1 /* 2 * CAN bus driver for Bosch M_CAN controller 3 * 4 * Copyright (C) 2014 Freescale Semiconductor, Inc. 5 * Dong Aisheng <b29396@freescale.com> 6 * 7 * Bosch M_CAN user manual can be obtained from: 8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/ 9 * mcan_users_manual_v302.pdf 10 * 11 * This file is licensed under the terms of the GNU General Public 12 * License version 2. This program is licensed "as is" without any 13 * warranty of any kind, whether express or implied. 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/delay.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/netdevice.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/platform_device.h> 26 27 #include <linux/can/dev.h> 28 29 /* napi related */ 30 #define M_CAN_NAPI_WEIGHT 64 31 32 /* message ram configuration data length */ 33 #define MRAM_CFG_LEN 8 34 35 /* registers definition */ 36 enum m_can_reg { 37 M_CAN_CREL = 0x0, 38 M_CAN_ENDN = 0x4, 39 M_CAN_CUST = 0x8, 40 M_CAN_FBTP = 0xc, 41 M_CAN_TEST = 0x10, 42 M_CAN_RWD = 0x14, 43 M_CAN_CCCR = 0x18, 44 M_CAN_BTP = 0x1c, 45 M_CAN_TSCC = 0x20, 46 M_CAN_TSCV = 0x24, 47 M_CAN_TOCC = 0x28, 48 M_CAN_TOCV = 0x2c, 49 M_CAN_ECR = 0x40, 50 M_CAN_PSR = 0x44, 51 M_CAN_IR = 0x50, 52 M_CAN_IE = 0x54, 53 M_CAN_ILS = 0x58, 54 M_CAN_ILE = 0x5c, 55 M_CAN_GFC = 0x80, 56 M_CAN_SIDFC = 0x84, 57 M_CAN_XIDFC = 0x88, 58 M_CAN_XIDAM = 0x90, 59 M_CAN_HPMS = 0x94, 60 M_CAN_NDAT1 = 0x98, 61 M_CAN_NDAT2 = 0x9c, 62 M_CAN_RXF0C = 0xa0, 63 M_CAN_RXF0S = 0xa4, 64 M_CAN_RXF0A = 0xa8, 65 M_CAN_RXBC = 0xac, 66 M_CAN_RXF1C = 0xb0, 67 M_CAN_RXF1S = 0xb4, 68 M_CAN_RXF1A = 0xb8, 69 M_CAN_RXESC = 0xbc, 70 M_CAN_TXBC = 0xc0, 71 M_CAN_TXFQS = 0xc4, 72 M_CAN_TXESC = 0xc8, 73 M_CAN_TXBRP = 0xcc, 74 M_CAN_TXBAR = 0xd0, 75 M_CAN_TXBCR = 0xd4, 76 M_CAN_TXBTO = 0xd8, 77 M_CAN_TXBCF = 0xdc, 78 M_CAN_TXBTIE = 0xe0, 79 M_CAN_TXBCIE = 0xe4, 80 M_CAN_TXEFC = 0xf0, 81 M_CAN_TXEFS = 0xf4, 82 M_CAN_TXEFA = 0xf8, 83 }; 84 85 /* m_can lec values */ 86 enum m_can_lec_type { 87 LEC_NO_ERROR = 0, 88 LEC_STUFF_ERROR, 89 LEC_FORM_ERROR, 90 LEC_ACK_ERROR, 91 LEC_BIT1_ERROR, 92 LEC_BIT0_ERROR, 93 LEC_CRC_ERROR, 94 LEC_UNUSED, 95 }; 96 97 enum m_can_mram_cfg { 98 MRAM_SIDF = 0, 99 MRAM_XIDF, 100 MRAM_RXF0, 101 MRAM_RXF1, 102 MRAM_RXB, 103 MRAM_TXE, 104 MRAM_TXB, 105 MRAM_CFG_NUM, 106 }; 107 108 /* Fast Bit Timing & Prescaler Register (FBTP) */ 109 #define FBTR_FBRP_MASK 0x1f 110 #define FBTR_FBRP_SHIFT 16 111 #define FBTR_FTSEG1_SHIFT 8 112 #define FBTR_FTSEG1_MASK (0xf << FBTR_FTSEG1_SHIFT) 113 #define FBTR_FTSEG2_SHIFT 4 114 #define FBTR_FTSEG2_MASK (0x7 << FBTR_FTSEG2_SHIFT) 115 #define FBTR_FSJW_SHIFT 0 116 #define FBTR_FSJW_MASK 0x3 117 118 /* Test Register (TEST) */ 119 #define TEST_LBCK BIT(4) 120 121 /* CC Control Register(CCCR) */ 122 #define CCCR_TEST BIT(7) 123 #define CCCR_CMR_MASK 0x3 124 #define CCCR_CMR_SHIFT 10 125 #define CCCR_CMR_CANFD 0x1 126 #define CCCR_CMR_CANFD_BRS 0x2 127 #define CCCR_CMR_CAN 0x3 128 #define CCCR_CME_MASK 0x3 129 #define CCCR_CME_SHIFT 8 130 #define CCCR_CME_CAN 0 131 #define CCCR_CME_CANFD 0x1 132 #define CCCR_CME_CANFD_BRS 0x2 133 #define CCCR_TEST BIT(7) 134 #define CCCR_MON BIT(5) 135 #define CCCR_CCE BIT(1) 136 #define CCCR_INIT BIT(0) 137 #define CCCR_CANFD 0x10 138 139 /* Bit Timing & Prescaler Register (BTP) */ 140 #define BTR_BRP_MASK 0x3ff 141 #define BTR_BRP_SHIFT 16 142 #define BTR_TSEG1_SHIFT 8 143 #define BTR_TSEG1_MASK (0x3f << BTR_TSEG1_SHIFT) 144 #define BTR_TSEG2_SHIFT 4 145 #define BTR_TSEG2_MASK (0xf << BTR_TSEG2_SHIFT) 146 #define BTR_SJW_SHIFT 0 147 #define BTR_SJW_MASK 0xf 148 149 /* Error Counter Register(ECR) */ 150 #define ECR_RP BIT(15) 151 #define ECR_REC_SHIFT 8 152 #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT) 153 #define ECR_TEC_SHIFT 0 154 #define ECR_TEC_MASK 0xff 155 156 /* Protocol Status Register(PSR) */ 157 #define PSR_BO BIT(7) 158 #define PSR_EW BIT(6) 159 #define PSR_EP BIT(5) 160 #define PSR_LEC_MASK 0x7 161 162 /* Interrupt Register(IR) */ 163 #define IR_ALL_INT 0xffffffff 164 #define IR_STE BIT(31) 165 #define IR_FOE BIT(30) 166 #define IR_ACKE BIT(29) 167 #define IR_BE BIT(28) 168 #define IR_CRCE BIT(27) 169 #define IR_WDI BIT(26) 170 #define IR_BO BIT(25) 171 #define IR_EW BIT(24) 172 #define IR_EP BIT(23) 173 #define IR_ELO BIT(22) 174 #define IR_BEU BIT(21) 175 #define IR_BEC BIT(20) 176 #define IR_DRX BIT(19) 177 #define IR_TOO BIT(18) 178 #define IR_MRAF BIT(17) 179 #define IR_TSW BIT(16) 180 #define IR_TEFL BIT(15) 181 #define IR_TEFF BIT(14) 182 #define IR_TEFW BIT(13) 183 #define IR_TEFN