1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/fcntl.h> 40 #include <linux/interrupt.h> 41 #include <linux/ptrace.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <net/ip.h> 45 #include <linux/ip.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/init.h> 51 #include <linux/timer.h> 52 #include <linux/socket.h> 53 #include <linux/ctype.h> 54 #include <linux/inet.h> 55 #include <linux/bitops.h> 56 #include <linux/io.h> 57 #include <asm/dma.h> 58 #include <linux/uaccess.h> 59 #include <linux/errno.h> 60 #include <linux/netdevice.h> 61 #include <linux/inetdevice.h> 62 #include <linux/igmp.h> 63 #include <linux/etherdevice.h> 64 #include <linux/skbuff.h> 65 #include <net/sock.h> 66 #include <linux/rtnetlink.h> 67 #include <linux/smp.h> 68 #include <linux/if_ether.h> 69 #include <net/arp.h> 70 #include <linux/mii.h> 71 #include <linux/ethtool.h> 72 #include <linux/if_vlan.h> 73 #include <linux/if_bonding.h> 74 #include <linux/jiffies.h> 75 #include <linux/preempt.h> 76 #include <net/route.h> 77 #include <net/net_namespace.h> 78 #include <net/netns/generic.h> 79 #include <net/pkt_sched.h> 80 #include <linux/rculist.h> 81 #include "bonding.h" 82 #include "bond_3ad.h" 83 #include "bond_alb.h" 84 85 /*---------------------------- Module parameters ----------------------------*/ 86 87 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 88 #define BOND_LINK_MON_INTERV 0 89 #define BOND_LINK_ARP_INTERV 0 90 91 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 92 static int tx_queues = BOND_DEFAULT_TX_QUEUES; 93 static int num_peer_notif = 1; 94 static int miimon = BOND_LINK_MON_INTERV; 95 static int updelay; 96 static int downdelay; 97 static int use_carrier = 1; 98 static char *mode; 99 static char *primary; 100 static char *primary_reselect; 101 static char *lacp_rate; 102 static int min_links; 103 static char *ad_select; 104 static char *xmit_hash_policy; 105 static int arp_interval = BOND_LINK_ARP_INTERV; 106 static char *arp_ip_target[BOND_MAX_ARP_TARGETS]; 107 static char *arp_validate; 108 static char *arp_all_targets; 109 static char *fail_over_mac; 110 static int all_slaves_active; 111 static struct bond_params bonding_defaults; 112 static int resend_igmp = BOND_DEFAULT_RESEND_IGMP; 113 114 module_param(max_bonds, int, 0); 115 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 116 module_param(tx_queues, int, 0); 117 MODULE_PARM_DESC(tx_queues, "Max number of transmit queues (default = 16)"); 118 module_param_named(num_grat_arp, num_peer_notif, int, 0644); 119 MODULE_PARM_DESC(num_grat_arp, "Number of peer notifications to send on " 120 "failover event (alias of num_unsol_na)"); 121 module_param_named(num_unsol_na, num_peer_notif, int, 0644); 122 MODULE_PARM_DESC(num_unsol_na, "Number of peer notifications to send on " 123 "failover event (alias of num_grat_arp)"); 124 module_param(miimon, int, 0); 125 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 126 module_param(updelay, int, 0); 127 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 128 module_param(downdelay, int, 0); 129 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 130 "in milliseconds"); 131 module_param(use_carrier, int, 0); 132 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 133 "0 for off, 1 for on (default)"); 134 module_param(mode, charp, 0); 135 MODULE_PARM_DESC(mode, "Mode of operation; 0 for balance-rr, " 136 "1 for active-backup, 2 for balance-xor, " 137 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 138 "6 for balance-alb"); 139 module_param(primary, charp, 0); 140 MODULE_PARM_DESC(primary, "Primary network device to use"); 141 module_param(primary_reselect, charp, 0); 142 MODULE_PARM_DESC(primary_reselect, "Reselect primary slave " 143 "once it comes up; " 144 "0 for always (default), " 145 "1 for only if speed of primary is " 146 "better, " 147 "2 for only on active slave " 148 "failure"); 149 module_param(lacp_rate, charp, 0); 150 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner; " 151 "0 for slow, 1 for fast"); 152 module_param(ad_select, charp, 0); 153 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic; " 154 "0 for stable (default), 1 for bandwidth, " 155 "2 for count"); 156 module_param(min_links, int, 0); 157 MODULE_PARM_DESC(min_links, "Minimum number of available links before turning on carrier"); 158 159 module_param(xmit_hash_policy, charp, 0); 160 MODULE_PARM_DESC(xmit_hash_policy, "balance-xor and 802.3ad hashing method; " 161 "0 for layer 2 (default), 1 for layer 3+4, " 162 "2 for layer 2+3"); 163 module_param(arp_interval, int, 0); 164 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 165 module_param_array(arp_ip_target, charp, NULL, 0); 166 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 167 module_param(arp_validate, charp, 0); 168 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes; " 169 "0 for none (default), 1 for active, " 170 "2 for backup, 3 for all"); 171 module_param(arp_all_targets, charp, 0); 172 MODULE_PARM_DESC(arp_all_targets, "fail on any/all arp targets timeout; 0 for any (default), 1 for all"); 173 module_param(fail_over_mac, charp, 0); 174 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to " 175 "the same MAC; 0 for none (default), " 176 "1 for active, 2 for follow"); 177 module_param(all_slaves_active, int, 0); 178 MODULE_PARM_DESC(all_slaves_active, "Keep all frames received on an interface" 179 "by setting active flag for all slaves; " 180 "0 for never (default), 1 for always."); 181 module_param(resend_igmp, int, 0); 182 MODULE_PARM_DESC(resend_igmp, "Number of IGMP membership reports to send on " 183 "link failure"); 184 185 /*----------------------------- Global variables ----------------------------*/ 186 187 #ifdef CONFIG_NET_POLL_CONTROLLER 188 atomic_t netpoll_block_tx = ATOMIC_INIT(0); 189 #endif 190 191 int bond_net_id __read_mostly; 192 193 static __be32 arp_target[BOND_MAX_ARP_TARGETS]; 194 static int arp_ip_count; 195 static int bond_mode = BOND_MODE_ROUNDROBIN; 196 static int xmit_hashtype = BOND_XMIT_POLICY_LAYER2; 197 static int lacp_fast; 198 199 const struct bond_parm_tbl bond_lacp_tbl[] = { 200 { "slow", AD_LACP_SLOW}, 201 { "fast", AD_LACP_FAST}, 202 { NULL, -1}, 203 }; 204 205 const struct bond_parm_tbl bond_mode_tbl[] = { 206 { "balance-rr", BOND_MODE_ROUNDROBIN}, 207 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 208 { "balance-xor", BOND_MODE_XOR}, 209 { "broadcast", BOND_MODE_BROADCAST}, 210 { "802.3ad", BOND_MODE_8023AD}, 211 { "balance-tlb", BOND_MODE_TLB}, 212 { "balance-alb", BOND_MODE_ALB}, 213 { NULL, -1}, 214 }; 215 216 const struct bond_parm_tbl xmit_hashtype_tbl[] = { 217 { "layer2", BOND_XMIT_POLICY_LAYER2}, 218 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 219 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 220 { NULL, -1}, 221 }; 222 223 const struct bond_parm_tbl arp_all_targets_tbl[] = { 224 { "any", BOND_ARP_TARGETS_ANY}, 225 { "all", BOND_ARP_TARGETS_ALL}, 226 { NULL, -1}, 227 }; 228 229 const struct bond_parm_tbl arp_validate_tbl[] = { 230 { "none", BOND_ARP_VALIDATE_NONE}, 231 { "active", BOND_ARP_VALIDATE_ACTIVE}, 232 { "backup", BOND_ARP_VALIDATE_BACKUP}, 233 { "all", BOND_ARP_VALIDATE_ALL}, 234 { NULL, -1}, 235 }; 236 237 const struct bond_parm_tbl fail_over_mac_tbl[] = { 238 { "none", BOND_FOM_NONE}, 239 { "active", BOND_FOM_ACTIVE}, 240 { "follow", BOND_FOM_FOLLOW}, 241 { NULL, -1}, 242 }; 243 244 const struct bond_parm_tbl pri_reselect_tbl[] = { 245 { "always", BOND_PRI_RESELECT_ALWAYS}, 246 { "better", BOND_PRI_RESELECT_BETTER}, 247 { "failure", BOND_PRI_RESELECT_FAILURE}, 248 { NULL, -1}, 249 }; 250 251 struct bond_parm_tbl ad_select_tbl[] = { 252 { "stable", BOND_AD_STABLE}, 253 { "bandwidth", BOND_AD_BANDWIDTH}, 254 { "count", BOND_AD_COUNT}, 255 { NULL, -1}, 256 }; 257 258 /*-------------------------- Forward declarations ---------------------------*/ 259 260 static int bond_init(struct net_device *bond_dev); 261 static void bond_uninit(struct net_device *bond_dev); 262 263 /*---------------------------- General routines -----------------------------*/ 264 265 const char *bond_mode_name(int mode) 266 { 267 static const char *names[] = { 268 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)", 269 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)", 270 [BOND_MODE_XOR] = "load balancing (xor)", 271 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)", 272 [BOND_MODE_8023AD] = "IEEE 802.3ad Dynamic link aggregation", 273 [BOND_MODE_TLB] = "transmit load balancing", 274 [BOND_MODE_ALB] = "adaptive load balancing", 275 }; 276 277 if (mode < BOND_MODE_ROUNDROBIN || mode > BOND_MODE_ALB) 278 return "unknown"; 279 280 return names[mode]; 281 } 282 283 /*---------------------------------- VLAN -----------------------------------*/ 284 285 /** 286 * bond_dev_queue_xmit - Prepare skb for xmit. 287 * 288 * @bond: bond device that got this skb for tx. 289 * @skb: hw accel VLAN tagged skb to transmit 290 * @slave_dev: slave that is supposed to xmit this skbuff 291 */ 292 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, 293 struct net_device *slave_dev) 294 { 295 skb->dev = slave_dev; 296 297 BUILD_BUG_ON(sizeof(skb->queue_mapping) != 298 sizeof(qdisc_skb_cb(skb)->slave_dev_queue_mapping)); 299 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 300 301 if (unlikely(netpoll_tx_running(bond->dev))) 302 bond_netpoll_send_skb(bond_get_slave_by_dev(bond, slave_dev), skb); 303 else 304 dev_queue_xmit(skb); 305 306 return 0; 307 } 308 309 /* 310 * In the following 2 functions, bond_vlan_rx_add_vid and bond_vlan_rx_kill_vid, 311 * We don't protect the slave list iteration with a lock because: 312 * a. This operation is performed in IOCTL context, 313 * b. The operation is protected by the RTNL semaphore in the 8021q code, 314 * c. Holding a lock with BH disabled while directly calling a base driver 315 * entry point is generally a BAD idea. 316 * 317 * The design of synchronization/protection for this operation in the 8021q 318 * module is good for one or more VLAN devices over a single physical device 319 * and cannot be extended for a teaming solution like bonding, so there is a 320 * potential race condition here where a net device from the vlan group might 321 * be referenced (either by a base driver or the 8021q code) while it is being 322 * removed from the system. However, it turns out we're not making matters 323 * worse, and if it works for regular VLAN usage it will work here too. 324 */ 325 326 /** 327 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 328 * @bond_dev: bonding net device that got called 329 * @vid: vlan id being added 330 */ 331 static int bond_vlan_rx_add_vid(struct net_device *bond_dev, 332 __be16 proto, u16 vid) 333 { 334 struct bonding *bond = netdev_priv(bond_dev); 335 struct slave *slave; 336 int res; 337 338 bond_for_each_slave(bond, slave) { 339 res = vlan_vid_add(slave->dev, proto, vid); 340 if (res) 341 goto unwind; 342 } 343 344 return 0; 345 346 unwind: 347 /* unwind from the slave that failed */ 348 bond_for_each_slave_continue_reverse(bond, slave) 349 vlan_vid_del(slave->dev, proto, vid); 350 351 return res; 352 } 353 354 /** 355 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 356 * @bond_dev: bonding net device that got called 357 * @vid: vlan id being removed 358 */ 359 static int bond_vlan_rx_kill_vid(struct net_device *bond_dev, 360 __be16 proto, u16 vid) 361 { 362 struct bonding *bond = netdev_priv(bond_dev); 363 struct slave *slave; 364 365 bond_for_each_slave(bond, slave) 366 vlan_vid_del(slave->dev, proto, vid); 367 368 if (bond_is_lb(bond)) 369 bond_alb_clear_vlan(bond, vid); 370 371 return 0; 372 } 373 374 /*------------------------------- Link status -------------------------------*/ 375 376 /* 377 * Set the carrier state for the master according to the state of its 378 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 379 * do special 802.3ad magic. 380 * 381 * Returns zero if carrier state does not change, nonzero if it does. 382 */ 383 static int bond_set_carrier(struct bonding *bond) 384 { 385 struct slave *slave; 386 387 if (list_empty(&bond->slave_list)) 388 goto down; 389 390 if (bond->params.mode == BOND_MODE_8023AD) 391 return bond_3ad_set_carrier(bond); 392 393 bond_for_each_slave(bond, slave) { 394 if (slave->link == BOND_LINK_UP) { 395 if (!netif_carrier_ok(bond->dev)) { 396 netif_carrier_on(bond->dev); 397 return 1; 398 } 399 return 0; 400 } 401 } 402 403 down: 404 if (netif_carrier_ok(bond->dev)) { 405 netif_carrier_off(bond->dev); 406 return 1; 407 } 408 return 0; 409 } 410 411 /* 412 * Get link speed and duplex from the slave's base driver 413 * using ethtool. If for some reason the call fails or the 414 * values are invalid, set speed and duplex to -1, 415 * and return. 416 */ 417 static void bond_update_speed_duplex(struct slave *slave) 418 { 419 struct net_device *slave_dev = slave->dev; 420 struct ethtool_cmd ecmd; 421 u32 slave_speed; 422 int res; 423 424 slave->speed = SPEED_UNKNOWN; 425 slave->duplex = DUPLEX_UNKNOWN; 426 427 res = __ethtool_get_settings(slave_dev, &ecmd); 428 if (res < 0) 429 return; 430 431 slave_speed = ethtool_cmd_speed(&ecmd); 432 if (slave_speed == 0 || slave_speed == ((__u32) -1)) 433 return; 434 435 switch (ecmd.duplex) { 436 case DUPLEX_FULL: 437 case DUPLEX_HALF: 438 break; 439 default: 440 return; 441 } 442 443 slave->speed = slave_speed; 444 slave->duplex = ecmd.duplex; 445 446 return; 447 } 448 449 /* 450 * if <dev> supports MII link status reporting, check its link status. 451 * 452 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 453 * depending upon the setting of the use_carrier parameter. 454 * 455 * Return either BMSR_LSTATUS, meaning that the link is up (or we 456 * can't tell and just pretend it is), or 0, meaning that the link is 457 * down. 458 * 459 * If reporting is non-zero, instead of faking link up, return -1 if 460 * both ETHTOOL and MII ioctls fail (meaning the device does not 461 * support them). If use_carrier is set, return whatever it says. 462 * It'd be nice if there was a good way to tell if a driver supports 463 * netif_carrier, but there really isn't. 464 */ 465 static int bond_check_dev_link(struct bonding *bond, 466 struct net_device *slave_dev, int reporting) 467 { 468 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 469 int (*ioctl)(struct net_device *, struct ifreq *, int); 470 struct ifreq ifr; 471 struct mii_ioctl_data *mii; 472 473 if (!reporting && !netif_running(slave_dev)) 474 return 0; 475 476 if (bond->params.use_carrier) 477 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 478 479 /* Try to get link status using Ethtool first. */ 480 if (slave_dev->ethtool_ops->get_link) 481 return slave_dev->ethtool_ops->get_link(slave_dev) ? 482 BMSR_LSTATUS : 0; 483 484 /* Ethtool can't be used, fallback to MII ioctls. */ 485 ioctl = slave_ops->ndo_do_ioctl; 486 if (ioctl) { 487 /* TODO: set pointer to correct ioctl on a per team member */ 488 /* bases to make this more efficient. that is, once */ 489 /* we determine the correct ioctl, we will always */ 490 /* call it and not the others for that team */ 491 /* member. */ 492 493 /* 494 * We cannot assume that SIOCGMIIPHY will also read a 495 * register; not all network drivers (e.g., e100) 496 * support that. 497 */ 498 499 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 500 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 501 mii = if_mii(&ifr); 502 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 503 mii->reg_num = MII_BMSR; 504 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) 505 return mii->val_out & BMSR_LSTATUS; 506 } 507 } 508 509 /* 510 * If reporting, report that either there's no dev->do_ioctl, 511 * or both SIOCGMIIREG and get_link failed (meaning that we 512 * cannot report link status). If not reporting, pretend 513 * we're ok. 514 */ 515 return reporting ? -1 : BMSR_LSTATUS; 516 } 517 518 /*----------------------------- Multicast list ------------------------------*/ 519 520 /* 521 * Push the promiscuity flag down to appropriate slaves 522 */ 523 static int bond_set_promiscuity(struct bonding *bond, int inc) 524 { 525 int err = 0; 526 if (USES_PRIMARY(bond->params.mode)) { 527 /* write lock already acquired */ 528 if (bond->curr_active_slave) { 529 err = dev_set_promiscuity(bond->curr_active_slave->dev, 530 inc); 531 } 532 } else { 533 struct slave *slave; 534 535 bond_for_each_slave(bond, slave) { 536 err = dev_set_promiscuity(slave->dev, inc); 537 if (err) 538 return err; 539 } 540 } 541 return err; 542 } 543 544 /* 545 * Push the allmulti flag down to all slaves 546 */ 547 static int bond_set_allmulti(struct bonding *bond, int inc) 548 { 549 int err = 0; 550 if (USES_PRIMARY(bond->params.mode)) { 551 /* write lock already acquired */ 552 if (bond->curr_active_slave) { 553 err = dev_set_allmulti(bond->curr_active_slave->dev, 554 inc); 555 } 556 } else { 557 struct slave *slave; 558 559 bond_for_each_slave(bond, slave) { 560 err = dev_set_allmulti(slave->dev, inc); 561 if (err) 562 return err; 563 } 564 } 565 return err; 566 } 567 568 /* 569 * Retrieve the list of registered multicast addresses for the bonding 570 * device and retransmit an IGMP JOIN request to the current active 571 * slave. 