1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/ 9 * mcan_users_manual_v302.pdf 10 */ 11 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/netdevice.h> 17 #include <linux/of.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/iopoll.h> 22 #include <linux/can/dev.h> 23 #include <linux/pinctrl/consumer.h> 24 25 #include "m_can.h" 26 27 /* registers definition */ 28 enum m_can_reg { 29 M_CAN_CREL = 0x0, 30 M_CAN_ENDN = 0x4, 31 M_CAN_CUST = 0x8, 32 M_CAN_DBTP = 0xc, 33 M_CAN_TEST = 0x10, 34 M_CAN_RWD = 0x14, 35 M_CAN_CCCR = 0x18, 36 M_CAN_NBTP = 0x1c, 37 M_CAN_TSCC = 0x20, 38 M_CAN_TSCV = 0x24, 39 M_CAN_TOCC = 0x28, 40 M_CAN_TOCV = 0x2c, 41 M_CAN_ECR = 0x40, 42 M_CAN_PSR = 0x44, 43 /* TDCR Register only available for version >=3.1.x */ 44 M_CAN_TDCR = 0x48, 45 M_CAN_IR = 0x50, 46 M_CAN_IE = 0x54, 47 M_CAN_ILS = 0x58, 48 M_CAN_ILE = 0x5c, 49 M_CAN_GFC = 0x80, 50 M_CAN_SIDFC = 0x84, 51 M_CAN_XIDFC = 0x88, 52 M_CAN_XIDAM = 0x90, 53 M_CAN_HPMS = 0x94, 54 M_CAN_NDAT1 = 0x98, 55 M_CAN_NDAT2 = 0x9c, 56 M_CAN_RXF0C = 0xa0, 57 M_CAN_RXF0S = 0xa4, 58 M_CAN_RXF0A = 0xa8, 59 M_CAN_RXBC = 0xac, 60 M_CAN_RXF1C = 0xb0, 61 M_CAN_RXF1S = 0xb4, 62 M_CAN_RXF1A = 0xb8, 63 M_CAN_RXESC = 0xbc, 64 M_CAN_TXBC = 0xc0, 65 M_CAN_TXFQS = 0xc4, 66 M_CAN_TXESC = 0xc8, 67 M_CAN_TXBRP = 0xcc, 68 M_CAN_TXBAR = 0xd0, 69 M_CAN_TXBCR = 0xd4, 70 M_CAN_TXBTO = 0xd8, 71 M_CAN_TXBCF = 0xdc, 72 M_CAN_TXBTIE = 0xe0, 73 M_CAN_TXBCIE = 0xe4, 74 M_CAN_TXEFC = 0xf0, 75 M_CAN_TXEFS = 0xf4, 76 M_CAN_TXEFA = 0xf8, 77 }; 78 79 /* napi related */ 80 #define M_CAN_NAPI_WEIGHT 64 81 82 /* message ram configuration data length */ 83 #define MRAM_CFG_LEN 8 84 85 /* Core Release Register (CREL) */ 86 #define CREL_REL_SHIFT 28 87 #define CREL_REL_MASK (0xF << CREL_REL_SHIFT) 88 #define CREL_STEP_SHIFT 24 89 #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT) 90 #define CREL_SUBSTEP_SHIFT 20 91 #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT) 92 93 /* Data Bit Timing & Prescaler Register (DBTP) */ 94 #define DBTP_TDC BIT(23) 95 #define DBTP_DBRP_SHIFT 16 96 #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT) 97 #define DBTP_DTSEG1_SHIFT 8 98 #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT) 99 #define DBTP_DTSEG2_SHIFT 4 100 #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT) 101 #define DBTP_DSJW_SHIFT 0 102 #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT) 103 104 /* Transmitter Delay Compensation Register (TDCR) */ 105 #define TDCR_TDCO_SHIFT 8 106 #define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT) 107 #define TDCR_TDCF_SHIFT 0 108 #define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT) 109 110 /* Test Register (TEST) */ 111 #define TEST_LBCK BIT(4) 112 113 /* CC Control Register(CCCR) */ 114 #define CCCR_CMR_MASK 0x3 115 #define CCCR_CMR_SHIFT 10 116 #define CCCR_CMR_CANFD 0x1 117 #define CCCR_CMR_CANFD_BRS 0x2 118 #define CCCR_CMR_CAN 0x3 119 #define CCCR_CME_MASK 0x3 120 #define CCCR_CME_SHIFT 8 121 #define CCCR_CME_CAN 0 122 #define CCCR_CME_CANFD 0x1 123 #define CCCR_CME_CANFD_BRS 0x2 124 #define CCCR_TXP BIT(14) 125 #define CCCR_TEST BIT(7) 126 #define CCCR_MON BIT(5) 127 #define CCCR_CSR BIT(4) 128 #define CCCR_CSA BIT(3) 129 #define CCCR_ASM BIT(2) 130 #define CCCR_CCE BIT(1) 131 #define CCCR_INIT BIT(0) 132 #define CCCR_CANFD 0x10 133 /* for version >=3.1.x */ 134 #define CCCR_EFBI BIT(13) 135 #define CCCR_PXHD BIT(12) 136 #define CCCR_BRSE BIT(9) 137 #define CCCR_FDOE BIT(8) 138 /* only for version >=3.2.x */ 139 #define CCCR_NISO BIT(15) 140 141 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 142 #define NBTP_NSJW_SHIFT 25 143 #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT) 144 #define NBTP_NBRP_SHIFT 16 145 #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT) 146 #define NBTP_NTSEG1_SHIFT 8 147 #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT) 148 #define NBTP_NTSEG2_SHIFT 0 149 #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT) 150 151 /* Error Counter Register(ECR) */ 152 #define ECR_RP BIT(15) 153 #define ECR_REC_SHIFT 8 154 #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT) 155 #define ECR_TEC_SHIFT 0 156 #define ECR_TEC_MASK 0xff 157 158 /* Protocol Status Register(PSR) */ 159 #define PSR_BO BIT(7) 160 #define PSR_EW BIT(6) 161 #define PSR_EP BIT(5) 162 #define PSR_LEC_MASK 0x7 163 164 /* Interrupt Register(IR) */ 165 #define IR_ALL_INT 0xffffffff 166 167 /* Renamed bits for versions > 3.1.x */ 168 #define IR_ARA BIT(29) 169 #define IR_PED BIT(28) 170 #define IR_PEA BIT(27) 171 172 /* Bits for version 3.0.x */ 173 #define IR_STE BIT(31) 174 #define IR_FOE BIT(30) 175 #define IR_ACKE BIT(29) 176 #define IR_BE BIT(28) 177 #define IR_CRCE BIT(27) 178 #define IR_WDI BIT(26) 179 #define IR_BO BIT(25) 180 #define IR_EW BIT(24) 181 #define IR_EP BIT(23) 182 #define IR_ELO BIT(22) 183 #define IR_BEU BIT(21) 184 #define IR_BEC BIT(20) 185 #define IR_DRX BIT(19) 186 #define IR_TOO BIT(18) 187 #define IR_MRAF BIT(17) 188 #define IR_TSW BIT(16) 189 #define IR_TEFL BIT(15) 190 #define IR_TEFF BIT(14) 191 #define IR_TEFW BIT(13) 192 #define IR_TEFN BIT(12) 193 #define IR_TFE BIT(11) 194 #define IR_TCF BIT(10) 195 #define IR_TC BIT(9) 196 #define IR_HPM BIT(8) 197 #define IR_RF1L BIT(7) 198 #define IR_RF1F BIT(6) 199 #define IR_RF1W BIT(5) 200 #define IR_RF1N BIT(4) 201 #define IR_RF0L BIT(3) 202 #define IR_RF0F BIT(2) 203 #define IR_RF0W BIT(1) 204 #define IR_RF0N BIT(0) 205 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 206 207 /* Interrupts for version 3.0.x */ 208 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 209 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \ 210 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 211 IR_RF1L | IR_RF0L) 212 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 213 /* Interrupts for version >= 3.1.x */ 214 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 215 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \ 216 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 217 IR_RF1L | IR_RF0L) 218 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 219 220 /* Interrupt Line Select (ILS) */ 221 #define ILS_ALL_INT0 0x0 222 #define ILS_ALL_INT1 0xFFFFFFFF 223 224 /* Interrupt Line Enable (ILE) */ 225 #define ILE_EINT1 BIT(1) 226 #define ILE_EINT0 BIT(0) 227 228 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 229 #define RXFC_FWM_SHIFT 24 230 #define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT) 231 #define RXFC_FS_SHIFT 16 232 #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT) 233 234 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 