xref: /openbmc/linux/drivers/net/can/c_can/c_can_main.c (revision d2a266fa)
1 /*
2  * CAN bus driver for Bosch C_CAN controller
3  *
4  * Copyright (C) 2010 ST Microelectronics
5  * Bhupesh Sharma <bhupesh.sharma@st.com>
6  *
7  * Borrowed heavily from the C_CAN driver originally written by:
8  * Copyright (C) 2007
9  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10  * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11  *
12  * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13  * written by:
14  * Copyright
15  * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16  * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17  *
18  * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19  * Bosch C_CAN user manual can be obtained from:
20  * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21  * users_manual_c_can.pdf
22  *
23  * This file is licensed under the terms of the GNU General Public
24  * License version 2. This program is licensed "as is" without any
25  * warranty of any kind, whether express or implied.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39 
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44 
45 #include "c_can.h"
46 
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN		11
49 #define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50 
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR		BIT(8)
53 
54 /* control register */
55 #define CONTROL_SWR		BIT(15)
56 #define CONTROL_TEST		BIT(7)
57 #define CONTROL_CCE		BIT(6)
58 #define CONTROL_DISABLE_AR	BIT(5)
59 #define CONTROL_ENABLE_AR	(0 << 5)
60 #define CONTROL_EIE		BIT(3)
61 #define CONTROL_SIE		BIT(2)
62 #define CONTROL_IE		BIT(1)
63 #define CONTROL_INIT		BIT(0)
64 
65 #define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
66 
67 /* test register */
68 #define TEST_RX			BIT(7)
69 #define TEST_TX1		BIT(6)
70 #define TEST_TX2		BIT(5)
71 #define TEST_LBACK		BIT(4)
72 #define TEST_SILENT		BIT(3)
73 #define TEST_BASIC		BIT(2)
74 
75 /* status register */
76 #define STATUS_PDA		BIT(10)
77 #define STATUS_BOFF		BIT(7)
78 #define STATUS_EWARN		BIT(6)
79 #define STATUS_EPASS		BIT(5)
80 #define STATUS_RXOK		BIT(4)
81 #define STATUS_TXOK		BIT(3)
82 
83 /* error counter register */
84 #define ERR_CNT_TEC_MASK	0xff
85 #define ERR_CNT_TEC_SHIFT	0
86 #define ERR_CNT_REC_SHIFT	8
87 #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
88 #define ERR_CNT_RP_SHIFT	15
89 #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
90 
91 /* bit-timing register */
92 #define BTR_BRP_MASK		0x3f
93 #define BTR_BRP_SHIFT		0
94 #define BTR_SJW_SHIFT		6
95 #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
96 #define BTR_TSEG1_SHIFT		8
97 #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
98 #define BTR_TSEG2_SHIFT		12
99 #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
100 
101 /* interrupt register */
102 #define INT_STS_PENDING		0x8000
103 
104 /* brp extension register */
105 #define BRP_EXT_BRPE_MASK	0x0f
106 #define BRP_EXT_BRPE_SHIFT	0
107 
108 /* IFx command request */
109 #define IF_COMR_BUSY		BIT(15)
110 
111 /* IFx command mask */
112 #define IF_COMM_WR		BIT(7)
113 #define IF_COMM_MASK		BIT(6)
114 #define IF_COMM_ARB		BIT(5)
115 #define IF_COMM_CONTROL		BIT(4)
116 #define IF_COMM_CLR_INT_PND	BIT(3)
117 #define IF_COMM_TXRQST		BIT(2)
118 #define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
119 #define IF_COMM_DATAA		BIT(1)
120 #define IF_COMM_DATAB		BIT(0)
121 
122 /* TX buffer setup */
123 #define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
124 				 IF_COMM_TXRQST |		 \
125 				 IF_COMM_DATAA | IF_COMM_DATAB)
126 
127 /* For the low buffers we clear the interrupt bit, but keep newdat */
128 #define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
129 				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
130 				 IF_COMM_DATAA | IF_COMM_DATAB)
131 
132 /* For the high buffers we clear the interrupt bit and newdat */
133 #define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
134 
135 /* Receive setup of message objects */
136 #define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
137 
138 /* Invalidation of message objects */
139 #define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
140 
141 /* IFx arbitration */
142 #define IF_ARB_MSGVAL		BIT(31)
143 #define IF_ARB_MSGXTD		BIT(30)
144 #define IF_ARB_TRANSMIT		BIT(29)
145 
146 /* IFx message control */
147 #define IF_MCONT_NEWDAT		BIT(15)
