXFS_FPI_OFF	16
200 #define RXFS_FPI_MASK	0x3f0000
201 #define RXFS_FGI_OFF	8
202 #define RXFS_FGI_MASK	0x3f00
203 #define RXFS_FFL_MASK	0x7f
204 
205 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
206 #define M_CAN_RXESC_8BYTES	0x0
207 
208 /* Tx Buffer Configuration(TXBC) */
209 #define TXBC_NDTB_OFF		16
210 #define TXBC_NDTB_MASK		0x3f
211 
212 /* Tx Buffer Element Size Configuration(TXESC) */
213 #define TXESC_TBDS_8BYTES	0x0
214 
215 /* Tx Event FIFO Con.guration (TXEFC) */
216 #define TXEFC_EFS_OFF		16
217 #define TXEFC_EFS_MASK		0x3f
218 
219 /* Message RAM Configuration (in bytes) */
220 #define SIDF_ELEMENT_SIZE	4
221 #define XIDF_ELEMENT_SIZE	8
222 #define RXF0_ELEMENT_SIZE	16
223 #define RXF1_ELEMENT_SIZE	16
224 #define RXB_ELEMENT_SIZE	16
225 #define TXE_ELEMENT_SIZE	8
226 #define TXB_ELEMENT_SIZE	16
227 
228 /* Message RAM Elements */
229 #define M_CAN_FIFO_ID		0x0
230 #define M_CAN_FIFO_DLC		0x4
231 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
232 
233 /* Rx Buffer Element */
234 #define RX_BUF_ESI		BIT(31)
235 #define RX_BUF_XTD		BIT(30)
236 #define RX_BUF_RTR		BIT(29)
237 
238 /* Tx Buffer Element */
239 #define TX_BUF_XTD		BIT(30)
240 #define TX_BUF_RTR		BIT(29)
241 
242 /* address offset and element number for each FIFO/Buffer in the Message RAM */
243 struct mram_cfg {
244 	u16 off;
245 	u8  num;
246 };
247 
248 /* m_can private data structure */
249 struct m_can_priv {
250 	struct can_priv can;	/* must be the first member */
251 	struct napi_struct napi;
252 	struct net_device *dev;
253 	struct device *device;
254 	struct clk *hclk;
255 	struct clk *cclk;
256 	void __iomem *base;
257 	u32 irqstatus;
258 
259 	/* message ram configuration */
260 	void __iomem *mram_base;
261 	struct mram_cfg mcfg[MRAM_CFG_NUM];
262 };
263 
264 static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
265 {
266 	return readl(priv->base + reg);
267 }
268 
269 static inline void m_can_write(const struct m_can_priv *priv,
270 			       enum m_can_reg reg, u32 val)
271 {
272 	writel(val, priv->base + reg);
273 }
274 
275 static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
276 				  u32 fgi, unsigned int offset)
277 {
278 	return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
279 		     fgi * RXF0_ELEMENT_SIZE + offset);
280 }
281 
282 static inline void m_can_fifo_write(const struct m_can_priv *priv,
283 				    u32 fpi, unsigned int offset, u32 val)
284 {
285 	return writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
286 		      fpi * TXB_ELEMENT_SIZE + offset);
287 }
288 
289 static inline void m_can_config_endisable(const struct m_can_priv *priv,
290 					  bool enable)
291 {
292 	u32 cccr = m_can_read(priv, M_CAN_CCCR);
293 	u32 timeout = 10;
294 	u32 val = 0;
295 
296 	if (enable) {
297 		/* enable m_can configuration */
298 		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
299 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
300 		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
301 	} else {
302 		m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
303 	}
304 
305 	/* there's a delay for module initialization */
306 	if (enable)
307 		val = CCCR_INIT | CCCR_CCE;
308 
309 	while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
310 		if (timeout == 0) {