572 */ 573 static void bond_resend_igmp_join_requests(struct bonding *bond) 574 { 575 if (!rtnl_trylock()) { 576 queue_delayed_work(bond->wq, &bond->mcast_work, 1); 577 return; 578 } 579 call_netdevice_notifiers(NETDEV_RESEND_IGMP, bond->dev); 580 rtnl_unlock(); 581 582 /* We use curr_slave_lock to protect against concurrent access to 583 * igmp_retrans from multiple running instances of this function and 584 * bond_change_active_slave 585 */ 586 write_lock_bh(&bond->curr_slave_lock); 587 if (bond->igmp_retrans > 1) { 588 bond->igmp_retrans--; 589 queue_delayed_work(bond->wq, &bond->mcast_work, HZ/5); 590 } 591 write_unlock_bh(&bond->curr_slave_lock); 592 } 593 594 static void bond_resend_igmp_join_requests_delayed(struct work_struct *work) 595 { 596 struct bonding *bond = container_of(work, struct bonding, 597 mcast_work.work); 598 599 bond_resend_igmp_join_requests(bond); 600 } 601 602 /* Flush bond's hardware addresses from slave 603 */ 604 static void bond_hw_addr_flush(struct net_device *bond_dev, 605 struct net_device *slave_dev) 606 { 607 struct bonding *bond = netdev_priv(bond_dev); 608 609 dev_uc_unsync(slave_dev, bond_dev); 610 dev_mc_unsync(slave_dev, bond_dev); 611 612 if (bond->params.mode == BOND_MODE_8023AD) { 613 /* del lacpdu mc addr from mc list */ 614 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 615 616 dev_mc_del(slave_dev, lacpdu_multicast); 617 } 618 } 619 620 /*--------------------------- Active slave change ---------------------------*/ 621 622 /* Update the hardware address list and promisc/allmulti for the new and 623 * old active slaves (if any). Modes that are !USES_PRIMARY keep all 624 * slaves up date at all times; only the USES_PRIMARY modes need to call 625 * this function to swap these settings during a failover. 626 */ 627 static void bond_hw_addr_swap(struct bonding *bond, struct slave *new_active, 628 struct slave *old_active) 629 { 630 ASSERT_RTNL(); 631 632 if (old_active) { 633 if (bond->dev->flags & IFF_PROMISC) 634 dev_set_promiscuity(old_active->dev, -1); 635 636 if (bond->dev->flags & IFF_ALLMULTI) 637 dev_set_allmulti(old_active->dev, -1); 638 639 bond_hw_addr_flush(bond->dev, old_active->dev); 640 } 641 642 if (new_active) { 643 /* FIXME: Signal errors upstream. */ 644 if (bond->dev->flags & IFF_PROMISC) 645 dev_set_promiscuity(new_active->dev, 1); 646 647 if (bond->dev->flags & IFF_ALLMULTI) 648 dev_set_allmulti(new_active->dev, 1); 649 650 netif_addr_lock_bh(bond->dev); 651 dev_uc_sync(new_active->dev, bond->dev); 652 dev_mc_sync(new_active->dev, bond->dev); 653 netif_addr_unlock_bh(bond->dev); 654 } 655 } 656 657 /** 658 * bond_set_dev_addr - clone slave's address to bond 659 * @bond_dev: bond net device 660 * @slave_dev: slave net device 661 * 662 * Should be called with RTNL held. 663 */ 664 static void bond_set_dev_addr(struct net_device *bond_dev, 665 struct net_device *slave_dev) 666 { 667 pr_debug("bond_dev=%p slave_dev=%p slave_dev->addr_len=%d\n", 668 bond_dev, slave_dev, slave_dev->addr_len); 669 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 670 bond_dev->addr_assign_type = NET_ADDR_STOLEN; 671 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond_dev); 672 } 673 674 /* 675 * bond_do_fail_over_mac 676 * 677 * Perform special MAC address swapping for fail_over_mac settings 678 * 679 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 680 */ 681 static void bond_do_fail_over_mac(struct bonding *bond, 682 struct slave *new_active, 683 struct slave *old_active) 684 __releases(&bond->curr_slave_lock) 685 __releases(&bond->lock) 686 __acquires(&bond->lock) 687 __acquires(&bond->curr_slave_lock) 688 { 689 u8 tmp_mac[ETH_ALEN]; 690 struct sockaddr saddr; 691 int rv; 692 693 switch (bond->params.fail_over_mac) { 694 case BOND_FOM_ACTIVE: 695 if (new_active) { 696 write_unlock_bh(&bond->curr_slave_lock); 697 read_unlock(&bond->lock); 698 bond_set_dev_addr(bond->dev, new_active->dev); 699 read_lock(&bond->lock); 700 write_lock_bh(&bond->curr_slave_lock); 701 } 702 break; 703 case BOND_FOM_FOLLOW: 704 /* 705 * if new_active && old_active, swap them 706 * if just old_active, do nothing (going to no active slave) 707 * if just new_active, set new_active to bond's MAC 708 */ 709 if (!new_active) 710 return; 711 712 write_unlock_bh(&bond->curr_slave_lock); 713 read_unlock(&bond->lock); 714 715 if (old_active) { 716 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 717 memcpy(saddr.sa_data, old_active->dev->dev_addr, 718 ETH_ALEN); 719 saddr.sa_family = new_active->dev->type; 720 } else { 721 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 722 saddr.sa_family = bond->dev->type; 723 } 724 725 rv = dev_set_mac_address(new_active->dev, &saddr); 726 if (rv) { 727 pr_err("%s: Error %d setting MAC of slave %s\n", 728 bond->dev->name, -rv, new_active->dev->name); 729 goto out; 730 } 731 732 if (!old_active) 733 goto out; 734 735 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 736 saddr.sa_family = old_active->dev->type; 737 738 rv = dev_set_mac_address(old_active->dev, &saddr); 739 if (rv) 740 pr_err("%s: Error %d setting MAC of slave %s\n", 741 bond->dev->name, -rv, new_active->dev->name); 742 out: 743 read_lock(&bond->lock); 744 write_lock_bh(&bond->curr_slave_lock); 745 break; 746 default: 747 pr_err("%s: bond_do_fail_over_mac impossible: bad policy %d\n", 748 bond->dev->name, bond->params.fail_over_mac); 749 break; 750 } 751 752 } 753 754 static bool bond_should_change_active(struct bonding *bond) 755 { 756 struct slave *prim = bond->primary_slave; 757 struct slave *curr = bond->curr_active_slave; 758 759 if (!prim || !curr || curr->link != BOND_LINK_UP) 760 return true; 761 if (bond->force_primary) { 762 bond->force_primary = false; 763 return true; 764 } 765 if (bond->params.primary_reselect == BOND_PRI_RESELECT_BETTER && 766 (prim->speed < curr->speed || 767 (prim->speed == curr->speed && prim->duplex <= curr->duplex))) 768 return false; 769 if (bond->params.primary_reselect == BOND_PRI_RESELECT_FAILURE) 770 return false; 771 return true; 772 } 773 774 /** 775 * find_best_interface - select the best available slave to be the active one 776 * @bond: our bonding struct 777 * 778 * Warning: Caller must hold curr_slave_lock for writing. 779 */ 780 static struct slave *bond_find_best_slave(struct bonding *bond) 781 { 782 struct slave *new_active, *old_active; 783 struct slave *bestslave = NULL; 784 int mintime = bond->params.updelay; 785 int i; 786 787 new_active = bond->curr_active_slave; 788 789 if (!new_active) { /* there were no active slaves left */ 790 new_active = bond_first_slave(bond); 791 if (!new_active) 792 return NULL; /* still no slave, return NULL */ 793 } 794 795 if ((bond->primary_slave) && 796 bond->primary_slave->link == BOND_LINK_UP && 797 bond_should_change_active(bond)) { 798 new_active = bond->primary_slave; 799 } 800 801 /* remember where to stop iterating over the slaves */ 802 old_active = new_active; 803 804 bond_for_each_slave_from(bond, new_active, i, old_active) { 805 if (new_active->link == BOND_LINK_UP) { 806 return new_active; 807 } else if (new_active->link == BOND_LINK_BACK && 808 IS_UP(new_active->dev)) { 809 /* link up, but waiting for stabilization */ 810 if (new_active->delay < mintime) { 811 mintime = new_active->delay; 812 bestslave = new_active; 813 } 814 } 815 } 816 817 return bestslave; 818 } 819 820 static bool bond_should_notify_peers(struct bonding *bond) 821 { 822 struct slave *slave = bond->curr_active_slave; 823 824 pr_debug("bond_should_notify_peers: bond %s slave %s\n", 825 bond->dev->name, slave ? slave->dev->name : "NULL"); 826 827 if (!slave || !bond->send_peer_notif || 828 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 829 return false; 830 831 return true; 832 } 833 834 /** 835 * change_active_interface - change the active slave into the specified one 836 * @bond: our bonding struct 837 * @new: the new slave to make the active one 838 * 839 * Set the new slave to the bond's settings and unset them on the old 840 * curr_active_slave. 841 * Setting include flags, mc-list, promiscuity, allmulti, etc. 842 * 843 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 844 * because it is apparently the best available slave we have, even though its 845 * updelay hasn't timed out yet. 846 * 847 * If new_active is not NULL, caller must hold bond->lock for read and 848 * curr_slave_lock for write_bh. 849 */ 850 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 851 { 852 struct slave *old_active = bond->curr_active_slave; 853 854 if (old_active == new_active) 855 return; 856 857 if (new_active) { 858 new_active->jiffies = jiffies; 859 860 if (new_active->link == BOND_LINK_BACK) { 861 if (USES_PRIMARY(bond->params.mode)) { 862 pr_info("%s: making interface %s the new active one %d ms earlier.\n", 863 bond->dev->name, new_active->dev->name, 864 (bond->params.updelay - new_active->delay) * bond->params.miimon); 865 } 866 867 new_active->delay = 0; 868 new_active->link = BOND_LINK_UP; 869 870 if (bond->params.mode == BOND_MODE_8023AD) 871 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 872 873 if (bond_is_lb(bond)) 874 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 875 } else { 876 if (USES_PRIMARY(bond->params.mode)) { 877 pr_info("%s: making interface %s the new active one.\n", 878 bond->dev->name, new_active->dev->name); 879 } 880 } 881 } 882 883 if (USES_PRIMARY(bond->params.mode)) 884 bond_hw_addr_swap(bond, new_active, old_active); 885 886 if (bond_is_lb(bond)) { 887 bond_alb_handle_active_change(bond, new_active); 888 if (old_active) 889 bond_set_slave_inactive_flags(old_active); 890 if (new_active) 891 bond_set_slave_active_flags(new_active); 892 } else { 893 rcu_assign_pointer(bond->curr_active_slave, new_active); 894 } 895 896 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 897 if (old_active) 898 bond_set_slave_inactive_flags(old_active); 899 900 if (new_active) { 901 bool should_notify_peers = false; 902 903 bond_set_slave_active_flags(new_active); 904 905 if (bond->params.fail_over_mac) 906 bond_do_fail_over_mac(bond, new_active, 907 old_active); 908 909 if (netif_running(bond->dev)) { 910 bond->send_peer_notif = 911 bond->params.num_peer_notif; 912 should_notify_peers = 913 bond_should_notify_peers(bond); 914 } 915 916 write_unlock_bh(&bond->curr_slave_lock); 917 read_unlock(&bond->lock); 918 919 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, bond->dev); 920 if (should_notify_peers) 921 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, 922 bond->dev); 923 924 read_lock(&bond->lock); 925 write_lock_bh(&bond->curr_slave_lock); 926 } 927 } 928 929 /* resend IGMP joins since active slave has changed or 930 * all were sent on curr_active_slave. 931 * resend only if bond is brought up with the affected 932 * bonding modes and the retransmission is enabled */ 933 if (netif_running(bond->dev) && (bond->params.resend_igmp > 0) && 934 ((USES_PRIMARY(bond->params.mode) && new_active) || 935 bond->params.mode == BOND_MODE_ROUNDROBIN)) { 936 bond->igmp_retrans = bond->params.resend_igmp; 937 queue_delayed_work(bond->wq, &bond->mcast_work, 1); 938 } 939 } 940 941 /** 942 * bond_select_active_slave - select a new active slave, if needed 943 * @bond: our bonding struct 944 * 945 * This functions should be called when one of the following occurs: 946 * - The old curr_active_slave has been released or lost its link. 947 * - The primary_slave has got its link back. 948 * - A slave has got its link back and there's no old curr_active_slave. 949 * 950 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 951 */ 952 void bond_select_active_slave(struct bonding *bond) 953 { 954 struct slave *best_slave; 955 int rv; 956 957 best_slave = bond_find_best_slave(bond); 958 if (best_slave != bond->curr_active_slave) { 959 bond_change_active_slave(bond, best_slave); 960 rv = bond_set_carrier(bond); 961 if (!rv) 962 return; 963 964 if (netif_carrier_ok(bond->dev)) { 965 pr_info("%s: first active interface up!\n", 966 bond->dev->name); 967 } else { 968 pr_info("%s: now running without any active interface !\n", 969 bond->dev->name); 970 } 971 } 972 } 973 974 /*--------------------------- slave list handling ---------------------------*/ 975 976 /* 977 * This function attaches the slave to the end of list. 978 * 979 * bond->lock held for writing by caller. 980 */ 981 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 982 { 983 list_add_tail_rcu(&new_slave->list, &bond->slave_list); 984 bond->slave_cnt++; 985 } 986 987 /* 988 * This function detaches the slave from the list. 989 * WARNING: no check is made to verify if the slave effectively 990 * belongs to <bond>. 991 * Nothing is freed on return, structures are just unchained. 992 * If any slave pointer in bond was pointing to <slave>, 993 * it should be changed by the calling function. 994 * 995 * bond->lock held for writing by caller. 996 */ 997 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 998 { 999 list_del_rcu(&slave->list); 1000 bond->slave_cnt--; 1001 } 1002 1003 #ifdef CONFIG_NET_POLL_CONTROLLER 1004 static inline int slave_enable_netpoll(struct slave *slave) 1005 { 1006 struct netpoll *np; 1007 int err = 0; 1008 1009 np = kzalloc(sizeof(*np), GFP_ATOMIC); 1010 err = -ENOMEM; 1011 if (!np) 1012 goto out; 1013 1014 err = __netpoll_setup(np, slave->dev, GFP_ATOMIC); 1015 if (err) { 1016 kfree(np); 1017 goto out; 1018 } 1019 slave->np = np; 1020 out: 1021 return err; 1022 } 1023 static inline void slave_disable_netpoll(struct slave *slave) 1024 { 1025 struct netpoll *np = slave->np; 1026 1027 if (!np) 1028 return; 1029 1030 slave->np = NULL; 1031 __netpoll_free_async(np); 1032 } 1033 static inline bool slave_dev_support_netpoll(struct net_device *slave_dev) 1034 { 1035 if (slave_dev->priv_flags & IFF_DISABLE_NETPOLL) 1036 return false; 1037 if (!slave_dev->netdev_ops->ndo_poll_controller) 1038 return false; 1039 return true; 1040 } 1041 1042 static void bond_poll_controller(struct net_device *bond_dev) 1043 { 1044 } 1045 1046 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1047 { 1048 struct bonding *bond = netdev_priv(bond_dev); 1049 struct slave *slave; 1050 1051 bond_for_each_slave(bond, slave) 1052 if (IS_UP(slave->dev)) 1053 slave_disable_netpoll(slave); 1054 } 1055 1056 static int bond_netpoll_setup(struct net_device *dev, struct netpoll_info *ni, gfp_t gfp) 1057 { 1058 struct bonding *bond = netdev_priv(dev); 1059 struct slave *slave; 1060 int err = 0; 1061 1062 bond_for_each_slave(bond, slave) { 1063 err = slave_enable_netpoll(slave); 1064 if (err) { 1065 bond_netpoll_cleanup(dev); 1066 break; 1067 } 1068 } 1069 return err; 1070 } 1071 #else 1072 static inline int slave_enable_netpoll(struct slave *slave) 1073 { 1074 return 0; 1075 } 1076 static inline void slave_disable_netpoll(struct slave *slave) 1077 { 1078 } 1079 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1080 { 1081 } 1082 #endif 1083 1084 /*---------------------------------- IOCTL ----------------------------------*/ 1085 1086 static netdev_features_t bond_fix_features(struct net_device *dev, 1087 netdev_features_t features) 1088 { 1089 struct bonding *bond = netdev_priv(dev); 1090 netdev_features_t mask; 1091 struct slave *slave; 1092 1093 if (list_empty(&bond->slave_list)) { 1094 /* Disable adding VLANs to empty bond. But why? --mq */ 1095 features |= NETIF_F_VLAN_CHALLENGED; 1096 return features; 1097 } 1098 1099 mask = features; 1100 features &= ~NETIF_F_ONE_FOR_ALL; 1101 features |= NETIF_F_ALL_FOR_ALL; 1102 1103 bond_for_each_slave(bond, slave) { 1104 features = netdev_increment_features(features, 1105 slave->dev->features, 1106 mask); 1107 } 1108 features = netdev_add_tso_features(features, mask); 1109 1110 return features; 1111 } 1112 1113 #define BOND_VLAN_FEATURES (NETIF_F_ALL_CSUM | NETIF_F_SG | \ 1114 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \ 1115 NETIF_F_HIGHDMA | NETIF_F_LRO) 1116 1117 static void bond_compute_features(struct bonding *bond) 1118 { 1119 unsigned int flags, dst_release_flag = IFF_XMIT_DST_RELEASE; 1120 netdev_features_t vlan_features = BOND_VLAN_FEATURES; 1121 unsigned short max_hard_header_len = ETH_HLEN; 1122 unsigned int gso_max_size = GSO_MAX_SIZE; 1123 struct net_device *bond_dev = bond->dev; 1124 u16 gso_max_segs = GSO_MAX_SEGS; 1125 struct slave *slave; 1126 1127 if (list_empty(&bond->slave_list)) 1128 goto done; 1129 1130 bond_for_each_slave(bond, slave) { 1131 vlan_features = netdev_increment_features(vlan_features, 1132 slave->dev->vlan_features, BOND_VLAN_FEATURES); 1133 1134 dst_release_flag &= slave->dev->priv_flags; 1135 if (slave->dev->hard_header_len > max_hard_header_len) 1136 max_hard_header_len = slave->dev->hard_header_len; 1137 1138 gso_max_size = min(gso_max_size, slave->dev->gso_max_size); 1139 gso_max_segs = min(gso_max_segs, slave->dev->gso_max_segs); 1140 } 1141 1142 done: 1143 bond_dev->vlan_features = vlan_features; 1144 bond_dev->hard_header_len = max_hard_header_len; 1145 bond_dev->gso_max_segs = gso_max_segs; 1146 netif_set_gso_max_size(bond_dev, gso_max_size); 1147 1148 flags = bond_dev->priv_flags & ~IFF_XMIT_DST_RELEASE; 1149 bond_dev->priv_flags = flags | dst_release_flag; 1150 1151 netdev_change_features(bond_dev); 1152 } 1153 1154 static void bond_setup_by_slave(struct net_device *bond_dev, 1155 struct net_device *slave_dev) 1156 { 1157 bond_dev->header_ops = slave_dev->header_ops; 1158 1159 bond_dev->type = slave_dev->type; 1160 bond_dev->hard_header_len = slave_dev->hard_header_len; 1161 bond_dev->addr_len = slave_dev->addr_len; 1162 1163 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1164 slave_dev->addr_len); 1165 } 1166 1167 /* On bonding slaves other than the currently active slave, suppress 1168 * duplicates except for alb non-mcast/bcast. 