BIT(12) 184 #define IR_TFE BIT(11) 185 #define IR_TCF BIT(10) 186 #define IR_TC BIT(9) 187 #define IR_HPM BIT(8) 188 #define IR_RF1L BIT(7) 189 #define IR_RF1F BIT(6) 190 #define IR_RF1W BIT(5) 191 #define IR_RF1N BIT(4) 192 #define IR_RF0L BIT(3) 193 #define IR_RF0F BIT(2) 194 #define IR_RF0W BIT(1) 195 #define IR_RF0N BIT(0) 196 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 197 #define IR_ERR_LEC (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 198 #define IR_ERR_BUS (IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \ 199 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 200 IR_RF1L | IR_RF0L) 201 #define IR_ERR_ALL (IR_ERR_STATE | IR_ERR_BUS) 202 203 /* Interrupt Line Select (ILS) */ 204 #define ILS_ALL_INT0 0x0 205 #define ILS_ALL_INT1 0xFFFFFFFF 206 207 /* Interrupt Line Enable (ILE) */ 208 #define ILE_EINT0 BIT(0) 209 #define ILE_EINT1 BIT(1) 210 211 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 212 #define RXFC_FWM_OFF 24 213 #define RXFC_FWM_MASK 0x7f 214 #define RXFC_FWM_1 (1 << RXFC_FWM_OFF) 215 #define RXFC_FS_OFF 16 216 #define RXFC_FS_MASK 0x7f 217 218 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 219 #define RXFS_RFL BIT(25) 220 #define RXFS_FF BIT(24) 221 #define RXFS_FPI_OFF 16 222 #define RXFS_FPI_MASK 0x3f0000 223 #define RXFS_FGI_OFF 8 224 #define RXFS_FGI_MASK 0x3f00 225 #define RXFS_FFL_MASK 0x7f 226 227 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 228 #define M_CAN_RXESC_8BYTES 0x0 229 #define M_CAN_RXESC_64BYTES 0x777 230 231 /* Tx Buffer Configuration(TXBC) */ 232 #define TXBC_NDTB_OFF 16 233 #define TXBC_NDTB_MASK 0x3f 234 235 /* Tx Buffer Element Size Configuration(TXESC) */ 236 #define TXESC_TBDS_8BYTES 0x0 237 #define TXESC_TBDS_64BYTES 0x7 238 239 /* Tx Event FIFO Con.guration (TXEFC) */ 240 #define TXEFC_EFS_OFF 16 241 #define TXEFC_EFS_MASK 0x3f 242 243 /* Message RAM Configuration (in bytes) */ 244 #define SIDF_ELEMENT_SIZE 4 245 #define XIDF_ELEMENT_SIZE 8 246 #define RXF0_ELEMENT_SIZE 72 247 #define RXF1_ELEMENT_SIZE 72 248 #define RXB_ELEMENT_SIZE 16 249 #define TXE_ELEMENT_SIZE 8 250 #define TXB_ELEMENT_SIZE 72 251 252 /* Message RAM Elements */ 253 #define M_CAN_FIFO_ID 0x0 254 #define M_CAN_FIFO_DLC 0x4 255 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2)) 256 257 /* Rx Buffer Element */ 258 /* R0 */ 259 #define RX_BUF_ESI BIT(31) 260 #define RX_BUF_XTD BIT(30) 261 #define RX_BUF_RTR BIT(29) 262 /* R1 */ 263 #define RX_BUF_ANMF BIT(31) 264 #define RX_BUF_EDL BIT(21) 265 #define RX_BUF_BRS BIT(20) 266 267 /* Tx Buffer Element */ 268 /* R0 */ 269 #define TX_BUF_XTD BIT(30) 270 #define TX_BUF_RTR BIT(29) 271 272 /* address offset and element number for each FIFO/Buffer in the Message RAM */ 273 struct mram_cfg { 274 u16 off; 275 u8 num; 276 }; 277 278 /* m_can private data structure */ 279 struct m_can_priv { 280 struct can_priv can; /* must be the first member */ 281 struct napi_struct napi; 282 struct net_device *dev; 283 struct device *device; 284 struct clk *hclk; 285 struct clk *cclk; 286 void __iomem *base; 287 u32 irqstatus; 288 289 /* message ram configuration */ 290 void __iomem *mram_base; 291 struct mram_cfg mcfg[MRAM_CFG_NUM]; 292 }; 293 294 static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg) 295 { 296 return readl(priv->base + reg); 297 } 298 299 static inline void m_can_write(const struct m_can_priv *priv, 300 enum m_can_reg reg, u32 val) 301 { 302 writel(val, priv->base + reg); 303 } 304 305 static inline u32 m_can_fifo_read(const struct m_can_priv *priv, 306 u32 fgi, unsigned int offset) 307 { 308 return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off + 309 fgi * RXF0_ELEMENT_SIZE + offset); 310 } 311 312 static inline void m_can_fifo_write(const struct m_can_priv *priv, 313 u32 fpi, unsigned int offset, u32 val) 314 { 315 writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off + 316 fpi * TXB_ELEMENT_SIZE + offset); 317 } 318 319 static inline void m_can_config_endisable(const struct m_can_priv *priv, 320 bool enable) 321 { 322 u32 cccr = m_can_read(priv, M_CAN_CCCR); 323 u32 timeout = 10; 324 u32 val = 0; 325 326 if (enable) { 327 /* enable m_can configuration */ 328 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT); 329 udelay(5); 330 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 331 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 332 } else { 333 m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 334 } 335 336 /* there's a delay for module initialization */ 337 if (enable) 338 val = CCCR_INIT | CCCR_CCE; 