311 			netdev_warn(priv->dev, "Failed to init module\n");
312 			return;
313 		}
314 		timeout--;
315 		udelay(1);
316 	}
317 }
318 
319 static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
320 {
321 	m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1);
322 }
323 
324 static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
325 {
326 	m_can_write(priv, M_CAN_ILE, 0x0);
327 }
328 
329 static void m_can_read_fifo(const struct net_device *dev, struct can_frame *cf,
330 			    u32 rxfs)
331 {
332 	struct m_can_priv *priv = netdev_priv(dev);
333 	u32 id, fgi;
334 
335 	/* calculate the fifo get index for where to read data */
336 	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
337 	id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
338 	if (id & RX_BUF_XTD)
339 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
340 	else
341 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
342 
343 	if (id & RX_BUF_RTR) {
344 		cf->can_id |= CAN_RTR_FLAG;
345 	} else {
346 		id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
347 		cf->can_dlc = get_can_dlc((id >> 16) & 0x0F);
348 		*(u32 *)(cf->data + 0) = m_can_fifo_read(priv, fgi,
349 							 M_CAN_FIFO_DATA(0));
350 		*(u32 *)(cf->data + 4) = m_can_fifo_read(priv, fgi,
351 							 M_CAN_FIFO_DATA(1));
352 	}
353 
354 	/* acknowledge rx fifo 0 */
355 	m_can_write(priv, M_CAN_RXF0A, fgi);
356 }
357 
358 static int m_can_do_rx_poll(struct net_device *dev, int quota)
359 {
360 	struct m_can_priv *priv = netdev_priv(dev);
361 	struct net_device_stats *stats = &dev->stats;
362 	struct sk_buff *skb;
363 	struct can_frame *frame;
364 	u32 pkts = 0;
365 	u32 rxfs;
366 
367 	rxfs = m_can_read(priv, M_CAN_RXF0S);
368 	if (!(rxfs & RXFS_FFL_MASK)) {
369 		netdev_dbg(dev, "no messages in fifo0\n");
370 		return 0;
371 	}
372 
373 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
374 		if (rxfs & RXFS_RFL)
375 			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
376 
377 		skb = alloc_can_skb(dev, &frame);
378 		if (!skb) {
379 			stats->rx_dropped++;
380 			return pkts;
381 		}
382 
383 		m_can_read_fifo(dev, frame, rxfs);
384 
385 		stats->rx_packets++;
386 		stats->rx_bytes += frame->can_dlc;
387 
388 		netif_receive_skb(skb);
389 
390 		quota--;
391 		pkts++;
392 		rxfs = m_can_read(priv, M_CAN_RXF0S);
393 	}
394 
395 	if (pkts)
396 		can_led_event(dev, CAN_LED_EVENT_RX);
397 
398 	return pkts;
399 }
400 
401 static int m_can_handle_lost_msg(struct net_device *dev)
402 {
403 	struct net_device_stats *stats = &dev->stats;
404 	struct sk_buff *skb;
405 	struct can_frame *frame;
406 
407 	netdev_err(dev, "msg lost in rxf0\n");
408 
409 	stats->rx_errors++;
410 	stats->rx_over_errors++;
411 
412 	skb = alloc_can_err_skb(dev, &frame);
413 	if (unlikely(!skb))
414 		return 0;
415 
416 	frame->can_id |= CAN_ERR_CRTL;
417 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
418 
419 	netif_receive_skb(skb);
420 
421 	return 1;
422 }
423 
424 static int m_can_handle_lec_err(struct net_device *dev,
425 				enum m_can_lec_type lec_type)
426 {
427 	struct m_can_priv *priv = netdev_priv(dev);
428 	struct net_device_stats *stats = &dev->stats;
429 	struct can_frame *cf;
430 	struct sk_buff *skb;
431 
432 	priv->can.can_stats.bus_error++;
433 	stats->rx_errors++;
434 
435 	/* propagate the error condition to the CAN stack */
