1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/netdevice.h> 17 #include <linux/of.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/iopoll.h> 22 #include <linux/can/dev.h> 23 #include <linux/pinctrl/consumer.h> 24 25 #include "m_can.h" 26 27 /* registers definition */ 28 enum m_can_reg { 29 M_CAN_CREL = 0x0, 30 M_CAN_ENDN = 0x4, 31 M_CAN_CUST = 0x8, 32 M_CAN_DBTP = 0xc, 33 M_CAN_TEST = 0x10, 34 M_CAN_RWD = 0x14, 35 M_CAN_CCCR = 0x18, 36 M_CAN_NBTP = 0x1c, 37 M_CAN_TSCC = 0x20, 38 M_CAN_TSCV = 0x24, 39 M_CAN_TOCC = 0x28, 40 M_CAN_TOCV = 0x2c, 41 M_CAN_ECR = 0x40, 42 M_CAN_PSR = 0x44, 43 /* TDCR Register only available for version >=3.1.x */ 44 M_CAN_TDCR = 0x48, 45 M_CAN_IR = 0x50, 46 M_CAN_IE = 0x54, 47 M_CAN_ILS = 0x58, 48 M_CAN_ILE = 0x5c, 49 M_CAN_GFC = 0x80, 50 M_CAN_SIDFC = 0x84, 51 M_CAN_XIDFC = 0x88, 52 M_CAN_XIDAM = 0x90, 53 M_CAN_HPMS = 0x94, 54 M_CAN_NDAT1 = 0x98, 55 M_CAN_NDAT2 = 0x9c, 56 M_CAN_RXF0C = 0xa0, 57 M_CAN_RXF0S = 0xa4, 58 M_CAN_RXF0A = 0xa8, 59 M_CAN_RXBC = 0xac, 60 M_CAN_RXF1C = 0xb0, 61 M_CAN_RXF1S = 0xb4, 62 M_CAN_RXF1A = 0xb8, 63 M_CAN_RXESC = 0xbc, 64 M_CAN_TXBC = 0xc0, 65 M_CAN_TXFQS = 0xc4, 66 M_CAN_TXESC = 0xc8, 67 M_CAN_TXBRP = 0xcc, 68 M_CAN_TXBAR = 0xd0, 69 M_CAN_TXBCR = 0xd4, 70 M_CAN_TXBTO = 0xd8, 71 M_CAN_TXBCF = 0xdc, 72 M_CAN_TXBTIE = 0xe0, 73 M_CAN_TXBCIE = 0xe4, 74 M_CAN_TXEFC = 0xf0, 75 M_CAN_TXEFS = 0xf4, 76 M_CAN_TXEFA = 0xf8, 77 }; 78 79 /* napi related */ 80 #define M_CAN_NAPI_WEIGHT 64 81 82 /* message ram configuration data length */ 83 #define MRAM_CFG_LEN 8 84 85 /* Core Release Register (CREL) */ 86 #define CREL_REL_MASK GENMASK(31, 28) 87 #define CREL_STEP_MASK GENMASK(27, 24) 88 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 89 90 /* Data Bit Timing & Prescaler Register (DBTP) */ 91 #define DBTP_TDC BIT(23) 92 #define DBTP_DBRP_MASK GENMASK(20, 16) 93 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 94 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 95 #define DBTP_DSJW_MASK GENMASK(3, 0) 96 97 /* Transmitter Delay Compensation Register (TDCR) */ 98 #define TDCR_TDCO_MASK GENMASK(14, 8) 99 #define TDCR_TDCF_MASK GENMASK(6, 0) 100 101 /* Test Register (TEST) */ 102 #define TEST_LBCK BIT(4) 103 104 /* CC Control Register (CCCR) */ 105 #define CCCR_TXP BIT(14) 106 #define CCCR_TEST BIT(7) 107 #define CCCR_DAR BIT(6) 108 #define CCCR_MON BIT(5) 109 #define CCCR_CSR BIT(4) 110 #define CCCR_CSA BIT(3) 111 #define CCCR_ASM BIT(2) 112 #define CCCR_CCE BIT(1) 113 #define CCCR_INIT BIT(0) 114 /* for version 3.0.x */ 115 #define CCCR_CMR_MASK GENMASK(11, 10) 116 #define CCCR_CMR_CANFD 0x1 117 #define CCCR_CMR_CANFD_BRS 0x2 118 #define CCCR_CMR_CAN 0x3 119 #define CCCR_CME_MASK GENMASK(9, 8) 120 #define CCCR_CME_CAN 0 121 #define CCCR_CME_CANFD 0x1 122 #define CCCR_CME_CANFD_BRS 0x2 123 /* for version >=3.1.x */ 124 #define CCCR_EFBI BIT(13) 125 #define CCCR_PXHD BIT(12) 126 #define CCCR_BRSE BIT(9) 127 #define CCCR_FDOE BIT(8) 128 /* for version >=3.2.x */ 129 #define CCCR_NISO BIT(15) 130 /* for version >=3.3.x */ 131 #define CCCR_WMM BIT(11) 132 #define CCCR_UTSU BIT(10) 133 134 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 135 #define NBTP_NSJW_MASK GENMASK(31, 25) 136 #define NBTP_NBRP_MASK GENMASK(24, 16) 137 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 138 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 139 140 /* Timestamp Counter Configuration Register (TSCC) */ 141 #define TSCC_TCP_MASK GENMASK(19, 16) 142 #define TSCC_TSS_MASK GENMASK(1, 0) 143 #define TSCC_TSS_DISABLE 0x0 144 #define TSCC_TSS_INTERNAL 0x1 145 #define TSCC_TSS_EXTERNAL 0x2 146 147 /* Timestamp Counter Value Register (TSCV) */ 148 #define TSCV_TSC_MASK GENMASK(15, 0) 149 150 /* Error Counter Register (ECR) */ 151 #define ECR_RP BIT(15) 152 #define ECR_REC_MASK GENMASK(14, 8) 153 #define ECR_TEC_MASK GENMASK(7, 0) 154 155 /* Protocol Status Register (PSR) */ 156 #define PSR_BO BIT(7) 157 #define PSR_EW BIT(6) 158 #define PSR_EP BIT(5) 159 #define PSR_LEC_MASK GENMASK(2, 0) 160 161 /* Interrupt Register (IR) */ 162 #define IR_ALL_INT 0xffffffff 163 164 /* Renamed bits for versions > 3.1.x */ 165 #define IR_ARA BIT(29) 166 #define IR_PED BIT(28) 167 #define IR_PEA BIT(27) 168 169 /* Bits for version 3.0.x */ 170 #define IR_STE BIT(31) 171 #define IR_FOE BIT(30) 172 #define IR_ACKE BIT(29) 173 #define IR_BE BIT(28) 174 #define IR_CRCE BIT(27) 175 #define IR_WDI BIT(26) 176 #define IR_BO BIT(25) 177 #define IR_EW BIT(24) 178 #define IR_EP BIT(23) 179 #define IR_ELO BIT(22) 180 #define IR_BEU BIT(21) 181 #define IR_BEC BIT(20) 182 #define IR_DRX BIT(19) 183 #define IR_TOO BIT(18) 184 #define IR_MRAF BIT(17) 185 #define IR_TSW BIT(16) 186 #define IR_TEFL BIT(15) 187 #define IR_TEFF BIT(14) 188 #define IR_TEFW BIT(13) 189 #define IR_TEFN BIT(12) 190 #define IR_TFE BIT(11) 191 #define IR_TCF BIT(10) 192 #define IR_TC BIT(9) 193 #define IR_HPM BIT(8) 194 #define IR_RF1L BIT(7) 195 #define IR_RF1F BIT(6) 196 #define IR_RF1W BIT(5) 197 #define IR_RF1N BIT(4) 198 #define IR_RF0L BIT(3) 199 #define IR_RF0F BIT(2) 200 #define IR_RF0W BIT(1) 201 #define IR_RF0N BIT(0) 202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 203 204 /* Interrupts for version 3.0.x */ 205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \ 207 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 208 IR_RF1L | IR_RF0L) 209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 210 211 /* Interrupts for version >= 3.1.x */ 212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \ 214 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 215 IR_RF1L | IR_RF0L) 216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 217 218 /* Interrupt Line Select (ILS) */ 219 #define ILS_ALL_INT0 0x0 220 #define ILS_ALL_INT1 0xFFFFFFFF 221 222 /* Interrupt Line Enable (ILE) */ 223 #define ILE_EINT1 BIT(1) 224 #define ILE_EINT0 BIT(0) 225 226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 227 #define RXFC_FWM_MASK GENMASK(30, 24) 228 #define RXFC_FS_MASK GENMASK(22, 16) 229 230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 231 #define RXFS_RFL BIT(25) 232 #define RXFS_FF BIT(24) 233 #define RXFS_FPI_MASK GENMASK(21, 16) 234 #define RXFS_FGI_MASK GENMASK(13, 8) 235 #define RXFS_FFL_MASK GENMASK(6, 0) 236 237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 238 #define RXESC_RBDS_MASK GENMASK(10, 8) 239 #define RXESC_F1DS_MASK GENMASK(6, 4) 240 #define RXESC_F0DS_MASK GENMASK(2, 0) 241 #define RXESC_64B 0x7 242 243 /* Tx Buffer Configuration (TXBC) */ 244 #define TXBC_TFQS_MASK GENMASK(29, 24) 245 #define TXBC_NDTB_MASK GENMASK(21, 16) 246 247 /* Tx FIFO/Queue Status (TXFQS) */ 248 #define TXFQS_TFQF BIT(21) 249 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 250 #define TXFQS_TFGI_MASK GENMASK(12, 8) 251 #define TXFQS_TFFL_MASK GENMASK(5, 0) 252 253 /* Tx Buffer Element Size Configuration (TXESC) */ 254 #define TXESC_TBDS_MASK GENMASK(2, 0) 255 #define TXESC_TBDS_64B 0x7 256 257 /* Tx Event FIFO Configuration (TXEFC) */ 258 #define TXEFC_EFS_MASK GENMASK(21, 16) 259 260 /* Tx Event FIFO Status (TXEFS) */ 261 #define TXEFS_TEFL BIT(25) 262 #define TXEFS_EFF BIT(24) 263 #define TXEFS_EFGI_MASK GENMASK(12, 8) 264 #define TXEFS_EFFL_MASK GENMASK(5, 0) 265 266 /* Tx Event FIFO Acknowledge (TXEFA) */ 267 #define TXEFA_EFAI_MASK GENMASK(4, 0) 268 269 /* Message RAM Configuration (in bytes) */ 270 #define SIDF_ELEMENT_SIZE 4 271 #define XIDF_ELEMENT_SIZE 8 272 #define RXF0_ELEMENT_SIZE 72 273 #define RXF1_ELEMENT_SIZE 72 274 #define RXB_ELEMENT_SIZE 72 275 #define TXE_ELEMENT_SIZE 8 276 #define TXB_ELEMENT_SIZE 72 277 278 /* Message RAM Elements */ 279 #define M_CAN_FIFO_ID 0x0 280 #define M_CAN_FIFO_DLC 0x4 281 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2)) 282 283 /* Rx Buffer Element */ 284 /* R0 */ 285 #define RX_BUF_ESI BIT(31) 286 #define RX_BUF_XTD BIT(30) 287 #define RX_BUF_RTR BIT(29) 288 /* R1 */ 289 #define RX_BUF_ANMF BIT(31) 290 #define RX_BUF_FDF BIT(21) 291 #define RX_BUF_BRS BIT(20) 292 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 293 294 /* Tx Buffer Element */ 295 /* T0 */ 296 #define TX_BUF_ESI BIT(31) 297 #define TX_BUF_XTD BIT(30) 298 #define TX_BUF_RTR BIT(29) 299 /* T1 */ 300 #define TX_BUF_EFC BIT(23) 301 #define TX_BUF_FDF BIT(21) 302 #define TX_BUF_BRS BIT(20) 303 #define TX_BUF_MM_MASK GENMASK(31, 24) 304 #define TX_BUF_DLC_MASK GENMASK(19, 16) 305 306 /* Tx event FIFO Element */ 307 /* E1 */ 308 #define TX_EVENT_MM_MASK GENMASK(31, 24) 309 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 310 311 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 312 { 313 return cdev->ops->read_reg(cdev, reg); 314 } 315 316 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 317 u32 val) 318 { 319 cdev->ops->write_reg(cdev, reg, val); 320 } 321 322 static u32 m_can_fifo_read(struct m_can_classdev *cdev, 323 u32 fgi, unsigned int offset) 324 { 325 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 326 offset; 327 328 return cdev->ops->read_fifo(cdev, addr_offset); 329 } 330 331 static void m_can_fifo_write(struct m_can_classdev *cdev, 332 u32 fpi, unsigned int offset, u32 val) 333 { 334 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 335 offset; 336 337 cdev->ops->write_fifo(cdev, addr_offset, val); 338 } 339 340 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev, 341 u32 fpi, u32 val) 342 { 343 cdev->ops->write_fifo(cdev, fpi, val); 344 } 345 346 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset) 347 { 348 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 349 offset; 350 351 return cdev->ops->read_fifo(cdev, addr_offset); 352 } 353 354 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 355 { 356 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); 357 } 358 359 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 360 { 361 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 362 u32 timeout = 10; 363 u32 val = 0; 364 365 /* Clear the Clock stop request if it was set */ 366 if (cccr & CCCR_CSR) 367 cccr &= ~CCCR_CSR; 368 369 if (enable) { 370 /* enable m_can configuration */ 371 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 372 udelay(5); 373 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 374 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 375 } else { 376 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 377 } 378 379 /* there's a delay for module initialization */ 380 if (enable) 381 val = CCCR_INIT | CCCR_CCE; 382 383 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 384 if (timeout == 0) { 385 netdev_warn(cdev->net, "Failed to init module\n"); 386 return; 387 } 388 timeout--; 389 udelay(1); 390 } 391 } 392 393 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 394 { 395 /* Only interrupt line 0 is used in this driver */ 396 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 397 } 398 399 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 400 { 401 m_can_write(cdev, M_CAN_ILE, 0x0); 402 } 403 404 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 405 * width. 406 */ 407 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 408 { 409 u32 tscv; 410 u32 tsc; 411 412 tscv = m_can_read(cdev, M_CAN_TSCV); 413 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 414 415 return (tsc << 16); 416 } 417 418 static void m_can_clean(struct net_device *net) 419 { 420 struct m_can_classdev *cdev = netdev_priv(net); 421 422 if (cdev->tx_skb) { 423 int putidx = 0; 424 425 net->stats.tx_errors++; 426 if (cdev->version > 30) 427 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 428 m_can_read(cdev, M_CAN_TXFQS)); 429 430 can_free_echo_skb(cdev->net, putidx, NULL); 431 cdev->tx_skb = NULL; 432 } 433 } 434 435 /* For peripherals, pass skb to rx-offload, which will push skb from 436 * napi. For non-peripherals, RX is done in napi already, so push 437 * directly. timestamp is used to ensure good skb ordering in 438 * rx-offload and is ignored for non-peripherals. 439 */ 440 static void m_can_receive_skb(struct m_can_classdev *cdev, 441 struct sk_buff *skb, 442 u32 timestamp) 443 { 444 if (cdev->is_peripheral) { 445 struct net_device_stats *stats = &cdev->net->stats; 446 int err; 447 448 err = can_rx_offload_queue_sorted(&cdev->offload, skb, 449 timestamp); 450 if (err) 451 stats->rx_fifo_errors++; 452 } else { 453 netif_receive_skb(skb); 454 } 455 } 456 457 static void m_can_read_fifo(struct net_device *dev, u32 rxfs) 458 { 459 struct net_device_stats *stats = &dev->stats; 460 struct m_can_classdev *cdev = netdev_priv(dev); 461 struct canfd_frame *cf; 462 struct sk_buff *skb; 463 u32 id, fgi, dlc; 464 u32 timestamp = 0; 465 int i; 466 467 /* calculate the fifo get index for where to read data */ 468 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 469 dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC); 470 if (dlc & RX_BUF_FDF) 471 skb = alloc_canfd_skb(dev, &cf); 472 else 473 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 474 if (!skb) { 475 stats->rx_dropped++; 476 return; 477 } 478 479 if (dlc & RX_BUF_FDF) 480 cf->len = can_fd_dlc2len((dlc >> 16) & 0x0F); 481 else 482 cf->len = can_cc_dlc2len((dlc >> 16) & 0x0F); 483 484 id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID); 485 if (id & RX_BUF_XTD) 486 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 487 else 488 cf->can_id = (id >> 18) & CAN_SFF_MASK; 489 490 if (id & RX_BUF_ESI) { 491 cf->flags |= CANFD_ESI; 492 netdev_dbg(dev, "ESI Error\n"); 493 } 494 495 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) { 496 cf->can_id |= CAN_RTR_FLAG; 497 } else { 498 if (dlc & RX_BUF_BRS) 499 cf->flags |= CANFD_BRS; 500 501 for (i = 0; i < cf->len; i += 4) 502 *(u32 *)(cf->data + i) = 503 m_can_fifo_read(cdev, fgi, 504 M_CAN_FIFO_DATA(i / 4)); 505 } 506 507 /* acknowledge rx fifo 0 */ 508 m_can_write(cdev, M_CAN_RXF0A, fgi); 509 510 stats->rx_packets++; 511 stats->rx_bytes += cf->len; 512 513 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, dlc); 514 515 m_can_receive_skb(cdev, skb, timestamp); 516 } 517 518 static int m_can_do_rx_poll(struct net_device *dev, int quota) 519 { 520 struct m_can_classdev *cdev = netdev_priv(dev); 521 u32 pkts = 0; 522 u32 rxfs; 523 524 rxfs = m_can_read(cdev, M_CAN_RXF0S); 525 if (!