1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/netdevice.h> 17 #include <linux/of.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/iopoll.h> 22 #include <linux/can/dev.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/phy/phy.h> 25 26 #include "m_can.h" 27 28 /* registers definition */ 29 enum m_can_reg { 30 M_CAN_CREL = 0x0, 31 M_CAN_ENDN = 0x4, 32 M_CAN_CUST = 0x8, 33 M_CAN_DBTP = 0xc, 34 M_CAN_TEST = 0x10, 35 M_CAN_RWD = 0x14, 36 M_CAN_CCCR = 0x18, 37 M_CAN_NBTP = 0x1c, 38 M_CAN_TSCC = 0x20, 39 M_CAN_TSCV = 0x24, 40 M_CAN_TOCC = 0x28, 41 M_CAN_TOCV = 0x2c, 42 M_CAN_ECR = 0x40, 43 M_CAN_PSR = 0x44, 44 /* TDCR Register only available for version >=3.1.x */ 45 M_CAN_TDCR = 0x48, 46 M_CAN_IR = 0x50, 47 M_CAN_IE = 0x54, 48 M_CAN_ILS = 0x58, 49 M_CAN_ILE = 0x5c, 50 M_CAN_GFC = 0x80, 51 M_CAN_SIDFC = 0x84, 52 M_CAN_XIDFC = 0x88, 53 M_CAN_XIDAM = 0x90, 54 M_CAN_HPMS = 0x94, 55 M_CAN_NDAT1 = 0x98, 56 M_CAN_NDAT2 = 0x9c, 57 M_CAN_RXF0C = 0xa0, 58 M_CAN_RXF0S = 0xa4, 59 M_CAN_RXF0A = 0xa8, 60 M_CAN_RXBC = 0xac, 61 M_CAN_RXF1C = 0xb0, 62 M_CAN_RXF1S = 0xb4, 63 M_CAN_RXF1A = 0xb8, 64 M_CAN_RXESC = 0xbc, 65 M_CAN_TXBC = 0xc0, 66 M_CAN_TXFQS = 0xc4, 67 M_CAN_TXESC = 0xc8, 68 M_CAN_TXBRP = 0xcc, 69 M_CAN_TXBAR = 0xd0, 70 M_CAN_TXBCR = 0xd4, 71 M_CAN_TXBTO = 0xd8, 72 M_CAN_TXBCF = 0xdc, 73 M_CAN_TXBTIE = 0xe0, 74 M_CAN_TXBCIE = 0xe4, 75 M_CAN_TXEFC = 0xf0, 76 M_CAN_TXEFS = 0xf4, 77 M_CAN_TXEFA = 0xf8, 78 }; 79 80 /* napi related */ 81 #define M_CAN_NAPI_WEIGHT 64 82 83 /* message ram configuration data length */ 84 #define MRAM_CFG_LEN 8 85 86 /* Core Release Register (CREL) */ 87 #define CREL_REL_MASK GENMASK(31, 28) 88 #define CREL_STEP_MASK GENMASK(27, 24) 89 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 90 91 /* Data Bit Timing & Prescaler Register (DBTP) */ 92 #define DBTP_TDC BIT(23) 93 #define DBTP_DBRP_MASK GENMASK(20, 16) 94 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 95 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 96 #define DBTP_DSJW_MASK GENMASK(3, 0) 97 98 /* Transmitter Delay Compensation Register (TDCR) */ 99 #define TDCR_TDCO_MASK GENMASK(14, 8) 100 #define TDCR_TDCF_MASK GENMASK(6, 0) 101 102 /* Test Register (TEST) */ 103 #define TEST_LBCK BIT(4) 104 105 /* CC Control Register (CCCR) */ 106 #define CCCR_TXP BIT(14) 107 #define CCCR_TEST BIT(7) 108 #define CCCR_DAR BIT(6) 109 #define CCCR_MON BIT(5) 110 #define CCCR_CSR BIT(4) 111 #define CCCR_CSA BIT(3) 112 #define CCCR_ASM BIT(2) 113 #define CCCR_CCE BIT(1) 114 #define CCCR_INIT BIT(0) 115 /* for version 3.0.x */ 116 #define CCCR_CMR_MASK GENMASK(11, 10) 117 #define CCCR_CMR_CANFD 0x1 118 #define CCCR_CMR_CANFD_BRS 0x2 119 #define CCCR_CMR_CAN 0x3 120 #define CCCR_CME_MASK GENMASK(9, 8) 121 #define CCCR_CME_CAN 0 122 #define CCCR_CME_CANFD 0x1 123 #define CCCR_CME_CANFD_BRS 0x2 124 /* for version >=3.1.x */ 125 #define CCCR_EFBI BIT(13) 126 #define CCCR_PXHD BIT(12) 127 #define CCCR_BRSE BIT(9) 128 #define CCCR_FDOE BIT(8) 129 /* for version >=3.2.x */ 130 #define CCCR_NISO BIT(15) 131 /* for version >=3.3.x */ 132 #define CCCR_WMM BIT(11) 133 #define CCCR_UTSU BIT(10) 134 135 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 136 #define NBTP_NSJW_MASK GENMASK(31, 25) 137 #define NBTP_NBRP_MASK GENMASK(24, 16) 138 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 139 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 140 141 /* Timestamp Counter Configuration Register (TSCC) */ 142 #define TSCC_TCP_MASK GENMASK(19, 16) 143 #define TSCC_TSS_MASK GENMASK(1, 0) 144 #define TSCC_TSS_DISABLE 0x0 145 #define TSCC_TSS_INTERNAL 0x1 146 #define TSCC_TSS_EXTERNAL 0x2 147 148 /* Timestamp Counter Value Register (TSCV) */ 149 #define TSCV_TSC_MASK GENMASK(15, 0) 150 151 /* Error Counter Register (ECR) */ 152 #define ECR_RP BIT(15) 153 #define ECR_REC_MASK GENMASK(14, 8) 154 #define ECR_TEC_MASK GENMASK(7, 0) 155 156 /* Protocol Status Register (PSR) */ 157 #define PSR_BO BIT(7) 158 #define PSR_EW BIT(6) 159 #define PSR_EP BIT(5) 160 #define PSR_LEC_MASK GENMASK(2, 0) 161 162 /* Interrupt Register (IR) */ 163 #define IR_ALL_INT 0xffffffff 164 165 /* Renamed bits for versions > 3.1.x */ 166 #define IR_ARA BIT(29) 167 #define IR_PED BIT(28) 168 #define IR_PEA BIT(27) 169 170 /* Bits for version 3.0.x */ 171 #define IR_STE BIT(31) 172 #define IR_FOE BIT(30) 173 #define IR_ACKE BIT(29) 174 #define IR_BE BIT(28) 175 #define IR_CRCE BIT(27) 176 #define IR_WDI BIT(26) 177 #define IR_BO BIT(25) 178 #define IR_EW BIT(24) 179 #define IR_EP BIT(23) 180 #define IR_ELO BIT(22) 181 #define IR_BEU BIT(21) 182 #define IR_BEC BIT(20) 183 #define IR_DRX BIT(19) 184 #define IR_TOO BIT(18) 185 #define IR_MRAF BIT(17) 186 #define IR_TSW BIT(16) 187 #define IR_TEFL BIT(15) 188 #define IR_TEFF BIT(14) 189 #define IR_TEFW BIT(13) 190 #define IR_TEFN BIT(12) 191 #define IR_TFE BIT(11) 192 #define IR_TCF BIT(10) 193 #define IR_TC BIT(9) 194 #define IR_HPM BIT(8) 195 #define IR_RF1L BIT(7) 196 #define IR_RF1F BIT(6) 197 #define IR_RF1W BIT(5) 198 #define IR_RF1N BIT(4) 199 #define IR_RF0L BIT(3) 200 #define IR_RF0F BIT(2) 201 #define IR_RF0W BIT(1) 202 #define IR_RF0N BIT(0) 203 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 204 205 /* Interrupts for version 3.0.x */ 206 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 207 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ 208 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 209 IR_RF0L) 210 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 211 212 /* Interrupts for version >= 3.1.x */ 213 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 214 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ 215 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 216 IR_RF0L) 217 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 218 219 /* Interrupt Line Select (ILS) */ 220 #define ILS_ALL_INT0 0x0 221 #define ILS_ALL_INT1 0xFFFFFFFF 222 223 /* Interrupt Line Enable (ILE) */ 224 #define ILE_EINT1 BIT(1) 225 #define ILE_EINT0 BIT(0) 226 227 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 228 #define RXFC_FWM_MASK GENMASK(30, 24) 229 #define RXFC_FS_MASK GENMASK(22, 16) 230 231 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 232 #define RXFS_RFL BIT(25) 233 #define RXFS_FF BIT(24) 234 #define RXFS_FPI_MASK GENMASK(21, 16) 235 #define RXFS_FGI_MASK GENMASK(13, 8) 236 #define RXFS_FFL_MASK GENMASK(6, 0) 237 238 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 239 #define RXESC_RBDS_MASK GENMASK(10, 8) 240 #define RXESC_F1DS_MASK GENMASK(6, 4) 241 #define RXESC_F0DS_MASK GENMASK(2, 0) 242 #define RXESC_64B 0x7 243 244 /* Tx Buffer Configuration (TXBC) */ 245 #define TXBC_TFQS_MASK GENMASK(29, 24) 246 #define TXBC_NDTB_MASK GENMASK(21, 16) 247 248 /* Tx FIFO/Queue Status (TXFQS) */ 249 #define TXFQS_TFQF BIT(21) 250 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 251 #define TXFQS_TFGI_MASK GENMASK(12, 8) 252 #define TXFQS_TFFL_MASK GENMASK(5, 0) 253 254 /* Tx Buffer Element Size Configuration (TXESC) */ 255 #define TXESC_TBDS_MASK GENMASK(2, 0) 256 #define TXESC_TBDS_64B 0x7 257 258 /* Tx Event FIFO Configuration (TXEFC) */ 259 #define TXEFC_EFS_MASK GENMASK(21, 16) 260 261 /* Tx Event FIFO Status (TXEFS) */ 262 #define TXEFS_TEFL BIT(25) 263 #define TXEFS_EFF BIT(24) 264 #define