1169 */ 1170 static bool bond_should_deliver_exact_match(struct sk_buff *skb, 1171 struct slave *slave, 1172 struct bonding *bond) 1173 { 1174 if (bond_is_slave_inactive(slave)) { 1175 if (bond->params.mode == BOND_MODE_ALB && 1176 skb->pkt_type != PACKET_BROADCAST && 1177 skb->pkt_type != PACKET_MULTICAST) 1178 return false; 1179 return true; 1180 } 1181 return false; 1182 } 1183 1184 static rx_handler_result_t bond_handle_frame(struct sk_buff **pskb) 1185 { 1186 struct sk_buff *skb = *pskb; 1187 struct slave *slave; 1188 struct bonding *bond; 1189 int (*recv_probe)(const struct sk_buff *, struct bonding *, 1190 struct slave *); 1191 int ret = RX_HANDLER_ANOTHER; 1192 1193 skb = skb_share_check(skb, GFP_ATOMIC); 1194 if (unlikely(!skb)) 1195 return RX_HANDLER_CONSUMED; 1196 1197 *pskb = skb; 1198 1199 slave = bond_slave_get_rcu(skb->dev); 1200 bond = slave->bond; 1201 1202 if (bond->params.arp_interval) 1203 slave->dev->last_rx = jiffies; 1204 1205 recv_probe = ACCESS_ONCE(bond->recv_probe); 1206 if (recv_probe) { 1207 ret = recv_probe(skb, bond, slave); 1208 if (ret == RX_HANDLER_CONSUMED) { 1209 consume_skb(skb); 1210 return ret; 1211 } 1212 } 1213 1214 if (bond_should_deliver_exact_match(skb, slave, bond)) { 1215 return RX_HANDLER_EXACT; 1216 } 1217 1218 skb->dev = bond->dev; 1219 1220 if (bond->params.mode == BOND_MODE_ALB && 1221 bond->dev->priv_flags & IFF_BRIDGE_PORT && 1222 skb->pkt_type == PACKET_HOST) { 1223 1224 if (unlikely(skb_cow_head(skb, 1225 skb->data - skb_mac_header(skb)))) { 1226 kfree_skb(skb); 1227 return RX_HANDLER_CONSUMED; 1228 } 1229 memcpy(eth_hdr(skb)->h_dest, bond->dev->dev_addr, ETH_ALEN); 1230 } 1231 1232 return ret; 1233 } 1234 1235 static int bond_master_upper_dev_link(struct net_device *bond_dev, 1236 struct net_device *slave_dev) 1237 { 1238 int err; 1239 1240 err = netdev_master_upper_dev_link(slave_dev, bond_dev); 1241 if (err) 1242 return err; 1243 slave_dev->flags |= IFF_SLAVE; 1244 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE); 1245 return 0; 1246 } 1247 1248 static void bond_upper_dev_unlink(struct net_device *bond_dev, 1249 struct net_device *slave_dev) 1250 { 1251 netdev_upper_dev_unlink(slave_dev, bond_dev); 1252 slave_dev->flags &= ~IFF_SLAVE; 1253 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE); 1254 } 1255 1256 /* enslave device <slave> to bond device <master> */ 1257 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1258 { 1259 struct bonding *bond = netdev_priv(bond_dev); 1260 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 1261 struct slave *new_slave = NULL; 1262 struct sockaddr addr; 1263 int link_reporting; 1264 int res = 0, i; 1265 1266 if (!bond->params.use_carrier && 1267 slave_dev->ethtool_ops->get_link == NULL && 1268 slave_ops->ndo_do_ioctl == NULL) { 1269 pr_warning("%s: Warning: no link monitoring support for %s\n", 1270 bond_dev->name, slave_dev->name); 1271 } 1272 1273 /* already enslaved */ 1274 if (slave_dev->flags & IFF_SLAVE) { 1275 pr_debug("Error, Device was already enslaved\n"); 1276 return -EBUSY; 1277 } 1278 1279 /* vlan challenged mutual exclusion */ 1280 /* no need to lock since we're protected by rtnl_lock */ 1281 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1282 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1283 if (vlan_uses_dev(bond_dev)) { 1284 pr_err("%s: Error: cannot enslave VLAN challenged slave %s on VLAN enabled bond %s\n", 1285 bond_dev->name, slave_dev->name, bond_dev->name); 1286 return -EPERM; 1287 } else { 1288 pr_warning("%s: Warning: enslaved VLAN challenged slave %s. Adding VLANs will be blocked as long as %s is part of bond %s\n", 1289 bond_dev->name, slave_dev->name, 1290 slave_dev->name, bond_dev->name); 1291 } 1292 } else { 1293 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1294 } 1295 1296 /* 1297 * Old ifenslave binaries are no longer supported. These can 1298 * be identified with moderate accuracy by the state of the slave: 1299 * the current ifenslave will set the interface down prior to 1300 * enslaving it; the old ifenslave will not. 1301 */ 1302 if ((slave_dev->flags & IFF_UP)) { 1303 pr_err("%s is up. This may be due to an out of date ifenslave.\n", 1304 slave_dev->name); 1305 res = -EPERM; 1306 goto err_undo_flags; 1307 } 1308 1309 /* set bonding device ether type by slave - bonding netdevices are 1310 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1311 * there is a need to override some of the type dependent attribs/funcs. 1312 * 1313 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1314 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1315 */ 1316 if (list_empty(&bond->slave_list)) { 1317 if (bond_dev->type != slave_dev->type) { 1318 pr_debug("%s: change device type from %d to %d\n", 1319 bond_dev->name, 1320 bond_dev->type, slave_dev->type); 1321 1322 res = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE, 1323 bond_dev); 1324 res = notifier_to_errno(res); 1325 if (res) { 1326 pr_err("%s: refused to change device type\n", 1327 bond_dev->name); 1328 res = -EBUSY; 1329 goto err_undo_flags; 1330 } 1331 1332 /* Flush unicast and multicast addresses */ 1333 dev_uc_flush(bond_dev); 1334 dev_mc_flush(bond_dev); 1335 1336 if (slave_dev->type != ARPHRD_ETHER) 1337 bond_setup_by_slave(bond_dev, slave_dev); 1338 else { 1339 ether_setup(bond_dev); 1340 bond_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 1341 } 1342 1343 call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, 1344 bond_dev); 1345 } 1346 } else if (bond_dev->type != slave_dev->type) { 1347 pr_err("%s ether type (%d) is different from other slaves (%d), can not enslave it.\n", 1348 slave_dev->name, 1349 slave_dev->type, bond_dev->type); 1350 res = -EINVAL; 1351 goto err_undo_flags; 1352 } 1353 1354 if (slave_ops->ndo_set_mac_address == NULL) { 1355 if (list_empty(&bond->slave_list)) { 1356 pr_warning("%s: Warning: The first slave device specified does not support setting the MAC address. Setting fail_over_mac to active.", 1357 bond_dev->name); 1358 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1359 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1360 pr_err("%s: Error: The slave device specified does not support setting the MAC address, but fail_over_mac is not set to active.\n", 1361 bond_dev->name); 1362 res = -EOPNOTSUPP; 1363 goto err_undo_flags; 1364 } 1365 } 1366 1367 call_netdevice_notifiers(NETDEV_JOIN, slave_dev); 1368 1369 /* If this is the first slave, then we need to set the master's hardware 1370 * address to be the same as the slave's. */ 1371 if (list_empty(&bond->slave_list) && 1372 bond->dev->addr_assign_type == NET_ADDR_RANDOM) 1373 bond_set_dev_addr(bond->dev, slave_dev); 1374 1375 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1376 if (!new_slave) { 1377 res = -ENOMEM; 1378 goto err_undo_flags; 1379 } 1380 INIT_LIST_HEAD(&new_slave->list); 1381 /* 1382 * Set the new_slave's queue_id to be zero. Queue ID mapping 1383 * is set via sysfs or module option if desired. 1384 */ 1385 new_slave->queue_id = 0; 1386 1387 /* Save slave's original mtu and then set it to match the bond */ 1388 new_slave->original_mtu = slave_dev->mtu; 1389 res = dev_set_mtu(slave_dev, bond->dev->mtu); 1390 if (res) { 1391 pr_debug("Error %d calling dev_set_mtu\n", res); 1392 goto err_free; 1393 } 1394 1395 /* 1396 * Save slave's original ("permanent") mac address for modes 1397 * that need it, and for restoring it upon release, and then 1398 * set it to the master's address 1399 */ 1400 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1401 1402 if (!bond->params.fail_over_mac) { 1403 /* 1404 * Set slave to master's mac address. The application already 1405 * set the master's mac address to that of the first slave 1406 */ 1407 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1408 addr.sa_family = slave_dev->type; 1409 res = dev_set_mac_address(slave_dev, &addr); 1410 if (res) { 1411 pr_debug("Error %d calling set_mac_address\n", res); 1412 goto err_restore_mtu; 1413 } 1414 } 1415 1416 res = bond_master_upper_dev_link(bond_dev, slave_dev); 1417 if (res) { 1418 pr_debug("Error %d calling bond_master_upper_dev_link\n", res); 1419 goto err_restore_mac; 1420 } 1421 1422 /* open the slave since the application closed it */ 1423 res = dev_open(slave_dev); 1424 if (res) { 1425 pr_debug("Opening slave %s failed\n", slave_dev->name); 1426 goto err_unset_master; 1427 } 1428 1429 new_slave->bond = bond; 1430 new_slave->dev = slave_dev; 1431 slave_dev->priv_flags |= IFF_BONDING; 1432 1433 if (bond_is_lb(bond)) { 1434 /* bond_alb_init_slave() must be called before all other stages since 1435 * it might fail and we do not want to have to undo everything 1436 */ 1437 res = bond_alb_init_slave(bond, new_slave); 1438 if (res) 1439 goto err_close; 1440 } 1441 1442 /* If the mode USES_PRIMARY, then the following is handled by 1443 * bond_change_active_slave(). 1444 */ 1445 if (!USES_PRIMARY(bond->params.mode)) { 1446 /* set promiscuity level to new slave */ 1447 if (bond_dev->flags & IFF_PROMISC) { 1448 res = dev_set_promiscuity(slave_dev, 1); 1449 if (res) 1450 goto err_close; 1451 } 1452 1453 /* set allmulti level to new slave */ 1454 if (bond_dev->flags & IFF_ALLMULTI) { 1455 res = dev_set_allmulti(slave_dev, 1); 1456 if (res) 1457 goto err_close; 1458 } 1459 1460 netif_addr_lock_bh(bond_dev); 1461 1462 dev_mc_sync_multiple(slave_dev, bond_dev); 1463 dev_uc_sync_multiple(slave_dev, bond_dev); 1464 1465 netif_addr_unlock_bh(bond_dev); 1466 } 1467 1468 if (bond->params.mode == BOND_MODE_8023AD) { 1469 /* add lacpdu mc addr to mc list */ 1470 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1471 1472 dev_mc_add(slave_dev, lacpdu_multicast); 1473 } 1474 1475 res = vlan_vids_add_by_dev(slave_dev, bond_dev); 1476 if (res) { 1477 pr_err("%s: Error: Couldn't add bond vlan ids to %s\n", 1478 bond_dev->name, slave_dev->name); 1479 goto err_close; 1480 } 1481 1482 write_lock_bh(&bond->lock); 1483 1484 bond_attach_slave(bond, new_slave); 1485 1486 new_slave->delay = 0; 1487 new_slave->link_failure_count = 0; 1488 1489 write_unlock_bh(&bond->lock); 1490 1491 bond_compute_features(bond); 1492 1493 bond_update_speed_duplex(new_slave); 1494 1495 read_lock(&bond->lock); 1496 1497 new_slave->last_arp_rx = jiffies - 1498 (msecs_to_jiffies(bond->params.arp_interval) + 1); 1499 for (i = 0; i < BOND_MAX_ARP_TARGETS; i++) 1500 new_slave->target_last_arp_rx[i] = new_slave->last_arp_rx; 1501 1502 if (bond->params.miimon && !bond->params.use_carrier) { 1503 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1504 1505 if ((link_reporting == -1) && !bond->params.arp_interval) { 1506 /* 1507 * miimon is set but a bonded network driver 1508 * does not support ETHTOOL/MII and 1509 * arp_interval is not set. Note: if 1510 * use_carrier is enabled, we will never go 1511 * here (because netif_carrier is always 1512 * supported); thus, we don't need to change 1513 * the messages for netif_carrier. 1514 */ 1515 pr_warning("%s: Warning: MII and ETHTOOL support not available for interface %s, and arp_interval/arp_ip_target module parameters not specified, thus bonding will not detect link failures! see bonding.txt for details.\n", 1516 bond_dev->name, slave_dev->name); 1517 } else if (link_reporting == -1) { 1518 /* unable get link status using mii/ethtool */ 1519 pr_warning("%s: Warning: can't get link status from interface %s; the network driver associated with this interface does not support MII or ETHTOOL link status reporting, thus miimon has no effect on this interface.\n", 1520 bond_dev->name, slave_dev->name); 1521 } 1522 } 1523 1524 /* check for initial state */ 1525 if (bond->params.miimon) { 1526 if (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS) { 1527 if (bond->params.updelay) { 1528 new_slave->link = BOND_LINK_BACK; 1529 new_slave->delay = bond->params.updelay; 1530 } else { 1531 new_slave->link = BOND_LINK_UP; 1532 } 1533 } else { 1534 new_slave->link = BOND_LINK_DOWN; 1535 } 1536 } else if (bond->params.arp_interval) { 1537 new_slave->link = (netif_carrier_ok(slave_dev) ? 1538 BOND_LINK_UP : BOND_LINK_DOWN); 1539 } else { 1540 new_slave->link = BOND_LINK_UP; 1541 } 1542 1543 if (new_slave->link != BOND_LINK_DOWN) 1544 new_slave->jiffies = jiffies; 1545 pr_debug("Initial state of slave_dev is BOND_LINK_%s\n", 1546 new_slave->link == BOND_LINK_DOWN ? "DOWN" : 1547 (new_slave->link == BOND_LINK_UP ? "UP" : "BACK")); 1548 1549 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1550 /* if there is a primary slave, remember it */ 1551 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1552 bond->primary_slave = new_slave; 1553 bond->force_primary = true; 1554 } 1555 } 1556 1557 write_lock_bh(&bond->curr_slave_lock); 1558 1559 switch (bond->params.mode) { 1560 case BOND_MODE_ACTIVEBACKUP: 1561 bond_set_slave_inactive_flags(new_slave); 1562 bond_select_active_slave(bond); 1563 break; 1564 case BOND_MODE_8023AD: 1565 /* in 802.3ad mode, the internal mechanism 1566 * will activate the slaves in the selected 1567 * aggregator 1568 */ 1569 bond_set_slave_inactive_flags(new_slave); 1570 /* if this is the first slave */ 1571 if (bond_first_slave(bond) == new_slave) { 1572 SLAVE_AD_INFO(new_slave).id = 1; 1573 /* Initialize AD with the number of times that the AD timer is called in 1 second 1574 * can be called only after the mac address of the bond is set 1575 */ 1576 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL); 1577 } else { 1578 struct slave *prev_slave; 1579 1580 prev_slave = bond_prev_slave(bond, new_slave); 1581 SLAVE_AD_INFO(new_slave).id = 1582 SLAVE_AD_INFO(prev_slave).id + 1; 1583 } 1584 1585 bond_3ad_bind_slave(new_slave); 1586 break; 1587 case BOND_MODE_TLB: 1588 case BOND_MODE_ALB: 1589 bond_set_active_slave(new_slave); 1590 bond_set_slave_inactive_flags(new_slave); 1591 bond_select_active_slave(bond); 1592 break; 1593 default: 1594 pr_debug("This slave is always active in trunk mode\n"); 1595 1596 /* always active in trunk mode */ 1597 bond_set_active_slave(new_slave); 1598 1599 /* In trunking mode there is little meaning to curr_active_slave 1600 * anyway (it holds no special properties of the bond device), 1601 * so we can change it without calling change_active_interface() 1602 */ 1603 if (!bond->curr_active_slave && new_slave->link == BOND_LINK_UP) 1604 rcu_assign_pointer(bond->curr_active_slave, new_slave); 1605 1606 break; 1607 } /* switch(bond_mode) */ 1608 1609 write_unlock_bh(&bond->curr_slave_lock); 1610 1611 bond_set_carrier(bond); 1612 1613 #ifdef CONFIG_NET_POLL_CONTROLLER 1614 slave_dev->npinfo = bond->dev->npinfo; 1615 if (slave_dev->npinfo) { 1616 if (slave_enable_netpoll(new_slave)) { 1617 read_unlock(&bond->lock); 1618 pr_info("Error, %s: master_dev is using netpoll, " 1619 "but new slave device does not support netpoll.\n", 1620 bond_dev->name); 1621 res = -EBUSY; 1622 goto err_detach; 1623 } 1624 } 1625 #endif 1626 1627 read_unlock(&bond->lock); 1628 1629 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1630 if (res) 1631 goto err_detach; 1632 1633 res = netdev_rx_handler_register(slave_dev, bond_handle_frame, 1634 new_slave); 1635 if (res) { 1636 pr_debug("Error %d calling netdev_rx_handler_register\n", res); 1637 goto err_dest_symlinks; 1638 } 1639 1640 pr_info("%s: enslaving %s as a%s interface with a%s link.\n", 1641 bond_dev->name, slave_dev->name, 1642 bond_is_active_slave(new_slave) ? "n active" : " backup", 1643 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1644 1645 /* enslave is successful */ 1646 return 0; 1647 1648 /* Undo stages on error */ 1649 err_dest_symlinks: 1650 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1651 1652 err_detach: 1653 if (!USES_PRIMARY(bond->params.mode)) 1654 bond_hw_addr_flush(bond_dev, slave_dev); 1655 1656 vlan_vids_del_by_dev(slave_dev, bond_dev); 1657 write_lock_bh(&bond->lock); 1658 bond_detach_slave(bond, new_slave); 1659 if (bond->primary_slave == new_slave) 1660 bond->primary_slave = NULL; 1661 if (bond->curr_active_slave == new_slave) { 1662 bond_change_active_slave(bond, NULL); 1663 write_unlock_bh(&bond->lock); 1664 read_lock(&bond->lock); 1665 write_lock_bh(&bond->curr_slave_lock); 1666 bond_select_active_slave(bond); 1667 write_unlock_bh(&bond->curr_slave_lock); 1668 read_unlock(&bond->lock); 1669 } else { 1670 write_unlock_bh(&bond->lock); 1671 } 1672 slave_disable_netpoll(new_slave); 1673 1674 err_close: 1675 slave_dev->priv_flags &= ~IFF_BONDING; 1676 dev_close(slave_dev); 1677 1678 err_unset_master: 1679 bond_upper_dev_unlink(bond_dev, slave_dev); 1680 1681 err_restore_mac: 1682 if (!bond->params.fail_over_mac) { 1683 /* XXX TODO - fom follow mode needs to change master's 1684 * MAC if this slave's MAC is in use by the bond, or at 1685 * least print a warning. 1686 */ 1687 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1688 addr.sa_family = slave_dev->type; 1689 dev_set_mac_address(slave_dev, &addr); 1690 } 1691 1692 err_restore_mtu: 1693 dev_set_mtu(slave_dev, new_slave->original_mtu); 1694 1695 err_free: 1696 kfree(new_slave); 1697 1698 err_undo_flags: 1699 bond_compute_features(bond); 1700 /* Enslave of first slave has failed and we need to fix master's mac */ 1701 if (list_empty(&bond->slave_list) && 1702 ether_addr_equal(bond_dev->dev_addr, slave_dev->dev_addr)) 1703 eth_hw_addr_random(bond_dev); 1704 1705 return res; 1706 } 1707 1708 /* 1709 * Try to release the slave device <slave> from the bond device <master> 1710 * It is legal to access curr_active_slave without a lock because all the function 1711 * is write-locked. If "all" is true it means that the function is being called 1712 * while destroying a bond interface and all slaves are being released. 1713 * 1714 * The rules for slave state should be: 1715 * for Active/Backup: 1716 * Active stays on all backups go down 1717 * for Bonded connections: 1718 * The first up interface should be left on and all others downed. 