xref: /openbmc/linux/drivers/net/can/c_can/c_can_main.c (revision 603c09f2)
1 /*
2  * CAN bus driver for Bosch C_CAN controller
3  *
4  * Copyright (C) 2010 ST Microelectronics
5  * Bhupesh Sharma <bhupesh.sharma@st.com>
6  *
7  * Borrowed heavily from the C_CAN driver originally written by:
8  * Copyright (C) 2007
9  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10  * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11  *
12  * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13  * written by:
14  * Copyright
15  * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16  * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17  *
18  * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19  * Bosch C_CAN user manual can be obtained from:
20  * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21  * users_manual_c_can.pdf
22  *
23  * This file is licensed under the terms of the GNU General Public
24  * License version 2. This program is licensed "as is" without any
25  * warranty of any kind, whether express or implied.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39 
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 
44 #include "c_can.h"
45 
46 /* Number of interface registers */
47 #define IF_ENUM_REG_LEN		11
48 #define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49 
50 /* control extension register D_CAN specific */
51 #define CONTROL_EX_PDR		BIT(8)
52 
53 /* control register */
54 #define CONTROL_SWR		BIT(15)
55 #define CONTROL_TEST		BIT(7)
56 #define CONTROL_CCE		BIT(6)
57 #define CONTROL_DISABLE_AR	BIT(5)
58 #define CONTROL_ENABLE_AR	(0 << 5)
59 #define CONTROL_EIE		BIT(3)
60 #define CONTROL_SIE		BIT(2)
61 #define CONTROL_IE		BIT(1)
62 #define CONTROL_INIT		BIT(0)
63 
64 #define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
65 
66 /* test register */
67 #define TEST_RX			BIT(7)
68 #define TEST_TX1		BIT(6)
69 #define TEST_TX2		BIT(5)
70 #define TEST_LBACK		BIT(4)
71 #define TEST_SILENT		BIT(3)
72 #define TEST_BASIC		BIT(2)
73 
74 /* status register */
75 #define STATUS_PDA		BIT(10)
76 #define STATUS_BOFF		BIT(7)
77 #define STATUS_EWARN		BIT(6)
78 #define STATUS_EPASS		BIT(5)
79 #define STATUS_RXOK		BIT(4)
80 #define STATUS_TXOK		BIT(3)
81 
82 /* error counter register */
83 #define ERR_CNT_TEC_MASK	0xff
84 #define ERR_CNT_TEC_SHIFT	0
85 #define ERR_CNT_REC_SHIFT	8
86 #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
87 #define ERR_CNT_RP_SHIFT	15
88 #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
89 
90 /* bit-timing register */
91 #define BTR_BRP_MASK		0x3f
92 #define BTR_BRP_SHIFT		0
93 #define BTR_SJW_SHIFT		6
94 #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
95 #define BTR_TSEG1_SHIFT		8
96 #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
97 #define BTR_TSEG2_SHIFT		12
98 #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
99 
100 /* interrupt register */
101 #define INT_STS_PENDING		0x8000
102 
103 /* brp extension register */
104 #define BRP_EXT_BRPE_MASK	0x0f
105 #define BRP_EXT_BRPE_SHIFT	0
106 
107 /* IFx command request */
108 #define IF_COMR_BUSY		BIT(15)
109 
110 /* IFx command mask */
111 #define IF_COMM_WR		BIT(7)
112 #define IF_COMM_MASK		BIT(6)
113 #define IF_COMM_ARB		BIT(5)
114 #define IF_COMM_CONTROL		BIT(4)
115 #define IF_COMM_CLR_INT_PND	BIT(3)
116 #define IF_COMM_TXRQST		BIT(2)
117 #define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
118 #define IF_COMM_DATAA		BIT(1)
119 #define IF_COMM_DATAB		BIT(0)
120 
121 /* TX buffer setup */
122 #define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
123 				 IF_COMM_TXRQST |		 \
124 				 IF_COMM_DATAA | IF_COMM_DATAB)
125 
126 /* For the low buffers we clear the interrupt bit, but keep newdat */
127 #define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
128 				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
129 				 IF_COMM_DATAA | IF_COMM_DATAB)
130 
131 /* For the high buffers we clear the interrupt bit and newdat */
132 #define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
133 
134 /* Receive setup of message objects */
135 #define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
136 
137 /* Invalidation of message objects */
138 #define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
139 
140 /* IFx arbitration */
141 #define IF_ARB_MSGVAL		BIT(31)
142 #define IF_ARB_MSGXTD		BIT(30)
143 #define IF_ARB_TRANSMIT		BIT(29)
144 
145 /* IFx message control */
146 #define IF_MCONT_NEWDAT		BIT(15)
147 #define IF_MCONT_MSGLST		BIT(14)
148 #define IF_MCONT_INTPND		BIT(13)
149 #define IF_MCONT_UMASK		BIT(12)
150 #define IF_MCONT_TXIE		BIT(11)
151 #define IF_MCONT_RXIE		BIT(10)
152 #define IF_MCONT_RMTEN		BIT(9)
153 #define IF_MCONT_TXRQST		BIT(8)
154 #define IF_MCONT_EOB		BIT(7)
155 #define IF_MCONT_DLC_MASK	0xf
156 
157 #define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
158 #define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
159 
160 #define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
161 
162 /* Use IF1 in NAPI path and IF2 in TX path */
163 #define IF_NAPI			0
164 #define IF_TX			1
165 
166 /* minimum timeout for checking BUSY status */
167 #define MIN_TIMEOUT_VALUE	6
168 
169 /* Wait for ~1 sec for INIT bit */
170 #define INIT_WAIT_MS		1000
171 
172 /* c_can lec values */
173 enum c_can_lec_type {
174 	LEC_NO_ERROR = 0,
175 	LEC_STUFF_ERROR,
176 	LEC_FORM_ERROR,
177 	LEC_ACK_ERROR,
178 	LEC_BIT1_ERROR,
179 	LEC_BIT0_ERROR,
180 	LEC_CRC_ERROR,
181 	LEC_UNUSED,
