1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3  *
4  * CTU CAN FD IP Core
5  *
6  * Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
7  * Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
8  * Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
9  * Copyright (C) 2018-2022 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
10  *
11  * Project advisors:
12  *     Jiri Novak <jnovak@fel.cvut.cz>
13  *     Pavel Pisa <pisa@cmp.felk.cvut.cz>
14  *
15  * Department of Measurement         (http://meas.fel.cvut.cz/)
16  * Faculty of Electrical Engineering (http://www.fel.cvut.cz)
17  * Czech Technical University        (http://www.cvut.cz/)
18  ******************************************************************************/
19 
20 #include <linux/clk.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/bitfield.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/skbuff.h>
29 #include <linux/string.h>
30 #include <linux/types.h>
31 #include <linux/can/error.h>
32 #include <linux/pm_runtime.h>
33 
34 #include "ctucanfd.h"
35 #include "ctucanfd_kregs.h"
36 #include "ctucanfd_kframe.h"
37 
38 #ifdef DEBUG
39 #define  ctucan_netdev_dbg(ndev, args...) \
40 		netdev_dbg(ndev, args)
41 #else
42 #define ctucan_netdev_dbg(...) do { } while (0)
43 #endif
44 
45 #define CTUCANFD_ID 0xCAFD
46 
47 /* TX buffer rotation:
48  * - when a buffer transitions to empty state, rotate order and priorities
49  * - if more buffers seem to transition at the same time, rotate by the number of buffers
50  * - it may be assumed that buffers transition to empty state in FIFO order (because we manage
51  *   priorities that way)
52  * - at frame filling, do not rotate anything, just increment buffer modulo counter
53  */
54 
55 #define CTUCANFD_FLAG_RX_FFW_BUFFERED	1
56 
57 #define CTUCAN_STATE_TO_TEXT_ENTRY(st) \
58 		[st] = #st
59 
60 enum ctucan_txtb_status {
61 	TXT_NOT_EXIST       = 0x0,
62 	TXT_RDY             = 0x1,
63 	TXT_TRAN            = 0x2,
64 	TXT_ABTP            = 0x3,
65 	TXT_TOK             = 0x4,
66 	TXT_ERR             = 0x6,
67 	TXT_ABT             = 0x7,
68 	TXT_ETY             = 0x8,
69 };
70 
71 enum ctucan_txtb_command {
72 	TXT_CMD_SET_EMPTY   = 0x01,
73 	TXT_CMD_SET_READY   = 0x02,
74 	TXT_CMD_SET_ABORT   = 0x04
75 };
76 
77 static const struct can_bittiming_const ctu_can_fd_bit_timing_max = {
78 	.name = "ctu_can_fd",
79 	.tseg1_min = 2,
80 	.tseg1_max = 190,
81 	.tseg2_min = 1,
82 	.tseg2_max = 63,
83 	.sjw_max = 31,
84 	.brp_min = 1,
85 	.brp_max = 8,
86 	.brp_inc = 1,
87 };
88 
89 static const struct can_bittiming_const ctu_can_fd_bit_timing_data_max = {
90 	.name = "ctu_can_fd",
91 	.tseg1_min = 2,
92 	.tseg1_max = 94,
93 	.tseg2_min = 1,
94 	.tseg2_max = 31,
95 	.sjw_max = 31,
96 	.brp_min = 1,
97 	.brp_max = 2,
98 	.brp_inc = 1,
99 };
100 
101 static const char * const ctucan_state_strings[CAN_STATE_MAX] = {
102 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_ACTIVE),
103 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_WARNING),
104 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_PASSIVE),
105 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_BUS_OFF),
106 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_STOPPED),
107 	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_SLEEPING)
108 };
109 
110 static void ctucan_write32_le(struct ctucan_priv *priv,
111 			      enum ctu_can_fd_can_registers reg, u32 val)
112 {
113 	iowrite32(val, priv->mem_base + reg);
114 }
115 
116 static void ctucan_write32_be(struct ctucan_priv *priv,
117 			      enum ctu_can_fd_can_registers reg, u32 val)
118 {
119 	iowrite32be(val, priv->mem_base + reg);
120 }
121 
122 static u32 ctucan_read32_le(struct ctucan_priv *priv,
123 			    enum ctu_can_fd_can_registers reg)
124 {
125 	return ioread32(priv->mem_base + reg);
126 }
127 
128 static u32 ctucan_read32_be(struct ctucan_priv *priv,
129 			    enum ctu_can_fd_can_registers reg)
130 {
131 	return ioread32be(priv->mem_base + reg);
132 }
133 
134 static void ctucan_write32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg, u32 val)
135 {
136 	priv->write_reg(priv, reg, val);
137 }
138 
139 static u32 ctucan_read32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg)
140 {
141 	return priv->read_reg(priv, reg);
142 }
143 
144 static void ctucan_write_txt_buf(struct ctucan_priv *priv, enum ctu_can_fd_can_registers buf_base,
145 				 u32 offset, u32 val)
146 {
147 	priv->write_reg(priv, buf_base + offset, val);
148 }
149 
150 #define CTU_CAN_FD_TXTNF(priv) (!!FIELD_GET(REG_STATUS_TXNF, ctucan_read32(priv, CTUCANFD_STATUS)))
151 #define CTU_CAN_FD_ENABLED(priv) (!!FIELD_GET(REG_MODE_ENA, ctucan_read32(priv, CTUCANFD_MODE)))
152 
153 /**
154  * ctucan_state_to_str() - Converts CAN controller state code to corresponding text
155  * @state:	CAN controller state code
156  *
157  * Return: Pointer to string representation of the error state
158  */
159 static const char *ctucan_state_to_str(enum can_state state)
160 {
161 	const char *txt = NULL;
162 
163 	if (state >= 0 && state < CAN_STATE_MAX)
164 		txt = ctucan_state_strings[state];
165 	return txt ? txt : "UNKNOWN";
166 }
167 
168 /**
169  * ctucan_reset() - Issues software reset request to CTU CAN FD
170  * @ndev:	Pointer to net_device structure
171  *
172  * Return: 0 for success, -%ETIMEDOUT if CAN controller does not leave reset
173  */
174 static int ctucan_reset(struct net_device *ndev)
175 {
176 	struct ctucan_priv *priv = netdev_priv(ndev);
177 	int i = 100;
178 
179 	ctucan_write32(priv, CTUCANFD_MODE, REG_MODE_RST);
180 	clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
181 
182 	do {
183 		u16 device_id = FIELD_GET(REG_DEVICE_ID_DEVICE_ID,
184 					  ctucan_read32(priv, CTUCANFD_DEVICE_ID));
185 
186 		if (device_id == 0xCAFD)
187 			return 0;
188 		if (!i--) {
189 			netdev_warn(ndev, "device did not leave reset\n");
190 			return -ETIMEDOUT;
191 		}
192 		usleep_range(100, 200);
193 	} while (1);
194 }
195 
196 /**
197  * ctucan_set_btr() - Sets CAN bus bit timing in CTU CAN FD
198  * @ndev:	Pointer to net_device structure
199  * @bt:		Pointer to Bit timing structure
200  * @nominal:	True - Nominal bit timing, False - Data bit timing
201  *
202  * Return: 0 - OK, -%EPERM if controller is enabled
203  */
204 static int ctucan_set_btr(struct net_device *ndev, struct can_bittiming *bt, bool nominal)
205 {
206 	struct ctucan_priv *priv = netdev_priv(ndev);
207 	int max_ph1_len = 31;
208 	u32 btr = 0;
209 	u32 prop_seg = bt->prop_seg;
210 	u32 phase_seg1 = bt->phase_seg1;
211 
212 	if (CTU_CAN_FD_ENABLED(priv)) {
213 		netdev_err(ndev, "BUG! Cannot set bittiming - CAN is enabled\n");
214 		return -EPERM;
215 	}
216 
217 	if (nominal)
218 		max_ph1_len = 63;
219 
220 	/* The timing calculation functions have only constraints on tseg1, which is prop_seg +
221 	 * phase1_seg combined. tseg1 is then split in half and stored into prog_seg and phase_seg1.