1719 */ 1720 static int __bond_release_one(struct net_device *bond_dev, 1721 struct net_device *slave_dev, 1722 bool all) 1723 { 1724 struct bonding *bond = netdev_priv(bond_dev); 1725 struct slave *slave, *oldcurrent; 1726 struct sockaddr addr; 1727 int old_flags = bond_dev->flags; 1728 netdev_features_t old_features = bond_dev->features; 1729 1730 /* slave is not a slave or master is not master of this slave */ 1731 if (!(slave_dev->flags & IFF_SLAVE) || 1732 !netdev_has_upper_dev(slave_dev, bond_dev)) { 1733 pr_err("%s: Error: cannot release %s.\n", 1734 bond_dev->name, slave_dev->name); 1735 return -EINVAL; 1736 } 1737 1738 block_netpoll_tx(); 1739 write_lock_bh(&bond->lock); 1740 1741 slave = bond_get_slave_by_dev(bond, slave_dev); 1742 if (!slave) { 1743 /* not a slave of this bond */ 1744 pr_info("%s: %s not enslaved\n", 1745 bond_dev->name, slave_dev->name); 1746 write_unlock_bh(&bond->lock); 1747 unblock_netpoll_tx(); 1748 return -EINVAL; 1749 } 1750 1751 write_unlock_bh(&bond->lock); 1752 /* unregister rx_handler early so bond_handle_frame wouldn't be called 1753 * for this slave anymore. 1754 */ 1755 netdev_rx_handler_unregister(slave_dev); 1756 write_lock_bh(&bond->lock); 1757 1758 /* Inform AD package of unbinding of slave. */ 1759 if (bond->params.mode == BOND_MODE_8023AD) { 1760 /* must be called before the slave is 1761 * detached from the list 1762 */ 1763 bond_3ad_unbind_slave(slave); 1764 } 1765 1766 pr_info("%s: releasing %s interface %s\n", 1767 bond_dev->name, 1768 bond_is_active_slave(slave) ? "active" : "backup", 1769 slave_dev->name); 1770 1771 oldcurrent = bond->curr_active_slave; 1772 1773 bond->current_arp_slave = NULL; 1774 1775 /* release the slave from its bond */ 1776 bond_detach_slave(bond, slave); 1777 1778 if (!all && !bond->params.fail_over_mac) { 1779 if (ether_addr_equal(bond_dev->dev_addr, slave->perm_hwaddr) && 1780 !list_empty(&bond->slave_list)) 1781 pr_warn("%s: Warning: the permanent HWaddr of %s - %pM - is still in use by %s. Set the HWaddr of %s to a different address to avoid conflicts.\n", 1782 bond_dev->name, slave_dev->name, 1783 slave->perm_hwaddr, 1784 bond_dev->name, slave_dev->name); 1785 } 1786 1787 if (bond->primary_slave == slave) 1788 bond->primary_slave = NULL; 1789 1790 if (oldcurrent == slave) 1791 bond_change_active_slave(bond, NULL); 1792 1793 if (bond_is_lb(bond)) { 1794 /* Must be called only after the slave has been 1795 * detached from the list and the curr_active_slave 1796 * has been cleared (if our_slave == old_current), 1797 * but before a new active slave is selected. 1798 */ 1799 write_unlock_bh(&bond->lock); 1800 bond_alb_deinit_slave(bond, slave); 1801 write_lock_bh(&bond->lock); 1802 } 1803 1804 if (all) { 1805 rcu_assign_pointer(bond->curr_active_slave, NULL); 1806 } else if (oldcurrent == slave) { 1807 /* 1808 * Note that we hold RTNL over this sequence, so there 1809 * is no concern that another slave add/remove event 1810 * will interfere. 1811 */ 1812 write_unlock_bh(&bond->lock); 1813 read_lock(&bond->lock); 1814 write_lock_bh(&bond->curr_slave_lock); 1815 1816 bond_select_active_slave(bond); 1817 1818 write_unlock_bh(&bond->curr_slave_lock); 1819 read_unlock(&bond->lock); 1820 write_lock_bh(&bond->lock); 1821 } 1822 1823 if (list_empty(&bond->slave_list)) { 1824 bond_set_carrier(bond); 1825 eth_hw_addr_random(bond_dev); 1826 1827 if (vlan_uses_dev(bond_dev)) { 1828 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n", 1829 bond_dev->name, bond_dev->name); 1830 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n", 1831 bond_dev->name); 1832 } 1833 } 1834 1835 write_unlock_bh(&bond->lock); 1836 unblock_netpoll_tx(); 1837 synchronize_rcu(); 1838 1839 if (list_empty(&bond->slave_list)) { 1840 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond->dev); 1841 call_netdevice_notifiers(NETDEV_RELEASE, bond->dev); 1842 } 1843 1844 bond_compute_features(bond); 1845 if (!(bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1846 (old_features & NETIF_F_VLAN_CHALLENGED)) 1847 pr_info("%s: last VLAN challenged slave %s left bond %s. VLAN blocking is removed\n", 1848 bond_dev->name, slave_dev->name, bond_dev->name); 1849 1850 /* must do this from outside any spinlocks */ 1851 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1852 1853 vlan_vids_del_by_dev(slave_dev, bond_dev); 1854 1855 /* If the mode USES_PRIMARY, then this cases was handled above by 1856 * bond_change_active_slave(..., NULL) 1857 */ 1858 if (!USES_PRIMARY(bond->params.mode)) { 1859 /* unset promiscuity level from slave 1860 * NOTE: The NETDEV_CHANGEADDR call above may change the value 1861 * of the IFF_PROMISC flag in the bond_dev, but we need the 1862 * value of that flag before that change, as that was the value 1863 * when this slave was attached, so we cache at the start of the 1864 * function and use it here. Same goes for ALLMULTI below 1865 */ 1866 if (old_flags & IFF_PROMISC) 1867 dev_set_promiscuity(slave_dev, -1); 1868 1869 /* unset allmulti level from slave */ 1870 if (old_flags & IFF_ALLMULTI) 1871 dev_set_allmulti(slave_dev, -1); 1872 1873 bond_hw_addr_flush(bond_dev, slave_dev); 1874 } 1875 1876 bond_upper_dev_unlink(bond_dev, slave_dev); 1877 1878 slave_disable_netpoll(slave); 1879 1880 /* close slave before restoring its mac address */ 1881 dev_close(slave_dev); 1882 1883 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1884 /* restore original ("permanent") mac address */ 1885 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1886 addr.sa_family = slave_dev->type; 1887 dev_set_mac_address(slave_dev, &addr); 1888 } 1889 1890 dev_set_mtu(slave_dev, slave->original_mtu); 1891 1892 slave_dev->priv_flags &= ~IFF_BONDING; 1893 1894 kfree(slave); 1895 1896 return 0; /* deletion OK */ 1897 } 1898 1899 /* A wrapper used because of ndo_del_link */ 1900 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1901 { 1902 return __bond_release_one(bond_dev, slave_dev, false); 1903 } 1904 1905 /* 1906 * First release a slave and then destroy the bond if no more slaves are left. 1907 * Must be under rtnl_lock when this function is called. 1908 */ 1909 static int bond_release_and_destroy(struct net_device *bond_dev, 1910 struct net_device *slave_dev) 1911 { 1912 struct bonding *bond = netdev_priv(bond_dev); 1913 int ret; 1914 1915 ret = bond_release(bond_dev, slave_dev); 1916 if (ret == 0 && list_empty(&bond->slave_list)) { 1917 bond_dev->priv_flags |= IFF_DISABLE_NETPOLL; 1918 pr_info("%s: destroying bond %s.\n", 1919 bond_dev->name, bond_dev->name); 1920 unregister_netdevice(bond_dev); 1921 } 1922 return ret; 1923 } 1924 1925 /* 1926 * This function changes the active slave to slave <slave_dev>. 1927 * It returns -EINVAL in the following cases. 1928 * - <slave_dev> is not found in the list. 1929 * - There is not active slave now. 1930 * - <slave_dev> is already active. 1931 * - The link state of <slave_dev> is not BOND_LINK_UP. 1932 * - <slave_dev> is not running. 1933 * In these cases, this function does nothing. 1934 * In the other cases, current_slave pointer is changed and 0 is returned. 1935 */ 1936 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 1937 { 1938 struct bonding *bond = netdev_priv(bond_dev); 1939 struct slave *old_active = NULL; 1940 struct slave *new_active = NULL; 1941 int res = 0; 1942 1943 if (!USES_PRIMARY(bond->params.mode)) 1944 return -EINVAL; 1945 1946 /* Verify that bond_dev is indeed the master of slave_dev */ 1947 if (!(slave_dev->flags & IFF_SLAVE) || 1948 !netdev_has_upper_dev(slave_dev, bond_dev)) 1949 return -EINVAL; 1950 1951 read_lock(&bond->lock); 1952 1953 old_active = bond->curr_active_slave; 1954 new_active = bond_get_slave_by_dev(bond, slave_dev); 1955 /* 1956 * Changing to the current active: do nothing; return success. 1957 */ 1958 if (new_active && new_active == old_active) { 1959 read_unlock(&bond->lock); 1960 return 0; 1961 } 1962 1963 if (new_active && 1964 old_active && 1965 new_active->link == BOND_LINK_UP && 1966 IS_UP(new_active->dev)) { 1967 block_netpoll_tx(); 1968 write_lock_bh(&bond->curr_slave_lock); 1969 bond_change_active_slave(bond, new_active); 1970 write_unlock_bh(&bond->curr_slave_lock); 1971 unblock_netpoll_tx(); 1972 } else 1973 res = -EINVAL; 1974 1975 read_unlock(&bond->lock); 1976 1977 return res; 1978 } 1979 1980 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 1981 { 1982 struct bonding *bond = netdev_priv(bond_dev); 1983 1984 info->bond_mode = bond->params.mode; 1985 info->miimon = bond->params.miimon; 1986 1987 read_lock(&bond->lock); 1988 info->num_slaves = bond->slave_cnt; 1989 read_unlock(&bond->lock); 1990 1991 return 0; 1992 } 1993 1994 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 1995 { 1996 struct bonding *bond = netdev_priv(bond_dev); 1997 int i = 0, res = -ENODEV; 1998 struct slave *slave; 1999 2000 read_lock(&bond->lock); 2001 bond_for_each_slave(bond, slave) { 2002 if (i++ == (int)info->slave_id) { 2003 res = 0; 2004 strcpy(info->slave_name, slave->dev->name); 2005 info->link = slave->link; 2006 info->state = bond_slave_state(slave); 2007 info->link_failure_count = slave->link_failure_count; 2008 break; 2009 } 2010 } 2011 read_unlock(&bond->lock); 2012 2013 return res; 2014 } 2015 2016 /*-------------------------------- Monitoring -------------------------------*/ 2017 2018 2019 static int bond_miimon_inspect(struct bonding *bond) 2020 { 2021 int link_state, commit = 0; 2022 struct slave *slave; 2023 bool ignore_updelay; 2024 2025 ignore_updelay = !bond->curr_active_slave ? true : false; 2026 2027 bond_for_each_slave(bond, slave) { 2028 slave->new_link = BOND_LINK_NOCHANGE; 2029 2030 link_state = bond_check_dev_link(bond, slave->dev, 0); 2031 2032 switch (slave->link) { 2033 case BOND_LINK_UP: 2034 if (link_state) 2035 continue; 2036 2037 slave->link = BOND_LINK_FAIL; 2038 slave->delay = bond->params.downdelay; 2039 if (slave->delay) { 2040 pr_info("%s: link status down for %sinterface %s, disabling it in %d ms.\n", 2041 bond->dev->name, 2042 (bond->params.mode == 2043 BOND_MODE_ACTIVEBACKUP) ? 2044 (bond_is_active_slave(slave) ? 2045 "active " : "backup ") : "", 2046 slave->dev->name, 2047 bond->params.downdelay * bond->params.miimon); 2048 } 2049 /*FALLTHRU*/ 2050 case BOND_LINK_FAIL: 2051 if (link_state) { 2052 /* 2053 * recovered before downdelay expired 2054 */ 2055 slave->link = BOND_LINK_UP; 2056 slave->jiffies = jiffies; 2057 pr_info("%s: link status up again after %d ms for interface %s.\n", 2058 bond->dev->name, 2059 (bond->params.downdelay - slave->delay) * 2060 bond->params.miimon, 2061 slave->dev->name); 2062 continue; 2063 } 2064 2065 if (slave->delay <= 0) { 2066 slave->new_link = BOND_LINK_DOWN; 2067 commit++; 2068 continue; 2069 } 2070 2071 slave->delay--; 2072 break; 2073 2074 case BOND_LINK_DOWN: 2075 if (!link_state) 2076 continue; 2077 2078 slave->link = BOND_LINK_BACK; 2079 slave->delay = bond->params.updelay; 2080 2081 if (slave->delay) { 2082 pr_info("%s: link status up for interface %s, enabling it in %d ms.\n", 2083 bond->dev->name, slave->dev->name, 2084 ignore_updelay ? 0 : 2085 bond->params.updelay * 2086 bond->params.miimon); 2087 } 2088 /*FALLTHRU*/ 2089 case BOND_LINK_BACK: 2090 if (!link_state) { 2091 slave->link = BOND_LINK_DOWN; 2092 pr_info("%s: link status down again after %d ms for interface %s.\n", 2093 bond->dev->name, 2094 (bond->params.updelay - slave->delay) * 2095 bond->params.miimon, 2096 slave->dev->name); 2097 2098 continue; 2099 } 2100 2101 if (ignore_updelay) 2102 slave->delay = 0; 2103 2104 if (slave->delay <= 0) { 2105 slave->new_link = BOND_LINK_UP; 2106 commit++; 2107 ignore_updelay = false; 2108 continue; 2109 } 2110 2111 slave->delay--; 2112 break; 2113 } 2114 } 2115 2116 return commit; 2117 } 2118 2119 static void bond_miimon_commit(struct bonding *bond) 2120 { 2121 struct slave *slave; 2122 2123 bond_for_each_slave(bond, slave) { 2124 switch (slave->new_link) { 2125 case BOND_LINK_NOCHANGE: 2126 continue; 2127 2128 case BOND_LINK_UP: 2129 slave->link = BOND_LINK_UP; 2130 slave->jiffies = jiffies; 2131 2132 if (bond->params.mode == BOND_MODE_8023AD) { 2133 /* prevent it from being the active one */ 2134 bond_set_backup_slave(slave); 2135 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2136 /* make it immediately active */ 2137 bond_set_active_slave(slave); 2138 } else if (slave != bond->primary_slave) { 2139 /* prevent it from being the active one */ 2140 bond_set_backup_slave(slave); 2141 } 2142 2143 pr_info("%s: link status definitely up for interface %s, %u Mbps %s duplex.\n", 2144 bond->dev->name, slave->dev->name, 2145 slave->speed == SPEED_UNKNOWN ? 0 : slave->speed, 2146 slave->duplex ? "full" : "half"); 2147 2148 /* notify ad that the link status has changed */ 2149 if (bond->params.mode == BOND_MODE_8023AD) 2150 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2151 2152 if (bond_is_lb(bond)) 2153 bond_alb_handle_link_change(bond, slave, 2154 BOND_LINK_UP); 2155 2156 if (!bond->curr_active_slave || 2157 (slave == bond->primary_slave)) 2158 goto do_failover; 2159 2160 continue; 2161 2162 case BOND_LINK_DOWN: 2163 if (slave->link_failure_count < UINT_MAX) 2164 slave->link_failure_count++; 2165 2166 slave->link = BOND_LINK_DOWN; 2167 2168 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2169 bond->params.mode == BOND_MODE_8023AD) 2170 bond_set_slave_inactive_flags(slave); 2171 2172 pr_info("%s: link status definitely down for interface %s, disabling it\n", 2173 bond->dev->name, slave->dev->name); 2174 2175 if (bond->params.mode == BOND_MODE_8023AD) 2176 bond_3ad_handle_link_change(slave, 2177 BOND_LINK_DOWN); 2178 2179 if (bond_is_lb(bond)) 2180 bond_alb_handle_link_change(bond, slave, 2181 BOND_LINK_DOWN); 2182 2183 if (slave == bond->curr_active_slave) 2184 goto do_failover; 2185 2186 continue; 2187 2188 default: 2189 pr_err("%s: invalid new link %d on slave %s\n", 2190 bond->dev->name, slave->new_link, 2191 slave->dev->name); 2192 slave->new_link = BOND_LINK_NOCHANGE; 2193 2194 continue; 2195 } 2196 2197 do_failover: 2198 ASSERT_RTNL(); 2199 block_netpoll_tx(); 2200 write_lock_bh(&bond->curr_slave_lock); 2201 bond_select_active_slave(bond); 2202 write_unlock_bh(&bond->curr_slave_lock); 2203 unblock_netpoll_tx(); 2204 } 2205 2206 bond_set_carrier(bond); 2207 } 2208 2209 /* 2210 * bond_mii_monitor 2211 * 2212 * Really a wrapper that splits the mii monitor into two phases: an 2213 * inspection, then (if inspection indicates something needs to be done) 2214 * an acquisition of appropriate locks followed by a commit phase to 2215 * implement whatever link state changes are indicated. 2216 */ 2217 void bond_mii_monitor(struct work_struct *work) 2218 { 2219 struct bonding *bond = container_of(work, struct bonding, 2220 mii_work.work); 2221 bool should_notify_peers = false; 2222 unsigned long delay; 2223 2224 read_lock(&bond->lock); 2225 2226 delay = msecs_to_jiffies(bond->params.miimon); 2227 2228 if (list_empty(&bond->slave_list)) 2229 goto re_arm; 2230 2231 should_notify_peers = bond_should_notify_peers(bond); 2232 2233 if (bond_miimon_inspect(bond)) { 2234 read_unlock(&bond->lock); 2235 2236 /* Race avoidance with bond_close cancel of workqueue */ 2237 if (!rtnl_trylock()) { 2238 read_lock(&bond->lock); 2239 delay = 1; 2240 should_notify_peers = false; 2241 goto re_arm; 2242 } 2243 2244 read_lock(&bond->lock); 2245 2246 bond_miimon_commit(bond); 2247 2248 read_unlock(&bond->lock); 2249 rtnl_unlock(); /* might sleep, hold no other locks */ 2250 read_lock(&bond->lock); 2251 } 2252 2253 re_arm: 2254 if (bond->params.miimon) 2255 queue_delayed_work(bond->wq, &bond->mii_work, delay); 2256 2257 read_unlock(&bond->lock); 2258 2259 if (should_notify_peers) { 2260 if (!rtnl_trylock()) 2261 return; 2262 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev); 2263 rtnl_unlock(); 2264 } 2265 } 2266 2267 static bool bond_has_this_ip(struct bonding *bond, __be32 ip) 2268 { 2269 struct net_device *upper; 2270 struct list_head *iter; 2271 bool ret = false; 2272 2273 if (ip == bond_confirm_addr(bond->dev, 0, ip)) 2274 return true; 2275 2276 rcu_read_lock(); 2277 netdev_for_each_upper_dev_rcu(bond->dev, upper, iter) { 2278 if (ip == bond_confirm_addr(upper, 0, ip)) { 2279 ret = true; 2280 break; 2281 } 2282 } 2283 rcu_read_unlock(); 2284 2285 return ret; 2286 } 2287 2288 /* 2289 * We go to the (large) trouble of VLAN tagging ARP frames because 2290 * switches in VLAN mode (especially if ports are configured as 2291 * "native" to a VLAN) might not pass non-tagged frames. 2292 */ 2293 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2294 { 2295 struct sk_buff *skb; 2296 2297 pr_debug("arp %d on slave %s: dst %pI4 src %pI4 vid %d\n", arp_op, 2298 slave_dev->name, &dest_ip, &src_ip, vlan_id); 2299 2300 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2301 NULL, slave_dev->dev_addr, NULL); 2302 2303 if (!skb) { 2304 pr_err("ARP packet allocation failed\n"); 2305 return; 2306 } 2307 if (vlan_id) { 2308 skb = vlan_put_tag(skb, htons(ETH_P_8021Q), vlan_id); 2309 if (!skb) { 2310 pr_err("failed to insert VLAN tag\n"); 2311 return; 2312 } 2313 } 2314 arp_xmit(skb); 2315 } 2316 2317 2318 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2319 { 2320 struct net_device *upper, *vlan_upper; 2321 struct list_head *iter, *vlan_iter; 2322 struct rtable *rt; 2323 __be32 *targets = bond->params.arp_targets, addr; 2324 int i, vlan_id; 2325 2326 for (i = 0; i < BOND_MAX_ARP_TARGETS && targets[i]; i++) { 2327 pr_debug("basa: target %pI4\n", &targets[i]); 2328 2329 /* Find out through which dev should the packet go */ 2330 rt = ip_route_output(dev_net(bond->dev), targets[i], 0, 2331 RTO_ONLINK, 0); 2332 if (IS_ERR(rt)) { 2333 pr_debug("%s: no route to arp_ip_target %pI4\n", 2334 bond->dev->name, &targets[i]); 2335 continue; 2336 } 2337 2338 vlan_id = 0; 2339 2340 /* bond device itself */ 2341 if (rt->dst.dev == bond->dev) 2342 goto found; 2343 2344 rcu_read_lock(); 2345 /* first we search only for vlan devices. for every vlan 2346 * found we verify its upper dev list, searching for the 2347 * rt->dst.dev. If found we save the tag of the vlan and 2348 * proceed to send the packet. 