1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // bxcan.c - STM32 Basic Extended CAN controller driver
4 //
5 // Copyright (c) 2022 Dario Binacchi <dario.binacchi@amarulasolutions.com>
6 //
7 // NOTE: The ST documentation uses the terms master/slave instead of
8 // primary/secondary.
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/bitfield.h>
13 #include <linux/can.h>
14 #include <linux/can/dev.h>
15 #include <linux/can/error.h>
16 #include <linux/can/rx-offload.h>
17 #include <linux/clk.h>
18 #include <linux/ethtool.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/iopoll.h>
22 #include <linux/kernel.h>
23 #include <linux/mfd/syscon.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/regmap.h>
28
29 #define BXCAN_NAPI_WEIGHT 3
30 #define BXCAN_TIMEOUT_US 10000
31
32 #define BXCAN_RX_MB_NUM 2
33 #define BXCAN_TX_MB_NUM 3
34
35 /* Primary control register (MCR) bits */
36 #define BXCAN_MCR_RESET BIT(15)
37 #define BXCAN_MCR_TTCM BIT(7)
38 #define BXCAN_MCR_ABOM BIT(6)
39 #define BXCAN_MCR_AWUM BIT(5)
40 #define BXCAN_MCR_NART BIT(4)
41 #define BXCAN_MCR_RFLM BIT(3)
42 #define BXCAN_MCR_TXFP BIT(2)
43 #define BXCAN_MCR_SLEEP BIT(1)
44 #define BXCAN_MCR_INRQ BIT(0)
45
46 /* Primary status register (MSR) bits */
47 #define BXCAN_MSR_ERRI BIT(2)
48 #define BXCAN_MSR_SLAK BIT(1)
49 #define BXCAN_MSR_INAK BIT(0)
50
51 /* Transmit status register (TSR) bits */
52 #define BXCAN_TSR_RQCP2 BIT(16)
53 #define BXCAN_TSR_RQCP1 BIT(8)
54 #define BXCAN_TSR_RQCP0 BIT(0)
55
56 /* Receive FIFO 0 register (RF0R) bits */
57 #define BXCAN_RF0R_RFOM0 BIT(5)
58 #define BXCAN_RF0R_FMP0_MASK GENMASK(1, 0)
59
60 /* Interrupt enable register (IER) bits */
61 #define BXCAN_IER_SLKIE BIT(17)
62 #define BXCAN_IER_WKUIE BIT(16)
63 #define BXCAN_IER_ERRIE BIT(15)
64 #define BXCAN_IER_LECIE BIT(11)
65 #define BXCAN_IER_BOFIE BIT(10)
66 #define BXCAN_IER_EPVIE BIT(9)
67 #define BXCAN_IER_EWGIE BIT(8)
68 #define BXCAN_IER_FOVIE1 BIT(6)
69 #define BXCAN_IER_FFIE1 BIT(5)
70 #define BXCAN_IER_FMPIE1 BIT(4)
71 #define BXCAN_IER_FOVIE0 BIT(3)
72 #define BXCAN_IER_FFIE0 BIT(2)
73 #define BXCAN_IER_FMPIE0 BIT(1)
74 #define BXCAN_IER_TMEIE BIT(0)
75
76 /* Error status register (ESR) bits */
77 #define BXCAN_ESR_REC_MASK GENMASK(31, 24)
78 #define BXCAN_ESR_TEC_MASK GENMASK(23, 16)
79 #define BXCAN_ESR_LEC_MASK GENMASK(6, 4)
80 #define BXCAN_ESR_BOFF BIT(2)
81 #define BXCAN_ESR_EPVF BIT(1)
82 #define BXCAN_ESR_EWGF BIT(0)
83
84 /* Bit timing register (BTR) bits */
85 #define BXCAN_BTR_SILM BIT(31)
86 #define BXCAN_BTR_LBKM BIT(30)
87 #define BXCAN_BTR_SJW_MASK GENMASK(25, 24)
88 #define BXCAN_BTR_TS2_MASK GENMASK(22, 20)
89 #define BXCAN_BTR_TS1_MASK GENMASK(19, 16)
90 #define BXCAN_BTR_BRP_MASK GENMASK(9, 0)
91
92 /* TX mailbox identifier register (TIxR, x = 0..2) bits */
93 #define BXCAN_TIxR_STID_MASK GENMASK(31, 21)
94 #define BXCAN_TIxR_EXID_MASK GENMASK(31, 3)
95 #define BXCAN_TIxR_IDE BIT(2)
96 #define BXCAN_TIxR_RTR BIT(1)
97 #define BXCAN_TIxR_TXRQ BIT(0)
98
99 /* TX mailbox data length and time stamp register (TDTxR, x = 0..2 bits */
100 #define BXCAN_TDTxR_DLC_MASK GENMASK(3, 0)
101
102 /* RX FIFO mailbox identifier register (RIxR, x = 0..1 */
103 #define BXCAN_RIxR_STID_MASK GENMASK(31, 21)
104 #define BXCAN_RIxR_EXID_MASK GENMASK(31, 3)
105 #define BXCAN_RIxR_IDE BIT(2)
106 #define BXCAN_RIxR_RTR BIT(1)
107
108 /* RX FIFO mailbox data length and timestamp register (RDTxR, x = 0..1) bits */
109 #define BXCAN_RDTxR_TIME_MASK GENMASK(31, 16)
110 #define BXCAN_RDTxR_DLC_MASK GENMASK(3, 0)