(rxfs & RXFS_FFL_MASK)) { 526 netdev_dbg(dev, "no messages in fifo0\n"); 527 return 0; 528 } 529 530 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { 531 m_can_read_fifo(dev, rxfs); 532 533 quota--; 534 pkts++; 535 rxfs = m_can_read(cdev, M_CAN_RXF0S); 536 } 537 538 if (pkts) 539 can_led_event(dev, CAN_LED_EVENT_RX); 540 541 return pkts; 542 } 543 544 static int m_can_handle_lost_msg(struct net_device *dev) 545 { 546 struct m_can_classdev *cdev = netdev_priv(dev); 547 struct net_device_stats *stats = &dev->stats; 548 struct sk_buff *skb; 549 struct can_frame *frame; 550 u32 timestamp = 0; 551 552 netdev_err(dev, "msg lost in rxf0\n"); 553 554 stats->rx_errors++; 555 stats->rx_over_errors++; 556 557 skb = alloc_can_err_skb(dev, &frame); 558 if (unlikely(!skb)) 559 return 0; 560 561 frame->can_id |= CAN_ERR_CRTL; 562 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 563 564 if (cdev->is_peripheral) 565 timestamp = m_can_get_timestamp(cdev); 566 567 m_can_receive_skb(cdev, skb, timestamp); 568 569 return 1; 570 } 571 572 static int m_can_handle_lec_err(struct net_device *dev, 573 enum m_can_lec_type lec_type) 574 { 575 struct m_can_classdev *cdev = netdev_priv(dev); 576 struct net_device_stats *stats = &dev->stats; 577 struct can_frame *cf; 578 struct sk_buff *skb; 579 u32 timestamp = 0; 580 581 cdev->can.can_stats.bus_error++; 582 stats->rx_errors++; 583 584 /* propagate the error condition to the CAN stack */ 585 skb = alloc_can_err_skb(dev, &cf); 586 if (unlikely(!skb)) 587 return 0; 588 589 /* check for 'last error code' which tells us the 590 * type of the last error to occur on the CAN bus 591 */ 592 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 593 594 switch (lec_type) { 595 case LEC_STUFF_ERROR: 596 netdev_dbg(dev, "stuff error\n"); 597 cf->data[2] |= CAN_ERR_PROT_STUFF; 598 break; 599 case LEC_FORM_ERROR: 600 netdev_dbg(dev, "form error\n"); 601 cf->data[2] |= CAN_ERR_PROT_FORM; 602 break; 603 case LEC_ACK_ERROR: 604 netdev_dbg(dev, "ack error\n"); 605 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 606 break; 607 case LEC_BIT1_ERROR: 608 netdev_dbg(dev, "bit1 error\n"); 609 cf->data[2] |= CAN_ERR_PROT_BIT1; 610 break; 611 case LEC_BIT0_ERROR: 612 netdev_dbg(dev, "bit0 error\n"); 613 cf->data[2] |= CAN_ERR_PROT_BIT0; 614 break; 615 case LEC_CRC_ERROR: 616 netdev_dbg(dev, "CRC error\n"); 617 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 618 break; 619 default: 620 break; 621 } 622 623 stats->rx_packets++; 624 stats->rx_bytes += cf->len; 625 626 if (cdev->is_peripheral) 627 timestamp = m_can_get_timestamp(cdev); 628 629 m_can_receive_skb(cdev, skb, timestamp); 630 631 return 1; 632 } 633 634 static int __m_can_get_berr_counter(const struct net_device *dev, 635 struct can_berr_counter *bec) 636 { 637 struct m_can_classdev *cdev = netdev_priv(dev); 638 unsigned int ecr; 639 640 ecr = m_can_read(cdev, M_CAN_ECR); 641 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 642 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 643 644 return 0; 645 } 646 647 static int m_can_clk_start(struct m_can_classdev *cdev) 648 { 649 if (cdev->pm_clock_support == 0) 650 return 0; 651 652 return pm_runtime_resume_and_get(cdev->dev); 653 } 654 655 static void m_can_clk_stop(struct m_can_classdev *cdev) 656 { 657 if (cdev->pm_clock_support) 658 pm_runtime_put_sync(cdev->dev); 659 } 660 661 static int m_can_get_berr_counter(const struct net_device *dev, 662 struct can_berr_counter *bec) 663 { 664 struct m_can_classdev *cdev = netdev_priv(dev); 665 int err; 666 667 err = m_can_clk_start(cdev); 668 if (err) 669 return err; 670 671 __m_can_get_berr_counter(dev, bec); 672 673 m_can_clk_stop(cdev); 674 675 return 0; 676 } 677 678 static int m_can_handle_state_change(struct net_device *dev, 679 enum can_state new_state) 680 { 681 struct m_can_classdev *cdev = netdev_priv(dev); 682 struct net_device_stats *stats = &dev->stats; 683 struct can_frame *cf; 684 struct sk_buff *skb; 685 struct can_berr_counter bec; 686 unsigned int ecr; 687 u32 timestamp = 0; 688 689 switch (new_state) { 690 case CAN_STATE_ERROR_WARNING: 691 /* error warning state */ 692 cdev->can.can_stats.error_warning++; 693 cdev->can.state = CAN_STATE_ERROR_WARNING; 694 break; 695 case CAN_STATE_ERROR_PASSIVE: 696 /* error passive state */ 697 cdev->can.can_stats.error_passive++; 698 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 699 break; 700 case CAN_STATE_BUS_OFF: 701 /* bus-off state */ 702 cdev->can.state = CAN_STATE_BUS_OFF; 703 m_can_disable_all_interrupts(cdev); 704 cdev->can.can_stats.bus_off++; 705 can_bus_off(dev); 706 break; 707 default: 708 break; 709 } 710 711 /* propagate the error condition to the CAN stack */ 712 skb = alloc_can_err_skb(dev, &cf); 713 if (unlikely(!skb)) 714 return 0; 715 716 __m_can_get_berr_counter(dev, &bec); 717 718 switch (new_state) { 719 case CAN_STATE_ERROR_WARNING: 720 /* error warning state */ 721 cf->can_id |= CAN_ERR_CRTL; 722 cf->data[1] = (bec.txerr > bec.rxerr) ? 723 CAN_ERR_CRTL_TX_WARNING : 724 CAN_ERR_CRTL_RX_WARNING; 725 cf->data[6] = bec.txerr; 726 cf->data[7] = bec.rxerr; 727 break; 728 case CAN_STATE_ERROR_PASSIVE: 729 /* error passive state */ 730 cf->can_id |= CAN_ERR_CRTL; 731 ecr = m_can_read(cdev, M_CAN_ECR); 732 if (ecr & ECR_RP) 733 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 734 if (bec.txerr > 127) 735 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 736 cf->data[6] = bec.txerr; 737 cf->data[7] = bec.rxerr; 738 break; 739 case CAN_STATE_BUS_OFF: 740 /* bus-off state */ 741 cf->can_id |= CAN_ERR_BUSOFF; 742 break; 743 default: 744 break; 745 } 746 747 stats->rx_packets++; 748 stats->rx_bytes += cf->len; 749 750 if (cdev->is_peripheral) 751 timestamp = m_can_get_timestamp(cdev); 752 753 m_can_receive_skb(cdev, skb, timestamp); 754 755 return 1; 756 } 757 758 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 759 { 760 struct m_can_classdev *cdev = netdev_priv(dev); 761 int work_done = 0; 762 763 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 764 netdev_dbg(dev, "entered error warning state\n"); 765 work_done += m_can_handle_state_change(dev, 766 CAN_STATE_ERROR_WARNING); 767 } 768 769 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 770 netdev_dbg(dev, "entered error passive state\n"); 771 work_done += m_can_handle_state_change(dev, 772 CAN_STATE_ERROR_PASSIVE); 773 } 774 775 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 776 netdev_dbg(dev, "entered error bus off state\n"); 777 work_done += m_can_handle_state_change(dev, 778 CAN_STATE_BUS_OFF); 779 } 780 781 return work_done; 782 } 783 784 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 785 { 786 if (irqstatus & IR_WDI) 787 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 788 if (irqstatus & IR_ELO) 789 netdev_err(dev, "Error Logging Overflow\n"); 790 if (irqstatus & IR_BEU) 791 netdev_err(dev, "Bit Error Uncorrected\n"); 792 if (irqstatus & IR_BEC) 