2349 * 2350 * TODO: QinQ? 2351 */ 2352 netdev_for_each_upper_dev_rcu(bond->dev, vlan_upper, vlan_iter) { 2353 if (!is_vlan_dev(vlan_upper)) 2354 continue; 2355 netdev_for_each_upper_dev_rcu(vlan_upper, upper, iter) { 2356 if (upper == rt->dst.dev) { 2357 vlan_id = vlan_dev_vlan_id(vlan_upper); 2358 rcu_read_unlock(); 2359 goto found; 2360 } 2361 } 2362 } 2363 2364 /* if the device we're looking for is not on top of any of 2365 * our upper vlans, then just search for any dev that 2366 * matches, and in case it's a vlan - save the id 2367 */ 2368 netdev_for_each_upper_dev_rcu(bond->dev, upper, iter) { 2369 if (upper == rt->dst.dev) { 2370 /* if it's a vlan - get its VID */ 2371 if (is_vlan_dev(upper)) 2372 vlan_id = vlan_dev_vlan_id(upper); 2373 2374 rcu_read_unlock(); 2375 goto found; 2376 } 2377 } 2378 rcu_read_unlock(); 2379 2380 /* Not our device - skip */ 2381 pr_debug("%s: no path to arp_ip_target %pI4 via rt.dev %s\n", 2382 bond->dev->name, &targets[i], 2383 rt->dst.dev ? rt->dst.dev->name : "NULL"); 2384 2385 ip_rt_put(rt); 2386 continue; 2387 2388 found: 2389 addr = bond_confirm_addr(rt->dst.dev, targets[i], 0); 2390 ip_rt_put(rt); 2391 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2392 addr, vlan_id); 2393 } 2394 } 2395 2396 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2397 { 2398 int i; 2399 2400 if (!sip || !bond_has_this_ip(bond, tip)) { 2401 pr_debug("bva: sip %pI4 tip %pI4 not found\n", &sip, &tip); 2402 return; 2403 } 2404 2405 i = bond_get_targets_ip(bond->params.arp_targets, sip); 2406 if (i == -1) { 2407 pr_debug("bva: sip %pI4 not found in targets\n", &sip); 2408 return; 2409 } 2410 slave->last_arp_rx = jiffies; 2411 slave->target_last_arp_rx[i] = jiffies; 2412 } 2413 2414 int bond_arp_rcv(const struct sk_buff *skb, struct bonding *bond, 2415 struct slave *slave) 2416 { 2417 struct arphdr *arp = (struct arphdr *)skb->data; 2418 unsigned char *arp_ptr; 2419 __be32 sip, tip; 2420 int alen; 2421 2422 if (skb->protocol != __cpu_to_be16(ETH_P_ARP)) 2423 return RX_HANDLER_ANOTHER; 2424 2425 read_lock(&bond->lock); 2426 2427 if (!slave_do_arp_validate(bond, slave)) 2428 goto out_unlock; 2429 2430 alen = arp_hdr_len(bond->dev); 2431 2432 pr_debug("bond_arp_rcv: bond %s skb->dev %s\n", 2433 bond->dev->name, skb->dev->name); 2434 2435 if (alen > skb_headlen(skb)) { 2436 arp = kmalloc(alen, GFP_ATOMIC); 2437 if (!arp) 2438 goto out_unlock; 2439 if (skb_copy_bits(skb, 0, arp, alen) < 0) 2440 goto out_unlock; 2441 } 2442 2443 if (arp->ar_hln != bond->dev->addr_len || 2444 skb->pkt_type == PACKET_OTHERHOST || 2445 skb->pkt_type == PACKET_LOOPBACK || 2446 arp->ar_hrd != htons(ARPHRD_ETHER) || 2447 arp->ar_pro != htons(ETH_P_IP) || 2448 arp->ar_pln != 4) 2449 goto out_unlock; 2450 2451 arp_ptr = (unsigned char *)(arp + 1); 2452 arp_ptr += bond->dev->addr_len; 2453 memcpy(&sip, arp_ptr, 4); 2454 arp_ptr += 4 + bond->dev->addr_len; 2455 memcpy(&tip, arp_ptr, 4); 2456 2457 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n", 2458 bond->dev->name, slave->dev->name, bond_slave_state(slave), 2459 bond->params.arp_validate, slave_do_arp_validate(bond, slave), 2460 &sip, &tip); 2461 2462 /* 2463 * Backup slaves won't see the ARP reply, but do come through 2464 * here for each ARP probe (so we swap the sip/tip to validate 2465 * the probe). In a "redundant switch, common router" type of 2466 * configuration, the ARP probe will (hopefully) travel from 2467 * the active, through one switch, the router, then the other 2468 * switch before reaching the backup. 2469 * 2470 * We 'trust' the arp requests if there is an active slave and 2471 * it received valid arp reply(s) after it became active. This 2472 * is done to avoid endless looping when we can't reach the 2473 * arp_ip_target and fool ourselves with our own arp requests. 2474 */ 2475 if (bond_is_active_slave(slave)) 2476 bond_validate_arp(bond, slave, sip, tip); 2477 else if (bond->curr_active_slave && 2478 time_after(slave_last_rx(bond, bond->curr_active_slave), 2479 bond->curr_active_slave->jiffies)) 2480 bond_validate_arp(bond, slave, tip, sip); 2481 2482 out_unlock: 2483 read_unlock(&bond->lock); 2484 if (arp != (struct arphdr *)skb->data) 2485 kfree(arp); 2486 return RX_HANDLER_ANOTHER; 2487 } 2488 2489 /* function to verify if we're in the arp_interval timeslice, returns true if 2490 * (last_act - arp_interval) <= jiffies <= (last_act + mod * arp_interval + 2491 * arp_interval/2) . the arp_interval/2 is needed for really fast networks. 2492 */ 2493 static bool bond_time_in_interval(struct bonding *bond, unsigned long last_act, 2494 int mod) 2495 { 2496 int delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2497 2498 return time_in_range(jiffies, 2499 last_act - delta_in_ticks, 2500 last_act + mod * delta_in_ticks + delta_in_ticks/2); 2501 } 2502 2503 /* 2504 * this function is called regularly to monitor each slave's link 2505 * ensuring that traffic is being sent and received when arp monitoring 2506 * is used in load-balancing mode. if the adapter has been dormant, then an 2507 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2508 * arp monitoring in active backup mode. 2509 */ 2510 void bond_loadbalance_arp_mon(struct work_struct *work) 2511 { 2512 struct bonding *bond = container_of(work, struct bonding, 2513 arp_work.work); 2514 struct slave *slave, *oldcurrent; 2515 int do_failover = 0; 2516 2517 read_lock(&bond->lock); 2518 2519 if (list_empty(&bond->slave_list)) 2520 goto re_arm; 2521 2522 oldcurrent = bond->curr_active_slave; 2523 /* see if any of the previous devices are up now (i.e. they have 2524 * xmt and rcv traffic). the curr_active_slave does not come into 2525 * the picture unless it is null. also, slave->jiffies is not needed 2526 * here because we send an arp on each slave and give a slave as 2527 * long as it needs to get the tx/rx within the delta. 2528 * TODO: what about up/down delay in arp mode? it wasn't here before 2529 * so it can wait 2530 */ 2531 bond_for_each_slave(bond, slave) { 2532 unsigned long trans_start = dev_trans_start(slave->dev); 2533 2534 if (slave->link != BOND_LINK_UP) { 2535 if (bond_time_in_interval(bond, trans_start, 1) && 2536 bond_time_in_interval(bond, slave->dev->last_rx, 1)) { 2537 2538 slave->link = BOND_LINK_UP; 2539 bond_set_active_slave(slave); 2540 2541 /* primary_slave has no meaning in round-robin 2542 * mode. the window of a slave being up and 2543 * curr_active_slave being null after enslaving 2544 * is closed. 2545 */ 2546 if (!oldcurrent) { 2547 pr_info("%s: link status definitely up for interface %s, ", 2548 bond->dev->name, 2549 slave->dev->name); 2550 do_failover = 1; 2551 } else { 2552 pr_info("%s: interface %s is now up\n", 2553 bond->dev->name, 2554 slave->dev->name); 2555 } 2556 } 2557 } else { 2558 /* slave->link == BOND_LINK_UP */ 2559 2560 /* not all switches will respond to an arp request 2561 * when the source ip is 0, so don't take the link down 2562 * if we don't know our ip yet 2563 */ 2564 if (!bond_time_in_interval(bond, trans_start, 2) || 2565 !bond_time_in_interval(bond, slave->dev->last_rx, 2)) { 2566 2567 slave->link = BOND_LINK_DOWN; 2568 bond_set_backup_slave(slave); 2569 2570 if (slave->link_failure_count < UINT_MAX) 2571 slave->link_failure_count++; 2572 2573 pr_info("%s: interface %s is now down.\n", 2574 bond->dev->name, 2575 slave->dev->name); 2576 2577 if (slave == oldcurrent) 2578 do_failover = 1; 2579 } 2580 } 2581 2582 /* note: if switch is in round-robin mode, all links 2583 * must tx arp to ensure all links rx an arp - otherwise 2584 * links may oscillate or not come up at all; if switch is 2585 * in something like xor mode, there is nothing we can 2586 * do - all replies will be rx'ed on same link causing slaves 2587 * to be unstable during low/no traffic periods 2588 */ 2589 if (IS_UP(slave->dev)) 2590 bond_arp_send_all(bond, slave); 2591 } 2592 2593 if (do_failover) { 2594 block_netpoll_tx(); 2595 write_lock_bh(&bond->curr_slave_lock); 2596 2597 bond_select_active_slave(bond); 2598 2599 write_unlock_bh(&bond->curr_slave_lock); 2600 unblock_netpoll_tx(); 2601 } 2602 2603 re_arm: 2604 if (bond->params.arp_interval) 2605 queue_delayed_work(bond->wq, &bond->arp_work, 2606 msecs_to_jiffies(bond->params.arp_interval)); 2607 2608 read_unlock(&bond->lock); 2609 } 2610 2611 /* 2612 * Called to inspect slaves for active-backup mode ARP monitor link state 2613 * changes. Sets new_link in slaves to specify what action should take 2614 * place for the slave. Returns 0 if no changes are found, >0 if changes 2615 * to link states must be committed. 2616 * 2617 * Called with bond->lock held for read. 2618 */ 2619 static int bond_ab_arp_inspect(struct bonding *bond) 2620 { 2621 unsigned long trans_start, last_rx; 2622 struct slave *slave; 2623 int commit = 0; 2624 2625 bond_for_each_slave(bond, slave) { 2626 slave->new_link = BOND_LINK_NOCHANGE; 2627 last_rx = slave_last_rx(bond, slave); 2628 2629 if (slave->link != BOND_LINK_UP) { 2630 if (bond_time_in_interval(bond, last_rx, 1)) { 2631 slave->new_link = BOND_LINK_UP; 2632 commit++; 2633 } 2634 continue; 2635 } 2636 2637 /* 2638 * Give slaves 2*delta after being enslaved or made 2639 * active. This avoids bouncing, as the last receive 2640 * times need a full ARP monitor cycle to be updated. 2641 */ 2642 if (bond_time_in_interval(bond, slave->jiffies, 2)) 2643 continue; 2644 2645 /* 2646 * Backup slave is down if: 2647 * - No current_arp_slave AND 2648 * - more than 3*delta since last receive AND 2649 * - the bond has an IP address 2650 * 2651 * Note: a non-null current_arp_slave indicates 2652 * the curr_active_slave went down and we are 2653 * searching for a new one; under this condition 2654 * we only take the curr_active_slave down - this 2655 * gives each slave a chance to tx/rx traffic 2656 * before being taken out 2657 */ 2658 if (!bond_is_active_slave(slave) && 2659 !bond->current_arp_slave && 2660 !bond_time_in_interval(bond, last_rx, 3)) { 2661 slave->new_link = BOND_LINK_DOWN; 2662 commit++; 2663 } 2664 2665 /* 2666 * Active slave is down if: 2667 * - more than 2*delta since transmitting OR 2668 * - (more than 2*delta since receive AND 2669 * the bond has an IP address) 2670 */ 2671 trans_start = dev_trans_start(slave->dev); 2672 if (bond_is_active_slave(slave) && 2673 (!bond_time_in_interval(bond, trans_start, 2) || 2674 !bond_time_in_interval(bond, last_rx, 2))) { 2675 slave->new_link = BOND_LINK_DOWN; 2676 commit++; 2677 } 2678 } 2679 2680 return commit; 2681 } 2682 2683 /* 2684 * Called to commit link state changes noted by inspection step of 2685 * active-backup mode ARP monitor. 2686 * 2687 * Called with RTNL and bond->lock for read. 2688 */ 2689 static void bond_ab_arp_commit(struct bonding *bond) 2690 { 2691 unsigned long trans_start; 2692 struct slave *slave; 2693 2694 bond_for_each_slave(bond, slave) { 2695 switch (slave->new_link) { 2696 case BOND_LINK_NOCHANGE: 2697 continue; 2698 2699 case BOND_LINK_UP: 2700 trans_start = dev_trans_start(slave->dev); 2701 if (bond->curr_active_slave != slave || 2702 (!bond->curr_active_slave && 2703 bond_time_in_interval(bond, trans_start, 1))) { 2704 slave->link = BOND_LINK_UP; 2705 if (bond->current_arp_slave) { 2706 bond_set_slave_inactive_flags( 2707 bond->current_arp_slave); 2708 bond->current_arp_slave = NULL; 2709 } 2710 2711 pr_info("%s: link status definitely up for interface %s.\n", 2712 bond->dev->name, slave->dev->name); 2713 2714 if (!bond->curr_active_slave || 2715 (slave == bond->primary_slave)) 2716 goto do_failover; 2717 2718 } 2719 2720 continue; 2721 2722 case BOND_LINK_DOWN: 2723 if (slave->link_failure_count < UINT_MAX) 2724 slave->link_failure_count++; 2725 2726 slave->link = BOND_LINK_DOWN; 2727 bond_set_slave_inactive_flags(slave); 2728 2729 pr_info("%s: link status definitely down for interface %s, disabling it\n", 2730 bond->dev->name, slave->dev->name); 2731 2732 if (slave == bond->curr_active_slave) { 2733 bond->current_arp_slave = NULL; 2734 goto do_failover; 2735 } 2736 2737 continue; 2738 2739 default: 2740 pr_err("%s: impossible: new_link %d on slave %s\n", 2741 bond->dev->name, slave->new_link, 2742 slave->dev->name); 2743 continue; 2744 } 2745 2746 do_failover: 2747 ASSERT_RTNL(); 2748 block_netpoll_tx(); 2749 write_lock_bh(&bond->curr_slave_lock); 2750 bond_select_active_slave(bond); 2751 write_unlock_bh(&bond->curr_slave_lock); 2752 unblock_netpoll_tx(); 2753 } 2754 2755 bond_set_carrier(bond); 2756 } 2757 2758 /* 2759 * Send ARP probes for active-backup mode ARP monitor. 2760 * 2761 * Called with bond->lock held for read. 2762 */ 2763 static void bond_ab_arp_probe(struct bonding *bond) 2764 { 2765 struct slave *slave, *next_slave; 2766 int i; 2767 2768 read_lock(&bond->curr_slave_lock); 2769 2770 if (bond->current_arp_slave && bond->curr_active_slave) 2771 pr_info("PROBE: c_arp %s && cas %s BAD\n", 2772 bond->current_arp_slave->dev->name, 2773 bond->curr_active_slave->dev->name); 2774 2775 if (bond->curr_active_slave) { 2776 bond_arp_send_all(bond, bond->curr_active_slave); 2777 read_unlock(&bond->curr_slave_lock); 2778 return; 2779 } 2780 2781 read_unlock(&bond->curr_slave_lock); 2782 2783 /* if we don't have a curr_active_slave, search for the next available 2784 * backup slave from the current_arp_slave and make it the candidate 2785 * for becoming the curr_active_slave 2786 */ 2787 2788 if (!bond->current_arp_slave) { 2789 bond->current_arp_slave = bond_first_slave(bond); 2790 if (!bond->current_arp_slave) 2791 return; 2792 } 2793 2794 bond_set_slave_inactive_flags(bond->current_arp_slave); 2795 2796 /* search for next candidate */ 2797 next_slave = bond_next_slave(bond, bond->current_arp_slave); 2798 bond_for_each_slave_from(bond, slave, i, next_slave) { 2799 if (IS_UP(slave->dev)) { 2800 slave->link = BOND_LINK_BACK; 2801 bond_set_slave_active_flags(slave); 2802 bond_arp_send_all(bond, slave); 2803 slave->jiffies = jiffies; 2804 bond->current_arp_slave = slave; 2805 break; 2806 } 2807 2808 /* if the link state is up at this point, we 2809 * mark it down - this can happen if we have 2810 * simultaneous link failures and 2811 * reselect_active_interface doesn't make this 2812 * one the current slave so it is still marked 2813 * up when it is actually down 2814 */ 2815 if (slave->link == BOND_LINK_UP) { 2816 slave->link = BOND_LINK_DOWN; 2817 if (slave->link_failure_count < UINT_MAX) 2818 slave->link_failure_count++; 2819 2820 bond_set_slave_inactive_flags(slave); 2821 2822 pr_info("%s: backup interface %s is now down.\n", 2823 bond->dev->name, slave->dev->name); 2824 } 2825 } 2826 } 2827 2828 void bond_activebackup_arp_mon(struct work_struct *work) 2829 { 2830 struct bonding *bond = container_of(work, struct bonding, 2831 arp_work.work); 2832 bool should_notify_peers = false; 2833 int delta_in_ticks; 2834 2835 read_lock(&bond->lock); 2836 2837 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2838 2839 if (list_empty(&bond->slave_list)) 2840 goto re_arm; 2841 2842 should_notify_peers = bond_should_notify_peers(bond); 2843 2844 if (bond_ab_arp_inspect(bond)) { 2845 read_unlock(&bond->lock); 2846 2847 /* Race avoidance with bond_close flush of workqueue */ 2848 if (!rtnl_trylock()) { 2849 read_lock(&bond->lock); 2850 delta_in_ticks = 1; 2851 should_notify_peers = false; 2852 goto re_arm; 2853 } 2854 2855 read_lock(&bond->lock); 2856 2857 bond_ab_arp_commit(bond); 2858 2859 read_unlock(&bond->lock); 2860 rtnl_unlock(); 2861 read_lock(&bond->lock); 2862 } 2863 2864 bond_ab_arp_probe(bond); 2865 2866 re_arm: 2867 if (bond->params.arp_interval) 2868 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2869 2870 read_unlock(&bond->lock); 2871 2872 if (should_notify_peers) { 2873 if (!rtnl_trylock()) 2874 return; 2875 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev); 2876 rtnl_unlock(); 2877 } 2878 } 2879 2880 /*-------------------------- netdev event handling --------------------------*/ 2881 2882 /* 2883 * Change device name 2884 */ 2885 static int bond_event_changename(struct bonding *bond) 2886 { 2887 bond_remove_proc_entry(bond); 2888 bond_create_proc_entry(bond); 2889 2890 bond_debug_reregister(bond); 2891 2892 return NOTIFY_DONE; 2893 } 2894 2895 static int bond_master_netdev_event(unsigned long event, 2896 struct net_device *bond_dev) 2897 { 2898 struct bonding *event_bond = netdev_priv(bond_dev); 2899 2900 switch (event) { 2901 case NETDEV_CHANGENAME: 2902 return bond_event_changename(event_bond); 2903 case NETDEV_UNREGISTER: 2904 bond_remove_proc_entry(event_bond); 2905 break; 2906 case NETDEV_REGISTER: 2907 bond_create_proc_entry(event_bond); 2908 break; 2909 case NETDEV_NOTIFY_PEERS: 2910 if (event_bond->send_peer_notif) 2911 event_bond->send_peer_notif--; 2912 break; 2913 default: 2914 break; 2915 } 2916 2917 return NOTIFY_DONE; 2918 } 2919 2920 static int bond_slave_netdev_event(unsigned long event, 2921 struct net_device *slave_dev) 2922 { 2923 struct slave *slave = bond_slave_get_rtnl(slave_dev); 2924 struct bonding *bond; 2925 struct net_device *bond_dev; 2926 u32 old_speed; 2927 u8 old_duplex; 2928 2929 /* A netdev event can be generated while enslaving a device 2930 * before netdev_rx_handler_register is called in which case 2931 * slave will be NULL 2932 */ 2933 if (!slave) 2934 return NOTIFY_DONE; 2935 bond_dev = slave->bond->dev; 2936 bond = slave->bond; 2937 2938 switch (event) { 2939 case NETDEV_UNREGISTER: 2940 if (bond_dev->type != ARPHRD_ETHER) 2941 bond_release_and_destroy(bond_dev, slave_dev); 2942 else 2943 bond_release(bond_dev, slave_dev); 2944 break; 2945 case NETDEV_UP: 2946 case NETDEV_CHANGE: 2947 old_speed = slave->speed; 2948 old_duplex = slave->duplex; 2949 2950 bond_update_speed_duplex(slave); 2951 2952 if (bond->params.mode == BOND_MODE_8023AD) { 2953 if (old_speed != slave->speed) 2954 bond_3ad_adapter_speed_changed(slave); 2955 if (old_duplex != slave->duplex) 2956 bond_3ad_adapter_duplex_changed(slave); 2957 } 2958 break; 2959 case NETDEV_DOWN: 2960 /* 2961 * ... Or is it this? 2962 */ 2963 break; 2964 case NETDEV_CHANGEMTU: 2965 /* 2966 * TODO: Should slaves be allowed to 2967 * independently alter their MTU? For 2968 * an active-backup bond, slaves need 2969 * not be the same type of device, so 2970 * MTUs may vary. For other modes, 2971 * slaves arguably should have the 2972 * same MTUs. To do this, we'd need to 2973 * take over the slave's change_mtu 2974 * function for the duration of their 2975 * servitude. 