222 	 * In CTU CAN FD, PROP is 6/7 bits wide but PH1 only 6/5, so we must re-distribute the
223 	 * values here.
224 	 */
225 	if (phase_seg1 > max_ph1_len) {
226 		prop_seg += phase_seg1 - max_ph1_len;
227 		phase_seg1 = max_ph1_len;
228 		bt->prop_seg = prop_seg;
229 		bt->phase_seg1 = phase_seg1;
230 	}
231 
232 	if (nominal) {
233 		btr = FIELD_PREP(REG_BTR_PROP, prop_seg);
234 		btr |= FIELD_PREP(REG_BTR_PH1, phase_seg1);
235 		btr |= FIELD_PREP(REG_BTR_PH2, bt->phase_seg2);
236 		btr |= FIELD_PREP(REG_BTR_BRP, bt->brp);
237 		btr |= FIELD_PREP(REG_BTR_SJW, bt->sjw);
238 
239 		ctucan_write32(priv, CTUCANFD_BTR, btr);
240 	} else {
241 		btr = FIELD_PREP(REG_BTR_FD_PROP_FD, prop_seg);
242 		btr |= FIELD_PREP(REG_BTR_FD_PH1_FD, phase_seg1);
243 		btr |= FIELD_PREP(REG_BTR_FD_PH2_FD, bt->phase_seg2);
244 		btr |= FIELD_PREP(REG_BTR_FD_BRP_FD, bt->brp);
245 		btr |= FIELD_PREP(REG_BTR_FD_SJW_FD, bt->sjw);
246 
247 		ctucan_write32(priv, CTUCANFD_BTR_FD, btr);
248 	}
249 
250 	return 0;
251 }
252 
253 /**
254  * ctucan_set_bittiming() - CAN set nominal bit timing routine
255  * @ndev:	Pointer to net_device structure
256  *
257  * Return: 0 on success, -%EPERM on error
258  */
259 static int ctucan_set_bittiming(struct net_device *ndev)
260 {
261 	struct ctucan_priv *priv = netdev_priv(ndev);
262 	struct can_bittiming *bt = &priv->can.bittiming;
263 
264 	/* Note that bt may be modified here */
265 	return ctucan_set_btr(ndev, bt, true);
266 }
267 
268 /**
269  * ctucan_set_data_bittiming() - CAN set data bit timing routine
270  * @ndev:	Pointer to net_device structure
271  *
272  * Return: 0 on success, -%EPERM on error
273  */
274 static int ctucan_set_data_bittiming(struct net_device *ndev)
275 {
276 	struct ctucan_priv *priv = netdev_priv(ndev);
277 	struct can_bittiming *dbt = &priv->can.data_bittiming;
278 
279 	/* Note that dbt may be modified here */
280 	return ctucan_set_btr(ndev, dbt, false);
281 }
282 
283 /**
284  * ctucan_set_secondary_sample_point() - Sets secondary sample point in CTU CAN FD
285  * @ndev:	Pointer to net_device structure
286  *
287  * Return: 0 on success, -%EPERM if controller is enabled
288  */
289 static int ctucan_set_secondary_sample_point(struct net_device *ndev)
290 {
291 	struct ctucan_priv *priv = netdev_priv(ndev);
292 	struct can_bittiming *dbt = &priv->can.data_bittiming;
293 	int ssp_offset = 0;
294 	u32 ssp_cfg = 0; /* No SSP by default */
295 
296 	if (CTU_CAN_FD_ENABLED(priv)) {
297 		netdev_err(ndev, "BUG! Cannot set SSP - CAN is enabled\n");
298 		return -EPERM;
299 	}
300 
301 	/* Use SSP for bit-rates above 1 Mbits/s */
302 	if (dbt->bitrate > 1000000) {
303 		/* Calculate SSP in minimal time quanta */
304 		ssp_offset = (priv->can.clock.freq / 1000) * dbt->sample_point / dbt->bitrate;
305 
306 		if (ssp_offset > 127) {
307 			netdev_warn(ndev, "SSP offset saturated to 127\n");
308 			ssp_offset = 127;
309 		}
310 
311 		ssp_cfg = FIELD_PREP(REG_TRV_DELAY_SSP_OFFSET, ssp_offset);
312 		ssp_cfg |= FIELD_PREP(REG_TRV_DELAY_SSP_SRC, 0x1);
313 	}
314 
315 	ctucan_write32(priv, CTUCANFD_TRV_DELAY, ssp_cfg);
316 
317 	return 0;
318 }
319 
320 /**
321  * ctucan_set_mode() - Sets CTU CAN FDs mode
322  * @priv:	Pointer to private data
323  * @mode:	Pointer to controller modes to be set
324  */
325 static void ctucan_set_mode(struct ctucan_priv *priv, const struct can_ctrlmode *mode)
326 {
327 	u32 mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
328 
329 	mode_reg = (mode->flags & CAN_CTRLMODE_LOOPBACK) ?
330 			(mode_reg | REG_MODE_ILBP) :
331 			(mode_reg & ~REG_MODE_ILBP);
332 
333 	mode_reg = (mode->flags & CAN_CTRLMODE_LISTENONLY) ?
334 			(mode_reg | REG_MODE_BMM) :
335 			(mode_reg & ~REG_MODE_BMM);
336 
337 	mode_reg = (mode->flags & CAN_CTRLMODE_FD) ?
338 			(mode_reg | REG_MODE_FDE) :
339 			(mode_reg & ~REG_MODE_FDE);
340 
341 	mode_reg = (mode->flags & CAN_CTRLMODE_PRESUME_ACK) ?
342 			(mode_reg | REG_MODE_ACF) :
343 			(mode_reg & ~REG_MODE_ACF);
344 
345 	mode_reg = (mode->flags & CAN_CTRLMODE_FD_NON_ISO) ?
346 			(mode_reg | REG_MODE_NISOFD) :
347 			(mode_reg & ~REG_MODE_NISOFD);
348 
349 	/* One shot mode supported indirectly via Retransmit limit */
350 	mode_reg &= ~FIELD_PREP(REG_MODE_RTRTH, 0xF);
351 	mode_reg = (mode->flags & CAN_CTRLMODE_ONE_SHOT) ?
352 			(mode_reg | REG_MODE_RTRLE) :
353 			(mode_reg & ~REG_MODE_RTRLE);
354 
355 	/* Some bits fixed:
356 	 *   TSTM  - Off, User shall not be able to change REC/TEC by hand during operation
357 	 */
358 	mode_reg &= ~REG_MODE_TSTM;
359 
360 	ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
361 }
362 
363 /**
364  * ctucan_chip_start() - This routine starts the driver
365  * @ndev:	Pointer to net_device structure
366  *
367  * Routine expects that chip is in reset state. It setups initial
368  * Tx buffers for FIFO priorities, sets bittiming, enables interrupts,
369  * switches core to operational mode and changes controller
370  * state to %CAN_STATE_STOPPED.