793 netdev_err(dev, "Bit Error Corrected\n"); 794 if (irqstatus & IR_TOO) 795 netdev_err(dev, "Timeout reached\n"); 796 if (irqstatus & IR_MRAF) 797 netdev_err(dev, "Message RAM access failure occurred\n"); 798 } 799 800 static inline bool is_lec_err(u32 psr) 801 { 802 psr &= LEC_UNUSED; 803 804 return psr && (psr != LEC_UNUSED); 805 } 806 807 static inline bool m_can_is_protocol_err(u32 irqstatus) 808 { 809 return irqstatus & IR_ERR_LEC_31X; 810 } 811 812 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 813 { 814 struct net_device_stats *stats = &dev->stats; 815 struct m_can_classdev *cdev = netdev_priv(dev); 816 struct can_frame *cf; 817 struct sk_buff *skb; 818 u32 timestamp = 0; 819 820 /* propagate the error condition to the CAN stack */ 821 skb = alloc_can_err_skb(dev, &cf); 822 823 /* update tx error stats since there is protocol error */ 824 stats->tx_errors++; 825 826 /* update arbitration lost status */ 827 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 828 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 829 cdev->can.can_stats.arbitration_lost++; 830 if (skb) { 831 cf->can_id |= CAN_ERR_LOSTARB; 832 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 833 } 834 } 835 836 if (unlikely(!skb)) { 837 netdev_dbg(dev, "allocation of skb failed\n"); 838 return 0; 839 } 840 841 if (cdev->is_peripheral) 842 timestamp = m_can_get_timestamp(cdev); 843 844 m_can_receive_skb(cdev, skb, timestamp); 845 846 return 1; 847 } 848 849 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 850 u32 psr) 851 { 852 struct m_can_classdev *cdev = netdev_priv(dev); 853 int work_done = 0; 854 855 if (irqstatus & IR_RF0L) 856 work_done += m_can_handle_lost_msg(dev); 857 858 /* handle lec errors on the bus */ 859 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 860 is_lec_err(psr)) 861 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); 862 863 /* handle protocol errors in arbitration phase */ 864 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 865 m_can_is_protocol_err(irqstatus)) 866 work_done += m_can_handle_protocol_error(dev, irqstatus); 867 868 /* other unproccessed error interrupts */ 869 m_can_handle_other_err(dev, irqstatus); 870 871 return work_done; 872 } 873 874 static int m_can_rx_handler(struct net_device *dev, int quota) 875 { 876 struct m_can_classdev *cdev = netdev_priv(dev); 877 int work_done = 0; 878 u32 irqstatus, psr; 879 880 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 881 if (!irqstatus) 882 goto end; 883 884 /* Errata workaround for issue "Needless activation of MRAF irq" 885 * During frame reception while the MCAN is in Error Passive state 886 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 887 * it may happen that MCAN_IR.MRAF is set although there was no 888 * Message RAM access failure. 889 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 890 * The Message RAM Access Failure interrupt routine needs to check 891 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 892 * In this case, reset MCAN_IR.MRAF. No further action is required. 893 */ 894 if (cdev->version <= 31 && irqstatus & IR_MRAF && 895 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 896 struct can_berr_counter bec; 897 898 __m_can_get_berr_counter(dev, &bec); 899 if (bec.rxerr == 127) { 900 m_can_write(cdev, M_CAN_IR, IR_MRAF); 901 irqstatus &= ~IR_MRAF; 902 } 903 } 904 905 psr = m_can_read(cdev, M_CAN_PSR); 906 907 if (irqstatus & IR_ERR_STATE) 908 work_done += m_can_handle_state_errors(dev, psr); 909 910 if (irqstatus & IR_ERR_BUS_30X) 911 work_done += m_can_handle_bus_errors(dev, irqstatus, psr); 912 913 if (irqstatus & IR_RF0N) 914 work_done += m_can_do_rx_poll(dev, (quota - work_done)); 915 end: 916 return work_done; 917 } 918 919 static int m_can_rx_peripheral(struct net_device *dev) 920 { 921 struct m_can_classdev *cdev = netdev_priv(dev); 922 923 m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT); 924 925 m_can_enable_all_interrupts(cdev); 926 927 return 0; 928 } 929 930 static int m_can_poll(struct napi_struct *napi, int quota) 931 { 932 struct net_device *dev = napi->dev; 933 struct m_can_classdev *cdev = netdev_priv(dev); 934 int work_done; 935 936 work_done = m_can_rx_handler(dev, quota); 937 if (work_done < quota) { 938 napi_complete_done(napi, work_done); 939 m_can_enable_all_interrupts(cdev); 940 } 941 942 return work_done; 943 } 944 945 /* Echo tx skb and update net stats. Peripherals use rx-offload for 946 * echo. timestamp is used for peripherals to ensure correct ordering 947 * by rx-offload, and is ignored for non-peripherals. 948 */ 949 static void m_can_tx_update_stats(struct m_can_classdev *cdev, 950 unsigned int msg_mark, 951 u32 timestamp) 952 { 953 struct net_device *dev = cdev->net; 954 struct net_device_stats *stats = &dev->stats; 955 956 if (cdev->is_peripheral) 957 stats->tx_bytes += 958 can_rx_offload_get_echo_skb(&cdev->offload, 959 msg_mark, 960 timestamp, 961 NULL); 962 else 963 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL); 964 965 stats->tx_packets++; 966 } 967 968 static void m_can_echo_tx_event(struct net_device *dev) 969 { 970 u32 txe_count = 0; 971 u32 m_can_txefs; 972 u32 fgi = 0; 973 int i = 0; 974 unsigned int msg_mark; 975 976 struct m_can_classdev *cdev = netdev_priv(dev); 977 978 /* read tx event fifo status */ 979 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 980 981 /* Get Tx Event fifo element count */ 982 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 983 984 /* Get and process all sent elements */ 985 for (i = 0; i < txe_count; i++) { 986 u32 txe, timestamp = 0; 987 988 /* retrieve get index */ 989 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS)); 990 991 /* get message marker, timestamp */ 992 txe = m_can_txe_fifo_read(cdev, fgi, 4); 993 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 994 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe); 995 996 /* ack txe element */ 997 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 998 fgi)); 999 1000 /* update stats */ 1001 m_can_tx_update_stats(cdev, msg_mark, timestamp); 1002 } 1003 } 1004 1005 static irqreturn_t m_can_isr(int irq, void *dev_id) 1006 { 1007 struct net_device *dev = (struct net_device *)dev_id; 1008 struct m_can_classdev *cdev = netdev_priv(dev); 1009 u32 ir; 1010 1011 if (pm_runtime_suspended(cdev->dev)) 1012 return IRQ_NONE; 1013 ir = m_can_read(cdev, M_CAN_IR); 1014 if (!ir) 1015 return IRQ_NONE; 1016 1017 /* ACK all irqs */ 1018 if (ir & IR_ALL_INT) 1019 m_can_write(cdev, M_CAN_IR, ir); 1020 1021 if (cdev->ops->clear_interrupts) 1022 cdev->ops->clear_interrupts(cdev); 1023 1024 /* schedule NAPI in case of 1025 * - rx IRQ 1026 * - state change IRQ 1027 * - bus error IRQ and bus error reporting 1028 */ 1029 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 1030 cdev->irqstatus = ir; 1031 m_can_disable_all_interrupts(cdev); 1032 if (!cdev->is_peripheral) 1033 napi_schedule(&cdev->napi); 1034 else 1035 m_can_rx_peripheral(dev); 1036 } 1037 1038 if (cdev->version == 30) { 1039 if (ir & IR_TC) { 1040 /* Transmission