xref: /openbmc/linux/drivers/net/bonding/bond_main.c (revision f7777dcc)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <linux/io.h>
57 #include <asm/dma.h>
58 #include <linux/uaccess.h>
59 #include <linux/errno.h>
60 #include <linux/netdevice.h>
61 #include <linux/inetdevice.h>
62 #include <linux/igmp.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <net/sock.h>
66 #include <linux/rtnetlink.h>
67 #include <linux/smp.h>
68 #include <linux/if_ether.h>
69 #include <net/arp.h>
70 #include <linux/mii.h>
71 #include <linux/ethtool.h>
72 #include <linux/if_vlan.h>
73 #include <linux/if_bonding.h>
74 #include <linux/jiffies.h>
75 #include <linux/preempt.h>
76 #include <net/route.h>
77 #include <net/net_namespace.h>
78 #include <net/netns/generic.h>
79 #include <net/pkt_sched.h>
80 #include <linux/rculist.h>
81 #include "bonding.h"
82 #include "bond_3ad.h"
83 #include "bond_alb.h"
84 
85 /*---------------------------- Module parameters ----------------------------*/
86 
87 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
88 #define BOND_LINK_MON_INTERV	0
89 #define BOND_LINK_ARP_INTERV	0
90 
91 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
92 static int tx_queues	= BOND_DEFAULT_TX_QUEUES;
93 static int num_peer_notif = 1;
94 static int miimon	= BOND_LINK_MON_INTERV;
95 static int updelay;
96 static int downdelay;
97 static int use_carrier	= 1;
98 static char *mode;
99 static char *primary;
100 static char *primary_reselect;
101 static char *lacp_rate;
102 static int min_links;
103 static char *ad_select;
104 static char *xmit_hash_policy;
105 static int arp_interval = BOND_LINK_ARP_INTERV;
106 static char *arp_ip_target[BOND_MAX_ARP_TARGETS];
107 static char *arp_validate;
108 static char *arp_all_targets;
109 static char *fail_over_mac;
110 static int all_slaves_active;
111 static struct bond_params bonding_defaults;
112 static int resend_igmp = BOND_DEFAULT_RESEND_IGMP;
113 
114 module_param(max_bonds, int, 0);
115 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
116 module_param(tx_queues, int, 0);
117 MODULE_PARM_DESC(tx_queues, "Max number of transmit queues (default = 16)");
118 module_param_named(num_grat_arp, num_peer_notif, int, 0644);
119 MODULE_PARM_DESC(num_grat_arp, "Number of peer notifications to send on "
120 			       "failover event (alias of num_unsol_na)");
121 module_param_named(num_unsol_na, num_peer_notif, int, 0644);
122 MODULE_PARM_DESC(num_unsol_na, "Number of peer notifications to send on "
123 			       "failover event (alias of num_grat_arp)");
124 module_param(miimon, int, 0);
125 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
126 module_param(updelay, int, 0);
127 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
128 module_param(downdelay, int, 0);
129 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
130 			    "in milliseconds");
131 module_param(use_carrier, int, 0);
132 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
133 			      "0 for off, 1 for on (default)");
134 module_param(mode, charp, 0);
135 MODULE_PARM_DESC(mode, "Mode of operation; 0 for balance-rr, "
136 		       "1 for active-backup, 2 for balance-xor, "
137 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
138 		       "6 for balance-alb");
139 module_param(primary, charp, 0);
140 MODULE_PARM_DESC(primary, "Primary network device to use");
141 module_param(primary_reselect, charp, 0);
142 MODULE_PARM_DESC(primary_reselect, "Reselect primary slave "
143 				   "once it comes up; "
144 				   "0 for always (default), "
145 				   "1 for only if speed of primary is "
146 				   "better, "
147 				   "2 for only on active slave "
148 				   "failure");
149 module_param(lacp_rate, charp, 0);
150 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner; "
151 			    "0 for slow, 1 for fast");
152 module_param(ad_select, charp, 0);
153 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic; "
154 			    "0 for stable (default), 1 for bandwidth, "
155 			    "2 for count");
156 module_param(min_links, int, 0);
157 MODULE_PARM_DESC(min_links, "Minimum number of available links before turning on carrier");
158 
159 module_param(xmit_hash_policy, charp, 0);
160 MODULE_PARM_DESC(xmit_hash_policy, "balance-xor and 802.3ad hashing method; "
161 				   "0 for layer 2 (default), 1 for layer 3+4, "
162 				   "2 for layer 2+3");
163 module_param(arp_interval, int, 0);
164 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
165 module_param_array(arp_ip_target, charp, NULL, 0);
166 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
167 module_param(arp_validate, charp, 0);
168 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes; "
169 			       "0 for none (default), 1 for active, "
170 			       "2 for backup, 3 for all");
171 module_param(arp_all_targets, charp, 0);
172 MODULE_PARM_DESC(arp_all_targets, "fail on any/all arp targets timeout; 0 for any (default), 1 for all");
173 module_param(fail_over_mac, charp, 0);
174 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to "
175 				"the same MAC; 0 for none (default), "
176 				"1 for active, 2 for follow");
177 module_param(all_slaves_active, int, 0);
178 MODULE_PARM_DESC(all_slaves_active, "Keep all frames received on an interface"
179 				     "by setting active flag for all slaves; "
180 				     "0 for never (default), 1 for always.");
181 module_param(resend_igmp, int, 0);
182 MODULE_PARM_DESC(resend_igmp, "Number of IGMP membership reports to send on "
183 			      "link failure");
184 
185 /*----------------------------- Global variables ----------------------------*/
186 
187 #ifdef CONFIG_NET_POLL_CONTROLLER
188 atomic_t netpoll_block_tx = ATOMIC_INIT(0);
189 #endif
190 
191 int bond_net_id __read_mostly;
192 
193 static __be32 arp_target[BOND_MAX_ARP_TARGETS];
194 static int arp_ip_count;
195 static int bond_mode	= BOND_MODE_ROUNDROBIN;
196 static int xmit_hashtype = BOND_XMIT_POLICY_LAYER2;
197 static int lacp_fast;
198 
199 const struct bond_parm_tbl bond_lacp_tbl[] = {
200 {	"slow",		AD_LACP_SLOW},
201 {	"fast",		AD_LACP_FAST},
202 {	NULL,		-1},
203 };
204 
205 const struct bond_parm_tbl bond_mode_tbl[] = {
206 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
207 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
208 {	"balance-xor",		BOND_MODE_XOR},
209 {	"broadcast",		BOND_MODE_BROADCAST},
210 {	"802.3ad",		BOND_MODE_8023AD},
211 {	"balance-tlb",		BOND_MODE_TLB},
212 {	"balance-alb",		BOND_MODE_ALB},
213 {	NULL,			-1},
214 };
215 
216 const struct bond_parm_tbl xmit_hashtype_tbl[] = {
217 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
218 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
219 {	"layer2+3",		BOND_XMIT_POLICY_LAYER23},
220 {	NULL,			-1},
221 };
222 
223 const struct bond_parm_tbl arp_all_targets_tbl[] = {
224 {	"any",			BOND_ARP_TARGETS_ANY},
225 {	"all",			BOND_ARP_TARGETS_ALL},
226 {	NULL,			-1},
227 };
228 
229 const struct bond_parm_tbl arp_validate_tbl[] = {
230 {	"none",			BOND_ARP_VALIDATE_NONE},
231 {	"active",		BOND_ARP_VALIDATE_ACTIVE},
232 {	"backup",		BOND_ARP_VALIDATE_BACKUP},
233 {	"all",			BOND_ARP_VALIDATE_ALL},
234 {	NULL,			-1},
235 };
236 
237 const struct bond_parm_tbl fail_over_mac_tbl[] = {
238 {	"none",			BOND_FOM_NONE},
239 {	"active",		BOND_FOM_ACTIVE},
240 {	"follow",		BOND_FOM_FOLLOW},
241 {	NULL,			-1},
242 };
243 
244 const struct bond_parm_tbl pri_reselect_tbl[] = {
245 {	"always",		BOND_PRI_RESELECT_ALWAYS},
246 {	"better",		BOND_PRI_RESELECT_BETTER},
247 {	"failure",		BOND_PRI_RESELECT_FAILURE},
248 {	NULL,			-1},
249 };
250 
251 struct bond_parm_tbl ad_select_tbl[] = {
252 {	"stable",	BOND_AD_STABLE},
253 {	"bandwidth",	BOND_AD_BANDWIDTH},
254 {	"count",	BOND_AD_COUNT},
255 {	NULL,		-1},
256 };
257 
258 /*-------------------------- Forward declarations ---------------------------*/
259 
260 static int bond_init(struct net_device *bond_dev);
261 static void bond_uninit(struct net_device *bond_dev);
262 
263 /*---------------------------- General routines -----------------------------*/
264 
265 const char *bond_mode_name(int mode)
266 {
267 	static const char *names[] = {
268 		[BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)",
269 		[BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)",
270 		[BOND_MODE_XOR] = "load balancing (xor)",
271 		[BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)",
272 		[BOND_MODE_8023AD] = "IEEE 802.3ad Dynamic link aggregation",
273 		[BOND_MODE_TLB] = "transmit load balancing",
274 		[BOND_MODE_ALB] = "adaptive load balancing",
275 	};
276 
277 	if (mode < BOND_MODE_ROUNDROBIN || mode > BOND_MODE_ALB)
278 		return "unknown";
279 
280 	return names[mode];
281 }
282 
283 /*---------------------------------- VLAN -----------------------------------*/
284 
285 /**
286  * bond_dev_queue_xmit - Prepare skb for xmit.
287  *
288  * @bond: bond device that got this skb for tx.
289  * @skb: hw accel VLAN tagged skb to transmit
290  * @slave_dev: slave that is supposed to xmit this skbuff
291  */
292 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb,
293 			struct net_device *slave_dev)
294 {
295 	skb->dev = slave_dev;
296 
297 	BUILD_BUG_ON(sizeof(skb->queue_mapping) !=
298 		     sizeof(qdisc_skb_cb(skb)->slave_dev_queue_mapping));
299 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
300 
301 	if (unlikely(netpoll_tx_running(bond->dev)))
302 		bond_netpoll_send_skb(bond_get_slave_by_dev(bond, slave_dev), skb);
303 	else
304 		dev_queue_xmit(skb);
305 
306 	return 0;
307 }
308 
309 /*
310  * In the following 2 functions, bond_vlan_rx_add_vid and bond_vlan_rx_kill_vid,
311  * We don't protect the slave list iteration with a lock because:
312  * a. This operation is performed in IOCTL context,
313  * b. The operation is protected by the RTNL semaphore in the 8021q code,
314  * c. Holding a lock with BH disabled while directly calling a base driver
315  *    entry point is generally a BAD idea.
316  *
317  * The design of synchronization/protection for this operation in the 8021q
318  * module is good for one or more VLAN devices over a single physical device
319  * and cannot be extended for a teaming solution like bonding, so there is a
320  * potential race condition here where a net device from the vlan group might
321  * be referenced (either by a base driver or the 8021q code) while it is being
322  * removed from the system. However, it turns out we're not making matters
323  * worse, and if it works for regular VLAN usage it will work here too.
