xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 46a73e9e)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9  * mcan_users_manual_v302.pdf
10  */
11 
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24 
25 #include "m_can.h"
26 
27 /* registers definition */
28 enum m_can_reg {
29 	M_CAN_CREL	= 0x0,
30 	M_CAN_ENDN	= 0x4,
31 	M_CAN_CUST	= 0x8,
32 	M_CAN_DBTP	= 0xc,
33 	M_CAN_TEST	= 0x10,
34 	M_CAN_RWD	= 0x14,
35 	M_CAN_CCCR	= 0x18,
36 	M_CAN_NBTP	= 0x1c,
37 	M_CAN_TSCC	= 0x20,
38 	M_CAN_TSCV	= 0x24,
39 	M_CAN_TOCC	= 0x28,
40 	M_CAN_TOCV	= 0x2c,
41 	M_CAN_ECR	= 0x40,
42 	M_CAN_PSR	= 0x44,
43 /* TDCR Register only available for version >=3.1.x */
44 	M_CAN_TDCR	= 0x48,
45 	M_CAN_IR	= 0x50,
46 	M_CAN_IE	= 0x54,
47 	M_CAN_ILS	= 0x58,
48 	M_CAN_ILE	= 0x5c,
49 	M_CAN_GFC	= 0x80,
50 	M_CAN_SIDFC	= 0x84,
51 	M_CAN_XIDFC	= 0x88,
52 	M_CAN_XIDAM	= 0x90,
53 	M_CAN_HPMS	= 0x94,
54 	M_CAN_NDAT1	= 0x98,
55 	M_CAN_NDAT2	= 0x9c,
56 	M_CAN_RXF0C	= 0xa0,
57 	M_CAN_RXF0S	= 0xa4,
58 	M_CAN_RXF0A	= 0xa8,
59 	M_CAN_RXBC	= 0xac,
60 	M_CAN_RXF1C	= 0xb0,
61 	M_CAN_RXF1S	= 0xb4,
62 	M_CAN_RXF1A	= 0xb8,
63 	M_CAN_RXESC	= 0xbc,
64 	M_CAN_TXBC	= 0xc0,
65 	M_CAN_TXFQS	= 0xc4,
66 	M_CAN_TXESC	= 0xc8,
67 	M_CAN_TXBRP	= 0xcc,
68 	M_CAN_TXBAR	= 0xd0,
69 	M_CAN_TXBCR	= 0xd4,
70 	M_CAN_TXBTO	= 0xd8,
71 	M_CAN_TXBCF	= 0xdc,
72 	M_CAN_TXBTIE	= 0xe0,
73 	M_CAN_TXBCIE	= 0xe4,
74 	M_CAN_TXEFC	= 0xf0,
75 	M_CAN_TXEFS	= 0xf4,
76 	M_CAN_TXEFA	= 0xf8,
77 };
78 
79 /* napi related */
80 #define M_CAN_NAPI_WEIGHT	64
81 
82 /* message ram configuration data length */
83 #define MRAM_CFG_LEN	8
84 
85 /* Core Release Register (CREL) */
86 #define CREL_REL_SHIFT		28
87 #define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
88 #define CREL_STEP_SHIFT		24
89 #define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
90 #define CREL_SUBSTEP_SHIFT	20
91 #define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
92 
93 /* Data Bit Timing & Prescaler Register (DBTP) */
94 #define DBTP_TDC		BIT(23)
95 #define DBTP_DBRP_SHIFT		16
96 #define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
97 #define DBTP_DTSEG1_SHIFT	8
98 #define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
99 #define DBTP_DTSEG2_SHIFT	4
100 #define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
101 #define DBTP_DSJW_SHIFT		0
102 #define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
103 
104 /* Transmitter Delay Compensation Register (TDCR) */
105 #define TDCR_TDCO_SHIFT		8
106 #define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
107 #define TDCR_TDCF_SHIFT		0
108 #define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
109 
110 /* Test Register (TEST) */
111 #define TEST_LBCK		BIT(4)
112 
113 /* CC Control Register(CCCR) */
114 #define CCCR_CMR_MASK		0x3
115 #define CCCR_CMR_SHIFT		10
116 #define CCCR_CMR_CANFD		0x1
117 #define CCCR_CMR_CANFD_BRS	0x2
118 #define CCCR_CMR_CAN		0x3
119 #define CCCR_CME_MASK		0x3
120 #define CCCR_CME_SHIFT		8
121 #define CCCR_CME_CAN		0
122 #define CCCR_CME_CANFD		0x1
123 #define CCCR_CME_CANFD_BRS	0x2
124 #define CCCR_TXP		BIT(14)
125 #define CCCR_TEST		BIT(7)
126 #define CCCR_MON		BIT(5)
127 #define CCCR_CSR		BIT(4)
128 #define CCCR_CSA		BIT(3)
129 #define CCCR_ASM		BIT(2)
130 #define CCCR_CCE		BIT(1)
131 #define CCCR_INIT		BIT(0)
132 #define CCCR_CANFD		0x10
133 /* for version >=3.1.x */
134 #define CCCR_EFBI		BIT(13)
135 #define CCCR_PXHD		BIT(12)
136 #define CCCR_BRSE		BIT(9)
137 #define CCCR_FDOE		BIT(8)
138 /* only for version >=3.2.x */
139 #define CCCR_NISO		BIT(15)
140 
141 /* Nominal Bit Timing & Prescaler Register (NBTP) */
142 #define NBTP_NSJW_SHIFT		25
143 #define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
144 #define NBTP_NBRP_SHIFT		16
145 #define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
146 #define NBTP_NTSEG1_SHIFT	8
147 #define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
148 #define NBTP_NTSEG2_SHIFT	0
149 #define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
150 
151 /* Error Counter Register(ECR) */
152 #define ECR_RP			BIT(15)
153 #define ECR_REC_SHIFT		8
154 #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
155 #define ECR_TEC_SHIFT		0
156 #define ECR_TEC_MASK		0xff
157 
158 /* Protocol Status Register(PSR) */
159 #define PSR_BO		BIT(7)
160 #define PSR_EW		BIT(6)
161 #define PSR_EP		BIT(5)
162 #define PSR_LEC_MASK	0x7
163 
164 /* Interrupt Register(IR) */
165 #define IR_ALL_INT	0xffffffff
166 
167 /* Renamed bits for versions > 3.1.x */
168 #define IR_ARA		BIT(29)
169 #define IR_PED		BIT(28)
170 #define IR_PEA		BIT(27)
171 
172 /* Bits for version 3.0.x */
173 #define IR_STE		BIT(31)
174 #define IR_FOE		BIT(30)
175 #define IR_ACKE		BIT(29)
176 #define IR_BE		BIT(28)
177 #define IR_CRCE		BIT(27)
178 #define IR_WDI		BIT(26)
179 #define IR_BO		BIT(25)
180 #define IR_EW		BIT(24)
181 #define IR_EP		BIT(23)
182 #define IR_ELO		BIT(22)
183 #define IR_BEU		BIT(21)
184 #define IR_BEC		BIT(20)
185 #define IR_DRX		BIT(19)
186 #define IR_TOO		BIT(18)
187 #define IR_MRAF		BIT(17)
188 #define IR_TSW		BIT(16)
189 #define IR_TEFL		BIT(15)
190 #define IR_TEFF		BIT(14)
191 #define IR_TEFW		BIT(13)
192 #define IR_TEFN		BIT(12)
193 #define IR_TFE		BIT(11)
194 #define IR_TCF		BIT(10)
195 #define IR_TC		BIT(9)
196 #define IR_HPM		BIT(8)
197 #define IR_RF1L		BIT(7)
198 #define IR_RF1F		BIT(6)
199 #define IR_RF1W		BIT(5)
200 #define IR_RF1N		BIT(4)
201 #define IR_RF0L		BIT(3)
202 #define IR_RF0F		BIT(2)
203 #define IR_RF0W		BIT(1)
204 #define IR_RF0N		BIT(0)
205 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
206 
207 /* Interrupts for version 3.0.x */
208 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
209 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
210 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
211 			 IR_RF1L | IR_RF0L)
212 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
213 /* Interrupts for version >= 3.1.x */
214 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
215 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
216 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
217 			 IR_RF1L | IR_RF0L)
218 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
219 
220 /* Interrupt Line Select (ILS) */
221 #define ILS_ALL_INT0	0x0
222 #define ILS_ALL_INT1	0xFFFFFFFF
223 
224 /* Interrupt Line Enable (ILE) */
225 #define ILE_EINT1	BIT(1)
226 #define ILE_EINT0	BIT(0)
227 
228 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
229 #define RXFC_FWM_SHIFT	24
230 #define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
231 #define RXFC_FS_SHIFT	16