235 #define RXFS_RFL BIT(25) 236 #define RXFS_FF BIT(24) 237 #define RXFS_FPI_SHIFT 16 238 #define RXFS_FPI_MASK 0x3f0000 239 #define RXFS_FGI_SHIFT 8 240 #define RXFS_FGI_MASK 0x3f00 241 #define RXFS_FFL_MASK 0x7f 242 243 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 244 #define M_CAN_RXESC_8BYTES 0x0 245 #define M_CAN_RXESC_64BYTES 0x777 246 247 /* Tx Buffer Configuration(TXBC) */ 248 #define TXBC_NDTB_SHIFT 16 249 #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT) 250 #define TXBC_TFQS_SHIFT 24 251 #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT) 252 253 /* Tx FIFO/Queue Status (TXFQS) */ 254 #define TXFQS_TFQF BIT(21) 255 #define TXFQS_TFQPI_SHIFT 16 256 #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT) 257 #define TXFQS_TFGI_SHIFT 8 258 #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT) 259 #define TXFQS_TFFL_SHIFT 0 260 #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT) 261 262 /* Tx Buffer Element Size Configuration(TXESC) */ 263 #define TXESC_TBDS_8BYTES 0x0 264 #define TXESC_TBDS_64BYTES 0x7 265 266 /* Tx Event FIFO Configuration (TXEFC) */ 267 #define TXEFC_EFS_SHIFT 16 268 #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT) 269 270 /* Tx Event FIFO Status (TXEFS) */ 271 #define TXEFS_TEFL BIT(25) 272 #define TXEFS_EFF BIT(24) 273 #define TXEFS_EFGI_SHIFT 8 274 #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT) 275 #define TXEFS_EFFL_SHIFT 0 276 #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT) 277 278 /* Tx Event FIFO Acknowledge (TXEFA) */ 279 #define TXEFA_EFAI_SHIFT 0 280 #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT) 281 282 /* Message RAM Configuration (in bytes) */ 283 #define SIDF_ELEMENT_SIZE 4 284 #define XIDF_ELEMENT_SIZE 8 285 #define RXF0_ELEMENT_SIZE 72 286 #define RXF1_ELEMENT_SIZE 72 287 #define RXB_ELEMENT_SIZE 72 288 #define TXE_ELEMENT_SIZE 8 289 #define TXB_ELEMENT_SIZE 72 290 291 /* Message RAM Elements */ 292 #define M_CAN_FIFO_ID 0x0 293 #define M_CAN_FIFO_DLC 0x4 294 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2)) 295 296 /* Rx Buffer Element */ 297 /* R0 */ 298 #define RX_BUF_ESI BIT(31) 299 #define RX_BUF_XTD BIT(30) 300 #define RX_BUF_RTR BIT(29) 301 /* R1 */ 302 #define RX_BUF_ANMF BIT(31) 303 #define RX_BUF_FDF BIT(21) 304 #define RX_BUF_BRS BIT(20) 305 306 /* Tx Buffer Element */ 307 /* T0 */ 308 #define TX_BUF_ESI BIT(31) 309 #define TX_BUF_XTD BIT(30) 310 #define TX_BUF_RTR BIT(29) 311 /* T1 */ 312 #define TX_BUF_EFC BIT(23) 313 #define TX_BUF_FDF BIT(21) 314 #define TX_BUF_BRS BIT(20) 315 #define TX_BUF_MM_SHIFT 24 316 #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT) 317 318 /* Tx event FIFO Element */ 319 /* E1 */ 320 #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT 321 #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT) 322 323 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 324 { 325 return cdev->ops->read_reg(cdev, reg); 326 } 327 328 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 329 u32 val) 330 { 331 cdev->ops->write_reg(cdev, reg, val); 332 } 333 334 static u32 m_can_fifo_read(struct m_can_classdev *cdev, 335 u32 fgi, unsigned int offset) 336 { 337 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 338 offset; 339 340 return cdev->ops->read_fifo(cdev, addr_offset); 341 } 342 343 static void m_can_fifo_write(struct m_can_classdev *cdev, 344 u32 fpi, unsigned int offset, u32 val) 345 { 346 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 347 offset; 348 349 cdev->ops->write_fifo(cdev, addr_offset, val); 350 } 351 352 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev, 353 u32 fpi, u32 val) 354 { 355 cdev->ops->write_fifo(cdev, fpi, val); 356 } 357 358 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset) 359 { 360 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 361 offset; 362 363 return cdev->ops->read_fifo(cdev, addr_offset); 364 } 365 366 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 367 { 368 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); 369 } 370 371 void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 372 { 373 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 374 u32 timeout = 10; 375 u32 val = 0; 376 377 /* Clear the Clock stop request if it was set */ 378 if (cccr & CCCR_CSR) 379 cccr &= ~CCCR_CSR; 380 381 if (enable) { 382 /* Clear the Clock stop request if it was set */ 383 if (cccr & CCCR_CSR) 384 cccr &= ~CCCR_CSR; 385 386 /* enable m_can configuration */ 387 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 388 udelay(5); 389 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 390 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 391 } else { 392 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 393 } 394 395 /* there's a delay for module initialization */ 396 if (enable) 397 val = CCCR_INIT | CCCR_CCE; 398 399 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 400 if (timeout == 0) { 401 netdev_warn(cdev->net, "Failed to init module\n"); 402 return; 403 } 404 timeout--; 405 udelay(1); 406 } 407 } 408 409 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 410 { 411 /* Only interrupt line 0 is used in this driver */ 412 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 413 } 414 415 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 416 { 417 m_can_write(cdev, M_CAN_ILE, 0x0); 418 } 419 420 static void m_can_clean(struct net_device *net) 421 { 422 struct m_can_classdev *cdev = netdev_priv(net); 423 424 if (cdev->tx_skb) { 425 int putidx = 0; 426 427 net->stats.tx_errors++; 428 if (cdev->version > 30) 429 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & 430 TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT); 431 432 can_free_echo_skb(cdev->net, putidx); 433 cdev->tx_skb = NULL; 434 } 435 } 436 437 static void m_can_read_fifo(struct net_device *dev, u32 rxfs) 438 { 439 struct net_device_stats *stats = &dev->stats; 440 struct m_can_classdev *cdev = netdev_priv(dev); 441 struct canfd_frame *cf; 442 struct sk_buff *skb; 443 u32 id, fgi, dlc; 444 int i; 445 446 /* calculate the fifo get index for where to read data */ 447 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT; 448 dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC); 449 if (dlc & RX_BUF_FDF) 450 skb = alloc_canfd_skb(dev, &cf); 451 else 452 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 453 if (!skb) { 454 stats->rx_dropped++; 455 return; 456 } 457 458 if (dlc & RX_BUF_FDF) 459 cf->len = can_dlc2len((dlc >> 16) & 0x0F); 460 else 461 cf->len = get_can_dlc((dlc >> 16) & 0x0F); 462 463 id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID); 464 if (id & RX_BUF_XTD) 465 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 466 else 467 cf->can_id = (id >> 18) & CAN_SFF_MASK; 468 469 if (id & RX_BUF_ESI) { 470 cf->flags |= CANFD_ESI; 471 netdev_dbg(dev, "ESI Error\n"); 472 } 473 474 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) { 475 cf->can_id |= CAN_RTR_FLAG; 476 } else { 477 if (dlc & RX_BUF_BRS) 478 cf->flags |= CANFD_BRS; 479 480 for (i = 0; i < cf->len; i += 4) 481 *(u32 *)(cf->data + i) = 482 m_can_fifo_read(cdev, fgi, 483 M_CAN_FIFO_DATA(i / 4)); 484 } 485 486 /* acknowledge rx fifo 0 */ 487 m_can_write(cdev, M_CAN_RXF0A, fgi); 488 489 stats->rx_packets++; 490 stats->rx_bytes += cf->len; 491 492 netif_receive_skb(skb); 493 } 494 495 static int m_can_do_rx_poll(struct net_device *dev, int quota) 496 { 497 struct m_can_classdev *cdev = netdev_priv(dev); 498 u32 pkts = 0; 499 u32 rxfs; 500 501 rxfs = m_can_read(cdev, M_CAN_RXF0S); 502 if (!