436 	skb = alloc_can_err_skb(dev, &cf);
437 	if (unlikely(!skb))
438 		return 0;
439 
440 	/* check for 'last error code' which tells us the
441 	 * type of the last error to occur on the CAN bus
442 	 */
443 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
444 	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
445 
446 	switch (lec_type) {
447 	case LEC_STUFF_ERROR:
448 		netdev_dbg(dev, "stuff error\n");
449 		cf->data[2] |= CAN_ERR_PROT_STUFF;
450 		break;
451 	case LEC_FORM_ERROR:
452 		netdev_dbg(dev, "form error\n");
453 		cf->data[2] |= CAN_ERR_PROT_FORM;
454 		break;
455 	case LEC_ACK_ERROR:
456 		netdev_dbg(dev, "ack error\n");
457 		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
458 				CAN_ERR_PROT_LOC_ACK_DEL);
459 		break;
460 	case LEC_BIT1_ERROR:
461 		netdev_dbg(dev, "bit1 error\n");
462 		cf->data[2] |= CAN_ERR_PROT_BIT1;
463 		break;
464 	case LEC_BIT0_ERROR:
465 		netdev_dbg(dev, "bit0 error\n");
466 		cf->data[2] |= CAN_ERR_PROT_BIT0;
467 		break;
468 	case LEC_CRC_ERROR:
469 		netdev_dbg(dev, "CRC error\n");
470 		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
471 				CAN_ERR_PROT_LOC_CRC_DEL);
472 		break;
473 	default:
474 		break;
475 	}
476 
477 	stats->rx_packets++;
478 	stats->rx_bytes += cf->can_dlc;
479 	netif_receive_skb(skb);
480 
481 	return 1;
482 }
483 
484 static int m_can_get_berr_counter(const struct net_device *dev,
485 				  struct can_berr_counter *bec)
486 {
487 	struct m_can_priv *priv = netdev_priv(dev);
488 	unsigned int ecr;
489 	int err;
490 
491 	err = clk_prepare_enable(priv->hclk);
492 	if (err)
493 		return err;
494 
495 	err = clk_prepare_enable(priv->cclk);
496 	if (err) {
497 		clk_disable_unprepare(priv->hclk);
498 		return err;
499 	}
500 
501 	ecr = m_can_read(priv, M_CAN_ECR);
502 	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
503 	bec->txerr = ecr & ECR_TEC_MASK;
504 
505 	clk_disable_unprepare(priv->cclk);
506 	clk_disable_unprepare(priv->hclk);
507 
508 	return 0;
509 }
510 
511 static int m_can_handle_state_change(struct net_device *dev,
512 				     enum can_state new_state)
513 {
514 	struct m_can_priv *priv = netdev_priv(dev);
515 	struct net_device_stats *stats = &dev->stats;
516 	struct can_frame *cf;
517 	struct sk_buff *skb;
518 	struct can_berr_counter bec;
519 	unsigned int ecr;
520 
521 	switch (new_state) {
522 	case CAN_STATE_ERROR_ACTIVE:
523 		/* error warning state */
524 		priv->can.can_stats.error_warning++;
525 		priv->can.state = CAN_STATE_ERROR_WARNING;
526 		break;
527 	case CAN_STATE_ERROR_PASSIVE:
528 		/* error passive state */
529 		priv->can.can_stats.error_passive++;
530 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
531 		break;
532 	case CAN_STATE_BUS_OFF:
533 		/* bus-off state */
534 		priv->can.state = CAN_STATE_BUS_OFF;
535 		m_can_disable_all_interrupts(priv);
536 		can_bus_off(dev);
537 		break;
538 	default:
539 		break;
540 	}
541 
542 	/* propagate the error condition to the CAN stack */
543 	skb = alloc_can_err_skb(dev, &cf);
544 	if (unlikely(!skb))
545 		return 0;
546 
547 	m_can_get_berr_counter(dev, &bec);
548 
549 	switch (new_state) {
550 	case CAN_STATE_ERROR_ACTIVE:
551 		/* error warning state */
552 		cf->can_id |= CAN_ERR_CRTL;
553 		cf->data[1] = (bec.txerr > bec.rxerr) ?