232 #define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
233 
234 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
235 #define RXFS_RFL	BIT(25)
236 #define RXFS_FF		BIT(24)
237 #define RXFS_FPI_SHIFT	16
238 #define RXFS_FPI_MASK	0x3f0000
239 #define RXFS_FGI_SHIFT	8
240 #define RXFS_FGI_MASK	0x3f00
241 #define RXFS_FFL_MASK	0x7f
242 
243 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
244 #define M_CAN_RXESC_8BYTES	0x0
245 #define M_CAN_RXESC_64BYTES	0x777
246 
247 /* Tx Buffer Configuration(TXBC) */
248 #define TXBC_NDTB_SHIFT		16
249 #define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
250 #define TXBC_TFQS_SHIFT		24
251 #define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
252 
253 /* Tx FIFO/Queue Status (TXFQS) */
254 #define TXFQS_TFQF		BIT(21)
255 #define TXFQS_TFQPI_SHIFT	16
256 #define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
257 #define TXFQS_TFGI_SHIFT	8
258 #define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
259 #define TXFQS_TFFL_SHIFT	0
260 #define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
261 
262 /* Tx Buffer Element Size Configuration(TXESC) */
263 #define TXESC_TBDS_8BYTES	0x0
264 #define TXESC_TBDS_64BYTES	0x7
265 
266 /* Tx Event FIFO Configuration (TXEFC) */
267 #define TXEFC_EFS_SHIFT		16
268 #define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
269 
270 /* Tx Event FIFO Status (TXEFS) */
271 #define TXEFS_TEFL		BIT(25)
272 #define TXEFS_EFF		BIT(24)
273 #define TXEFS_EFGI_SHIFT	8
274 #define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
275 #define TXEFS_EFFL_SHIFT	0
276 #define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
277 
278 /* Tx Event FIFO Acknowledge (TXEFA) */
279 #define TXEFA_EFAI_SHIFT	0
280 #define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
281 
282 /* Message RAM Configuration (in bytes) */
283 #define SIDF_ELEMENT_SIZE	4
284 #define XIDF_ELEMENT_SIZE	8
285 #define RXF0_ELEMENT_SIZE	72
286 #define RXF1_ELEMENT_SIZE	72
287 #define RXB_ELEMENT_SIZE	72
288 #define TXE_ELEMENT_SIZE	8
289 #define TXB_ELEMENT_SIZE	72
290 
291 /* Message RAM Elements */
292 #define M_CAN_FIFO_ID		0x0
293 #define M_CAN_FIFO_DLC		0x4
294 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
295 
296 /* Rx Buffer Element */
297 /* R0 */
298 #define RX_BUF_ESI		BIT(31)
299 #define RX_BUF_XTD		BIT(30)
300 #define RX_BUF_RTR		BIT(29)
301 /* R1 */
302 #define RX_BUF_ANMF		BIT(31)
303 #define RX_BUF_FDF		BIT(21)
304 #define RX_BUF_BRS		BIT(20)
305 
306 /* Tx Buffer Element */
307 /* T0 */
308 #define TX_BUF_ESI		BIT(31)
309 #define TX_BUF_XTD		BIT(30)
310 #define TX_BUF_RTR		BIT(29)
311 /* T1 */
312 #define TX_BUF_EFC		BIT(23)
313 #define TX_BUF_FDF		BIT(21)
314 #define TX_BUF_BRS		BIT(20)
315 #define TX_BUF_MM_SHIFT		24
316 #define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
317 
318 /* Tx event FIFO Element */
319 /* E1 */
320 #define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
321 #define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
322 
323 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
324 {
325 	return cdev->ops->read_reg(cdev, reg);
326 }
327 
328 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
329 			       u32 val)
330 {
331 	cdev->ops->write_reg(cdev, reg, val);
332 }
333 
334 static u32 m_can_fifo_read(struct m_can_classdev *cdev,
335 			   u32 fgi, unsigned int offset)
336 {
337 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
338 			  offset;
339 
340 	return cdev->ops->read_fifo(cdev, addr_offset);
341 }
342 
343 static void m_can_fifo_write(struct m_can_classdev *cdev,
344 			     u32 fpi, unsigned int offset, u32 val)
345 {
346 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
347 			  offset;
348 
349 	cdev->ops->write_fifo(cdev, addr_offset, val);
350 }
351 
352 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
353 					   u32 fpi, u32 val)
354 {
355 	cdev->ops->write_fifo(cdev, fpi, val);
356 }
357 
358 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
359 {
360 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
361 			  offset;
362 
363 	return cdev->ops->read_fifo(cdev, addr_offset);
364 }
365 
366 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
367 {
368 		return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
369 }
370 
371 void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
372 {
373 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
374 	u32 timeout = 10;
375 	u32 val = 0;
376 
377 	/* Clear the Clock stop request if it was set */
378 	if (cccr & CCCR_CSR)
379 		cccr &= ~CCCR_CSR;
380 
381 	if (enable) {
382 		/* Clear the Clock stop request if it was set */
383 		if (cccr & CCCR_CSR)
384 			cccr &= ~CCCR_CSR;
385 
386 		/* enable m_can configuration */
387 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
388 		udelay(5);
389 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
390 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
391 	} else {
392 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
393 	}
394 
395 	/* there's a delay for module initialization */
396 	if (enable)
397 		val = CCCR_INIT | CCCR_CCE;
398 
399 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
400 		if (timeout == 0) {
401 			netdev_warn(cdev->net, "Failed to init module\n");
402 			return;
403 		}
404 		timeout--;
405 		udelay(1);
406 	}
407 }
408 
409 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
410 {
411 	/* Only interrupt line 0 is used in this driver */
412 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
413 }
414 
415 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
416 {
417 	m_can_write(cdev, M_CAN_ILE, 0x0);
418 }
419 
420 static void m_can_clean(struct net_device *net)
421 {
422 	struct m_can_classdev *cdev = netdev_priv(net);
423 
424 	if (cdev->tx_skb) {
425 		int putidx = 0;
426 
427 		net->stats.tx_errors++;
428 		if (cdev->version > 30)
429 			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
430 				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
431 
432 		can_free_echo_skb(cdev->net, putidx);
433 		cdev->tx_skb = NULL;
434 	}
435 }
436 
437 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
438 {
439 	struct net_device_stats *stats = &dev->stats;
440 	struct m_can_classdev *cdev = netdev_priv(dev);
441 	struct canfd_frame *cf;
442 	struct sk_buff *skb;
443 	u32 id, fgi, dlc;
444 	int i;
445 
446 	/* calculate the fifo get index for where to read data */
447 	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
448 	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