2976 */ 2977 break; 2978 case NETDEV_CHANGENAME: 2979 /* 2980 * TODO: handle changing the primary's name 2981 */ 2982 break; 2983 case NETDEV_FEAT_CHANGE: 2984 bond_compute_features(bond); 2985 break; 2986 case NETDEV_RESEND_IGMP: 2987 /* Propagate to master device */ 2988 call_netdevice_notifiers(event, slave->bond->dev); 2989 break; 2990 default: 2991 break; 2992 } 2993 2994 return NOTIFY_DONE; 2995 } 2996 2997 /* 2998 * bond_netdev_event: handle netdev notifier chain events. 2999 * 3000 * This function receives events for the netdev chain. The caller (an 3001 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3002 * locks for us to safely manipulate the slave devices (RTNL lock, 3003 * dev_probe_lock). 3004 */ 3005 static int bond_netdev_event(struct notifier_block *this, 3006 unsigned long event, void *ptr) 3007 { 3008 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 3009 3010 pr_debug("event_dev: %s, event: %lx\n", 3011 event_dev ? event_dev->name : "None", 3012 event); 3013 3014 if (!(event_dev->priv_flags & IFF_BONDING)) 3015 return NOTIFY_DONE; 3016 3017 if (event_dev->flags & IFF_MASTER) { 3018 pr_debug("IFF_MASTER\n"); 3019 return bond_master_netdev_event(event, event_dev); 3020 } 3021 3022 if (event_dev->flags & IFF_SLAVE) { 3023 pr_debug("IFF_SLAVE\n"); 3024 return bond_slave_netdev_event(event, event_dev); 3025 } 3026 3027 return NOTIFY_DONE; 3028 } 3029 3030 static struct notifier_block bond_netdev_notifier = { 3031 .notifier_call = bond_netdev_event, 3032 }; 3033 3034 /*---------------------------- Hashing Policies -----------------------------*/ 3035 3036 /* 3037 * Hash for the output device based upon layer 2 data 3038 */ 3039 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count) 3040 { 3041 struct ethhdr *data = (struct ethhdr *)skb->data; 3042 3043 if (skb_headlen(skb) >= offsetof(struct ethhdr, h_proto)) 3044 return (data->h_dest[5] ^ data->h_source[5]) % count; 3045 3046 return 0; 3047 } 3048 3049 /* 3050 * Hash for the output device based upon layer 2 and layer 3 data. If 3051 * the packet is not IP, fall back on bond_xmit_hash_policy_l2() 3052 */ 3053 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count) 3054 { 3055 const struct ethhdr *data; 3056 const struct iphdr *iph; 3057 const struct ipv6hdr *ipv6h; 3058 u32 v6hash; 3059 const __be32 *s, *d; 3060 3061 if (skb->protocol == htons(ETH_P_IP) && 3062 pskb_network_may_pull(skb, sizeof(*iph))) { 3063 iph = ip_hdr(skb); 3064 data = (struct ethhdr *)skb->data; 3065 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3066 (data->h_dest[5] ^ data->h_source[5])) % count; 3067 } else if (skb->protocol == htons(ETH_P_IPV6) && 3068 pskb_network_may_pull(skb, sizeof(*ipv6h))) { 3069 ipv6h = ipv6_hdr(skb); 3070 data = (struct ethhdr *)skb->data; 3071 s = &ipv6h->saddr.s6_addr32[0]; 3072 d = &ipv6h->daddr.s6_addr32[0]; 3073 v6hash = (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]); 3074 v6hash ^= (v6hash >> 24) ^ (v6hash >> 16) ^ (v6hash >> 8); 3075 return (v6hash ^ data->h_dest[5] ^ data->h_source[5]) % count; 3076 } 3077 3078 return bond_xmit_hash_policy_l2(skb, count); 3079 } 3080 3081 /* 3082 * Hash for the output device based upon layer 3 and layer 4 data. If 3083 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3084 * altogether not IP, fall back on bond_xmit_hash_policy_l2() 3085 */ 3086 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count) 3087 { 3088 u32 layer4_xor = 0; 3089 const struct iphdr *iph; 3090 const struct ipv6hdr *ipv6h; 3091 const __be32 *s, *d; 3092 const __be16 *l4 = NULL; 3093 __be16 _l4[2]; 3094 int noff = skb_network_offset(skb); 3095 int poff; 3096 3097 if (skb->protocol == htons(ETH_P_IP) && 3098 pskb_may_pull(skb, noff + sizeof(*iph))) { 3099 iph = ip_hdr(skb); 3100 poff = proto_ports_offset(iph->protocol); 3101 3102 if (!ip_is_fragment(iph) && poff >= 0) { 3103 l4 = skb_header_pointer(skb, noff + (iph->ihl << 2) + poff, 3104 sizeof(_l4), &_l4); 3105 if (l4) 3106 layer4_xor = ntohs(l4[0] ^ l4[1]); 3107 } 3108 return (layer4_xor ^ 3109 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3110 } else if (skb->protocol == htons(ETH_P_IPV6) && 3111 pskb_may_pull(skb, noff + sizeof(*ipv6h))) { 3112 ipv6h = ipv6_hdr(skb); 3113 poff = proto_ports_offset(ipv6h->nexthdr); 3114 if (poff >= 0) { 3115 l4 = skb_header_pointer(skb, noff + sizeof(*ipv6h) + poff, 3116 sizeof(_l4), &_l4); 3117 if (l4) 3118 layer4_xor = ntohs(l4[0] ^ l4[1]); 3119 } 3120 s = &ipv6h->saddr.s6_addr32[0]; 3121 d = &ipv6h->daddr.s6_addr32[0]; 3122 layer4_xor ^= (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]); 3123 layer4_xor ^= (layer4_xor >> 24) ^ (layer4_xor >> 16) ^ 3124 (layer4_xor >> 8); 3125 return layer4_xor % count; 3126 } 3127 3128 return bond_xmit_hash_policy_l2(skb, count); 3129 } 3130 3131 /*-------------------------- Device entry points ----------------------------*/ 3132 3133 static void bond_work_init_all(struct bonding *bond) 3134 { 3135 INIT_DELAYED_WORK(&bond->mcast_work, 3136 bond_resend_igmp_join_requests_delayed); 3137 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3138 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3139 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3140 INIT_DELAYED_WORK(&bond->arp_work, bond_activebackup_arp_mon); 3141 else 3142 INIT_DELAYED_WORK(&bond->arp_work, bond_loadbalance_arp_mon); 3143 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3144 } 3145 3146 static void bond_work_cancel_all(struct bonding *bond) 3147 { 3148 cancel_delayed_work_sync(&bond->mii_work); 3149 cancel_delayed_work_sync(&bond->arp_work); 3150 cancel_delayed_work_sync(&bond->alb_work); 3151 cancel_delayed_work_sync(&bond->ad_work); 3152 cancel_delayed_work_sync(&bond->mcast_work); 3153 } 3154 3155 static int bond_open(struct net_device *bond_dev) 3156 { 3157 struct bonding *bond = netdev_priv(bond_dev); 3158 struct slave *slave; 3159 3160 /* reset slave->backup and slave->inactive */ 3161 read_lock(&bond->lock); 3162 if (!list_empty(&bond->slave_list)) { 3163 read_lock(&bond->curr_slave_lock); 3164 bond_for_each_slave(bond, slave) { 3165 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3166 && (slave != bond->curr_active_slave)) { 3167 bond_set_slave_inactive_flags(slave); 3168 } else { 3169 bond_set_slave_active_flags(slave); 3170 } 3171 } 3172 read_unlock(&bond->curr_slave_lock); 3173 } 3174 read_unlock(&bond->lock); 3175 3176 bond_work_init_all(bond); 3177 3178 if (bond_is_lb(bond)) { 3179 /* bond_alb_initialize must be called before the timer 3180 * is started. 3181 */ 3182 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) 3183 return -ENOMEM; 3184 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3185 } 3186 3187 if (bond->params.miimon) /* link check interval, in milliseconds. */ 3188 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3189 3190 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3191 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3192 if (bond->params.arp_validate) 3193 bond->recv_probe = bond_arp_rcv; 3194 } 3195 3196 if (bond->params.mode == BOND_MODE_8023AD) { 3197 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3198 /* register to receive LACPDUs */ 3199 bond->recv_probe = bond_3ad_lacpdu_recv; 3200 bond_3ad_initiate_agg_selection(bond, 1); 3201 } 3202 3203 return 0; 3204 } 3205 3206 static int bond_close(struct net_device *bond_dev) 3207 { 3208 struct bonding *bond = netdev_priv(bond_dev); 3209 3210 bond_work_cancel_all(bond); 3211 bond->send_peer_notif = 0; 3212 if (bond_is_lb(bond)) 3213 bond_alb_deinitialize(bond); 3214 bond->recv_probe = NULL; 3215 3216 return 0; 3217 } 3218 3219 static struct rtnl_link_stats64 *bond_get_stats(struct net_device *bond_dev, 3220 struct rtnl_link_stats64 *stats) 3221 { 3222 struct bonding *bond = netdev_priv(bond_dev); 3223 struct rtnl_link_stats64 temp; 3224 struct slave *slave; 3225 3226 memset(stats, 0, sizeof(*stats)); 3227 3228 read_lock_bh(&bond->lock); 3229 bond_for_each_slave(bond, slave) { 3230 const struct rtnl_link_stats64 *sstats = 3231 dev_get_stats(slave->dev, &temp); 3232 3233 stats->rx_packets += sstats->rx_packets; 3234 stats->rx_bytes += sstats->rx_bytes; 3235 stats->rx_errors += sstats->rx_errors; 3236 stats->rx_dropped += sstats->rx_dropped; 3237 3238 stats->tx_packets += sstats->tx_packets; 3239 stats->tx_bytes += sstats->tx_bytes; 3240 stats->tx_errors += sstats->tx_errors; 3241 stats->tx_dropped += sstats->tx_dropped; 3242 3243 stats->multicast += sstats->multicast; 3244 stats->collisions += sstats->collisions; 3245 3246 stats->rx_length_errors += sstats->rx_length_errors; 3247 stats->rx_over_errors += sstats->rx_over_errors; 3248 stats->rx_crc_errors += sstats->rx_crc_errors; 3249 stats->rx_frame_errors += sstats->rx_frame_errors; 3250 stats->rx_fifo_errors += sstats->rx_fifo_errors; 3251 stats->rx_missed_errors += sstats->rx_missed_errors; 3252 3253 stats->tx_aborted_errors += sstats->tx_aborted_errors; 3254 stats->tx_carrier_errors += sstats->tx_carrier_errors; 3255 stats->tx_fifo_errors += sstats->tx_fifo_errors; 3256 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3257 stats->tx_window_errors += sstats->tx_window_errors; 3258 } 3259 read_unlock_bh(&bond->lock); 3260 3261 return stats; 3262 } 3263 3264 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3265 { 3266 struct net_device *slave_dev = NULL; 3267 struct ifbond k_binfo; 3268 struct ifbond __user *u_binfo = NULL; 3269 struct ifslave k_sinfo; 3270 struct ifslave __user *u_sinfo = NULL; 3271 struct mii_ioctl_data *mii = NULL; 3272 struct net *net; 3273 int res = 0; 3274 3275 pr_debug("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd); 3276 3277 switch (cmd) { 3278 case SIOCGMIIPHY: 3279 mii = if_mii(ifr); 3280 if (!mii) 3281 return -EINVAL; 3282 3283 mii->phy_id = 0; 3284 /* Fall Through */ 3285 case SIOCGMIIREG: 3286 /* 3287 * We do this again just in case we were called by SIOCGMIIREG 3288 * instead of SIOCGMIIPHY. 3289 */ 3290 mii = if_mii(ifr); 3291 if (!mii) 3292 return -EINVAL; 3293 3294 3295 if (mii->reg_num == 1) { 3296 struct bonding *bond = netdev_priv(bond_dev); 3297 mii->val_out = 0; 3298 read_lock(&bond->lock); 3299 read_lock(&bond->curr_slave_lock); 3300 if (netif_carrier_ok(bond->dev)) 3301 mii->val_out = BMSR_LSTATUS; 3302 3303 read_unlock(&bond->curr_slave_lock); 3304 read_unlock(&bond->lock); 3305 } 3306 3307 return 0; 3308 case BOND_INFO_QUERY_OLD: 3309 case SIOCBONDINFOQUERY: 3310 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3311 3312 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) 3313 return -EFAULT; 3314 3315 res = bond_info_query(bond_dev, &k_binfo); 3316 if (res == 0 && 3317 copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) 3318 return -EFAULT; 3319 3320 return res; 3321 case BOND_SLAVE_INFO_QUERY_OLD: 3322 case SIOCBONDSLAVEINFOQUERY: 3323 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3324 3325 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) 3326 return -EFAULT; 3327 3328 res = bond_slave_info_query(bond_dev, &k_sinfo); 3329 if (res == 0 && 3330 copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) 3331 return -EFAULT; 3332 3333 return res; 3334 default: 3335 /* Go on */ 3336 break; 3337 } 3338 3339 net = dev_net(bond_dev); 3340 3341 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 3342 return -EPERM; 3343 3344 slave_dev = dev_get_by_name(net, ifr->ifr_slave); 3345 3346 pr_debug("slave_dev=%p:\n", slave_dev); 3347 3348 if (!slave_dev) 3349 res = -ENODEV; 3350 else { 3351 pr_debug("slave_dev->name=%s:\n", slave_dev->name); 3352 switch (cmd) { 3353 case BOND_ENSLAVE_OLD: 3354 case SIOCBONDENSLAVE: 3355 res = bond_enslave(bond_dev, slave_dev); 3356 break; 3357 case BOND_RELEASE_OLD: 3358 case SIOCBONDRELEASE: 3359 res = bond_release(bond_dev, slave_dev); 3360 break; 3361 case BOND_SETHWADDR_OLD: 3362 case SIOCBONDSETHWADDR: 3363 bond_set_dev_addr(bond_dev, slave_dev); 3364 res = 0; 3365 break; 3366 case BOND_CHANGE_ACTIVE_OLD: 3367 case SIOCBONDCHANGEACTIVE: 3368 res = bond_ioctl_change_active(bond_dev, slave_dev); 3369 break; 3370 default: 3371 res = -EOPNOTSUPP; 3372 } 3373 3374 dev_put(slave_dev); 3375 } 3376 3377 return res; 3378 } 3379 3380 static void bond_change_rx_flags(struct net_device *bond_dev, int change) 3381 { 3382 struct bonding *bond = netdev_priv(bond_dev); 3383 3384 if (change & IFF_PROMISC) 3385 bond_set_promiscuity(bond, 3386 bond_dev->flags & IFF_PROMISC ? 1 : -1); 3387 3388 if (change & IFF_ALLMULTI) 3389 bond_set_allmulti(bond, 3390 bond_dev->flags & IFF_ALLMULTI ? 1 : -1); 3391 } 3392 3393 static void bond_set_rx_mode(struct net_device *bond_dev) 3394 { 3395 struct bonding *bond = netdev_priv(bond_dev); 3396 struct slave *slave; 3397 3398 ASSERT_RTNL(); 3399 3400 if (USES_PRIMARY(bond->params.mode)) { 3401 slave = rtnl_dereference(bond->curr_active_slave); 3402 if (slave) { 3403 dev_uc_sync(slave->dev, bond_dev); 3404 dev_mc_sync(slave->dev, bond_dev); 3405 } 3406 } else { 3407 bond_for_each_slave(bond, slave) { 3408 dev_uc_sync_multiple(slave->dev, bond_dev); 3409 dev_mc_sync_multiple(slave->dev, bond_dev); 3410 } 3411 } 3412 } 3413 3414 static int bond_neigh_init(struct neighbour *n) 3415 { 3416 struct bonding *bond = netdev_priv(n->dev); 3417 const struct net_device_ops *slave_ops; 3418 struct neigh_parms parms; 3419 struct slave *slave; 3420 int ret; 3421 3422 slave = bond_first_slave(bond); 3423 if (!slave) 3424 return 0; 3425 slave_ops = slave->dev->netdev_ops; 3426 if (!slave_ops->ndo_neigh_setup) 3427 return 0; 3428 3429 parms.neigh_setup = NULL; 3430 parms.neigh_cleanup = NULL; 3431 ret = slave_ops->ndo_neigh_setup(slave->dev, &parms); 3432 if (ret) 3433 return ret; 3434 3435 /* 3436 * Assign slave's neigh_cleanup to neighbour in case cleanup is called 3437 * after the last slave has been detached. Assumes that all slaves 3438 * utilize the same neigh_cleanup (true at this writing as only user 3439 * is ipoib). 3440 */ 3441 n->parms->neigh_cleanup = parms.neigh_cleanup; 3442 3443 if (!parms.neigh_setup) 3444 return 0; 3445 3446 return parms.neigh_setup(n); 3447 } 3448 3449 /* 3450 * The bonding ndo_neigh_setup is called at init time beofre any 3451 * slave exists. So we must declare proxy setup function which will 3452 * be used at run time to resolve the actual slave neigh param setup. 3453 * 3454 * It's also called by master devices (such as vlans) to setup their 3455 * underlying devices. In that case - do nothing, we're already set up from 3456 * our init. 3457 */ 3458 static int bond_neigh_setup(struct net_device *dev, 3459 struct neigh_parms *parms) 3460 { 3461 /* modify only our neigh_parms */ 3462 if (parms->dev == dev) 3463 parms->neigh_setup = bond_neigh_init; 3464 3465 return 0; 3466 } 3467 3468 /* 3469 * Change the MTU of all of a master's slaves to match the master 3470 */ 3471 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 3472 { 3473 struct bonding *bond = netdev_priv(bond_dev); 3474 struct slave *slave; 3475 int res = 0; 3476 3477 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond, 3478 (bond_dev ? bond_dev->name : "None"), new_mtu); 3479 3480 /* Can't hold bond->lock with bh disabled here since 3481 * some base drivers panic. On the other hand we can't 3482 * hold bond->lock without bh disabled because we'll 3483 * deadlock. The only solution is to rely on the fact 3484 * that we're under rtnl_lock here, and the slaves 3485 * list won't change. This doesn't solve the problem 3486 * of setting the slave's MTU while it is 3487 * transmitting, but the assumption is that the base 3488 * driver can handle that. 3489 * 3490 * TODO: figure out a way to safely iterate the slaves 3491 * list, but without holding a lock around the actual 3492 * call to the base driver. 