148 #define IF_MCONT_MSGLST		BIT(14)
149 #define IF_MCONT_INTPND		BIT(13)
150 #define IF_MCONT_UMASK		BIT(12)
151 #define IF_MCONT_TXIE		BIT(11)
152 #define IF_MCONT_RXIE		BIT(10)
153 #define IF_MCONT_RMTEN		BIT(9)
154 #define IF_MCONT_TXRQST		BIT(8)
155 #define IF_MCONT_EOB		BIT(7)
156 #define IF_MCONT_DLC_MASK	0xf
157 
158 #define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
159 #define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
160 
161 #define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
162 
163 /* Use IF1 for RX and IF2 for TX */
164 #define IF_RX			0
165 #define IF_TX			1
166 
167 /* minimum timeout for checking BUSY status */
168 #define MIN_TIMEOUT_VALUE	6
169 
170 /* Wait for ~1 sec for INIT bit */
171 #define INIT_WAIT_MS		1000
172 
173 /* c_can lec values */
174 enum c_can_lec_type {
175 	LEC_NO_ERROR = 0,
176 	LEC_STUFF_ERROR,
177 	LEC_FORM_ERROR,
178 	LEC_ACK_ERROR,
179 	LEC_BIT1_ERROR,
180 	LEC_BIT0_ERROR,
181 	LEC_CRC_ERROR,
182 	LEC_UNUSED,
183 	LEC_MASK = LEC_UNUSED,
184 };
185 
186 /* c_can error types:
187  * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
188  */
189 enum c_can_bus_error_types {
190 	C_CAN_NO_ERROR = 0,
191 	C_CAN_BUS_OFF,
192 	C_CAN_ERROR_WARNING,
193 	C_CAN_ERROR_PASSIVE,
194 };
195 
196 static const struct can_bittiming_const c_can_bittiming_const = {
197 	.name = KBUILD_MODNAME,
198 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
199 	.tseg1_max = 16,
200 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
201 	.tseg2_max = 8,
202 	.sjw_max = 4,
203 	.brp_min = 1,
204 	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
205 	.brp_inc = 1,
206 };
207 
208 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
209 {
210 	if (priv->device)
211 		pm_runtime_get_sync(priv->device);
212 }
213 
214 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
215 {
216 	if (priv->device)
217 		pm_runtime_put_sync(priv->device);
218 }
219 
220 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
221 {
222 	if (priv->raminit)
223 		priv->raminit(priv, enable);
224 }
225 
226 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
227 {
228 	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
229 
230 	if (enable)
231 		ctrl |= CONTROL_IRQMSK;
232 
233 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
234 }
235 
236 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
237 {
238 	struct c_can_priv *priv = netdev_priv(dev);
239 	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
240 
241 	priv->write_reg32(priv, reg, (cmd << 16) | obj);
242 
243 	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
244 		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
245 			return;
246 		udelay(1);
247 	}
248 	netdev_err(dev, "Updating object timed out\n");
249 }
250 
251 static inline void c_can_object_get(struct net_device *dev, int iface,
252 				    u32 obj, u32 cmd)
253 {
254 	c_can_obj_update(dev, iface, cmd, obj);
255 }
256 
257 static inline void c_can_object_put(struct net_device *dev, int iface,
258 				    u32 obj, u32 cmd)
259 {
260 	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
261 }
262 
263 /* Note: According to documentation clearing TXIE while MSGVAL is set
264  * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
265  * load significantly.
266  */
267 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
268 {
269 	struct c_can_priv *priv = netdev_priv(dev);
270 
271 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
272 	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
273 }
274 
275 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
276 {
277 	struct c_can_priv *priv = netdev_priv(dev);
278 
279 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
280 	c_can_inval_tx_object(dev, iface, obj);
281 }
282 
283 static void c_can_setup_tx_object(struct net_device *dev, int iface,
284 				  struct can_frame *frame, int idx)
285 {
286 	struct c_can_priv *priv = netdev_priv(dev);
287 	u16 ctrl = IF_MCONT_TX | frame->len;
288 	bool rtr = frame->can_id & CAN_RTR_FLAG;
289 	u32 arb = IF_ARB_MSGVAL;
290 	int i;
291 
292 	if (frame->can_id & CAN_EFF_FLAG) {
293 		arb |= frame->can_id & CAN_EFF_MASK;
294 		arb |= IF_ARB_MSGXTD;
295 	} else {
296 		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
297 	}
298 
299 	if (!rtr)
300 		arb |= IF_ARB_TRANSMIT;
301 
302 	/* If we change the DIR bit, we need to invalidate the buffer
303 	 * first, i.e. clear the MSGVAL flag in the arbiter.