371  *
372  * Return: 0 on success and failure value on error
373  */
374 static int ctucan_chip_start(struct net_device *ndev)
375 {
376 	struct ctucan_priv *priv = netdev_priv(ndev);
377 	u32 int_ena, int_msk;
378 	u32 mode_reg;
379 	int err;
380 	struct can_ctrlmode mode;
381 
382 	priv->txb_prio = 0x01234567;
383 	priv->txb_head = 0;
384 	priv->txb_tail = 0;
385 	ctucan_write32(priv, CTUCANFD_TX_PRIORITY, priv->txb_prio);
386 
387 	/* Configure bit-rates and ssp */
388 	err = ctucan_set_bittiming(ndev);
389 	if (err < 0)
390 		return err;
391 
392 	err = ctucan_set_data_bittiming(ndev);
393 	if (err < 0)
394 		return err;
395 
396 	err = ctucan_set_secondary_sample_point(ndev);
397 	if (err < 0)
398 		return err;
399 
400 	/* Configure modes */
401 	mode.flags = priv->can.ctrlmode;
402 	mode.mask = 0xFFFFFFFF;
403 	ctucan_set_mode(priv, &mode);
404 
405 	/* Configure interrupts */
406 	int_ena = REG_INT_STAT_RBNEI |
407 		  REG_INT_STAT_TXBHCI |
408 		  REG_INT_STAT_EWLI |
409 		  REG_INT_STAT_FCSI;
410 
411 	/* Bus error reporting -> Allow Error/Arb.lost interrupts */
412 	if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
413 		int_ena |= REG_INT_STAT_ALI |
414 			   REG_INT_STAT_BEI;
415 	}
416 
417 	int_msk = ~int_ena; /* Mask all disabled interrupts */
418 
419 	/* It's after reset, so there is no need to clear anything */
420 	ctucan_write32(priv, CTUCANFD_INT_MASK_SET, int_msk);
421 	ctucan_write32(priv, CTUCANFD_INT_ENA_SET, int_ena);
422 
423 	/* Controller enters ERROR_ACTIVE on initial FCSI */
424 	priv->can.state = CAN_STATE_STOPPED;
425 
426 	/* Enable the controller */
427 	mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
428 	mode_reg |= REG_MODE_ENA;
429 	ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
430 
431 	return 0;
432 }
433 
434 /**
435  * ctucan_do_set_mode() - Sets mode of the driver
436  * @ndev:	Pointer to net_device structure
437  * @mode:	Tells the mode of the driver
438  *
439  * This check the drivers state and calls the corresponding modes to set.
440  *
441  * Return: 0 on success and failure value on error
442  */
443 static int ctucan_do_set_mode(struct net_device *ndev, enum can_mode mode)
444 {
445 	int ret;
446 
447 	switch (mode) {
448 	case CAN_MODE_START:
449 		ret = ctucan_reset(ndev);
450 		if (ret < 0)
451 			return ret;
452 		ret = ctucan_chip_start(ndev);
453 		if (ret < 0) {
454 			netdev_err(ndev, "ctucan_chip_start failed!\n");
455 			return ret;
456 		}
457 		netif_wake_queue(ndev);
458 		break;
459 	default:
460 		ret = -EOPNOTSUPP;
461 		break;
462 	}
463 
464 	return ret;
465 }
466 
467 /**
468  * ctucan_get_tx_status() - Gets status of TXT buffer
469  * @priv:	Pointer to private data
470  * @buf:	Buffer index (0-based)
471  *
472  * Return: Status of TXT buffer
473  */
474 static enum ctucan_txtb_status ctucan_get_tx_status(struct ctucan_priv *priv, u8 buf)
475 {
476 	u32 tx_status = ctucan_read32(priv, CTUCANFD_TX_STATUS);
477 	enum ctucan_txtb_status status = (tx_status >> (buf * 4)) & 0x7;
478 
479 	return status;
480 }
481 
482 /**
483  * ctucan_is_txt_buf_writable() - Checks if frame can be inserted to TXT Buffer
484  * @priv:	Pointer to private data
485  * @buf:	Buffer index (0-based)
486  *
487  * Return: True - Frame can be inserted to TXT Buffer, False - If attempted, frame will not be
488  *	   inserted to TXT Buffer
489  */
490 static bool ctucan_is_txt_buf_writable(struct ctucan_priv *priv, u8 buf)
491 {
492 	enum ctucan_txtb_status buf_status;
493 
494 	buf_status = ctucan_get_tx_status(priv, buf);
495 	if (buf_status == TXT_RDY || buf_status == TXT_TRAN || buf_status == TXT_ABTP)
496 		return false;
497 
498 	return true;
499 }
500 
501 /**
502  * ctucan_insert_frame() - Inserts frame to TXT buffer
503  * @priv:	Pointer to private data
504  * @cf:		Pointer to CAN frame to be inserted
505  * @buf:	TXT Buffer index to which frame is inserted (0-based)
506  * @isfdf:	True - CAN FD Frame, False - CAN 2.0 Frame
507  *
508  * Return: True - Frame inserted successfully
509  *	   False - Frame was not inserted due to one of:
510  *			1. TXT Buffer is not writable (it is in wrong state)
511  *			2. Invalid TXT buffer index
512  *			3. Invalid frame length
513  */
514 static bool ctucan_insert_frame(struct ctucan_priv *priv, const struct canfd_frame *cf, u8 buf,
515 				bool isfdf)
516 {
517 	u32 buf_base;
518 	u32 ffw = 0;
519 	u32 idw = 0;
520 	unsigned int i;
521 
522 	if (buf >= priv->ntxbufs)
523 		return false;
524 
525 	if (!ctucan_is_txt_buf_writable(priv, buf))
526 		return false;
527 
528 	if (cf->len > CANFD_MAX_DLEN)
529 		return false;
530 
531 	/* Prepare Frame format */
532 	if (cf->can_id & CAN_RTR_FLAG)
533 		ffw |= REG_FRAME_FORMAT_W_RTR;
534 
535 	if (cf->can_id & CAN_EFF_FLAG)
536 		ffw |= REG_FRAME_FORMAT_W_IDE;
537 
538 	if (isfdf) {
539 		ffw |= REG_FRAME_FORMAT_W_FDF;
540 		if (cf->flags & CANFD_BRS)
541 			ffw |= REG_FRAME_FORMAT_W_BRS;
542 	}
543 
544 	ffw |= FIELD_PREP(REG_FRAME_FORMAT_W_DLC, can_fd_len2dlc(cf->len));
545 
546 	/* Prepare identifier */
547 	if (cf->can_id & CAN_EFF_FLAG)
548 		idw = cf->can_id & CAN_EFF_MASK;
549 	else
550 		idw = FIELD_PREP(REG_IDENTIFIER_W_IDENTIFIER_BASE, cf->can_id & CAN_SFF_MASK);
551 
552 	/* Write ID, Frame format, Don't write timestamp -> Time triggered transmission disabled */
553 	buf_base = (buf + 1) * 0x100;
554 	ctucan_write_txt_buf(priv, buf_base, CTUCANFD_FRAME_FORMAT_W, ffw);
555 	ctucan_write_txt_buf(priv, buf_base, CTUCANFD_IDENTIFIER_W, idw);
556 
557 	/* Write Data payload */
558 	if (!(cf->can_id & CAN_RTR_FLAG)) {
559 		for (i = 0; i < cf->len; i += 4) {
560 			u32 data = le32_to_cpu(*(__le32 *)(cf->data + i));
561 
562 			ctucan_write_txt_buf(priv, buf_base, CTUCANFD_DATA_1_4_W + i, data);
563 		}
564 	}
565 
566 	return true;
567 }
568 
569 /**
570  * ctucan_give_txtb_cmd() - Applies command on TXT buffer
571  * @priv:	Pointer to private data
572  * @cmd:	Command to give
573  * @buf:	Buffer index (0-based)
574  */
575 static void ctucan_give_txtb_cmd(struct ctucan_priv *priv, enum ctucan_txtb_command cmd, u8 buf)
576 {
577 	u32 tx_cmd = cmd;
578 
579 	tx_cmd |= 1 << (buf + 8);
580 	ctucan_write32(priv, CTUCANFD_TX_COMMAND, tx_cmd);
581 }
582 
583 /**
584  * ctucan_start_xmit() - Starts the transmission
585  * @skb:	sk_buff pointer that contains data to be Txed
586  * @ndev:	Pointer to net_device structure
587  *
588  * Invoked from upper layers to initiate transmission. Uses the next available free TXT Buffer and
589  * populates its fields to start the transmission.