(rxfs & RXFS_FFL_MASK)) { 503 netdev_dbg(dev, "no messages in fifo0\n"); 504 return 0; 505 } 506 507 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { 508 if (rxfs & RXFS_RFL) 509 netdev_warn(dev, "Rx FIFO 0 Message Lost\n"); 510 511 m_can_read_fifo(dev, rxfs); 512 513 quota--; 514 pkts++; 515 rxfs = m_can_read(cdev, M_CAN_RXF0S); 516 } 517 518 if (pkts) 519 can_led_event(dev, CAN_LED_EVENT_RX); 520 521 return pkts; 522 } 523 524 static int m_can_handle_lost_msg(struct net_device *dev) 525 { 526 struct net_device_stats *stats = &dev->stats; 527 struct sk_buff *skb; 528 struct can_frame *frame; 529 530 netdev_err(dev, "msg lost in rxf0\n"); 531 532 stats->rx_errors++; 533 stats->rx_over_errors++; 534 535 skb = alloc_can_err_skb(dev, &frame); 536 if (unlikely(!skb)) 537 return 0; 538 539 frame->can_id |= CAN_ERR_CRTL; 540 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 541 542 netif_receive_skb(skb); 543 544 return 1; 545 } 546 547 static int m_can_handle_lec_err(struct net_device *dev, 548 enum m_can_lec_type lec_type) 549 { 550 struct m_can_classdev *cdev = netdev_priv(dev); 551 struct net_device_stats *stats = &dev->stats; 552 struct can_frame *cf; 553 struct sk_buff *skb; 554 555 cdev->can.can_stats.bus_error++; 556 stats->rx_errors++; 557 558 /* propagate the error condition to the CAN stack */ 559 skb = alloc_can_err_skb(dev, &cf); 560 if (unlikely(!skb)) 561 return 0; 562 563 /* check for 'last error code' which tells us the 564 * type of the last error to occur on the CAN bus 565 */ 566 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 567 568 switch (lec_type) { 569 case LEC_STUFF_ERROR: 570 netdev_dbg(dev, "stuff error\n"); 571 cf->data[2] |= CAN_ERR_PROT_STUFF; 572 break; 573 case LEC_FORM_ERROR: 574 netdev_dbg(dev, "form error\n"); 575 cf->data[2] |= CAN_ERR_PROT_FORM; 576 break; 577 case LEC_ACK_ERROR: 578 netdev_dbg(dev, "ack error\n"); 579 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 580 break; 581 case LEC_BIT1_ERROR: 582 netdev_dbg(dev, "bit1 error\n"); 583 cf->data[2] |= CAN_ERR_PROT_BIT1; 584 break; 585 case LEC_BIT0_ERROR: 586 netdev_dbg(dev, "bit0 error\n"); 587 cf->data[2] |= CAN_ERR_PROT_BIT0; 588 break; 589 case LEC_CRC_ERROR: 590 netdev_dbg(dev, "CRC error\n"); 591 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 592 break; 593 default: 594 break; 595 } 596 597 stats->rx_packets++; 598 stats->rx_bytes += cf->can_dlc; 599 netif_receive_skb(skb); 600 601 return 1; 602 } 603 604 static int __m_can_get_berr_counter(const struct net_device *dev, 605 struct can_berr_counter *bec) 606 { 607 struct m_can_classdev *cdev = netdev_priv(dev); 608 unsigned int ecr; 609 610 ecr = m_can_read(cdev, M_CAN_ECR); 611 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT; 612 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT; 613 614 return 0; 615 } 616 617 static int m_can_clk_start(struct m_can_classdev *cdev) 618 { 619 int err; 620 621 if (cdev->pm_clock_support == 0) 622 return 0; 623 624 err = pm_runtime_get_sync(cdev->dev); 625 if (err < 0) { 626 pm_runtime_put_noidle(cdev->dev); 627 return err; 628 } 629 630 return 0; 631 } 632 633 static void m_can_clk_stop(struct m_can_classdev *cdev) 634 { 635 if (cdev->pm_clock_support) 636 pm_runtime_put_sync(cdev->dev); 637 } 638 639 static int m_can_get_berr_counter(const struct net_device *dev, 640 struct can_berr_counter *bec) 641 { 642 struct m_can_classdev *cdev = netdev_priv(dev); 643 int err; 644 645 err = m_can_clk_start(cdev); 646 if (err) 647 return err; 648 649 __m_can_get_berr_counter(dev, bec); 650 651 m_can_clk_stop(cdev); 652 653 return 0; 654 } 655 656 static int m_can_handle_state_change(struct net_device *dev, 657 enum can_state new_state) 658 { 659 struct m_can_classdev *cdev = netdev_priv(dev); 660 struct net_device_stats *stats = &dev->stats; 661 struct can_frame *cf; 662 struct sk_buff *skb; 663 struct can_berr_counter bec; 664 unsigned int ecr; 665 666 switch (new_state) { 667 case CAN_STATE_ERROR_ACTIVE: 668 /* error warning state */ 669 cdev->can.can_stats.error_warning++; 670 cdev->can.state = CAN_STATE_ERROR_WARNING; 671 break; 672 case CAN_STATE_ERROR_PASSIVE: 673 /* error passive state */ 674 cdev->can.can_stats.error_passive++; 675 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 676 break; 677 case CAN_STATE_BUS_OFF: 678 /* bus-off state */ 679 cdev->can.state = CAN_STATE_BUS_OFF; 680 m_can_disable_all_interrupts(cdev); 681 cdev->can.can_stats.bus_off++; 682 can_bus_off(dev); 683 break; 684 default: 685 break; 686 } 687 688 /* propagate the error condition to the CAN stack */ 689 skb = alloc_can_err_skb(dev, &cf); 690 if (unlikely(!skb)) 691 return 0; 692 693 __m_can_get_berr_counter(dev, &bec); 694 695 switch (new_state) { 696 case CAN_STATE_ERROR_ACTIVE: 697 /* error warning state */ 698 cf->can_id |= CAN_ERR_CRTL; 699 cf->data[1] = (bec.txerr > bec.rxerr) ? 