449 	if (dlc & RX_BUF_FDF)
450 		skb = alloc_canfd_skb(dev, &cf);
451 	else
452 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
453 	if (!skb) {
454 		stats->rx_dropped++;
455 		return;
456 	}
457 
458 	if (dlc & RX_BUF_FDF)
459 		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
460 	else
461 		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
462 
463 	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
464 	if (id & RX_BUF_XTD)
465 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
466 	else
467 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
468 
469 	if (id & RX_BUF_ESI) {
470 		cf->flags |= CANFD_ESI;
471 		netdev_dbg(dev, "ESI Error\n");
472 	}
473 
474 	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
475 		cf->can_id |= CAN_RTR_FLAG;
476 	} else {
477 		if (dlc & RX_BUF_BRS)
478 			cf->flags |= CANFD_BRS;
479 
480 		for (i = 0; i < cf->len; i += 4)
481 			*(u32 *)(cf->data + i) =
482 				m_can_fifo_read(cdev, fgi,
483 						M_CAN_FIFO_DATA(i / 4));
484 	}
485 
486 	/* acknowledge rx fifo 0 */
487 	m_can_write(cdev, M_CAN_RXF0A, fgi);
488 
489 	stats->rx_packets++;
490 	stats->rx_bytes += cf->len;
491 
492 	netif_receive_skb(skb);
493 }
494 
495 static int m_can_do_rx_poll(struct net_device *dev, int quota)
496 {
497 	struct m_can_classdev *cdev = netdev_priv(dev);
498 	u32 pkts = 0;
499 	u32 rxfs;
500 
501 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
502 	if (!(rxfs & RXFS_FFL_MASK)) {
503 		netdev_dbg(dev, "no messages in fifo0\n");
504 		return 0;
505 	}
506 
507 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
508 		if (rxfs & RXFS_RFL)
509 			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
510 
511 		m_can_read_fifo(dev, rxfs);
512 
513 		quota--;
514 		pkts++;
515 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
516 	}
517 
518 	if (pkts)
519 		can_led_event(dev, CAN_LED_EVENT_RX);
520 
521 	return pkts;
522 }
523 
524 static int m_can_handle_lost_msg(struct net_device *dev)
525 {
526 	struct net_device_stats *stats = &dev->stats;
527 	struct sk_buff *skb;
528 	struct can_frame *frame;
529 
530 	netdev_err(dev, "msg lost in rxf0\n");
531 
532 	stats->rx_errors++;
533 	stats->rx_over_errors++;
534 
535 	skb = alloc_can_err_skb(dev, &frame);
536 	if (unlikely(!skb))
537 		return 0;
538 
539 	frame->can_id |= CAN_ERR_CRTL;
540 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
541 
542 	netif_receive_skb(skb);
543 
544 	return 1;
545 }
546 
547 static int m_can_handle_lec_err(struct net_device *dev,
548 				enum m_can_lec_type lec_type)
549 {
550 	struct m_can_classdev *cdev = netdev_priv(dev);
551 	struct net_device_stats *stats = &dev->stats;
552 	struct can_frame *cf;
553 	struct sk_buff *skb;
554 
555 	cdev->can.can_stats.bus_error++;
556 	stats->rx_errors++;
557 
558 	/* propagate the error condition to the CAN stack */
559 	skb = alloc_can_err_skb(dev, &cf);
560 	if (unlikely(!skb))
561 		return 0;
562 
563 	/* check for 'last error code' which tells us the
564 	 * type of the last error to occur on the CAN bus
565 	 */
566 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
567 
568 	switch (lec_type) {
569 	case LEC_STUFF_ERROR:
570 		netdev_dbg(dev, "stuff error\n");
571 		cf->data[2] |= CAN_ERR_PROT_STUFF;
572 		break;
573 	case LEC_FORM_ERROR:
574 		netdev_dbg(dev, "form error\n");
575 		cf->data[2] |= CAN_ERR_PROT_FORM;
576 		break;
577 	case LEC_ACK_ERROR:
578 		netdev_dbg(dev, "ack error\n");
579 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
580 		break;
581 	case LEC_BIT1_ERROR:
582 		netdev_dbg(dev, "bit1 error\n");
583 		cf->data[2] |= CAN_ERR_PROT_BIT1;
584 		break;
585 	case LEC_BIT0_ERROR:
586 		netdev_dbg(dev, "bit0 error\n");
587 		cf->data[2] |= CAN_ERR_PROT_BIT0;
588 		break;
589 	case LEC_CRC_ERROR:
590 		netdev_dbg(dev, "CRC error\n");
591 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
592 		break;
593 	default:
594 		break;
595 	}
596 
597 	stats->rx_packets++;
598 	stats->rx_bytes += cf->can_dlc;
599 	netif_receive_skb(skb);
600 
601 	return 1;
602 }
603 
604 static int __m_can_get_berr_counter(const struct net_device *dev,
605 				    struct can_berr_counter *bec)
606 {
607 	struct m_can_classdev *cdev = netdev_priv(dev);
608 	unsigned int ecr;
609 
610 	ecr = m_can_read(cdev, M_CAN_ECR);
611 	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
612 	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
613 
614 	return 0;
615 }
616 
617 static int m_can_clk_start(struct m_can_classdev *cdev)
618 {
619 	int err;
620 
621 	if (cdev->pm_clock_support == 0)
622 		return 0;
623 
624 	err = pm_runtime_get_sync(cdev->dev);
625 	if (err < 0) {
626 		pm_runtime_put_noidle(cdev->dev);
627 		return err;
628 	}
629 
630 	return 0;
631 }
632 
633 static void m_can_clk_stop(struct m_can_classdev *cdev)
634 {
635 	if (cdev->pm_clock_support)
636 		pm_runtime_put_sync(cdev->dev);
637 }
638 
639 static int m_can_get_berr_counter(const struct net_device *dev,
640 				  struct can_berr_counter *bec)
641 {
642 	struct m_can_classdev *cdev = netdev_priv(dev);
643 	int err;
644 
645 	err = m_can_clk_start(cdev);
646 	if (err)
647 		return err;
648 
649 	__m_can_get_berr_counter(dev, bec);
650 
651 	m_can_clk_stop(cdev);
652 
653 	return 0;
654 }
655 
656 static int m_can_handle_state_change(struct net_device *dev,
657 				     enum can_state new_state)
658 {
659 	struct m_can_classdev *cdev = netdev_priv(dev);
660 	struct net_device_stats *stats = &dev->stats;
661 	struct can_frame *cf;
662 	struct sk_buff *skb;
663 	struct can_berr_counter bec;
664 	unsigned int ecr;
665 
666 	switch (new_state) {
667 	case CAN_STATE_ERROR_ACTIVE:
668 		/* error warning state */
669 		cdev->can.can_stats.error_warning++;
670 		cdev->can.state = CAN_STATE_ERROR_WARNING;
671 		break;
672 	case CAN_STATE_ERROR_PASSIVE:
673 		/* error passive state */
674 		cdev->can.can_stats.error_passive++;
675 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
676 		break;
677 	case CAN_STATE_BUS_OFF:
678 		/* bus-off state */
679 		cdev->can.state = CAN_STATE_BUS_OFF;
680 		m_can_disable_all_interrupts(cdev);
681 		cdev->can.can_stats.bus_off++;
682 		can_bus_off(dev);
683 		break;
684 	default:
685 		break;
686 	}
687 
688 	/* propagate the error condition to the CAN stack */
689 	skb = alloc_can_err_skb(dev, &cf);
690 	if (unlikely(!skb))
691 		return 0;
692 
693 	__m_can_get_berr_counter(dev, &bec);
694 
695 	switch (new_state) {
696 	case CAN_STATE_ERROR_ACTIVE:
697 		/* error warning state */
698 		cf->can_id |= CAN_ERR_CRTL;
699 		cf->data[1] = (bec.txerr > bec.rxerr) ?