Complete Interrupt*/ 1041 u32 timestamp = 0; 1042 1043 if (cdev->is_peripheral) 1044 timestamp = m_can_get_timestamp(cdev); 1045 m_can_tx_update_stats(cdev, 0, timestamp); 1046 1047 can_led_event(dev, CAN_LED_EVENT_TX); 1048 netif_wake_queue(dev); 1049 } 1050 } else { 1051 if (ir & IR_TEFN) { 1052 /* New TX FIFO Element arrived */ 1053 m_can_echo_tx_event(dev); 1054 can_led_event(dev, CAN_LED_EVENT_TX); 1055 if (netif_queue_stopped(dev) && 1056 !m_can_tx_fifo_full(cdev)) 1057 netif_wake_queue(dev); 1058 } 1059 } 1060 1061 return IRQ_HANDLED; 1062 } 1063 1064 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1065 .name = KBUILD_MODNAME, 1066 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1067 .tseg1_max = 64, 1068 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1069 .tseg2_max = 16, 1070 .sjw_max = 16, 1071 .brp_min = 1, 1072 .brp_max = 1024, 1073 .brp_inc = 1, 1074 }; 1075 1076 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1077 .name = KBUILD_MODNAME, 1078 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1079 .tseg1_max = 16, 1080 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1081 .tseg2_max = 8, 1082 .sjw_max = 4, 1083 .brp_min = 1, 1084 .brp_max = 32, 1085 .brp_inc = 1, 1086 }; 1087 1088 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1089 .name = KBUILD_MODNAME, 1090 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1091 .tseg1_max = 256, 1092 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1093 .tseg2_max = 128, 1094 .sjw_max = 128, 1095 .brp_min = 1, 1096 .brp_max = 512, 1097 .brp_inc = 1, 1098 }; 1099 1100 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1101 .name = KBUILD_MODNAME, 1102 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1103 .tseg1_max = 32, 1104 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1105 .tseg2_max = 16, 1106 .sjw_max = 16, 1107 .brp_min = 1, 1108 .brp_max = 32, 1109 .brp_inc = 1, 1110 }; 1111 1112 static int m_can_set_bittiming(struct net_device *dev) 1113 { 1114 struct m_can_classdev *cdev = netdev_priv(dev); 1115 const struct can_bittiming *bt = &cdev->can.bittiming; 1116 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1117 u16 brp, sjw, tseg1, tseg2; 1118 u32 reg_btp; 1119 1120 brp = bt->brp - 1; 1121 sjw = bt->sjw - 1; 1122 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1123 tseg2 = bt->phase_seg2 - 1; 1124 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1125 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1126 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1127 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1128 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1129 1130 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1131 reg_btp = 0; 1132 brp = dbt->brp - 1; 1133 sjw = dbt->sjw - 1; 1134 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1135 tseg2 = dbt->phase_seg2 - 1; 1136 1137 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1138 * This is mentioned in the "Bit Time Requirements for CAN FD" 1139 * paper presented at the International CAN Conference 2013 1140 */ 1141 if (dbt->bitrate > 2500000) { 1142 u32 tdco, ssp; 1143 1144 /* Use the same value of secondary sampling point 1145 * as the data sampling point 1146 */ 1147 ssp = dbt->sample_point; 1148 1149 /* Equation based on Bosch's M_CAN User Manual's 1150 * Transmitter Delay Compensation Section 1151 */ 1152 tdco = (cdev->can.clock.freq / 1000) * 1153 ssp / dbt->bitrate; 1154 1155 /* Max valid TDCO value is 127 */ 1156 if (tdco > 127) { 1157 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1158 tdco); 1159 tdco = 127; 1160 } 1161 1162 reg_btp |= DBTP_TDC; 1163 m_can_write(cdev, M_CAN_TDCR, 1164 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1165 } 1166 1167 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1168 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1169 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1170 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1171 1172 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1173 } 1174 1175 return 0; 1176 } 1177 1178 /* Configure M_CAN chip: 1179 * - set rx buffer/fifo element size 1180 * - configure rx fifo 1181 * - accept non-matching frame into fifo 0 1182 * - configure tx buffer 1183 * - >= v3.1.x: TX FIFO is used 1184 * - configure mode 1185 * - setup bittiming 1186 * - configure timestamp generation 1187 */ 1188 static void m_can_chip_config(struct net_device *dev) 1189 { 1190 struct m_can_classdev *cdev = netdev_priv(dev); 1191 u32 cccr, test; 1192 1193 m_can_config_endisable(cdev, true); 1194 1195 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1196 m_can_write(cdev, M_CAN_RXESC, 1197 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1198 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1199 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1200 1201 /* Accept Non-matching Frames Into FIFO 0 */ 1202 m_can_write(cdev, M_CAN_GFC, 0x0); 1203 1204 if (cdev->version == 30) { 1205 /* only support one Tx Buffer currently */ 1206 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1207 cdev->mcfg[MRAM_TXB].off); 1208 } else { 1209 /* TX FIFO is used for newer IP Core versions */ 1210 m_can_write(cdev, M_CAN_TXBC, 1211 FIELD_PREP(TXBC_TFQS_MASK, 1212 cdev->mcfg[MRAM_TXB].num) | 1213 cdev->mcfg[MRAM_TXB].off); 1214 } 1215 1216 /* support 64 bytes payload */ 1217 m_can_write(cdev, M_CAN_TXESC, 1218 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1219 1220 /* TX Event FIFO */ 1221 if (cdev->version == 30) { 1222 m_can_write(cdev, M_CAN_TXEFC, 1223 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1224 cdev->mcfg[MRAM_TXE].off); 1225 } else { 1226 /* Full TX Event FIFO is used */ 1227 m_can_write(cdev, M_CAN_TXEFC, 1228 FIELD_PREP(TXEFC_EFS_MASK, 1229 cdev->mcfg[MRAM_TXE].num) | 1230 cdev->mcfg[MRAM_TXE].off); 1231 } 1232 1233 /* rx fifo configuration, blocking mode, fifo size 1 */ 1234 m_can_write(cdev, M_CAN_RXF0C, 1235 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1236 cdev->mcfg[MRAM_RXF0].off); 1237 1238 m_can_write(cdev, M_CAN_RXF1C, 1239 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1240 cdev->mcfg[MRAM_RXF1].off); 1241 1242 cccr = m_can_read(cdev, M_CAN_CCCR); 1243 test = m_can_read(cdev, M_CAN_TEST); 1244 test &= ~TEST_LBCK; 1245 if (cdev->version == 30) { 1246 /* Version 3.0.x */ 1247 1248 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1249 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1250 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1251 1252 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1253 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1254 1255 } else { 1256 /* Version 3.1.x or 3.2.x */ 1257 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1258 CCCR_NISO | CCCR_DAR); 1259 1260 /* Only 3.2.x has NISO Bit implemented */ 1261 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1262 cccr |= CCCR_NISO; 1263 1264 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1265 cccr |= (CCCR_BRSE | CCCR_FDOE); 1266 } 1267 1268 /* Loopback Mode */ 1269 