304 	 */
305 	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
306 		u32 obj = idx + priv->msg_obj_tx_first;
307 
308 		c_can_inval_msg_object(dev, iface, obj);
309 		change_bit(idx, &priv->tx_dir);
310 	}
311 
312 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
313 
314 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
315 
316 	if (priv->type == BOSCH_D_CAN) {
317 		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
318 
319 		for (i = 0; i < frame->len; i += 4, dreg += 2) {
320 			data = (u32)frame->data[i];
321 			data |= (u32)frame->data[i + 1] << 8;
322 			data |= (u32)frame->data[i + 2] << 16;
323 			data |= (u32)frame->data[i + 3] << 24;
324 			priv->write_reg32(priv, dreg, data);
325 		}
326 	} else {
327 		for (i = 0; i < frame->len; i += 2) {
328 			priv->write_reg(priv,
329 					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
330 					frame->data[i] |
331 					(frame->data[i + 1] << 8));
332 		}
333 	}
334 }
335 
336 static int c_can_handle_lost_msg_obj(struct net_device *dev,
337 				     int iface, int objno, u32 ctrl)
338 {
339 	struct net_device_stats *stats = &dev->stats;
340 	struct c_can_priv *priv = netdev_priv(dev);
341 	struct can_frame *frame;
342 	struct sk_buff *skb;
343 
344 	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
345 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
346 	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
347 
348 	stats->rx_errors++;
349 	stats->rx_over_errors++;
350 
351 	/* create an error msg */
352 	skb = alloc_can_err_skb(dev, &frame);
353 	if (unlikely(!skb))
354 		return 0;
355 
356 	frame->can_id |= CAN_ERR_CRTL;
357 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
358 
359 	netif_receive_skb(skb);
360 	return 1;
361 }
362 
363 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
364 {
365 	struct net_device_stats *stats = &dev->stats;
366 	struct c_can_priv *priv = netdev_priv(dev);
367 	struct can_frame *frame;
368 	struct sk_buff *skb;
369 	u32 arb, data;
370 
371 	skb = alloc_can_skb(dev, &frame);
372 	if (!skb) {
373 		stats->rx_dropped++;
374 		return -ENOMEM;
375 	}
376 
377 	frame->len = can_cc_dlc2len(ctrl & 0x0F);
378 
379 	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
380 
381 	if (arb & IF_ARB_MSGXTD)
382 		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
383 	else
384 		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
385 
386 	if (arb & IF_ARB_TRANSMIT) {
387 		frame->can_id |= CAN_RTR_FLAG;
388 	} else {
389 		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
390 
391 		if (priv->type == BOSCH_D_CAN) {
392 			for (i = 0; i < frame->len; i += 4, dreg += 2) {
393 				data = priv->read_reg32(priv, dreg);
394 				frame->data[i] = data;
395 				frame->data[i + 1] = data >> 8;
396 				frame->data[i + 2] = data >> 16;
397 				frame->data[i + 3] = data >> 24;
398 			}
399 		} else {
400 			for (i = 0; i < frame->len; i += 2, dreg++) {
401 				data = priv->read_reg(priv, dreg);
402 				frame->data[i] = data;
403 				frame->data[i + 1] = data >> 8;
404 			}
405 		}
406 	}
407 
408 	stats->rx_packets++;
409 	stats->rx_bytes += frame->len;
410 
411 	netif_receive_skb(skb);
412 	return 0;
413 }
414 
415 static void c_can_setup_receive_object(struct net_device *dev, int iface,
416 				       u32 obj, u32 mask, u32 id, u32 mcont)
417 {
418 	struct c_can_priv *priv = netdev_priv(dev);
419 
420 	mask |= BIT(29);
421 	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
422 
423 	id |= IF_ARB_MSGVAL;
424 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
425 
426 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
427 	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
428 }
429 
430 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
431 				    struct net_device *dev)
432 {
433 	struct can_frame *frame = (struct can_frame *)skb->data;
434 	struct c_can_priv *priv = netdev_priv(dev);
435 	u32 idx, obj;
436 
437 	if (can_dropped_invalid_skb(dev, skb))
438 		return NETDEV_TX_OK;
439 	/* This is not a FIFO. C/D_CAN sends out the buffers
440 	 * prioritized. The lowest buffer number wins.
441 	 */
442 	idx = fls(atomic_read(&priv->tx_active));
443 	obj = idx + priv->msg_obj_tx_first;
444 
445 	/* If this is the last buffer, stop the xmit queue */
446 	if (idx == priv->msg_obj_tx_num - 1)
447 		netif_stop_queue(dev);
448 	/* Store the message in the interface so we can call
449 	 * can_put_echo_skb(). We must do this before we enable
450 	 * transmit as we might race against do_tx().
451 	 */
452 	c_can_setup_tx_object(dev, IF_TX, frame, idx);
453 	priv->dlc[idx] = frame->len;
454 	can_put_echo_skb(skb, dev, idx, 0);
455 
456 	/* Update the active bits */
457 	atomic_add(BIT(idx), &priv->tx_active);
458 	/* Start transmission */
459 	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
460 
461 	return NETDEV_TX_OK;
462 }
463 
464 static int c_can_wait_for_ctrl_init(struct net_device *dev,
465 				    struct c_can_priv *priv, u32 init)
466 {
467 	int retry = 0;
468 
469 	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
470 		udelay(10);
471 		if (retry++ > 1000) {
472 			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
473 			return -EIO;
474 		}
475 	}
476 	return 0;
477 }
478 
479 static int c_can_set_bittiming(struct net_device *dev)
480 {
481 	unsigned int reg_btr, reg_brpe, ctrl_save;
482 	u8 brp, brpe, sjw, tseg1, tseg2;
483 	u32 ten_bit_brp;
484 	struct c_can_priv *priv = netdev_priv(dev);
485 	const struct can_bittiming *bt = &priv->can.bittiming;
486 	int res;
487 
488 	/* c_can provides a 6-bit brp and 4-bit brpe fields */
489 	ten_bit_brp = bt->brp - 1;
490 	brp = ten_bit_brp & BTR_BRP_MASK;
491 	brpe = ten_bit_brp >> 6;
492 
493 	sjw = bt->sjw - 1;
494 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
495 	tseg2 = bt->phase_seg2 - 1;
496 	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
497 			(tseg2 << BTR_TSEG2_SHIFT);
498 	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
499 
500 	netdev_info(dev,
501 		    "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
502 
503 	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
504 	ctrl_save &= ~CONTROL_INIT;
505 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
506 	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
507 	if (res)
508 		return res;
509 
510 	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
511 	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
512 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
513 
514 	return c_can_wait_for_ctrl_init(dev, priv, 0);
515 }
516 
517 /* Configure C_CAN message objects for Tx and Rx purposes:
518  * C_CAN provides a total of 32 message objects that can be configured
519  * either for Tx or Rx purposes. Here the first 16 message objects are used as
520  * a reception FIFO. The end of reception FIFO is signified by the EoB bit
521  * being SET. The remaining 16 message objects are kept aside for Tx purposes.