TXEFS_EFGI_MASK GENMASK(12, 8) 265 #define TXEFS_EFFL_MASK GENMASK(5, 0) 266 267 /* Tx Event FIFO Acknowledge (TXEFA) */ 268 #define TXEFA_EFAI_MASK GENMASK(4, 0) 269 270 /* Message RAM Configuration (in bytes) */ 271 #define SIDF_ELEMENT_SIZE 4 272 #define XIDF_ELEMENT_SIZE 8 273 #define RXF0_ELEMENT_SIZE 72 274 #define RXF1_ELEMENT_SIZE 72 275 #define RXB_ELEMENT_SIZE 72 276 #define TXE_ELEMENT_SIZE 8 277 #define TXB_ELEMENT_SIZE 72 278 279 /* Message RAM Elements */ 280 #define M_CAN_FIFO_ID 0x0 281 #define M_CAN_FIFO_DLC 0x4 282 #define M_CAN_FIFO_DATA 0x8 283 284 /* Rx Buffer Element */ 285 /* R0 */ 286 #define RX_BUF_ESI BIT(31) 287 #define RX_BUF_XTD BIT(30) 288 #define RX_BUF_RTR BIT(29) 289 /* R1 */ 290 #define RX_BUF_ANMF BIT(31) 291 #define RX_BUF_FDF BIT(21) 292 #define RX_BUF_BRS BIT(20) 293 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 294 295 /* Tx Buffer Element */ 296 /* T0 */ 297 #define TX_BUF_ESI BIT(31) 298 #define TX_BUF_XTD BIT(30) 299 #define TX_BUF_RTR BIT(29) 300 /* T1 */ 301 #define TX_BUF_EFC BIT(23) 302 #define TX_BUF_FDF BIT(21) 303 #define TX_BUF_BRS BIT(20) 304 #define TX_BUF_MM_MASK GENMASK(31, 24) 305 #define TX_BUF_DLC_MASK GENMASK(19, 16) 306 307 /* Tx event FIFO Element */ 308 /* E1 */ 309 #define TX_EVENT_MM_MASK GENMASK(31, 24) 310 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 311 312 /* The ID and DLC registers are adjacent in M_CAN FIFO memory, 313 * and we can save a (potentially slow) bus round trip by combining 314 * reads and writes to them. 315 */ 316 struct id_and_dlc { 317 u32 id; 318 u32 dlc; 319 }; 320 321 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 322 { 323 return cdev->ops->read_reg(cdev, reg); 324 } 325 326 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 327 u32 val) 328 { 329 cdev->ops->write_reg(cdev, reg, val); 330 } 331 332 static int 333 m_can_fifo_read(struct m_can_classdev *cdev, 334 u32 fgi, unsigned int offset, void *val, size_t val_count) 335 { 336 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 337 offset; 338 339 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); 340 } 341 342 static int 343 m_can_fifo_write(struct m_can_classdev *cdev, 344 u32 fpi, unsigned int offset, const void *val, size_t val_count) 345 { 346 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 347 offset; 348 349 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); 350 } 351 352 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, 353 u32 fpi, u32 val) 354 { 355 return cdev->ops->write_fifo(cdev, fpi, &val, 1); 356 } 357 358 static int 359 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) 360 { 361 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 362 offset; 363 364 return cdev->ops->read_fifo(cdev, addr_offset, val, 1); 365 } 366 367 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 368 { 369 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); 370 } 371 372 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 373 { 374 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 375 u32 timeout = 10; 376 u32 val = 0; 377 378 /* Clear the Clock stop request if it was set */ 379 if (cccr & CCCR_CSR) 380 cccr &= ~CCCR_CSR; 381 382 if (enable) { 383 /* enable m_can configuration */ 384 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 385 udelay(5); 386 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 387 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 388 } else { 389 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 390 } 391 392 /* there's a delay for module initialization */ 393 if (enable) 394 val = CCCR_INIT | CCCR_CCE; 395 396 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 397 if (timeout == 0) { 398 netdev_warn(cdev->net, "Failed to init module\n"); 399 return; 400 } 401 timeout--; 402 udelay(1); 403 } 404 } 405 406 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 407 { 408 /* Only interrupt line 0 is used in this driver */ 409 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 410 } 411 412 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 413 { 414 m_can_write(cdev, M_CAN_ILE, 0x0); 415 } 416 417 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 418 * width. 419 */ 420 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 421 { 422 u32 tscv; 423 u32 tsc; 424 425 tscv = m_can_read(cdev, M_CAN_TSCV); 426 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 427 428 return (tsc << 16); 429 } 430 431 static void m_can_clean(struct net_device *net) 432 { 433 struct m_can_classdev *cdev = netdev_priv(net); 434 435 if (cdev->tx_skb) { 436 int putidx = 0; 437 438 net->stats.tx_errors++; 439 if (cdev->version > 30) 440 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 441 m_can_read(cdev, M_CAN_TXFQS)); 442 443 can_free_echo_skb(cdev->net, putidx, NULL); 444 cdev->tx_skb = NULL; 445 } 446 } 447 448 /* For peripherals, pass skb to rx-offload, which will push skb from 449 * napi. For non-peripherals, RX is done in napi already, so push 450 * directly. timestamp is used to ensure good skb ordering in 451 * rx-offload and is ignored for non-peripherals. 452 */ 453 static void m_can_receive_skb(struct m_can_classdev *cdev, 454 struct sk_buff *skb, 455 u32 timestamp) 456 { 457 if (cdev->is_peripheral) { 458 struct net_device_stats *stats = &cdev->net->stats; 459 int err; 460 461 err = can_rx_offload_queue_sorted(&cdev->offload, skb, 462 timestamp); 463 if (err) 464 stats->rx_fifo_errors++; 465 } else { 466 netif_receive_skb(skb); 467 } 468 } 469 470 static int m_can_read_fifo(struct net_device *dev, u32 rxfs) 471 { 472 struct net_device_stats *stats = &dev->stats; 473 struct m_can_classdev *cdev = netdev_priv(dev); 474 struct canfd_frame *cf; 475 struct sk_buff *skb; 476 struct id_and_dlc fifo_header; 477 u32 fgi; 478 u32 timestamp = 0; 479 int err; 480 481 /* calculate the fifo get index for where to read data */ 482 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 483 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); 484 if (err) 485 goto out_fail; 486 487 if (fifo_header.dlc & RX_BUF_FDF) 488 skb = alloc_canfd_skb(dev, &cf); 489 else 490 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 491 if (!skb) { 492 stats->rx_dropped++; 493 return 0; 494 } 495 496 if (fifo_header.dlc & RX_BUF_FDF) 497 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); 498 else 499 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); 500 501 if (fifo_header.id & RX_BUF_XTD) 502 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; 503 else 504 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; 505 506 if (fifo_header.id & RX_BUF_ESI) { 507 cf->flags |= CANFD_ESI; 508 netdev_dbg(dev, "ESI Error\n"); 509 } 510 511 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { 512 cf->can_id |= CAN_RTR_FLAG; 513 } else { 514 if (fifo_header.dlc & RX_BUF_BRS) 515 cf->flags |= CANFD_BRS; 516 517 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, 518 cf->data, DIV_ROUND_UP(cf->len, 4)); 519 if (err) 520 goto out_free_skb; 521 522 stats->rx_bytes += cf->len; 523 } 524 stats->rx_packets++; 525 526 /* acknowledge rx fifo 0 */ 527 m_can_write(cdev, M_CAN_RXF0A, fgi); 528 529 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc); 530 531 m_can_receive_skb(cdev, skb, timestamp); 532 533 return 0; 534 535 out_free_skb: 536 kfree_skb(skb); 537 out_fail: 538 netdev_err(dev, "FIFO read returned %d\n", err); 539 return err; 540 } 541 542 static int m_can_do_rx_poll(struct net_device *dev, int quota) 543 { 544 struct m_can_classdev *cdev = netdev_priv(dev); 545 u32 pkts = 0; 546 u32 rxfs; 547 int err; 548 549 rxfs = m_can_read(cdev, M_CAN_RXF0S); 550 if (!