324 */
325 
326 /**
327  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
328  * @bond_dev: bonding net device that got called
329  * @vid: vlan id being added
330  */
331 static int bond_vlan_rx_add_vid(struct net_device *bond_dev,
332 				__be16 proto, u16 vid)
333 {
334 	struct bonding *bond = netdev_priv(bond_dev);
335 	struct slave *slave;
336 	int res;
337 
338 	bond_for_each_slave(bond, slave) {
339 		res = vlan_vid_add(slave->dev, proto, vid);
340 		if (res)
341 			goto unwind;
342 	}
343 
344 	return 0;
345 
346 unwind:
347 	/* unwind from the slave that failed */
348 	bond_for_each_slave_continue_reverse(bond, slave)
349 		vlan_vid_del(slave->dev, proto, vid);
350 
351 	return res;
352 }
353 
354 /**
355  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
356  * @bond_dev: bonding net device that got called
357  * @vid: vlan id being removed
358  */
359 static int bond_vlan_rx_kill_vid(struct net_device *bond_dev,
360 				 __be16 proto, u16 vid)
361 {
362 	struct bonding *bond = netdev_priv(bond_dev);
363 	struct slave *slave;
364 
365 	bond_for_each_slave(bond, slave)
366 		vlan_vid_del(slave->dev, proto, vid);
367 
368 	if (bond_is_lb(bond))
369 		bond_alb_clear_vlan(bond, vid);
370 
371 	return 0;
372 }
373 
374 /*------------------------------- Link status -------------------------------*/
375 
376 /*
377  * Set the carrier state for the master according to the state of its
378  * slaves.  If any slaves are up, the master is up.  In 802.3ad mode,
379  * do special 802.3ad magic.
380  *
381  * Returns zero if carrier state does not change, nonzero if it does.
382  */
383 static int bond_set_carrier(struct bonding *bond)
384 {
385 	struct slave *slave;
386 
387 	if (list_empty(&bond->slave_list))
388 		goto down;
389 
390 	if (bond->params.mode == BOND_MODE_8023AD)
391 		return bond_3ad_set_carrier(bond);
392 
393 	bond_for_each_slave(bond, slave) {
394 		if (slave->link == BOND_LINK_UP) {
395 			if (!netif_carrier_ok(bond->dev)) {
396 				netif_carrier_on(bond->dev);
397 				return 1;
398 			}
399 			return 0;
400 		}
401 	}
402 
403 down:
404 	if (netif_carrier_ok(bond->dev)) {
405 		netif_carrier_off(bond->dev);
406 		return 1;
407 	}
408 	return 0;
409 }
410 
411 /*
412  * Get link speed and duplex from the slave's base driver
413  * using ethtool. If for some reason the call fails or the
414  * values are invalid, set speed and duplex to -1,
415  * and return.
416  */
417 static void bond_update_speed_duplex(struct slave *slave)
418 {
419 	struct net_device *slave_dev = slave->dev;
420 	struct ethtool_cmd ecmd;
421 	u32 slave_speed;
422 	int res;
423 
424 	slave->speed = SPEED_UNKNOWN;
425 	slave->duplex = DUPLEX_UNKNOWN;
426 
427 	res = __ethtool_get_settings(slave_dev, &ecmd);
428 	if (res < 0)
429 		return;
430 
431 	slave_speed = ethtool_cmd_speed(&ecmd);
432 	if (slave_speed == 0 || slave_speed == ((__u32) -1))
433 		return;
434 
435 	switch (ecmd.duplex) {
436 	case DUPLEX_FULL:
437 	case DUPLEX_HALF:
438 		break;
439 	default:
440 		return;
441 	}
442 
443 	slave->speed = slave_speed;
444 	slave->duplex = ecmd.duplex;
445 
446 	return;
447 }
448 
449 /*
450  * if <dev> supports MII link status reporting, check its link status.
451  *
452  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
453  * depending upon the setting of the use_carrier parameter.
454  *
455  * Return either BMSR_LSTATUS, meaning that the link is up (or we
456  * can't tell and just pretend it is), or 0, meaning that the link is
457  * down.
458  *
459  * If reporting is non-zero, instead of faking link up, return -1 if
460  * both ETHTOOL and MII ioctls fail (meaning the device does not
461  * support them).  If use_carrier is set, return whatever it says.
462  * It'd be nice if there was a good way to tell if a driver supports
463  * netif_carrier, but there really isn't.
464  */
465 static int bond_check_dev_link(struct bonding *bond,
466 			       struct net_device *slave_dev, int reporting)
467 {
468 	const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
469 	int (*ioctl)(struct net_device *, struct ifreq *, int);
470 	struct ifreq ifr;
471 	struct mii_ioctl_data *mii;
472 
473 	if (!reporting && !netif_running(slave_dev))
474 		return 0;
475 
476 	if (bond->params.use_carrier)
477 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
478 
479 	/* Try to get link status using Ethtool first. */
480 	if (slave_dev->ethtool_ops->get_link)
481 		return slave_dev->ethtool_ops->get_link(slave_dev) ?
482 			BMSR_LSTATUS : 0;
483 
484 	/* Ethtool can't be used, fallback to MII ioctls. */
485 	ioctl = slave_ops->ndo_do_ioctl;
486 	if (ioctl) {
487 		/* TODO: set pointer to correct ioctl on a per team member */
488 		/*       bases to make this more efficient. that is, once  */
489 		/*       we determine the correct ioctl, we will always    */
490 		/*       call it and not the others for that team          */
491 		/*       member.                                           */
492 
493 		/*
494 		 * We cannot assume that SIOCGMIIPHY will also read a
495 		 * register; not all network drivers (e.g., e100)
496 		 * support that.
497 		 */
498 
499 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
500 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
501 		mii = if_mii(&ifr);
502 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
503 			mii->reg_num = MII_BMSR;
504 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0)
505 				return mii->val_out & BMSR_LSTATUS;
506 		}
507 	}
508 
509 	/*
510 	 * If reporting, report that either there's no dev->do_ioctl,
511 	 * or both SIOCGMIIREG and get_link failed (meaning that we
512 	 * cannot report link status).  If not reporting, pretend
513 	 * we're ok.
514 	 */
515 	return reporting ? -1 : BMSR_LSTATUS;
516 }
517 
518 /*----------------------------- Multicast list ------------------------------*/
519 
520 /*
521  * Push the promiscuity flag down to appropriate slaves
522  */
523 static int bond_set_promiscuity(struct bonding *bond, int inc)
524 {
525 	int err = 0;
526 	if (USES_PRIMARY(bond->params.mode)) {
527 		/* write lock already acquired */
528 		if (bond->curr_active_slave) {
529 			err = dev_set_promiscuity(bond->curr_active_slave->dev,
530 						  inc);
531 		}
532 	} else {
533 		struct slave *slave;
534 
535 		bond_for_each_slave(bond, slave) {
536 			err = dev_set_promiscuity(slave->dev, inc);
537 			if (err)
538 				return err;
539 		}
540 	}
541 	return err;
542 }
543 
544 /*
545  * Push the allmulti flag down to all slaves
546  */
547 static int bond_set_allmulti(struct bonding *bond, int inc)
548 {
549 	int err = 0;
550 	if (USES_PRIMARY(bond->params.mode)) {
551 		/* write lock already acquired */
552 		if (bond->curr_active_slave) {
553 			err = dev_set_allmulti(bond->curr_active_slave->dev,
554 					       inc);
555 		}
556 	} else {
557 		struct slave *slave;
558 
559 		bond_for_each_slave(bond, slave) {
560 			err = dev_set_allmulti(slave->dev, inc);
561 			if (err)
562 				return err;
563 		}
564 	}
565 	return err;
566 }
567 
568 /*
569  * Retrieve the list of registered multicast addresses for the bonding
570  * device and retransmit an IGMP JOIN request to the current active
571  * slave.
572  */
573 static void bond_resend_igmp_join_requests(struct bonding *bond)
574 {
575 	if (!rtnl_trylock()) {
576 		queue_delayed_work(bond->wq, &bond->mcast_work, 1);
577 		return;
578 	}
579 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, bond->dev);
580 	rtnl_unlock();
581 
582 	/* We use curr_slave_lock to protect against concurrent access to
583 	 * igmp_retrans from multiple running instances of this function and
584 	 * bond_change_active_slave
585 	 */
586 	write_lock_bh(&bond->curr_slave_lock);
587 	if (bond->igmp_retrans > 1) {
588 		bond->igmp_retrans--;
589 		queue_delayed_work(bond->wq, &bond->mcast_work, HZ/5);
590 	}
591 	write_unlock_bh(&bond->curr_slave_lock);
592 }
593 
594 static void bond_resend_igmp_join_requests_delayed(struct work_struct *work)
595 {
596 	struct bonding *bond = container_of(work, struct bonding,
597 					    mcast_work.work);
598 
599 	bond_resend_igmp_join_requests(bond);
600 }
601 
602 /* Flush bond's hardware addresses from slave
603  */
604 static void bond_hw_addr_flush(struct net_device *bond_dev,
605 			       struct net_device *slave_dev)
606 {
607 	struct bonding *bond = netdev_priv(bond_dev);
608 
609 	dev_uc_unsync(slave_dev, bond_dev);
610 	dev_mc_unsync(slave_dev, bond_dev);
611 
612 	if (bond->params.mode == BOND_MODE_8023AD) {
613 		/* del lacpdu mc addr from mc list */
614 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
615 
616 		dev_mc_del(slave_dev, lacpdu_multicast);
617 	}
618 }
619 
620 /*--------------------------- Active slave change ---------------------------*/
621 
622 /* Update the hardware address list and promisc/allmulti for the new and
623  * old active slaves (if any).  Modes that are !USES_PRIMARY keep all
624  * slaves up date at all times; only the USES_PRIMARY modes need to call
625  * this function to swap these settings during a failover.
626  */
627 static void bond_hw_addr_swap(struct bonding *bond, struct slave *new_active,
628 			      struct slave *old_active)
629 {
630 	ASSERT_RTNL();
631 
632 	if (old_active) {
633 		if (bond->dev->flags & IFF_PROMISC)
634 			dev_set_promiscuity(old_active->dev, -1);
635 
636 		if (bond->dev->flags & IFF_ALLMULTI)
637 			dev_set_allmulti(old_active->dev, -1);
638 
639 		bond_hw_addr_flush(bond->dev, old_active->dev);
640 	}
641 
642 	if (new_active) {
643 		/* FIXME: Signal errors upstream. */
644 		if (bond->dev->flags & IFF_PROMISC)
645 			dev_set_promiscuity(new_active->dev, 1);
646 
647 		if (bond->dev->flags & IFF_ALLMULTI)
648 			dev_set_allmulti(new_active->dev, 1);
649 
650 		netif_addr_lock_bh(bond->dev);
651 		dev_uc_sync(new_active->dev, bond->dev);
652 		dev_mc_sync(new_active->dev, bond->dev);
653 		netif_addr_unlock_bh(bond->dev);
654 	}
655 }
656 
657 /**
658  * bond_set_dev_addr - clone slave's address to bond
659  * @bond_dev: bond net device
660  * @slave_dev: slave net device
661  *
662  * Should be called with RTNL held.