339 340 while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 341 if (timeout == 0) { 342 netdev_warn(priv->dev, "Failed to init module\n"); 343 return; 344 } 345 timeout--; 346 udelay(1); 347 } 348 } 349 350 static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv) 351 { 352 m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1); 353 } 354 355 static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv) 356 { 357 m_can_write(priv, M_CAN_ILE, 0x0); 358 } 359 360 static void m_can_read_fifo(struct net_device *dev, u32 rxfs) 361 { 362 struct net_device_stats *stats = &dev->stats; 363 struct m_can_priv *priv = netdev_priv(dev); 364 struct canfd_frame *cf; 365 struct sk_buff *skb; 366 u32 id, fgi, dlc; 367 int i; 368 369 /* calculate the fifo get index for where to read data */ 370 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF; 371 dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC); 372 if (dlc & RX_BUF_EDL) 373 skb = alloc_canfd_skb(dev, &cf); 374 else 375 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 376 if (!skb) { 377 stats->rx_dropped++; 378 return; 379 } 380 381 if (dlc & RX_BUF_EDL) 382 cf->len = can_dlc2len((dlc >> 16) & 0x0F); 383 else 384 cf->len = get_can_dlc((dlc >> 16) & 0x0F); 385 386 id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID); 387 if (id & RX_BUF_XTD) 388 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 389 else 390 cf->can_id = (id >> 18) & CAN_SFF_MASK; 391 392 if (id & RX_BUF_ESI) { 393 cf->flags |= CANFD_ESI; 394 netdev_dbg(dev, "ESI Error\n"); 395 } 396 397 if (!(dlc & RX_BUF_EDL) && (id & RX_BUF_RTR)) { 398 cf->can_id |= CAN_RTR_FLAG; 399 } else { 400 if (dlc & RX_BUF_BRS) 401 cf->flags |= CANFD_BRS; 402 403 for (i = 0; i < cf->len; i += 4) 404 *(u32 *)(cf->data + i) = 405 m_can_fifo_read(priv, fgi, 406 M_CAN_FIFO_DATA(i / 4)); 407 } 408 409 /* acknowledge rx fifo 0 */ 410 m_can_write(priv, M_CAN_RXF0A, fgi); 411 412 stats->rx_packets++; 413 stats->rx_bytes += cf->len; 414 415 netif_receive_skb(skb); 416 } 417 418 static int m_can_do_rx_poll(struct net_device *dev, int quota) 419 { 420 struct m_can_priv *priv = netdev_priv(dev); 421 u32 pkts = 0; 422 u32 rxfs; 423 424 rxfs = m_can_read(priv, M_CAN_RXF0S); 425 if (!(rxfs & RXFS_FFL_MASK)) { 426 netdev_dbg(dev, "no messages in fifo0\n"); 427 return 0; 428 } 429 430 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { 431 if (rxfs & RXFS_RFL) 432 netdev_warn(dev, "Rx FIFO 0 Message Lost\n"); 433 434 m_can_read_fifo(dev, rxfs); 435 436 quota--; 437 pkts++; 438 rxfs = m_can_read(priv, M_CAN_RXF0S); 439 } 440 441 if (pkts) 442 can_led_event(dev, CAN_LED_EVENT_RX); 443 444 return pkts; 445 } 446 447 static int m_can_handle_lost_msg(struct net_device *dev) 448 { 449 struct net_device_stats *stats = &dev->stats; 450 struct sk_buff *skb; 451 struct can_frame *frame; 452 453 netdev_err(dev, "msg lost in rxf0\n"); 454 455 stats->rx_errors++; 456 stats->rx_over_errors++; 457 458 skb = alloc_can_err_skb(dev, &frame); 459 if (unlikely(!skb)) 460 return 0; 461 462 frame->can_id |= CAN_ERR_CRTL; 463 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 464 465 netif_receive_skb(skb); 466 467 return 1; 468 } 469 470 static int m_can_handle_lec_err(struct net_device *dev, 471 enum m_can_lec_type lec_type) 472 { 473 struct m_can_priv *priv = netdev_priv(dev); 474 struct net_device_stats *stats = &dev->stats; 475 struct can_frame *cf; 476 struct sk_buff *skb; 477 478 priv->can.can_stats.bus_error++; 479 stats->rx_errors++; 480 481 /* propagate the error condition to the CAN stack */ 482 skb = alloc_can_err_skb(dev, &cf); 483 if (unlikely(!skb)) 484 return 0; 485 486 /* check for 'last error code' which tells us the 487 * type of the last error to occur on the CAN bus 488 */ 489 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 490 491 switch (lec_type) { 492 case LEC_STUFF_ERROR: 493 netdev_dbg(dev, "stuff error\n"); 494 cf->data[2] |= CAN_ERR_PROT_STUFF; 495 break; 496 case LEC_FORM_ERROR: 497 netdev_dbg(dev, "form error\n"); 498 cf->data[2] |= CAN_ERR_PROT_FORM; 499 break; 500 case LEC_ACK_ERROR: 501 netdev_dbg(dev, "ack error\n"); 502 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 503 break; 504 case LEC_BIT1_ERROR: 505 netdev_dbg(dev, "bit1 error\n"); 506 cf->data[2] |= CAN_ERR_PROT_BIT1; 507 break; 508 case LEC_BIT0_ERROR: 509 netdev_dbg(dev, "bit0 error\n"); 510 cf->data[2] |= CAN_ERR_PROT_BIT0; 511 break; 512 case LEC_CRC_ERROR: 513 netdev_dbg(dev, "CRC error\n"); 514 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 515 break; 516 