111
112 #define BXCAN_FMR_REG 0x00
113 #define BXCAN_FM1R_REG 0x04
114 #define BXCAN_FS1R_REG 0x0c
115 #define BXCAN_FFA1R_REG 0x14
116 #define BXCAN_FA1R_REG 0x1c
117 #define BXCAN_FiR1_REG(b) (0x40 + (b) * 8)
118 #define BXCAN_FiR2_REG(b) (0x44 + (b) * 8)
119
120 #define BXCAN_FILTER_ID(cfg) ((cfg) == BXCAN_CFG_DUAL_SECONDARY ? 14 : 0)
121
122 /* Filter primary register (FMR) bits */
123 #define BXCAN_FMR_CANSB_MASK GENMASK(13, 8)
124 #define BXCAN_FMR_FINIT BIT(0)
125
126 enum bxcan_lec_code {
127 BXCAN_LEC_NO_ERROR = 0,
128 BXCAN_LEC_STUFF_ERROR,
129 BXCAN_LEC_FORM_ERROR,
130 BXCAN_LEC_ACK_ERROR,
131 BXCAN_LEC_BIT1_ERROR,
132 BXCAN_LEC_BIT0_ERROR,
133 BXCAN_LEC_CRC_ERROR,
134 BXCAN_LEC_UNUSED
135 };
136
137 enum bxcan_cfg {
138 BXCAN_CFG_SINGLE = 0,
139 BXCAN_CFG_DUAL_PRIMARY,
140 BXCAN_CFG_DUAL_SECONDARY
141 };
142
143 /* Structure of the message buffer */
144 struct bxcan_mb {
145 u32 id; /* can identifier */
146 u32 dlc; /* data length control and timestamp */
147 u32 data[2]; /* data */
148 };
149
150 /* Structure of the hardware registers */
151 struct bxcan_regs {
152 u32 mcr; /* 0x00 - primary control */
153 u32 msr; /* 0x04 - primary status */
154 u32 tsr; /* 0x08 - transmit status */
155 u32 rf0r; /* 0x0c - FIFO 0 */
156 u32 rf1r; /* 0x10 - FIFO 1 */
157 u32 ier; /* 0x14 - interrupt enable */
158 u32 esr; /* 0x18 - error status */
159 u32 btr; /* 0x1c - bit timing*/
160 u32 reserved0[88]; /* 0x20 */
161 struct bxcan_mb tx_mb[BXCAN_TX_MB_NUM]; /* 0x180 - tx mailbox */
162 struct bxcan_mb rx_mb[BXCAN_RX_MB_NUM]; /* 0x1b0 - rx mailbox */
163 };
164
165 struct bxcan_priv {
166 struct can_priv can;
167 struct can_rx_offload offload;
168 struct device *dev;
169 struct net_device *ndev;
170
171 struct bxcan_regs __iomem *regs;
172 struct regmap *gcan;
173 int tx_irq;
174 int sce_irq;
175 enum bxcan_cfg cfg;
176 struct clk *clk;
177 spinlock_t rmw_lock; /* lock for read-modify-write operations */
178 unsigned int tx_head;
179 unsigned int tx_tail;
180 u32 timestamp;
181 };
182
183 static const struct can_bittiming_const bxcan_bittiming_const = {
184 .name = KBUILD_MODNAME,
185 .tseg1_min = 1,
186 .tseg1_max = 16,
187 .tseg2_min = 1,
188 .tseg2_max = 8,
189 .sjw_max = 4,
190 .brp_min = 1,
191 .brp_max = 1024,
192 .brp_inc = 1,
193 };
194
bxcan_rmw(struct bxcan_priv * priv,void __iomem * addr,u32 clear,u32 set)195 static inline void bxcan_rmw(struct bxcan_priv *priv, void __iomem *addr,
196 u32 clear, u32 set)
197 {
198 unsigned long flags;
199 u32 old, val;
200
201 spin_lock_irqsave(&priv->rmw_lock, flags);
202 old = readl(addr);
203 val = (old & ~clear) | set;
204 if (val != old)
205 writel(val, addr);
206
207 spin_unlock_irqrestore(&priv->rmw_lock, flags);
208 }
209
bxcan_disable_filters(struct bxcan_priv * priv,enum bxcan_cfg cfg)210 static void bxcan_disable_filters(struct bxcan_priv *priv, enum bxcan_cfg cfg)
211 {
212 unsigned int fid = BXCAN_FILTER_ID(cfg);
213 u32 fmask = BIT(fid);
214
215 regmap_update_bits(priv->gcan, BXCAN_FA1R_REG, fmask, 0);
216 }
217
bxcan_enable_filters(struct bxcan_priv * priv,enum bxcan_cfg cfg)218 static void bxcan_enable_filters(struct bxcan_priv *priv, enum bxcan_cfg cfg)
219 {
220 unsigned int fid = BXCAN_FILTER_ID(cfg);
221 u32 fmask = BIT(fid);
222
223 /* Filter settings:
224 *
225 * Accept all messages.
226 * Assign filter 0 to CAN1 and filter 14 to CAN2 in identifier
227 * mask mode with 32 bits width.
228 */
229
230 /* Enter filter initialization mode and assing filters to CAN
231 * controllers.