554 			CAN_ERR_CRTL_TX_WARNING :
555 			CAN_ERR_CRTL_RX_WARNING;
556 		cf->data[6] = bec.txerr;
557 		cf->data[7] = bec.rxerr;
558 		break;
559 	case CAN_STATE_ERROR_PASSIVE:
560 		/* error passive state */
561 		cf->can_id |= CAN_ERR_CRTL;
562 		ecr = m_can_read(priv, M_CAN_ECR);
563 		if (ecr & ECR_RP)
564 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
565 		if (bec.txerr > 127)
566 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
567 		cf->data[6] = bec.txerr;
568 		cf->data[7] = bec.rxerr;
569 		break;
570 	case CAN_STATE_BUS_OFF:
571 		/* bus-off state */
572 		cf->can_id |= CAN_ERR_BUSOFF;
573 		break;
574 	default:
575 		break;
576 	}
577 
578 	stats->rx_packets++;
579 	stats->rx_bytes += cf->can_dlc;
580 	netif_receive_skb(skb);
581 
582 	return 1;
583 }
584 
585 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
586 {
587 	struct m_can_priv *priv = netdev_priv(dev);
588 	int work_done = 0;
589 
590 	if ((psr & PSR_EW) &&
591 	    (priv->can.state != CAN_STATE_ERROR_WARNING)) {
592 		netdev_dbg(dev, "entered error warning state\n");
593 		work_done += m_can_handle_state_change(dev,
594 						       CAN_STATE_ERROR_WARNING);
595 	}
596 
597 	if ((psr & PSR_EP) &&
598 	    (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
599 		netdev_dbg(dev, "entered error warning state\n");
600 		work_done += m_can_handle_state_change(dev,
601 						       CAN_STATE_ERROR_PASSIVE);
602 	}
603 
604 	if ((psr & PSR_BO) &&
605 	    (priv->can.state != CAN_STATE_BUS_OFF)) {
606 		netdev_dbg(dev, "entered error warning state\n");
607 		work_done += m_can_handle_state_change(dev,
608 						       CAN_STATE_BUS_OFF);
609 	}
610 
611 	return work_done;
612 }
613 
614 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
615 {
616 	if (irqstatus & IR_WDI)
617 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
618 	if (irqstatus & IR_BEU)
619 		netdev_err(dev, "Error Logging Overflow\n");
620 	if (irqstatus & IR_BEU)
621 		netdev_err(dev, "Bit Error Uncorrected\n");
622 	if (irqstatus & IR_BEC)
623 		netdev_err(dev, "Bit Error Corrected\n");
624 	if (irqstatus & IR_TOO)
625 		netdev_err(dev, "Timeout reached\n");
626 	if (irqstatus & IR_MRAF)
627 		netdev_err(dev, "Message RAM access failure occurred\n");
628 }
629 
630 static inline bool is_lec_err(u32 psr)
631 {
632 	psr &= LEC_UNUSED;
633 
634 	return psr && (psr != LEC_UNUSED);
635 }
636 
637 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
638 				   u32 psr)
639 {
640 	struct m_can_priv *priv = netdev_priv(dev);
641 	int work_done = 0;
642 
643 	if (irqstatus & IR_RF0L)
644 		work_done += m_can_handle_lost_msg(dev);
645 
646 	/* handle lec errors on the bus */
647 	if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
648 	    is_lec_err(psr))
649 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
650 
651 	/* other unproccessed error interrupts */
652 	m_can_handle_other_err(dev, irqstatus);
653 
654 	return work_done;
655 }
656 
657 static int m_can_poll(struct napi_struct *napi, int quota)
658 {
659 	struct net_device *dev = napi->dev;
660 	struct m_can_priv *priv = netdev_priv(dev);
661 	int work_done = 0;
662 	u32 irqstatus, psr;
663 
664 	irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
665 	if (!irqstatus)
666 		goto end;
667 
668 	psr = m_can_read(priv, M_CAN_PSR);
669 	if (irqstatus & IR_ERR_STATE)
670 		work_done += m_can_handle_state_errors(dev, psr);
671 
672 	if (irqstatus & IR_ERR_BUS)
673 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
674 
675 	if (irqstatus & IR_RF0N)
676 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
677 
678 	if (work_done < quota) {
679 		napi_complete(napi);
680 		m_can_enable_all_interrupts(priv);
681 	}
682 
683 end:
684 	return work_done;
685 }
686 
687 static irqreturn_t m_can_isr(int irq, void *dev_id)