default: 517 break; 518 } 519 520 stats->rx_packets++; 521 stats->rx_bytes += cf->can_dlc; 522 netif_receive_skb(skb); 523 524 return 1; 525 } 526 527 static int __m_can_get_berr_counter(const struct net_device *dev, 528 struct can_berr_counter *bec) 529 { 530 struct m_can_priv *priv = netdev_priv(dev); 531 unsigned int ecr; 532 533 ecr = m_can_read(priv, M_CAN_ECR); 534 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT; 535 bec->txerr = ecr & ECR_TEC_MASK; 536 537 return 0; 538 } 539 540 static int m_can_get_berr_counter(const struct net_device *dev, 541 struct can_berr_counter *bec) 542 { 543 struct m_can_priv *priv = netdev_priv(dev); 544 int err; 545 546 err = clk_prepare_enable(priv->hclk); 547 if (err) 548 return err; 549 550 err = clk_prepare_enable(priv->cclk); 551 if (err) { 552 clk_disable_unprepare(priv->hclk); 553 return err; 554 } 555 556 __m_can_get_berr_counter(dev, bec); 557 558 clk_disable_unprepare(priv->cclk); 559 clk_disable_unprepare(priv->hclk); 560 561 return 0; 562 } 563 564 static int m_can_handle_state_change(struct net_device *dev, 565 enum can_state new_state) 566 { 567 struct m_can_priv *priv = netdev_priv(dev); 568 struct net_device_stats *stats = &dev->stats; 569 struct can_frame *cf; 570 struct sk_buff *skb; 571 struct can_berr_counter bec; 572 unsigned int ecr; 573 574 switch (new_state) { 575 case CAN_STATE_ERROR_ACTIVE: 576 /* error warning state */ 577 priv->can.can_stats.error_warning++; 578 priv->can.state = CAN_STATE_ERROR_WARNING; 579 break; 580 case CAN_STATE_ERROR_PASSIVE: 581 /* error passive state */ 582 priv->can.can_stats.error_passive++; 583 priv->can.state = CAN_STATE_ERROR_PASSIVE; 584 break; 585 case CAN_STATE_BUS_OFF: 586 /* bus-off state */ 587 priv->can.state = CAN_STATE_BUS_OFF; 588 m_can_disable_all_interrupts(priv); 589 priv->can.can_stats.bus_off++; 590 can_bus_off(dev); 591 break; 592 default: 593 break; 594 } 595 596 /* propagate the error condition to the CAN stack */ 597 skb = alloc_can_err_skb(dev, &cf); 598 if (unlikely(!skb)) 599 return 0; 600 601 __m_can_get_berr_counter(dev, &bec); 602 603 switch (new_state) { 604 case CAN_STATE_ERROR_ACTIVE: 605 /* error warning state */ 606 cf->can_id |= CAN_ERR_CRTL; 607 cf->data[1] = (bec.txerr > bec.rxerr) ? 608 CAN_ERR_CRTL_TX_WARNING : 609 CAN_ERR_CRTL_RX_WARNING; 610 cf->data[6] = bec.txerr; 611 cf->data[7] = bec.rxerr; 612 break; 613 case CAN_STATE_ERROR_PASSIVE: 614 /* error passive state */ 615 cf->can_id |= CAN_ERR_CRTL; 616 ecr = m_can_read(priv, M_CAN_ECR); 617 if (ecr & ECR_RP) 618 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 619 if (bec.txerr > 127) 620 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 621 cf->data[6] = bec.txerr; 622 cf->data[7] = bec.rxerr; 623 break; 624 case CAN_STATE_BUS_OFF: 625 /* bus-off state */ 626 cf->can_id |= CAN_ERR_BUSOFF; 627 break; 628 default: 629 break; 630 } 631 632 stats->rx_packets++; 633 stats->rx_bytes += cf->can_dlc; 634 netif_receive_skb(skb); 635 636 return 1; 637 } 638 639 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 640 { 641 struct m_can_priv *priv = netdev_priv(dev); 642 int work_done = 0; 643 644 if ((psr & PSR_EW) && 645 (priv->can.state != CAN_STATE_ERROR_WARNING)) { 646 netdev_dbg(dev, "entered error warning state\n"); 647 work_done += m_can_handle_state_change(dev, 648 CAN_STATE_ERROR_WARNING); 649 } 650 651 if ((psr & PSR_EP) && 652 (priv->can.state != CAN_STATE_ERROR_PASSIVE)) { 653 netdev_dbg(dev, "entered error passive state\n"); 654 work_done += m_can_handle_state_change(dev, 655 CAN_STATE_ERROR_PASSIVE); 656 } 657 658 if ((psr & PSR_BO) && 659 (priv->can.state != CAN_STATE_BUS_OFF)) { 660 netdev_dbg(dev, "entered error bus off state\n"); 661 work_done += m_can_handle_state_change(dev, 662 CAN_STATE_BUS_OFF); 663 } 664 665 return work_done; 666 } 667 668 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 669 { 670 if (irqstatus & IR_WDI) 671 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 672 if (irqstatus & IR_ELO) 673 netdev_err(dev, "Error Logging Overflow\n"); 674 if (irqstatus & IR_BEU) 675 netdev_err(dev, "Bit Error Uncorrected\n"); 676 if (irqstatus & IR_BEC) 677 netdev_err(dev, "Bit Error Corrected\n"); 678 if (irqstatus & IR_TOO) 679 netdev_err(dev, "Timeout reached\n"); 680 if (irqstatus & IR_MRAF) 681 netdev_err(dev, "Message RAM access failure occurred\n"); 682 } 683 684 static inline bool is_lec_err(u32 psr) 685 { 686 psr &= LEC_UNUSED; 687 688 return psr && (psr != LEC_UNUSED); 689 } 690 691 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 