182 	LEC_MASK = LEC_UNUSED,
183 };
184 
185 /* c_can error types:
186  * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
187  */
188 enum c_can_bus_error_types {
189 	C_CAN_NO_ERROR = 0,
190 	C_CAN_BUS_OFF,
191 	C_CAN_ERROR_WARNING,
192 	C_CAN_ERROR_PASSIVE,
193 };
194 
195 static const struct can_bittiming_const c_can_bittiming_const = {
196 	.name = KBUILD_MODNAME,
197 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
198 	.tseg1_max = 16,
199 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
200 	.tseg2_max = 8,
201 	.sjw_max = 4,
202 	.brp_min = 1,
203 	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
204 	.brp_inc = 1,
205 };
206 
207 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
208 {
209 	if (priv->device)
210 		pm_runtime_get_sync(priv->device);
211 }
212 
213 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
214 {
215 	if (priv->device)
216 		pm_runtime_put_sync(priv->device);
217 }
218 
219 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
220 {
221 	if (priv->raminit)
222 		priv->raminit(priv, enable);
223 }
224 
225 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
226 {
227 	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
228 
229 	if (enable)
230 		ctrl |= CONTROL_IRQMSK;
231 
232 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
233 }
234 
235 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
236 {
237 	struct c_can_priv *priv = netdev_priv(dev);
238 	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
239 
240 	priv->write_reg32(priv, reg, (cmd << 16) | obj);
241 
242 	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
243 		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
244 			return;
245 		udelay(1);
246 	}
247 	netdev_err(dev, "Updating object timed out\n");
248 }
249 
250 static inline void c_can_object_get(struct net_device *dev, int iface,
251 				    u32 obj, u32 cmd)
252 {
253 	c_can_obj_update(dev, iface, cmd, obj);
254 }
255 
256 static inline void c_can_object_put(struct net_device *dev, int iface,
257 				    u32 obj, u32 cmd)
258 {
259 	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
260 }
261 
262 /* Note: According to documentation clearing TXIE while MSGVAL is set
263  * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
264  * load significantly.
265  */
266 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
267 {
268 	struct c_can_priv *priv = netdev_priv(dev);
269 
270 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
271 	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
272 }
273 
274 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
275 {
276 	struct c_can_priv *priv = netdev_priv(dev);
277 
278 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
279 	c_can_inval_tx_object(dev, iface, obj);
280 }
281 
282 static void c_can_setup_tx_object(struct net_device *dev, int iface,
283 				  struct can_frame *frame, int idx)
284 {
285 	struct c_can_priv *priv = netdev_priv(dev);
286 	u16 ctrl = IF_MCONT_TX | frame->len;
287 	bool rtr = frame->can_id & CAN_RTR_FLAG;
288 	u32 arb = IF_ARB_MSGVAL;
289 	int i;
290 
291 	if (frame->can_id & CAN_EFF_FLAG) {
292 		arb |= frame->can_id & CAN_EFF_MASK;
293 		arb |= IF_ARB_MSGXTD;
294 	} else {
295 		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
296 	}
297 
298 	if (!rtr)
299 		arb |= IF_ARB_TRANSMIT;
300 
301 	/* If we change the DIR bit, we need to invalidate the buffer
302 	 * first, i.e. clear the MSGVAL flag in the arbiter.
303 	 */
304 	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
305 		u32 obj = idx + priv->msg_obj_tx_first;
306 
307 		c_can_inval_msg_object(dev, iface, obj);
308 		change_bit(idx, &priv->tx_dir);
309 	}
310 
311 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
312 
313 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
314 
315 	if (priv->type == BOSCH_D_CAN) {
316 		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
317 
318 		for (i = 0; i < frame->len; i += 4, dreg += 2) {
319 			data = (u32)frame->data[i];
320 			data |= (u32)frame->data[i + 1] << 8;
321 			data |= (u32)frame->data[i + 2] << 16;
322 			data |= (u32)frame->data[i + 3] << 24;
323 			priv->write_reg32(priv, dreg, data);
324 		}
325 	} else {
326 		for (i = 0; i < frame->len; i += 2) {
327 			priv->write_reg(priv,
328 					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
329 					frame->data[i] |
330 					(frame->data[i + 1] << 8));
331 		}
332 	}
333 }
334 
335 static int c_can_handle_lost_msg_obj(struct net_device *dev,
336 				     int iface, int objno, u32 ctrl)
337 {
338 	struct net_device_stats *stats = &dev->stats;
339 	struct c_can_priv *priv = netdev_priv(dev);
340 	struct can_frame *frame;
341 	struct sk_buff *skb;
342 
343 	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
344 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
345 	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
346 
347 	stats->rx_errors++;
348 	stats->rx_over_errors++;
349 
350 	/* create an error msg */
351 	skb = alloc_can_err_skb(dev, &frame);
352 	if (unlikely(!skb))
353 		return 0;
354 
355 	frame->can_id |= CAN_ERR_CRTL;
356 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
357 
358 	netif_receive_skb(skb);
359 	return 1;
360 }
361 
362 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
363 {
364 	struct net_device_stats *stats = &dev->stats;
365 	struct c_can_priv *priv = netdev_priv(dev);
366 	struct can_frame *frame;
367 	struct sk_buff *skb;
368 	u32 arb, data;
369 