232 */
233 regmap_update_bits(priv->gcan, BXCAN_FMR_REG,
234 BXCAN_FMR_CANSB_MASK | BXCAN_FMR_FINIT,
235 FIELD_PREP(BXCAN_FMR_CANSB_MASK, 14) |
236 BXCAN_FMR_FINIT);
237
238 /* Deactivate filter */
239 regmap_update_bits(priv->gcan, BXCAN_FA1R_REG, fmask, 0);
240
241 /* Two 32-bit registers in identifier mask mode */
242 regmap_update_bits(priv->gcan, BXCAN_FM1R_REG, fmask, 0);
243
244 /* Single 32-bit scale configuration */
245 regmap_update_bits(priv->gcan, BXCAN_FS1R_REG, fmask, fmask);
246
247 /* Assign filter to FIFO 0 */
248 regmap_update_bits(priv->gcan, BXCAN_FFA1R_REG, fmask, 0);
249
250 /* Accept all messages */
251 regmap_write(priv->gcan, BXCAN_FiR1_REG(fid), 0);
252 regmap_write(priv->gcan, BXCAN_FiR2_REG(fid), 0);
253
254 /* Activate filter */
255 regmap_update_bits(priv->gcan, BXCAN_FA1R_REG, fmask, fmask);
256
257 /* Exit filter initialization mode */
258 regmap_update_bits(priv->gcan, BXCAN_FMR_REG, BXCAN_FMR_FINIT, 0);
259 }
260
bxcan_get_tx_head(const struct bxcan_priv * priv)261 static inline u8 bxcan_get_tx_head(const struct bxcan_priv *priv)
262 {
263 return priv->tx_head % BXCAN_TX_MB_NUM;
264 }
265
bxcan_get_tx_tail(const struct bxcan_priv * priv)266 static inline u8 bxcan_get_tx_tail(const struct bxcan_priv *priv)
267 {
268 return priv->tx_tail % BXCAN_TX_MB_NUM;
269 }
270
bxcan_get_tx_free(const struct bxcan_priv * priv)271 static inline u8 bxcan_get_tx_free(const struct bxcan_priv *priv)
272 {
273 return BXCAN_TX_MB_NUM - (priv->tx_head - priv->tx_tail);
274 }
275
bxcan_tx_busy(const struct bxcan_priv * priv)276 static bool bxcan_tx_busy(const struct bxcan_priv *priv)
277 {
278 if (bxcan_get_tx_free(priv) > 0)
279 return false;
280
281 netif_stop_queue(priv->ndev);
282
283 /* Memory barrier before checking tx_free (head and tail) */
284 smp_mb();
285
286 if (bxcan_get_tx_free(priv) == 0) {
287 netdev_dbg(priv->ndev,
288 "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
289 priv->tx_head, priv->tx_tail,
290 priv->tx_head - priv->tx_tail);
291
292 return true;
293 }
294
295 netif_start_queue(priv->ndev);
296
297 return false;
298 }
299
bxcan_chip_softreset(struct bxcan_priv * priv)300 static int bxcan_chip_softreset(struct bxcan_priv *priv)
301 {
302 struct bxcan_regs __iomem *regs = priv->regs;
303 u32 value;
304
305 bxcan_rmw(priv, ®s->mcr, 0, BXCAN_MCR_RESET);
306 return readx_poll_timeout(readl, ®s->msr, value,
307 value & BXCAN_MSR_SLAK, BXCAN_TIMEOUT_US,
308 USEC_PER_SEC);
309 }
310
bxcan_enter_init_mode(struct bxcan_priv * priv)311 static int bxcan_enter_init_mode(struct bxcan_priv *priv)
312 {
313 struct bxcan_regs __iomem *regs = priv->regs;
314 u32 value;
315
316 bxcan_rmw(priv, ®s->mcr, 0, BXCAN_MCR_INRQ);
317 return readx_poll_timeout(readl, ®s->msr, value,
318 value & BXCAN_MSR_INAK, BXCAN_TIMEOUT_US,
319 USEC_PER_SEC);
320 }
321
bxcan_leave_init_mode(struct bxcan_priv * priv)322 static int bxcan_leave_init_mode(struct bxcan_priv *priv)
323 {
324 struct bxcan_regs __iomem *regs = priv->regs;
325 u32 value;
326
327 bxcan_rmw(priv, ®s->mcr, BXCAN_MCR_INRQ, 0);
328 return readx_poll_timeout(readl, ®s->msr, value,
329 !(value & BXCAN_MSR_INAK), BXCAN_TIMEOUT_US,
330 USEC_PER_SEC);
331 }
332
bxcan_enter_sleep_mode(struct bxcan_priv * priv)333 static int bxcan_enter_sleep_mode(struct bxcan_priv *priv)
334 {
335 struct bxcan_regs __iomem *regs = priv->regs;
336 u32 value;
337
338 bxcan_rmw(priv, ®s->mcr, 0, BXCAN_MCR_SLEEP);
339 return readx_poll_timeout(readl, ®s->msr, value,
340 value & BXCAN_MSR_SLAK, BXCAN_TIMEOUT_US,
341 USEC_PER_SEC);
342 }
343
bxcan_leave_sleep_mode(struct bxcan_priv * priv)344 static int bxcan_leave_sleep_mode(struct bxcan_priv *priv)
345 {
346 struct bxcan_regs __iomem *regs = priv->regs;
347 u32 value;
348
349 bxcan_rmw(priv, ®s->mcr, BXCAN_MCR_SLEEP, 0);
350 return readx_poll_timeout(readl, ®s->msr, value,
351 !(value & BXCAN_MSR_SLAK), BXCAN_TIMEOUT_US,
352 USEC_PER_SEC);
353 }
354
355 static inline
rx_offload_to_priv(struct can_rx_offload * offload)356 struct bxcan_priv *rx_offload_to_priv(struct can_rx_offload *offload)
357 {
358 return container_of(offload, struct bxcan_priv, offload);
359 }
360
bxcan_mailbox_read(struct can_rx_offload * offload,unsigned int mbxno,u32 * timestamp,bool drop)361 static struct sk_buff *bxcan_mailbox_read(struct can_rx_offload *offload,
362 unsigned int mbxno, u32 *timestamp,
363 bool drop)
364 {
365 struct bxcan_priv *priv = rx_offload_to_priv(offload);
366 struct bxcan_regs __iomem *regs = priv->regs;