700 			CAN_ERR_CRTL_TX_WARNING :
701 			CAN_ERR_CRTL_RX_WARNING;
702 		cf->data[6] = bec.txerr;
703 		cf->data[7] = bec.rxerr;
704 		break;
705 	case CAN_STATE_ERROR_PASSIVE:
706 		/* error passive state */
707 		cf->can_id |= CAN_ERR_CRTL;
708 		ecr = m_can_read(cdev, M_CAN_ECR);
709 		if (ecr & ECR_RP)
710 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
711 		if (bec.txerr > 127)
712 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
713 		cf->data[6] = bec.txerr;
714 		cf->data[7] = bec.rxerr;
715 		break;
716 	case CAN_STATE_BUS_OFF:
717 		/* bus-off state */
718 		cf->can_id |= CAN_ERR_BUSOFF;
719 		break;
720 	default:
721 		break;
722 	}
723 
724 	stats->rx_packets++;
725 	stats->rx_bytes += cf->can_dlc;
726 	netif_receive_skb(skb);
727 
728 	return 1;
729 }
730 
731 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
732 {
733 	struct m_can_classdev *cdev = netdev_priv(dev);
734 	int work_done = 0;
735 
736 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
737 		netdev_dbg(dev, "entered error warning state\n");
738 		work_done += m_can_handle_state_change(dev,
739 						       CAN_STATE_ERROR_WARNING);
740 	}
741 
742 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
743 		netdev_dbg(dev, "entered error passive state\n");
744 		work_done += m_can_handle_state_change(dev,
745 						       CAN_STATE_ERROR_PASSIVE);
746 	}
747 
748 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
749 		netdev_dbg(dev, "entered error bus off state\n");
750 		work_done += m_can_handle_state_change(dev,
751 						       CAN_STATE_BUS_OFF);
752 	}
753 
754 	return work_done;
755 }
756 
757 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
758 {
759 	if (irqstatus & IR_WDI)
760 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
761 	if (irqstatus & IR_ELO)
762 		netdev_err(dev, "Error Logging Overflow\n");
763 	if (irqstatus & IR_BEU)
764 		netdev_err(dev, "Bit Error Uncorrected\n");
765 	if (irqstatus & IR_BEC)
766 		netdev_err(dev, "Bit Error Corrected\n");
767 	if (irqstatus & IR_TOO)
768 		netdev_err(dev, "Timeout reached\n");
769 	if (irqstatus & IR_MRAF)
770 		netdev_err(dev, "Message RAM access failure occurred\n");
771 }
772 
773 static inline bool is_lec_err(u32 psr)
774 {
775 	psr &= LEC_UNUSED;
776 
777 	return psr && (psr != LEC_UNUSED);
778 }
779 
780 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
781 				   u32 psr)
782 {
783 	struct m_can_classdev *cdev = netdev_priv(dev);
784 	int work_done = 0;
785 
786 	if (irqstatus & IR_RF0L)
787 		work_done += m_can_handle_lost_msg(dev);
788 
789 	/* handle lec errors on the bus */
790 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
791 	    is_lec_err(psr))
792 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
793 
794 	/* other unproccessed error interrupts */
795 	m_can_handle_other_err(dev, irqstatus);
796 
797 	return work_done;
798 }
799 
800 static int m_can_rx_handler(struct net_device *dev, int quota)
801 {
802 	struct m_can_classdev *cdev = netdev_priv(dev);
803 	int work_done = 0;
804 	u32 irqstatus, psr;
805 
806 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
807 	if (!irqstatus)
808 		goto end;
809 
810 	/* Errata workaround for issue "Needless activation of MRAF irq"
811 	 * During frame reception while the MCAN is in Error Passive state
812 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
813 	 * it may happen that MCAN_IR.MRAF is set although there was no
814 	 * Message RAM access failure.
815 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
816 	 * The Message RAM Access Failure interrupt routine needs to check
817 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
818 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
819 	 */
820 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
821 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
822 		struct can_berr_counter bec;
823 
824 		__m_can_get_berr_counter(dev, &bec);
825 		if (bec.rxerr == 127) {
826 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
827 			irqstatus &= ~IR_MRAF;
828 		}
829 	}
830 
831 	psr = m_can_read(cdev, M_CAN_PSR);
832 
833 	if (irqstatus & IR_ERR_STATE)
834 		work_done += m_can_handle_state_errors(dev, psr);
835 
836 	if (irqstatus & IR_ERR_BUS_30X)
837 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
838 
839 	if (irqstatus & IR_RF0N)
840 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
841 end:
842 	return work_done;
843 }
844 
845 static int m_can_rx_peripheral(struct net_device *dev)
846 {
847 	struct m_can_classdev *cdev = netdev_priv(dev);
848 
849 	m_can_rx_handler(dev, 1);
850 
851 	m_can_enable_all_interrupts(cdev);
852 
853 	return 0;
854 }
855 
856 static int m_can_poll(struct napi_struct *napi, int quota)
857 {
858 	struct net_device *dev = napi->dev;
859 	struct m_can_classdev *cdev = netdev_priv(dev);
860 	int work_done;
861 
862 	work_done = m_can_rx_handler(dev, quota);
863 	if (work_done < quota) {
864 		napi_complete_done(napi, work_done);
865 		m_can_enable_all_interrupts(cdev);
866 	}
867 
868 	return work_done;
869 }
870 
871 static void m_can_echo_tx_event(struct net_device *dev)
872 {
873 	u32 txe_count = 0;
874 	u32 m_can_txefs;
875 	u32 fgi = 0;
876 	int i = 0;
877 	unsigned int msg_mark;
878 
879 	struct m_can_classdev *cdev = netdev_priv(dev);
880 	struct net_device_stats *stats = &dev->stats;
881 
882 	/* read tx event fifo status */
883 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
884 
885 	/* Get Tx Event fifo element count */
886 	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
887 			>> TXEFS_EFFL_SHIFT;
888 
889 	/* Get and process all sent elements */
890 	for (i = 0; i < txe_count; i++) {
891 		/* retrieve get index */
892 		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
893 			>> TXEFS_EFGI_SHIFT;
894 
895 		/* get message marker */
896 		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
897 			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
898 
899 		/* ack txe element */
900 		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
901 						(fgi << TXEFA_EFAI_SHIFT)));
902 
903 		/* update stats */
904 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
905 		stats->tx_packets++;
906 	}
907 }
908 
909 static irqreturn_t m_can_isr(int irq, void *dev_id)
910 {
911 	struct net_device *dev = (struct net_device *)dev_id;
912 	struct m_can_classdev *cdev = netdev_priv(dev);
913 	struct net_device_stats *stats = &dev->stats;
914 	u32 ir;
915 
916 	ir = m_can_read(cdev, M_CAN_IR);
917 	if (!ir)
918 		return IRQ_NONE;