370 	skb = alloc_can_skb(dev, &frame);
371 	if (!skb) {
372 		stats->rx_dropped++;
373 		return -ENOMEM;
374 	}
375 
376 	frame->len = can_cc_dlc2len(ctrl & 0x0F);
377 
378 	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
379 
380 	if (arb & IF_ARB_MSGXTD)
381 		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
382 	else
383 		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
384 
385 	if (arb & IF_ARB_TRANSMIT) {
386 		frame->can_id |= CAN_RTR_FLAG;
387 	} else {
388 		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
389 
390 		if (priv->type == BOSCH_D_CAN) {
391 			for (i = 0; i < frame->len; i += 4, dreg += 2) {
392 				data = priv->read_reg32(priv, dreg);
393 				frame->data[i] = data;
394 				frame->data[i + 1] = data >> 8;
395 				frame->data[i + 2] = data >> 16;
396 				frame->data[i + 3] = data >> 24;
397 			}
398 		} else {
399 			for (i = 0; i < frame->len; i += 2, dreg++) {
400 				data = priv->read_reg(priv, dreg);
401 				frame->data[i] = data;
402 				frame->data[i + 1] = data >> 8;
403 			}
404 		}
405 
406 		stats->rx_bytes += frame->len;
407 	}
408 	stats->rx_packets++;
409 
410 	netif_receive_skb(skb);
411 	return 0;
412 }
413 
414 static void c_can_setup_receive_object(struct net_device *dev, int iface,
415 				       u32 obj, u32 mask, u32 id, u32 mcont)
416 {
417 	struct c_can_priv *priv = netdev_priv(dev);
418 
419 	mask |= BIT(29);
420 	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
421 
422 	id |= IF_ARB_MSGVAL;
423 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
424 
425 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
426 	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
427 }
428 
429 static bool c_can_tx_busy(const struct c_can_priv *priv,
430 			  const struct c_can_tx_ring *tx_ring)
431 {
432 	if (c_can_get_tx_free(tx_ring) > 0)
433 		return false;
434 
435 	netif_stop_queue(priv->dev);
436 
437 	/* Memory barrier before checking tx_free (head and tail) */
438 	smp_mb();
439 
440 	if (c_can_get_tx_free(tx_ring) == 0) {
441 		netdev_dbg(priv->dev,
442 			   "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
443 			   tx_ring->head, tx_ring->tail,
444 			   tx_ring->head - tx_ring->tail);
445 		return true;
446 	}
447 
448 	netif_start_queue(priv->dev);
449 	return false;
450 }
451 
452 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
453 				    struct net_device *dev)
454 {
455 	struct can_frame *frame = (struct can_frame *)skb->data;
456 	struct c_can_priv *priv = netdev_priv(dev);
457 	struct c_can_tx_ring *tx_ring = &priv->tx;
458 	u32 idx, obj, cmd = IF_COMM_TX;
459 
460 	if (can_dropped_invalid_skb(dev, skb))
461 		return NETDEV_TX_OK;
462 
463 	if (c_can_tx_busy(priv, tx_ring))
464 		return NETDEV_TX_BUSY;
465 
466 	idx = c_can_get_tx_head(tx_ring);
467 	tx_ring->head++;
468 	if (c_can_get_tx_free(tx_ring) == 0)
469 		netif_stop_queue(dev);
470 
471 	if (idx < c_can_get_tx_tail(tx_ring))
472 		cmd &= ~IF_COMM_TXRQST; /* Cache the message */
473 
474 	/* Store the message in the interface so we can call
475 	 * can_put_echo_skb(). We must do this before we enable
476 	 * transmit as we might race against do_tx().
477 	 */
478 	c_can_setup_tx_object(dev, IF_TX, frame, idx);
479 	can_put_echo_skb(skb, dev, idx, 0);
480 	obj = idx + priv->msg_obj_tx_first;
481 	c_can_object_put(dev, IF_TX, obj, cmd);
482 
483 	return NETDEV_TX_OK;
484 }
485 
486 static int c_can_wait_for_ctrl_init(struct net_device *dev,
487 				    struct c_can_priv *priv, u32 init)
488 {
489 	int retry = 0;
490 
491 	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
492 		udelay(10);
493 		if (retry++ > 1000) {
494 			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
495 			return -EIO;
496 		}
497 	}
498 	return 0;
499 }
500 
501 static int c_can_set_bittiming(struct net_device *dev)
502 {
503 	unsigned int reg_btr, reg_brpe, ctrl_save;
504 	u8 brp, brpe, sjw, tseg1, tseg2;
505 	u32 ten_bit_brp;
506 	struct c_can_priv *priv = netdev_priv(dev);
507 	const struct can_bittiming *bt = &priv->can.bittiming;
508 	int res;
509 
510 	/* c_can provides a 6-bit brp and 4-bit brpe fields */
511 	ten_bit_brp = bt->brp - 1;
512 	brp = ten_bit_brp & BTR_BRP_MASK;
513 	brpe = ten_bit_brp >> 6;
514 
515 	sjw = bt->sjw - 1;
516 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
517 	tseg2 = bt->phase_seg2 - 1;
518 	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
519 			(tseg2 << BTR_TSEG2_SHIFT);
520 	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
521 
522 	netdev_info(dev,
523 		    "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
524 
525 	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
526 	ctrl_save &= ~CONTROL_INIT;
527 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
528 	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
529 	if (res)
530 		return res;
531 
532 	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
533 	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
534 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
535 
536 	return c_can_wait_for_ctrl_init(dev, priv, 0);
537 }
538 
539 /* Configure C_CAN message objects for Tx and Rx purposes:
540  * C_CAN provides a total of 32 message objects that can be configured
541  * either for Tx or Rx purposes. Here the first 16 message objects are used as
542  * a reception FIFO. The end of reception FIFO is signified by the EoB bit
543  * being SET. The remaining 16 message objects are kept aside for Tx purposes.