522  * See user guide document for further details on configuring message
523  * objects.
524  */
525 static void c_can_configure_msg_objects(struct net_device *dev)
526 {
527 	struct c_can_priv *priv = netdev_priv(dev);
528 	int i;
529 
530 	/* first invalidate all message objects */
531 	for (i = priv->msg_obj_rx_first; i <= priv->msg_obj_num; i++)
532 		c_can_inval_msg_object(dev, IF_RX, i);
533 
534 	/* setup receive message objects */
535 	for (i = priv->msg_obj_rx_first; i < priv->msg_obj_rx_last; i++)
536 		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
537 
538 	c_can_setup_receive_object(dev, IF_RX, priv->msg_obj_rx_last, 0, 0,
539 				   IF_MCONT_RCV_EOB);
540 }
541 
542 static int c_can_software_reset(struct net_device *dev)
543 {
544 	struct c_can_priv *priv = netdev_priv(dev);
545 	int retry = 0;
546 
547 	if (priv->type != BOSCH_D_CAN)
548 		return 0;
549 
550 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
551 	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
552 		msleep(20);
553 		if (retry++ > 100) {
554 			netdev_err(dev, "CCTRL: software reset failed\n");
555 			return -EIO;
556 		}
557 	}
558 
559 	return 0;
560 }
561 
562 /* Configure C_CAN chip:
563  * - enable/disable auto-retransmission
564  * - set operating mode
565  * - configure message objects
566  */
567 static int c_can_chip_config(struct net_device *dev)
568 {
569 	struct c_can_priv *priv = netdev_priv(dev);
570 	int err;
571 
572 	err = c_can_software_reset(dev);
573 	if (err)
574 		return err;
575 
576 	/* enable automatic retransmission */
577 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
578 
579 	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
580 	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
581 		/* loopback + silent mode : useful for hot self-test */
582 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
583 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
584 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
585 		/* loopback mode : useful for self-test function */
586 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
587 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
588 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
589 		/* silent mode : bus-monitoring mode */
590 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
591 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
592 	}
593 
594 	/* configure message objects */
595 	c_can_configure_msg_objects(dev);
596 
597 	/* set a `lec` value so that we can check for updates later */
598 	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
599 
600 	/* Clear all internal status */
601 	atomic_set(&priv->tx_active, 0);
602 	priv->tx_dir = 0;
603 
604 	/* set bittiming params */
605 	return c_can_set_bittiming(dev);
606 }
607 
608 static int c_can_start(struct net_device *dev)
609 {
610 	struct c_can_priv *priv = netdev_priv(dev);
611 	int err;
612 	struct pinctrl *p;
613 
614 	/* basic c_can configuration */
615 	err = c_can_chip_config(dev);
616 	if (err)
617 		return err;
618 
619 	/* Setup the command for new messages */
620 	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
621 		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
622 
623 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
624 
625 	/* Attempt to use "active" if available else use "default" */
626 	p = pinctrl_get_select(priv->device, "active");
627 	if (!IS_ERR(p))
628 		pinctrl_put(p);
629 	else
630 		pinctrl_pm_select_default_state(priv->device);
631 
632 	return 0;
633 }
634 
635 static void c_can_stop(struct net_device *dev)
636 {
637 	struct c_can_priv *priv = netdev_priv(dev);
638 
639 	c_can_irq_control(priv, false);
640 
641 	/* put ctrl to init on stop to end ongoing transmission */
642 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
643 
644 	/* deactivate pins */
645 	pinctrl_pm_select_sleep_state(dev->dev.parent);
646 	priv->can.state = CAN_STATE_STOPPED;
647 }
648 
649 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
650 {
651 	struct c_can_priv *priv = netdev_priv(dev);
652 	int err;
653 
654 	switch (mode) {
655 	case CAN_MODE_START:
656 		err = c_can_start(dev);
657 		if (err)
658 			return err;
659 		netif_wake_queue(dev);
660 		c_can_irq_control(priv, true);
661 		break;
662 	default:
663 		return -EOPNOTSUPP;
664 	}
665 
666 	return 0;
667 }
668 
669 static int __c_can_get_berr_counter(const struct net_device *dev,
670 				    struct can_berr_counter *bec)
671 {
672 	unsigned int reg_err_counter;
673 	struct c_can_priv *priv = netdev_priv(dev);
674 
675 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
676 	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
677 				ERR_CNT_REC_SHIFT;
678 	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
679 
680 	return 0;
681 }
682 
683 static int c_can_get_berr_counter(const struct net_device *dev,
684 				  struct can_berr_counter *bec)
685 {
686 	struct c_can_priv *priv = netdev_priv(dev);
687 	int err;
688 
689 	c_can_pm_runtime_get_sync(priv);
690 	err = __c_can_get_berr_counter(dev, bec);
691 	c_can_pm_runtime_put_sync(priv);
692 
693 	return err;
694 }
695 
696 static void c_can_do_tx(struct net_device *dev)
697 {
698 	struct c_can_priv *priv = netdev_priv(dev);
699 	struct net_device_stats *stats = &dev->stats;
700 	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
701 
702 	if (priv->msg_obj_tx_last > 32)
703 		pend = priv->read_reg32(priv, C_CAN_INTPND3_REG);
704 	else
705 		pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
706 	clr = pend;
707 
708 	while ((idx = ffs(pend))) {
709 		idx--;
710 		pend &= ~BIT(idx);
711 		obj = idx + priv->msg_obj_tx_first;
712 
713 		/* We use IF_RX interface instead of IF_TX because we
714 		 * are called from c_can_poll(), which runs inside
715 		 * NAPI. We are not trasmitting.