(rxfs & RXFS_FFL_MASK)) { 551 netdev_dbg(dev, "no messages in fifo0\n"); 552 return 0; 553 } 554 555 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { 556 err = m_can_read_fifo(dev, rxfs); 557 if (err) 558 return err; 559 560 quota--; 561 pkts++; 562 rxfs = m_can_read(cdev, M_CAN_RXF0S); 563 } 564 565 if (pkts) 566 can_led_event(dev, CAN_LED_EVENT_RX); 567 568 return pkts; 569 } 570 571 static int m_can_handle_lost_msg(struct net_device *dev) 572 { 573 struct m_can_classdev *cdev = netdev_priv(dev); 574 struct net_device_stats *stats = &dev->stats; 575 struct sk_buff *skb; 576 struct can_frame *frame; 577 u32 timestamp = 0; 578 579 netdev_err(dev, "msg lost in rxf0\n"); 580 581 stats->rx_errors++; 582 stats->rx_over_errors++; 583 584 skb = alloc_can_err_skb(dev, &frame); 585 if (unlikely(!skb)) 586 return 0; 587 588 frame->can_id |= CAN_ERR_CRTL; 589 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 590 591 if (cdev->is_peripheral) 592 timestamp = m_can_get_timestamp(cdev); 593 594 m_can_receive_skb(cdev, skb, timestamp); 595 596 return 1; 597 } 598 599 static int m_can_handle_lec_err(struct net_device *dev, 600 enum m_can_lec_type lec_type) 601 { 602 struct m_can_classdev *cdev = netdev_priv(dev); 603 struct net_device_stats *stats = &dev->stats; 604 struct can_frame *cf; 605 struct sk_buff *skb; 606 u32 timestamp = 0; 607 608 cdev->can.can_stats.bus_error++; 609 stats->rx_errors++; 610 611 /* propagate the error condition to the CAN stack */ 612 skb = alloc_can_err_skb(dev, &cf); 613 if (unlikely(!skb)) 614 return 0; 615 616 /* check for 'last error code' which tells us the 617 * type of the last error to occur on the CAN bus 618 */ 619 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 620 621 switch (lec_type) { 622 case LEC_STUFF_ERROR: 623 netdev_dbg(dev, "stuff error\n"); 624 cf->data[2] |= CAN_ERR_PROT_STUFF; 625 break; 626 case LEC_FORM_ERROR: 627 netdev_dbg(dev, "form error\n"); 628 cf->data[2] |= CAN_ERR_PROT_FORM; 629 break; 630 case LEC_ACK_ERROR: 631 netdev_dbg(dev, "ack error\n"); 632 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 633 break; 634 case LEC_BIT1_ERROR: 635 netdev_dbg(dev, "bit1 error\n"); 636 cf->data[2] |= CAN_ERR_PROT_BIT1; 637 break; 638 case LEC_BIT0_ERROR: 639 netdev_dbg(dev, "bit0 error\n"); 640 cf->data[2] |= CAN_ERR_PROT_BIT0; 641 break; 642 case LEC_CRC_ERROR: 643 netdev_dbg(dev, "CRC error\n"); 644 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 645 break; 646 default: 647 break; 648 } 649 650 if (cdev->is_peripheral) 651 timestamp = m_can_get_timestamp(cdev); 652 653 m_can_receive_skb(cdev, skb, timestamp); 654 655 return 1; 656 } 657 658 static int __m_can_get_berr_counter(const struct net_device *dev, 659 struct can_berr_counter *bec) 660 { 661 struct m_can_classdev *cdev = netdev_priv(dev); 662 unsigned int ecr; 663 664 ecr = m_can_read(cdev, M_CAN_ECR); 665 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 666 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 667 668 return 0; 669 } 670 671 static int m_can_clk_start(struct m_can_classdev *cdev) 672 { 673 if (cdev->pm_clock_support == 0) 674 return 0; 675 676 return pm_runtime_resume_and_get(cdev->dev); 677 } 678 679 static void m_can_clk_stop(struct m_can_classdev *cdev) 680 { 681 if (cdev->pm_clock_support) 682 pm_runtime_put_sync(cdev->dev); 683 } 684 685 static int m_can_get_berr_counter(const struct net_device *dev, 686 struct can_berr_counter *bec) 687 { 688 struct m_can_classdev *cdev = netdev_priv(dev); 689 int err; 690 691 err = m_can_clk_start(cdev); 692 if (err) 693 return err; 694 695 __m_can_get_berr_counter(dev, bec); 696 697 m_can_clk_stop(cdev); 698 699 return 0; 700 } 701 702 static int m_can_handle_state_change(struct net_device *dev, 703 enum can_state new_state) 704 { 705 struct m_can_classdev *cdev = netdev_priv(dev); 706 struct can_frame *cf; 707 struct sk_buff *skb; 708 struct can_berr_counter bec; 709 unsigned int ecr; 710 u32 timestamp = 0; 711 712 switch (new_state) { 713 case CAN_STATE_ERROR_WARNING: 714 /* error warning state */ 715 cdev->can.can_stats.error_warning++; 716 cdev->can.state = CAN_STATE_ERROR_WARNING; 717 break; 718 case CAN_STATE_ERROR_PASSIVE: 719 /* error passive state */ 720 cdev->can.can_stats.error_passive++; 721 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 722 break; 723 case CAN_STATE_BUS_OFF: 724 /* bus-off state */ 725 cdev->can.state = CAN_STATE_BUS_OFF; 726 m_can_disable_all_interrupts(cdev); 727 cdev->can.can_stats.bus_off++; 728 can_bus_off(dev); 729 break; 730 default: 731 break; 732 } 733 734 /* propagate the error condition to the CAN stack */ 735 skb = alloc_can_err_skb(dev, &cf); 736 if (unlikely(!skb)) 737 return 0; 738 739 __m_can_get_berr_counter(dev, &bec); 740 741 switch (new_state) { 742 case CAN_STATE_ERROR_WARNING: 743 /* error warning state */ 744 cf->can_id |= CAN_ERR_CRTL; 745 cf->data[1] = (bec.txerr > bec.rxerr) ? 746 CAN_ERR_CRTL_TX_WARNING : 747 CAN_ERR_CRTL_RX_WARNING; 748 cf->data[6] = bec.txerr; 749 cf->data[7] = bec.rxerr; 750 break; 751 case CAN_STATE_ERROR_PASSIVE: 752 /* error passive state */ 753 cf->can_id |= CAN_ERR_CRTL; 754 ecr = m_can_read(cdev, M_CAN_ECR); 755 if (ecr & ECR_RP) 756 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 757 if (bec.txerr > 127) 758 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 759 cf->data[6] = bec.txerr; 760 cf->data[7] = bec.rxerr; 761 break; 762 case CAN_STATE_BUS_OFF: 763 /* bus-off state */ 764 cf->can_id |= CAN_ERR_BUSOFF; 765 break; 766 default: 767 break; 768 } 769 770 if (cdev->is_peripheral) 771 timestamp = m_can_get_timestamp(cdev); 772 773 m_can_receive_skb(cdev, skb, timestamp); 774 775 return 1; 776 } 777 778 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 779 { 780 struct m_can_classdev *cdev = netdev_priv(dev); 781 int work_done = 0; 782 783 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 784 netdev_dbg(dev, "entered error warning state\n"); 785 work_done += m_can_handle_state_change(dev, 786 CAN_STATE_ERROR_WARNING); 787 } 788 789 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 790 netdev_dbg(dev, "entered error passive state\n"); 791 work_done += m_can_handle_state_change(dev, 792 CAN_STATE_ERROR_PASSIVE); 793 } 794 795 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 796 netdev_dbg(dev, "entered error bus off state\n"); 797 work_done += m_can_handle_state_change(dev, 798 CAN_STATE_BUS_OFF); 799 } 800 801 return work_done; 802 } 803 804 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 805 { 806 if (irqstatus & IR_WDI) 807 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 808 if (irqstatus & IR_BEU) 809 netdev_err(dev, "Bit Error Uncorrected\n"); 810 if (irqstatus & IR_BEC) 811 netdev_err(dev, "Bit Error Corrected\n"); 812 if (irqstatus & IR_TOO) 813 netdev_err(dev, "Timeout reached\n"); 814 if (irqstatus & IR_MRAF) 815 netdev_err(dev, "Message RAM access failure occurred\n"); 816 } 817 818 