367 struct bxcan_mb __iomem *mb_regs = ®s->rx_mb[0];
368 struct sk_buff *skb = NULL;
369 struct can_frame *cf;
370 u32 rf0r, id, dlc;
371
372 rf0r = readl(®s->rf0r);
373 if (unlikely(drop)) {
374 skb = ERR_PTR(-ENOBUFS);
375 goto mark_as_read;
376 }
377
378 if (!(rf0r & BXCAN_RF0R_FMP0_MASK))
379 goto mark_as_read;
380
381 skb = alloc_can_skb(offload->dev, &cf);
382 if (unlikely(!skb)) {
383 skb = ERR_PTR(-ENOMEM);
384 goto mark_as_read;
385 }
386
387 id = readl(&mb_regs->id);
388 if (id & BXCAN_RIxR_IDE)
389 cf->can_id = FIELD_GET(BXCAN_RIxR_EXID_MASK, id) | CAN_EFF_FLAG;
390 else
391 cf->can_id = FIELD_GET(BXCAN_RIxR_STID_MASK, id) & CAN_SFF_MASK;
392
393 dlc = readl(&mb_regs->dlc);
394 priv->timestamp = FIELD_GET(BXCAN_RDTxR_TIME_MASK, dlc);
395 cf->len = can_cc_dlc2len(FIELD_GET(BXCAN_RDTxR_DLC_MASK, dlc));
396
397 if (id & BXCAN_RIxR_RTR) {
398 cf->can_id |= CAN_RTR_FLAG;
399 } else {
400 int i, j;
401
402 for (i = 0, j = 0; i < cf->len; i += 4, j++)
403 *(u32 *)(cf->data + i) = readl(&mb_regs->data[j]);
404 }
405
406 mark_as_read:
407 rf0r |= BXCAN_RF0R_RFOM0;
408 writel(rf0r, ®s->rf0r);
409 return skb;
410 }
411
bxcan_rx_isr(int irq,void * dev_id)412 static irqreturn_t bxcan_rx_isr(int irq, void *dev_id)
413 {
414 struct net_device *ndev = dev_id;
415 struct bxcan_priv *priv = netdev_priv(ndev);
416 struct bxcan_regs __iomem *regs = priv->regs;
417 u32 rf0r;
418
419 rf0r = readl(®s->rf0r);
420 if (!(rf0r & BXCAN_RF0R_FMP0_MASK))
421 return IRQ_NONE;
422
423 can_rx_offload_irq_offload_fifo(&priv->offload);
424 can_rx_offload_irq_finish(&priv->offload);
425
426 return IRQ_HANDLED;
427 }
428
bxcan_tx_isr(int irq,void * dev_id)429 static irqreturn_t bxcan_tx_isr(int irq, void *dev_id)
430 {
431 struct net_device *ndev = dev_id;
432 struct bxcan_priv *priv = netdev_priv(ndev);
433 struct bxcan_regs __iomem *regs = priv->regs;
434 struct net_device_stats *stats = &ndev->stats;
435 u32 tsr, rqcp_bit;
436 int idx;
437
438 tsr = readl(®s->tsr);
439 if (!(tsr & (BXCAN_TSR_RQCP0 | BXCAN_TSR_RQCP1 | BXCAN_TSR_RQCP2)))
440 return IRQ_NONE;
441
442 while (priv->tx_head - priv->tx_tail > 0) {
443 idx = bxcan_get_tx_tail(priv);
444 rqcp_bit = BXCAN_TSR_RQCP0 << (idx << 3);
445 if (!(tsr & rqcp_bit))
446 break;
447
448 stats->tx_packets++;
449 stats->tx_bytes += can_get_echo_skb(ndev, idx, NULL);
450 priv->tx_tail++;
451 }
452
453 writel(tsr, ®s->tsr);
454
455 if (bxcan_get_tx_free(priv)) {
456 /* Make sure that anybody stopping the queue after
457 * this sees the new tx_ring->tail.
458 */
459 smp_mb();
460 netif_wake_queue(ndev);
461 }
462
463 return IRQ_HANDLED;
464 }
465
bxcan_handle_state_change(struct net_device * ndev,u32 esr)466 static void bxcan_handle_state_change(struct net_device *ndev, u32 esr)
467 {
468 struct bxcan_priv *priv = netdev_priv(ndev);
469 enum can_state new_state = priv->can.state;
470 struct can_berr_counter bec;
471 enum can_state rx_state, tx_state;
472 struct sk_buff *skb;
473 struct can_frame *cf;
474
475 /* Early exit if no error flag is set */
476 if (!(esr & (BXCAN_ESR_EWGF | BXCAN_ESR_EPVF | BXCAN_ESR_BOFF)))
477 return;
478
479 bec.txerr = FIELD_GET(BXCAN_ESR_TEC_MASK, esr);
480 bec.rxerr = FIELD_GET(BXCAN_ESR_REC_MASK, esr);
481
482 if (esr & BXCAN_ESR_BOFF)
483 new_state = CAN_STATE_BUS_OFF;
484 else if (esr & BXCAN_ESR_EPVF)
485 new_state = CAN_STATE_ERROR_PASSIVE;
486 else if (esr & BXCAN_ESR_EWGF)
487 new_state = CAN_STATE_ERROR_WARNING;
488
489 /* state hasn't changed */
490 if (unlikely(new_state == priv->can.state))
491 return;
492
493 skb = alloc_can_err_skb(ndev, &cf);
494
495 tx_state = bec.txerr >= bec.rxerr ? new_state : 0;
496 rx_state = bec.txerr <= bec.rxerr ? new_state : 0;
497 can_change_state(ndev, cf, tx_state, rx_state);
498
499 if (new_state == CAN_STATE_BUS_OFF) {
500 can_bus_off(ndev);
501 } else if (skb) {
502 cf->can_id |= CAN_ERR_CNT;
503 cf->data[6] = bec.txerr;
504 cf->data[7] = bec.rxerr;
505 }
506
507 if (skb) {
508 int err;
509
510 err = can_rx_offload_queue_timestamp(&priv->offload, skb,
511 priv->timestamp);
512 if (err)
513 ndev->stats.rx_fifo_errors++;
514 }
515 }
516
bxcan_handle_bus_err(struct net_device * ndev,u32 esr)517 static void bxcan_handle_bus_err(struct net_device *ndev, u32 esr)
518 {
519 struct bxcan_priv *priv = netdev_priv(ndev);
520 enum bxcan_lec_code lec_code;
521 struct can_frame *cf;
522 struct sk_buff *skb;
523
524 lec_code = FIELD_GET(BXCAN_ESR_LEC_MASK, esr);
525
526 /* Early exit if no lec update or no error.