716 		 */
717 		c_can_inval_tx_object(dev, IF_RX, obj);
718 		can_get_echo_skb(dev, idx, NULL);
719 		bytes += priv->dlc[idx];
720 		pkts++;
721 	}
722 
723 	/* Clear the bits in the tx_active mask */
724 	atomic_sub(clr, &priv->tx_active);
725 
726 	if (clr & BIT(priv->msg_obj_tx_num - 1))
727 		netif_wake_queue(dev);
728 
729 	if (pkts) {
730 		stats->tx_bytes += bytes;
731 		stats->tx_packets += pkts;
732 		can_led_event(dev, CAN_LED_EVENT_TX);
733 	}
734 }
735 
736 /* If we have a gap in the pending bits, that means we either
737  * raced with the hardware or failed to readout all upper
738  * objects in the last run due to quota limit.
739  */
740 static u32 c_can_adjust_pending(u32 pend, u32 rx_mask)
741 {
742 	u32 weight, lasts;
743 
744 	if (pend == rx_mask)
745 		return pend;
746 
747 	/* If the last set bit is larger than the number of pending
748 	 * bits we have a gap.
749 	 */
750 	weight = hweight32(pend);
751 	lasts = fls(pend);
752 
753 	/* If the bits are linear, nothing to do */
754 	if (lasts == weight)
755 		return pend;
756 
757 	/* Find the first set bit after the gap. We walk backwards
758 	 * from the last set bit.
759 	 */
760 	for (lasts--; pend & BIT(lasts - 1); lasts--)
761 		;
762 
763 	return pend & ~GENMASK(lasts - 1, 0);
764 }
765 
766 static inline void c_can_rx_object_get(struct net_device *dev,
767 				       struct c_can_priv *priv, u32 obj)
768 {
769 	c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
770 }
771 
772 static inline void c_can_rx_finalize(struct net_device *dev,
773 				     struct c_can_priv *priv, u32 obj)
774 {
775 	if (priv->type != BOSCH_D_CAN)
776 		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
777 }
778 
779 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
780 			      u32 pend, int quota)
781 {
782 	u32 pkts = 0, ctrl, obj;
783 
784 	while ((obj = ffs(pend)) && quota > 0) {
785 		pend &= ~BIT(obj - 1);
786 
787 		c_can_rx_object_get(dev, priv, obj);
788 		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
789 
790 		if (ctrl & IF_MCONT_MSGLST) {
791 			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
792 
793 			pkts += n;
794 			quota -= n;
795 			continue;
796 		}
797 
798 		/* This really should not happen, but this covers some
799 		 * odd HW behaviour. Do not remove that unless you
800 		 * want to brick your machine.
801 		 */
802 		if (!(ctrl & IF_MCONT_NEWDAT))
803 			continue;
804 
805 		/* read the data from the message object */
806 		c_can_read_msg_object(dev, IF_RX, ctrl);
807 
808 		c_can_rx_finalize(dev, priv, obj);
809 
810 		pkts++;
811 		quota--;
812 	}
813 
814 	return pkts;
815 }
816 
817 static inline u32 c_can_get_pending(struct c_can_priv *priv)
818 {
819 	u32 pend;
820 
821 	if (priv->msg_obj_rx_last > 16)
822 		pend = priv->read_reg32(priv, C_CAN_NEWDAT1_REG);
823 	else
824 		pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
825 
826 	return pend;
827 }
828 
829 /* theory of operation:
830  *
831  * c_can core saves a received CAN message into the first free message
832  * object it finds free (starting with the lowest). Bits NEWDAT and
833  * INTPND are set for this message object indicating that a new message
834  * has arrived.
835  *
836  * We clear the newdat bit right away.
837  *
838  * This can result in packet reordering when the readout is slow.
839  */
840 static int c_can_do_rx_poll(struct net_device *dev, int quota)
841 {
842 	struct c_can_priv *priv = netdev_priv(dev);
843 	u32 pkts = 0, pend = 0, toread, n;
844 
845 	while (quota > 0) {
846 		if (!pend) {
847 			pend = c_can_get_pending(priv);
848 			if (!pend)
849 				break;
850 			/* If the pending field has a gap, handle the
851 			 * bits above the gap first.