static inline bool is_lec_err(u32 psr) 819 { 820 psr &= LEC_UNUSED; 821 822 return psr && (psr != LEC_UNUSED); 823 } 824 825 static inline bool m_can_is_protocol_err(u32 irqstatus) 826 { 827 return irqstatus & IR_ERR_LEC_31X; 828 } 829 830 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 831 { 832 struct net_device_stats *stats = &dev->stats; 833 struct m_can_classdev *cdev = netdev_priv(dev); 834 struct can_frame *cf; 835 struct sk_buff *skb; 836 u32 timestamp = 0; 837 838 /* propagate the error condition to the CAN stack */ 839 skb = alloc_can_err_skb(dev, &cf); 840 841 /* update tx error stats since there is protocol error */ 842 stats->tx_errors++; 843 844 /* update arbitration lost status */ 845 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 846 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 847 cdev->can.can_stats.arbitration_lost++; 848 if (skb) { 849 cf->can_id |= CAN_ERR_LOSTARB; 850 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 851 } 852 } 853 854 if (unlikely(!skb)) { 855 netdev_dbg(dev, "allocation of skb failed\n"); 856 return 0; 857 } 858 859 if (cdev->is_peripheral) 860 timestamp = m_can_get_timestamp(cdev); 861 862 m_can_receive_skb(cdev, skb, timestamp); 863 864 return 1; 865 } 866 867 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 868 u32 psr) 869 { 870 struct m_can_classdev *cdev = netdev_priv(dev); 871 int work_done = 0; 872 873 if (irqstatus & IR_RF0L) 874 work_done += m_can_handle_lost_msg(dev); 875 876 /* handle lec errors on the bus */ 877 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 878 is_lec_err(psr)) 879 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); 880 881 /* handle protocol errors in arbitration phase */ 882 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 883 m_can_is_protocol_err(irqstatus)) 884 work_done += m_can_handle_protocol_error(dev, irqstatus); 885 886 /* other unproccessed error interrupts */ 887 m_can_handle_other_err(dev, irqstatus); 888 889 return work_done; 890 } 891 892 static int m_can_rx_handler(struct net_device *dev, int quota) 893 { 894 struct m_can_classdev *cdev = netdev_priv(dev); 895 int rx_work_or_err; 896 int work_done = 0; 897 u32 irqstatus, psr; 898 899 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 900 if (!irqstatus) 901 goto end; 902 903 /* Errata workaround for issue "Needless activation of MRAF irq" 904 * During frame reception while the MCAN is in Error Passive state 905 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 906 * it may happen that MCAN_IR.MRAF is set although there was no 907 * Message RAM access failure. 908 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 909 * The Message RAM Access Failure interrupt routine needs to check 910 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 911 * In this case, reset MCAN_IR.MRAF. No further action is required. 912 */ 913 if (cdev->version <= 31 && irqstatus & IR_MRAF && 914 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 915 struct can_berr_counter bec; 916 917 __m_can_get_berr_counter(dev, &bec); 918 if (bec.rxerr == 127) { 919 m_can_write(cdev, M_CAN_IR, IR_MRAF); 920 irqstatus &= ~IR_MRAF; 921 } 922 } 923 924 psr = m_can_read(cdev, M_CAN_PSR); 925 926 if (irqstatus & IR_ERR_STATE) 927 work_done += m_can_handle_state_errors(dev, psr); 928 929 if (irqstatus & IR_ERR_BUS_30X) 930 work_done += m_can_handle_bus_errors(dev, irqstatus, psr); 931 932 if (irqstatus & IR_RF0N) { 933 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); 934 if (rx_work_or_err < 0) 935 return rx_work_or_err; 936 937 work_done += rx_work_or_err; 938 } 939 end: 940 return work_done; 941 } 942 943 static int m_can_rx_peripheral(struct net_device *dev) 944 { 945 struct m_can_classdev *cdev = netdev_priv(dev); 946 int work_done; 947 948 work_done = m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT); 949 950 /* Don't re-enable interrupts if the driver had a fatal error 951 * (e.g., FIFO read failure). 952 */ 953 if (work_done >= 0) 954 m_can_enable_all_interrupts(cdev); 955 956 return work_done; 957 } 958 959 static int m_can_poll(struct napi_struct *napi, int quota) 960 { 961 struct net_device *dev = napi->dev; 962 struct m_can_classdev *cdev = netdev_priv(dev); 963 int work_done; 964 965 work_done = m_can_rx_handler(dev, quota); 966 967 /* Don't re-enable interrupts if the driver had a fatal error 968 * (e.g., FIFO read failure). 969 */ 970 if (work_done >= 0 && work_done < quota) { 971 napi_complete_done(napi, work_done); 972 m_can_enable_all_interrupts(cdev); 973 } 974 975 return work_done; 976 } 977 978 /* Echo tx skb and update net stats. Peripherals use rx-offload for 979 * echo. timestamp is used for peripherals to ensure correct ordering 980 * by rx-offload, and is ignored for non-peripherals. 981 */ 982 static void m_can_tx_update_stats(struct m_can_classdev *cdev, 983 unsigned int msg_mark, 984 u32 timestamp) 985 { 986 struct net_device *dev = cdev->net; 987 struct net_device_stats *stats = &dev->stats; 988 989 if (cdev->is_peripheral) 990 stats->tx_bytes += 991 can_rx_offload_get_echo_skb(&cdev->offload, 992 msg_mark, 993 timestamp, 994 NULL); 995 else 996 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL); 997 998 stats->tx_packets++; 999 } 1000 1001 static int m_can_echo_tx_event(struct net_device *dev) 1002 { 1003 u32 txe_count = 0; 1004 u32 m_can_txefs; 1005 u32 fgi = 0; 1006 int i = 0; 1007 unsigned int msg_mark; 1008 1009 struct m_can_classdev *cdev = netdev_priv(dev); 1010 1011 /* read tx event fifo status */ 1012 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 1013 1014 /* Get Tx Event fifo element count */ 1015 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 1016 1017 /* Get and process all sent elements */ 1018 for (i = 0; i < txe_count; i++) { 1019 u32 txe, timestamp = 0; 1020 int err; 1021 1022 /* retrieve get index */ 1023 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS)); 1024 1025 /* get message marker, timestamp */ 1026 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); 1027 if (err) { 1028 netdev_err(dev, "TXE FIFO read returned %d\n", err); 1029 return err; 1030 } 1031 1032 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 1033 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe); 1034 1035 /* ack txe element */ 1036 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 1037 fgi)); 1038 1039 /* update stats */ 1040 m_can_tx_update_stats(cdev, msg_mark, timestamp); 1041 } 1042 1043 return 0; 1044 } 1045 1046 static irqreturn_t m_can_isr(int irq, void *dev_id) 1047 { 1048 struct net_device *dev = (struct net_device *)dev_id; 1049 struct m_can_classdev *cdev = netdev_priv(dev); 1050 u32 ir; 1051 1052 if (pm_runtime_suspended(cdev->dev)) 1053 return IRQ_NONE; 1054 ir = m_can_read(cdev, M_CAN_IR); 1055 if (!ir) 1056 return IRQ_NONE; 1057 1058 /* ACK all irqs */ 1059 if (ir & IR_ALL_INT) 1060 m_can_write(cdev, M_CAN_IR, ir); 1061 1062 if (cdev->ops->clear_interrupts) 1063 cdev->ops->clear_interrupts(cdev); 1064 1065 /* schedule NAPI in case of 1066 * - rx IRQ 1067 * - state change IRQ 1068 * - bus error IRQ and bus error reporting 1069 */ 1070 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 1071 cdev->irqstatus = ir; 1072 m_can_disable_all_interrupts(cdev); 1073 if (!cdev->is_peripheral) 1074 