527 * No lec update means that no CAN bus event has been detected
528 * since CPU wrote BXCAN_LEC_UNUSED value to status reg.
529 */
530 if (lec_code == BXCAN_LEC_UNUSED || lec_code == BXCAN_LEC_NO_ERROR)
531 return;
532
533 /* Common for all type of bus errors */
534 priv->can.can_stats.bus_error++;
535
536 /* Propagate the error condition to the CAN stack */
537 skb = alloc_can_err_skb(ndev, &cf);
538 if (skb)
539 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
540
541 switch (lec_code) {
542 case BXCAN_LEC_STUFF_ERROR:
543 netdev_dbg(ndev, "Stuff error\n");
544 ndev->stats.rx_errors++;
545 if (skb)
546 cf->data[2] |= CAN_ERR_PROT_STUFF;
547 break;
548
549 case BXCAN_LEC_FORM_ERROR:
550 netdev_dbg(ndev, "Form error\n");
551 ndev->stats.rx_errors++;
552 if (skb)
553 cf->data[2] |= CAN_ERR_PROT_FORM;
554 break;
555
556 case BXCAN_LEC_ACK_ERROR:
557 netdev_dbg(ndev, "Ack error\n");
558 ndev->stats.tx_errors++;
559 if (skb) {
560 cf->can_id |= CAN_ERR_ACK;
561 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
562 }
563 break;
564
565 case BXCAN_LEC_BIT1_ERROR:
566 netdev_dbg(ndev, "Bit error (recessive)\n");
567 ndev->stats.tx_errors++;
568 if (skb)
569 cf->data[2] |= CAN_ERR_PROT_BIT1;
570 break;
571
572 case BXCAN_LEC_BIT0_ERROR:
573 netdev_dbg(ndev, "Bit error (dominant)\n");
574 ndev->stats.tx_errors++;
575 if (skb)
576 cf->data[2] |= CAN_ERR_PROT_BIT0;
577 break;
578
579 case BXCAN_LEC_CRC_ERROR:
580 netdev_dbg(ndev, "CRC error\n");
581 ndev->stats.rx_errors++;
582 if (skb) {
583 cf->data[2] |= CAN_ERR_PROT_BIT;
584 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
585 }
586 break;
587
588 default:
589 break;
590 }
591
592 if (skb) {
593 int err;
594
595 err = can_rx_offload_queue_timestamp(&priv->offload, skb,
596 priv->timestamp);
597 if (err)
598 ndev->stats.rx_fifo_errors++;
599 }
600 }
601
bxcan_state_change_isr(int irq,void * dev_id)602 static irqreturn_t bxcan_state_change_isr(int irq, void *dev_id)
603 {
604 struct net_device *ndev = dev_id;
605 struct bxcan_priv *priv = netdev_priv(ndev);
606 struct bxcan_regs __iomem *regs = priv->regs;
607 u32 msr, esr;
608
609 msr = readl(®s->msr);
610 if (!(msr & BXCAN_MSR_ERRI))
611 return IRQ_NONE;
612
613 esr = readl(®s->esr);
614 bxcan_handle_state_change(ndev, esr);
615
616 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
617 bxcan_handle_bus_err(ndev, esr);
618
619 msr |= BXCAN_MSR_ERRI;
620 writel(msr, ®s->msr);
621 can_rx_offload_irq_finish(&priv->offload);
622
623 return IRQ_HANDLED;
624 }
625
bxcan_chip_start(struct net_device * ndev)626 static int bxcan_chip_start(struct net_device *ndev)
627 {
628 struct bxcan_priv *priv = netdev_priv(ndev);
629 struct bxcan_regs __iomem *regs = priv->regs;
630 struct can_bittiming *bt = &priv->can.bittiming;
631 u32 clr, set;
632 int err;
633
634 err = bxcan_chip_softreset(priv);
635 if (err) {
636 netdev_err(ndev, "failed to reset chip, error %pe\n",
637 ERR_PTR(err));
638 return err;
639 }
640
641 err = bxcan_leave_sleep_mode(priv);
642 if (err) {
643 netdev_err(ndev, "failed to leave sleep mode, error %pe\n",
644 ERR_PTR(err));
645 goto failed_leave_sleep;
646 }
647
648 err = bxcan_enter_init_mode(priv);
649 if (err) {
650 netdev_err(ndev, "failed to enter init mode, error %pe\n",
651 ERR_PTR(err));
652 goto failed_enter_init;
653 }
654
655 /* MCR
656 *
657 * select request order priority
658 * enable time triggered mode
659 * bus-off state left on sw request
660 * sleep mode left on sw request
661 * retransmit automatically on error
662 * do not lock RX FIFO on overrun
663 */
664 bxcan_rmw(priv, ®s->mcr,
665 BXCAN_MCR_ABOM | BXCAN_MCR_AWUM | BXCAN_MCR_NART |
666 BXCAN_MCR_RFLM, BXCAN_MCR_TTCM | BXCAN_MCR_TXFP);
667
668 /* Bit timing register settings */
669 set = FIELD_PREP(BXCAN_BTR_BRP_MASK, bt->brp - 1) |
670 FIELD_PREP(BXCAN_BTR_TS1_MASK, bt->phase_seg1 +
671 bt->prop_seg - 1) |
672 FIELD_PREP(BXCAN_BTR_TS2_MASK, bt->phase_seg2 - 1) |
673 FIELD_PREP(BXCAN_BTR_SJW_MASK, bt->sjw - 1);
674
675 /* loopback + silent mode put the controller in test mode,
676 * useful for hot self-test