544  * See user guide document for further details on configuring message
545  * objects.
546  */
547 static void c_can_configure_msg_objects(struct net_device *dev)
548 {
549 	struct c_can_priv *priv = netdev_priv(dev);
550 	int i;
551 
552 	/* first invalidate all message objects */
553 	for (i = priv->msg_obj_rx_first; i <= priv->msg_obj_num; i++)
554 		c_can_inval_msg_object(dev, IF_NAPI, i);
555 
556 	/* setup receive message objects */
557 	for (i = priv->msg_obj_rx_first; i < priv->msg_obj_rx_last; i++)
558 		c_can_setup_receive_object(dev, IF_NAPI, i, 0, 0, IF_MCONT_RCV);
559 
560 	c_can_setup_receive_object(dev, IF_NAPI, priv->msg_obj_rx_last, 0, 0,
561 				   IF_MCONT_RCV_EOB);
562 }
563 
564 static int c_can_software_reset(struct net_device *dev)
565 {
566 	struct c_can_priv *priv = netdev_priv(dev);
567 	int retry = 0;
568 
569 	if (priv->type != BOSCH_D_CAN)
570 		return 0;
571 
572 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
573 	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
574 		msleep(20);
575 		if (retry++ > 100) {
576 			netdev_err(dev, "CCTRL: software reset failed\n");
577 			return -EIO;
578 		}
579 	}
580 
581 	return 0;
582 }
583 
584 /* Configure C_CAN chip:
585  * - enable/disable auto-retransmission
586  * - set operating mode
587  * - configure message objects
588  */
589 static int c_can_chip_config(struct net_device *dev)
590 {
591 	struct c_can_priv *priv = netdev_priv(dev);
592 	struct c_can_tx_ring *tx_ring = &priv->tx;
593 	int err;
594 
595 	err = c_can_software_reset(dev);
596 	if (err)
597 		return err;
598 
599 	/* enable automatic retransmission */
600 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
601 
602 	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
603 	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
604 		/* loopback + silent mode : useful for hot self-test */
605 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
606 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
607 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
608 		/* loopback mode : useful for self-test function */
609 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
610 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
611 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
612 		/* silent mode : bus-monitoring mode */
613 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
614 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
615 	}
616 
617 	/* configure message objects */
618 	c_can_configure_msg_objects(dev);
619 
620 	/* set a `lec` value so that we can check for updates later */
621 	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
622 
623 	/* Clear all internal status */
624 	tx_ring->head = 0;
625 	tx_ring->tail = 0;
626 	priv->tx_dir = 0;
627 
628 	/* set bittiming params */
629 	return c_can_set_bittiming(dev);
630 }
631 
632 static int c_can_start(struct net_device *dev)
633 {
634 	struct c_can_priv *priv = netdev_priv(dev);
635 	int err;
636 	struct pinctrl *p;
637 
638 	/* basic c_can configuration */
639 	err = c_can_chip_config(dev);
640 	if (err)
641 		return err;
642 
643 	/* Setup the command for new messages */
644 	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
645 		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
646 
647 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
648 
649 	/* Attempt to use "active" if available else use "default" */
650 	p = pinctrl_get_select(priv->device, "active");
651 	if (!IS_ERR(p))
652 		pinctrl_put(p);
653 	else
654 		pinctrl_pm_select_default_state(priv->device);
655 
656 	return 0;
657 }
658 
659 static void c_can_stop(struct net_device *dev)
660 {
661 	struct c_can_priv *priv = netdev_priv(dev);
662 
663 	c_can_irq_control(priv, false);
664 
665 	/* put ctrl to init on stop to end ongoing transmission */
666 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
667 
668 	/* deactivate pins */
669 	pinctrl_pm_select_sleep_state(dev->dev.parent);
670 	priv->can.state = CAN_STATE_STOPPED;
671 }
672 
673 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
674 {
675 	struct c_can_priv *priv = netdev_priv(dev);
676 	int err;
677 
678 	switch (mode) {
679 	case CAN_MODE_START:
680 		err = c_can_start(dev);
681 		if (err)
682 			return err;
683 		netif_wake_queue(dev);
684 		c_can_irq_control(priv, true);
685 		break;
686 	default:
687 		return -EOPNOTSUPP;
688 	}
689 
690 	return 0;
691 }
692 
693 static int __c_can_get_berr_counter(const struct net_device *dev,
694 				    struct can_berr_counter *bec)
695 {
696 	unsigned int reg_err_counter;
697 	struct c_can_priv *priv = netdev_priv(dev);
698 
699 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
700 	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
701 				ERR_CNT_REC_SHIFT;
702 	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
703 
704 	return 0;
705 }
706 
707 static int c_can_get_berr_counter(const struct net_device *dev,
708 				  struct can_berr_counter *bec)
709 {
710 	struct c_can_priv *priv = netdev_priv(dev);
711 	int err;
712 
713 	c_can_pm_runtime_get_sync(priv);
714 	err = __c_can_get_berr_counter(dev, bec);
715 	c_can_pm_runtime_put_sync(priv);
716 
717 	return err;
718 }
719 
720 static void c_can_do_tx(struct net_device *dev)
721 {
722 	struct c_can_priv *priv = netdev_priv(dev);
723 	struct c_can_tx_ring *tx_ring = &priv->tx;
724 	struct net_device_stats *stats = &dev->stats;
725 	u32 idx, obj, pkts = 0, bytes = 0, pend;
726 	u8 tail;
727 
728 	if (priv->msg_obj_tx_last > 32)
729 		pend = priv->read_reg32(priv, C_CAN_INTPND3_REG);
730 	else
731 		pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
732 
733 	while ((idx = ffs(pend))) {
734 		idx--;
735 		pend &= ~BIT(idx);
736 		obj = idx + priv->msg_obj_tx_first;
737 
738 		/* We use IF_NAPI interface instead of IF_TX because we
739 		 * are called from c_can_poll(), which runs inside
740 		 * NAPI. We are not transmitting.