852 			 */
853 			toread = c_can_adjust_pending(pend,
854 						      priv->msg_obj_rx_mask);
855 		} else {
856 			toread = pend;
857 		}
858 		/* Remove the bits from pend */
859 		pend &= ~toread;
860 		/* Read the objects */
861 		n = c_can_read_objects(dev, priv, toread, quota);
862 		pkts += n;
863 		quota -= n;
864 	}
865 
866 	if (pkts)
867 		can_led_event(dev, CAN_LED_EVENT_RX);
868 
869 	return pkts;
870 }
871 
872 static int c_can_handle_state_change(struct net_device *dev,
873 				     enum c_can_bus_error_types error_type)
874 {
875 	unsigned int reg_err_counter;
876 	unsigned int rx_err_passive;
877 	struct c_can_priv *priv = netdev_priv(dev);
878 	struct net_device_stats *stats = &dev->stats;
879 	struct can_frame *cf;
880 	struct sk_buff *skb;
881 	struct can_berr_counter bec;
882 
883 	switch (error_type) {
884 	case C_CAN_NO_ERROR:
885 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
886 		break;
887 	case C_CAN_ERROR_WARNING:
888 		/* error warning state */
889 		priv->can.can_stats.error_warning++;
890 		priv->can.state = CAN_STATE_ERROR_WARNING;
891 		break;
892 	case C_CAN_ERROR_PASSIVE:
893 		/* error passive state */
894 		priv->can.can_stats.error_passive++;
895 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
896 		break;
897 	case C_CAN_BUS_OFF:
898 		/* bus-off state */
899 		priv->can.state = CAN_STATE_BUS_OFF;
900 		priv->can.can_stats.bus_off++;
901 		break;
902 	default:
903 		break;
904 	}
905 
906 	/* propagate the error condition to the CAN stack */
907 	skb = alloc_can_err_skb(dev, &cf);
908 	if (unlikely(!skb))
909 		return 0;
910 
911 	__c_can_get_berr_counter(dev, &bec);
912 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
913 	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
914 				ERR_CNT_RP_SHIFT;
915 
916 	switch (error_type) {
917 	case C_CAN_NO_ERROR:
918 		/* error warning state */
919 		cf->can_id |= CAN_ERR_CRTL;
920 		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
921 		cf->data[6] = bec.txerr;
922 		cf->data[7] = bec.rxerr;
923 		break;
924 	case C_CAN_ERROR_WARNING:
925 		/* error warning state */
926 		cf->can_id |= CAN_ERR_CRTL;
927 		cf->data[1] = (bec.txerr > bec.rxerr) ?
928 			CAN_ERR_CRTL_TX_WARNING :
929 			CAN_ERR_CRTL_RX_WARNING;
930 		cf->data[6] = bec.txerr;
931 		cf->data[7] = bec.rxerr;
932 
933 		break;
934 	case C_CAN_ERROR_PASSIVE:
935 		/* error passive state */
936 		cf->can_id |= CAN_ERR_CRTL;
937 		if (rx_err_passive)
938 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
939 		if (bec.txerr > 127)
940 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
941 
942 		cf->data[6] = bec.txerr;
943 		cf->data[7] = bec.rxerr;
944 		break;
945 	case C_CAN_BUS_OFF:
946 		/* bus-off state */
947 		cf->can_id |= CAN_ERR_BUSOFF;
948 		can_bus_off(dev);
949 		break;
950 	default:
951 		break;
952 	}
953 
954 	stats->rx_packets++;
955 	stats->rx_bytes += cf->len;
956 	netif_receive_skb(skb);
957 
958 	return 1;
959 }
960 
961 static int c_can_handle_bus_err(struct net_device *dev,
962 				enum c_can_lec_type lec_type)
963 {
964 	struct c_can_priv *priv = netdev_priv(dev);
965 	struct net_device_stats *stats = &dev->stats;
966 	struct can_frame *cf;
967 	struct sk_buff *skb;
968 
969 	/* early exit if no lec update or no error.
970 	 * no lec update means that no CAN bus event has been detected
971 	 * since CPU wrote 0x7 value to status reg.
972 	 */
973 	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
974 		return 0;
975 
976 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
977 		return 0;
978 
979 	/* common for all type of bus errors */
980 	priv->can.can_stats.bus_error++;
981 	stats->rx_errors++;
982 
983 	/* propagate the error condition to the CAN stack */
984 	skb = alloc_can_err_skb(dev, &cf);
985 	if (unlikely(!skb))
986 		return 0;
987 
988 	/* check for 'last error code' which tells us the
989 	 * type of the last error to occur on the CAN bus
990 	 */
991 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
992 
993 	switch (lec_type) {
994 	case LEC_STUFF_ERROR:
995 		netdev_dbg(dev, "stuff error\n");
996 		cf->data[2] |= CAN_ERR_PROT_STUFF;
997 		break;
998 	case LEC_FORM_ERROR:
999 		netdev_dbg(dev, "form error\n");
1000 		cf->data[2] |= CAN_ERR_PROT_FORM;
1001 		break;
1002 	case LEC_ACK_ERROR:
1003 		netdev_dbg(dev, "ack error\n");
1004 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1005 		break;
1006 	case LEC_BIT1_ERROR:
1007 		netdev_dbg(dev, "bit1 error\n");
1008 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1009 		break;
1010 	case LEC_BIT0_ERROR:
1011 		netdev_dbg(dev, "bit0 error\n");
1012 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1013 		break;
1014 	case LEC_CRC_ERROR:
1015 		netdev_dbg(dev, "CRC error\n");
1016 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1017 		break;
1018 	default:
1019 		break;
1020 	}
1021 
1022 	stats->rx_packets++;
1023 	stats->rx_bytes += cf->len;