590  *
591  * Return: %NETDEV_TX_OK on success, %NETDEV_TX_BUSY when no free TXT buffer is available,
592  *         negative return values reserved for error cases
593  */
594 static netdev_tx_t ctucan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
595 {
596 	struct ctucan_priv *priv = netdev_priv(ndev);
597 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
598 	u32 txtb_id;
599 	bool ok;
600 	unsigned long flags;
601 
602 	if (can_dropped_invalid_skb(ndev, skb))
603 		return NETDEV_TX_OK;
604 
605 	if (unlikely(!CTU_CAN_FD_TXTNF(priv))) {
606 		netif_stop_queue(ndev);
607 		netdev_err(ndev, "BUG!, no TXB free when queue awake!\n");
608 		return NETDEV_TX_BUSY;
609 	}
610 
611 	txtb_id = priv->txb_head % priv->ntxbufs;
612 	ctucan_netdev_dbg(ndev, "%s: using TXB#%u\n", __func__, txtb_id);
613 	ok = ctucan_insert_frame(priv, cf, txtb_id, can_is_canfd_skb(skb));
614 
615 	if (!ok) {
616 		netdev_err(ndev, "BUG! TXNF set but cannot insert frame into TXTB! HW Bug?");
617 		kfree_skb(skb);
618 		ndev->stats.tx_dropped++;
619 		return NETDEV_TX_OK;
620 	}
621 
622 	can_put_echo_skb(skb, ndev, txtb_id, 0);
623 
624 	spin_lock_irqsave(&priv->tx_lock, flags);
625 	ctucan_give_txtb_cmd(priv, TXT_CMD_SET_READY, txtb_id);
626 	priv->txb_head++;
627 
628 	/* Check if all TX buffers are full */
629 	if (!CTU_CAN_FD_TXTNF(priv))
630 		netif_stop_queue(ndev);
631 
632 	spin_unlock_irqrestore(&priv->tx_lock, flags);
633 
634 	return NETDEV_TX_OK;
635 }
636 
637 /**
638  * ctucan_read_rx_frame() - Reads frame from RX FIFO
639  * @priv:	Pointer to CTU CAN FD's private data
640  * @cf:		Pointer to CAN frame struct
641  * @ffw:	Previously read frame format word
642  *
643  * Note: Frame format word must be read separately and provided in 'ffw'.
644  */
645 static void ctucan_read_rx_frame(struct ctucan_priv *priv, struct canfd_frame *cf, u32 ffw)
646 {
647 	u32 idw;
648 	unsigned int i;
649 	unsigned int wc;
650 	unsigned int len;
651 
652 	idw = ctucan_read32(priv, CTUCANFD_RX_DATA);
653 	if (FIELD_GET(REG_FRAME_FORMAT_W_IDE, ffw))
654 		cf->can_id = (idw & CAN_EFF_MASK) | CAN_EFF_FLAG;
655 	else
656 		cf->can_id = (idw >> 18) & CAN_SFF_MASK;
657 
658 	/* BRS, ESI, RTR Flags */
659 	cf->flags = 0;
660 	if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw)) {
661 		if (FIELD_GET(REG_FRAME_FORMAT_W_BRS, ffw))
662 			cf->flags |= CANFD_BRS;
663 		if (FIELD_GET(REG_FRAME_FORMAT_W_ESI_RSV, ffw))
664 			cf->flags |= CANFD_ESI;
665 	} else if (FIELD_GET(REG_FRAME_FORMAT_W_RTR, ffw)) {
666 		cf->can_id |= CAN_RTR_FLAG;
667 	}
668 
669 	wc = FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw) - 3;
670 
671 	/* DLC */
672 	if (FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw) <= 8) {
673 		len = FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw);
674 	} else {
675 		if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
676 			len = wc << 2;
677 		else
678 			len = 8;
679 	}
680 	cf->len = len;
681 	if (unlikely(len > wc * 4))
682 		len = wc * 4;
683 
684 	/* Timestamp - Read and throw away */
685 	ctucan_read32(priv, CTUCANFD_RX_DATA);
686 	ctucan_read32(priv, CTUCANFD_RX_DATA);
687 
688 	/* Data */
689 	for (i = 0; i < len; i += 4) {
690 		u32 data = ctucan_read32(priv, CTUCANFD_RX_DATA);
691 		*(__le32 *)(cf->data + i) = cpu_to_le32(data);
692 	}
693 	while (unlikely(i < wc * 4)) {
694 		ctucan_read32(priv, CTUCANFD_RX_DATA);
695 		i += 4;
696 	}
697 }
698 
699 /**
700  * ctucan_rx() -  Called from CAN ISR to complete the received frame processing
701  * @ndev:	Pointer to net_device structure
702  *
703  * This function is invoked from the CAN isr(poll) to process the Rx frames. It does minimal
704  * processing and invokes "netif_receive_skb" to complete further processing.
705  * Return: 1 when frame is passed to the network layer, 0 when the first frame word is read but
706  *	   system is out of free SKBs temporally and left code to resolve SKB allocation later,
707  *         -%EAGAIN in a case of empty Rx FIFO.
708  */
709 static int ctucan_rx(struct net_device *ndev)
710 {
711 	struct ctucan_priv *priv = netdev_priv(ndev);
712 	struct net_device_stats *stats = &ndev->stats;
713 	struct canfd_frame *cf;
714 	struct sk_buff *skb;
715 	u32 ffw;
716 
717 	if (test_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags)) {
718 		ffw = priv->rxfrm_first_word;
719 		clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
720 	} else {
721 		ffw = ctucan_read32(priv, CTUCANFD_RX_DATA);
722 	}
723 
724 	if (!FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw))
725 		return -EAGAIN;
726 
727 	if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
728 		skb = alloc_canfd_skb(ndev, &cf);
729 	else
730 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
731 
732 	if (unlikely(!skb)) {
733 		priv->rxfrm_first_word = ffw;
734 		set_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
735 		return 0;
736 	}
737 
738 	ctucan_read_rx_frame(priv, cf, ffw);
739 
740 	stats->rx_bytes += cf->len;
741 	stats->rx_packets++;
742 	netif_receive_skb(skb);
743 
744 	return 1;
745 }
746 
747 /**
748  * ctucan_read_fault_state() - Reads CTU CAN FDs fault confinement state.