677 */
678 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
679 set |= BXCAN_BTR_LBKM;
680
681 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
682 set |= BXCAN_BTR_SILM;
683
684 bxcan_rmw(priv, ®s->btr, BXCAN_BTR_SILM | BXCAN_BTR_LBKM |
685 BXCAN_BTR_BRP_MASK | BXCAN_BTR_TS1_MASK | BXCAN_BTR_TS2_MASK |
686 BXCAN_BTR_SJW_MASK, set);
687
688 bxcan_enable_filters(priv, priv->cfg);
689
690 /* Clear all internal status */
691 priv->tx_head = 0;
692 priv->tx_tail = 0;
693
694 err = bxcan_leave_init_mode(priv);
695 if (err) {
696 netdev_err(ndev, "failed to leave init mode, error %pe\n",
697 ERR_PTR(err));
698 goto failed_leave_init;
699 }
700
701 /* Set a `lec` value so that we can check for updates later */
702 bxcan_rmw(priv, ®s->esr, BXCAN_ESR_LEC_MASK,
703 FIELD_PREP(BXCAN_ESR_LEC_MASK, BXCAN_LEC_UNUSED));
704
705 /* IER
706 *
707 * Enable interrupt for:
708 * bus-off
709 * passive error
710 * warning error
711 * last error code
712 * RX FIFO pending message
713 * TX mailbox empty
714 */
715 clr = BXCAN_IER_WKUIE | BXCAN_IER_SLKIE | BXCAN_IER_FOVIE1 |
716 BXCAN_IER_FFIE1 | BXCAN_IER_FMPIE1 | BXCAN_IER_FOVIE0 |
717 BXCAN_IER_FFIE0;
718 set = BXCAN_IER_ERRIE | BXCAN_IER_BOFIE | BXCAN_IER_EPVIE |
719 BXCAN_IER_EWGIE | BXCAN_IER_FMPIE0 | BXCAN_IER_TMEIE;
720
721 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
722 set |= BXCAN_IER_LECIE;
723 else
724 clr |= BXCAN_IER_LECIE;
725
726 bxcan_rmw(priv, ®s->ier, clr, set);
727
728 priv->can.state = CAN_STATE_ERROR_ACTIVE;
729 return 0;
730
731 failed_leave_init:
732 failed_enter_init:
733 failed_leave_sleep:
734 bxcan_chip_softreset(priv);
735 return err;
736 }
737
bxcan_open(struct net_device * ndev)738 static int bxcan_open(struct net_device *ndev)
739 {
740 struct bxcan_priv *priv = netdev_priv(ndev);
741 int err;
742
743 err = clk_prepare_enable(priv->clk);
744 if (err) {
745 netdev_err(ndev, "failed to enable clock, error %pe\n",
746 ERR_PTR(err));
747 return err;
748 }
749
750 err = open_candev(ndev);
751 if (err) {
752 netdev_err(ndev, "open_candev() failed, error %pe\n",
753 ERR_PTR(err));
754 goto out_disable_clock;
755 }
756
757 can_rx_offload_enable(&priv->offload);
758 err = request_irq(ndev->irq, bxcan_rx_isr, IRQF_SHARED, ndev->name,
759 ndev);
760 if (err) {
761 netdev_err(ndev, "failed to register rx irq(%d), error %pe\n",
762 ndev->irq, ERR_PTR(err));
763 goto out_close_candev;
764 }
765
766 err = request_irq(priv->tx_irq, bxcan_tx_isr, IRQF_SHARED, ndev->name,
767 ndev);
768 if (err) {
769 netdev_err(ndev, "failed to register tx irq(%d), error %pe\n",
770 priv->tx_irq, ERR_PTR(err));
771 goto out_free_rx_irq;
772 }
773
774 err = request_irq(priv->sce_irq, bxcan_state_change_isr, IRQF_SHARED,
775 ndev->name, ndev);
776 if (err) {
777 netdev_err(ndev, "failed to register sce irq(%d), error %pe\n",
778 priv->sce_irq, ERR_PTR(err));
779 goto out_free_tx_irq;
780 }
781
782 err = bxcan_chip_start(ndev);
783 if (err)
784 goto out_free_sce_irq;
785
786 netif_start_queue(ndev);
787 return 0;
788
789 out_free_sce_irq:
790 free_irq(priv->sce_irq, ndev);
791 out_free_tx_irq:
792 free_irq(priv->tx_irq, ndev);
793 out_free_rx_irq:
794 free_irq(ndev->irq, ndev);
795 out_close_candev:
796 can_rx_offload_disable(&priv->offload);
797 close_candev(ndev);
798 out_disable_clock:
799 clk_disable_unprepare(priv->clk);
800 return err;
801 }
802
bxcan_chip_stop(struct net_device * ndev)803 static void bxcan_chip_stop(struct net_device *ndev)
804 {
805 struct bxcan_priv *priv = netdev_priv(ndev);
806 struct bxcan_regs __iomem *regs = priv->regs;
807
808 /* disable all interrupts */
809 bxcan_rmw(priv, ®s->ier, BXCAN_IER_SLKIE | BXCAN_IER_WKUIE |
810 BXCAN_IER_ERRIE | BXCAN_IER_LECIE | BXCAN_IER_BOFIE |
811 BXCAN_IER_EPVIE | BXCAN_IER_EWGIE | BXCAN_IER_FOVIE1 |
812 BXCAN_IER_FFIE1 | BXCAN_IER_FMPIE1 | BXCAN_IER_FOVIE0 |
813 BXCAN_IER_FFIE0 | BXCAN_IER_FMPIE0 | BXCAN_IER_TMEIE, 0);
814 bxcan_disable_filters(priv, priv->cfg);
815 bxcan_enter_sleep_mode(priv);
816 priv->can.state = CAN_STATE_STOPPED;
817 }
818