700 CAN_ERR_CRTL_TX_WARNING : 701 CAN_ERR_CRTL_RX_WARNING; 702 cf->data[6] = bec.txerr; 703 cf->data[7] = bec.rxerr; 704 break; 705 case CAN_STATE_ERROR_PASSIVE: 706 /* error passive state */ 707 cf->can_id |= CAN_ERR_CRTL; 708 ecr = m_can_read(cdev, M_CAN_ECR); 709 if (ecr & ECR_RP) 710 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 711 if (bec.txerr > 127) 712 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 713 cf->data[6] = bec.txerr; 714 cf->data[7] = bec.rxerr; 715 break; 716 case CAN_STATE_BUS_OFF: 717 /* bus-off state */ 718 cf->can_id |= CAN_ERR_BUSOFF; 719 break; 720 default: 721 break; 722 } 723 724 stats->rx_packets++; 725 stats->rx_bytes += cf->can_dlc; 726 netif_receive_skb(skb); 727 728 return 1; 729 } 730 731 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 732 { 733 struct m_can_classdev *cdev = netdev_priv(dev); 734 int work_done = 0; 735 736 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 737 netdev_dbg(dev, "entered error warning state\n"); 738 work_done += m_can_handle_state_change(dev, 739 CAN_STATE_ERROR_WARNING); 740 } 741 742 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 743 netdev_dbg(dev, "entered error passive state\n"); 744 work_done += m_can_handle_state_change(dev, 745 CAN_STATE_ERROR_PASSIVE); 746 } 747 748 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 749 netdev_dbg(dev, "entered error bus off state\n"); 750 work_done += m_can_handle_state_change(dev, 751 CAN_STATE_BUS_OFF); 752 } 753 754 return work_done; 755 } 756 757 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 758 { 759 if (irqstatus & IR_WDI) 760 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 761 if (irqstatus & IR_ELO) 762 netdev_err(dev, "Error Logging Overflow\n"); 763 if (irqstatus & IR_BEU) 764 netdev_err(dev, "Bit Error Uncorrected\n"); 765 if (irqstatus & IR_BEC) 766 netdev_err(dev, "Bit Error Corrected\n"); 767 if (irqstatus & IR_TOO) 768 netdev_err(dev, "Timeout reached\n"); 769 if (irqstatus & IR_MRAF) 770 netdev_err(dev, "Message RAM access failure occurred\n"); 771 } 772 773 static inline bool is_lec_err(u32 psr) 774 { 775 psr &= LEC_UNUSED; 776 777 return psr && (psr != LEC_UNUSED); 778 } 779 780 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 781 u32 psr) 782 { 783 struct m_can_classdev *cdev = netdev_priv(dev); 784 int work_done = 0; 785 786 if (irqstatus & IR_RF0L) 787 work_done += m_can_handle_lost_msg(dev); 788 789 /* handle lec errors on the bus */ 790 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 791 is_lec_err(psr)) 792 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); 793 794 /* other unproccessed error interrupts */ 795 m_can_handle_other_err(dev, irqstatus); 796 797 return work_done; 798 } 799 800 static int m_can_rx_handler(struct net_device *dev, int quota) 801 { 802 struct m_can_classdev *cdev = netdev_priv(dev); 803 int work_done = 0; 804 u32 irqstatus, psr; 805 806 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 807 if (!irqstatus) 808 goto end; 809 810 /* Errata workaround for issue "Needless activation of MRAF irq" 811 * During frame reception while the MCAN is in Error Passive state 812 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 813 * it may happen that MCAN_IR.MRAF is set although there was no 814 * Message RAM access failure. 815 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 816 * The Message RAM Access Failure interrupt routine needs to check 817 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 818 * In this case, reset MCAN_IR.MRAF. No further action is required. 819 */ 820 if (cdev->version <= 31 && irqstatus & IR_MRAF && 821 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 822 struct can_berr_counter bec; 823 824 __m_can_get_berr_counter(dev, &bec); 825 if (bec.rxerr == 127) { 826 m_can_write(cdev, M_CAN_IR, IR_MRAF); 827 irqstatus &= ~IR_MRAF; 828 } 829 } 830 831 psr = m_can_read(cdev, M_CAN_PSR); 832 833 if (irqstatus & IR_ERR_STATE) 834 work_done += m_can_handle_state_errors(dev, psr); 835 836 if (irqstatus & IR_ERR_BUS_30X) 837 work_done += m_can_handle_bus_errors(dev, irqstatus, psr); 838 839 if (irqstatus & IR_RF0N) 840 work_done += m_can_do_rx_poll(dev, (quota - work_done)); 841 end: 842 return work_done; 843 } 844 845 static int m_can_rx_peripheral(struct net_device *dev) 846 { 847 struct m_can_classdev *cdev = netdev_priv(dev); 848 849 m_can_rx_handler(dev, 1); 850 851 m_can_enable_all_interrupts(cdev); 852 853 return 0; 854 } 855 856 static int m_can_poll(struct napi_struct *napi, int quota) 857 { 858 struct net_device *dev = napi->dev; 859 struct m_can_classdev *cdev = netdev_priv(dev); 860 int work_done; 861 862 work_done = m_can_rx_handler(dev, quota); 863 if (work_done < quota) { 864 napi_complete_done(napi, work_done); 865 m_can_enable_all_interrupts(cdev); 866 } 867 868 return work_done; 869 } 870 871 static void m_can_echo_tx_event(struct net_device *dev) 872 { 873 u32 txe_count = 0; 874 u32 m_can_txefs; 875 u32 fgi = 0; 876 int i = 0; 877 unsigned int msg_mark; 878 879 struct m_can_classdev *cdev = netdev_priv(dev); 880 struct net_device_stats *stats = &dev->stats; 881 882 /* read tx event fifo status */ 883 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 884 885 /* Get Tx Event fifo element count */ 886 txe_count = (m_can_txefs & TXEFS_EFFL_MASK) 887 >> TXEFS_EFFL_SHIFT; 888 889 /* Get and process all sent elements */ 890 for (i = 0; i < txe_count; i++) { 891 /* retrieve get index */ 892 fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK) 893 >> TXEFS_EFGI_SHIFT; 894 895 /* get message marker */ 896 msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) & 897 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT; 898 899 /* ack txe element */ 900 m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK & 901 (fgi << TXEFA_EFAI_SHIFT))); 902 903 /* update stats */ 904 stats->tx_bytes += can_get_echo_skb(dev, msg_mark); 905 stats->tx_packets++; 906 } 907 } 908 909 static irqreturn_t m_can_isr(int irq, void *dev_id) 910 { 911 struct net_device *dev = (struct net_device *)dev_id; 912 struct m_can_classdev *cdev = netdev_priv(dev); 913 struct net_device_stats *stats = &dev->stats; 914 u32 ir; 915 916 ir = m_can_read(cdev, M_CAN_IR); 917 if (!ir) 918 return IRQ_NONE; 919 920 /* ACK all irqs */ 921 if (ir & IR_ALL_INT) 922 m_can_write(cdev, M_CAN_IR, ir); 923 924 if (cdev->ops->clear_interrupts) 925 cdev->ops->clear_interrupts(cdev); 926 927 /* schedule NAPI in case of 928 * - rx IRQ 929 * - state change IRQ 930 * - bus error IRQ and bus error reporting 931 */ 932 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 933 cdev->irqstatus = ir; 934 m_can_disable_all_interrupts(cdev); 935 if (!cdev->is_peripheral) 936 napi_schedule(&cdev->napi); 937 else 938 m_can_rx_peripheral(dev); 939 } 940 941 if (cdev->version == 30) { 942 if (ir & IR_TC) { 943 /* Transmission Complete Interrupt*/ 944 stats->tx_bytes += can_get_echo_skb(dev, 0); 945 stats->tx_packets++; 946 can_led_event(dev, CAN_LED_EVENT_TX); 947 netif_wake_queue(dev); 948 } 949 } else { 950 if (ir & IR_TEFN) { 951 /* New TX FIFO Element arrived */ 952 m_can_echo_tx_event(dev); 953 can_led_event(dev, CAN_LED_EVENT_TX); 954 if (netif_queue_stopped(dev) && 955 !m_can_tx_fifo_full(cdev)) 956 netif_wake_queue(dev); 957 } 958 } 959 960 return IRQ_HANDLED; 961 } 962 963 static const struct can_bittiming_const m_can_bittiming_const_30X = { 964 .name = KBUILD_MODNAME, 965 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 966 .tseg1_max = 64, 967 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 968 .tseg2_max = 16, 969 .sjw_max = 16, 970 .brp_min = 1, 971 .brp_max = 1024, 972 .brp_inc = 1, 973 }; 974 975 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 976 .name = KBUILD_MODNAME, 977 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 978 .tseg1_max = 16, 979 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 980 .tseg2_max = 8, 981 .sjw_max = 4, 982 .brp_min = 1, 983 .brp_max = 32, 984 .brp_inc = 1, 985 }; 986 987 static const struct can_bittiming_const m_can_bittiming_const_31X = { 988 .name = KBUILD_MODNAME, 989 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 990 .tseg1_max = 256, 991 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 992 .tseg2_max = 128, 993 .sjw_max = 128, 994 .brp_min = 1, 995 .brp_max = 512, 996 .brp_inc = 1, 997 }; 998 999 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1000 .name = KBUILD_MODNAME, 1001 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1002 .tseg1_max = 32, 1003 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1004 .tseg2_max = 16, 1005 .sjw_max = 16, 1006 .brp_min = 1, 1007 .brp_max = 32, 1008 .brp_inc = 1, 1009 }; 1010 1011 static int m_can_set_bittiming(struct net_device *dev) 1012 { 1013 struct m_can_classdev *cdev = netdev_priv(dev); 1014 const struct can_bittiming *bt = &cdev->can.bittiming; 1015 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1016 u16 brp, sjw, tseg1, tseg2; 1017 u32 reg_btp; 1018 1019 brp = bt->brp - 1; 1020 sjw = bt->sjw - 1; 1021 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1022 tseg2 = bt->phase_seg2 - 1; 1023 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) | 1024 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT); 1025 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1026 1027 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1028 reg_btp = 0; 1029 brp = dbt->brp - 1; 1030 sjw = dbt->sjw - 1; 1031 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1032 tseg2 = dbt->phase_seg2 - 1; 1033 1034 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1035 * This is mentioned in the "Bit Time Requirements for CAN FD" 1036 * paper presented at the International CAN Conference 2013 1037 */ 1038 if (dbt->bitrate > 2500000) { 1039 u32 tdco, ssp; 1040 1041 /* Use the same value of secondary sampling point 1042 * as the data sampling point 1043 */ 1044 ssp = dbt->sample_point; 1045 1046 /* Equation based on Bosch's M_CAN User Manual's 1047 * Transmitter Delay Compensation Section 1048 */ 1049 tdco = (cdev->can.clock.freq / 1000) * 1050 ssp / dbt->bitrate; 1051 1052 /* Max valid TDCO value is 127 */ 1053 if (tdco > 127) { 1054 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1055 tdco); 1056 tdco = 127; 1057 } 1058 1059 reg_btp |= DBTP_TDC; 1060 m_can_write(cdev, M_CAN_TDCR, 1061 tdco << TDCR_TDCO_SHIFT); 1062 } 1063 1064 reg_btp |= (brp << DBTP_DBRP_SHIFT) | 1065 (sjw << DBTP_DSJW_SHIFT) | 1066 (tseg1 << DBTP_DTSEG1_SHIFT) | 1067 (tseg2 << DBTP_DTSEG2_SHIFT); 1068 1069 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1070 } 1071 1072 return 0; 1073 } 1074 1075 /* Configure M_CAN chip: 1076 * - set rx buffer/fifo element size 1077 * - configure rx fifo 1078 * - accept non-matching frame into fifo 0 1079 * - configure tx buffer 1080 * - >= v3.1.x: TX FIFO is used 1081 * - configure mode 1082 * - setup bittiming 1083 */ 1084 static void m_can_chip_config(struct net_device *dev) 1085 { 1086 struct m_can_classdev *cdev = netdev_priv(dev); 1087 u32 cccr, test; 1088 1089 m_can_config_endisable(cdev, true); 1090 1091 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1092 m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES); 1093 1094 /* Accept Non-matching Frames Into FIFO 0 */ 1095 m_can_write(cdev, M_CAN_GFC, 0x0); 1096 1097 if (cdev->version == 30) { 1098 /* only support one Tx Buffer currently */ 1099 m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) | 1100 cdev->mcfg[MRAM_TXB].off); 1101 } else { 1102 /* TX FIFO is used for newer IP Core versions */ 1103 m_can_write(cdev, M_CAN_TXBC, 1104 (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) | 1105 (cdev->mcfg[MRAM_TXB].off)); 1106 } 1107 1108 /* support 64 bytes payload */ 1109 m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES); 1110 1111 /* TX Event FIFO */ 1112 if (cdev->version == 30) { 1113 m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) | 1114 cdev->mcfg[MRAM_TXE].off); 1115 } else { 1116 /* Full TX Event FIFO is used */ 1117 m_can_write(cdev, M_CAN_TXEFC, 1118 ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT) 1119 & TXEFC_EFS_MASK) | 1120 cdev->mcfg[MRAM_TXE].off); 1121 } 1122 1123 /* rx fifo configuration, blocking mode, fifo size 1 */ 1124 m_can_write(cdev, M_CAN_RXF0C, 1125 (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) | 1126 cdev->mcfg[MRAM_RXF0].off); 1127 1128 m_can_write(cdev, M_CAN_RXF1C, 1129 (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) | 1130 cdev->mcfg[MRAM_RXF1].off); 1131 1132 cccr = m_can_read(cdev, M_CAN_CCCR); 1133 test = m_can_read(cdev, M_CAN_TEST); 1134 test &= ~TEST_LBCK; 1135 if (cdev->version == 30) { 1136 /* Version 3.0.x */ 1137 1138 cccr &= ~(CCCR_TEST | CCCR_MON | 1139 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) | 1140 (CCCR_CME_MASK << CCCR_CME_SHIFT)); 1141 1142 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1143 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT; 1144 1145 } else { 1146 /* Version 3.1.x or 3.2.x */ 1147 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1148 CCCR_NISO); 1149 1150 /* Only 3.2.x has NISO Bit implemented */ 1151 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1152 cccr |= CCCR_NISO; 1153 1154 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1155 cccr |= (CCCR_BRSE | CCCR_FDOE); 1156 } 1157 1158 /* Loopback Mode */ 1159 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1160 cccr |= CCCR_TEST | CCCR_MON; 1161 test |= TEST_LBCK; 1162 } 1163 1164 /* Enable Monitoring (all versions) */ 1165 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1166 cccr |= CCCR_MON; 1167 1168 /* Write config */ 1169 m_can_write(cdev, M_CAN_CCCR, cccr); 1170 m_can_write(cdev, M_CAN_TEST, test); 1171 1172 /* Enable interrupts */ 1173 m_can_write(cdev, M_CAN_IR, IR_ALL_INT); 1174 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 1175 if (cdev->version == 30) 1176 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1177 ~(IR_ERR_LEC_30X)); 1178 else 1179 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1180 ~(IR_ERR_LEC_31X)); 1181 else 1182 m_can_write(cdev, M_CAN_IE, IR_ALL_INT); 1183 1184 /* route all interrupts to INT0 */ 1185 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1186 1187 /* set bittiming params */ 1188 m_can_set_bittiming(dev); 1189 1190 m_can_config_endisable(cdev, false); 1191 1192 if (cdev->ops->init) 1193 cdev->ops->init(cdev); 1194 } 1195 1196 static void m_can_start(struct net_device *dev) 1197 { 1198 struct m_can_classdev *cdev = netdev_priv(dev); 1199 1200 /* basic m_can configuration */ 1201 m_can_chip_config(dev); 1202 1203 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1204 1205 m_can_enable_all_interrupts(cdev); 1206 } 1207 1208 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1209 { 1210 switch (mode) { 1211 case CAN_MODE_START: 1212 m_can_clean(dev); 1213 m_can_start(dev); 1214 netif_wake_queue(dev); 1215 break; 1216 default: 1217 return -EOPNOTSUPP; 1218 } 1219 1220 return 0; 1221 } 1222 1223 /* Checks core release number of M_CAN 1224 * returns 0 if an unsupported device is detected 1225 * else it returns the release and step coded as: 1226 * return value = 10 * <release> + 1 * <step> 1227 */ 1228 static int m_can_check_core_release(struct m_can_classdev *cdev) 1229 { 1230 u32 crel_reg; 1231 u8 rel; 1232 u8 step; 1233 int res; 1234 1235 /* Read Core Release Version and split into version number 1236 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1237 */ 1238 crel_reg = m_can_read(cdev, M_CAN_CREL); 1239 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT); 1240 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT); 1241 1242 if (rel == 3) { 1243 /* M_CAN v3.x.y: create return value */ 1244 res = 30 + step; 1245 } else { 1246 /* Unsupported M_CAN version */ 1247 res = 0; 1248 } 1249 1250 return res; 1251 } 1252 1253 /* Selectable Non ISO support only in version 3.2.x 1254 * This function checks if the bit is writable. 1255 */ 1256 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1257 { 1258 u32 cccr_reg, cccr_poll = 0; 1259 int niso_timeout = -ETIMEDOUT; 1260 int i; 1261 1262 m_can_config_endisable(cdev, true); 1263 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1264 cccr_reg |= CCCR_NISO; 1265 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1266 1267 for (i = 0; i <= 10; i++) { 1268 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1269 if (cccr_poll == cccr_reg) { 1270 niso_timeout = 0; 1271 break; 1272 } 1273 1274 usleep_range(1, 5); 1275 } 1276 1277 /* Clear NISO */ 1278 cccr_reg &= ~(CCCR_NISO); 1279 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1280 1281 m_can_config_endisable(cdev, false); 1282 1283 /* return false if time out (-ETIMEDOUT), else return true */ 1284 return !niso_timeout; 1285 } 1286 1287 static int m_can_dev_setup(struct m_can_classdev *m_can_dev) 1288 { 1289 struct net_device *dev = m_can_dev->net; 1290 int m_can_version; 1291 1292 m_can_version = m_can_check_core_release(m_can_dev); 1293 /* return if unsupported version */ 1294 if (!m_can_version) { 1295 dev_err(m_can_dev->dev, "Unsupported version number: %2d", 1296 m_can_version); 1297 return -EINVAL; 1298 } 1299 1300 if (!m_can_dev->is_peripheral) 1301 netif_napi_add(dev, &m_can_dev->napi, 1302 m_can_poll, M_CAN_NAPI_WEIGHT); 1303 1304 /* Shared properties of all M_CAN versions */ 1305 m_can_dev->version = m_can_version; 1306 m_can_dev->can.do_set_mode = m_can_set_mode; 1307 m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter; 1308 1309 /* Set M_CAN supported operations */ 1310 m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1311 CAN_CTRLMODE_LISTENONLY | 1312 CAN_CTRLMODE_BERR_REPORTING | 1313 CAN_CTRLMODE_FD; 1314 1315 /* Set properties depending on M_CAN version */ 1316 switch (m_can_dev->version) { 1317 case 30: 1318 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1319 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1320 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? 1321 m_can_dev->bit_timing : &m_can_bittiming_const_30X; 1322 1323 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? 1324 m_can_dev->data_timing : 1325 &m_can_data_bittiming_const_30X; 1326 break; 1327 case 31: 1328 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1329 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1330 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? 1331 m_can_dev->bit_timing : &m_can_bittiming_const_31X; 1332 1333 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? 1334 m_can_dev->data_timing : 1335 &m_can_data_bittiming_const_31X; 1336 break; 1337 case 32: 1338 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? 1339 m_can_dev->bit_timing : &m_can_bittiming_const_31X; 1340 1341 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? 1342 m_can_dev->data_timing : 1343 &m_can_data_bittiming_const_31X; 1344 1345 m_can_dev->can.ctrlmode_supported |= 1346 (m_can_niso_supported(m_can_dev) 1347 ? CAN_CTRLMODE_FD_NON_ISO 1348 : 0); 1349 break; 1350 default: 1351 dev_err(m_can_dev->dev, "Unsupported version number: %2d", 1352 m_can_dev->version); 1353 return -EINVAL; 1354 } 1355 1356 if (m_can_dev->ops->init) 1357 m_can_dev->ops->init(m_can_dev); 1358 1359 return 0; 1360 } 1361 1362 static void m_can_stop(struct net_device *dev) 1363 { 1364 struct m_can_classdev *cdev = netdev_priv(dev); 1365 1366 /* disable all interrupts */ 1367 m_can_disable_all_interrupts(cdev); 1368 1369 /* set the state as STOPPED */ 1370 cdev->can.state = CAN_STATE_STOPPED; 1371 } 1372 1373 static int m_can_close(struct net_device *dev) 1374 { 1375 struct m_can_classdev *cdev = netdev_priv(dev); 1376 1377 netif_stop_queue(dev); 1378 1379 if (!cdev->is_peripheral) 1380 napi_disable(&cdev->napi); 1381 1382 m_can_stop(dev); 1383 m_can_clk_stop(cdev); 1384 free_irq(dev->irq, dev); 1385 1386 if (cdev->is_peripheral) { 1387 cdev->tx_skb = NULL; 1388 destroy_workqueue(cdev->tx_wq); 1389 cdev->tx_wq = NULL; 1390 } 1391 1392 close_candev(dev); 1393 can_led_event(dev, CAN_LED_EVENT_STOP); 1394 1395 return 0; 1396 } 1397 1398 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1399 { 1400 struct m_can_classdev *cdev = netdev_priv(dev); 1401 /*get wrap around for loopback skb index */ 1402 unsigned int wrap = cdev->can.echo_skb_max; 1403 int next_idx; 1404 1405 /* calculate next index */ 1406 next_idx = (++putidx >= wrap ? 