napi_schedule(&cdev->napi); 1075 else if (m_can_rx_peripheral(dev) < 0) 1076 goto out_fail; 1077 } 1078 1079 if (cdev->version == 30) { 1080 if (ir & IR_TC) { 1081 /* Transmission Complete Interrupt*/ 1082 u32 timestamp = 0; 1083 1084 if (cdev->is_peripheral) 1085 timestamp = m_can_get_timestamp(cdev); 1086 m_can_tx_update_stats(cdev, 0, timestamp); 1087 1088 can_led_event(dev, CAN_LED_EVENT_TX); 1089 netif_wake_queue(dev); 1090 } 1091 } else { 1092 if (ir & IR_TEFN) { 1093 /* New TX FIFO Element arrived */ 1094 if (m_can_echo_tx_event(dev) != 0) 1095 goto out_fail; 1096 1097 can_led_event(dev, CAN_LED_EVENT_TX); 1098 if (netif_queue_stopped(dev) && 1099 !m_can_tx_fifo_full(cdev)) 1100 netif_wake_queue(dev); 1101 } 1102 } 1103 1104 if (cdev->is_peripheral) 1105 can_rx_offload_threaded_irq_finish(&cdev->offload); 1106 1107 return IRQ_HANDLED; 1108 1109 out_fail: 1110 m_can_disable_all_interrupts(cdev); 1111 return IRQ_HANDLED; 1112 } 1113 1114 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1115 .name = KBUILD_MODNAME, 1116 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1117 .tseg1_max = 64, 1118 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1119 .tseg2_max = 16, 1120 .sjw_max = 16, 1121 .brp_min = 1, 1122 .brp_max = 1024, 1123 .brp_inc = 1, 1124 }; 1125 1126 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1127 .name = KBUILD_MODNAME, 1128 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1129 .tseg1_max = 16, 1130 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1131 .tseg2_max = 8, 1132 .sjw_max = 4, 1133 .brp_min = 1, 1134 .brp_max = 32, 1135 .brp_inc = 1, 1136 }; 1137 1138 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1139 .name = KBUILD_MODNAME, 1140 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1141 .tseg1_max = 256, 1142 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1143 .tseg2_max = 128, 1144 .sjw_max = 128, 1145 .brp_min = 1, 1146 .brp_max = 512, 1147 .brp_inc = 1, 1148 }; 1149 1150 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1151 .name = KBUILD_MODNAME, 1152 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1153 .tseg1_max = 32, 1154 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1155 .tseg2_max = 16, 1156 .sjw_max = 16, 1157 .brp_min = 1, 1158 .brp_max = 32, 1159 .brp_inc = 1, 1160 }; 1161 1162 static int m_can_set_bittiming(struct net_device *dev) 1163 { 1164 struct m_can_classdev *cdev = netdev_priv(dev); 1165 const struct can_bittiming *bt = &cdev->can.bittiming; 1166 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1167 u16 brp, sjw, tseg1, tseg2; 1168 u32 reg_btp; 1169 1170 brp = bt->brp - 1; 1171 sjw = bt->sjw - 1; 1172 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1173 tseg2 = bt->phase_seg2 - 1; 1174 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1175 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1176 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1177 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1178 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1179 1180 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1181 reg_btp = 0; 1182 brp = dbt->brp - 1; 1183 sjw = dbt->sjw - 1; 1184 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1185 tseg2 = dbt->phase_seg2 - 1; 1186 1187 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1188 * This is mentioned in the "Bit Time Requirements for CAN FD" 1189 * paper presented at the International CAN Conference 2013 1190 */ 1191 if (dbt->bitrate > 2500000) { 1192 u32 tdco, ssp; 1193 1194 /* Use the same value of secondary sampling point 1195 * as the data sampling point 1196 */ 1197 ssp = dbt->sample_point; 1198 1199 /* Equation based on Bosch's M_CAN User Manual's 1200 * Transmitter Delay Compensation Section 1201 */ 1202 tdco = (cdev->can.clock.freq / 1000) * 1203 ssp / dbt->bitrate; 1204 1205 /* Max valid TDCO value is 127 */ 1206 if (tdco > 127) { 1207 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1208 tdco); 1209 tdco = 127; 1210 } 1211 1212 reg_btp |= DBTP_TDC; 1213 m_can_write(cdev, M_CAN_TDCR, 1214 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1215 } 1216 1217 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1218 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1219 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1220 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1221 1222 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1223 } 1224 1225 return 0; 1226 } 1227 1228 /* Configure M_CAN chip: 1229 * - set rx buffer/fifo element size 1230 * - configure rx fifo 1231 * - accept non-matching frame into fifo 0 1232 * - configure tx buffer 1233 * - >= v3.1.x: TX FIFO is used 1234 * - configure mode 1235 * - setup bittiming 1236 * - configure timestamp generation 1237 */ 1238 static void m_can_chip_config(struct net_device *dev) 1239 { 1240 struct m_can_classdev *cdev = netdev_priv(dev); 1241 u32 cccr, test; 1242 1243 m_can_config_endisable(cdev, true); 1244 1245 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1246 m_can_write(cdev, M_CAN_RXESC, 1247 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1248 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1249 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1250 1251 /* Accept Non-matching Frames Into FIFO 0 */ 1252 m_can_write(cdev, M_CAN_GFC, 0x0); 1253 1254 if (cdev->version == 30) { 1255 /* only support one Tx Buffer currently */ 1256 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1257 cdev->mcfg[MRAM_TXB].off); 1258 } else { 1259 /* TX FIFO is used for newer IP Core versions */ 1260 m_can_write(cdev, M_CAN_TXBC, 1261 FIELD_PREP(TXBC_TFQS_MASK, 1262 cdev->mcfg[MRAM_TXB].num) | 1263 cdev->mcfg[MRAM_TXB].off); 1264 } 1265 1266 /* support 64 bytes payload */ 1267 m_can_write(cdev, M_CAN_TXESC, 1268 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1269 1270 /* TX Event FIFO */ 1271 if (cdev->version == 30) { 1272 m_can_write(cdev, M_CAN_TXEFC, 1273 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1274 cdev->mcfg[MRAM_TXE].off); 1275 } else { 1276 /* Full TX Event FIFO is used */ 1277 m_can_write(cdev, M_CAN_TXEFC, 1278 FIELD_PREP(TXEFC_EFS_MASK, 1279 cdev->mcfg[MRAM_TXE].num) | 1280 cdev->mcfg[MRAM_TXE].off); 1281 } 1282 1283 /* rx fifo configuration, blocking mode, fifo size 1 */ 1284 m_can_write(cdev, M_CAN_RXF0C, 1285 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1286 cdev->mcfg[MRAM_RXF0].off); 1287 1288 m_can_write(cdev, M_CAN_RXF1C, 1289 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1290 cdev->mcfg[MRAM_RXF1].off); 1291 1292 cccr = m_can_read(cdev, M_CAN_CCCR); 1293 test = m_can_read(cdev, M_CAN_TEST); 1294 test &= ~TEST_LBCK; 1295 if (cdev->version == 30) { 1296 /* Version 3.0.x */ 1297 1298 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1299 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1300 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1301 1302 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1303 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1304 1305 } else { 1306 /* Version 3.1.x or 3.2.x */ 1307 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1308 CCCR_NISO | CCCR_DAR); 1309 1310 /* Only 3.2.x has NISO Bit implemented */ 1311 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1312 cccr |= CCCR_NISO; 