692 u32 psr) 693 { 694 struct m_can_priv *priv = netdev_priv(dev); 695 int work_done = 0; 696 697 if (irqstatus & IR_RF0L) 698 work_done += m_can_handle_lost_msg(dev); 699 700 /* handle lec errors on the bus */ 701 if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 702 is_lec_err(psr)) 703 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); 704 705 /* other unproccessed error interrupts */ 706 m_can_handle_other_err(dev, irqstatus); 707 708 return work_done; 709 } 710 711 static int m_can_poll(struct napi_struct *napi, int quota) 712 { 713 struct net_device *dev = napi->dev; 714 struct m_can_priv *priv = netdev_priv(dev); 715 int work_done = 0; 716 u32 irqstatus, psr; 717 718 irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR); 719 if (!irqstatus) 720 goto end; 721 722 psr = m_can_read(priv, M_CAN_PSR); 723 if (irqstatus & IR_ERR_STATE) 724 work_done += m_can_handle_state_errors(dev, psr); 725 726 if (irqstatus & IR_ERR_BUS) 727 work_done += m_can_handle_bus_errors(dev, irqstatus, psr); 728 729 if (irqstatus & IR_RF0N) 730 work_done += m_can_do_rx_poll(dev, (quota - work_done)); 731 732 if (work_done < quota) { 733 napi_complete_done(napi, work_done); 734 m_can_enable_all_interrupts(priv); 735 } 736 737 end: 738 return work_done; 739 } 740 741 static irqreturn_t m_can_isr(int irq, void *dev_id) 742 { 743 struct net_device *dev = (struct net_device *)dev_id; 744 struct m_can_priv *priv = netdev_priv(dev); 745 struct net_device_stats *stats = &dev->stats; 746 u32 ir; 747 748 ir = m_can_read(priv, M_CAN_IR); 749 if (!ir) 750 return IRQ_NONE; 751 752 /* ACK all irqs */ 753 if (ir & IR_ALL_INT) 754 m_can_write(priv, M_CAN_IR, ir); 755 756 /* schedule NAPI in case of 757 * - rx IRQ 758 * - state change IRQ 759 * - bus error IRQ and bus error reporting 760 */ 761 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) { 762 priv->irqstatus = ir; 763 m_can_disable_all_interrupts(priv); 764 napi_schedule(&priv->napi); 765 } 766 767 /* transmission complete interrupt */ 768 if (ir & IR_TC) { 769 stats->tx_bytes += can_get_echo_skb(dev, 0); 770 stats->tx_packets++; 771 can_led_event(dev, CAN_LED_EVENT_TX); 772 netif_wake_queue(dev); 773 } 774 775 return IRQ_HANDLED; 776 } 777 778 static const struct can_bittiming_const m_can_bittiming_const = { 779 .name = KBUILD_MODNAME, 780 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 781 .tseg1_max = 64, 782 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 783 .tseg2_max = 16, 784 .sjw_max = 16, 785 .brp_min = 1, 786 .brp_max = 1024, 787 .brp_inc = 1, 788 }; 789 790 static const struct can_bittiming_const m_can_data_bittiming_const = { 791 .name = KBUILD_MODNAME, 792 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 793 .tseg1_max = 16, 794 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 795 .tseg2_max = 8, 796 .sjw_max = 4, 797 .brp_min = 1, 798 .brp_max = 32, 799 .brp_inc = 1, 800 }; 801 802 static int m_can_set_bittiming(struct net_device *dev) 803 { 804 struct m_can_priv *priv = netdev_priv(dev); 805 const struct can_bittiming *bt = &priv->can.bittiming; 806 const struct can_bittiming *dbt = &priv->can.data_bittiming; 807 u16 brp, sjw, tseg1, tseg2; 808 u32 reg_btp; 809 810 brp = bt->brp - 1; 811 sjw = bt->sjw - 1; 812 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 813 tseg2 = bt->phase_seg2 - 1; 814 reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) | 815 (tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT); 816 m_can_write(priv, M_CAN_BTP, reg_btp); 817 818 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 819 brp = dbt->brp - 1; 820 sjw = dbt->sjw - 1; 821 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 822 tseg2 = dbt->phase_seg2 - 1; 823 reg_btp = (brp << FBTR_FBRP_SHIFT) | (sjw << FBTR_FSJW_SHIFT) | 824 (tseg1 << FBTR_FTSEG1_SHIFT) | 825 (tseg2 << FBTR_FTSEG2_SHIFT); 826 m_can_write(priv, M_CAN_FBTP, reg_btp); 827 } 828 829 return 0; 830 } 831 832 /* Configure M_CAN chip: 833 * - set rx buffer/fifo element size 834 * - configure rx fifo 835 * - accept non-matching frame into fifo 0 836 * - configure tx buffer 837 * - configure mode 838 * - setup bittiming 839 */ 840 static void m_can_chip_config(struct net_device *dev) 841 { 842 struct m_can_priv *priv = netdev_priv(dev); 843 u32 cccr, test; 844 845 m_can_config_endisable(priv, true); 846 847 /* RX Buffer/FIFO Element Size 64 bytes data field */ 848 m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES); 849 850 /* Accept Non-matching Frames Into FIFO 0 */ 851 m_can_write(priv, M_CAN_GFC, 0x0); 852 853 /* only