688 {
689 	struct net_device *dev = (struct net_device *)dev_id;
690 	struct m_can_priv *priv = netdev_priv(dev);
691 	struct net_device_stats *stats = &dev->stats;
692 	u32 ir;
693 
694 	ir = m_can_read(priv, M_CAN_IR);
695 	if (!ir)
696 		return IRQ_NONE;
697 
698 	/* ACK all irqs */
699 	if (ir & IR_ALL_INT)
700 		m_can_write(priv, M_CAN_IR, ir);
701 
702 	/* schedule NAPI in case of
703 	 * - rx IRQ
704 	 * - state change IRQ
705 	 * - bus error IRQ and bus error reporting
706 	 */
707 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
708 		priv->irqstatus = ir;
709 		m_can_disable_all_interrupts(priv);
710 		napi_schedule(&priv->napi);
711 	}
712 
713 	/* transmission complete interrupt */
714 	if (ir & IR_TC) {
715 		stats->tx_bytes += can_get_echo_skb(dev, 0);
716 		stats->tx_packets++;
717 		can_led_event(dev, CAN_LED_EVENT_TX);
718 		netif_wake_queue(dev);
719 	}
720 
721 	return IRQ_HANDLED;
722 }
723 
724 static const struct can_bittiming_const m_can_bittiming_const = {
725 	.name = KBUILD_MODNAME,
726 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
727 	.tseg1_max = 64,
728 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
729 	.tseg2_max = 16,
730 	.sjw_max = 16,
731 	.brp_min = 1,
732 	.brp_max = 1024,
733 	.brp_inc = 1,
734 };
735 
736 static int m_can_set_bittiming(struct net_device *dev)
737 {
738 	struct m_can_priv *priv = netdev_priv(dev);
739 	const struct can_bittiming *bt = &priv->can.bittiming;
740 	u16 brp, sjw, tseg1, tseg2;
741 	u32 reg_btp;
742 
743 	brp = bt->brp - 1;
744 	sjw = bt->sjw - 1;
745 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
746 	tseg2 = bt->phase_seg2 - 1;
747 	reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
748 			(tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
749 	m_can_write(priv, M_CAN_BTP, reg_btp);
750 	netdev_dbg(dev, "setting BTP 0x%x\n", reg_btp);
751 
752 	return 0;
753 }
754 
755 /* Configure M_CAN chip:
756  * - set rx buffer/fifo element size
757  * - configure rx fifo
758  * - accept non-matching frame into fifo 0
759  * - configure tx buffer
760  * - configure mode
761  * - setup bittiming
762  */
763 static void m_can_chip_config(struct net_device *dev)
764 {
765 	struct m_can_priv *priv = netdev_priv(dev);
766 	u32 cccr, test;
767 
768 	m_can_config_endisable(priv, true);
769 
770 	/* RX Buffer/FIFO Element Size 8 bytes data field */
771 	m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_8BYTES);
772 
773 	/* Accept Non-matching Frames Into FIFO 0 */
774 	m_can_write(priv, M_CAN_GFC, 0x0);
775 
776 	/* only support one Tx Buffer currently */
777 	m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
778 		    priv->mcfg[MRAM_TXB].off);
779 
780 	/* only support 8 bytes firstly */
781 	m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_8BYTES);
782 
783 	m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
784 		    priv->mcfg[MRAM_TXE].off);
785 
786 	/* rx fifo configuration, blocking mode, fifo size 1 */
787 	m_can_write(priv, M_CAN_RXF0C,
788 		    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
789 		    RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off);
790 
791 	m_can_write(priv, M_CAN_RXF1C,
792 		    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
793 		    RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off);
794 
795 	cccr = m_can_read(priv, M_CAN_CCCR);
796 	cccr &= ~(CCCR_TEST | CCCR_MON);
797 	test = m_can_read(priv, M_CAN_TEST);
798 	test &= ~TEST_LBCK;
799 
800 	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
801 		cccr |= CCCR_MON;
802 
803 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
804 		cccr |= CCCR_TEST;
805 		test |= TEST_LBCK;
806 	}
807 
808 	m_can_write(priv, M_CAN_CCCR, cccr);
809 	m_can_write(priv, M_CAN_TEST, test);