741 		 */
742 		c_can_inval_tx_object(dev, IF_NAPI, obj);
743 		bytes += can_get_echo_skb(dev, idx, NULL);
744 		pkts++;
745 	}
746 
747 	if (!pkts)
748 		return;
749 
750 	tx_ring->tail += pkts;
751 	if (c_can_get_tx_free(tx_ring)) {
752 		/* Make sure that anybody stopping the queue after
753 		 * this sees the new tx_ring->tail.
754 		 */
755 		smp_mb();
756 		netif_wake_queue(priv->dev);
757 	}
758 
759 	stats->tx_bytes += bytes;
760 	stats->tx_packets += pkts;
761 
762 	tail = c_can_get_tx_tail(tx_ring);
763 
764 	if (tail == 0) {
765 		u8 head = c_can_get_tx_head(tx_ring);
766 
767 		/* Start transmission for all cached messages */
768 		for (idx = tail; idx < head; idx++) {
769 			obj = idx + priv->msg_obj_tx_first;
770 			c_can_object_put(dev, IF_NAPI, obj, IF_COMM_TXRQST);
771 		}
772 	}
773 }
774 
775 /* If we have a gap in the pending bits, that means we either
776  * raced with the hardware or failed to readout all upper
777  * objects in the last run due to quota limit.
778  */
779 static u32 c_can_adjust_pending(u32 pend, u32 rx_mask)
780 {
781 	u32 weight, lasts;
782 
783 	if (pend == rx_mask)
784 		return pend;
785 
786 	/* If the last set bit is larger than the number of pending
787 	 * bits we have a gap.
788 	 */
789 	weight = hweight32(pend);
790 	lasts = fls(pend);
791 
792 	/* If the bits are linear, nothing to do */
793 	if (lasts == weight)
794 		return pend;
795 
796 	/* Find the first set bit after the gap. We walk backwards
797 	 * from the last set bit.
798 	 */
799 	for (lasts--; pend & BIT(lasts - 1); lasts--)
800 		;
801 
802 	return pend & ~GENMASK(lasts - 1, 0);
803 }
804 
805 static inline void c_can_rx_object_get(struct net_device *dev,
806 				       struct c_can_priv *priv, u32 obj)
807 {
808 	c_can_object_get(dev, IF_NAPI, obj, priv->comm_rcv_high);
809 }
810 
811 static inline void c_can_rx_finalize(struct net_device *dev,
812 				     struct c_can_priv *priv, u32 obj)
813 {
814 	if (priv->type != BOSCH_D_CAN)
815 		c_can_object_get(dev, IF_NAPI, obj, IF_COMM_CLR_NEWDAT);
816 }
817 
818 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
819 			      u32 pend, int quota)
820 {
821 	u32 pkts = 0, ctrl, obj;
822 
823 	while ((obj = ffs(pend)) && quota > 0) {
824 		pend &= ~BIT(obj - 1);
825 
826 		c_can_rx_object_get(dev, priv, obj);
827 		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_NAPI));
828 
829 		if (ctrl & IF_MCONT_MSGLST) {
830 			int n;
831 
832 			n = c_can_handle_lost_msg_obj(dev, IF_NAPI, obj, ctrl);
833 
834 			pkts += n;
835 			quota -= n;
836 			continue;
837 		}
838 
839 		/* This really should not happen, but this covers some
840 		 * odd HW behaviour. Do not remove that unless you
841 		 * want to brick your machine.
842 		 */
843 		if (!(ctrl & IF_MCONT_NEWDAT))
844 			continue;
845 
846 		/* read the data from the message object */
847 		c_can_read_msg_object(dev, IF_NAPI, ctrl);
848 
849 		c_can_rx_finalize(dev, priv, obj);
850 
851 		pkts++;
852 		quota--;
853 	}
854 
855 	return pkts;
856 }
857 
858 static inline u32 c_can_get_pending(struct c_can_priv *priv)
859 {
860 	u32 pend;
861 
862 	if (priv->msg_obj_rx_last > 16)
863 		pend = priv->read_reg32(priv, C_CAN_NEWDAT1_REG);
864 	else
865 		pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
866 
867 	return pend;
868 }
869 
870 /* theory of operation:
871  *
872  * c_can core saves a received CAN message into the first free message
873  * object it finds free (starting with the lowest). Bits NEWDAT and
874  * INTPND are set for this message object indicating that a new message
875  * has arrived.
876  *
877  * We clear the newdat bit right away.
878  *
879  * This can result in packet reordering when the readout is slow.