663  */
664 static void bond_set_dev_addr(struct net_device *bond_dev,
665 			      struct net_device *slave_dev)
666 {
667 	pr_debug("bond_dev=%p slave_dev=%p slave_dev->addr_len=%d\n",
668 		 bond_dev, slave_dev, slave_dev->addr_len);
669 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
670 	bond_dev->addr_assign_type = NET_ADDR_STOLEN;
671 	call_netdevice_notifiers(NETDEV_CHANGEADDR, bond_dev);
672 }
673 
674 /*
675  * bond_do_fail_over_mac
676  *
677  * Perform special MAC address swapping for fail_over_mac settings
678  *
679  * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh.
680  */
681 static void bond_do_fail_over_mac(struct bonding *bond,
682 				  struct slave *new_active,
683 				  struct slave *old_active)
684 	__releases(&bond->curr_slave_lock)
685 	__releases(&bond->lock)
686 	__acquires(&bond->lock)
687 	__acquires(&bond->curr_slave_lock)
688 {
689 	u8 tmp_mac[ETH_ALEN];
690 	struct sockaddr saddr;
691 	int rv;
692 
693 	switch (bond->params.fail_over_mac) {
694 	case BOND_FOM_ACTIVE:
695 		if (new_active) {
696 			write_unlock_bh(&bond->curr_slave_lock);
697 			read_unlock(&bond->lock);
698 			bond_set_dev_addr(bond->dev, new_active->dev);
699 			read_lock(&bond->lock);
700 			write_lock_bh(&bond->curr_slave_lock);
701 		}
702 		break;
703 	case BOND_FOM_FOLLOW:
704 		/*
705 		 * if new_active && old_active, swap them
706 		 * if just old_active, do nothing (going to no active slave)
707 		 * if just new_active, set new_active to bond's MAC
708 		 */
709 		if (!new_active)
710 			return;
711 
712 		write_unlock_bh(&bond->curr_slave_lock);
713 		read_unlock(&bond->lock);
714 
715 		if (old_active) {
716 			memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN);
717 			memcpy(saddr.sa_data, old_active->dev->dev_addr,
718 			       ETH_ALEN);
719 			saddr.sa_family = new_active->dev->type;
720 		} else {
721 			memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN);
722 			saddr.sa_family = bond->dev->type;
723 		}
724 
725 		rv = dev_set_mac_address(new_active->dev, &saddr);
726 		if (rv) {
727 			pr_err("%s: Error %d setting MAC of slave %s\n",
728 			       bond->dev->name, -rv, new_active->dev->name);
729 			goto out;
730 		}
731 
732 		if (!old_active)
733 			goto out;
734 
735 		memcpy(saddr.sa_data, tmp_mac, ETH_ALEN);
736 		saddr.sa_family = old_active->dev->type;
737 
738 		rv = dev_set_mac_address(old_active->dev, &saddr);
739 		if (rv)
740 			pr_err("%s: Error %d setting MAC of slave %s\n",
741 			       bond->dev->name, -rv, new_active->dev->name);
742 out:
743 		read_lock(&bond->lock);
744 		write_lock_bh(&bond->curr_slave_lock);
745 		break;
746 	default:
747 		pr_err("%s: bond_do_fail_over_mac impossible: bad policy %d\n",
748 		       bond->dev->name, bond->params.fail_over_mac);
749 		break;
750 	}
751 
752 }
753 
754 static bool bond_should_change_active(struct bonding *bond)
755 {
756 	struct slave *prim = bond->primary_slave;
757 	struct slave *curr = bond->curr_active_slave;
758 
759 	if (!prim || !curr || curr->link != BOND_LINK_UP)
760 		return true;
761 	if (bond->force_primary) {
762 		bond->force_primary = false;
763 		return true;
764 	}
765 	if (bond->params.primary_reselect == BOND_PRI_RESELECT_BETTER &&
766 	    (prim->speed < curr->speed ||
767 	     (prim->speed == curr->speed && prim->duplex <= curr->duplex)))
768 		return false;
769 	if (bond->params.primary_reselect == BOND_PRI_RESELECT_FAILURE)
770 		return false;
771 	return true;
772 }
773 
774 /**
775  * find_best_interface - select the best available slave to be the active one
776  * @bond: our bonding struct
777  *
778  * Warning: Caller must hold curr_slave_lock for writing.
779  */
780 static struct slave *bond_find_best_slave(struct bonding *bond)
781 {
782 	struct slave *new_active, *old_active;
783 	struct slave *bestslave = NULL;
784 	int mintime = bond->params.updelay;
785 	int i;
786 
787 	new_active = bond->curr_active_slave;
788 
789 	if (!new_active) { /* there were no active slaves left */
790 		new_active = bond_first_slave(bond);
791 		if (!new_active)
792 			return NULL; /* still no slave, return NULL */
793 	}
794 
795 	if ((bond->primary_slave) &&
796 	    bond->primary_slave->link == BOND_LINK_UP &&
797 	    bond_should_change_active(bond)) {
798 		new_active = bond->primary_slave;
799 	}
800 
801 	/* remember where to stop iterating over the slaves */
802 	old_active = new_active;
803 
804 	bond_for_each_slave_from(bond, new_active, i, old_active) {
805 		if (new_active->link == BOND_LINK_UP) {
806 			return new_active;
807 		} else if (new_active->link == BOND_LINK_BACK &&
808 			   IS_UP(new_active->dev)) {
809 			/* link up, but waiting for stabilization */
810 			if (new_active->delay < mintime) {
811 				mintime = new_active->delay;
812 				bestslave = new_active;
813 			}
814 		}
815 	}
816 
817 	return bestslave;
818 }
819 
820 static bool bond_should_notify_peers(struct bonding *bond)
821 {
822 	struct slave *slave = bond->curr_active_slave;
823 
824 	pr_debug("bond_should_notify_peers: bond %s slave %s\n",
825 		 bond->dev->name, slave ? slave->dev->name : "NULL");
826 
827 	if (!slave || !bond->send_peer_notif ||
828 	    test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state))
829 		return false;
830 
831 	return true;
832 }
833 
834 /**
835  * change_active_interface - change the active slave into the specified one
836  * @bond: our bonding struct
837  * @new: the new slave to make the active one
838  *
839  * Set the new slave to the bond's settings and unset them on the old
840  * curr_active_slave.
841  * Setting include flags, mc-list, promiscuity, allmulti, etc.
842  *
843  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
844  * because it is apparently the best available slave we have, even though its
845  * updelay hasn't timed out yet.
846  *
847  * If new_active is not NULL, caller must hold bond->lock for read and
848  * curr_slave_lock for write_bh.
849  */
850 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
851 {
852 	struct slave *old_active = bond->curr_active_slave;
853 
854 	if (old_active == new_active)
855 		return;
856 
857 	if (new_active) {
858 		new_active->jiffies = jiffies;
859 
860 		if (new_active->link == BOND_LINK_BACK) {
861 			if (USES_PRIMARY(bond->params.mode)) {
862 				pr_info("%s: making interface %s the new active one %d ms earlier.\n",
863 					bond->dev->name, new_active->dev->name,
864 					(bond->params.updelay - new_active->delay) * bond->params.miimon);
865 			}
866 
867 			new_active->delay = 0;
868 			new_active->link = BOND_LINK_UP;
869 
870 			if (bond->params.mode == BOND_MODE_8023AD)
871 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
872 
873 			if (bond_is_lb(bond))
874 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
875 		} else {
876 			if (USES_PRIMARY(bond->params.mode)) {
877 				pr_info("%s: making interface %s the new active one.\n",
878 					bond->dev->name, new_active->dev->name);
879 			}
880 		}
881 	}
882 
883 	if (USES_PRIMARY(bond->params.mode))
884 		bond_hw_addr_swap(bond, new_active, old_active);
885 
886 	if (bond_is_lb(bond)) {
887 		bond_alb_handle_active_change(bond, new_active);
888 		if (old_active)
889 			bond_set_slave_inactive_flags(old_active);
890 		if (new_active)
891 			bond_set_slave_active_flags(new_active);
892 	} else {
893 		rcu_assign_pointer(bond->curr_active_slave, new_active);
894 	}
895 
896 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
897 		if (old_active)
898 			bond_set_slave_inactive_flags(old_active);
899 
900 		if (new_active) {
901 			bool should_notify_peers = false;
902 
903 			bond_set_slave_active_flags(new_active);
904 
905 			if (bond->params.fail_over_mac)
906 				bond_do_fail_over_mac(bond, new_active,
907 						      old_active);
908 
909 			if (netif_running(bond->dev)) {
910 				bond->send_peer_notif =
911 					bond->params.num_peer_notif;
912 				should_notify_peers =
913 					bond_should_notify_peers(bond);
914 			}
915 
916 			write_unlock_bh(&bond->curr_slave_lock);
917 			read_unlock(&bond->lock);
918 
919 			call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, bond->dev);
920 			if (should_notify_peers)
921 				call_netdevice_notifiers(NETDEV_NOTIFY_PEERS,
922 							 bond->dev);
923 
924 			read_lock(&bond->lock);
925 			write_lock_bh(&bond->curr_slave_lock);
926 		}
927 	}
928 
929 	/* resend IGMP joins since active slave has changed or
930 	 * all were sent on curr_active_slave.
931 	 * resend only if bond is brought up with the affected
932 	 * bonding modes and the retransmission is enabled */
933 	if (netif_running(bond->dev) && (bond->params.resend_igmp > 0) &&
934 	    ((USES_PRIMARY(bond->params.mode) && new_active) ||
935 	     bond->params.mode == BOND_MODE_ROUNDROBIN)) {
936 		bond->igmp_retrans = bond->params.resend_igmp;
937 		queue_delayed_work(bond->wq, &bond->mcast_work, 1);
938 	}
939 }
940 
941 /**
942  * bond_select_active_slave - select a new active slave, if needed
943  * @bond: our bonding struct
944  *
945  * This functions should be called when one of the following occurs:
946  * - The old curr_active_slave has been released or lost its link.
947  * - The primary_slave has got its link back.
948  * - A slave has got its link back and there's no old curr_active_slave.
949  *
950  * Caller must hold bond->lock for read and curr_slave_lock for write_bh.
951  */
952 void bond_select_active_slave(struct bonding *bond)
953 {
954 	struct slave *best_slave;
955 	int rv;
956 
957 	best_slave = bond_find_best_slave(bond);
958 	if (best_slave != bond->curr_active_slave) {
959 		bond_change_active_slave(bond, best_slave);
960 		rv = bond_set_carrier(bond);
961 		if (!rv)
962 			return;
963 
964 		if (netif_carrier_ok(bond->dev)) {
965 			pr_info("%s: first active interface up!\n",
966 				bond->dev->name);
967 		} else {
968 			pr_info("%s: now running without any active interface !\n",
969 				bond->dev->name);
970 		}
971 	}
972 }
973 
974 /*--------------------------- slave list handling ---------------------------*/
975 
976 /*
977  * This function attaches the slave to the end of list.
978  *
979  * bond->lock held for writing by caller.
980  */
981 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
982 {
983 	list_add_tail_rcu(&new_slave->list, &bond->slave_list);
984 	bond->slave_cnt++;
985 }
986 
987 /*
988  * This function detaches the slave from the list.
989  * WARNING: no check is made to verify if the slave effectively
990  * belongs to <bond>.
991  * Nothing is freed on return, structures are just unchained.
992  * If any slave pointer in bond was pointing to <slave>,
993  * it should be changed by the calling function.
994  *
995  * bond->lock held for writing by caller.