810 
811 	/* enable interrupts */
812 	m_can_write(priv, M_CAN_IR, IR_ALL_INT);
813 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
814 		m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
815 	else
816 		m_can_write(priv, M_CAN_IE, IR_ALL_INT);
817 
818 	/* route all interrupts to INT0 */
819 	m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
820 
821 	/* set bittiming params */
822 	m_can_set_bittiming(dev);
823 
824 	m_can_config_endisable(priv, false);
825 }
826 
827 static void m_can_start(struct net_device *dev)
828 {
829 	struct m_can_priv *priv = netdev_priv(dev);
830 
831 	/* basic m_can configuration */
832 	m_can_chip_config(dev);
833 
834 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
835 
836 	m_can_enable_all_interrupts(priv);
837 }
838 
839 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
840 {
841 	switch (mode) {
842 	case CAN_MODE_START:
843 		m_can_start(dev);
844 		netif_wake_queue(dev);
845 		break;
846 	default:
847 		return -EOPNOTSUPP;
848 	}
849 
850 	return 0;
851 }
852 
853 static void free_m_can_dev(struct net_device *dev)
854 {
855 	free_candev(dev);
856 }
857 
858 static struct net_device *alloc_m_can_dev(void)
859 {
860 	struct net_device *dev;
861 	struct m_can_priv *priv;
862 
863 	dev = alloc_candev(sizeof(*priv), 1);
864 	if (!dev)
865 		return NULL;
866 
867 	priv = netdev_priv(dev);
868 	netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
869 
870 	priv->dev = dev;
871 	priv->can.bittiming_const = &m_can_bittiming_const;
872 	priv->can.do_set_mode = m_can_set_mode;
873 	priv->can.do_get_berr_counter = m_can_get_berr_counter;
874 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
875 					CAN_CTRLMODE_LISTENONLY |
876 					CAN_CTRLMODE_BERR_REPORTING;
877 
878 	return dev;
879 }
880 
881 static int m_can_open(struct net_device *dev)
882 {
883 	struct m_can_priv *priv = netdev_priv(dev);
884 	int err;
885 
886 	err = clk_prepare_enable(priv->hclk);
887 	if (err)
888 		return err;
889 
890 	err = clk_prepare_enable(priv->cclk);
891 	if (err)
892 		goto exit_disable_hclk;
893 
894 	/* open the can device */
895 	err = open_candev(dev);
896 	if (err) {
897 		netdev_err(dev, "failed to open can device\n");
898 		goto exit_disable_cclk;
899 	}
900 
901 	/* register interrupt handler */
902 	err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
903 			  dev);
904 	if (err < 0) {
905 		netdev_err(dev, "failed to request interrupt\n");
906 		goto exit_irq_fail;
907 	}
908 
909 	/* start the m_can controller */
910 	m_can_start(dev);
911 
912 	can_led_event(dev, CAN_LED_EVENT_OPEN);
913 	napi_enable(&priv->napi);
914 	netif_start_queue(dev);
915 
916 	return 0;
917 
918 exit_irq_fail:
919 	close_candev(dev);
920 exit_disable_cclk:
921 	clk_disable_unprepare(priv->cclk);
922 exit_disable_hclk:
923 	clk_disable_unprepare(priv->hclk);
924 	return err;
925 }
926 
927 static void m_can_stop(struct net_device *dev)
928 {
929 	struct m_can_priv *priv = netdev_priv(dev);
930 
931 	/* disable all interrupts */
932 	m_can_disable_all_interrupts(priv);
933 
934 	clk_disable_unprepare(priv->hclk);
935 	clk_disable_unprepare(priv->cclk);
936 
937 	/* set the state as STOPPED */
938 	priv->can.state = CAN_STATE_STOPPED;
939 }
940 
941 static int m_can_close(struct net_device *dev)
942 {
943 	struct m_can_priv *priv = netdev_priv(dev);
944 
945 	netif_stop_queue(dev);
946 	napi_disable(&priv->napi);
947 	m_can_stop(dev);
948 	free_irq(dev->irq, dev);
949 	close_candev(dev);
950 	can_led_event(dev, CAN_LED_EVENT_STOP);
951 
952 	return 0;
953 }
954 
955 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
956 				    struct net_device *dev)
957 {
958 	struct m_can_priv *priv = netdev_priv(dev);
959 	struct can_frame *cf = (struct can_frame *)skb->data;
960 	u32 id;