3493 */ 3494 3495 bond_for_each_slave(bond, slave) { 3496 pr_debug("s %p s->p %p c_m %p\n", 3497 slave, 3498 bond_prev_slave(bond, slave), 3499 slave->dev->netdev_ops->ndo_change_mtu); 3500 3501 res = dev_set_mtu(slave->dev, new_mtu); 3502 3503 if (res) { 3504 /* If we failed to set the slave's mtu to the new value 3505 * we must abort the operation even in ACTIVE_BACKUP 3506 * mode, because if we allow the backup slaves to have 3507 * different mtu values than the active slave we'll 3508 * need to change their mtu when doing a failover. That 3509 * means changing their mtu from timer context, which 3510 * is probably not a good idea. 3511 */ 3512 pr_debug("err %d %s\n", res, slave->dev->name); 3513 goto unwind; 3514 } 3515 } 3516 3517 bond_dev->mtu = new_mtu; 3518 3519 return 0; 3520 3521 unwind: 3522 /* unwind from head to the slave that failed */ 3523 bond_for_each_slave_continue_reverse(bond, slave) { 3524 int tmp_res; 3525 3526 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 3527 if (tmp_res) { 3528 pr_debug("unwind err %d dev %s\n", 3529 tmp_res, slave->dev->name); 3530 } 3531 } 3532 3533 return res; 3534 } 3535 3536 /* 3537 * Change HW address 3538 * 3539 * Note that many devices must be down to change the HW address, and 3540 * downing the master releases all slaves. We can make bonds full of 3541 * bonding devices to test this, however. 3542 */ 3543 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 3544 { 3545 struct bonding *bond = netdev_priv(bond_dev); 3546 struct sockaddr *sa = addr, tmp_sa; 3547 struct slave *slave; 3548 int res = 0; 3549 3550 if (bond->params.mode == BOND_MODE_ALB) 3551 return bond_alb_set_mac_address(bond_dev, addr); 3552 3553 3554 pr_debug("bond=%p, name=%s\n", 3555 bond, bond_dev ? bond_dev->name : "None"); 3556 3557 /* If fail_over_mac is enabled, do nothing and return success. 3558 * Returning an error causes ifenslave to fail. 3559 */ 3560 if (bond->params.fail_over_mac) 3561 return 0; 3562 3563 if (!is_valid_ether_addr(sa->sa_data)) 3564 return -EADDRNOTAVAIL; 3565 3566 /* Can't hold bond->lock with bh disabled here since 3567 * some base drivers panic. On the other hand we can't 3568 * hold bond->lock without bh disabled because we'll 3569 * deadlock. The only solution is to rely on the fact 3570 * that we're under rtnl_lock here, and the slaves 3571 * list won't change. This doesn't solve the problem 3572 * of setting the slave's hw address while it is 3573 * transmitting, but the assumption is that the base 3574 * driver can handle that. 3575 * 3576 * TODO: figure out a way to safely iterate the slaves 3577 * list, but without holding a lock around the actual 3578 * call to the base driver. 3579 */ 3580 3581 bond_for_each_slave(bond, slave) { 3582 const struct net_device_ops *slave_ops = slave->dev->netdev_ops; 3583 pr_debug("slave %p %s\n", slave, slave->dev->name); 3584 3585 if (slave_ops->ndo_set_mac_address == NULL) { 3586 res = -EOPNOTSUPP; 3587 pr_debug("EOPNOTSUPP %s\n", slave->dev->name); 3588 goto unwind; 3589 } 3590 3591 res = dev_set_mac_address(slave->dev, addr); 3592 if (res) { 3593 /* TODO: consider downing the slave 3594 * and retry ? 3595 * User should expect communications 3596 * breakage anyway until ARP finish 3597 * updating, so... 3598 */ 3599 pr_debug("err %d %s\n", res, slave->dev->name); 3600 goto unwind; 3601 } 3602 } 3603 3604 /* success */ 3605 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 3606 return 0; 3607 3608 unwind: 3609 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 3610 tmp_sa.sa_family = bond_dev->type; 3611 3612 /* unwind from head to the slave that failed */ 3613 bond_for_each_slave_continue_reverse(bond, slave) { 3614 int tmp_res; 3615 3616 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 3617 if (tmp_res) { 3618 pr_debug("unwind err %d dev %s\n", 3619 tmp_res, slave->dev->name); 3620 } 3621 } 3622 3623 return res; 3624 } 3625 3626 /** 3627 * bond_xmit_slave_id - transmit skb through slave with slave_id 3628 * @bond: bonding device that is transmitting 3629 * @skb: buffer to transmit 3630 * @slave_id: slave id up to slave_cnt-1 through which to transmit 3631 * 3632 * This function tries to transmit through slave with slave_id but in case 3633 * it fails, it tries to find the first available slave for transmission. 3634 * The skb is consumed in all cases, thus the function is void. 3635 */ 3636 void bond_xmit_slave_id(struct bonding *bond, struct sk_buff *skb, int slave_id) 3637 { 3638 struct slave *slave; 3639 int i = slave_id; 3640 3641 /* Here we start from the slave with slave_id */ 3642 bond_for_each_slave_rcu(bond, slave) { 3643 if (--i < 0) { 3644 if (slave_can_tx(slave)) { 3645 bond_dev_queue_xmit(bond, skb, slave->dev); 3646 return; 3647 } 3648 } 3649 } 3650 3651 /* Here we start from the first slave up to slave_id */ 3652 i = slave_id; 3653 bond_for_each_slave_rcu(bond, slave) { 3654 if (--i < 0) 3655 break; 3656 if (slave_can_tx(slave)) { 3657 bond_dev_queue_xmit(bond, skb, slave->dev); 3658 return; 3659 } 3660 } 3661 /* no slave that can tx has been found */ 3662 kfree_skb(skb); 3663 } 3664 3665 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 3666 { 3667 struct bonding *bond = netdev_priv(bond_dev); 3668 struct iphdr *iph = ip_hdr(skb); 3669 struct slave *slave; 3670 3671 /* 3672 * Start with the curr_active_slave that joined the bond as the 3673 * default for sending IGMP traffic. For failover purposes one 3674 * needs to maintain some consistency for the interface that will 3675 * send the join/membership reports. The curr_active_slave found 3676 * will send all of this type of traffic. 3677 */ 3678 if (iph->protocol == IPPROTO_IGMP && skb->protocol == htons(ETH_P_IP)) { 3679 slave = rcu_dereference(bond->curr_active_slave); 3680 if (slave && slave_can_tx(slave)) 3681 bond_dev_queue_xmit(bond, skb, slave->dev); 3682 else 3683 bond_xmit_slave_id(bond, skb, 0); 3684 } else { 3685 bond_xmit_slave_id(bond, skb, 3686 bond->rr_tx_counter++ % bond->slave_cnt); 3687 } 3688 3689 return NETDEV_TX_OK; 3690 } 3691 3692 /* 3693 * in active-backup mode, we know that bond->curr_active_slave is always valid if 3694 * the bond has a usable interface. 3695 */ 3696 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 3697 { 3698 struct bonding *bond = netdev_priv(bond_dev); 3699 struct slave *slave; 3700 3701 slave = rcu_dereference(bond->curr_active_slave); 3702 if (slave) 3703 bond_dev_queue_xmit(bond, skb, slave->dev); 3704 else 3705 kfree_skb(skb); 3706 3707 return NETDEV_TX_OK; 3708 } 3709 3710 /* 3711 * In bond_xmit_xor() , we determine the output device by using a pre- 3712 * determined xmit_hash_policy(), If the selected device is not enabled, 3713 * find the next active slave. 3714 */ 3715 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 3716 { 3717 struct bonding *bond = netdev_priv(bond_dev); 3718 3719 bond_xmit_slave_id(bond, skb, 3720 bond->xmit_hash_policy(skb, bond->slave_cnt)); 3721 3722 return NETDEV_TX_OK; 3723 } 3724 3725 /* in broadcast mode, we send everything to all usable interfaces. */ 3726 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 3727 { 3728 struct bonding *bond = netdev_priv(bond_dev); 3729 struct slave *slave = NULL; 3730 3731 bond_for_each_slave_rcu(bond, slave) { 3732 if (bond_is_last_slave(bond, slave)) 3733 break; 3734 if (IS_UP(slave->dev) && slave->link == BOND_LINK_UP) { 3735 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 3736 3737 if (!skb2) { 3738 pr_err("%s: Error: bond_xmit_broadcast(): skb_clone() failed\n", 3739 bond_dev->name); 3740 continue; 3741 } 3742 /* bond_dev_queue_xmit always returns 0 */ 3743 bond_dev_queue_xmit(bond, skb2, slave->dev); 3744 } 3745 } 3746 if (slave && IS_UP(slave->dev) && slave->link == BOND_LINK_UP) 3747 bond_dev_queue_xmit(bond, skb, slave->dev); 3748 else 3749 kfree_skb(skb); 3750 3751 return NETDEV_TX_OK; 3752 } 3753 3754 /*------------------------- Device initialization ---------------------------*/ 3755 3756 static void bond_set_xmit_hash_policy(struct bonding *bond) 3757 { 3758 switch (bond->params.xmit_policy) { 3759 case BOND_XMIT_POLICY_LAYER23: 3760 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 3761 break; 3762 case BOND_XMIT_POLICY_LAYER34: 3763 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 3764 break; 3765 case BOND_XMIT_POLICY_LAYER2: 3766 default: 3767 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 3768 break; 3769 } 3770 } 3771 3772 /* 3773 * Lookup the slave that corresponds to a qid 3774 */ 3775 static inline int bond_slave_override(struct bonding *bond, 3776 struct sk_buff *skb) 3777 { 3778 struct slave *slave = NULL; 3779 struct slave *check_slave; 3780 int res = 1; 3781 3782 if (!skb->queue_mapping) 3783 return 1; 3784 3785 /* Find out if any slaves have the same mapping as this skb. */ 3786 bond_for_each_slave_rcu(bond, check_slave) { 3787 if (check_slave->queue_id == skb->queue_mapping) { 3788 slave = check_slave; 3789 break; 3790 } 3791 } 3792 3793 /* If the slave isn't UP, use default transmit policy. */ 3794 if (slave && slave->queue_id && IS_UP(slave->dev) && 3795 (slave->link == BOND_LINK_UP)) { 3796 res = bond_dev_queue_xmit(bond, skb, slave->dev); 3797 } 3798 3799 return res; 3800 } 3801 3802 3803 static u16 bond_select_queue(struct net_device *dev, struct sk_buff *skb) 3804 { 3805 /* 3806 * This helper function exists to help dev_pick_tx get the correct 3807 * destination queue. Using a helper function skips a call to 3808 * skb_tx_hash and will put the skbs in the queue we expect on their 3809 * way down to the bonding driver. 3810 */ 3811 u16 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0; 3812 3813 /* 3814 * Save the original txq to restore before passing to the driver 3815 */ 3816 qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping; 3817 3818 if (unlikely(txq >= dev->real_num_tx_queues)) { 3819 do { 3820 txq -= dev->real_num_tx_queues; 3821 } while (txq >= dev->real_num_tx_queues); 3822 } 3823 return txq; 3824 } 3825 3826 static netdev_tx_t __bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 3827 { 3828 struct bonding *bond = netdev_priv(dev); 3829 3830 if (TX_QUEUE_OVERRIDE(bond->params.mode)) { 3831 if (!bond_slave_override(bond, skb)) 3832 return NETDEV_TX_OK; 3833 } 3834 3835 switch (bond->params.mode) { 3836 case BOND_MODE_ROUNDROBIN: 3837 return bond_xmit_roundrobin(skb, dev); 3838 case BOND_MODE_ACTIVEBACKUP: 3839 return bond_xmit_activebackup(skb, dev); 3840 case BOND_MODE_XOR: 3841 return bond_xmit_xor(skb, dev); 3842 case BOND_MODE_BROADCAST: 3843 return bond_xmit_broadcast(skb, dev); 3844 case BOND_MODE_8023AD: 3845 return bond_3ad_xmit_xor(skb, dev); 3846 case BOND_MODE_ALB: 3847 case BOND_MODE_TLB: 3848 return bond_alb_xmit(skb, dev); 3849 default: 3850 /* Should never happen, mode already checked */ 3851 pr_err("%s: Error: Unknown bonding mode %d\n", 3852 dev->name, bond->params.mode); 3853 WARN_ON_ONCE(1); 3854 kfree_skb(skb); 3855 return NETDEV_TX_OK; 3856 } 3857 } 3858 3859 static netdev_tx_t bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 3860 { 3861 struct bonding *bond = netdev_priv(dev); 3862 netdev_tx_t ret = NETDEV_TX_OK; 3863 3864 /* 3865 * If we risk deadlock from transmitting this in the 3866 * netpoll path, tell netpoll to queue the frame for later tx 3867 */ 3868 if (is_netpoll_tx_blocked(dev)) 3869 return NETDEV_TX_BUSY; 3870 3871 rcu_read_lock(); 3872 if (!list_empty(&bond->slave_list)) 3873 ret = __bond_start_xmit(skb, dev); 3874 else 3875 kfree_skb(skb); 3876 rcu_read_unlock(); 3877 3878 return ret; 3879 } 3880 3881 /* 3882 * set bond mode specific net device operations 3883 */ 3884 void bond_set_mode_ops(struct bonding *bond, int mode) 3885 { 3886 struct net_device *bond_dev = bond->dev; 3887 3888 switch (mode) { 3889 case BOND_MODE_ROUNDROBIN: 3890 break; 3891 case BOND_MODE_ACTIVEBACKUP: 3892 break; 3893 case BOND_MODE_XOR: 3894 bond_set_xmit_hash_policy(bond); 3895 break; 3896 case BOND_MODE_BROADCAST: 3897 break; 3898 case BOND_MODE_8023AD: 3899 bond_set_xmit_hash_policy(bond); 3900 break; 3901 case BOND_MODE_ALB: 3902 /* FALLTHRU */ 3903 case BOND_MODE_TLB: 3904 break; 3905 default: 3906 /* Should never happen, mode already checked */ 3907 pr_err("%s: Error: Unknown bonding mode %d\n", 3908 bond_dev->name, mode); 3909 break; 3910 } 3911 } 3912 3913 static int bond_ethtool_get_settings(struct net_device *bond_dev, 3914 struct ethtool_cmd *ecmd) 3915 { 3916 struct bonding *bond = netdev_priv(bond_dev); 3917 unsigned long speed = 0; 3918 struct slave *slave; 3919 3920 ecmd->duplex = DUPLEX_UNKNOWN; 3921 ecmd->port = PORT_OTHER; 3922 3923 /* Since SLAVE_IS_OK returns false for all inactive or down slaves, we 3924 * do not need to check mode. Though link speed might not represent 3925 * the true receive or transmit bandwidth (not all modes are symmetric) 3926 * this is an accurate maximum. 3927 */ 3928 read_lock(&bond->lock); 3929 bond_for_each_slave(bond, slave) { 3930 if (SLAVE_IS_OK(slave)) { 3931 if (slave->speed != SPEED_UNKNOWN) 3932 speed += slave->speed; 3933 if (ecmd->duplex == DUPLEX_UNKNOWN && 3934 slave->duplex != DUPLEX_UNKNOWN) 3935 ecmd->duplex = slave->duplex; 3936 } 3937 } 3938 ethtool_cmd_speed_set(ecmd, speed ? : SPEED_UNKNOWN); 3939 read_unlock(&bond->lock); 3940 3941 return 0; 3942 } 3943 3944 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 3945 struct ethtool_drvinfo *drvinfo) 3946 { 3947 strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver)); 3948 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 3949 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), "%d", 3950 BOND_ABI_VERSION); 3951 } 3952 3953 static const struct ethtool_ops bond_ethtool_ops = { 3954 .get_drvinfo = bond_ethtool_get_drvinfo, 3955 .get_settings = bond_ethtool_get_settings, 3956 .get_link = ethtool_op_get_link, 3957 }; 3958 3959 static const struct net_device_ops bond_netdev_ops = { 3960 .ndo_init = bond_init, 3961 .ndo_uninit = bond_uninit, 3962 .ndo_open = bond_open, 3963 .ndo_stop = bond_close, 3964 .ndo_start_xmit = bond_start_xmit, 3965 .ndo_select_queue = bond_select_queue, 3966 .ndo_get_stats64 = bond_get_stats, 3967 .ndo_do_ioctl = bond_do_ioctl, 3968 .ndo_change_rx_flags = bond_change_rx_flags, 3969 .ndo_set_rx_mode = bond_set_rx_mode, 3970 .ndo_change_mtu = bond_change_mtu, 3971 .ndo_set_mac_address = bond_set_mac_address, 3972 .ndo_neigh_setup = bond_neigh_setup, 3973 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid, 3974 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid, 3975 #ifdef CONFIG_NET_POLL_CONTROLLER 3976 .ndo_netpoll_setup = bond_netpoll_setup, 3977 .ndo_netpoll_cleanup = bond_netpoll_cleanup, 3978 .ndo_poll_controller = bond_poll_controller, 3979 #endif 3980 .ndo_add_slave = bond_enslave, 3981 .ndo_del_slave = bond_release, 3982 .ndo_fix_features = bond_fix_features, 3983 }; 3984 3985 static const struct device_type bond_type = { 3986 .name = "bond", 3987 }; 3988 3989 static void bond_destructor(struct net_device *bond_dev) 3990 { 3991 struct bonding *bond = netdev_priv(bond_dev); 3992 if (bond->wq) 3993 destroy_workqueue(bond->wq); 3994 free_netdev(bond_dev); 3995 } 3996 3997 static void bond_setup(struct net_device *bond_dev) 3998 { 3999 struct bonding *bond = netdev_priv(bond_dev); 4000 4001 /* initialize rwlocks */ 4002 rwlock_init(&bond->lock); 4003 rwlock_init(&bond->curr_slave_lock); 4004 INIT_LIST_HEAD(&bond->slave_list); 4005 bond->params = bonding_defaults; 4006 4007 /* Initialize pointers */ 4008 bond->dev = bond_dev; 4009 4010 /* Initialize the device entry points */ 4011 ether_setup(bond_dev); 4012 bond_dev->netdev_ops = &bond_netdev_ops; 4013 bond_dev->ethtool_ops = &bond_ethtool_ops; 4014 bond_set_mode_ops(bond, bond->params.mode); 4015 4016 bond_dev->destructor = bond_destructor; 4017 4018 SET_NETDEV_DEVTYPE(bond_dev, &bond_type); 4019 4020 /* Initialize the device options */ 4021 bond_dev->tx_queue_len = 0; 4022 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4023 bond_dev->priv_flags |= IFF_BONDING; 4024 bond_dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING); 4025 4026 /* At first, we block adding VLANs. That's the only way to 4027 * prevent problems that occur when adding VLANs over an 4028 * empty bond. The block will be removed once non-challenged 4029 * slaves are enslaved. 4030 */ 4031 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4032 4033 /* don't acquire bond device's netif_tx_lock when 4034 * transmitting */ 4035 bond_dev->features |= NETIF_F_LLTX; 4036 4037 /* By default, we declare the bond to be fully 4038 * VLAN hardware accelerated capable. Special 4039 * care is taken in the various xmit functions 4040 * when there are slaves that are not hw accel 4041 * capable 4042 */ 4043 4044 bond_dev->hw_features = BOND_VLAN_FEATURES | 4045 NETIF_F_HW_VLAN_CTAG_TX | 4046 NETIF_F_HW_VLAN_CTAG_RX | 4047 NETIF_F_HW_VLAN_CTAG_FILTER; 4048 4049 bond_dev->hw_features &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_HW_CSUM); 4050 bond_dev->features |= bond_dev->hw_features; 4051 } 4052 4053 /* 4054 * Destroy a bonding device. 4055 * Must be under rtnl_lock when this function is called. 4056 */ 4057 static void bond_uninit(struct net_device *bond_dev) 4058 { 4059 struct bonding *bond = netdev_priv(bond_dev); 4060 struct slave *slave, *tmp_slave; 4061 4062 bond_netpoll_cleanup(bond_dev); 4063 4064 /* Release the bonded slaves */ 4065 list_for_each_entry_safe(slave, tmp_slave, &bond->slave_list, list) 4066 __bond_release_one(bond_dev, slave->dev, true); 4067 pr_info("%s: released all slaves\n", bond_dev->name); 4068 4069 list_del(&bond->bond_list); 4070 4071 bond_debug_unregister(bond); 4072 } 4073 4074 /*------------------------- Module initialization ---------------------------*/ 4075 4076 /* 4077 * Convert string input module parms. Accept either the 4078 * number of the mode or its string name. A bit complicated because 4079 * some mode names are substrings of other names, and calls from sysfs 4080 * may have whitespace in the name (trailing newlines, for example). 