749  * @priv:	Pointer to private data
750  *
751  * Returns: Fault confinement state of controller
752  */
753 static enum can_state ctucan_read_fault_state(struct ctucan_priv *priv)
754 {
755 	u32 fs;
756 	u32 rec_tec;
757 	u32 ewl;
758 
759 	fs = ctucan_read32(priv, CTUCANFD_EWL);
760 	rec_tec = ctucan_read32(priv, CTUCANFD_REC);
761 	ewl = FIELD_GET(REG_EWL_EW_LIMIT, fs);
762 
763 	if (FIELD_GET(REG_EWL_ERA, fs)) {
764 		if (ewl > FIELD_GET(REG_REC_REC_VAL, rec_tec) &&
765 		    ewl > FIELD_GET(REG_REC_TEC_VAL, rec_tec))
766 			return CAN_STATE_ERROR_ACTIVE;
767 		else
768 			return CAN_STATE_ERROR_WARNING;
769 	} else if (FIELD_GET(REG_EWL_ERP, fs)) {
770 		return CAN_STATE_ERROR_PASSIVE;
771 	} else if (FIELD_GET(REG_EWL_BOF, fs)) {
772 		return CAN_STATE_BUS_OFF;
773 	}
774 
775 	WARN(true, "Invalid error state");
776 	return CAN_STATE_ERROR_PASSIVE;
777 }
778 
779 /**
780  * ctucan_get_rec_tec() - Reads REC/TEC counter values from controller
781  * @priv:	Pointer to private data
782  * @bec:	Pointer to Error counter structure
783  */
784 static void ctucan_get_rec_tec(struct ctucan_priv *priv, struct can_berr_counter *bec)
785 {
786 	u32 err_ctrs = ctucan_read32(priv, CTUCANFD_REC);
787 
788 	bec->rxerr = FIELD_GET(REG_REC_REC_VAL, err_ctrs);
789 	bec->txerr = FIELD_GET(REG_REC_TEC_VAL, err_ctrs);
790 }
791 
792 /**
793  * ctucan_err_interrupt() - Error frame ISR
794  * @ndev:	net_device pointer
795  * @isr:	interrupt status register value
796  *
797  * This is the CAN error interrupt and it will check the type of error and forward the error
798  * frame to upper layers.
799  */
800 static void ctucan_err_interrupt(struct net_device *ndev, u32 isr)
801 {
802 	struct ctucan_priv *priv = netdev_priv(ndev);
803 	struct net_device_stats *stats = &ndev->stats;
804 	struct can_frame *cf;
805 	struct sk_buff *skb;
806 	enum can_state state;
807 	struct can_berr_counter bec;
808 	u32 err_capt_alc;
809 	int dologerr = net_ratelimit();
810 
811 	ctucan_get_rec_tec(priv, &bec);
812 	state = ctucan_read_fault_state(priv);
813 	err_capt_alc = ctucan_read32(priv, CTUCANFD_ERR_CAPT);
814 
815 	if (dologerr)
816 		netdev_info(ndev, "%s: ISR = 0x%08x, rxerr %d, txerr %d, error type %lu, pos %lu, ALC id_field %lu, bit %lu\n",
817 			    __func__, isr, bec.rxerr, bec.txerr,
818 			    FIELD_GET(REG_ERR_CAPT_ERR_TYPE, err_capt_alc),
819 			    FIELD_GET(REG_ERR_CAPT_ERR_POS, err_capt_alc),
820 			    FIELD_GET(REG_ERR_CAPT_ALC_ID_FIELD, err_capt_alc),
821 			    FIELD_GET(REG_ERR_CAPT_ALC_BIT, err_capt_alc));
822 
823 	skb = alloc_can_err_skb(ndev, &cf);
824 
825 	/* EWLI: error warning limit condition met
826 	 * FCSI: fault confinement state changed
827 	 * ALI:  arbitration lost (just informative)
828 	 * BEI:  bus error interrupt
829 	 */
830 	if (FIELD_GET(REG_INT_STAT_FCSI, isr) || FIELD_GET(REG_INT_STAT_EWLI, isr)) {
831 		netdev_info(ndev, "state changes from %s to %s\n",
832 			    ctucan_state_to_str(priv->can.state),
833 			    ctucan_state_to_str(state));
834 
835 		if (priv->can.state == state)
836 			netdev_warn(ndev,
837 				    "current and previous state is the same! (missed interrupt?)\n");
838 
839 		priv->can.state = state;
840 		switch (state) {
841 		case CAN_STATE_BUS_OFF:
842 			priv->can.can_stats.bus_off++;
843 			can_bus_off(ndev);
844 			if (skb)
845 				cf->can_id |= CAN_ERR_BUSOFF;
846 			break;
847 		case CAN_STATE_ERROR_PASSIVE:
848 			priv->can.can_stats.error_passive++;
849 			if (skb) {
850 				cf->can_id |= CAN_ERR_CRTL;
851 				cf->data[1] = (bec.rxerr > 127) ?
852 						CAN_ERR_CRTL_RX_PASSIVE :
853 						CAN_ERR_CRTL_TX_PASSIVE;
854 				cf->data[6] = bec.txerr;
855 				cf->data[7] = bec.rxerr;
856 			}
857 			break;
858 		case CAN_STATE_ERROR_WARNING:
859 			priv->can.can_stats.error_warning++;
860 			if (skb) {
861 				cf->can_id |= CAN_ERR_CRTL;
862 				cf->data[1] |= (bec.txerr > bec.rxerr) ?
863 					CAN_ERR_CRTL_TX_WARNING :
864 					CAN_ERR_CRTL_RX_WARNING;
865 				cf->data[6] = bec.txerr;
866 				cf->data[7] = bec.rxerr;
867 			}
868 			break;
869 		case CAN_STATE_ERROR_ACTIVE:
870 			cf->data[1] = CAN_ERR_CRTL_ACTIVE;
871 			cf->data[6] = bec.txerr;
872 			cf->data[7] = bec.rxerr;
873 			break;
874 		default:
875 			netdev_warn(ndev, "unhandled error state (%d:%s)!\n",
876 				    state, ctucan_state_to_str(state));
877 			break;
878 		}
879 	}
880 
881 	/* Check for Arbitration Lost interrupt */
882 	if (FIELD_GET(REG_INT_STAT_ALI, isr)) {
883 		if (dologerr)
884 			netdev_info(ndev, "arbitration lost\n");
885 		priv->can.can_stats.arbitration_lost++;
886 		if (skb) {
887 			cf->can_id |= CAN_ERR_LOSTARB;
888 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
889 		}
890 	}
891 
892 	/* Check for Bus Error interrupt */
893 	if (FIELD_GET(REG_INT_STAT_BEI, isr)) {
894 		netdev_info(ndev, "bus error\n");
895 		priv->can.can_stats.bus_error++;
896 		stats->rx_errors++;
897 		if (skb) {
898 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
899 			cf->data[2] = CAN_ERR_PROT_UNSPEC;
900 			cf->data[3] = CAN_ERR_PROT_LOC_UNSPEC;
901 		}
902 	}
903 
904 	if (skb) {
905 		stats->rx_packets++;
906 		stats->rx_bytes += cf->can_dlc;
907 		netif_rx(skb);
908 	}
909 }
910 
911 /**
912  * ctucan_rx_poll() - Poll routine for rx packets (NAPI)
913  * @napi:	NAPI structure pointer
914  * @quota:	Max number of rx packets to be processed.