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1270 cccr |= CCCR_TEST | CCCR_MON; 1271 test |= TEST_LBCK; 1272 } 1273 1274 /* Enable Monitoring (all versions) */ 1275 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1276 cccr |= CCCR_MON; 1277 1278 /* Disable Auto Retransmission (all versions) */ 1279 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1280 cccr |= CCCR_DAR; 1281 1282 /* Write config */ 1283 m_can_write(cdev, M_CAN_CCCR, cccr); 1284 m_can_write(cdev, M_CAN_TEST, test); 1285 1286 /* Enable interrupts */ 1287 m_can_write(cdev, M_CAN_IR, IR_ALL_INT); 1288 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 1289 if (cdev->version == 30) 1290 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1291 ~(IR_ERR_LEC_30X)); 1292 else 1293 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1294 ~(IR_ERR_LEC_31X)); 1295 else 1296 m_can_write(cdev, M_CAN_IE, IR_ALL_INT); 1297 1298 /* route all interrupts to INT0 */ 1299 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1300 1301 /* set bittiming params */ 1302 m_can_set_bittiming(dev); 1303 1304 /* enable internal timestamp generation, with a prescalar of 16. The 1305 * prescalar is applied to the nominal bit timing */ 1306 m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf)); 1307 1308 m_can_config_endisable(cdev, false); 1309 1310 if (cdev->ops->init) 1311 cdev->ops->init(cdev); 1312 } 1313 1314 static void m_can_start(struct net_device *dev) 1315 { 1316 struct m_can_classdev *cdev = netdev_priv(dev); 1317 1318 /* basic m_can configuration */ 1319 m_can_chip_config(dev); 1320 1321 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1322 1323 m_can_enable_all_interrupts(cdev); 1324 } 1325 1326 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1327 { 1328 switch (mode) { 1329 case CAN_MODE_START: 1330 m_can_clean(dev); 1331 m_can_start(dev); 1332 netif_wake_queue(dev); 1333 break; 1334 default: 1335 return -EOPNOTSUPP; 1336 } 1337 1338 return 0; 1339 } 1340 1341 /* Checks core release number of M_CAN 1342 * returns 0 if an unsupported device is detected 1343 * else it returns the release and step coded as: 1344 * return value = 10 * <release> + 1 * <step> 1345 */ 1346 static int m_can_check_core_release(struct m_can_classdev *cdev) 1347 { 1348 u32 crel_reg; 1349 u8 rel; 1350 u8 step; 1351 int res; 1352 1353 /* Read Core Release Version and split into version number 1354 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1355 */ 1356 crel_reg = m_can_read(cdev, M_CAN_CREL); 1357 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1358 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1359 1360 if (rel == 3) { 1361 /* M_CAN v3.x.y: create return value */ 1362 res = 30 + step; 1363 } else { 1364 /* Unsupported M_CAN version */ 1365 res = 0; 1366 } 1367 1368 return res; 1369 } 1370 1371 /* Selectable Non ISO support only in version 3.2.x 1372 * This function checks if the bit is writable. 1373 */ 1374 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1375 { 1376 u32 cccr_reg, cccr_poll = 0; 1377 int niso_timeout = -ETIMEDOUT; 1378 int i; 1379 1380 m_can_config_endisable(cdev, true); 1381 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1382 cccr_reg |= CCCR_NISO; 1383 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1384 1385 for (i = 0; i <= 10; i++) { 1386 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1387 if (cccr_poll == cccr_reg) { 1388 niso_timeout = 0; 1389 break; 1390 } 1391 1392 usleep_range(1, 5); 1393 } 1394 1395 /* Clear NISO */ 1396 cccr_reg &= ~(CCCR_NISO); 1397 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1398 1399 m_can_config_endisable(cdev, false); 1400 1401 /* return false if time out (-ETIMEDOUT), else return true */ 1402 return !niso_timeout; 1403 } 1404 1405 static int m_can_dev_setup(struct m_can_classdev *cdev) 1406 { 1407 struct net_device *dev = cdev->net; 1408 int m_can_version; 1409 1410 m_can_version = m_can_check_core_release(cdev); 1411 /* return if unsupported version */ 1412 if (!m_can_version) { 1413 dev_err(cdev->dev, "Unsupported version number: %2d", 1414 m_can_version); 1415 return -EINVAL; 1416 } 1417 1418 if (!cdev->is_peripheral) 1419 netif_napi_add(dev, &cdev->napi, 1420 m_can_poll, M_CAN_NAPI_WEIGHT); 1421 1422 /* Shared properties of all M_CAN versions */ 1423 cdev->version = m_can_version; 1424 cdev->can.do_set_mode = m_can_set_mode; 1425 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1426 1427 /* Set M_CAN supported operations */ 1428 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1429 CAN_CTRLMODE_LISTENONLY | 1430 CAN_CTRLMODE_BERR_REPORTING | 1431 CAN_CTRLMODE_FD | 1432 CAN_CTRLMODE_ONE_SHOT; 1433 1434 /* Set properties depending on M_CAN version */ 1435 switch (cdev->version) { 1436 case 30: 1437 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1438 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1439 cdev->can.bittiming_const = cdev->bit_timing ? 1440 cdev->bit_timing : &m_can_bittiming_const_30X; 1441 1442 cdev->can.data_bittiming_const = cdev->data_timing ? 1443 cdev->data_timing : 1444 &m_can_data_bittiming_const_30X; 1445 break; 1446 case 31: 1447 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1448 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1449 cdev->can.bittiming_const = cdev->bit_timing ? 1450 cdev->bit_timing : &m_can_bittiming_const_31X; 1451 1452 cdev->can.data_bittiming_const = cdev->data_timing ? 1453 cdev->data_timing : 1454 &m_can_data_bittiming_const_31X; 1455 break; 1456 case 32: 1457 case 33: 1458 /* Support both MCAN version v3.2.x and v3.3.0 */ 1459 cdev->can.bittiming_const = cdev->bit_timing ? 1460 cdev->bit_timing : &m_can_bittiming_const_31X; 1461 1462 cdev->can.data_bittiming_const = cdev->data_timing ? 1463 cdev->data_timing : 1464 &m_can_data_bittiming_const_31X; 1465 1466 cdev->can.ctrlmode_supported |= 1467 (m_can_niso_supported(cdev) ? 1468 CAN_CTRLMODE_FD_NON_ISO : 0); 1469 break; 1470 default: 1471 dev_err(cdev->dev, "Unsupported version number: %2d", 1472 cdev->version); 1473 return -EINVAL; 1474 } 1475 1476 if (cdev->ops->init) 1477 cdev->ops->init(cdev); 1478 1479 return 0; 1480 } 1481 1482 static void m_can_stop(struct net_device *dev) 1483 { 1484 struct m_can_classdev *cdev = netdev_priv(dev); 1485 1486 /* disable all interrupts */ 1487 m_can_disable_all_interrupts(cdev); 1488 1489 /* Set init mode to disengage from the network */ 1490 m_can_config_endisable(cdev, true); 1491 1492 /* set the state as STOPPED */ 1493 cdev->can.state = CAN_STATE_STOPPED; 1494 } 1495 1496 static int m_can_close(struct net_device *dev) 1497 { 1498 struct m_can_classdev *cdev = netdev_priv(dev); 1499 1500 netif_stop_queue(dev); 1501 1502 if (!cdev->is_peripheral) 1503 napi_disable(&cdev->napi); 1504 1505 m_can_stop(dev); 1506 m_can_clk_stop(cdev); 1507 free_irq(dev->irq, dev); 1508 1509 if (cdev->is_peripheral) { 1510 cdev->tx_skb = NULL; 1511 destroy_workqueue(cdev->tx_wq); 1512 cdev->tx_wq = NULL; 1513 } 1514 1515 if (cdev->is_peripheral) 1516 can_rx_offload_disable(&cdev->offload); 1517 1518 close_candev(dev); 1519 can_led_event(dev, CAN_LED_EVENT_STOP); 1520 1521 return 0; 1522 } 1523 1524 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1525 { 1526 struct m_can_classdev *cdev = netdev_priv(dev); 1527 /*get wrap around for loopback skb index */ 1528 unsigned int wrap = cdev->can.echo_skb_max; 1529 int next_idx; 1530 1531 /* calculate next index */ 1532 next_idx = (++putidx >= wrap ? 