0 : putidx); 1407 1408 /* check if occupied */ 1409 return !!cdev->can.echo_skb[next_idx]; 1410 } 1411 1412 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1413 { 1414 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1415 struct net_device *dev = cdev->net; 1416 struct sk_buff *skb = cdev->tx_skb; 1417 u32 id, cccr, fdflags; 1418 int i; 1419 int putidx; 1420 1421 /* Generate ID field for TX buffer Element */ 1422 /* Common to all supported M_CAN versions */ 1423 if (cf->can_id & CAN_EFF_FLAG) { 1424 id = cf->can_id & CAN_EFF_MASK; 1425 id |= TX_BUF_XTD; 1426 } else { 1427 id = ((cf->can_id & CAN_SFF_MASK) << 18); 1428 } 1429 1430 if (cf->can_id & CAN_RTR_FLAG) 1431 id |= TX_BUF_RTR; 1432 1433 if (cdev->version == 30) { 1434 netif_stop_queue(dev); 1435 1436 /* message ram configuration */ 1437 m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id); 1438 m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC, 1439 can_len2dlc(cf->len) << 16); 1440 1441 for (i = 0; i < cf->len; i += 4) 1442 m_can_fifo_write(cdev, 0, 1443 M_CAN_FIFO_DATA(i / 4), 1444 *(u32 *)(cf->data + i)); 1445 1446 can_put_echo_skb(skb, dev, 0); 1447 1448 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1449 cccr = m_can_read(cdev, M_CAN_CCCR); 1450 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT); 1451 if (can_is_canfd_skb(skb)) { 1452 if (cf->flags & CANFD_BRS) 1453 cccr |= CCCR_CMR_CANFD_BRS << 1454 CCCR_CMR_SHIFT; 1455 else 1456 cccr |= CCCR_CMR_CANFD << 1457 CCCR_CMR_SHIFT; 1458 } else { 1459 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT; 1460 } 1461 m_can_write(cdev, M_CAN_CCCR, cccr); 1462 } 1463 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1464 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1465 /* End of xmit function for version 3.0.x */ 1466 } else { 1467 /* Transmit routine for version >= v3.1.x */ 1468 1469 /* Check if FIFO full */ 1470 if (m_can_tx_fifo_full(cdev)) { 1471 /* This shouldn't happen */ 1472 netif_stop_queue(dev); 1473 netdev_warn(dev, 1474 "TX queue active although FIFO is full."); 1475 1476 if (cdev->is_peripheral) { 1477 kfree_skb(skb); 1478 dev->stats.tx_dropped++; 1479 return NETDEV_TX_OK; 1480 } else { 1481 return NETDEV_TX_BUSY; 1482 } 1483 } 1484 1485 /* get put index for frame */ 1486 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK) 1487 >> TXFQS_TFQPI_SHIFT); 1488 /* Write ID Field to FIFO Element */ 1489 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id); 1490 1491 /* get CAN FD configuration of frame */ 1492 fdflags = 0; 1493 if (can_is_canfd_skb(skb)) { 1494 fdflags |= TX_BUF_FDF; 1495 if (cf->flags & CANFD_BRS) 1496 fdflags |= TX_BUF_BRS; 1497 } 1498 1499 /* Construct DLC Field. Also contains CAN-FD configuration 1500 * use put index of fifo as message marker 1501 * it is used in TX interrupt for 1502 * sending the correct echo frame 1503 */ 1504 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC, 1505 ((putidx << TX_BUF_MM_SHIFT) & 1506 TX_BUF_MM_MASK) | 1507 (can_len2dlc(cf->len) << 16) | 1508 fdflags | TX_BUF_EFC); 1509 1510 for (i = 0; i < cf->len; i += 4) 1511 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4), 1512 *(u32 *)(cf->data + i)); 1513 1514 /* Push loopback echo. 1515 * Will be looped back on TX interrupt based on message marker 1516 */ 1517 can_put_echo_skb(skb, dev, putidx); 1518 1519 /* Enable TX FIFO element to start transfer */ 1520 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1521 1522 /* stop network queue if fifo full */ 1523 if (m_can_tx_fifo_full(cdev) || 1524 m_can_next_echo_skb_occupied(dev, putidx)) 1525 netif_stop_queue(dev); 1526 } 1527 1528 return NETDEV_TX_OK; 1529 } 1530 1531 static void m_can_tx_work_queue(struct work_struct *ws) 1532 { 1533 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1534 tx_work); 1535 1536 m_can_tx_handler(cdev); 1537 cdev->tx_skb = NULL; 1538 } 1539 1540 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1541 struct net_device *dev) 1542 { 1543 struct m_can_classdev *cdev = netdev_priv(dev); 1544 1545 if (can_dropped_invalid_skb(dev, skb)) 1546 return NETDEV_TX_OK; 1547 1548 if (cdev->is_peripheral) { 1549 if (cdev->tx_skb) { 1550 netdev_err(dev, "hard_xmit called while tx busy\n"); 1551 return NETDEV_TX_BUSY; 1552 } 1553 1554 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1555 m_can_clean(dev); 1556 } else { 1557 /* Need to stop the queue to avoid numerous requests 1558 * from being sent. Suggested improvement is to create 1559 * a queueing mechanism that will queue the skbs and 1560 * process them in order. 1561 */ 1562 cdev->tx_skb = skb; 1563 netif_stop_queue(cdev->net); 1564 queue_work(cdev->tx_wq, &cdev->tx_work); 1565 } 1566 } else { 1567 cdev->tx_skb = skb; 1568 return m_can_tx_handler(cdev); 1569 } 1570 1571 return NETDEV_TX_OK; 1572 } 1573 1574 static int m_can_open(struct net_device *dev) 1575 { 1576 struct m_can_classdev *cdev = netdev_priv(dev); 1577 int err; 1578 1579 err = m_can_clk_start(cdev); 1580 if (err) 1581 return err; 1582 1583 /* open the can device */ 1584 err = open_candev(dev); 1585 if (err) { 1586 netdev_err(dev, "failed to open can device\n"); 1587 goto exit_disable_clks; 1588 } 1589 1590 /* register interrupt handler */ 1591 if (cdev->is_peripheral) { 1592 cdev->tx_skb = NULL; 1593 cdev->tx_wq = alloc_workqueue("mcan_wq", 1594 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1595 if (!cdev->tx_wq) { 1596 err = -ENOMEM; 1597 goto out_wq_fail; 1598 } 1599 1600 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1601 1602 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1603 IRQF_ONESHOT | IRQF_TRIGGER_FALLING, 1604 dev->name, dev); 1605 } else { 1606 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1607 dev); 1608 } 1609 1610 if (err < 0) { 1611 netdev_err(dev, "failed to request interrupt\n"); 1612 goto exit_irq_fail; 1613 } 1614 1615 /* start the m_can controller */ 1616 m_can_start(dev); 1617 1618 can_led_event(dev, CAN_LED_EVENT_OPEN); 1619 1620 if (!cdev->is_peripheral) 1621 napi_enable(&cdev->napi); 1622 1623 netif_start_queue(dev); 1624 1625 return 0; 1626 1627 exit_irq_fail: 1628 if (cdev->is_peripheral) 1629 destroy_workqueue(cdev->tx_wq); 1630 out_wq_fail: 1631 close_candev(dev); 1632 exit_disable_clks: 1633 m_can_clk_stop(cdev); 1634 return err; 1635 } 1636 1637 static const struct net_device_ops m_can_netdev_ops = { 1638 .ndo_open = m_can_open, 1639 .ndo_stop = m_can_close, 1640 .ndo_start_xmit = m_can_start_xmit, 1641 .ndo_change_mtu = can_change_mtu, 1642 }; 1643 1644 static int register_m_can_dev(struct net_device *dev) 1645 { 1646 dev->flags |= IFF_ECHO; /* we support local echo */ 1647 dev->netdev_ops = &m_can_netdev_ops; 1648 1649 return register_candev(dev); 1650 } 1651 1652 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1653 const u32 *mram_config_vals) 1654 { 1655 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1656 