919 
920 	/* ACK all irqs */
921 	if (ir & IR_ALL_INT)
922 		m_can_write(cdev, M_CAN_IR, ir);
923 
924 	if (cdev->ops->clear_interrupts)
925 		cdev->ops->clear_interrupts(cdev);
926 
927 	/* schedule NAPI in case of
928 	 * - rx IRQ
929 	 * - state change IRQ
930 	 * - bus error IRQ and bus error reporting
931 	 */
932 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
933 		cdev->irqstatus = ir;
934 		m_can_disable_all_interrupts(cdev);
935 		if (!cdev->is_peripheral)
936 			napi_schedule(&cdev->napi);
937 		else
938 			m_can_rx_peripheral(dev);
939 	}
940 
941 	if (cdev->version == 30) {
942 		if (ir & IR_TC) {
943 			/* Transmission Complete Interrupt*/
944 			stats->tx_bytes += can_get_echo_skb(dev, 0);
945 			stats->tx_packets++;
946 			can_led_event(dev, CAN_LED_EVENT_TX);
947 			netif_wake_queue(dev);
948 		}
949 	} else  {
950 		if (ir & IR_TEFN) {
951 			/* New TX FIFO Element arrived */
952 			m_can_echo_tx_event(dev);
953 			can_led_event(dev, CAN_LED_EVENT_TX);
954 			if (netif_queue_stopped(dev) &&
955 			    !m_can_tx_fifo_full(cdev))
956 				netif_wake_queue(dev);
957 		}
958 	}
959 
960 	return IRQ_HANDLED;
961 }
962 
963 static const struct can_bittiming_const m_can_bittiming_const_30X = {
964 	.name = KBUILD_MODNAME,
965 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
966 	.tseg1_max = 64,
967 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
968 	.tseg2_max = 16,
969 	.sjw_max = 16,
970 	.brp_min = 1,
971 	.brp_max = 1024,
972 	.brp_inc = 1,
973 };
974 
975 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
976 	.name = KBUILD_MODNAME,
977 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
978 	.tseg1_max = 16,
979 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
980 	.tseg2_max = 8,
981 	.sjw_max = 4,
982 	.brp_min = 1,
983 	.brp_max = 32,
984 	.brp_inc = 1,
985 };
986 
987 static const struct can_bittiming_const m_can_bittiming_const_31X = {
988 	.name = KBUILD_MODNAME,
989 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
990 	.tseg1_max = 256,
991 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
992 	.tseg2_max = 128,
993 	.sjw_max = 128,
994 	.brp_min = 1,
995 	.brp_max = 512,
996 	.brp_inc = 1,
997 };
998 
999 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1000 	.name = KBUILD_MODNAME,
1001 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1002 	.tseg1_max = 32,
1003 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1004 	.tseg2_max = 16,
1005 	.sjw_max = 16,
1006 	.brp_min = 1,
1007 	.brp_max = 32,
1008 	.brp_inc = 1,
1009 };
1010 
1011 static int m_can_set_bittiming(struct net_device *dev)
1012 {
1013 	struct m_can_classdev *cdev = netdev_priv(dev);
1014 	const struct can_bittiming *bt = &cdev->can.bittiming;
1015 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1016 	u16 brp, sjw, tseg1, tseg2;
1017 	u32 reg_btp;
1018 
1019 	brp = bt->brp - 1;
1020 	sjw = bt->sjw - 1;
1021 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1022 	tseg2 = bt->phase_seg2 - 1;
1023 	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1024 		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1025 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1026 
1027 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1028 		reg_btp = 0;
1029 		brp = dbt->brp - 1;
1030 		sjw = dbt->sjw - 1;
1031 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1032 		tseg2 = dbt->phase_seg2 - 1;
1033 
1034 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1035 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1036 		 * paper presented at the International CAN Conference 2013
1037 		 */
1038 		if (dbt->bitrate > 2500000) {
1039 			u32 tdco, ssp;
1040 
1041 			/* Use the same value of secondary sampling point
1042 			 * as the data sampling point
1043 			 */
1044 			ssp = dbt->sample_point;
1045 
1046 			/* Equation based on Bosch's M_CAN User Manual's
1047 			 * Transmitter Delay Compensation Section
1048 			 */
1049 			tdco = (cdev->can.clock.freq / 1000) *
1050 			       ssp / dbt->bitrate;
1051 
1052 			/* Max valid TDCO value is 127 */
1053 			if (tdco > 127) {
1054 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1055 					    tdco);
1056 				tdco = 127;
1057 			}
1058 
1059 			reg_btp |= DBTP_TDC;
1060 			m_can_write(cdev, M_CAN_TDCR,
1061 				    tdco << TDCR_TDCO_SHIFT);
1062 		}
1063 
1064 		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1065 			   (sjw << DBTP_DSJW_SHIFT) |
1066 			   (tseg1 << DBTP_DTSEG1_SHIFT) |
1067 			   (tseg2 << DBTP_DTSEG2_SHIFT);
1068 
1069 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 /* Configure M_CAN chip:
1076  * - set rx buffer/fifo element size
1077  * - configure rx fifo
1078  * - accept non-matching frame into fifo 0
1079  * - configure tx buffer
1080  *		- >= v3.1.x: TX FIFO is used
1081  * - configure mode
1082  * - setup bittiming
1083  */
1084 static void m_can_chip_config(struct net_device *dev)
1085 {
1086 	struct m_can_classdev *cdev = netdev_priv(dev);
1087 	u32 cccr, test;
1088 
1089 	m_can_config_endisable(cdev, true);
1090 
1091 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1092 	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1093 
1094 	/* Accept Non-matching Frames Into FIFO 0 */
1095 	m_can_write(cdev, M_CAN_GFC, 0x0);
1096 
1097 	if (cdev->version == 30) {
1098 		/* only support one Tx Buffer currently */
1099 		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1100 				cdev->mcfg[MRAM_TXB].off);
1101 	} else {
1102 		/* TX FIFO is used for newer IP Core versions */
1103 		m_can_write(cdev, M_CAN_TXBC,
1104 			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1105 			    (cdev->mcfg[MRAM_TXB].off));
1106 	}
1107 
1108 	/* support 64 bytes payload */
1109 	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1110 
1111 	/* TX Event FIFO */
1112 	if (cdev->version == 30) {
1113 		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1114 				cdev->mcfg[MRAM_TXE].off);
1115 	} else {
1116 		/* Full TX Event FIFO is used */
1117 		m_can_write(cdev, M_CAN_TXEFC,
1118 			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1119 			     & TXEFC_EFS_MASK) |
1120 			    cdev->mcfg[MRAM_TXE].off);
1121 	}
1122 
1123 	/* rx fifo configuration, blocking mode, fifo size 1 */
1124 	m_can_write(cdev, M_CAN_RXF0C,
1125 		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1126 		     cdev->mcfg[MRAM_RXF0].off);
1127 
1128 	m_can_write(cdev, M_CAN_RXF1C,
1129 		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1130 		     cdev->mcfg[MRAM_RXF1].off);
1131 
1132 	cccr = m_can_read(cdev, M_CAN_CCCR);