996  */
997 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
998 {
999 	list_del_rcu(&slave->list);
1000 	bond->slave_cnt--;
1001 }
1002 
1003 #ifdef CONFIG_NET_POLL_CONTROLLER
1004 static inline int slave_enable_netpoll(struct slave *slave)
1005 {
1006 	struct netpoll *np;
1007 	int err = 0;
1008 
1009 	np = kzalloc(sizeof(*np), GFP_ATOMIC);
1010 	err = -ENOMEM;
1011 	if (!np)
1012 		goto out;
1013 
1014 	err = __netpoll_setup(np, slave->dev, GFP_ATOMIC);
1015 	if (err) {
1016 		kfree(np);
1017 		goto out;
1018 	}
1019 	slave->np = np;
1020 out:
1021 	return err;
1022 }
1023 static inline void slave_disable_netpoll(struct slave *slave)
1024 {
1025 	struct netpoll *np = slave->np;
1026 
1027 	if (!np)
1028 		return;
1029 
1030 	slave->np = NULL;
1031 	__netpoll_free_async(np);
1032 }
1033 static inline bool slave_dev_support_netpoll(struct net_device *slave_dev)
1034 {
1035 	if (slave_dev->priv_flags & IFF_DISABLE_NETPOLL)
1036 		return false;
1037 	if (!slave_dev->netdev_ops->ndo_poll_controller)
1038 		return false;
1039 	return true;
1040 }
1041 
1042 static void bond_poll_controller(struct net_device *bond_dev)
1043 {
1044 }
1045 
1046 static void bond_netpoll_cleanup(struct net_device *bond_dev)
1047 {
1048 	struct bonding *bond = netdev_priv(bond_dev);
1049 	struct slave *slave;
1050 
1051 	bond_for_each_slave(bond, slave)
1052 		if (IS_UP(slave->dev))
1053 			slave_disable_netpoll(slave);
1054 }
1055 
1056 static int bond_netpoll_setup(struct net_device *dev, struct netpoll_info *ni, gfp_t gfp)
1057 {
1058 	struct bonding *bond = netdev_priv(dev);
1059 	struct slave *slave;
1060 	int err = 0;
1061 
1062 	bond_for_each_slave(bond, slave) {
1063 		err = slave_enable_netpoll(slave);
1064 		if (err) {
1065 			bond_netpoll_cleanup(dev);
1066 			break;
1067 		}
1068 	}
1069 	return err;
1070 }
1071 #else
1072 static inline int slave_enable_netpoll(struct slave *slave)
1073 {
1074 	return 0;
1075 }
1076 static inline void slave_disable_netpoll(struct slave *slave)
1077 {
1078 }
1079 static void bond_netpoll_cleanup(struct net_device *bond_dev)
1080 {
1081 }
1082 #endif
1083 
1084 /*---------------------------------- IOCTL ----------------------------------*/
1085 
1086 static netdev_features_t bond_fix_features(struct net_device *dev,
1087 					   netdev_features_t features)
1088 {
1089 	struct bonding *bond = netdev_priv(dev);
1090 	netdev_features_t mask;
1091 	struct slave *slave;
1092 
1093 	if (list_empty(&bond->slave_list)) {
1094 		/* Disable adding VLANs to empty bond. But why? --mq */
1095 		features |= NETIF_F_VLAN_CHALLENGED;
1096 		return features;
1097 	}
1098 
1099 	mask = features;
1100 	features &= ~NETIF_F_ONE_FOR_ALL;
1101 	features |= NETIF_F_ALL_FOR_ALL;
1102 
1103 	bond_for_each_slave(bond, slave) {
1104 		features = netdev_increment_features(features,
1105 						     slave->dev->features,
1106 						     mask);
1107 	}
1108 	features = netdev_add_tso_features(features, mask);
1109 
1110 	return features;
1111 }
1112 
1113 #define BOND_VLAN_FEATURES	(NETIF_F_ALL_CSUM | NETIF_F_SG | \
1114 				 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \
1115 				 NETIF_F_HIGHDMA | NETIF_F_LRO)
1116 
1117 static void bond_compute_features(struct bonding *bond)
1118 {
1119 	unsigned int flags, dst_release_flag = IFF_XMIT_DST_RELEASE;
1120 	netdev_features_t vlan_features = BOND_VLAN_FEATURES;
1121 	unsigned short max_hard_header_len = ETH_HLEN;
1122 	unsigned int gso_max_size = GSO_MAX_SIZE;
1123 	struct net_device *bond_dev = bond->dev;
1124 	u16 gso_max_segs = GSO_MAX_SEGS;
1125 	struct slave *slave;
1126 
1127 	if (list_empty(&bond->slave_list))
1128 		goto done;
1129 
1130 	bond_for_each_slave(bond, slave) {
1131 		vlan_features = netdev_increment_features(vlan_features,
1132 			slave->dev->vlan_features, BOND_VLAN_FEATURES);
1133 
1134 		dst_release_flag &= slave->dev->priv_flags;
1135 		if (slave->dev->hard_header_len > max_hard_header_len)
1136 			max_hard_header_len = slave->dev->hard_header_len;
1137 
1138 		gso_max_size = min(gso_max_size, slave->dev->gso_max_size);
1139 		gso_max_segs = min(gso_max_segs, slave->dev->gso_max_segs);
1140 	}
1141 
1142 done:
1143 	bond_dev->vlan_features = vlan_features;
1144 	bond_dev->hard_header_len = max_hard_header_len;
1145 	bond_dev->gso_max_segs = gso_max_segs;
1146 	netif_set_gso_max_size(bond_dev, gso_max_size);
1147 
1148 	flags = bond_dev->priv_flags & ~IFF_XMIT_DST_RELEASE;
1149 	bond_dev->priv_flags = flags | dst_release_flag;
1150 
1151 	netdev_change_features(bond_dev);
1152 }
1153 
1154 static void bond_setup_by_slave(struct net_device *bond_dev,
1155 				struct net_device *slave_dev)
1156 {
1157 	bond_dev->header_ops	    = slave_dev->header_ops;
1158 
1159 	bond_dev->type		    = slave_dev->type;
1160 	bond_dev->hard_header_len   = slave_dev->hard_header_len;
1161 	bond_dev->addr_len	    = slave_dev->addr_len;
1162 
1163 	memcpy(bond_dev->broadcast, slave_dev->broadcast,
1164 		slave_dev->addr_len);
1165 }
1166 
1167 /* On bonding slaves other than the currently active slave, suppress
1168  * duplicates except for alb non-mcast/bcast.
1169  */
1170 static bool bond_should_deliver_exact_match(struct sk_buff *skb,
1171 					    struct slave *slave,
1172 					    struct bonding *bond)
1173 {
1174 	if (bond_is_slave_inactive(slave)) {
1175 		if (bond->params.mode == BOND_MODE_ALB &&
1176 		    skb->pkt_type != PACKET_BROADCAST &&
1177 		    skb->pkt_type != PACKET_MULTICAST)
1178 			return false;
1179 		return true;
1180 	}
1181 	return false;
1182 }
1183 
1184 static rx_handler_result_t bond_handle_frame(struct sk_buff **pskb)
1185 {
1186 	struct sk_buff *skb = *pskb;
1187 	struct slave *slave;
1188 	struct bonding *bond;
1189 	int (*recv_probe)(const struct sk_buff *, struct bonding *,
1190 			  struct slave *);
1191 	int ret = RX_HANDLER_ANOTHER;
1192 
1193 	skb = skb_share_check(skb, GFP_ATOMIC);
1194 	if (unlikely(!skb))
1195 		return RX_HANDLER_CONSUMED;
1196 
1197 	*pskb = skb;
1198 
1199 	slave = bond_slave_get_rcu(skb->dev);
1200 	bond = slave->bond;
1201 
1202 	if (bond->params.arp_interval)
1203 		slave->dev->last_rx = jiffies;
1204 
1205 	recv_probe = ACCESS_ONCE(bond->recv_probe);
1206 	if (recv_probe) {
1207 		ret = recv_probe(skb, bond, slave);
1208 		if (ret == RX_HANDLER_CONSUMED) {
1209 			consume_skb(skb);
1210 			return ret;
1211 		}
1212 	}
1213 
1214 	if (bond_should_deliver_exact_match(skb, slave, bond)) {
1215 		return RX_HANDLER_EXACT;
1216 	}
1217 
1218 	skb->dev = bond->dev;
1219 
1220 	if (bond->params.mode == BOND_MODE_ALB &&
1221 	    bond->dev->priv_flags & IFF_BRIDGE_PORT &&
1222 	    skb->pkt_type == PACKET_HOST) {
1223 
1224 		if (unlikely(skb_cow_head(skb,
1225 					  skb->data - skb_mac_header(skb)))) {
1226 			kfree_skb(skb);
1227 			return RX_HANDLER_CONSUMED;
1228 		}
1229 		memcpy(eth_hdr(skb)->h_dest, bond->dev->dev_addr, ETH_ALEN);
1230 	}
1231 
1232 	return ret;
1233 }
1234 
1235 static int bond_master_upper_dev_link(struct net_device *bond_dev,
1236 				      struct net_device *slave_dev)
1237 {
1238 	int err;
1239 
1240 	err = netdev_master_upper_dev_link(slave_dev, bond_dev);
1241 	if (err)
1242 		return err;
1243 	slave_dev->flags |= IFF_SLAVE;
1244 	rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE);
1245 	return 0;
1246 }
1247 
1248 static void bond_upper_dev_unlink(struct net_device *bond_dev,
1249 				  struct net_device *slave_dev)
1250 {
1251 	netdev_upper_dev_unlink(slave_dev, bond_dev);
1252 	slave_dev->flags &= ~IFF_SLAVE;
1253 	rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE);
1254 }
1255 
1256 /* enslave device <slave> to bond device <master> */
1257 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1258 {
1259 	struct bonding *bond = netdev_priv(bond_dev);
1260 	const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
1261 	struct slave *new_slave = NULL;
1262 	struct sockaddr addr;
1263 	int link_reporting;
1264 	int res = 0, i;
1265 
1266 	if (!bond->params.use_carrier &&
1267 	    slave_dev->ethtool_ops->get_link == NULL &&
1268 	    slave_ops->ndo_do_ioctl == NULL) {
1269 		pr_warning("%s: Warning: no link monitoring support for %s\n",
1270 			   bond_dev->name, slave_dev->name);
1271 	}
1272 
1273 	/* already enslaved */
1274 	if (slave_dev->flags & IFF_SLAVE) {
1275 		pr_debug("Error, Device was already enslaved\n");
1276 		return -EBUSY;
1277 	}
1278 
1279 	/* vlan challenged mutual exclusion */
1280 	/* no need to lock since we're protected by rtnl_lock */
1281 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1282 		pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1283 		if (vlan_uses_dev(bond_dev)) {
1284 			pr_err("%s: Error: cannot enslave VLAN challenged slave %s on VLAN enabled bond %s\n",
1285 			       bond_dev->name, slave_dev->name, bond_dev->name);
1286 			return -EPERM;
1287 		} else {
1288 			pr_warning("%s: Warning: enslaved VLAN challenged slave %s. Adding VLANs will be blocked as long as %s is part of bond %s\n",
1289 				   bond_dev->name, slave_dev->name,
1290 				   slave_dev->name, bond_dev->name);
1291 		}
1292 	} else {
1293 		pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1294 	}
1295 
1296 	/*
1297 	 * Old ifenslave binaries are no longer supported.  These can
1298 	 * be identified with moderate accuracy by the state of the slave:
1299 	 * the current ifenslave will set the interface down prior to
1300 	 * enslaving it; the old ifenslave will not.