bxcan_stop(struct net_device * ndev)819 static int bxcan_stop(struct net_device *ndev)
820 {
821 struct bxcan_priv *priv = netdev_priv(ndev);
822
823 netif_stop_queue(ndev);
824 bxcan_chip_stop(ndev);
825 free_irq(ndev->irq, ndev);
826 free_irq(priv->tx_irq, ndev);
827 free_irq(priv->sce_irq, ndev);
828 can_rx_offload_disable(&priv->offload);
829 close_candev(ndev);
830 clk_disable_unprepare(priv->clk);
831 return 0;
832 }
833
bxcan_start_xmit(struct sk_buff * skb,struct net_device * ndev)834 static netdev_tx_t bxcan_start_xmit(struct sk_buff *skb,
835 struct net_device *ndev)
836 {
837 struct bxcan_priv *priv = netdev_priv(ndev);
838 struct can_frame *cf = (struct can_frame *)skb->data;
839 struct bxcan_regs __iomem *regs = priv->regs;
840 struct bxcan_mb __iomem *mb_regs;
841 unsigned int idx;
842 u32 id;
843 int i, j;
844
845 if (can_dropped_invalid_skb(ndev, skb))
846 return NETDEV_TX_OK;
847
848 if (bxcan_tx_busy(priv))
849 return NETDEV_TX_BUSY;
850
851 idx = bxcan_get_tx_head(priv);
852 priv->tx_head++;
853 if (bxcan_get_tx_free(priv) == 0)
854 netif_stop_queue(ndev);
855
856 mb_regs = ®s->tx_mb[idx];
857 if (cf->can_id & CAN_EFF_FLAG)
858 id = FIELD_PREP(BXCAN_TIxR_EXID_MASK, cf->can_id) |
859 BXCAN_TIxR_IDE;
860 else
861 id = FIELD_PREP(BXCAN_TIxR_STID_MASK, cf->can_id);
862
863 if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
864 id |= BXCAN_TIxR_RTR;
865 } else {
866 for (i = 0, j = 0; i < cf->len; i += 4, j++)
867 writel(*(u32 *)(cf->data + i), &mb_regs->data[j]);
868 }
869
870 writel(FIELD_PREP(BXCAN_TDTxR_DLC_MASK, cf->len), &mb_regs->dlc);
871
872 can_put_echo_skb(skb, ndev, idx, 0);
873
874 /* Start transmission */
875 writel(id | BXCAN_TIxR_TXRQ, &mb_regs->id);
876
877 return NETDEV_TX_OK;
878 }
879
880 static const struct net_device_ops bxcan_netdev_ops = {
881 .ndo_open = bxcan_open,
882 .ndo_stop = bxcan_stop,
883 .ndo_start_xmit = bxcan_start_xmit,
884 .ndo_change_mtu = can_change_mtu,
885 };
886
887 static const struct ethtool_ops bxcan_ethtool_ops = {
888 .get_ts_info = ethtool_op_get_ts_info,
889 };
890
bxcan_do_set_mode(struct net_device * ndev,enum can_mode mode)891 static int bxcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
892 {
893 int err;
894
895 switch (mode) {
896 case CAN_MODE_START:
897 err = bxcan_chip_start(ndev);
898 if (err)
899 return err;
900
901 netif_wake_queue(ndev);
902 break;
903
904 default:
905 return -EOPNOTSUPP;
906 }
907
908 return 0;
909 }
910
bxcan_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)911 static int bxcan_get_berr_counter(const struct net_device *ndev,
912 struct can_berr_counter *bec)
913 {
914 struct bxcan_priv *priv = netdev_priv(ndev);
915 struct bxcan_regs __iomem *regs = priv->regs;
916 u32 esr;
917 int err;
918
919 err = clk_prepare_enable(priv->clk);
920 if (err)
921 return err;
922
923 esr = readl(®s->esr);
924 bec->txerr = FIELD_GET(BXCAN_ESR_TEC_MASK, esr);
925 bec->rxerr = FIELD_GET(BXCAN_ESR_REC_MASK, esr);
926 clk_disable_unprepare(priv->clk);
927 return 0;
928 }
929
bxcan_probe(struct platform_device * pdev)930 static int bxcan_probe(struct platform_device *pdev)
931 {
932 struct device_node *np = pdev->dev.of_node;
933 struct device *dev = &pdev->dev;
934 struct net_device *ndev;
935 struct bxcan_priv *priv;
936 struct clk *clk = NULL;
937 void __iomem *regs;
938 struct regmap *gcan;
939 enum bxcan_cfg cfg;
940 int err, rx_irq, tx_irq, sce_irq;
941
942 regs = devm_platform_ioremap_resource(pdev, 0);
943 if (IS_ERR(regs)) {
944 dev_err(dev, "failed to get base address\n");
945 return PTR_ERR(regs);
946 }
947
948 gcan = syscon_regmap_lookup_by_phandle(np, "st,gcan");
949 if (IS_ERR(gcan)) {
950 dev_err(dev, "failed to get shared memory base address\n");
951 return PTR_ERR(gcan);
952 }
953
954 if (of_property_read_bool(np, "st,can-primary"))
955 cfg = BXCAN_CFG_DUAL_PRIMARY;
956 else if (of_property_read_bool(np, "st,can-secondary"))
957 cfg = BXCAN_CFG_DUAL_SECONDARY;
958 else
959 cfg = BXCAN_CFG_SINGLE;
960
961 clk = devm_clk_get(dev, NULL);
962 if (IS_ERR(clk)) {
963 dev_err(dev, "failed to get clock\n");
964 return PTR_ERR(clk);