1024 	netif_receive_skb(skb);
1025 	return 1;
1026 }
1027 
1028 static int c_can_poll(struct napi_struct *napi, int quota)
1029 {
1030 	struct net_device *dev = napi->dev;
1031 	struct c_can_priv *priv = netdev_priv(dev);
1032 	u16 curr, last = priv->last_status;
1033 	int work_done = 0;
1034 
1035 	/* Only read the status register if a status interrupt was pending */
1036 	if (atomic_xchg(&priv->sie_pending, 0)) {
1037 		priv->last_status = priv->read_reg(priv, C_CAN_STS_REG);
1038 		curr = priv->last_status;
1039 		/* Ack status on C_CAN. D_CAN is self clearing */
1040 		if (priv->type != BOSCH_D_CAN)
1041 			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1042 	} else {
1043 		/* no change detected ... */
1044 		curr = last;
1045 	}
1046 
1047 	/* handle state changes */
1048 	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1049 		netdev_dbg(dev, "entered error warning state\n");
1050 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1051 	}
1052 
1053 	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1054 		netdev_dbg(dev, "entered error passive state\n");
1055 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1056 	}
1057 
1058 	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1059 		netdev_dbg(dev, "entered bus off state\n");
1060 		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1061 		goto end;
1062 	}
1063 
1064 	/* handle bus recovery events */
1065 	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1066 		netdev_dbg(dev, "left bus off state\n");
1067 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1068 	}
1069 
1070 	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1071 		netdev_dbg(dev, "left error passive state\n");
1072 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1073 	}
1074 
1075 	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1076 		netdev_dbg(dev, "left error warning state\n");
1077 		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1078 	}
1079 
1080 	/* handle lec errors on the bus */
1081 	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1082 
1083 	/* Handle Tx/Rx events. We do this unconditionally */
1084 	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1085 	c_can_do_tx(dev);
1086 
1087 end:
1088 	if (work_done < quota) {
1089 		napi_complete_done(napi, work_done);
1090 		/* enable all IRQs if we are not in bus off state */
1091 		if (priv->can.state != CAN_STATE_BUS_OFF)
1092 			c_can_irq_control(priv, true);
1093 	}
1094 
1095 	return work_done;
1096 }
1097 
1098 static irqreturn_t c_can_isr(int irq, void *dev_id)
1099 {
1100 	struct net_device *dev = (struct net_device *)dev_id;
1101 	struct c_can_priv *priv = netdev_priv(dev);
1102 	int reg_int;
1103 
1104 	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1105 	if (!reg_int)
1106 		return IRQ_NONE;
1107 
1108 	/* save for later use */
1109 	if (reg_int & INT_STS_PENDING)
1110 		atomic_set(&priv->sie_pending, 1);
1111 
1112 	/* disable all interrupts and schedule the NAPI */
1113 	c_can_irq_control(priv, false);
1114 	napi_schedule(&priv->napi);
1115 
1116 	return IRQ_HANDLED;
1117 }
1118 
1119 static int c_can_open(struct net_device *dev)
1120 {
1121 	int err;
1122 	struct c_can_priv *priv = netdev_priv(dev);
1123 
1124 	c_can_pm_runtime_get_sync(priv);
1125 	c_can_reset_ram(priv, true);
1126 
1127 	/* open the can device */
1128 	err = open_candev(dev);
1129 	if (err) {
1130 		netdev_err(dev, "failed to open can device\n");
1131 		goto exit_open_fail;
1132 	}
1133 
1134 	/* register interrupt handler */
1135 	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1136 			  dev);
1137 	if (err < 0) {
1138 		netdev_err(dev, "failed to request interrupt\n");
1139 		goto exit_irq_fail;
1140 	}
1141 
1142 	/* start the c_can controller */
1143 	err = c_can_start(dev);
1144 	if (err)
1145 		goto exit_start_fail;
1146 
1147 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1148 
1149 	napi_enable(&priv->napi);
1150 	/* enable status change, error and module interrupts */
1151 	c_can_irq_control(priv, true);
1152 	netif_start_queue(dev);
1153 
1154 	return 0;
1155 
1156 exit_start_fail:
1157 	free_irq(dev->irq, dev);
1158 exit_irq_fail:
1159 	close_candev(dev);
1160 exit_open_fail:
1161 	c_can_reset_ram(priv, false);
1162 	c_can_pm_runtime_put_sync(priv);
1163 	return err;
1164 }
1165 
1166 static int c_can_close(struct net_device *dev)
1167 {
1168 	struct c_can_priv *priv = netdev_priv(dev);
1169 
1170 	netif_stop_queue(dev);
1171 	napi_disable(&priv->napi);
1172 	c_can_stop(dev);
1173 	free_irq(dev->irq, dev);
1174 	close_candev(dev);
1175 
1176 	c_can_reset_ram(priv, false);
1177 	c_can_pm_runtime_put_sync(priv);
1178 
1179 	can_led_event(dev, CAN_LED_EVENT_STOP);
1180 
1181 	return 0;
1182 }
1183 
1184 struct net_device *alloc_c_can_dev(int msg_obj_num)
1185 {
1186 	struct net_device *dev;
1187 	struct c_can_priv *priv;
1188 	int msg_obj_tx_num = msg_obj_num / 2;