1301 	 */
1302 	if ((slave_dev->flags & IFF_UP)) {
1303 		pr_err("%s is up. This may be due to an out of date ifenslave.\n",
1304 		       slave_dev->name);
1305 		res = -EPERM;
1306 		goto err_undo_flags;
1307 	}
1308 
1309 	/* set bonding device ether type by slave - bonding netdevices are
1310 	 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1311 	 * there is a need to override some of the type dependent attribs/funcs.
1312 	 *
1313 	 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1314 	 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1315 	 */
1316 	if (list_empty(&bond->slave_list)) {
1317 		if (bond_dev->type != slave_dev->type) {
1318 			pr_debug("%s: change device type from %d to %d\n",
1319 				 bond_dev->name,
1320 				 bond_dev->type, slave_dev->type);
1321 
1322 			res = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE,
1323 						       bond_dev);
1324 			res = notifier_to_errno(res);
1325 			if (res) {
1326 				pr_err("%s: refused to change device type\n",
1327 				       bond_dev->name);
1328 				res = -EBUSY;
1329 				goto err_undo_flags;
1330 			}
1331 
1332 			/* Flush unicast and multicast addresses */
1333 			dev_uc_flush(bond_dev);
1334 			dev_mc_flush(bond_dev);
1335 
1336 			if (slave_dev->type != ARPHRD_ETHER)
1337 				bond_setup_by_slave(bond_dev, slave_dev);
1338 			else {
1339 				ether_setup(bond_dev);
1340 				bond_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1341 			}
1342 
1343 			call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE,
1344 						 bond_dev);
1345 		}
1346 	} else if (bond_dev->type != slave_dev->type) {
1347 		pr_err("%s ether type (%d) is different from other slaves (%d), can not enslave it.\n",
1348 		       slave_dev->name,
1349 		       slave_dev->type, bond_dev->type);
1350 		res = -EINVAL;
1351 		goto err_undo_flags;
1352 	}
1353 
1354 	if (slave_ops->ndo_set_mac_address == NULL) {
1355 		if (list_empty(&bond->slave_list)) {
1356 			pr_warning("%s: Warning: The first slave device specified does not support setting the MAC address. Setting fail_over_mac to active.",
1357 				   bond_dev->name);
1358 			bond->params.fail_over_mac = BOND_FOM_ACTIVE;
1359 		} else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1360 			pr_err("%s: Error: The slave device specified does not support setting the MAC address, but fail_over_mac is not set to active.\n",
1361 			       bond_dev->name);
1362 			res = -EOPNOTSUPP;
1363 			goto err_undo_flags;
1364 		}
1365 	}
1366 
1367 	call_netdevice_notifiers(NETDEV_JOIN, slave_dev);
1368 
1369 	/* If this is the first slave, then we need to set the master's hardware
1370 	 * address to be the same as the slave's. */
1371 	if (list_empty(&bond->slave_list) &&
1372 	    bond->dev->addr_assign_type == NET_ADDR_RANDOM)
1373 		bond_set_dev_addr(bond->dev, slave_dev);
1374 
1375 	new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1376 	if (!new_slave) {
1377 		res = -ENOMEM;
1378 		goto err_undo_flags;
1379 	}
1380 	INIT_LIST_HEAD(&new_slave->list);
1381 	/*
1382 	 * Set the new_slave's queue_id to be zero.  Queue ID mapping
1383 	 * is set via sysfs or module option if desired.
1384 	 */
1385 	new_slave->queue_id = 0;
1386 
1387 	/* Save slave's original mtu and then set it to match the bond */
1388 	new_slave->original_mtu = slave_dev->mtu;
1389 	res = dev_set_mtu(slave_dev, bond->dev->mtu);
1390 	if (res) {
1391 		pr_debug("Error %d calling dev_set_mtu\n", res);
1392 		goto err_free;
1393 	}
1394 
1395 	/*
1396 	 * Save slave's original ("permanent") mac address for modes
1397 	 * that need it, and for restoring it upon release, and then
1398 	 * set it to the master's address
1399 	 */
1400 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1401 
1402 	if (!bond->params.fail_over_mac) {
1403 		/*
1404 		 * Set slave to master's mac address.  The application already
1405 		 * set the master's mac address to that of the first slave
1406 		 */
1407 		memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1408 		addr.sa_family = slave_dev->type;
1409 		res = dev_set_mac_address(slave_dev, &addr);
1410 		if (res) {
1411 			pr_debug("Error %d calling set_mac_address\n", res);
1412 			goto err_restore_mtu;
1413 		}
1414 	}
1415 
1416 	res = bond_master_upper_dev_link(bond_dev, slave_dev);
1417 	if (res) {
1418 		pr_debug("Error %d calling bond_master_upper_dev_link\n", res);
1419 		goto err_restore_mac;
1420 	}
1421 
1422 	/* open the slave since the application closed it */
1423 	res = dev_open(slave_dev);
1424 	if (res) {
1425 		pr_debug("Opening slave %s failed\n", slave_dev->name);
1426 		goto err_unset_master;
1427 	}
1428 
1429 	new_slave->bond = bond;
1430 	new_slave->dev = slave_dev;
1431 	slave_dev->priv_flags |= IFF_BONDING;
1432 
1433 	if (bond_is_lb(bond)) {
1434 		/* bond_alb_init_slave() must be called before all other stages since
1435 		 * it might fail and we do not want to have to undo everything
1436 		 */
1437 		res = bond_alb_init_slave(bond, new_slave);
1438 		if (res)
1439 			goto err_close;
1440 	}
1441 
1442 	/* If the mode USES_PRIMARY, then the following is handled by
1443 	 * bond_change_active_slave().
1444 	 */
1445 	if (!USES_PRIMARY(bond->params.mode)) {
1446 		/* set promiscuity level to new slave */
1447 		if (bond_dev->flags & IFF_PROMISC) {
1448 			res = dev_set_promiscuity(slave_dev, 1);
1449 			if (res)
1450 				goto err_close;
1451 		}
1452 
1453 		/* set allmulti level to new slave */
1454 		if (bond_dev->flags & IFF_ALLMULTI) {
1455 			res = dev_set_allmulti(slave_dev, 1);
1456 			if (res)
1457 				goto err_close;
1458 		}
1459 
1460 		netif_addr_lock_bh(bond_dev);
1461 
1462 		dev_mc_sync_multiple(slave_dev, bond_dev);
1463 		dev_uc_sync_multiple(slave_dev, bond_dev);
1464 
1465 		netif_addr_unlock_bh(bond_dev);
1466 	}
1467 
1468 	if (bond->params.mode == BOND_MODE_8023AD) {
1469 		/* add lacpdu mc addr to mc list */
1470 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1471 
1472 		dev_mc_add(slave_dev, lacpdu_multicast);
1473 	}
1474 
1475 	res = vlan_vids_add_by_dev(slave_dev, bond_dev);
1476 	if (res) {
1477 		pr_err("%s: Error: Couldn't add bond vlan ids to %s\n",
1478 		       bond_dev->name, slave_dev->name);
1479 		goto err_close;
1480 	}
1481 
1482 	write_lock_bh(&bond->lock);
1483 
1484 	bond_attach_slave(bond, new_slave);
1485 
1486 	new_slave->delay = 0;
1487 	new_slave->link_failure_count = 0;
1488 
1489 	write_unlock_bh(&bond->lock);
1490 
1491 	bond_compute_features(bond);
1492 
1493 	bond_update_speed_duplex(new_slave);
1494 
1495 	read_lock(&bond->lock);
1496 
1497 	new_slave->last_arp_rx = jiffies -
1498 		(msecs_to_jiffies(bond->params.arp_interval) + 1);
1499 	for (i = 0; i < BOND_MAX_ARP_TARGETS; i++)
1500 		new_slave->target_last_arp_rx[i] = new_slave->last_arp_rx;
1501 
1502 	if (bond->params.miimon && !bond->params.use_carrier) {
1503 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1504 
1505 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1506 			/*
1507 			 * miimon is set but a bonded network driver
1508 			 * does not support ETHTOOL/MII and
1509 			 * arp_interval is not set.  Note: if
1510 			 * use_carrier is enabled, we will never go
1511 			 * here (because netif_carrier is always
1512 			 * supported); thus, we don't need to change
1513 			 * the messages for netif_carrier.
1514 			 */
1515 			pr_warning("%s: Warning: MII and ETHTOOL support not available for interface %s, and arp_interval/arp_ip_target module parameters not specified, thus bonding will not detect link failures! see bonding.txt for details.\n",
1516 			       bond_dev->name, slave_dev->name);
1517 		} else if (link_reporting == -1) {
1518 			/* unable get link status using mii/ethtool */
1519 			pr_warning("%s: Warning: can't get link status from interface %s; the network driver associated with this interface does not support MII or ETHTOOL link status reporting, thus miimon has no effect on this interface.\n",
1520 				   bond_dev->name, slave_dev->name);
1521 		}
1522 	}
1523 
1524 	/* check for initial state */
1525 	if (bond->params.miimon) {
1526 		if (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS) {
1527 			if (bond->params.updelay) {
1528 				new_slave->link = BOND_LINK_BACK;
1529 				new_slave->delay = bond->params.updelay;
1530 			} else {
1531 				new_slave->link = BOND_LINK_UP;
1532 			}
1533 		} else {
1534 			new_slave->link = BOND_LINK_DOWN;
1535 		}
1536 	} else if (bond->params.arp_interval) {
1537 		new_slave->link = (netif_carrier_ok(slave_dev) ?