880  */
881 static int c_can_do_rx_poll(struct net_device *dev, int quota)
882 {
883 	struct c_can_priv *priv = netdev_priv(dev);
884 	u32 pkts = 0, pend = 0, toread, n;
885 
886 	while (quota > 0) {
887 		if (!pend) {
888 			pend = c_can_get_pending(priv);
889 			if (!pend)
890 				break;
891 			/* If the pending field has a gap, handle the
892 			 * bits above the gap first.
893 			 */
894 			toread = c_can_adjust_pending(pend,
895 						      priv->msg_obj_rx_mask);
896 		} else {
897 			toread = pend;
898 		}
899 		/* Remove the bits from pend */
900 		pend &= ~toread;
901 		/* Read the objects */
902 		n = c_can_read_objects(dev, priv, toread, quota);
903 		pkts += n;
904 		quota -= n;
905 	}
906 
907 	return pkts;
908 }
909 
910 static int c_can_handle_state_change(struct net_device *dev,
911 				     enum c_can_bus_error_types error_type)
912 {
913 	unsigned int reg_err_counter;
914 	unsigned int rx_err_passive;
915 	struct c_can_priv *priv = netdev_priv(dev);
916 	struct can_frame *cf;
917 	struct sk_buff *skb;
918 	struct can_berr_counter bec;
919 
920 	switch (error_type) {
921 	case C_CAN_NO_ERROR:
922 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
923 		break;
924 	case C_CAN_ERROR_WARNING:
925 		/* error warning state */
926 		priv->can.can_stats.error_warning++;
927 		priv->can.state = CAN_STATE_ERROR_WARNING;
928 		break;
929 	case C_CAN_ERROR_PASSIVE:
930 		/* error passive state */
931 		priv->can.can_stats.error_passive++;
932 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
933 		break;
934 	case C_CAN_BUS_OFF:
935 		/* bus-off state */
936 		priv->can.state = CAN_STATE_BUS_OFF;
937 		priv->can.can_stats.bus_off++;
938 		break;
939 	default:
940 		break;
941 	}
942 
943 	/* propagate the error condition to the CAN stack */
944 	skb = alloc_can_err_skb(dev, &cf);
945 	if (unlikely(!skb))
946 		return 0;
947 
948 	__c_can_get_berr_counter(dev, &bec);
949 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
950 	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
951 				ERR_CNT_RP_SHIFT;
952 
953 	switch (error_type) {
954 	case C_CAN_NO_ERROR:
955 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
956 		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
957 		cf->data[6] = bec.txerr;
958 		cf->data[7] = bec.rxerr;
959 		break;
960 	case C_CAN_ERROR_WARNING:
961 		/* error warning state */
962 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
963 		cf->data[1] = (bec.txerr > bec.rxerr) ?
964 			CAN_ERR_CRTL_TX_WARNING :
965 			CAN_ERR_CRTL_RX_WARNING;
966 		cf->data[6] = bec.txerr;
967 		cf->data[7] = bec.rxerr;
968 
969 		break;
970 	case C_CAN_ERROR_PASSIVE:
971 		/* error passive state */
972 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
973 		if (rx_err_passive)
974 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
975 		if (bec.txerr > 127)
976 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
977 
978 		cf->data[6] = bec.txerr;
979 		cf->data[7] = bec.rxerr;
980 		break;
981 	case C_CAN_BUS_OFF:
982 		/* bus-off state */
983 		cf->can_id |= CAN_ERR_BUSOFF;
984 		can_bus_off(dev);
985 		break;
986 	default:
987 		break;
988 	}
989 
990 	netif_receive_skb(skb);
991 
992 	return 1;
993 }
994 
995 static int c_can_handle_bus_err(struct net_device *dev,
996 				enum c_can_lec_type lec_type)
997 {
998 	struct c_can_priv *priv = netdev_priv(dev);
999 	struct net_device_stats *stats = &dev->stats;
1000 	struct can_frame *cf;
1001 	struct sk_buff *skb;
1002 
1003 	/* early exit if no lec update or no error.
1004 	 * no lec update means that no CAN bus event has been detected
1005 	 * since CPU wrote 0x7 value to status reg.