915  *
916  * This is the poll routine for rx part. It will process the packets maximux quota value.
917  *
918  * Return: Number of packets received
919  */
920 static int ctucan_rx_poll(struct napi_struct *napi, int quota)
921 {
922 	struct net_device *ndev = napi->dev;
923 	struct ctucan_priv *priv = netdev_priv(ndev);
924 	int work_done = 0;
925 	u32 status;
926 	u32 framecnt;
927 	int res = 1;
928 
929 	framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
930 	while (framecnt && work_done < quota && res > 0) {
931 		res = ctucan_rx(ndev);
932 		work_done++;
933 		framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
934 	}
935 
936 	/* Check for RX FIFO Overflow */
937 	status = ctucan_read32(priv, CTUCANFD_STATUS);
938 	if (FIELD_GET(REG_STATUS_DOR, status)) {
939 		struct net_device_stats *stats = &ndev->stats;
940 		struct can_frame *cf;
941 		struct sk_buff *skb;
942 
943 		netdev_info(ndev, "rx_poll: rx fifo overflow\n");
944 		stats->rx_over_errors++;
945 		stats->rx_errors++;
946 		skb = alloc_can_err_skb(ndev, &cf);
947 		if (skb) {
948 			cf->can_id |= CAN_ERR_CRTL;
949 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
950 			stats->rx_packets++;
951 			stats->rx_bytes += cf->can_dlc;
952 			netif_rx(skb);
953 		}
954 
955 		/* Clear Data Overrun */
956 		ctucan_write32(priv, CTUCANFD_COMMAND, REG_COMMAND_CDO);
957 	}
958 
959 	if (!framecnt && res != 0) {
960 		if (napi_complete_done(napi, work_done)) {
961 			/* Clear and enable RBNEI. It is level-triggered, so
962 			 * there is no race condition.
963 			 */
964 			ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_RBNEI);
965 			ctucan_write32(priv, CTUCANFD_INT_MASK_CLR, REG_INT_STAT_RBNEI);
966 		}
967 	}
968 
969 	return work_done;
970 }
971 
972 /**
973  * ctucan_rotate_txb_prio() - Rotates priorities of TXT Buffers
974  * @ndev:	net_device pointer
975  */
976 static void ctucan_rotate_txb_prio(struct net_device *ndev)
977 {
978 	struct ctucan_priv *priv = netdev_priv(ndev);
979 	u32 prio = priv->txb_prio;
980 
981 	prio = (prio << 4) | ((prio >> ((priv->ntxbufs - 1) * 4)) & 0xF);
982 	ctucan_netdev_dbg(ndev, "%s: from 0x%08x to 0x%08x\n", __func__, priv->txb_prio, prio);
983 	priv->txb_prio = prio;
984 	ctucan_write32(priv, CTUCANFD_TX_PRIORITY, prio);
985 }
986 
987 /**
988  * ctucan_tx_interrupt() - Tx done Isr
989  * @ndev:	net_device pointer
990  */
991 static void ctucan_tx_interrupt(struct net_device *ndev)
992 {
993 	struct ctucan_priv *priv = netdev_priv(ndev);
994 	struct net_device_stats *stats = &ndev->stats;
995 	bool first = true;
996 	bool some_buffers_processed;
997 	unsigned long flags;
998 	enum ctucan_txtb_status txtb_status;
999 	u32 txtb_id;
1000 
1001 	/*  read tx_status
1002 	 *  if txb[n].finished (bit 2)
1003 	 *	if ok -> echo
1004 	 *	if error / aborted -> ?? (find how to handle oneshot mode)
1005 	 *	txb_tail++
1006 	 */
1007 	do {
1008 		spin_lock_irqsave(&priv->tx_lock, flags);
1009 
1010 		some_buffers_processed = false;
1011 		while ((int)(priv->txb_head - priv->txb_tail) > 0) {
1012 			txtb_id = priv->txb_tail % priv->ntxbufs;
1013 			txtb_status = ctucan_get_tx_status(priv, txtb_id);
1014 
1015 			ctucan_netdev_dbg(ndev, "TXI: TXB#%u: status 0x%x\n", txtb_id, txtb_status);
1016 
1017 			switch (txtb_status) {
1018 			case TXT_TOK:
1019 				ctucan_netdev_dbg(ndev, "TXT_OK\n");
1020 				stats->tx_bytes += can_get_echo_skb(ndev, txtb_id, NULL);
1021 				stats->tx_packets++;
1022 				break;
1023 			case TXT_ERR:
1024 				/* This indicated that retransmit limit has been reached. Obviously
1025 				 * we should not echo the frame, but also not indicate any kind of
1026 				 * error. If desired, it was already reported (possible multiple
1027 				 * times) on each arbitration lost.
1028 				 */
1029 				netdev_warn(ndev, "TXB in Error state\n");
1030 				can_free_echo_skb(ndev, txtb_id, NULL);
1031 				stats->tx_dropped++;
1032 				break;
1033 			case TXT_ABT:
1034 				/* Same as for TXT_ERR, only with different cause. We *could*
1035 				 * re-queue the frame, but multiqueue/abort is not supported yet
1036 				 * anyway.
1037 				 */
1038 				netdev_warn(ndev, "TXB in Aborted state\n");
1039 				can_free_echo_skb(ndev, txtb_id, NULL);
1040 				stats->tx_dropped++;
1041 				break;
1042 			default:
1043 				/* Bug only if the first buffer is not finished, otherwise it is
1044 				 * pretty much expected.
1045 				 */
1046 				if (first) {
1047 					netdev_err(ndev,
1048 						   "BUG: TXB#%u not in a finished state (0x%x)!\n",
1049 						   txtb_id, txtb_status);
1050 					spin_unlock_irqrestore(&priv->tx_lock, flags);
1051 					/* do not clear nor wake */
1052 					return;
1053 				}
1054 				goto clear;
1055 			}
1056 			priv->txb_tail++;
1057 			first = false;
1058 			some_buffers_processed = true;
1059 			/* Adjust priorities *before* marking the buffer as empty. */
1060 			ctucan_rotate_txb_prio(ndev);
1061 			ctucan_give_txtb_cmd(priv, TXT_CMD_SET_EMPTY, txtb_id);
1062 		}
1063 clear:
1064 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1065 
1066 		/* If no buffers were processed this time, we cannot clear - that would introduce
1067 		 * a race condition.
1068 		 */
1069 		if (some_buffers_processed) {
1070 			/* Clear the interrupt again. We do not want to receive again interrupt for
1071 			 * the buffer already handled. If it is the last finished one then it would
1072 			 * cause log of spurious interrupt.