1538 			BOND_LINK_UP : BOND_LINK_DOWN);
1539 	} else {
1540 		new_slave->link = BOND_LINK_UP;
1541 	}
1542 
1543 	if (new_slave->link != BOND_LINK_DOWN)
1544 		new_slave->jiffies = jiffies;
1545 	pr_debug("Initial state of slave_dev is BOND_LINK_%s\n",
1546 		new_slave->link == BOND_LINK_DOWN ? "DOWN" :
1547 			(new_slave->link == BOND_LINK_UP ? "UP" : "BACK"));
1548 
1549 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1550 		/* if there is a primary slave, remember it */
1551 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1552 			bond->primary_slave = new_slave;
1553 			bond->force_primary = true;
1554 		}
1555 	}
1556 
1557 	write_lock_bh(&bond->curr_slave_lock);
1558 
1559 	switch (bond->params.mode) {
1560 	case BOND_MODE_ACTIVEBACKUP:
1561 		bond_set_slave_inactive_flags(new_slave);
1562 		bond_select_active_slave(bond);
1563 		break;
1564 	case BOND_MODE_8023AD:
1565 		/* in 802.3ad mode, the internal mechanism
1566 		 * will activate the slaves in the selected
1567 		 * aggregator
1568 		 */
1569 		bond_set_slave_inactive_flags(new_slave);
1570 		/* if this is the first slave */
1571 		if (bond_first_slave(bond) == new_slave) {
1572 			SLAVE_AD_INFO(new_slave).id = 1;
1573 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1574 			 * can be called only after the mac address of the bond is set
1575 			 */
1576 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL);
1577 		} else {
1578 			struct slave *prev_slave;
1579 
1580 			prev_slave = bond_prev_slave(bond, new_slave);
1581 			SLAVE_AD_INFO(new_slave).id =
1582 				SLAVE_AD_INFO(prev_slave).id + 1;
1583 		}
1584 
1585 		bond_3ad_bind_slave(new_slave);
1586 		break;
1587 	case BOND_MODE_TLB:
1588 	case BOND_MODE_ALB:
1589 		bond_set_active_slave(new_slave);
1590 		bond_set_slave_inactive_flags(new_slave);
1591 		bond_select_active_slave(bond);
1592 		break;
1593 	default:
1594 		pr_debug("This slave is always active in trunk mode\n");
1595 
1596 		/* always active in trunk mode */
1597 		bond_set_active_slave(new_slave);
1598 
1599 		/* In trunking mode there is little meaning to curr_active_slave
1600 		 * anyway (it holds no special properties of the bond device),
1601 		 * so we can change it without calling change_active_interface()
1602 		 */
1603 		if (!bond->curr_active_slave && new_slave->link == BOND_LINK_UP)
1604 			rcu_assign_pointer(bond->curr_active_slave, new_slave);
1605 
1606 		break;
1607 	} /* switch(bond_mode) */
1608 
1609 	write_unlock_bh(&bond->curr_slave_lock);
1610 
1611 	bond_set_carrier(bond);
1612 
1613 #ifdef CONFIG_NET_POLL_CONTROLLER
1614 	slave_dev->npinfo = bond->dev->npinfo;
1615 	if (slave_dev->npinfo) {
1616 		if (slave_enable_netpoll(new_slave)) {
1617 			read_unlock(&bond->lock);
1618 			pr_info("Error, %s: master_dev is using netpoll, "
1619 				 "but new slave device does not support netpoll.\n",
1620 				 bond_dev->name);
1621 			res = -EBUSY;
1622 			goto err_detach;
1623 		}
1624 	}
1625 #endif
1626 
1627 	read_unlock(&bond->lock);
1628 
1629 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1630 	if (res)
1631 		goto err_detach;
1632 
1633 	res = netdev_rx_handler_register(slave_dev, bond_handle_frame,
1634 					 new_slave);
1635 	if (res) {
1636 		pr_debug("Error %d calling netdev_rx_handler_register\n", res);
1637 		goto err_dest_symlinks;
1638 	}
1639 
1640 	pr_info("%s: enslaving %s as a%s interface with a%s link.\n",
1641 		bond_dev->name, slave_dev->name,
1642 		bond_is_active_slave(new_slave) ? "n active" : " backup",
1643 		new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1644 
1645 	/* enslave is successful */
1646 	return 0;
1647 
1648 /* Undo stages on error */
1649 err_dest_symlinks:
1650 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1651 
1652 err_detach:
1653 	if (!USES_PRIMARY(bond->params.mode))
1654 		bond_hw_addr_flush(bond_dev, slave_dev);
1655 
1656 	vlan_vids_del_by_dev(slave_dev, bond_dev);
1657 	write_lock_bh(&bond->lock);
1658 	bond_detach_slave(bond, new_slave);
1659 	if (bond->primary_slave == new_slave)
1660 		bond->primary_slave = NULL;
1661 	if (bond->curr_active_slave == new_slave) {
1662 		bond_change_active_slave(bond, NULL);
1663 		write_unlock_bh(&bond->lock);
1664 		read_lock(&bond->lock);
1665 		write_lock_bh(&bond->curr_slave_lock);
1666 		bond_select_active_slave(bond);
1667 		write_unlock_bh(&bond->curr_slave_lock);
1668 		read_unlock(&bond->lock);
1669 	} else {
1670 		write_unlock_bh(&bond->lock);
1671 	}
1672 	slave_disable_netpoll(new_slave);
1673 
1674 err_close:
1675 	slave_dev->priv_flags &= ~IFF_BONDING;
1676 	dev_close(slave_dev);
1677 
1678 err_unset_master:
1679 	bond_upper_dev_unlink(bond_dev, slave_dev);
1680 
1681 err_restore_mac:
1682 	if (!bond->params.fail_over_mac) {
1683 		/* XXX TODO - fom follow mode needs to change master's
1684 		 * MAC if this slave's MAC is in use by the bond, or at
1685 		 * least print a warning.
1686 		 */
1687 		memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1688 		addr.sa_family = slave_dev->type;
1689 		dev_set_mac_address(slave_dev, &addr);
1690 	}
1691 
1692 err_restore_mtu:
1693 	dev_set_mtu(slave_dev, new_slave->original_mtu);
1694 
1695 err_free:
1696 	kfree(new_slave);
1697 
1698 err_undo_flags:
1699 	bond_compute_features(bond);
1700 	/* Enslave of first slave has failed and we need to fix master's mac */
1701 	if (list_empty(&bond->slave_list) &&
1702 	    ether_addr_equal(bond_dev->dev_addr, slave_dev->dev_addr))
1703 		eth_hw_addr_random(bond_dev);
1704 
1705 	return res;
1706 }
1707 
1708 /*
1709  * Try to release the slave device <slave> from the bond device <master>
1710  * It is legal to access curr_active_slave without a lock because all the function
1711  * is write-locked. If "all" is true it means that the function is being called
1712  * while destroying a bond interface and all slaves are being released.
1713  *
1714  * The rules for slave state should be:
1715  *   for Active/Backup:
1716  *     Active stays on all backups go down
1717  *   for Bonded connections:
1718  *     The first up interface should be left on and all others downed.
1719  */
1720 static int __bond_release_one(struct net_device *bond_dev,
1721 			      struct net_device *slave_dev,
1722 			      bool all)
1723 {
1724 	struct bonding *bond = netdev_priv(bond_dev);
1725 	struct slave *slave, *oldcurrent;
1726 	struct sockaddr addr;
1727 	int old_flags = bond_dev->flags;
1728 	netdev_features_t old_features = bond_dev->features;
1729 
1730 	/* slave is not a slave or master is not master of this slave */
1731 	if (!(slave_dev->flags & IFF_SLAVE) ||
1732 	    !netdev_has_upper_dev(slave_dev, bond_dev)) {
1733 		pr_err("%s: Error: cannot release %s.\n",
1734 		       bond_dev->name, slave_dev->name);
1735 		return -EINVAL;
1736 	}
1737 
1738 	block_netpoll_tx();
1739 	write_lock_bh(&bond->lock);
1740 
1741 	slave = bond_get_slave_by_dev(bond, slave_dev);
1742 	if (!slave) {
1743 		/* not a slave of this bond */
1744 		pr_info("%s: %s not enslaved\n",
1745 			bond_dev->name, slave_dev->name);
1746 		write_unlock_bh(&bond->lock);
1747 		unblock_netpoll_tx();
1748 		return -EINVAL;
1749 	}
1750 
1751 	write_unlock_bh(&bond->lock);
1752 	/* unregister rx_handler early so bond_handle_frame wouldn't be called
1753 	 * for this slave anymore.
1754 	 */
1755 	netdev_rx_handler_unregister(slave_dev);
1756 	write_lock_bh(&bond->lock);
1757 
1758 	/* Inform AD package of unbinding of slave. */
1759 	if (bond->params.mode == BOND_MODE_8023AD) {
1760 		/* must be called before the slave is
1761 		 * detached from the list
1762 		 */
1763 		bond_3ad_unbind_slave(slave);
1764 	}
1765 
1766 	pr_info("%s: releasing %s interface %s\n",
1767 		bond_dev->name,
1768 		bond_is_active_slave(slave) ? "active" : "backup",
1769 		slave_dev->name);
1770 
1771 	oldcurrent = bond->curr_active_slave;
1772 
1773 	bond->current_arp_slave = NULL;
1774 
1775 	/* release the slave from its bond */
1776 	bond_detach_slave(bond, slave);
1777 
1778 	if (!all && !bond->params.fail_over_mac) {
1779 		if (ether_addr_equal(bond_dev->dev_addr, slave->perm_hwaddr) &&
1780 		    !list_empty(&bond->slave_list))
1781 			pr_warn("%s: Warning: the permanent HWaddr of %s - %pM - is still in use by %s. Set the HWaddr of %s to a different address to avoid conflicts.\n",
1782 				   bond_dev->name, slave_dev->name,
1783 				   slave->perm_hwaddr,
1784 				   bond_dev->name, slave_dev->name);
1785 	}
1786 
1787 	if (bond->primary_slave == slave)
1788 		bond->primary_slave = NULL;
1789 
1790 	if (oldcurrent == slave)
1791 		bond_change_active_slave(bond, NULL);
1792 
1793 	if (bond_is_lb(bond)) {
1794 		/* Must be called only after the slave has been
1795 		 * detached from the list and the curr_active_slave
1796 		 * has been cleared (if our_slave == old_current),
1797 		 * but before a new active slave is selected.
1798 		 */
1799 		write_unlock_bh(&bond->lock);
1800 		bond_alb_deinit_slave(bond, slave);
1801 		write_lock_bh(&bond->lock);
1802 	}
1803 
1804 	if (all) {
1805 		rcu_assign_pointer(bond->curr_active_slave, NULL);
1806 	} else if (oldcurrent == slave) {
1807 		/*
1808 		 * Note that we hold RTNL over this sequence, so there
1809 		 * is no concern that another slave add/remove event
1810 		 * will interfere.
1811 		 */
1812 		write_unlock_bh(&bond->lock);
1813 		read_lock(&bond->lock);
1814 		write_lock_bh(&bond->curr_slave_lock);
1815 
1816 		bond_select_active_slave(bond);
1817 
1818 		write_unlock_bh(&bond->curr_slave_lock);
1819 		read_unlock(&bond->lock);
1820 		write_lock_bh(&bond->lock);
1821 	}
1822 
1823 	if (list_empty(&bond->slave_list)) {
1824 		bond_set_carrier(bond);
1825 		eth_hw_addr_random(bond_dev);
1826 
1827 		if (vlan_uses_dev(bond_dev)) {
1828 			pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n",
1829 				   bond_dev->name, bond_dev->name);
1830 			pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n",
1831 				   bond_dev->name);
1832 		}
1833 	}
1834 
1835 	write_unlock_bh(&bond->lock);
1836 	unblock_netpoll_tx();
1837 	synchronize_rcu();
1838 
1839 	if (list_empty(&bond->slave_list)) {
1840 		call_netdevice_notifiers(NETDEV_CHANGEADDR, bond->dev);
1841 		call_netdevice_notifiers(NETDEV_RELEASE, bond->dev);
1842 	}
1843 
1844 	bond_compute_features(bond);
1845 	if (!(bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1846 	    (old_features & NETIF_F_VLAN_CHALLENGED))
1847 		pr_info("%s: last VLAN challenged slave %s left bond %s. VLAN blocking is removed\n",
1848 			bond_dev->name, slave_dev->name, bond_dev->name);
1849 
1850 	/* must do this from outside any spinlocks */
1851 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1852 
1853 	vlan_vids_del_by_dev(slave_dev, bond_dev);
1854 
1855 	/* If the mode USES_PRIMARY, then this cases was handled above by
1856 	 * bond_change_active_slave(..., NULL)
1857 	 */
1858 	if (!USES_PRIMARY(bond->params.mode)) {
1859 		/* unset promiscuity level from slave
1860 		 * NOTE: The NETDEV_CHANGEADDR call above may change the value
1861 		 * of the IFF_PROMISC flag in the bond_dev, but we need the
1862 		 * value of that flag before that change, as that was the value
1863 		 * when this slave was attached, so we cache at the start of the
1864 		 * function and use it here. Same goes for ALLMULTI below
1865 		 */
1866 		if (old_flags & IFF_PROMISC)
1867 			dev_set_promiscuity(slave_dev, -1);
1868 
1869 		/* unset allmulti level from slave */
1870 		if (old_flags & IFF_ALLMULTI)
1871 			dev_set_allmulti(slave_dev, -1);
1872 
1873 		bond_hw_addr_flush(bond_dev, slave_dev);
1874 	}
1875 
1876 	bond_upper_dev_unlink(bond_dev, slave_dev);
1877 
1878 	slave_disable_netpoll(slave);
1879 
1880 	/* close slave before restoring its mac address */
1881 	dev_close(slave_dev);
1882 
1883 	if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1884 		/* restore original ("permanent") mac address */
1885 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1886 		addr.sa_family = slave_dev->type;
1887 		dev_set_mac_address(slave_dev, &addr);
1888 	}
1889 
1890 	dev_set_mtu(slave_dev, slave->original_mtu);
1891 
1892 	slave_dev->priv_flags &= ~IFF_BONDING;
1893 
1894 	kfree(slave);
1895 
1896 	return 0;  /* deletion OK */
1897 }
1898 
1899 /* A wrapper used because of ndo_del_link */
1900 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1901 {
1902 	return __bond_release_one(bond_dev, slave_dev, false);
1903 }
1904 
1905 /*
1906 * First release a slave and then destroy the bond if no more slaves are left.