support one Tx Buffer currently */ 854 m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) | 855 priv->mcfg[MRAM_TXB].off); 856 857 /* support 64 bytes payload */ 858 m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES); 859 860 m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) | 861 priv->mcfg[MRAM_TXE].off); 862 863 /* rx fifo configuration, blocking mode, fifo size 1 */ 864 m_can_write(priv, M_CAN_RXF0C, 865 (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) | 866 RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off); 867 868 m_can_write(priv, M_CAN_RXF1C, 869 (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) | 870 RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off); 871 872 cccr = m_can_read(priv, M_CAN_CCCR); 873 cccr &= ~(CCCR_TEST | CCCR_MON | (CCCR_CMR_MASK << CCCR_CMR_SHIFT) | 874 (CCCR_CME_MASK << CCCR_CME_SHIFT)); 875 test = m_can_read(priv, M_CAN_TEST); 876 test &= ~TEST_LBCK; 877 878 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 879 cccr |= CCCR_MON; 880 881 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 882 cccr |= CCCR_TEST; 883 test |= TEST_LBCK; 884 } 885 886 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) 887 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT; 888 889 m_can_write(priv, M_CAN_CCCR, cccr); 890 m_can_write(priv, M_CAN_TEST, test); 891 892 /* enable interrupts */ 893 m_can_write(priv, M_CAN_IR, IR_ALL_INT); 894 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 895 m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC); 896 else 897 m_can_write(priv, M_CAN_IE, IR_ALL_INT); 898 899 /* route all interrupts to INT0 */ 900 m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0); 901 902 /* set bittiming params */ 903 m_can_set_bittiming(dev); 904 905 m_can_config_endisable(priv, false); 906 } 907 908 static void m_can_start(struct net_device *dev) 909 { 910 struct m_can_priv *priv = netdev_priv(dev); 911 912 /* basic m_can configuration */ 913 m_can_chip_config(dev); 914 915 priv->can.state = CAN_STATE_ERROR_ACTIVE; 916 917 m_can_enable_all_interrupts(priv); 918 } 919 920 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 921 { 922 switch (mode) { 923 case CAN_MODE_START: 924 m_can_start(dev); 925 netif_wake_queue(dev); 926 break; 927 default: 928 return -EOPNOTSUPP; 929 } 930 931 return 0; 932 } 933 934 static void free_m_can_dev(struct net_device *dev) 935 { 936 free_candev(dev); 937 } 938 939 static struct net_device *alloc_m_can_dev(void) 940 { 941 struct net_device *dev; 942 struct m_can_priv *priv; 943 944 dev = alloc_candev(sizeof(*priv), 1); 945 if (!dev) 946 return NULL; 947 948 priv = netdev_priv(dev); 949 netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT); 950 951 priv->dev = dev; 952 priv->can.bittiming_const = &m_can_bittiming_const; 953 priv->can.data_bittiming_const = &m_can_data_bittiming_const; 954 priv->can.do_set_mode = m_can_set_mode; 955 priv->can.do_get_berr_counter = m_can_get_berr_counter; 956 957 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.1 */ 958 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 959 960 /* CAN_CTRLMODE_FD_NON_ISO can not be changed with M_CAN IP v3.0.1 */ 961 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 962 CAN_CTRLMODE_LISTENONLY | 963 CAN_CTRLMODE_BERR_REPORTING | 964 CAN_CTRLMODE_FD; 965 966 return dev; 967 } 968 969 static int m_can_open(struct net_device *dev) 970 { 971 struct m_can_priv *priv = netdev_priv(dev); 972 int err; 973 974 err = clk_prepare_enable(priv->hclk); 975 if (err) 976 return err; 977 978 err = clk_prepare_enable(priv->cclk); 979 if (err) 980 goto exit_disable_hclk; 981 982 /* open the can device */ 983 err = open_candev(dev); 984 if (err) { 985 netdev_err(dev, "failed to open can device\n"); 986 goto exit_disable_cclk; 987 } 988 989 /* register interrupt handler */ 990 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 991 dev); 992 if (err < 0) { 993 netdev_err(dev, "failed to request interrupt\n"); 994 goto exit_irq_fail; 995 } 996 997 /* start the m_can controller */ 998 m_can_start(dev); 999 1000 can_led_event(dev, CAN_LED_EVENT_OPEN); 1001 napi_enable(&priv->napi); 1002 netif_start_queue(dev); 1003 1004 return 0; 1005 1006 exit_irq_fail: 1007 close_candev(dev); 1008 exit_disable_cclk: 1009 clk_disable_unprepare(priv->cclk); 1010 exit_disable_hclk: 1011 clk_disable_unprepare(priv->hclk); 1012 return err; 1013 } 1014 1015 static void m_can_stop(struct net_device *dev) 1016 { 1017 struct m_can_priv *priv = netdev_priv(dev); 1018 1019 /* disable all interrupts */ 1020 m_can_disable_all_interrupts(priv); 1021 1022 clk_disable_unprepare(priv->hclk); 1023 clk_disable_unprepare(priv->cclk); 1024 1025 /* set the state as STOPPED */ 1026 priv->can.state = CAN_STATE_STOPPED; 1027 } 1028 1029 static int m_can_close(struct net_device *dev) 1030 { 1031 struct m_can_priv *priv = netdev_priv(dev); 1032 1033 netif_stop_queue(dev); 1034 napi_disable(&priv->napi); 1035 m_can_stop(dev); 1036 free_irq(dev->irq, dev); 1037 close_candev(dev); 1038 can_led_event(dev, CAN_LED_EVENT_STOP); 1039 1040 return 0; 1041 } 1042 1043 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1044 struct net_device *dev) 1045 { 1046 struct m_can_priv *priv = netdev_priv(dev); 1047 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1048 u32 id, cccr; 1049 int i; 1050 1051 if (can_dropped_invalid_skb(dev, skb)) 1052 return NETDEV_TX_OK; 1053 1054 netif_stop_queue(dev); 1055 1056 if (cf->can_id & CAN_EFF_FLAG) { 1057 id = cf->can_id & CAN_EFF_MASK; 1058 id |= TX_BUF_XTD; 1059 } else { 1060 id = ((cf->can_id & CAN_SFF_MASK) << 18); 1061 } 1062 1063 if (cf->can_id & CAN_RTR_FLAG) 1064 id |= TX_BUF_RTR; 1065 1066 /* message ram configuration */ 1067 m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id); 1068 m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, can_len2dlc(cf->len) << 16); 1069 1070 for (i = 0; i < cf->len; i += 4) 1071 m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(i / 4), 1072 *(u32 *)(cf->data + i)); 1073 1074 can_put_echo_skb(skb, dev, 0); 1075 1076 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1077 cccr = m_can_read(priv, M_CAN_CCCR); 1078 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT); 1079 if (can_is_canfd_skb(skb)) { 1080 if (cf->flags & CANFD_BRS) 1081 cccr |= CCCR_CMR_CANFD_BRS << CCCR_CMR_SHIFT; 1082 else 1083 cccr |= CCCR_CMR_CANFD << CCCR_CMR_SHIFT; 1084 } else { 1085 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT; 1086 } 1087 m_can_write(priv, M_CAN_CCCR, cccr); 1088 } 1089 1090 /* enable first TX buffer to start transfer */ 1091 m_can_write(priv, M_CAN_TXBTIE, 0x1); 1092 m_can_write(priv, M_CAN_TXBAR, 0x1); 1093 1094 return NETDEV_TX_OK; 1095 } 1096 1097 static const struct net_device_ops m_can_netdev_ops = { 1098 .ndo_open = m_can_open, 1099 .ndo_stop = m_can_close, 1100 .ndo_start_xmit = m_can_start_xmit, 1101 .ndo_change_mtu = can_change_mtu, 1102 }; 1103 1104 static int register_m_can_dev(struct net_device *dev) 1105 { 1106 dev->flags |= IFF_ECHO; /* we support local echo */ 1107 dev->netdev_ops = &m_can_netdev_ops; 1108 1109 return register_candev(dev); 1110 } 1111 1112 static int m_can_of_parse_mram(struct platform_device *pdev, 1113 struct m_can_priv *priv) 1114 { 1115 struct device_node *np = pdev->dev.of_node; 1116 struct resource *res; 1117 void __iomem *addr; 1118 u32 out_val[MRAM_CFG_LEN]; 1119 int i, start, end, ret; 1120 1121 /* message ram could be shared */ 1122 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram"); 1123 if (!res) 1124 return -ENODEV; 1125 1126 addr = devm_ioremap(&pdev->dev, res->start, resource_size(res)); 1127 if (!addr) 1128 return -ENOMEM; 1129 1130 /* get message ram configuration */ 1131 ret = of_property_read_u32_array(np, "bosch,mram-cfg", 1132 out_val, sizeof(out_val) / 4); 1133 if (ret) { 1134 dev_err(&pdev->dev, "can not get message ram configuration\n"); 1135 return -ENODEV; 1136 } 1137 1138 priv->mram_base = addr; 1139 priv->mcfg[MRAM_SIDF].off = out_val[0]; 1140 priv->mcfg[MRAM_SIDF].num = out_val[1]; 1141 priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off + 1142 priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1143 priv->mcfg[MRAM_XIDF].num = out_val[2]; 1144 priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off + 1145 priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1146 priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK; 1147 priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off + 1148 priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1149 priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK; 1150 priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off + 1151 priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1152 priv->mcfg[MRAM_RXB].num = out_val[5]; 1153 priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off + 1154 priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1155 priv->mcfg[MRAM_TXE].num = out_val[6]; 1156 priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off + 1157 priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1158 priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK; 1159 1160 dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1161 priv->mram_base, 1162 priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num, 1163 priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num, 1164 priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num, 1165 priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num, 1166 priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num, 1167 priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num, 1168 priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num); 1169 1170 /* initialize the entire Message RAM in use to avoid possible 1171 * ECC/parity checksum errors when reading an uninitialized buffer 1172 */ 1173 start = priv->mcfg[MRAM_SIDF].off; 1174 end = priv->mcfg[MRAM_TXB].off + 1175 priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1176 for (i = start; i < end; i += 4) 1177 writel(0x0, priv->mram_base + i); 1178 1179 return 0; 1180 } 1181 1182 static int m_can_plat_probe(struct platform_device *pdev) 1183 { 1184 struct net_device *dev; 1185 struct m_can_priv *priv; 1186 struct resource *res; 1187 void __iomem *addr; 1188 struct clk *hclk, *cclk; 1189 int irq, ret; 1190 1191 hclk = devm_clk_get(&pdev->dev, "hclk"); 1192 cclk = devm_clk_get(&pdev->dev, "cclk"); 1193 if (IS_ERR(hclk) || IS_ERR(cclk)) { 1194 dev_err(&pdev->dev, "no clock find\n"); 1195 return -ENODEV; 1196 } 1197 1198 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can"); 1199 addr = devm_ioremap_resource(&pdev->dev, res); 1200 irq = platform_get_irq_byname(pdev, "int0"); 1201 if (IS_ERR(addr) || irq < 0) 1202 return -EINVAL; 1203 1204 /* allocate the m_can device */ 1205 dev = alloc_m_can_dev(); 1206 if (!dev) 1207 return -ENOMEM; 1208 1209 priv = netdev_priv(dev); 1210 dev->irq = irq; 1211 priv->base = addr; 1212 priv->device = &pdev->dev; 1213 priv->hclk = hclk; 1214 priv->cclk = cclk; 1215 priv->can.clock.freq = clk_get_rate(cclk); 1216 1217 ret = m_can_of_parse_mram(pdev, priv); 1218 if (ret) 1219 goto failed_free_dev; 1220 1221 platform_set_drvdata(pdev, dev); 1222 SET_NETDEV_DEV(dev, &pdev->dev); 1223 1224 ret = register_m_can_dev(dev); 1225 if (ret) { 1226 dev_err(&pdev->dev, "registering %s failed (err=%d)\n", 1227 KBUILD_MODNAME, ret); 1228 goto failed_free_dev; 1229 } 1230 1231 devm_can_led_init(dev); 1232 1233 dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n", 1234 KBUILD_MODNAME, priv->base, dev->irq); 1235 1236 return 0; 1237 1238 failed_free_dev: 1239 free_m_can_dev(dev); 1240 return ret; 1241 } 1242 1243 static __maybe_unused int m_can_suspend(struct device *dev) 1244 { 1245 struct net_device *ndev = dev_get_drvdata(dev); 1246 struct m_can_priv *priv = netdev_priv(ndev); 1247 1248 if (netif_running(ndev)) { 1249 netif_stop_queue(ndev); 1250 netif_device_detach(ndev); 1251 } 1252 1253 /* TODO: enter low power */ 1254 1255 priv->can.state = CAN_STATE_SLEEPING; 1256 1257 return 0; 1258 } 1259 1260 static __maybe_unused int m_can_resume(struct device *dev) 1261 { 1262 struct net_device *ndev = dev_get_drvdata(dev); 1263 struct m_can_priv *priv = netdev_priv(ndev); 1264 1265 /* TODO: exit low power */ 1266 1267 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1268 1269 if (netif_running(ndev)) { 1270 netif_device_attach(ndev); 1271 netif_start_queue(ndev); 1272 } 1273 1274 return 0; 1275 } 1276 1277 static void unregister_m_can_dev(struct net_device *dev) 1278 { 1279 unregister_candev(dev); 1280 } 1281 1282 static int m_can_plat_remove(struct platform_device *pdev) 1283 { 1284 struct net_device *dev = platform_get_drvdata(pdev); 1285 1286 unregister_m_can_dev(dev); 1287 platform_set_drvdata(pdev, NULL); 1288 1289 free_m_can_dev(dev); 1290 1291 return 0; 1292 } 1293 1294 static const struct dev_pm_ops m_can_pmops = { 1295 SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume) 1296 }; 1297 1298 static const struct of_device_id m_can_of_table[] = { 1299 { .compatible = "bosch,m_can", .data = NULL }, 1300 { /* sentinel */ }, 1301 }; 1302 MODULE_DEVICE_TABLE(of, m_can_of_table); 1303 1304 static struct platform_driver m_can_plat_driver = { 1305 .driver = { 1306 .name = KBUILD_MODNAME, 1307 .of_match_table = m_can_of_table, 1308 .pm = &m_can_pmops, 1309 }, 1310 .probe = m_can_plat_probe, 1311 .remove = m_can_plat_remove, 1312 }; 1313 1314 module_platform_driver(m_can_plat_driver); 1315 1316 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 1317 MODULE_LICENSE("GPL v2"); 1318 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 1319