1073 			 */
1074 			ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_TXBHCI);
1075 		}
1076 	} while (some_buffers_processed);
1077 
1078 	spin_lock_irqsave(&priv->tx_lock, flags);
1079 
1080 	/* Check if at least one TX buffer is free */
1081 	if (CTU_CAN_FD_TXTNF(priv))
1082 		netif_wake_queue(ndev);
1083 
1084 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1085 }
1086 
1087 /**
1088  * ctucan_interrupt() - CAN Isr
1089  * @irq:	irq number
1090  * @dev_id:	device id poniter
1091  *
1092  * This is the CTU CAN FD ISR. It checks for the type of interrupt
1093  * and invokes the corresponding ISR.
1094  *
1095  * Return:
1096  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1097  */
1098 static irqreturn_t ctucan_interrupt(int irq, void *dev_id)
1099 {
1100 	struct net_device *ndev = (struct net_device *)dev_id;
1101 	struct ctucan_priv *priv = netdev_priv(ndev);
1102 	u32 isr, icr;
1103 	u32 imask;
1104 	int irq_loops;
1105 
1106 	for (irq_loops = 0; irq_loops < 10000; irq_loops++) {
1107 		/* Get the interrupt status */
1108 		isr = ctucan_read32(priv, CTUCANFD_INT_STAT);
1109 
1110 		if (!isr)
1111 			return irq_loops ? IRQ_HANDLED : IRQ_NONE;
1112 
1113 		/* Receive Buffer Not Empty Interrupt */
1114 		if (FIELD_GET(REG_INT_STAT_RBNEI, isr)) {
1115 			ctucan_netdev_dbg(ndev, "RXBNEI\n");
1116 			/* Mask RXBNEI the first, then clear interrupt and schedule NAPI. Even if
1117 			 * another IRQ fires, RBNEI will always be 0 (masked).
1118 			 */
1119 			icr = REG_INT_STAT_RBNEI;
1120 			ctucan_write32(priv, CTUCANFD_INT_MASK_SET, icr);
1121 			ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1122 			napi_schedule(&priv->napi);
1123 		}
1124 
1125 		/* TXT Buffer HW Command Interrupt */
1126 		if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1127 			ctucan_netdev_dbg(ndev, "TXBHCI\n");
1128 			/* Cleared inside */
1129 			ctucan_tx_interrupt(ndev);
1130 		}
1131 
1132 		/* Error interrupts */
1133 		if (FIELD_GET(REG_INT_STAT_EWLI, isr) ||
1134 		    FIELD_GET(REG_INT_STAT_FCSI, isr) ||
1135 		    FIELD_GET(REG_INT_STAT_ALI, isr)) {
1136 			icr = isr & (REG_INT_STAT_EWLI | REG_INT_STAT_FCSI | REG_INT_STAT_ALI);
1137 
1138 			ctucan_netdev_dbg(ndev, "some ERR interrupt: clearing 0x%08x\n", icr);
1139 			ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1140 			ctucan_err_interrupt(ndev, isr);
1141 		}
1142 		/* Ignore RI, TI, LFI, RFI, BSI */
1143 	}
1144 
1145 	netdev_err(ndev, "%s: stuck interrupt (isr=0x%08x), stopping\n", __func__, isr);
1146 
1147 	if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1148 		int i;
1149 
1150 		netdev_err(ndev, "txb_head=0x%08x txb_tail=0x%08x\n",
1151 			   priv->txb_head, priv->txb_tail);
1152 		for (i = 0; i < priv->ntxbufs; i++) {
1153 			u32 status = ctucan_get_tx_status(priv, i);
1154 
1155 			netdev_err(ndev, "txb[%d] txb status=0x%08x\n", i, status);
1156 		}
1157 	}
1158 
1159 	imask = 0xffffffff;
1160 	ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, imask);
1161 	ctucan_write32(priv, CTUCANFD_INT_MASK_SET, imask);
1162 
1163 	return IRQ_HANDLED;
1164 }
1165 
1166 /**
1167  * ctucan_chip_stop() - Driver stop routine
1168  * @ndev:	Pointer to net_device structure
1169  *
1170  * This is the drivers stop routine. It will disable the
1171  * interrupts and disable the controller.
1172  */
1173 static void ctucan_chip_stop(struct net_device *ndev)
1174 {
1175 	struct ctucan_priv *priv = netdev_priv(ndev);
1176 	u32 mask = 0xffffffff;
1177 	u32 mode;
1178 
1179 	/* Disable interrupts and disable CAN */
1180 	ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, mask);
1181 	ctucan_write32(priv, CTUCANFD_INT_MASK_SET, mask);
1182 	mode = ctucan_read32(priv, CTUCANFD_MODE);
1183 	mode &= ~REG_MODE_ENA;
1184 	ctucan_write32(priv, CTUCANFD_MODE, mode);
1185 
1186 	priv->can.state = CAN_STATE_STOPPED;
1187 }
1188 
1189 /**
1190  * ctucan_open() - Driver open routine
1191  * @ndev:	Pointer to net_device structure
1192  *
1193  * This is the driver open routine.
1194  * Return: 0 on success and failure value on error
1195  */
1196 static int ctucan_open(struct net_device *ndev)
1197 {
1198 	struct ctucan_priv *priv = netdev_priv(ndev);
1199 	int ret;
1200 
1201 	ret = pm_runtime_get_sync(priv->dev);
1202 	if (ret < 0) {
1203 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1204 			   __func__, ret);
1205 		pm_runtime_put_noidle(priv->dev);
1206 		return ret;
1207 	}
1208 
1209 	ret = ctucan_reset(ndev);
1210 	if (ret < 0)
1211 		goto err_reset;
1212 
1213 	/* Common open */
1214 	ret = open_candev(ndev);
1215 	if (ret) {
1216 		netdev_warn(ndev, "open_candev failed!\n");
1217 		goto err_open;
1218 	}
1219 
1220 	ret = request_irq(ndev->irq, ctucan_interrupt, priv->irq_flags, ndev->name, ndev);
1221 	if (ret < 0) {
1222 		netdev_err(ndev, "irq allocation for CAN failed\n");
1223 		goto err_irq;
1224 	}
1225 
1226 	ret = ctucan_chip_start(ndev);
1227 	if (ret < 0) {
1228 		netdev_err(ndev, "ctucan_chip_start failed!\n");
1229 		goto err_chip_start;
1230 	}
1231 
1232 	netdev_info(ndev, "ctu_can_fd device registered\n");
1233 	napi_enable(&priv->napi);
1234 	netif_start_queue(ndev);
1235 
1236 	return 0;
1237 
1238 err_chip_start:
1239 	free_irq(ndev->irq, ndev);
1240 err_irq:
1241 	close_candev(ndev);
1242 err_open:
1243 err_reset:
1244 	pm_runtime_put(priv->dev);
1245 
1246 	return ret;
1247 }
1248 
1249 /**
1250  * ctucan_close() - Driver close routine
1251  * @ndev:	Pointer to net_device structure
1252  *
1253  * Return: 0 always
1254  */
1255 static int ctucan_close(struct net_device *ndev)
1256 {
1257 	struct ctucan_priv *priv = netdev_priv(ndev);
1258 
1259 	netif_stop_queue(ndev);
1260 	napi_disable(&priv->napi);
1261 	ctucan_chip_stop(ndev);
1262 	free_irq(ndev->irq, ndev);
1263 	close_candev(ndev);
1264 
1265 	pm_runtime_put(priv->dev);
1266 
1267 	return 0;
1268 }
1269 
1270 /**
1271  * ctucan_get_berr_counter() - error counter routine
1272  * @ndev:	Pointer to net_device structure
1273  * @bec:	Pointer to can_berr_counter structure
1274  *
1275  * This is the driver error counter routine.