4081 */ 4082 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl) 4083 { 4084 int modeint = -1, i, rv; 4085 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4086 4087 for (p = (char *)buf; *p; p++) 4088 if (!(isdigit(*p) || isspace(*p))) 4089 break; 4090 4091 if (*p) 4092 rv = sscanf(buf, "%20s", modestr); 4093 else 4094 rv = sscanf(buf, "%d", &modeint); 4095 4096 if (!rv) 4097 return -1; 4098 4099 for (i = 0; tbl[i].modename; i++) { 4100 if (modeint == tbl[i].mode) 4101 return tbl[i].mode; 4102 if (strcmp(modestr, tbl[i].modename) == 0) 4103 return tbl[i].mode; 4104 } 4105 4106 return -1; 4107 } 4108 4109 static int bond_check_params(struct bond_params *params) 4110 { 4111 int arp_validate_value, fail_over_mac_value, primary_reselect_value, i; 4112 int arp_all_targets_value; 4113 4114 /* 4115 * Convert string parameters. 4116 */ 4117 if (mode) { 4118 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4119 if (bond_mode == -1) { 4120 pr_err("Error: Invalid bonding mode \"%s\"\n", 4121 mode == NULL ? "NULL" : mode); 4122 return -EINVAL; 4123 } 4124 } 4125 4126 if (xmit_hash_policy) { 4127 if ((bond_mode != BOND_MODE_XOR) && 4128 (bond_mode != BOND_MODE_8023AD)) { 4129 pr_info("xmit_hash_policy param is irrelevant in mode %s\n", 4130 bond_mode_name(bond_mode)); 4131 } else { 4132 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4133 xmit_hashtype_tbl); 4134 if (xmit_hashtype == -1) { 4135 pr_err("Error: Invalid xmit_hash_policy \"%s\"\n", 4136 xmit_hash_policy == NULL ? "NULL" : 4137 xmit_hash_policy); 4138 return -EINVAL; 4139 } 4140 } 4141 } 4142 4143 if (lacp_rate) { 4144 if (bond_mode != BOND_MODE_8023AD) { 4145 pr_info("lacp_rate param is irrelevant in mode %s\n", 4146 bond_mode_name(bond_mode)); 4147 } else { 4148 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4149 if (lacp_fast == -1) { 4150 pr_err("Error: Invalid lacp rate \"%s\"\n", 4151 lacp_rate == NULL ? "NULL" : lacp_rate); 4152 return -EINVAL; 4153 } 4154 } 4155 } 4156 4157 if (ad_select) { 4158 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl); 4159 if (params->ad_select == -1) { 4160 pr_err("Error: Invalid ad_select \"%s\"\n", 4161 ad_select == NULL ? "NULL" : ad_select); 4162 return -EINVAL; 4163 } 4164 4165 if (bond_mode != BOND_MODE_8023AD) { 4166 pr_warning("ad_select param only affects 802.3ad mode\n"); 4167 } 4168 } else { 4169 params->ad_select = BOND_AD_STABLE; 4170 } 4171 4172 if (max_bonds < 0) { 4173 pr_warning("Warning: max_bonds (%d) not in range %d-%d, so it was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4174 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4175 max_bonds = BOND_DEFAULT_MAX_BONDS; 4176 } 4177 4178 if (miimon < 0) { 4179 pr_warning("Warning: miimon module parameter (%d), not in range 0-%d, so it was reset to %d\n", 4180 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4181 miimon = BOND_LINK_MON_INTERV; 4182 } 4183 4184 if (updelay < 0) { 4185 pr_warning("Warning: updelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4186 updelay, INT_MAX); 4187 updelay = 0; 4188 } 4189 4190 if (downdelay < 0) { 4191 pr_warning("Warning: downdelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4192 downdelay, INT_MAX); 4193 downdelay = 0; 4194 } 4195 4196 if ((use_carrier != 0) && (use_carrier != 1)) { 4197 pr_warning("Warning: use_carrier module parameter (%d), not of valid value (0/1), so it was set to 1\n", 4198 use_carrier); 4199 use_carrier = 1; 4200 } 4201 4202 if (num_peer_notif < 0 || num_peer_notif > 255) { 4203 pr_warning("Warning: num_grat_arp/num_unsol_na (%d) not in range 0-255 so it was reset to 1\n", 4204 num_peer_notif); 4205 num_peer_notif = 1; 4206 } 4207 4208 /* reset values for 802.3ad */ 4209 if (bond_mode == BOND_MODE_8023AD) { 4210 if (!miimon) { 4211 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure, speed and duplex which are essential for 802.3ad operation\n"); 4212 pr_warning("Forcing miimon to 100msec\n"); 4213 miimon = 100; 4214 } 4215 } 4216 4217 if (tx_queues < 1 || tx_queues > 255) { 4218 pr_warning("Warning: tx_queues (%d) should be between " 4219 "1 and 255, resetting to %d\n", 4220 tx_queues, BOND_DEFAULT_TX_QUEUES); 4221 tx_queues = BOND_DEFAULT_TX_QUEUES; 4222 } 4223 4224 if ((all_slaves_active != 0) && (all_slaves_active != 1)) { 4225 pr_warning("Warning: all_slaves_active module parameter (%d), " 4226 "not of valid value (0/1), so it was set to " 4227 "0\n", all_slaves_active); 4228 all_slaves_active = 0; 4229 } 4230 4231 if (resend_igmp < 0 || resend_igmp > 255) { 4232 pr_warning("Warning: resend_igmp (%d) should be between " 4233 "0 and 255, resetting to %d\n", 4234 resend_igmp, BOND_DEFAULT_RESEND_IGMP); 4235 resend_igmp = BOND_DEFAULT_RESEND_IGMP; 4236 } 4237 4238 /* reset values for TLB/ALB */ 4239 if ((bond_mode == BOND_MODE_TLB) || 4240 (bond_mode == BOND_MODE_ALB)) { 4241 if (!miimon) { 4242 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure and link speed which are essential for TLB/ALB load balancing\n"); 4243 pr_warning("Forcing miimon to 100msec\n"); 4244 miimon = 100; 4245 } 4246 } 4247 4248 if (bond_mode == BOND_MODE_ALB) { 4249 pr_notice("In ALB mode you might experience client disconnections upon reconnection of a link if the bonding module updelay parameter (%d msec) is incompatible with the forwarding delay time of the switch\n", 4250 updelay); 4251 } 4252 4253 if (!miimon) { 4254 if (updelay || downdelay) { 4255 /* just warn the user the up/down delay will have 4256 * no effect since miimon is zero... 4257 */ 4258 pr_warning("Warning: miimon module parameter not set and updelay (%d) or downdelay (%d) module parameter is set; updelay and downdelay have no effect unless miimon is set\n", 4259 updelay, downdelay); 4260 } 4261 } else { 4262 /* don't allow arp monitoring */ 4263 if (arp_interval) { 4264 pr_warning("Warning: miimon (%d) and arp_interval (%d) can't be used simultaneously, disabling ARP monitoring\n", 4265 miimon, arp_interval); 4266 arp_interval = 0; 4267 } 4268 4269 if ((updelay % miimon) != 0) { 4270 pr_warning("Warning: updelay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n", 4271 updelay, miimon, 4272 (updelay / miimon) * miimon); 4273 } 4274 4275 updelay /= miimon; 4276 4277 if ((downdelay % miimon) != 0) { 4278 pr_warning("Warning: downdelay (%d) is not a multiple of miimon (%d), downdelay rounded to %d ms\n", 4279 downdelay, miimon, 4280 (downdelay / miimon) * miimon); 4281 } 4282 4283 downdelay /= miimon; 4284 } 4285 4286 if (arp_interval < 0) { 4287 pr_warning("Warning: arp_interval module parameter (%d) , not in range 0-%d, so it was reset to %d\n", 4288 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4289 arp_interval = BOND_LINK_ARP_INTERV; 4290 } 4291 4292 for (arp_ip_count = 0, i = 0; 4293 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[i]; i++) { 4294 /* not complete check, but should be good enough to 4295 catch mistakes */ 4296 __be32 ip = in_aton(arp_ip_target[i]); 4297 if (!isdigit(arp_ip_target[i][0]) || ip == 0 || 4298 ip == htonl(INADDR_BROADCAST)) { 4299 pr_warning("Warning: bad arp_ip_target module parameter (%s), ARP monitoring will not be performed\n", 4300 arp_ip_target[i]); 4301 arp_interval = 0; 4302 } else { 4303 if (bond_get_targets_ip(arp_target, ip) == -1) 4304 arp_target[arp_ip_count++] = ip; 4305 else 4306 pr_warning("Warning: duplicate address %pI4 in arp_ip_target, skipping\n", 4307 &ip); 4308 } 4309 } 4310 4311 if (arp_interval && !arp_ip_count) { 4312 /* don't allow arping if no arp_ip_target given... */ 4313 pr_warning("Warning: arp_interval module parameter (%d) specified without providing an arp_ip_target parameter, arp_interval was reset to 0\n", 4314 arp_interval); 4315 arp_interval = 0; 4316 } 4317 4318 if (arp_validate) { 4319 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4320 pr_err("arp_validate only supported in active-backup mode\n"); 4321 return -EINVAL; 4322 } 4323 if (!arp_interval) { 4324 pr_err("arp_validate requires arp_interval\n"); 4325 return -EINVAL; 4326 } 4327 4328 arp_validate_value = bond_parse_parm(arp_validate, 4329 arp_validate_tbl); 4330 if (arp_validate_value == -1) { 4331 pr_err("Error: invalid arp_validate \"%s\"\n", 4332 arp_validate == NULL ? "NULL" : arp_validate); 4333 return -EINVAL; 4334 } 4335 } else 4336 arp_validate_value = 0; 4337 4338 arp_all_targets_value = 0; 4339 if (arp_all_targets) { 4340 arp_all_targets_value = bond_parse_parm(arp_all_targets, 4341 arp_all_targets_tbl); 4342 4343 if (arp_all_targets_value == -1) { 4344 pr_err("Error: invalid arp_all_targets_value \"%s\"\n", 4345 arp_all_targets); 4346 arp_all_targets_value = 0; 4347 } 4348 } 4349 4350 if (miimon) { 4351 pr_info("MII link monitoring set to %d ms\n", miimon); 4352 } else if (arp_interval) { 4353 pr_info("ARP monitoring set to %d ms, validate %s, with %d target(s):", 4354 arp_interval, 4355 arp_validate_tbl[arp_validate_value].modename, 4356 arp_ip_count); 4357 4358 for (i = 0; i < arp_ip_count; i++) 4359 pr_info(" %s", arp_ip_target[i]); 4360 4361 pr_info("\n"); 4362 4363 } else if (max_bonds) { 4364 /* miimon and arp_interval not set, we need one so things 4365 * work as expected, see bonding.txt for details 4366 */ 4367 pr_debug("Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details.\n"); 4368 } 4369 4370 if (primary && !USES_PRIMARY(bond_mode)) { 4371 /* currently, using a primary only makes sense 4372 * in active backup, TLB or ALB modes 4373 */ 4374 pr_warning("Warning: %s primary device specified but has no effect in %s mode\n", 4375 primary, bond_mode_name(bond_mode)); 4376 primary = NULL; 4377 } 4378 4379 if (primary && primary_reselect) { 4380 primary_reselect_value = bond_parse_parm(primary_reselect, 4381 pri_reselect_tbl); 4382 if (primary_reselect_value == -1) { 4383 pr_err("Error: Invalid primary_reselect \"%s\"\n", 4384 primary_reselect == 4385 NULL ? "NULL" : primary_reselect); 4386 return -EINVAL; 4387 } 4388 } else { 4389 primary_reselect_value = BOND_PRI_RESELECT_ALWAYS; 4390 } 4391 4392 if (fail_over_mac) { 4393 fail_over_mac_value = bond_parse_parm(fail_over_mac, 4394 fail_over_mac_tbl); 4395 if (fail_over_mac_value == -1) { 4396 pr_err("Error: invalid fail_over_mac \"%s\"\n", 4397 arp_validate == NULL ? "NULL" : arp_validate); 4398 return -EINVAL; 4399 } 4400 4401 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 4402 pr_warning("Warning: fail_over_mac only affects active-backup mode.\n"); 4403 } else { 4404 fail_over_mac_value = BOND_FOM_NONE; 4405 } 4406 4407 /* fill params struct with the proper values */ 4408 params->mode = bond_mode; 4409 params->xmit_policy = xmit_hashtype; 4410 params->miimon = miimon; 4411 params->num_peer_notif = num_peer_notif; 4412 params->arp_interval = arp_interval; 4413 params->arp_validate = arp_validate_value; 4414 params->arp_all_targets = arp_all_targets_value; 4415 params->updelay = updelay; 4416 params->downdelay = downdelay; 4417 params->use_carrier = use_carrier; 4418 params->lacp_fast = lacp_fast; 4419 params->primary[0] = 0; 4420 params->primary_reselect = primary_reselect_value; 4421 params->fail_over_mac = fail_over_mac_value; 4422 params->tx_queues = tx_queues; 4423 params->all_slaves_active = all_slaves_active; 4424 params->resend_igmp = resend_igmp; 4425 params->min_links = min_links; 4426 params->lp_interval = BOND_ALB_DEFAULT_LP_INTERVAL; 4427 4428 if (primary) { 4429 strncpy(params->primary, primary, IFNAMSIZ); 4430 params->primary[IFNAMSIZ - 1] = 0; 4431 } 4432 4433 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 4434 4435 return 0; 4436 } 4437 4438 static struct lock_class_key bonding_netdev_xmit_lock_key; 4439 static struct lock_class_key bonding_netdev_addr_lock_key; 4440 static struct lock_class_key bonding_tx_busylock_key; 4441 4442 static void bond_set_lockdep_class_one(struct net_device *dev, 4443 struct netdev_queue *txq, 4444 void *_unused) 4445 { 4446 lockdep_set_class(&txq->_xmit_lock, 4447 &bonding_netdev_xmit_lock_key); 4448 } 4449 4450 static void bond_set_lockdep_class(struct net_device *dev) 4451 { 4452 lockdep_set_class(&dev->addr_list_lock, 4453 &bonding_netdev_addr_lock_key); 4454 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 4455 dev->qdisc_tx_busylock = &bonding_tx_busylock_key; 4456 } 4457 4458 /* 4459 * Called from registration process 4460 */ 4461 static int bond_init(struct net_device *bond_dev) 4462 { 4463 struct bonding *bond = netdev_priv(bond_dev); 4464 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id); 4465 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 4466 4467 pr_debug("Begin bond_init for %s\n", bond_dev->name); 4468 4469 /* 4470 * Initialize locks that may be required during 4471 * en/deslave operations. All of the bond_open work 4472 * (of which this is part) should really be moved to 4473 * a phase prior to dev_open 4474 */ 4475 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 4476 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 4477 4478 bond->wq = create_singlethread_workqueue(bond_dev->name); 4479 if (!bond->wq) 4480 return -ENOMEM; 4481 4482 bond_set_lockdep_class(bond_dev); 4483 4484 list_add_tail(&bond->bond_list, &bn->dev_list); 4485 4486 bond_prepare_sysfs_group(bond); 4487 4488 bond_debug_register(bond); 4489 4490 /* Ensure valid dev_addr */ 4491 if (is_zero_ether_addr(bond_dev->dev_addr) && 4492 bond_dev->addr_assign_type == NET_ADDR_PERM) 4493 eth_hw_addr_random(bond_dev); 4494 4495 return 0; 4496 } 4497 4498 static int bond_validate(struct nlattr *tb[], struct nlattr *data[]) 4499 { 4500 if (tb[IFLA_ADDRESS]) { 4501 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 4502 return -EINVAL; 4503 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 4504 return -EADDRNOTAVAIL; 4505 } 4506 return 0; 4507 } 4508 4509 static unsigned int bond_get_num_tx_queues(void) 4510 { 4511 return tx_queues; 4512 } 4513 4514 static struct rtnl_link_ops bond_link_ops __read_mostly = { 4515 .kind = "bond", 4516 .priv_size = sizeof(struct bonding), 4517 .setup = bond_setup, 4518 .validate = bond_validate, 4519 .get_num_tx_queues = bond_get_num_tx_queues, 4520 .get_num_rx_queues = bond_get_num_tx_queues, /* Use the same number 4521 as for TX queues */ 4522 }; 4523 4524 /* Create a new bond based on the specified name and bonding parameters. 4525 * If name is NULL, obtain a suitable "bond%d" name for us. 4526 * Caller must NOT hold rtnl_lock; we need to release it here before we 4527 * set up our sysfs entries. 4528 */ 4529 int bond_create(struct net *net, const char *name) 4530 { 4531 struct net_device *bond_dev; 4532 int res; 4533 4534 rtnl_lock(); 4535 4536 bond_dev = alloc_netdev_mq(sizeof(struct bonding), 4537 name ? name : "bond%d", 4538 bond_setup, tx_queues); 4539 if (!bond_dev) { 4540 pr_err("%s: eek! can't alloc netdev!\n", name); 4541 rtnl_unlock(); 4542 return -ENOMEM; 4543 } 4544 4545 dev_net_set(bond_dev, net); 4546 bond_dev->rtnl_link_ops = &bond_link_ops; 4547 4548 res = register_netdevice(bond_dev); 4549 4550 netif_carrier_off(bond_dev); 4551 4552 rtnl_unlock(); 4553 if (res < 0) 4554 bond_destructor(bond_dev); 4555 return res; 4556 } 4557 4558 static int __net_init bond_net_init(struct net *net) 4559 { 4560 struct bond_net *bn = net_generic(net, bond_net_id); 4561 4562 bn->net = net; 4563 INIT_LIST_HEAD(&bn->dev_list); 4564 4565 bond_create_proc_dir(bn); 4566 bond_create_sysfs(bn); 4567 4568 return 0; 4569 } 4570 4571 static void __net_exit bond_net_exit(struct net *net) 4572 { 4573 struct bond_net *bn = net_generic(net, bond_net_id); 4574 struct bonding *bond, *tmp_bond; 4575 LIST_HEAD(list); 4576 4577 bond_destroy_sysfs(bn); 4578 bond_destroy_proc_dir(bn); 4579 4580 /* Kill off any bonds created after unregistering bond rtnl ops */ 4581 rtnl_lock(); 4582 list_for_each_entry_safe(bond, tmp_bond, &bn->dev_list, bond_list) 4583 unregister_netdevice_queue(bond->dev, &list); 4584 unregister_netdevice_many(&list); 4585 rtnl_unlock(); 4586 } 4587 4588 static struct pernet_operations bond_net_ops = { 4589 .init = bond_net_init, 4590 .exit = bond_net_exit, 4591 .id = &bond_net_id, 4592 .size = sizeof(struct bond_net), 4593 }; 4594 4595 static int __init bonding_init(void) 4596 { 4597 int i; 4598 int res; 4599 4600 pr_info("%s", bond_version); 4601 4602 res = bond_check_params(&bonding_defaults); 4603 if (res) 4604 goto out; 4605 4606 res = register_pernet_subsys(&bond_net_ops); 4607 if (res) 4608 goto out; 4609 4610 res = rtnl_link_register(&bond_link_ops); 4611 if (res) 4612 goto err_link; 4613 4614 bond_create_debugfs(); 4615 4616 for (i = 0; i < max_bonds; i++) { 4617 res = bond_create(&init_net, NULL); 4618 if (res) 4619 goto err; 4620 } 4621 4622 register_netdevice_notifier(&bond_netdev_notifier); 4623 out: 4624 return res; 4625 err: 4626 rtnl_link_unregister(&bond_link_ops); 4627 err_link: 4628 unregister_pernet_subsys(&bond_net_ops); 4629 goto out; 4630 4631 } 4632 4633 static void __exit bonding_exit(void) 4634 { 4635 unregister_netdevice_notifier(&bond_netdev_notifier); 4636 4637 bond_destroy_debugfs(); 4638 4639 rtnl_link_unregister(&bond_link_ops); 4640 unregister_pernet_subsys(&bond_net_ops); 4641 4642 #ifdef CONFIG_NET_POLL_CONTROLLER 4643 /* 4644 * Make sure we don't have an imbalance on our netpoll blocking 4645 */ 4646 WARN_ON(atomic_read(&netpoll_block_tx)); 4647 #endif 4648 } 4649 4650 module_init(bonding_init); 4651 module_exit(bonding_exit); 4652 MODULE_LICENSE("GPL"); 4653 MODULE_VERSION(DRV_VERSION); 4654 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 4655 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 4656 MODULE_ALIAS_RTNL_LINK("bond"); 4657