965 }
966
967 rx_irq = platform_get_irq_byname(pdev, "rx0");
968 if (rx_irq < 0)
969 return rx_irq;
970
971 tx_irq = platform_get_irq_byname(pdev, "tx");
972 if (tx_irq < 0)
973 return tx_irq;
974
975 sce_irq = platform_get_irq_byname(pdev, "sce");
976 if (sce_irq < 0)
977 return sce_irq;
978
979 ndev = alloc_candev(sizeof(struct bxcan_priv), BXCAN_TX_MB_NUM);
980 if (!ndev) {
981 dev_err(dev, "alloc_candev() failed\n");
982 return -ENOMEM;
983 }
984
985 priv = netdev_priv(ndev);
986 platform_set_drvdata(pdev, ndev);
987 SET_NETDEV_DEV(ndev, dev);
988 ndev->netdev_ops = &bxcan_netdev_ops;
989 ndev->ethtool_ops = &bxcan_ethtool_ops;
990 ndev->irq = rx_irq;
991 ndev->flags |= IFF_ECHO;
992
993 priv->dev = dev;
994 priv->ndev = ndev;
995 priv->regs = regs;
996 priv->gcan = gcan;
997 priv->clk = clk;
998 priv->tx_irq = tx_irq;
999 priv->sce_irq = sce_irq;
1000 priv->cfg = cfg;
1001 priv->can.clock.freq = clk_get_rate(clk);
1002 spin_lock_init(&priv->rmw_lock);
1003 priv->tx_head = 0;
1004 priv->tx_tail = 0;
1005 priv->can.bittiming_const = &bxcan_bittiming_const;
1006 priv->can.do_set_mode = bxcan_do_set_mode;
1007 priv->can.do_get_berr_counter = bxcan_get_berr_counter;
1008 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1009 CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_BERR_REPORTING;
1010
1011 priv->offload.mailbox_read = bxcan_mailbox_read;
1012 err = can_rx_offload_add_fifo(ndev, &priv->offload, BXCAN_NAPI_WEIGHT);
1013 if (err) {
1014 dev_err(dev, "failed to add FIFO rx_offload\n");
1015 goto out_free_candev;
1016 }
1017
1018 err = register_candev(ndev);
1019 if (err) {
1020 dev_err(dev, "failed to register netdev\n");
1021 goto out_can_rx_offload_del;
1022 }
1023
1024 dev_info(dev, "clk: %d Hz, IRQs: %d, %d, %d\n", priv->can.clock.freq,
1025 tx_irq, rx_irq, sce_irq);
1026 return 0;
1027
1028 out_can_rx_offload_del:
1029 can_rx_offload_del(&priv->offload);
1030 out_free_candev:
1031 free_candev(ndev);
1032 return err;
1033 }
1034
bxcan_remove(struct platform_device * pdev)1035 static void bxcan_remove(struct platform_device *pdev)
1036 {
1037 struct net_device *ndev = platform_get_drvdata(pdev);
1038 struct bxcan_priv *priv = netdev_priv(ndev);
1039
1040 unregister_candev(ndev);
1041 clk_disable_unprepare(priv->clk);
1042 can_rx_offload_del(&priv->offload);
1043 free_candev(ndev);
1044 }
1045
bxcan_suspend(struct device * dev)1046 static int __maybe_unused bxcan_suspend(struct device *dev)
1047 {
1048 struct net_device *ndev = dev_get_drvdata(dev);
1049 struct bxcan_priv *priv = netdev_priv(ndev);
1050
1051 if (!netif_running(ndev))
1052 return 0;
1053
1054 netif_stop_queue(ndev);
1055 netif_device_detach(ndev);
1056
1057 bxcan_enter_sleep_mode(priv);
1058 priv->can.state = CAN_STATE_SLEEPING;
1059 clk_disable_unprepare(priv->clk);
1060 return 0;
1061 }
1062
bxcan_resume(struct device * dev)1063 static int __maybe_unused bxcan_resume(struct device *dev)
1064 {
1065 struct net_device *ndev = dev_get_drvdata(dev);
1066 struct bxcan_priv *priv = netdev_priv(ndev);
1067
1068 if (!netif_running(ndev))
1069 return 0;
1070
1071 clk_prepare_enable(priv->clk);
1072 bxcan_leave_sleep_mode(priv);
1073 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1074
1075 netif_device_attach(ndev);
1076 netif_start_queue(ndev);
1077 return 0;
1078 }
1079
1080 static SIMPLE_DEV_PM_OPS(bxcan_pm_ops, bxcan_suspend, bxcan_resume);
1081
1082 static const struct of_device_id bxcan_of_match[] = {
1083 {.compatible = "st,stm32f4-bxcan"},
1084 { /* sentinel */ },
1085 };
1086 MODULE_DEVICE_TABLE(of, bxcan_of_match);
1087
1088 static struct platform_driver bxcan_driver = {
1089 .driver = {
1090 .name = KBUILD_MODNAME,
1091 .pm = &bxcan_pm_ops,
1092 .of_match_table = bxcan_of_match,
1093 },
1094 .probe = bxcan_probe,
1095 .remove_new = bxcan_remove,
1096 };
1097
1098 module_platform_driver(bxcan_driver);
1099
1100 MODULE_AUTHOR("Dario Binacchi <dario.binacchi@amarulasolutions.com>");
1101 MODULE_DESCRIPTION("STMicroelectronics Basic Extended CAN controller driver");
1102 MODULE_LICENSE("GPL");
1103