1313 1314 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1315 cccr |= (CCCR_BRSE | CCCR_FDOE); 1316 } 1317 1318 /* Loopback Mode */ 1319 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1320 cccr |= CCCR_TEST | CCCR_MON; 1321 test |= TEST_LBCK; 1322 } 1323 1324 /* Enable Monitoring (all versions) */ 1325 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1326 cccr |= CCCR_MON; 1327 1328 /* Disable Auto Retransmission (all versions) */ 1329 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1330 cccr |= CCCR_DAR; 1331 1332 /* Write config */ 1333 m_can_write(cdev, M_CAN_CCCR, cccr); 1334 m_can_write(cdev, M_CAN_TEST, test); 1335 1336 /* Enable interrupts */ 1337 m_can_write(cdev, M_CAN_IR, IR_ALL_INT); 1338 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 1339 if (cdev->version == 30) 1340 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1341 ~(IR_ERR_LEC_30X)); 1342 else 1343 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1344 ~(IR_ERR_LEC_31X)); 1345 else 1346 m_can_write(cdev, M_CAN_IE, IR_ALL_INT); 1347 1348 /* route all interrupts to INT0 */ 1349 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1350 1351 /* set bittiming params */ 1352 m_can_set_bittiming(dev); 1353 1354 /* enable internal timestamp generation, with a prescalar of 16. The 1355 * prescalar is applied to the nominal bit timing 1356 */ 1357 m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf)); 1358 1359 m_can_config_endisable(cdev, false); 1360 1361 if (cdev->ops->init) 1362 cdev->ops->init(cdev); 1363 } 1364 1365 static void m_can_start(struct net_device *dev) 1366 { 1367 struct m_can_classdev *cdev = netdev_priv(dev); 1368 1369 /* basic m_can configuration */ 1370 m_can_chip_config(dev); 1371 1372 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1373 1374 m_can_enable_all_interrupts(cdev); 1375 } 1376 1377 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1378 { 1379 switch (mode) { 1380 case CAN_MODE_START: 1381 m_can_clean(dev); 1382 m_can_start(dev); 1383 netif_wake_queue(dev); 1384 break; 1385 default: 1386 return -EOPNOTSUPP; 1387 } 1388 1389 return 0; 1390 } 1391 1392 /* Checks core release number of M_CAN 1393 * returns 0 if an unsupported device is detected 1394 * else it returns the release and step coded as: 1395 * return value = 10 * <release> + 1 * <step> 1396 */ 1397 static int m_can_check_core_release(struct m_can_classdev *cdev) 1398 { 1399 u32 crel_reg; 1400 u8 rel; 1401 u8 step; 1402 int res; 1403 1404 /* Read Core Release Version and split into version number 1405 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1406 */ 1407 crel_reg = m_can_read(cdev, M_CAN_CREL); 1408 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1409 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1410 1411 if (rel == 3) { 1412 /* M_CAN v3.x.y: create return value */ 1413 res = 30 + step; 1414 } else { 1415 /* Unsupported M_CAN version */ 1416 res = 0; 1417 } 1418 1419 return res; 1420 } 1421 1422 /* Selectable Non ISO support only in version 3.2.x 1423 * This function checks if the bit is writable. 1424 */ 1425 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1426 { 1427 u32 cccr_reg, cccr_poll = 0; 1428 int niso_timeout = -ETIMEDOUT; 1429 int i; 1430 1431 m_can_config_endisable(cdev, true); 1432 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1433 cccr_reg |= CCCR_NISO; 1434 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1435 1436 for (i = 0; i <= 10; i++) { 1437 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1438 if (cccr_poll == cccr_reg) { 1439 niso_timeout = 0; 1440 break; 1441 } 1442 1443 usleep_range(1, 5); 1444 } 1445 1446 /* Clear NISO */ 1447 cccr_reg &= ~(CCCR_NISO); 1448 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1449 1450 m_can_config_endisable(cdev, false); 1451 1452 /* return false if time out (-ETIMEDOUT), else return true */ 1453 return !niso_timeout; 1454 } 1455 1456 static int m_can_dev_setup(struct m_can_classdev *cdev) 1457 { 1458 struct net_device *dev = cdev->net; 1459 int m_can_version, err; 1460 1461 m_can_version = m_can_check_core_release(cdev); 1462 /* return if unsupported version */ 1463 if (!m_can_version) { 1464 dev_err(cdev->dev, "Unsupported version number: %2d", 1465 m_can_version); 1466 return -EINVAL; 1467 } 1468 1469 if (!cdev->is_peripheral) 1470 netif_napi_add(dev, &cdev->napi, 1471 m_can_poll, M_CAN_NAPI_WEIGHT); 1472 1473 /* Shared properties of all M_CAN versions */ 1474 cdev->version = m_can_version; 1475 cdev->can.do_set_mode = m_can_set_mode; 1476 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1477 1478 /* Set M_CAN supported operations */ 1479 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1480 CAN_CTRLMODE_LISTENONLY | 1481 CAN_CTRLMODE_BERR_REPORTING | 1482 CAN_CTRLMODE_FD | 1483 CAN_CTRLMODE_ONE_SHOT; 1484 1485 /* Set properties depending on M_CAN version */ 1486 switch (cdev->version) { 1487 case 30: 1488 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1489 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1490 if (err) 1491 return err; 1492 cdev->can.bittiming_const = cdev->bit_timing ? 1493 cdev->bit_timing : &m_can_bittiming_const_30X; 1494 1495 cdev->can.data_bittiming_const = cdev->data_timing ? 1496 cdev->data_timing : 1497 &m_can_data_bittiming_const_30X; 1498 break; 1499 case 31: 1500 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1501 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1502 if (err) 1503 return err; 1504 cdev->can.bittiming_const = cdev->bit_timing ? 1505 cdev->bit_timing : &m_can_bittiming_const_31X; 1506 1507 cdev->can.data_bittiming_const = cdev->data_timing ? 1508 cdev->data_timing : 1509 &m_can_data_bittiming_const_31X; 1510 break; 1511 case 32: 1512 case 33: 1513 /* Support both MCAN version v3.2.x and v3.3.0 */ 1514 cdev->can.bittiming_const = cdev->bit_timing ? 1515 cdev->bit_timing : &m_can_bittiming_const_31X; 1516 1517 cdev->can.data_bittiming_const = cdev->data_timing ? 1518 cdev->data_timing : 1519 &m_can_data_bittiming_const_31X; 1520 1521 cdev->can.ctrlmode_supported |= 1522 (m_can_niso_supported(cdev) ? 1523 CAN_CTRLMODE_FD_NON_ISO : 0); 1524 break; 1525 default: 1526 dev_err(cdev->dev, "Unsupported version number: %2d", 1527 cdev->version); 1528 return -EINVAL; 1529 } 1530 1531 if (cdev->ops->init) 1532 cdev->ops->init(cdev); 1533 1534 return 0; 1535 } 1536 1537 static void m_can_stop(struct net_device *dev) 1538 { 1539 struct m_can_classdev *cdev = netdev_priv(dev); 1540 1541 /* disable all interrupts */ 1542 m_can_disable_all_interrupts(cdev); 1543 1544 /* Set init mode to disengage from the network */ 1545 m_can_config_endisable(cdev, true); 1546 1547 /* set the state as STOPPED */ 1548 cdev->can.state = CAN_STATE_STOPPED; 1549 } 1550 1551 static int m_can_close(struct net_device *dev) 1552 { 1553 struct m_can_classdev *cdev = netdev_priv(dev); 1554 1555 netif_stop_queue(dev); 1556 1557 if (!cdev->is_peripheral) 1558 napi_disable(&cdev->napi); 1559 1560 m_can_stop(dev); 1561 m_can_clk_stop(cdev); 1562 free_irq(dev->irq, dev); 1563 1564 if (cdev->is_peripheral) { 1565 cdev->tx_skb = NULL; 1566 destroy_workqueue(cdev->tx_wq); 1567 cdev->tx_wq = NULL; 1568 } 1569 1570 if (cdev->is_peripheral) 1571 can_rx_offload_disable(&cdev->offload); 1572 1573 close_candev(dev); 1574 can_led_event(dev, CAN_LED_EVENT_STOP); 1575 1576 phy_power_off(cdev->transceiver); 1577 1578 return 0; 1579 } 1580 1581 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1582 { 1583 struct m_can_classdev *cdev = netdev_priv(dev); 1584 /*get wrap around for loopback skb index */ 1585 unsigned int wrap = cdev->can.echo_skb_max; 1586 int next_idx; 1587 1588 /* calculate next index */ 1589 next_idx = (++putidx >= wrap ? 