1907 * Must be under rtnl_lock when this function is called.
1908 */
1909 static int  bond_release_and_destroy(struct net_device *bond_dev,
1910 				     struct net_device *slave_dev)
1911 {
1912 	struct bonding *bond = netdev_priv(bond_dev);
1913 	int ret;
1914 
1915 	ret = bond_release(bond_dev, slave_dev);
1916 	if (ret == 0 && list_empty(&bond->slave_list)) {
1917 		bond_dev->priv_flags |= IFF_DISABLE_NETPOLL;
1918 		pr_info("%s: destroying bond %s.\n",
1919 			bond_dev->name, bond_dev->name);
1920 		unregister_netdevice(bond_dev);
1921 	}
1922 	return ret;
1923 }
1924 
1925 /*
1926  * This function changes the active slave to slave <slave_dev>.
1927  * It returns -EINVAL in the following cases.
1928  *  - <slave_dev> is not found in the list.
1929  *  - There is not active slave now.
1930  *  - <slave_dev> is already active.
1931  *  - The link state of <slave_dev> is not BOND_LINK_UP.
1932  *  - <slave_dev> is not running.
1933  * In these cases, this function does nothing.
1934  * In the other cases, current_slave pointer is changed and 0 is returned.
1935  */
1936 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
1937 {
1938 	struct bonding *bond = netdev_priv(bond_dev);
1939 	struct slave *old_active = NULL;
1940 	struct slave *new_active = NULL;
1941 	int res = 0;
1942 
1943 	if (!USES_PRIMARY(bond->params.mode))
1944 		return -EINVAL;
1945 
1946 	/* Verify that bond_dev is indeed the master of slave_dev */
1947 	if (!(slave_dev->flags & IFF_SLAVE) ||
1948 	    !netdev_has_upper_dev(slave_dev, bond_dev))
1949 		return -EINVAL;
1950 
1951 	read_lock(&bond->lock);
1952 
1953 	old_active = bond->curr_active_slave;
1954 	new_active = bond_get_slave_by_dev(bond, slave_dev);
1955 	/*
1956 	 * Changing to the current active: do nothing; return success.
1957 	 */
1958 	if (new_active && new_active == old_active) {
1959 		read_unlock(&bond->lock);
1960 		return 0;
1961 	}
1962 
1963 	if (new_active &&
1964 	    old_active &&
1965 	    new_active->link == BOND_LINK_UP &&
1966 	    IS_UP(new_active->dev)) {
1967 		block_netpoll_tx();
1968 		write_lock_bh(&bond->curr_slave_lock);
1969 		bond_change_active_slave(bond, new_active);
1970 		write_unlock_bh(&bond->curr_slave_lock);
1971 		unblock_netpoll_tx();
1972 	} else
1973 		res = -EINVAL;
1974 
1975 	read_unlock(&bond->lock);
1976 
1977 	return res;
1978 }
1979 
1980 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
1981 {
1982 	struct bonding *bond = netdev_priv(bond_dev);
1983 
1984 	info->bond_mode = bond->params.mode;
1985 	info->miimon = bond->params.miimon;
1986 
1987 	read_lock(&bond->lock);
1988 	info->num_slaves = bond->slave_cnt;
1989 	read_unlock(&bond->lock);
1990 
1991 	return 0;
1992 }
1993 
1994 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
1995 {
1996 	struct bonding *bond = netdev_priv(bond_dev);
1997 	int i = 0, res = -ENODEV;
1998 	struct slave *slave;
1999 
2000 	read_lock(&bond->lock);
2001 	bond_for_each_slave(bond, slave) {
2002 		if (i++ == (int)info->slave_id) {
2003 			res = 0;
2004 			strcpy(info->slave_name, slave->dev->name);
2005 			info->link = slave->link;
2006 			info->state = bond_slave_state(slave);
2007 			info->link_failure_count = slave->link_failure_count;
2008 			break;
2009 		}
2010 	}
2011 	read_unlock(&bond->lock);
2012 
2013 	return res;
2014 }
2015 
2016 /*-------------------------------- Monitoring -------------------------------*/
2017 
2018 
2019 static int bond_miimon_inspect(struct bonding *bond)
2020 {
2021 	int link_state, commit = 0;
2022 	struct slave *slave;
2023 	bool ignore_updelay;
2024 
2025 	ignore_updelay = !bond->curr_active_slave ? true : false;
2026 
2027 	bond_for_each_slave(bond, slave) {
2028 		slave->new_link = BOND_LINK_NOCHANGE;
2029 
2030 		link_state = bond_check_dev_link(bond, slave->dev, 0);
2031 
2032 		switch (slave->link) {
2033 		case BOND_LINK_UP:
2034 			if (link_state)
2035 				continue;
2036 
2037 			slave->link = BOND_LINK_FAIL;
2038 			slave->delay = bond->params.downdelay;
2039 			if (slave->delay) {
2040 				pr_info("%s: link status down for %sinterface %s, disabling it in %d ms.\n",
2041 					bond->dev->name,
2042 					(bond->params.mode ==
2043 					 BOND_MODE_ACTIVEBACKUP) ?
2044 					(bond_is_active_slave(slave) ?
2045 					 "active " : "backup ") : "",
2046 					slave->dev->name,
2047 					bond->params.downdelay * bond->params.miimon);
2048 			}
2049 			/*FALLTHRU*/
2050 		case BOND_LINK_FAIL:
2051 			if (link_state) {
2052 				/*
2053 				 * recovered before downdelay expired
2054 				 */
2055 				slave->link = BOND_LINK_UP;
2056 				slave->jiffies = jiffies;
2057 				pr_info("%s: link status up again after %d ms for interface %s.\n",
2058 					bond->dev->name,
2059 					(bond->params.downdelay - slave->delay) *
2060 					bond->params.miimon,
2061 					slave->dev->name);
2062 				continue;
2063 			}
2064 
2065 			if (slave->delay <= 0) {
2066 				slave->new_link = BOND_LINK_DOWN;
2067 				commit++;
2068 				continue;
2069 			}
2070 
2071 			slave->delay--;
2072 			break;
2073 
2074 		case BOND_LINK_DOWN:
2075 			if (!link_state)
2076 				continue;
2077 
2078 			slave->link = BOND_LINK_BACK;
2079 			slave->delay = bond->params.updelay;
2080 
2081 			if (slave->delay) {
2082 				pr_info("%s: link status up for interface %s, enabling it in %d ms.\n",
2083 					bond->dev->name, slave->dev->name,
2084 					ignore_updelay ? 0 :
2085 					bond->params.updelay *
2086 					bond->params.miimon);
2087 			}
2088 			/*FALLTHRU*/
2089 		case BOND_LINK_BACK:
2090 			if (!link_state) {
2091 				slave->link = BOND_LINK_DOWN;
2092 				pr_info("%s: link status down again after %d ms for interface %s.\n",
2093 					bond->dev->name,
2094 					(bond->params.updelay - slave->delay) *
2095 					bond->params.miimon,
2096 					slave->dev->name);
2097 
2098 				continue;
2099 			}
2100 
2101 			if (ignore_updelay)
2102 				slave->delay = 0;
2103 
2104 			if (slave->delay <= 0) {
2105 				slave->new_link = BOND_LINK_UP;
2106 				commit++;
2107 				ignore_updelay = false;
2108 				continue;
2109 			}
2110 
2111 			slave->delay--;
2112 			break;
2113 		}
2114 	}
2115 
2116 	return commit;
2117 }
2118 
2119 static void bond_miimon_commit(struct bonding *bond)
2120 {
2121 	struct slave *slave;
2122 
2123 	bond_for_each_slave(bond, slave) {
2124 		switch (slave->new_link) {
2125 		case BOND_LINK_NOCHANGE:
2126 			continue;
2127 
2128 		case BOND_LINK_UP:
2129 			slave->link = BOND_LINK_UP;
2130 			slave->jiffies = jiffies;
2131 
2132 			if (bond->params.mode == BOND_MODE_8023AD) {
2133 				/* prevent it from being the active one */
2134 				bond_set_backup_slave(slave);
2135 			} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2136 				/* make it immediately active */
2137 				bond_set_active_slave(slave);
2138 			} else if (slave != bond->primary_slave) {
2139 				/* prevent it from being the active one */
2140 				bond_set_backup_slave(slave);
2141 			}
2142 
2143 			pr_info("%s: link status definitely up for interface %s, %u Mbps %s duplex.\n",
2144 				bond->dev->name, slave->dev->name,
2145 				slave->speed == SPEED_UNKNOWN ? 0 : slave->speed,
2146 				slave->duplex ? "full" : "half");
2147 
2148 			/* notify ad that the link status has changed */
2149 			if (bond->params.mode == BOND_MODE_8023AD)
2150 				bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2151 
2152 			if (bond_is_lb(bond))
2153 				bond_alb_handle_link_change(bond, slave,
2154 							    BOND_LINK_UP);
2155 
2156 			if (!bond->curr_active_slave ||
2157 			    (slave == bond->primary_slave))
2158 				goto do_failover;
2159 
2160 			continue;
2161 
2162 		case BOND_LINK_DOWN:
2163 			if (slave->link_failure_count < UINT_MAX)
2164 				slave->link_failure_count++;
2165 
2166 			slave->link = BOND_LINK_DOWN;
2167 
2168 			if (bond->params.mode == BOND_MODE_ACTIVEBACKUP ||
2169 			    bond->params.mode == BOND_MODE_8023AD)
2170 				bond_set_slave_inactive_flags(slave);
2171 
2172 			pr_info("%s: link status definitely down for interface %s, disabling it\n",
2173 				bond->dev->name, slave->dev->name);
2174 
2175 			if (bond->params.mode == BOND_MODE_8023AD)
2176 				bond_3ad_handle_link_change(slave,
2177 							    BOND_LINK_DOWN);
2178 
2179 			if (bond_is_lb(bond))
2180 				bond_alb_handle_link_change(bond, slave,
2181 							    BOND_LINK_DOWN);
2182 
2183 			if (slave == bond->curr_active_slave)
2184 				goto do_failover;
2185 
2186 			continue;
2187 
2188 		default:
2189 			pr_err("%s: invalid new link %d on slave %s\n",
2190 			       bond->dev->name, slave->new_link,
2191 			       slave->dev->name);
2192 			slave->new_link = BOND_LINK_NOCHANGE;
2193 
2194 			continue;
2195 		}
2196 
2197 do_failover:
2198 		ASSERT_RTNL();
2199 		block_netpoll_tx();
2200 		write_lock_bh(&bond->curr_slave_lock);
2201 		bond_select_active_slave(bond);
2202 		write_unlock_bh(&bond->curr_slave_lock);
2203 		unblock_netpoll_tx();
2204 	}
2205 
2206 	bond_set_carrier(bond);
2207 }
2208 
2209 /*
2210  * bond_mii_monitor
2211  *
2212  * Really a wrapper that splits the mii monitor into two phases: an
2213  * inspection, then (if inspection indicates something needs to be done)
2214  * an acquisition of appropriate locks followed by a commit phase to
2215  * implement whatever link state changes are indicated.