0 : putidx); 1533 1534 /* check if occupied */ 1535 return !!cdev->can.echo_skb[next_idx]; 1536 } 1537 1538 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1539 { 1540 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1541 struct net_device *dev = cdev->net; 1542 struct sk_buff *skb = cdev->tx_skb; 1543 u32 id, cccr, fdflags; 1544 int i; 1545 int putidx; 1546 1547 cdev->tx_skb = NULL; 1548 1549 /* Generate ID field for TX buffer Element */ 1550 /* Common to all supported M_CAN versions */ 1551 if (cf->can_id & CAN_EFF_FLAG) { 1552 id = cf->can_id & CAN_EFF_MASK; 1553 id |= TX_BUF_XTD; 1554 } else { 1555 id = ((cf->can_id & CAN_SFF_MASK) << 18); 1556 } 1557 1558 if (cf->can_id & CAN_RTR_FLAG) 1559 id |= TX_BUF_RTR; 1560 1561 if (cdev->version == 30) { 1562 netif_stop_queue(dev); 1563 1564 /* message ram configuration */ 1565 m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id); 1566 m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC, 1567 can_fd_len2dlc(cf->len) << 16); 1568 1569 for (i = 0; i < cf->len; i += 4) 1570 m_can_fifo_write(cdev, 0, 1571 M_CAN_FIFO_DATA(i / 4), 1572 *(u32 *)(cf->data + i)); 1573 1574 can_put_echo_skb(skb, dev, 0, 0); 1575 1576 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1577 cccr = m_can_read(cdev, M_CAN_CCCR); 1578 cccr &= ~CCCR_CMR_MASK; 1579 if (can_is_canfd_skb(skb)) { 1580 if (cf->flags & CANFD_BRS) 1581 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1582 CCCR_CMR_CANFD_BRS); 1583 else 1584 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1585 CCCR_CMR_CANFD); 1586 } else { 1587 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1588 } 1589 m_can_write(cdev, M_CAN_CCCR, cccr); 1590 } 1591 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1592 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1593 /* End of xmit function for version 3.0.x */ 1594 } else { 1595 /* Transmit routine for version >= v3.1.x */ 1596 1597 /* Check if FIFO full */ 1598 if (m_can_tx_fifo_full(cdev)) { 1599 /* This shouldn't happen */ 1600 netif_stop_queue(dev); 1601 netdev_warn(dev, 1602 "TX queue active although FIFO is full."); 1603 1604 if (cdev->is_peripheral) { 1605 kfree_skb(skb); 1606 dev->stats.tx_dropped++; 1607 return NETDEV_TX_OK; 1608 } else { 1609 return NETDEV_TX_BUSY; 1610 } 1611 } 1612 1613 /* get put index for frame */ 1614 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 1615 m_can_read(cdev, M_CAN_TXFQS)); 1616 /* Write ID Field to FIFO Element */ 1617 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id); 1618 1619 /* get CAN FD configuration of frame */ 1620 fdflags = 0; 1621 if (can_is_canfd_skb(skb)) { 1622 fdflags |= TX_BUF_FDF; 1623 if (cf->flags & CANFD_BRS) 1624 fdflags |= TX_BUF_BRS; 1625 } 1626 1627 /* Construct DLC Field. Also contains CAN-FD configuration 1628 * use put index of fifo as message marker 1629 * it is used in TX interrupt for 1630 * sending the correct echo frame 1631 */ 1632 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC, 1633 FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1634 FIELD_PREP(TX_BUF_DLC_MASK, 1635 can_fd_len2dlc(cf->len)) | 1636 fdflags | TX_BUF_EFC); 1637 1638 for (i = 0; i < cf->len; i += 4) 1639 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4), 1640 *(u32 *)(cf->data + i)); 1641 1642 /* Push loopback echo. 1643 * Will be looped back on TX interrupt based on message marker 1644 */ 1645 can_put_echo_skb(skb, dev, putidx, 0); 1646 1647 /* Enable TX FIFO element to start transfer */ 1648 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1649 1650 /* stop network queue if fifo full */ 1651 if (m_can_tx_fifo_full(cdev) || 1652 m_can_next_echo_skb_occupied(dev, putidx)) 1653 netif_stop_queue(dev); 1654 } 1655 1656 return NETDEV_TX_OK; 1657 } 1658 1659 static void m_can_tx_work_queue(struct work_struct *ws) 1660 { 1661 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1662 tx_work); 1663 1664 m_can_tx_handler(cdev); 1665 } 1666 1667 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1668 struct net_device *dev) 1669 { 1670 struct m_can_classdev *cdev = netdev_priv(dev); 1671 1672 if (can_dropped_invalid_skb(dev, skb)) 1673 return NETDEV_TX_OK; 1674 1675 if (cdev->is_peripheral) { 1676 if (cdev->tx_skb) { 1677 netdev_err(dev, "hard_xmit called while tx busy\n"); 1678 return NETDEV_TX_BUSY; 1679 } 1680 1681 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1682 m_can_clean(dev); 1683 } else { 1684 /* Need to stop the queue to avoid numerous requests 1685 * from being sent. Suggested improvement is to create 1686 * a queueing mechanism that will queue the skbs and 1687 * process them in order. 1688 */ 1689 cdev->tx_skb = skb; 1690 netif_stop_queue(cdev->net); 1691 queue_work(cdev->tx_wq, &cdev->tx_work); 1692 } 1693 } else { 1694 cdev->tx_skb = skb; 1695 return m_can_tx_handler(cdev); 1696 } 1697 1698 return NETDEV_TX_OK; 1699 } 1700 1701 static int m_can_open(struct net_device *dev) 1702 { 1703 struct m_can_classdev *cdev = netdev_priv(dev); 1704 int err; 1705 1706 err = m_can_clk_start(cdev); 1707 if (err) 1708 return err; 1709 1710 /* open the can device */ 1711 err = open_candev(dev); 1712 if (err) { 1713 netdev_err(dev, "failed to open can device\n"); 1714 goto exit_disable_clks; 1715 } 1716 1717 if (cdev->is_peripheral) 1718 can_rx_offload_enable(&cdev->offload); 1719 1720 /* register interrupt handler */ 1721 if (cdev->is_peripheral) { 1722 cdev->tx_skb = NULL; 1723 cdev->tx_wq = alloc_workqueue("mcan_wq", 1724 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1725 if (!cdev->tx_wq) { 1726 err = -ENOMEM; 1727 goto out_wq_fail; 1728 } 1729 1730 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1731 1732 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1733 IRQF_ONESHOT, 1734 dev->name, dev); 1735 } else { 1736 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1737 dev); 1738 } 1739 1740 if (err < 0) { 1741 netdev_err(dev, "failed to request interrupt\n"); 1742 goto exit_irq_fail; 1743 } 1744 1745 /* start the m_can controller */ 1746 m_can_start(dev); 1747 1748 can_led_event(dev, CAN_LED_EVENT_OPEN); 1749 1750 if (!cdev->is_peripheral) 1751 napi_enable(&cdev->napi); 1752 1753 netif_start_queue(dev); 1754 1755 return 0; 1756 1757 exit_irq_fail: 1758 if (cdev->is_peripheral) 1759 destroy_workqueue(cdev->tx_wq); 1760 out_wq_fail: 1761 if (cdev->is_peripheral) 1762 can_rx_offload_disable(&cdev->offload); 1763 close_candev(dev); 1764 exit_disable_clks: 1765 m_can_clk_stop(cdev); 1766 return err; 1767 } 1768 1769 static const struct net_device_ops m_can_netdev_ops = { 1770 .ndo_open = m_can_open, 1771 .ndo_stop = m_can_close, 1772 .ndo_start_xmit = m_can_start_xmit, 