1133 	test = m_can_read(cdev, M_CAN_TEST);
1134 	test &= ~TEST_LBCK;
1135 	if (cdev->version == 30) {
1136 	/* Version 3.0.x */
1137 
1138 		cccr &= ~(CCCR_TEST | CCCR_MON |
1139 			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1140 			(CCCR_CME_MASK << CCCR_CME_SHIFT));
1141 
1142 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1143 			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1144 
1145 	} else {
1146 	/* Version 3.1.x or 3.2.x */
1147 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1148 			  CCCR_NISO);
1149 
1150 		/* Only 3.2.x has NISO Bit implemented */
1151 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1152 			cccr |= CCCR_NISO;
1153 
1154 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1155 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1156 	}
1157 
1158 	/* Loopback Mode */
1159 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1160 		cccr |= CCCR_TEST | CCCR_MON;
1161 		test |= TEST_LBCK;
1162 	}
1163 
1164 	/* Enable Monitoring (all versions) */
1165 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1166 		cccr |= CCCR_MON;
1167 
1168 	/* Write config */
1169 	m_can_write(cdev, M_CAN_CCCR, cccr);
1170 	m_can_write(cdev, M_CAN_TEST, test);
1171 
1172 	/* Enable interrupts */
1173 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1174 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1175 		if (cdev->version == 30)
1176 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1177 				    ~(IR_ERR_LEC_30X));
1178 		else
1179 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1180 				    ~(IR_ERR_LEC_31X));
1181 	else
1182 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1183 
1184 	/* route all interrupts to INT0 */
1185 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1186 
1187 	/* set bittiming params */
1188 	m_can_set_bittiming(dev);
1189 
1190 	m_can_config_endisable(cdev, false);
1191 
1192 	if (cdev->ops->init)
1193 		cdev->ops->init(cdev);
1194 }
1195 
1196 static void m_can_start(struct net_device *dev)
1197 {
1198 	struct m_can_classdev *cdev = netdev_priv(dev);
1199 
1200 	/* basic m_can configuration */
1201 	m_can_chip_config(dev);
1202 
1203 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1204 
1205 	m_can_enable_all_interrupts(cdev);
1206 }
1207 
1208 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1209 {
1210 	switch (mode) {
1211 	case CAN_MODE_START:
1212 		m_can_clean(dev);
1213 		m_can_start(dev);
1214 		netif_wake_queue(dev);
1215 		break;
1216 	default:
1217 		return -EOPNOTSUPP;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 /* Checks core release number of M_CAN
1224  * returns 0 if an unsupported device is detected
1225  * else it returns the release and step coded as:
1226  * return value = 10 * <release> + 1 * <step>
1227  */
1228 static int m_can_check_core_release(struct m_can_classdev *cdev)
1229 {
1230 	u32 crel_reg;
1231 	u8 rel;
1232 	u8 step;
1233 	int res;
1234 
1235 	/* Read Core Release Version and split into version number
1236 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1237 	 */
1238 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1239 	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1240 	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1241 
1242 	if (rel == 3) {
1243 		/* M_CAN v3.x.y: create return value */
1244 		res = 30 + step;
1245 	} else {
1246 		/* Unsupported M_CAN version */
1247 		res = 0;
1248 	}
1249 
1250 	return res;
1251 }
1252 
1253 /* Selectable Non ISO support only in version 3.2.x
1254  * This function checks if the bit is writable.
1255  */
1256 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1257 {
1258 	u32 cccr_reg, cccr_poll = 0;
1259 	int niso_timeout = -ETIMEDOUT;
1260 	int i;
1261 
1262 	m_can_config_endisable(cdev, true);
1263 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1264 	cccr_reg |= CCCR_NISO;
1265 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1266 
1267 	for (i = 0; i <= 10; i++) {
1268 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1269 		if (cccr_poll == cccr_reg) {
1270 			niso_timeout = 0;
1271 			break;
1272 		}
1273 
1274 		usleep_range(1, 5);
1275 	}
1276 
1277 	/* Clear NISO */
1278 	cccr_reg &= ~(CCCR_NISO);
1279 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1280 
1281 	m_can_config_endisable(cdev, false);
1282 
1283 	/* return false if time out (-ETIMEDOUT), else return true */
1284 	return !niso_timeout;
1285 }
1286 
1287 static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1288 {
1289 	struct net_device *dev = m_can_dev->net;
1290 	int m_can_version;
1291 
1292 	m_can_version = m_can_check_core_release(m_can_dev);
1293 	/* return if unsupported version */
1294 	if (!m_can_version) {
1295 		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1296 			m_can_version);
1297 		return -EINVAL;
1298 	}
1299 
1300 	if (!m_can_dev->is_peripheral)
1301 		netif_napi_add(dev, &m_can_dev->napi,
1302 			       m_can_poll, M_CAN_NAPI_WEIGHT);
1303 
1304 	/* Shared properties of all M_CAN versions */
1305 	m_can_dev->version = m_can_version;
1306 	m_can_dev->can.do_set_mode = m_can_set_mode;
1307 	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1308 
1309 	/* Set M_CAN supported operations */
1310 	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1311 					CAN_CTRLMODE_LISTENONLY |
1312 					CAN_CTRLMODE_BERR_REPORTING |
1313 					CAN_CTRLMODE_FD;
1314 
1315 	/* Set properties depending on M_CAN version */
1316 	switch (m_can_dev->version) {
1317 	case 30:
1318 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1319 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1320 		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1321 			m_can_dev->bit_timing : &m_can_bittiming_const_30X;
1322 
1323 		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1324 						m_can_dev->data_timing :
1325 						&m_can_data_bittiming_const_30X;
1326 		break;
1327 	case 31:
1328 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1329 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1330 		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1331 			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1332 
1333 		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1334 						m_can_dev->data_timing :
1335 						&m_can_data_bittiming_const_31X;
1336 		break;
1337 	case 32:
1338 		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1339 			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1340 
1341 		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1342 						m_can_dev->data_timing :