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1657 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1658 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1659 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1660 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1661 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1662 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1663 (RXFC_FS_MASK >> RXFC_FS_SHIFT); 1664 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1665 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1666 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1667 (RXFC_FS_MASK >> RXFC_FS_SHIFT); 1668 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1669 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1670 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1671 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1672 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1673 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1674 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1675 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1676 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1677 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT); 1678 1679 dev_dbg(cdev->dev, 1680 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1681 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1682 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1683 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1684 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1685 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1686 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1687 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1688 } 1689 1690 void m_can_init_ram(struct m_can_classdev *cdev) 1691 { 1692 int end, i, start; 1693 1694 /* initialize the entire Message RAM in use to avoid possible 1695 * ECC/parity checksum errors when reading an uninitialized buffer 1696 */ 1697 start = cdev->mcfg[MRAM_SIDF].off; 1698 end = cdev->mcfg[MRAM_TXB].off + 1699 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1700 1701 for (i = start; i < end; i += 4) 1702 m_can_fifo_write_no_off(cdev, i, 0x0); 1703 } 1704 EXPORT_SYMBOL_GPL(m_can_init_ram); 1705 1706 int m_can_class_get_clocks(struct m_can_classdev *m_can_dev) 1707 { 1708 int ret = 0; 1709 1710 m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk"); 1711 m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk"); 1712 1713 if (IS_ERR(m_can_dev->cclk)) { 1714 dev_err(m_can_dev->dev, "no clock found\n"); 1715 ret = -ENODEV; 1716 } 1717 1718 return ret; 1719 } 1720 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 1721 1722 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev) 1723 { 1724 struct m_can_classdev *class_dev = NULL; 1725 u32 mram_config_vals[MRAM_CFG_LEN]; 1726 struct net_device *net_dev; 1727 u32 tx_fifo_size; 1728 int ret; 1729 1730 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 1731 "bosch,mram-cfg", 1732 mram_config_vals, 1733 sizeof(mram_config_vals) / 4); 1734 if (ret) { 1735 dev_err(dev, "Could not get Message RAM configuration."); 1736 goto out; 1737 } 1738 1739 /* Get TX FIFO size 1740 * Defines the total amount of echo buffers for loopback 1741 */ 1742 tx_fifo_size = mram_config_vals[7]; 1743 1744 /* allocate the m_can device */ 1745 net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size); 1746 if (!net_dev) { 1747 dev_err(dev, "Failed to allocate CAN device"); 1748 goto out; 1749 } 1750 1751 class_dev = netdev_priv(net_dev); 1752 if (!class_dev) { 1753 dev_err(dev, "Failed to init netdev cdevate"); 1754 goto out; 1755 } 1756 1757 class_dev->net = net_dev; 1758 class_dev->dev = dev; 1759 SET_NETDEV_DEV(net_dev, dev); 1760 1761 m_can_of_parse_mram(class_dev, mram_config_vals); 1762 out: 1763 return class_dev; 1764 } 1765 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 1766 1767 int m_can_class_register(struct m_can_classdev *m_can_dev) 1768 { 1769 int ret; 1770 1771 if (m_can_dev->pm_clock_support) { 1772 pm_runtime_enable(m_can_dev->dev); 1773 ret = m_can_clk_start(m_can_dev); 1774 if (ret) 1775 goto pm_runtime_fail; 1776 } 1777 1778 ret = m_can_dev_setup(m_can_dev); 1779 if (ret) 1780 goto clk_disable; 1781 1782 ret = register_m_can_dev(m_can_dev->net); 1783 if (ret) { 1784 dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n", 1785 m_can_dev->net->name, ret); 1786 goto clk_disable; 1787 } 1788 1789 devm_can_led_init(m_can_dev->net); 1790 1791 of_can_transceiver(m_can_dev->net); 1792 1793 dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n", 1794 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version); 1795 1796 /* Probe finished 1797 * Stop clocks. They will be reactivated once the M_CAN device is opened 1798 */ 1799 clk_disable: 1800 m_can_clk_stop(m_can_dev); 1801 pm_runtime_fail: 1802 if (ret) { 1803 if (m_can_dev->pm_clock_support) 1804 pm_runtime_disable(m_can_dev->dev); 1805 free_candev(m_can_dev->net); 1806 } 1807 1808 return ret; 1809 } 1810 EXPORT_SYMBOL_GPL(m_can_class_register); 1811 1812 int m_can_class_suspend(struct device *dev) 1813 { 1814 struct net_device *ndev = dev_get_drvdata(dev); 1815 struct m_can_classdev *cdev = netdev_priv(ndev); 1816 1817 if (netif_running(ndev)) { 1818 netif_stop_queue(ndev); 1819 netif_device_detach(ndev); 1820 m_can_stop(ndev); 1821 m_can_clk_stop(cdev); 1822 } 1823 1824 pinctrl_pm_select_sleep_state(dev); 1825 1826 cdev->can.state = CAN_STATE_SLEEPING; 1827 1828 return 0; 1829 } 1830 EXPORT_SYMBOL_GPL(m_can_class_suspend); 1831 1832 int m_can_class_resume(struct device *dev) 1833 { 1834 struct net_device *ndev = dev_get_drvdata(dev); 1835 struct m_can_classdev *cdev = netdev_priv(ndev); 1836 1837 pinctrl_pm_select_default_state(dev); 1838 1839 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1840 1841 if (netif_running(ndev)) { 1842 int ret; 1843 1844 ret = m_can_clk_start(cdev); 1845 if (ret) 1846 return ret; 1847 1848 m_can_init_ram(cdev); 1849 m_can_start(ndev); 1850 netif_device_attach(ndev); 1851 netif_start_queue(ndev); 1852 } 1853 1854 return 0; 1855 } 1856 EXPORT_SYMBOL_GPL(m_can_class_resume); 1857 1858 void m_can_class_unregister(struct m_can_classdev *m_can_dev) 1859 { 1860 unregister_candev(m_can_dev->net); 1861 1862 m_can_clk_stop(m_can_dev); 1863 1864 free_candev(m_can_dev->net); 1865 } 1866 EXPORT_SYMBOL_GPL(m_can_class_unregister); 1867 1868 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 1869 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 1870 MODULE_LICENSE("GPL v2"); 1871 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 1872