1006 	 */
1007 	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1008 		return 0;
1009 
1010 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1011 		return 0;
1012 
1013 	/* common for all type of bus errors */
1014 	priv->can.can_stats.bus_error++;
1015 	stats->rx_errors++;
1016 
1017 	/* propagate the error condition to the CAN stack */
1018 	skb = alloc_can_err_skb(dev, &cf);
1019 	if (unlikely(!skb))
1020 		return 0;
1021 
1022 	/* check for 'last error code' which tells us the
1023 	 * type of the last error to occur on the CAN bus
1024 	 */
1025 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1026 
1027 	switch (lec_type) {
1028 	case LEC_STUFF_ERROR:
1029 		netdev_dbg(dev, "stuff error\n");
1030 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1031 		break;
1032 	case LEC_FORM_ERROR:
1033 		netdev_dbg(dev, "form error\n");
1034 		cf->data[2] |= CAN_ERR_PROT_FORM;
1035 		break;
1036 	case LEC_ACK_ERROR:
1037 		netdev_dbg(dev, "ack error\n");
1038 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1039 		break;
1040 	case LEC_BIT1_ERROR:
1041 		netdev_dbg(dev, "bit1 error\n");
1042 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1043 		break;
1044 	case LEC_BIT0_ERROR:
1045 		netdev_dbg(dev, "bit0 error\n");
1046 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1047 		break;
1048 	case LEC_CRC_ERROR:
1049 		netdev_dbg(dev, "CRC error\n");
1050 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1051 		break;
1052 	default:
1053 		break;
1054 	}
1055 
1056 	netif_receive_skb(skb);
1057 	return 1;
1058 }
1059 
1060 static int c_can_poll(struct napi_struct *napi, int quota)
1061 {
1062 	struct net_device *dev = napi->dev;
1063 	struct c_can_priv *priv = netdev_priv(dev);
1064 	u16 curr, last = priv->last_status;
1065 	int work_done = 0;
1066 
1067 	/* Only read the status register if a status interrupt was pending */
1068 	if (atomic_xchg(&priv->sie_pending, 0)) {
1069 		priv->last_status = priv->read_reg(priv, C_CAN_STS_REG);
1070 		curr = priv->last_status;
1071 		/* Ack status on C_CAN. D_CAN is self clearing */
1072 		if (priv->type != BOSCH_D_CAN)
1073 			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1074 	} else {
1075 		/* no change detected ... */
1076 		curr = last;
1077 	}
1078 
1079 	/* handle state changes */
1080 	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1081 		netdev_dbg(dev, "entered error warning state\n");
1082 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1083 	}
1084 
1085 	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1086 		netdev_dbg(dev, "entered error passive state\n");
1087 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1088 	}
1089 
1090 	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1091 		netdev_dbg(dev, "entered bus off state\n");
1092 		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1093 		goto end;
1094 	}
1095 
1096 	/* handle bus recovery events */
1097 	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1098 		netdev_dbg(dev, "left bus off state\n");
1099 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1100 	}
1101 
1102 	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1103 		netdev_dbg(dev, "left error passive state\n");
1104 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1105 	}
1106 
1107 	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1108 		netdev_dbg(dev, "left error warning state\n");
1109 		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1110 	}
1111 
1112 	/* handle lec errors on the bus */
1113 	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1114 
1115 	/* Handle Tx/Rx events. We do this unconditionally */
1116 	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1117 	c_can_do_tx(dev);
1118 
1119 end:
1120 	if (work_done < quota) {
1121 		napi_complete_done(napi, work_done);
1122 		/* enable all IRQs if we are not in bus off state */
1123 		if (priv->can.state != CAN_STATE_BUS_OFF)
1124 			c_can_irq_control(priv, true);
1125 	}
1126 
1127 	return work_done;
1128 }
1129 
1130 static irqreturn_t c_can_isr(int irq, void *dev_id)
1131 {
1132 	struct net_device *dev = (struct net_device *)dev_id;
1133 	struct c_can_priv *priv = netdev_priv(dev);
1134 	int reg_int;
1135 
1136 	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1137 	if (!reg_int)
1138 		return IRQ_NONE;
1139 
1140 	/* save for later use */
1141 	if (reg_int & INT_STS_PENDING)
1142 		atomic_set(&priv->sie_pending, 1);
1143 
1144 	/* disable all interrupts and schedule the NAPI */
1145 	c_can_irq_control(priv, false);
1146 	napi_schedule(&priv->napi);
1147 
1148 	return IRQ_HANDLED;
1149 }
1150 
1151 static int c_can_open(struct net_device *dev)
1152 {
1153 	int err;
1154 	struct c_can_priv *priv = netdev_priv(dev);
1155 
1156 	c_can_pm_runtime_get_sync(priv);
1157 	c_can_reset_ram(priv, true);
1158 
1159 	/* open the can device */
1160 	err = open_candev(dev);
1161 	if (err) {
1162 		netdev_err(dev, "failed to open can device\n");
1163 		goto exit_open_fail;
1164 	}
1165 
1166 	/* register interrupt handler */
1167 	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1168 			  dev);
1169 	if (err < 0) {
1170 		netdev_err(dev, "failed to request interrupt\n");
1171 		goto exit_irq_fail;
1172 	}
1173 
1174 	/* start the c_can controller */
1175 	err = c_can_start(dev);
1176 	if (err)
1177 		goto exit_start_fail;
1178 
1179 	napi_enable(&priv->napi);
1180 	/* enable status change, error and module interrupts */
1181 	c_can_irq_control(priv, true);
1182 	netif_start_queue(dev);
1183 
1184 	return 0;
1185 
1186 exit_start_fail:
1187 	free_irq(dev->irq, dev);
1188 exit_irq_fail:
1189 	close_candev(dev);
1190 exit_open_fail:
1191 	c_can_reset_ram(priv, false);
1192 	c_can_pm_runtime_put_sync(priv);
1193 	return err;
1194 }
1195 
1196 static int c_can_close(struct net_device *dev)
1197 {
1198 	struct c_can_priv *priv = netdev_priv(dev);
1199 
1200 	netif_stop_queue(dev);
1201 	napi_disable(&priv->napi);
1202 	c_can_stop(dev);
1203 	free_irq(dev->irq, dev);
1204 	close_candev(dev);
1205 
1206 	c_can_reset_ram(priv, false);
1207 	c_can_pm_runtime_put_sync(priv);
1208 
1209 	return 0;
1210 }
1211 
1212 struct net_device *alloc_c_can_dev(int msg_obj_num)
1213 {
1214 	struct net_device *dev;
1215 	struct c_can_priv *priv;
1216 	int msg_obj_tx_num = msg_obj_num / 2;
1217 
1218 	dev = alloc_candev(sizeof(*priv), msg_obj_tx_num);
1219 	if (!dev)
1220 		return NULL;
1221 
1222 	priv = netdev_priv(dev);
1223 	priv->msg_obj_num = msg_obj_num;
1224 	priv->msg_obj_rx_num = msg_obj_num - msg_obj_tx_num;
1225 	priv->msg_obj_rx_first = 1;
1226 	priv->msg_obj_rx_last =
1227 		priv->msg_obj_rx_first + priv->msg_obj_rx_num - 1;
1228 	priv->msg_obj_rx_mask = GENMASK(priv->msg_obj_rx_num - 1, 0);
1229 
1230 	priv->msg_obj_tx_num = msg_obj_tx_num;
1231 	priv->msg_obj_tx_first = priv->msg_obj_rx_last + 1;
1232 	priv->msg_obj_tx_last =
1233 		priv->msg_obj_tx_first + priv->msg_obj_tx_num - 1;
1234 
1235 	priv->tx.head = 0;
1236 	priv->tx.tail = 0;
1237 	priv->tx.obj_num = msg_obj_tx_num;
1238 
1239 	netif_napi_add_weight(dev, &priv->napi, c_can_poll,
1240 			      priv->msg_obj_rx_num);
1241 
1242 	priv->dev = dev;
1243 	priv->can.bittiming_const = &c_can_bittiming_const;
1244 	priv->can.do_set_mode = c_can_set_mode;
1245 	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1246 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1247 					CAN_CTRLMODE_LISTENONLY |
1248 					CAN_CTRLMODE_BERR_REPORTING;
1249 
1250 	return dev;
1251 }
1252 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1253 
1254 #ifdef CONFIG_PM
1255 int c_can_power_down(struct net_device *dev)
1256 {
1257 	u32 val;
1258 	unsigned long time_out;
1259 	struct c_can_priv *priv = netdev_priv(dev);
1260 
1261 	if (!(dev->flags & IFF_UP))
1262 		return 0;
1263 
1264 	WARN_ON(priv->type != BOSCH_D_CAN);
1265 
1266 	/* set PDR value so the device goes to power down mode */
1267 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1268 	val |= CONTROL_EX_PDR;
1269 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1270 
1271 	/* Wait for the PDA bit to get set */
1272 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1273 	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1274 	       time_after(time_out, jiffies))
1275 		cpu_relax();
1276 
1277 	if (time_after(jiffies, time_out))
1278 		return -ETIMEDOUT;
1279 
1280 	c_can_stop(dev);
1281 
1282 	c_can_reset_ram(priv, false);
1283 	c_can_pm_runtime_put_sync(priv);
1284 
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(c_can_power_down);
1288 
1289 int c_can_power_up(struct net_device *dev)
1290 {
1291 	u32 val;
1292 	unsigned long time_out;
1293 	struct c_can_priv *priv = netdev_priv(dev);
1294 	int ret;
1295 
1296 	if (!(dev->flags & IFF_UP))
1297 		return 0;
1298 
1299 	WARN_ON(priv->type != BOSCH_D_CAN);
1300 
1301 	c_can_pm_runtime_get_sync(priv);
1302 	c_can_reset_ram(priv, true);
1303 
1304 	/* Clear PDR and INIT bits */
1305 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1306 	val &= ~CONTROL_EX_PDR;
1307 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1308 	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1309 	val &= ~CONTROL_INIT;
1310 	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1311 
1312 	/* Wait for the PDA bit to get clear */
1313 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1314 	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1315 	       time_after(time_out, jiffies))
1316 		cpu_relax();
1317 
1318 	if (time_after(jiffies, time_out)) {
1319 		ret = -ETIMEDOUT;
1320 		goto err_out;
1321 	}
1322 
1323 	ret = c_can_start(dev);
1324 	if (ret)
1325 		goto err_out;
1326 
1327 	c_can_irq_control(priv, true);
1328 
1329 	return 0;
1330 
1331 err_out:
1332 	c_can_reset_ram(priv, false);
1333 	c_can_pm_runtime_put_sync(priv);
1334 
1335 	return ret;
1336 }
1337 EXPORT_SYMBOL_GPL(c_can_power_up);
1338 #endif
1339 
1340 void free_c_can_dev(struct net_device *dev)
1341 {
1342 	struct c_can_priv *priv = netdev_priv(dev);
1343 
1344 	netif_napi_del(&priv->napi);
1345 	free_candev(dev);
1346 }
1347 EXPORT_SYMBOL_GPL(free_c_can_dev);
1348 
1349 static const struct net_device_ops c_can_netdev_ops = {
1350 	.ndo_open = c_can_open,
1351 	.ndo_stop = c_can_close,
1352 	.ndo_start_xmit = c_can_start_xmit,
1353 	.ndo_change_mtu = can_change_mtu,
1354 };
1355 
1356 int register_c_can_dev(struct net_device *dev)
1357 {
1358 	/* Deactivate pins to prevent DRA7 DCAN IP from being
1359 	 * stuck in transition when module is disabled.
1360 	 * Pins are activated in c_can_start() and deactivated
1361 	 * in c_can_stop()
1362 	 */
1363 	pinctrl_pm_select_sleep_state(dev->dev.parent);
1364 
1365 	dev->flags |= IFF_ECHO;	/* we support local echo */
1366 	dev->netdev_ops = &c_can_netdev_ops;
1367 	dev->ethtool_ops = &c_can_ethtool_ops;
1368 
1369 	return register_candev(dev);
1370 }
1371 EXPORT_SYMBOL_GPL(register_c_can_dev);
1372 
1373 void unregister_c_can_dev(struct net_device *dev)
1374 {
1375 	unregister_candev(dev);
1376 }
1377 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1378 
1379 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1380 MODULE_LICENSE("GPL v2");
1381 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1382