0 : putidx); 1590 1591 /* check if occupied */ 1592 return !!cdev->can.echo_skb[next_idx]; 1593 } 1594 1595 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1596 { 1597 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1598 struct net_device *dev = cdev->net; 1599 struct sk_buff *skb = cdev->tx_skb; 1600 struct id_and_dlc fifo_header; 1601 u32 cccr, fdflags; 1602 int err; 1603 int putidx; 1604 1605 cdev->tx_skb = NULL; 1606 1607 /* Generate ID field for TX buffer Element */ 1608 /* Common to all supported M_CAN versions */ 1609 if (cf->can_id & CAN_EFF_FLAG) { 1610 fifo_header.id = cf->can_id & CAN_EFF_MASK; 1611 fifo_header.id |= TX_BUF_XTD; 1612 } else { 1613 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18); 1614 } 1615 1616 if (cf->can_id & CAN_RTR_FLAG) 1617 fifo_header.id |= TX_BUF_RTR; 1618 1619 if (cdev->version == 30) { 1620 netif_stop_queue(dev); 1621 1622 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16; 1623 1624 /* Write the frame ID, DLC, and payload to the FIFO element. */ 1625 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2); 1626 if (err) 1627 goto out_fail; 1628 1629 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, 1630 cf->data, DIV_ROUND_UP(cf->len, 4)); 1631 if (err) 1632 goto out_fail; 1633 1634 can_put_echo_skb(skb, dev, 0, 0); 1635 1636 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1637 cccr = m_can_read(cdev, M_CAN_CCCR); 1638 cccr &= ~CCCR_CMR_MASK; 1639 if (can_is_canfd_skb(skb)) { 1640 if (cf->flags & CANFD_BRS) 1641 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1642 CCCR_CMR_CANFD_BRS); 1643 else 1644 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1645 CCCR_CMR_CANFD); 1646 } else { 1647 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1648 } 1649 m_can_write(cdev, M_CAN_CCCR, cccr); 1650 } 1651 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1652 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1653 /* End of xmit function for version 3.0.x */ 1654 } else { 1655 /* Transmit routine for version >= v3.1.x */ 1656 1657 /* Check if FIFO full */ 1658 if (m_can_tx_fifo_full(cdev)) { 1659 /* This shouldn't happen */ 1660 netif_stop_queue(dev); 1661 netdev_warn(dev, 1662 "TX queue active although FIFO is full."); 1663 1664 if (cdev->is_peripheral) { 1665 kfree_skb(skb); 1666 dev->stats.tx_dropped++; 1667 return NETDEV_TX_OK; 1668 } else { 1669 return NETDEV_TX_BUSY; 1670 } 1671 } 1672 1673 /* get put index for frame */ 1674 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 1675 m_can_read(cdev, M_CAN_TXFQS)); 1676 1677 /* Construct DLC Field, with CAN-FD configuration. 1678 * Use the put index of the fifo as the message marker, 1679 * used in the TX interrupt for sending the correct echo frame. 1680 */ 1681 1682 /* get CAN FD configuration of frame */ 1683 fdflags = 0; 1684 if (can_is_canfd_skb(skb)) { 1685 fdflags |= TX_BUF_FDF; 1686 if (cf->flags & CANFD_BRS) 1687 fdflags |= TX_BUF_BRS; 1688 } 1689 1690 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1691 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | 1692 fdflags | TX_BUF_EFC; 1693 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2); 1694 if (err) 1695 goto out_fail; 1696 1697 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA, 1698 cf->data, DIV_ROUND_UP(cf->len, 4)); 1699 if (err) 1700 goto out_fail; 1701 1702 /* Push loopback echo. 1703 * Will be looped back on TX interrupt based on message marker 1704 */ 1705 can_put_echo_skb(skb, dev, putidx, 0); 1706 1707 /* Enable TX FIFO element to start transfer */ 1708 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1709 1710 /* stop network queue if fifo full */ 1711 if (m_can_tx_fifo_full(cdev) || 1712 m_can_next_echo_skb_occupied(dev, putidx)) 1713 netif_stop_queue(dev); 1714 } 1715 1716 return NETDEV_TX_OK; 1717 1718 out_fail: 1719 netdev_err(dev, "FIFO write returned %d\n", err); 1720 m_can_disable_all_interrupts(cdev); 1721 return NETDEV_TX_BUSY; 1722 } 1723 1724 static void m_can_tx_work_queue(struct work_struct *ws) 1725 { 1726 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1727 tx_work); 1728 1729 m_can_tx_handler(cdev); 1730 } 1731 1732 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1733 struct net_device *dev) 1734 { 1735 struct m_can_classdev *cdev = netdev_priv(dev); 1736 1737 if (can_dropped_invalid_skb(dev, skb)) 1738 return NETDEV_TX_OK; 1739 1740 if (cdev->is_peripheral) { 1741 if (cdev->tx_skb) { 1742 netdev_err(dev, "hard_xmit called while tx busy\n"); 1743 return NETDEV_TX_BUSY; 1744 } 1745 1746 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1747 m_can_clean(dev); 1748 } else { 1749 /* Need to stop the queue to avoid numerous requests 1750 * from being sent. Suggested improvement is to create 1751 * a queueing mechanism that will queue the skbs and 1752 * process them in order. 1753 */ 1754 cdev->tx_skb = skb; 1755 netif_stop_queue(cdev->net); 1756 queue_work(cdev->tx_wq, &cdev->tx_work); 1757 } 1758 } else { 1759 cdev->tx_skb = skb; 1760 return m_can_tx_handler(cdev); 1761 } 1762 1763 return NETDEV_TX_OK; 1764 } 1765 1766 static int m_can_open(struct net_device *dev) 1767 { 1768 struct m_can_classdev *cdev = netdev_priv(dev); 1769 int err; 1770 1771 err = phy_power_on(cdev->transceiver); 1772 if (err) 1773 return err; 1774 1775 err = m_can_clk_start(cdev); 1776 if (err) 1777 goto out_phy_power_off; 1778 1779 /* open the can device */ 1780 err = open_candev(dev); 1781 if (err) { 1782 netdev_err(dev, "failed to open can device\n"); 1783 goto exit_disable_clks; 1784 } 1785 1786 if (cdev->is_peripheral) 1787 can_rx_offload_enable(&cdev->offload); 1788 1789 /* register interrupt handler */ 1790 if (cdev->is_peripheral) { 1791 cdev->tx_skb = NULL; 1792 cdev->tx_wq = alloc_workqueue("mcan_wq", 1793 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1794 if (!cdev->tx_wq) { 1795 err = -ENOMEM; 1796 goto out_wq_fail; 1797 } 1798 1799 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1800 1801 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1802 IRQF_ONESHOT, 1803 dev->name, dev); 1804 } else { 1805 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1806 dev); 1807 } 1808 1809 if (err < 0) { 1810 netdev_err(dev, "failed to request interrupt\n"); 1811 goto exit_irq_fail; 1812 } 1813 1814 /* start the m_can controller */ 1815 m_can_start(dev); 1816 1817 can_led_event(dev, CAN_LED_EVENT_OPEN); 1818 1819 if (!cdev->is_peripheral) 1820 napi_enable(&cdev->napi); 1821 1822 netif_start_queue(dev); 1823 1824 return 0; 1825 1826 exit_irq_fail: 1827 if (cdev->is_peripheral) 1828 destroy_workqueue(cdev->tx_wq); 1829 out_wq_fail: 1830 if (cdev->is_peripheral) 1831 can_rx_offload_disable(&cdev->offload); 1832 close_candev(dev); 1833 exit_disable_clks: 1834 m_can_clk_stop(cdev); 1835 out_phy_power_off: 1836 phy_power_off(cdev->transceiver); 1837 return err; 1838 } 1839 1840 static