1343 						&m_can_data_bittiming_const_31X;
1344 
1345 		m_can_dev->can.ctrlmode_supported |=
1346 						(m_can_niso_supported(m_can_dev)
1347 						? CAN_CTRLMODE_FD_NON_ISO
1348 						: 0);
1349 		break;
1350 	default:
1351 		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1352 			m_can_dev->version);
1353 		return -EINVAL;
1354 	}
1355 
1356 	if (m_can_dev->ops->init)
1357 		m_can_dev->ops->init(m_can_dev);
1358 
1359 	return 0;
1360 }
1361 
1362 static void m_can_stop(struct net_device *dev)
1363 {
1364 	struct m_can_classdev *cdev = netdev_priv(dev);
1365 
1366 	/* disable all interrupts */
1367 	m_can_disable_all_interrupts(cdev);
1368 
1369 	/* set the state as STOPPED */
1370 	cdev->can.state = CAN_STATE_STOPPED;
1371 }
1372 
1373 static int m_can_close(struct net_device *dev)
1374 {
1375 	struct m_can_classdev *cdev = netdev_priv(dev);
1376 
1377 	netif_stop_queue(dev);
1378 
1379 	if (!cdev->is_peripheral)
1380 		napi_disable(&cdev->napi);
1381 
1382 	m_can_stop(dev);
1383 	m_can_clk_stop(cdev);
1384 	free_irq(dev->irq, dev);
1385 
1386 	if (cdev->is_peripheral) {
1387 		cdev->tx_skb = NULL;
1388 		destroy_workqueue(cdev->tx_wq);
1389 		cdev->tx_wq = NULL;
1390 	}
1391 
1392 	close_candev(dev);
1393 	can_led_event(dev, CAN_LED_EVENT_STOP);
1394 
1395 	return 0;
1396 }
1397 
1398 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1399 {
1400 	struct m_can_classdev *cdev = netdev_priv(dev);
1401 	/*get wrap around for loopback skb index */
1402 	unsigned int wrap = cdev->can.echo_skb_max;
1403 	int next_idx;
1404 
1405 	/* calculate next index */
1406 	next_idx = (++putidx >= wrap ? 0 : putidx);
1407 
1408 	/* check if occupied */
1409 	return !!cdev->can.echo_skb[next_idx];
1410 }
1411 
1412 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1413 {
1414 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1415 	struct net_device *dev = cdev->net;
1416 	struct sk_buff *skb = cdev->tx_skb;
1417 	u32 id, cccr, fdflags;
1418 	int i;
1419 	int putidx;
1420 
1421 	/* Generate ID field for TX buffer Element */
1422 	/* Common to all supported M_CAN versions */
1423 	if (cf->can_id & CAN_EFF_FLAG) {
1424 		id = cf->can_id & CAN_EFF_MASK;
1425 		id |= TX_BUF_XTD;
1426 	} else {
1427 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1428 	}
1429 
1430 	if (cf->can_id & CAN_RTR_FLAG)
1431 		id |= TX_BUF_RTR;
1432 
1433 	if (cdev->version == 30) {
1434 		netif_stop_queue(dev);
1435 
1436 		/* message ram configuration */
1437 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1438 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1439 				 can_len2dlc(cf->len) << 16);
1440 
1441 		for (i = 0; i < cf->len; i += 4)
1442 			m_can_fifo_write(cdev, 0,
1443 					 M_CAN_FIFO_DATA(i / 4),
1444 					 *(u32 *)(cf->data + i));
1445 
1446 		can_put_echo_skb(skb, dev, 0);
1447 
1448 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1449 			cccr = m_can_read(cdev, M_CAN_CCCR);
1450 			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1451 			if (can_is_canfd_skb(skb)) {
1452 				if (cf->flags & CANFD_BRS)
1453 					cccr |= CCCR_CMR_CANFD_BRS <<
1454 						CCCR_CMR_SHIFT;
1455 				else
1456 					cccr |= CCCR_CMR_CANFD <<
1457 						CCCR_CMR_SHIFT;
1458 			} else {
1459 				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1460 			}
1461 			m_can_write(cdev, M_CAN_CCCR, cccr);
1462 		}
1463 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1464 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1465 		/* End of xmit function for version 3.0.x */
1466 	} else {
1467 		/* Transmit routine for version >= v3.1.x */
1468 
1469 		/* Check if FIFO full */
1470 		if (m_can_tx_fifo_full(cdev)) {
1471 			/* This shouldn't happen */
1472 			netif_stop_queue(dev);
1473 			netdev_warn(dev,
1474 				    "TX queue active although FIFO is full.");
1475 
1476 			if (cdev->is_peripheral) {
1477 				kfree_skb(skb);
1478 				dev->stats.tx_dropped++;
1479 				return NETDEV_TX_OK;
1480 			} else {
1481 				return NETDEV_TX_BUSY;
1482 			}
1483 		}
1484 
1485 		/* get put index for frame */
1486 		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1487 				  >> TXFQS_TFQPI_SHIFT);
1488 		/* Write ID Field to FIFO Element */
1489 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1490 
1491 		/* get CAN FD configuration of frame */
1492 		fdflags = 0;
1493 		if (can_is_canfd_skb(skb)) {
1494 			fdflags |= TX_BUF_FDF;
1495 			if (cf->flags & CANFD_BRS)
1496 				fdflags |= TX_BUF_BRS;
1497 		}
1498 
1499 		/* Construct DLC Field. Also contains CAN-FD configuration
1500 		 * use put index of fifo as message marker
1501 		 * it is used in TX interrupt for
1502 		 * sending the correct echo frame
1503 		 */
1504 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1505 				 ((putidx << TX_BUF_MM_SHIFT) &
1506 				  TX_BUF_MM_MASK) |
1507 				 (can_len2dlc(cf->len) << 16) |
1508 				 fdflags | TX_BUF_EFC);
1509 
1510 		for (i = 0; i < cf->len; i += 4)
1511 			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1512 					 *(u32 *)(cf->data + i));
1513 
1514 		/* Push loopback echo.
1515 		 * Will be looped back on TX interrupt based on message marker
1516 		 */
1517 		can_put_echo_skb(skb, dev, putidx);
1518 
1519 		/* Enable TX FIFO element to start transfer  */
1520 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1521 
1522 		/* stop network queue if fifo full */
1523 		if (m_can_tx_fifo_full(cdev) ||
1524 		    m_can_next_echo_skb_occupied(dev, putidx))
1525 			netif_stop_queue(dev);
1526 	}
1527 
1528 	return NETDEV_TX_OK;
1529 }
1530 
1531 static void m_can_tx_work_queue(struct work_struct *ws)
1532 {
1533 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1534 						tx_work);
1535 
1536 	m_can_tx_handler(cdev);
1537 	cdev->tx_skb = NULL;
1538 }
1539 
1540 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1541 				    struct net_device *dev)
1542 {
1543 	struct m_can_classdev *cdev = netdev_priv(dev);
1544 
1545 	if (can_dropped_invalid_skb(dev, skb))
1546 		return NETDEV_TX_OK;
1547 
1548 	if (cdev->is_peripheral) {
1549 		if (cdev->tx_skb) {
1550 			netdev_err(dev, "hard_xmit called while tx busy\n");
1551 			return NETDEV_TX_BUSY;
1552 		}
1553 
1554 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1555 			m_can_clean(dev);
1556 		} else {
1557 			/* Need to stop the queue to avoid numerous requests
1558 			 * from being sent.  Suggested improvement is to create
1559 			 * a queueing mechanism that will queue the skbs and
1560 			 * process them in order.