1773 .ndo_change_mtu = can_change_mtu, 1774 }; 1775 1776 static int register_m_can_dev(struct net_device *dev) 1777 { 1778 dev->flags |= IFF_ECHO; /* we support local echo */ 1779 dev->netdev_ops = &m_can_netdev_ops; 1780 1781 return register_candev(dev); 1782 } 1783 1784 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1785 const u32 *mram_config_vals) 1786 { 1787 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1788 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1789 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1790 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1791 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1792 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1793 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1794 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1795 FIELD_MAX(RXFC_FS_MASK); 1796 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1797 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1798 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1799 FIELD_MAX(RXFC_FS_MASK); 1800 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1801 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1802 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1803 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1804 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1805 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1806 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1807 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1808 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1809 FIELD_MAX(TXBC_NDTB_MASK); 1810 1811 dev_dbg(cdev->dev, 1812 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1813 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1814 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1815 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1816 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1817 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1818 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1819 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1820 } 1821 1822 void m_can_init_ram(struct m_can_classdev *cdev) 1823 { 1824 int end, i, start; 1825 1826 /* initialize the entire Message RAM in use to avoid possible 1827 * ECC/parity checksum errors when reading an uninitialized buffer 1828 */ 1829 start = cdev->mcfg[MRAM_SIDF].off; 1830 end = cdev->mcfg[MRAM_TXB].off + 1831 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1832 1833 for (i = start; i < end; i += 4) 1834 m_can_fifo_write_no_off(cdev, i, 0x0); 1835 } 1836 EXPORT_SYMBOL_GPL(m_can_init_ram); 1837 1838 int m_can_class_get_clocks(struct m_can_classdev *cdev) 1839 { 1840 int ret = 0; 1841 1842 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 1843 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 1844 1845 if (IS_ERR(cdev->cclk)) { 1846 dev_err(cdev->dev, "no clock found\n"); 1847 ret = -ENODEV; 1848 } 1849 1850 return ret; 1851 } 1852 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 1853 1854 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 1855 int sizeof_priv) 1856 { 1857 struct m_can_classdev *class_dev = NULL; 1858 u32 mram_config_vals[MRAM_CFG_LEN]; 1859 struct net_device *net_dev; 1860 u32 tx_fifo_size; 1861 int ret; 1862 1863 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 1864 "bosch,mram-cfg", 1865 mram_config_vals, 1866 sizeof(mram_config_vals) / 4); 1867 if (ret) { 1868 dev_err(dev, "Could not get Message RAM configuration."); 1869 goto out; 1870 } 1871 1872 /* Get TX FIFO size 1873 * Defines the total amount of echo buffers for loopback 1874 */ 1875 tx_fifo_size = mram_config_vals[7]; 1876 1877 /* allocate the m_can device */ 1878 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 1879 if (!net_dev) { 1880 dev_err(dev, "Failed to allocate CAN device"); 1881 goto out; 1882 } 1883 1884 class_dev = netdev_priv(net_dev); 1885 class_dev->net = net_dev; 1886 class_dev->dev = dev; 1887 SET_NETDEV_DEV(net_dev, dev); 1888 1889 m_can_of_parse_mram(class_dev, mram_config_vals); 1890 out: 1891 return class_dev; 1892 } 1893 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 1894 1895 void m_can_class_free_dev(struct net_device *net) 1896 { 1897 free_candev(net); 1898 } 1899 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 1900 1901 int m_can_class_register(struct m_can_classdev *cdev) 1902 { 1903 int ret; 1904 1905 if (cdev->pm_clock_support) { 1906 ret = m_can_clk_start(cdev); 1907 if (ret) 1908 return ret; 1909 } 1910 1911 if (cdev->is_peripheral) { 1912 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 1913 M_CAN_NAPI_WEIGHT); 1914 if (ret) 1915 goto clk_disable; 1916 } 1917 1918 ret = m_can_dev_setup(cdev); 1919 if (ret) 1920 goto rx_offload_del; 1921 1922 ret = register_m_can_dev(cdev->net); 1923 if (ret) { 1924 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 1925 cdev->net->name, ret); 1926 goto rx_offload_del; 1927 } 1928 1929 devm_can_led_init(cdev->net); 1930 1931 of_can_transceiver(cdev->net); 1932 1933 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 1934 KBUILD_MODNAME, cdev->net->irq, cdev->version); 1935 1936 /* Probe finished 1937 * Stop clocks. They will be reactivated once the M_CAN device is opened 1938 */ 1939 m_can_clk_stop(cdev); 1940 1941 return 0; 1942 1943 rx_offload_del: 1944 if (cdev->is_peripheral) 1945 can_rx_offload_del(&cdev->offload); 1946 clk_disable: 1947 m_can_clk_stop(cdev); 1948 1949 return ret; 1950 } 1951 EXPORT_SYMBOL_GPL(m_can_class_register); 1952 1953 void m_can_class_unregister(struct m_can_classdev *cdev) 1954 { 1955 if (cdev->is_peripheral) 1956 can_rx_offload_del(&cdev->offload); 1957 unregister_candev(cdev->net); 1958 } 1959 EXPORT_SYMBOL_GPL(m_can_class_unregister); 1960 1961 int m_can_class_suspend(struct device *dev) 1962 { 1963 struct m_can_classdev *cdev = dev_get_drvdata(dev); 1964 struct net_device *ndev = cdev->net; 1965 1966 if (netif_running(ndev)) { 1967 netif_stop_queue(ndev); 1968 netif_device_detach(ndev); 1969 m_can_stop(ndev); 1970 m_can_clk_stop(cdev); 1971 } 1972 1973 pinctrl_pm_select_sleep_state(dev); 1974 1975 cdev->can.state = CAN_STATE_SLEEPING; 1976 1977 return 0; 1978 } 1979 EXPORT_SYMBOL_GPL(m_can_class_suspend); 1980 1981 int m_can_class_resume(struct device *dev) 1982 { 1983 struct m_can_classdev *cdev = dev_get_drvdata(dev); 1984 struct net_device *ndev = cdev->net; 1985 1986 pinctrl_pm_select_default_state(dev); 1987 1988 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1989 1990 if (netif_running(ndev)) { 1991 int ret; 1992 1993 ret = m_can_clk_start(cdev); 1994 if (ret) 1995 return ret; 1996 1997 m_can_init_ram(cdev); 1998 m_can_start(ndev); 1999 netif_device_attach(ndev); 2000 netif_start_queue(ndev); 2001 } 2002 2003 return 0; 2004 } 2005 EXPORT_SYMBOL_GPL(m_can_class_resume); 2006 2007 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2008 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2009 MODULE_LICENSE("GPL v2"); 2010 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2011