961 
962 	if (can_dropped_invalid_skb(dev, skb))
963 		return NETDEV_TX_OK;
964 
965 	netif_stop_queue(dev);
966 
967 	if (cf->can_id & CAN_EFF_FLAG) {
968 		id = cf->can_id & CAN_EFF_MASK;
969 		id |= TX_BUF_XTD;
970 	} else {
971 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
972 	}
973 
974 	if (cf->can_id & CAN_RTR_FLAG)
975 		id |= TX_BUF_RTR;
976 
977 	/* message ram configuration */
978 	m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
979 	m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, cf->can_dlc << 16);
980 	m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(0), *(u32 *)(cf->data + 0));
981 	m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(1), *(u32 *)(cf->data + 4));
982 	can_put_echo_skb(skb, dev, 0);
983 
984 	/* enable first TX buffer to start transfer  */
985 	m_can_write(priv, M_CAN_TXBTIE, 0x1);
986 	m_can_write(priv, M_CAN_TXBAR, 0x1);
987 
988 	return NETDEV_TX_OK;
989 }
990 
991 static const struct net_device_ops m_can_netdev_ops = {
992 	.ndo_open = m_can_open,
993 	.ndo_stop = m_can_close,
994 	.ndo_start_xmit = m_can_start_xmit,
995 };
996 
997 static int register_m_can_dev(struct net_device *dev)
998 {
999 	dev->flags |= IFF_ECHO;	/* we support local echo */
1000 	dev->netdev_ops = &m_can_netdev_ops;
1001 
1002 	return register_candev(dev);
1003 }
1004 
1005 static int m_can_of_parse_mram(struct platform_device *pdev,
1006 			       struct m_can_priv *priv)
1007 {
1008 	struct device_node *np = pdev->dev.of_node;
1009 	struct resource *res;
1010 	void __iomem *addr;
1011 	u32 out_val[MRAM_CFG_LEN];
1012 	int ret;
1013 
1014 	/* message ram could be shared */
1015 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1016 	if (!res)
1017 		return -ENODEV;
1018 
1019 	addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1020 	if (!addr)
1021 		return -ENOMEM;
1022 
1023 	/* get message ram configuration */
1024 	ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1025 					 out_val, sizeof(out_val) / 4);
1026 	if (ret) {
1027 		dev_err(&pdev->dev, "can not get message ram configuration\n");
1028 		return -ENODEV;
1029 	}
1030 
1031 	priv->mram_base = addr;
1032 	priv->mcfg[MRAM_SIDF].off = out_val[0];
1033 	priv->mcfg[MRAM_SIDF].num = out_val[1];
1034 	priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1035 			priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1036 	priv->mcfg[MRAM_XIDF].num = out_val[2];
1037 	priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1038 			priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1039 	priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
1040 	priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1041 			priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1042 	priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
1043 	priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1044 			priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1045 	priv->mcfg[MRAM_RXB].num = out_val[5];
1046 	priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1047 			priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1048 	priv->mcfg[MRAM_TXE].num = out_val[6];
1049 	priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1050 			priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1051 	priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;
1052 
1053 	dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1054 		priv->mram_base,
1055 		priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1056 		priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1057 		priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1058 		priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1059 		priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1060 		priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1061 		priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1062 