1276  * Return: 0 on success and failure value on error
1277  */
1278 static int ctucan_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec)
1279 {
1280 	struct ctucan_priv *priv = netdev_priv(ndev);
1281 	int ret;
1282 
1283 	ret = pm_runtime_get_sync(priv->dev);
1284 	if (ret < 0) {
1285 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", __func__, ret);
1286 		pm_runtime_put_noidle(priv->dev);
1287 		return ret;
1288 	}
1289 
1290 	ctucan_get_rec_tec(priv, bec);
1291 	pm_runtime_put(priv->dev);
1292 
1293 	return 0;
1294 }
1295 
1296 static const struct net_device_ops ctucan_netdev_ops = {
1297 	.ndo_open	= ctucan_open,
1298 	.ndo_stop	= ctucan_close,
1299 	.ndo_start_xmit	= ctucan_start_xmit,
1300 	.ndo_change_mtu	= can_change_mtu,
1301 };
1302 
1303 int ctucan_suspend(struct device *dev)
1304 {
1305 	struct net_device *ndev = dev_get_drvdata(dev);
1306 	struct ctucan_priv *priv = netdev_priv(ndev);
1307 
1308 	if (netif_running(ndev)) {
1309 		netif_stop_queue(ndev);
1310 		netif_device_detach(ndev);
1311 	}
1312 
1313 	priv->can.state = CAN_STATE_SLEEPING;
1314 
1315 	return 0;
1316 }
1317 EXPORT_SYMBOL(ctucan_suspend);
1318 
1319 int ctucan_resume(struct device *dev)
1320 {
1321 	struct net_device *ndev = dev_get_drvdata(dev);
1322 	struct ctucan_priv *priv = netdev_priv(ndev);
1323 
1324 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1325 
1326 	if (netif_running(ndev)) {
1327 		netif_device_attach(ndev);
1328 		netif_start_queue(ndev);
1329 	}
1330 
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL(ctucan_resume);
1334 
1335 int ctucan_probe_common(struct device *dev, void __iomem *addr, int irq, unsigned int ntxbufs,
1336 			unsigned long can_clk_rate, int pm_enable_call,
1337 			void (*set_drvdata_fnc)(struct device *dev, struct net_device *ndev))
1338 {
1339 	struct ctucan_priv *priv;
1340 	struct net_device *ndev;
1341 	int ret;
1342 
1343 	/* Create a CAN device instance */
1344 	ndev = alloc_candev(sizeof(struct ctucan_priv), ntxbufs);
1345 	if (!ndev)
1346 		return -ENOMEM;
1347 
1348 	priv = netdev_priv(ndev);
1349 	spin_lock_init(&priv->tx_lock);
1350 	INIT_LIST_HEAD(&priv->peers_on_pdev);
1351 	priv->ntxbufs = ntxbufs;
1352 	priv->dev = dev;
1353 	priv->can.bittiming_const = &ctu_can_fd_bit_timing_max;
1354 	priv->can.data_bittiming_const = &ctu_can_fd_bit_timing_data_max;
1355 	priv->can.do_set_mode = ctucan_do_set_mode;
1356 
1357 	/* Needed for timing adjustment to be performed as soon as possible */
1358 	priv->can.do_set_bittiming = ctucan_set_bittiming;
1359 	priv->can.do_set_data_bittiming = ctucan_set_data_bittiming;
1360 
1361 	priv->can.do_get_berr_counter = ctucan_get_berr_counter;
1362 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK
1363 					| CAN_CTRLMODE_LISTENONLY
1364 					| CAN_CTRLMODE_FD
1365 					| CAN_CTRLMODE_PRESUME_ACK
1366 					| CAN_CTRLMODE_BERR_REPORTING
1367 					| CAN_CTRLMODE_FD_NON_ISO
1368 					| CAN_CTRLMODE_ONE_SHOT;
1369 	priv->mem_base = addr;
1370 
1371 	/* Get IRQ for the device */
1372 	ndev->irq = irq;
1373 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1374 
1375 	if (set_drvdata_fnc)
1376 		set_drvdata_fnc(dev, ndev);
1377 	SET_NETDEV_DEV(ndev, dev);
1378 	ndev->netdev_ops = &ctucan_netdev_ops;
1379 
1380 	/* Getting the can_clk info */
1381 	if (!can_clk_rate) {
1382 		priv->can_clk = devm_clk_get(dev, NULL);
1383 		if (IS_ERR(priv->can_clk)) {
1384 			dev_err(dev, "Device clock not found.\n");
1385 			ret = PTR_ERR(priv->can_clk);
1386 			goto err_free;
1387 		}
1388 		can_clk_rate = clk_get_rate(priv->can_clk);
1389 	}
1390 
1391 	priv->write_reg = ctucan_write32_le;
1392 	priv->read_reg = ctucan_read32_le;
1393 
1394 	if (pm_enable_call)
1395 		pm_runtime_enable(dev);
1396 	ret = pm_runtime_get_sync(dev);
1397 	if (ret < 0) {
1398 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1399 			   __func__, ret);
1400 		pm_runtime_put_noidle(priv->dev);
1401 		goto err_pmdisable;
1402 	}
1403 
1404 	/* Check for big-endianity and set according IO-accessors */
1405 	if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1406 		priv->write_reg = ctucan_write32_be;
1407 		priv->read_reg = ctucan_read32_be;
1408 		if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1409 			netdev_err(ndev, "CTU_CAN_FD signature not found\n");
1410 			ret = -ENODEV;
1411 			goto err_deviceoff;
1412 		}
1413 	}
1414 
1415 	ret = ctucan_reset(ndev);
1416 	if (ret < 0)
1417 		goto err_deviceoff;
1418 
1419 	priv->can.clock.freq = can_clk_rate;
1420 
1421 	netif_napi_add(ndev, &priv->napi, ctucan_rx_poll, NAPI_POLL_WEIGHT);
1422 
1423 	ret = register_candev(ndev);
1424 	if (ret) {
1425 		dev_err(dev, "fail to register failed (err=%d)\n", ret);
1426 		goto err_deviceoff;
1427 	}
1428 
1429 	pm_runtime_put(dev);
1430 
1431 	netdev_dbg(ndev, "mem_base=0x%p irq=%d clock=%d, no. of txt buffers:%d\n",
1432 		   priv->mem_base, ndev->irq, priv->can.clock.freq, priv->ntxbufs);
1433 
1434 	return 0;
1435 
1436 err_deviceoff:
1437 	pm_runtime_put(priv->dev);
1438 err_pmdisable:
1439 	if (pm_enable_call)
1440 		pm_runtime_disable(dev);
1441 err_free:
1442 	list_del_init(&priv->peers_on_pdev);
1443 	free_candev(ndev);
1444 	return ret;
1445 }
1446 EXPORT_SYMBOL(ctucan_probe_common);
1447 
1448 MODULE_LICENSE("GPL");
1449 MODULE_AUTHOR("Martin Jerabek <martin.jerabek01@gmail.com>");
1450 MODULE_AUTHOR("Pavel Pisa <pisa@cmp.felk.cvut.cz>");
1451 MODULE_AUTHOR("Ondrej Ille <ondrej.ille@gmail.com>");
1452 MODULE_DESCRIPTION("CTU CAN FD interface");
1453