const struct net_device_ops m_can_netdev_ops = { 1841 .ndo_open = m_can_open, 1842 .ndo_stop = m_can_close, 1843 .ndo_start_xmit = m_can_start_xmit, 1844 .ndo_change_mtu = can_change_mtu, 1845 }; 1846 1847 static int register_m_can_dev(struct net_device *dev) 1848 { 1849 dev->flags |= IFF_ECHO; /* we support local echo */ 1850 dev->netdev_ops = &m_can_netdev_ops; 1851 1852 return register_candev(dev); 1853 } 1854 1855 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1856 const u32 *mram_config_vals) 1857 { 1858 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1859 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1860 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1861 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1862 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1863 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1864 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1865 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1866 FIELD_MAX(RXFC_FS_MASK); 1867 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1868 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1869 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1870 FIELD_MAX(RXFC_FS_MASK); 1871 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1872 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1873 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1874 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1875 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1876 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1877 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1878 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1879 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1880 FIELD_MAX(TXBC_NDTB_MASK); 1881 1882 dev_dbg(cdev->dev, 1883 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1884 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1885 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1886 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1887 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1888 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1889 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1890 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1891 } 1892 1893 int m_can_init_ram(struct m_can_classdev *cdev) 1894 { 1895 int end, i, start; 1896 int err = 0; 1897 1898 /* initialize the entire Message RAM in use to avoid possible 1899 * ECC/parity checksum errors when reading an uninitialized buffer 1900 */ 1901 start = cdev->mcfg[MRAM_SIDF].off; 1902 end = cdev->mcfg[MRAM_TXB].off + 1903 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1904 1905 for (i = start; i < end; i += 4) { 1906 err = m_can_fifo_write_no_off(cdev, i, 0x0); 1907 if (err) 1908 break; 1909 } 1910 1911 return err; 1912 } 1913 EXPORT_SYMBOL_GPL(m_can_init_ram); 1914 1915 int m_can_class_get_clocks(struct m_can_classdev *cdev) 1916 { 1917 int ret = 0; 1918 1919 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 1920 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 1921 1922 if (IS_ERR(cdev->cclk)) { 1923 dev_err(cdev->dev, "no clock found\n"); 1924 ret = -ENODEV; 1925 } 1926 1927 return ret; 1928 } 1929 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 1930 1931 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 1932 int sizeof_priv) 1933 { 1934 struct m_can_classdev *class_dev = NULL; 1935 u32 mram_config_vals[MRAM_CFG_LEN]; 1936 struct net_device *net_dev; 1937 u32 tx_fifo_size; 1938 int ret; 1939 1940 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 1941 "bosch,mram-cfg", 1942 mram_config_vals, 1943 sizeof(mram_config_vals) / 4); 1944 if (ret) { 1945 dev_err(dev, "Could not get Message RAM configuration."); 1946 goto out; 1947 } 1948 1949 /* Get TX FIFO size 1950 * Defines the total amount of echo buffers for loopback 1951 */ 1952 tx_fifo_size = mram_config_vals[7]; 1953 1954 /* allocate the m_can device */ 1955 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 1956 if (!net_dev) { 1957 dev_err(dev, "Failed to allocate CAN device"); 1958 goto out; 1959 } 1960 1961 class_dev = netdev_priv(net_dev); 1962 class_dev->net = net_dev; 1963 class_dev->dev = dev; 1964 SET_NETDEV_DEV(net_dev, dev); 1965 1966 m_can_of_parse_mram(class_dev, mram_config_vals); 1967 out: 1968 return class_dev; 1969 } 1970 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 1971 1972 void m_can_class_free_dev(struct net_device *net) 1973 { 1974 free_candev(net); 1975 } 1976 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 1977 1978 int m_can_class_register(struct m_can_classdev *cdev) 1979 { 1980 int ret; 1981 1982 if (cdev->pm_clock_support) { 1983 ret = m_can_clk_start(cdev); 1984 if (ret) 1985 return ret; 1986 } 1987 1988 if (cdev->is_peripheral) { 1989 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 1990 M_CAN_NAPI_WEIGHT); 1991 if (ret) 1992 goto clk_disable; 1993 } 1994 1995 ret = m_can_dev_setup(cdev); 1996 if (ret) 1997 goto rx_offload_del; 1998 1999 ret = register_m_can_dev(cdev->net); 2000 if (ret) { 2001 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 2002 cdev->net->name, ret); 2003 goto rx_offload_del; 2004 } 2005 2006 devm_can_led_init(cdev->net); 2007 2008 of_can_transceiver(cdev->net); 2009 2010 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 2011 KBUILD_MODNAME, cdev->net->irq, cdev->version); 2012 2013 /* Probe finished 2014 * Stop clocks. They will be reactivated once the M_CAN device is opened 2015 */ 2016 m_can_clk_stop(cdev); 2017 2018 return 0; 2019 2020 rx_offload_del: 2021 if (cdev->is_peripheral) 2022 can_rx_offload_del(&cdev->offload); 2023 clk_disable: 2024 m_can_clk_stop(cdev); 2025 2026 return ret; 2027 } 2028 EXPORT_SYMBOL_GPL(m_can_class_register); 2029 2030 void m_can_class_unregister(struct m_can_classdev *cdev) 2031 { 2032 if (cdev->is_peripheral) 2033 can_rx_offload_del(&cdev->offload); 2034 unregister_candev(cdev->net); 2035 } 2036 EXPORT_SYMBOL_GPL(m_can_class_unregister); 2037 2038 int m_can_class_suspend(struct device *dev) 2039 { 2040 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2041 struct net_device *ndev = cdev->net; 2042 2043 if (netif_running(ndev)) { 2044 netif_stop_queue(ndev); 2045 netif_device_detach(ndev); 2046 m_can_stop(ndev); 2047 m_can_clk_stop(cdev); 2048 } 2049 2050 pinctrl_pm_select_sleep_state(dev); 2051 2052 cdev->can.state = CAN_STATE_SLEEPING; 2053 2054 return 0; 2055 } 2056 EXPORT_SYMBOL_GPL(m_can_class_suspend); 2057 2058 int m_can_class_resume(struct device *dev) 2059 { 2060 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2061 struct net_device *ndev = cdev->net; 2062 2063 pinctrl_pm_select_default_state(dev); 2064 2065 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 2066 2067 if (netif_running(ndev)) { 2068 int ret; 2069 2070 ret = m_can_clk_start(cdev); 2071 if (ret) 2072 return ret; 2073 2074 m_can_init_ram(cdev); 2075 m_can_start(ndev); 2076 netif_device_attach(ndev); 2077 netif_start_queue(ndev); 2078 } 2079 2080 return 0; 2081 } 2082 EXPORT_SYMBOL_GPL(m_can_class_resume); 2083 2084 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2085 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2086 MODULE_LICENSE("GPL v2"); 2087 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2088