1189 
1190 	dev = alloc_candev(struct_size(priv, dlc, msg_obj_tx_num),
1191 			   msg_obj_tx_num);
1192 	if (!dev)
1193 		return NULL;
1194 
1195 	priv = netdev_priv(dev);
1196 	priv->msg_obj_num = msg_obj_num;
1197 	priv->msg_obj_rx_num = msg_obj_num - msg_obj_tx_num;
1198 	priv->msg_obj_rx_first = 1;
1199 	priv->msg_obj_rx_last =
1200 		priv->msg_obj_rx_first + priv->msg_obj_rx_num - 1;
1201 	priv->msg_obj_rx_mask = GENMASK(priv->msg_obj_rx_num - 1, 0);
1202 
1203 	priv->msg_obj_tx_num = msg_obj_tx_num;
1204 	priv->msg_obj_tx_first = priv->msg_obj_rx_last + 1;
1205 	priv->msg_obj_tx_last =
1206 		priv->msg_obj_tx_first + priv->msg_obj_tx_num - 1;
1207 
1208 	netif_napi_add(dev, &priv->napi, c_can_poll, priv->msg_obj_rx_num);
1209 
1210 	priv->dev = dev;
1211 	priv->can.bittiming_const = &c_can_bittiming_const;
1212 	priv->can.do_set_mode = c_can_set_mode;
1213 	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1214 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1215 					CAN_CTRLMODE_LISTENONLY |
1216 					CAN_CTRLMODE_BERR_REPORTING;
1217 
1218 	return dev;
1219 }
1220 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1221 
1222 #ifdef CONFIG_PM
1223 int c_can_power_down(struct net_device *dev)
1224 {
1225 	u32 val;
1226 	unsigned long time_out;
1227 	struct c_can_priv *priv = netdev_priv(dev);
1228 
1229 	if (!(dev->flags & IFF_UP))
1230 		return 0;
1231 
1232 	WARN_ON(priv->type != BOSCH_D_CAN);
1233 
1234 	/* set PDR value so the device goes to power down mode */
1235 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1236 	val |= CONTROL_EX_PDR;
1237 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1238 
1239 	/* Wait for the PDA bit to get set */
1240 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1241 	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1242 	       time_after(time_out, jiffies))
1243 		cpu_relax();
1244 
1245 	if (time_after(jiffies, time_out))
1246 		return -ETIMEDOUT;
1247 
1248 	c_can_stop(dev);
1249 
1250 	c_can_reset_ram(priv, false);
1251 	c_can_pm_runtime_put_sync(priv);
1252 
1253 	return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(c_can_power_down);
1256 
1257 int c_can_power_up(struct net_device *dev)
1258 {
1259 	u32 val;
1260 	unsigned long time_out;
1261 	struct c_can_priv *priv = netdev_priv(dev);
1262 	int ret;
1263 
1264 	if (!(dev->flags & IFF_UP))
1265 		return 0;
1266 
1267 	WARN_ON(priv->type != BOSCH_D_CAN);
1268 
1269 	c_can_pm_runtime_get_sync(priv);
1270 	c_can_reset_ram(priv, true);
1271 
1272 	/* Clear PDR and INIT bits */
1273 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1274 	val &= ~CONTROL_EX_PDR;
1275 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1276 	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1277 	val &= ~CONTROL_INIT;
1278 	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1279 
1280 	/* Wait for the PDA bit to get clear */
1281 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1282 	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1283 	       time_after(time_out, jiffies))
1284 		cpu_relax();
1285 
1286 	if (time_after(jiffies, time_out)) {
1287 		ret = -ETIMEDOUT;
1288 		goto err_out;
1289 	}
1290 
1291 	ret = c_can_start(dev);
1292 	if (ret)
1293 		goto err_out;
1294 
1295 	c_can_irq_control(priv, true);
1296 
1297 	return 0;
1298 
1299 err_out:
1300 	c_can_reset_ram(priv, false);
1301 	c_can_pm_runtime_put_sync(priv);
1302 
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(c_can_power_up);
1306 #endif
1307 
1308 void free_c_can_dev(struct net_device *dev)
1309 {
1310 	struct c_can_priv *priv = netdev_priv(dev);
1311 
1312 	netif_napi_del(&priv->napi);
1313 	free_candev(dev);
1314 }
1315 EXPORT_SYMBOL_GPL(free_c_can_dev);
1316 
1317 static const struct net_device_ops c_can_netdev_ops = {
1318 	.ndo_open = c_can_open,
1319 	.ndo_stop = c_can_close,
1320 	.ndo_start_xmit = c_can_start_xmit,
1321 	.ndo_change_mtu = can_change_mtu,
1322 };
1323 
1324 int register_c_can_dev(struct net_device *dev)
1325 {
1326 	int err;
1327 
1328 	/* Deactivate pins to prevent DRA7 DCAN IP from being
1329 	 * stuck in transition when module is disabled.
1330 	 * Pins are activated in c_can_start() and deactivated
1331 	 * in c_can_stop()
1332 	 */
1333 	pinctrl_pm_select_sleep_state(dev->dev.parent);
1334 
1335 	dev->flags |= IFF_ECHO;	/* we support local echo */
1336 	dev->netdev_ops = &c_can_netdev_ops;
1337 	c_can_set_ethtool_ops(dev);
1338 
1339 	err = register_candev(dev);
1340 	if (!err)
1341 		devm_can_led_init(dev);
1342 	return err;
1343 }
1344 EXPORT_SYMBOL_GPL(register_c_can_dev);
1345 
1346 void unregister_c_can_dev(struct net_device *dev)
1347 {
1348 	unregister_candev(dev);
1349 }
1350 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1351 
1352 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1353 MODULE_LICENSE("GPL v2");
1354 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1355