1063 	return 0;
1064 }
1065 
1066 static int m_can_plat_probe(struct platform_device *pdev)
1067 {
1068 	struct net_device *dev;
1069 	struct m_can_priv *priv;
1070 	struct resource *res;
1071 	void __iomem *addr;
1072 	struct clk *hclk, *cclk;
1073 	int irq, ret;
1074 
1075 	hclk = devm_clk_get(&pdev->dev, "hclk");
1076 	cclk = devm_clk_get(&pdev->dev, "cclk");
1077 	if (IS_ERR(hclk) || IS_ERR(cclk)) {
1078 		dev_err(&pdev->dev, "no clock find\n");
1079 		return -ENODEV;
1080 	}
1081 
1082 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1083 	addr = devm_ioremap_resource(&pdev->dev, res);
1084 	irq = platform_get_irq_byname(pdev, "int0");
1085 	if (IS_ERR(addr) || irq < 0)
1086 		return -EINVAL;
1087 
1088 	/* allocate the m_can device */
1089 	dev = alloc_m_can_dev();
1090 	if (!dev)
1091 		return -ENOMEM;
1092 
1093 	priv = netdev_priv(dev);
1094 	dev->irq = irq;
1095 	priv->base = addr;
1096 	priv->device = &pdev->dev;
1097 	priv->hclk = hclk;
1098 	priv->cclk = cclk;
1099 	priv->can.clock.freq = clk_get_rate(cclk);
1100 
1101 	ret = m_can_of_parse_mram(pdev, priv);
1102 	if (ret)
1103 		goto failed_free_dev;
1104 
1105 	platform_set_drvdata(pdev, dev);
1106 	SET_NETDEV_DEV(dev, &pdev->dev);
1107 
1108 	ret = register_m_can_dev(dev);
1109 	if (ret) {
1110 		dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1111 			KBUILD_MODNAME, ret);
1112 		goto failed_free_dev;
1113 	}
1114 
1115 	devm_can_led_init(dev);
1116 
1117 	dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
1118 		 KBUILD_MODNAME, priv->base, dev->irq);
1119 
1120 	return 0;
1121 
1122 failed_free_dev:
1123 	free_m_can_dev(dev);
1124 	return ret;
1125 }
1126 
1127 static __maybe_unused int m_can_suspend(struct device *dev)
1128 {
1129 	struct net_device *ndev = dev_get_drvdata(dev);
1130 	struct m_can_priv *priv = netdev_priv(ndev);
1131 
1132 	if (netif_running(ndev)) {
1133 		netif_stop_queue(ndev);
1134 		netif_device_detach(ndev);
1135 	}
1136 
1137 	/* TODO: enter low power */
1138 
1139 	priv->can.state = CAN_STATE_SLEEPING;
1140 
1141 	return 0;
1142 }
1143 
1144 static __maybe_unused int m_can_resume(struct device *dev)
1145 {
1146 	struct net_device *ndev = dev_get_drvdata(dev);
1147 	struct m_can_priv *priv = netdev_priv(ndev);
1148 
1149 	/* TODO: exit low power */
1150 
1151 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1152 
1153 	if (netif_running(ndev)) {
1154 		netif_device_attach(ndev);
1155 		netif_start_queue(ndev);
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 static void unregister_m_can_dev(struct net_device *dev)
1162 {
1163 	unregister_candev(dev);
1164 }
1165 
1166 static int m_can_plat_remove(struct platform_device *pdev)
1167 {
1168 	struct net_device *dev = platform_get_drvdata(pdev);
1169 
1170 	unregister_m_can_dev(dev);
1171 	platform_set_drvdata(pdev, NULL);
1172 
1173 	free_m_can_dev(dev);
1174 
1175 	return 0;
1176 }
1177 
1178 static const struct dev_pm_ops m_can_pmops = {
1179 	SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1180 };
1181 
1182 static const struct of_device_id m_can_of_table[] = {
1183 	{ .compatible = "bosch,m_can", .data = NULL },
1184 	{ /* sentinel */ },
1185 };
1186 MODULE_DEVICE_TABLE(of, m_can_of_table);
1187 
1188 static struct platform_driver m_can_plat_driver = {
1189 	.driver = {
1190 		.name = KBUILD_MODNAME,
1191 		.of_match_table = m_can_of_table,
1192 		.pm     = &m_can_pmops,
1193 	},
1194 	.probe = m_can_plat_probe,
1195 	.remove = m_can_plat_remove,
1196 };
1197 
1198 module_platform_driver(m_can_plat_driver);
1199 
1200 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1201 MODULE_LICENSE("GPL v2");
1202 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1203