1561 			 */
1562 			cdev->tx_skb = skb;
1563 			netif_stop_queue(cdev->net);
1564 			queue_work(cdev->tx_wq, &cdev->tx_work);
1565 		}
1566 	} else {
1567 		cdev->tx_skb = skb;
1568 		return m_can_tx_handler(cdev);
1569 	}
1570 
1571 	return NETDEV_TX_OK;
1572 }
1573 
1574 static int m_can_open(struct net_device *dev)
1575 {
1576 	struct m_can_classdev *cdev = netdev_priv(dev);
1577 	int err;
1578 
1579 	err = m_can_clk_start(cdev);
1580 	if (err)
1581 		return err;
1582 
1583 	/* open the can device */
1584 	err = open_candev(dev);
1585 	if (err) {
1586 		netdev_err(dev, "failed to open can device\n");
1587 		goto exit_disable_clks;
1588 	}
1589 
1590 	/* register interrupt handler */
1591 	if (cdev->is_peripheral) {
1592 		cdev->tx_skb = NULL;
1593 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1594 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1595 		if (!cdev->tx_wq) {
1596 			err = -ENOMEM;
1597 			goto out_wq_fail;
1598 		}
1599 
1600 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1601 
1602 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1603 					   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
1604 					   dev->name, dev);
1605 	} else {
1606 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1607 				  dev);
1608 	}
1609 
1610 	if (err < 0) {
1611 		netdev_err(dev, "failed to request interrupt\n");
1612 		goto exit_irq_fail;
1613 	}
1614 
1615 	/* start the m_can controller */
1616 	m_can_start(dev);
1617 
1618 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1619 
1620 	if (!cdev->is_peripheral)
1621 		napi_enable(&cdev->napi);
1622 
1623 	netif_start_queue(dev);
1624 
1625 	return 0;
1626 
1627 exit_irq_fail:
1628 	if (cdev->is_peripheral)
1629 		destroy_workqueue(cdev->tx_wq);
1630 out_wq_fail:
1631 	close_candev(dev);
1632 exit_disable_clks:
1633 	m_can_clk_stop(cdev);
1634 	return err;
1635 }
1636 
1637 static const struct net_device_ops m_can_netdev_ops = {
1638 	.ndo_open = m_can_open,
1639 	.ndo_stop = m_can_close,
1640 	.ndo_start_xmit = m_can_start_xmit,
1641 	.ndo_change_mtu = can_change_mtu,
1642 };
1643 
1644 static int register_m_can_dev(struct net_device *dev)
1645 {
1646 	dev->flags |= IFF_ECHO;	/* we support local echo */
1647 	dev->netdev_ops = &m_can_netdev_ops;
1648 
1649 	return register_candev(dev);
1650 }
1651 
1652 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1653 				const u32 *mram_config_vals)
1654 {
1655 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1656 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1657 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1658 			cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1659 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1660 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1661 			cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1662 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1663 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1664 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1665 			cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1666 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1667 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1668 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1669 			cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1670 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1671 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1672 			cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1673 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1674 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1675 			cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1676 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1677 			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1678 
1679 	dev_dbg(cdev->dev,
1680 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1681 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1682 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1683 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1684 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1685 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1686 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1687 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1688 }
1689 
1690 void m_can_init_ram(struct m_can_classdev *cdev)
1691 {
1692 	int end, i, start;
1693 
1694 	/* initialize the entire Message RAM in use to avoid possible
1695 	 * ECC/parity checksum errors when reading an uninitialized buffer
1696 	 */
1697 	start = cdev->mcfg[MRAM_SIDF].off;
1698 	end = cdev->mcfg[MRAM_TXB].off +
1699 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1700 
1701 	for (i = start; i < end; i += 4)
1702 		m_can_fifo_write_no_off(cdev, i, 0x0);
1703 }
1704 EXPORT_SYMBOL_GPL(m_can_init_ram);
1705 
1706 int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1707 {
1708 	int ret = 0;
1709 
1710 	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
1711 	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1712 
1713 	if (IS_ERR(m_can_dev->cclk)) {
1714 		dev_err(m_can_dev->dev, "no clock found\n");
1715 		ret = -ENODEV;
1716 	}
1717 
1718 	return ret;
1719 }
1720 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1721 
1722 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1723 {
1724 	struct m_can_classdev *class_dev = NULL;
1725 	u32 mram_config_vals[MRAM_CFG_LEN];
1726 	struct net_device *net_dev;
1727 	u32 tx_fifo_size;
1728 	int ret;
1729 
1730 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1731 					     "bosch,mram-cfg",
1732 					     mram_config_vals,
1733 					     sizeof(mram_config_vals) / 4);
1734 	if (ret) {
1735 		dev_err(dev, "Could not get Message RAM configuration.");
1736 		goto out;
1737 	}
1738 
1739 	/* Get TX FIFO size
1740 	 * Defines the total amount of echo buffers for loopback
1741 	 */
1742 	tx_fifo_size = mram_config_vals[7];
1743 
1744 	/* allocate the m_can device */
1745 	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
1746 	if (!net_dev) {
1747 		dev_err(dev, "Failed to allocate CAN device");
1748 		goto out;
1749 	}
1750 
1751 	class_dev = netdev_priv(net_dev);
1752 	if (!class_dev) {
1753 		dev_err(dev, "Failed to init netdev cdevate");
1754 		goto out;
1755 	}
1756 
1757 	class_dev->net = net_dev;
1758 	class_dev->dev = dev;
1759 	SET_NETDEV_DEV(net_dev, dev);
1760 
1761 	m_can_of_parse_mram(class_dev, mram_config_vals);
1762 out:
1763 	return class_dev;
1764 }
1765 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1766 
1767 int m_can_class_register(struct m_can_classdev *m_can_dev)
1768 {
1769 	int ret;
1770 
1771 	if (m_can_dev->pm_clock_support) {
1772 		pm_runtime_enable(m_can_dev->dev);
1773 		ret = m_can_clk_start(m_can_dev);
1774 		if (ret)
1775 			goto pm_runtime_fail;
1776 	}
1777 
1778 	ret = m_can_dev_setup(m_can_dev);
1779 	if (ret)
1780 		goto clk_disable;
1781 
1782 	ret = register_m_can_dev(m_can_dev->net);
1783 	if (ret) {
1784 		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
1785 			m_can_dev->net->name, ret);
1786 		goto clk_disable;
1787 	}
1788 
1789 	devm_can_led_init(m_can_dev->net);
1790 
1791 	of_can_transceiver(m_can_dev->net);
1792 
1793 	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
1794 		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1795 
1796 	/* Probe finished
1797 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1798 	 */
1799 clk_disable:
1800 	m_can_clk_stop(m_can_dev);
1801 pm_runtime_fail:
1802 	if (ret) {
1803 		if (m_can_dev->pm_clock_support)
1804 			pm_runtime_disable(m_can_dev->dev);
1805 		free_candev(m_can_dev->net);
1806 	}
1807 
1808 	return ret;
1809 }
1810 EXPORT_SYMBOL_GPL(m_can_class_register);
1811 
1812 int m_can_class_suspend(struct device *dev)
1813 {
1814 	struct net_device *ndev = dev_get_drvdata(dev);
1815 	struct m_can_classdev *cdev = netdev_priv(ndev);
1816 
1817 	if (netif_running(ndev)) {
1818 		netif_stop_queue(ndev);
1819 		netif_device_detach(ndev);
1820 		m_can_stop(ndev);
1821 		m_can_clk_stop(cdev);
1822 	}
1823 
1824 	pinctrl_pm_select_sleep_state(dev);
1825 
1826 	cdev->can.state = CAN_STATE_SLEEPING;
1827 
1828 	return 0;
1829 }
1830 EXPORT_SYMBOL_GPL(m_can_class_suspend);
1831 
1832 int m_can_class_resume(struct device *dev)
1833 {
1834 	struct net_device *ndev = dev_get_drvdata(dev);
1835 	struct m_can_classdev *cdev = netdev_priv(ndev);
1836 
1837 	pinctrl_pm_select_default_state(dev);
1838 
1839 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1840 
1841 	if (netif_running(ndev)) {
1842 		int ret;
1843 
1844 		ret = m_can_clk_start(cdev);
1845 		if (ret)
1846 			return ret;
1847 
1848 		m_can_init_ram(cdev);
1849 		m_can_start(ndev);
1850 		netif_device_attach(ndev);
1851 		netif_start_queue(ndev);
1852 	}
1853 
1854 	return 0;
1855 }
1856 EXPORT_SYMBOL_GPL(m_can_class_resume);
1857 
1858 void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1859 {
1860 	unregister_candev(m_can_dev->net);
1861 
1862 	m_can_clk_stop(m_can_dev);
1863 
1864 	free_candev(m_can_dev->net);
1865 }
1866 EXPORT_SYMBOL_GPL(m_can_class_unregister);
1867 
1868 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1869 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1870 MODULE_LICENSE("GPL v2");
1871 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1872