2216  */
2217 void bond_mii_monitor(struct work_struct *work)
2218 {
2219 	struct bonding *bond = container_of(work, struct bonding,
2220 					    mii_work.work);
2221 	bool should_notify_peers = false;
2222 	unsigned long delay;
2223 
2224 	read_lock(&bond->lock);
2225 
2226 	delay = msecs_to_jiffies(bond->params.miimon);
2227 
2228 	if (list_empty(&bond->slave_list))
2229 		goto re_arm;
2230 
2231 	should_notify_peers = bond_should_notify_peers(bond);
2232 
2233 	if (bond_miimon_inspect(bond)) {
2234 		read_unlock(&bond->lock);
2235 
2236 		/* Race avoidance with bond_close cancel of workqueue */
2237 		if (!rtnl_trylock()) {
2238 			read_lock(&bond->lock);
2239 			delay = 1;
2240 			should_notify_peers = false;
2241 			goto re_arm;
2242 		}
2243 
2244 		read_lock(&bond->lock);
2245 
2246 		bond_miimon_commit(bond);
2247 
2248 		read_unlock(&bond->lock);
2249 		rtnl_unlock();	/* might sleep, hold no other locks */
2250 		read_lock(&bond->lock);
2251 	}
2252 
2253 re_arm:
2254 	if (bond->params.miimon)
2255 		queue_delayed_work(bond->wq, &bond->mii_work, delay);
2256 
2257 	read_unlock(&bond->lock);
2258 
2259 	if (should_notify_peers) {
2260 		if (!rtnl_trylock())
2261 			return;
2262 		call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev);
2263 		rtnl_unlock();
2264 	}
2265 }
2266 
2267 static bool bond_has_this_ip(struct bonding *bond, __be32 ip)
2268 {
2269 	struct net_device *upper;
2270 	struct list_head *iter;
2271 	bool ret = false;
2272 
2273 	if (ip == bond_confirm_addr(bond->dev, 0, ip))
2274 		return true;
2275 
2276 	rcu_read_lock();
2277 	netdev_for_each_upper_dev_rcu(bond->dev, upper, iter) {
2278 		if (ip == bond_confirm_addr(upper, 0, ip)) {
2279 			ret = true;
2280 			break;
2281 		}
2282 	}
2283 	rcu_read_unlock();
2284 
2285 	return ret;
2286 }
2287 
2288 /*
2289  * We go to the (large) trouble of VLAN tagging ARP frames because
2290  * switches in VLAN mode (especially if ports are configured as
2291  * "native" to a VLAN) might not pass non-tagged frames.
2292  */
2293 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2294 {
2295 	struct sk_buff *skb;
2296 
2297 	pr_debug("arp %d on slave %s: dst %pI4 src %pI4 vid %d\n", arp_op,
2298 		 slave_dev->name, &dest_ip, &src_ip, vlan_id);
2299 
2300 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2301 			 NULL, slave_dev->dev_addr, NULL);
2302 
2303 	if (!skb) {
2304 		pr_err("ARP packet allocation failed\n");
2305 		return;
2306 	}
2307 	if (vlan_id) {
2308 		skb = vlan_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2309 		if (!skb) {
2310 			pr_err("failed to insert VLAN tag\n");
2311 			return;
2312 		}
2313 	}
2314 	arp_xmit(skb);
2315 }
2316 
2317 
2318 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2319 {
2320 	struct net_device *upper, *vlan_upper;
2321 	struct list_head *iter, *vlan_iter;
2322 	struct rtable *rt;
2323 	__be32 *targets = bond->params.arp_targets, addr;
2324 	int i, vlan_id;
2325 
2326 	for (i = 0; i < BOND_MAX_ARP_TARGETS && targets[i]; i++) {
2327 		pr_debug("basa: target %pI4\n", &targets[i]);
2328 
2329 		/* Find out through which dev should the packet go */
2330 		rt = ip_route_output(dev_net(bond->dev), targets[i], 0,
2331 				     RTO_ONLINK, 0);
2332 		if (IS_ERR(rt)) {
2333 			pr_debug("%s: no route to arp_ip_target %pI4\n",
2334 				 bond->dev->name, &targets[i]);
2335 			continue;
2336 		}
2337 
2338 		vlan_id = 0;
2339 
2340 		/* bond device itself */
2341 		if (rt->dst.dev == bond->dev)
2342 			goto found;
2343 
2344 		rcu_read_lock();
2345 		/* first we search only for vlan devices. for every vlan
2346 		 * found we verify its upper dev list, searching for the
2347 		 * rt->dst.dev. If found we save the tag of the vlan and
2348 		 * proceed to send the packet.
2349 		 *
2350 		 * TODO: QinQ?
2351 		 */
2352 		netdev_for_each_upper_dev_rcu(bond->dev, vlan_upper, vlan_iter) {
2353 			if (!is_vlan_dev(vlan_upper))
2354 				continue;
2355 			netdev_for_each_upper_dev_rcu(vlan_upper, upper, iter) {
2356 				if (upper == rt->dst.dev) {
2357 					vlan_id = vlan_dev_vlan_id(vlan_upper);
2358 					rcu_read_unlock();
2359 					goto found;
2360 				}
2361 			}
2362 		}
2363 
2364 		/* if the device we're looking for is not on top of any of
2365 		 * our upper vlans, then just search for any dev that
2366 		 * matches, and in case it's a vlan - save the id
2367 		 */
2368 		netdev_for_each_upper_dev_rcu(bond->dev, upper, iter) {
2369 			if (upper == rt->dst.dev) {
2370 				/* if it's a vlan - get its VID */
2371 				if (is_vlan_dev(upper))
2372 					vlan_id = vlan_dev_vlan_id(upper);
2373 
2374 				rcu_read_unlock();
2375 				goto found;
2376 			}
2377 		}
2378 		rcu_read_unlock();
2379 
2380 		/* Not our device - skip */
2381 		pr_debug("%s: no path to arp_ip_target %pI4 via rt.dev %s\n",
2382 			 bond->dev->name, &targets[i],
2383 			 rt->dst.dev ? rt->dst.dev->name : "NULL");
2384 
2385 		ip_rt_put(rt);
2386 		continue;
2387 
2388 found:
2389 		addr = bond_confirm_addr(rt->dst.dev, targets[i], 0);
2390 		ip_rt_put(rt);
2391 		bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2392 			      addr, vlan_id);
2393 	}
2394 }
2395 
2396 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2397 {
2398 	int i;
2399 
2400 	if (!sip || !bond_has_this_ip(bond, tip)) {
2401 		pr_debug("bva: sip %pI4 tip %pI4 not found\n", &sip, &tip);
2402 		return;
2403 	}
2404 
2405 	i = bond_get_targets_ip(bond->params.arp_targets, sip);
2406 	if (i == -1) {
2407 		pr_debug("bva: sip %pI4 not found in targets\n", &sip);
2408 		return;
2409 	}
2410 	slave->last_arp_rx = jiffies;
2411 	slave->target_last_arp_rx[i] = jiffies;
2412 }
2413 
2414 int bond_arp_rcv(const struct sk_buff *skb, struct bonding *bond,
2415 		 struct slave *slave)
2416 {
2417 	struct arphdr *arp = (struct arphdr *)skb->data;
2418 	unsigned char *arp_ptr;
2419 	__be32 sip, tip;
2420 	int alen;
2421 
2422 	if (skb->protocol != __cpu_to_be16(ETH_P_ARP))
2423 		return RX_HANDLER_ANOTHER;
2424 
2425 	read_lock(&bond->lock);
2426 
2427 	if (!slave_do_arp_validate(bond, slave))
2428 		goto out_unlock;
2429 
2430 	alen = arp_hdr_len(bond->dev);
2431 
2432 	pr_debug("bond_arp_rcv: bond %s skb->dev %s\n",
2433 		 bond->dev->name, skb->dev->name);
2434 
2435 	if (alen > skb_headlen(skb)) {
2436 		arp = kmalloc(alen, GFP_ATOMIC);
2437 		if (!arp)
2438 			goto out_unlock;
2439 		if (skb_copy_bits(skb, 0, arp, alen) < 0)
2440 			goto out_unlock;
2441 	}
2442 
2443 	if (arp->ar_hln != bond->dev->addr_len ||
2444 	    skb->pkt_type == PACKET_OTHERHOST ||
2445 	    skb->pkt_type == PACKET_LOOPBACK ||
2446 	    arp->ar_hrd != htons(ARPHRD_ETHER) ||
2447 	    arp->ar_pro != htons(ETH_P_IP) ||
2448 	    arp->ar_pln != 4)
2449 		goto out_unlock;
2450 
2451 	arp_ptr = (unsigned char *)(arp + 1);
2452 	arp_ptr += bond->dev->addr_len;
2453 	memcpy(&sip, arp_ptr, 4);
2454 	arp_ptr += 4 + bond->dev->addr_len;
2455 	memcpy(&tip, arp_ptr, 4);
2456 
2457 	pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n",
2458 		 bond->dev->name, slave->dev->name, bond_slave_state(slave),
2459 		 bond->params.arp_validate, slave_do_arp_validate(bond, slave),
2460 		 &sip, &tip);
2461 
2462 	/*
2463 	 * Backup slaves won't see the ARP reply, but do come through
2464 	 * here for each ARP probe (so we swap the sip/tip to validate
2465 	 * the probe).  In a "redundant switch, common router" type of
2466 	 * configuration, the ARP probe will (hopefully) travel from
2467 	 * the active, through one switch, the router, then the other
2468 	 * switch before reaching the backup.
2469 	 *
2470 	 * We 'trust' the arp requests if there is an active slave and
2471 	 * it received valid arp reply(s) after it became active. This
2472 	 * is done to avoid endless looping when we can't reach the
2473 	 * arp_ip_target and fool ourselves with our own arp requests.
2474 	 */
2475 	if (bond_is_active_slave(slave))
2476 		bond_validate_arp(bond, slave, sip, tip);
2477 	else if (bond->curr_active_slave &&
2478 		 time_after(slave_last_rx(bond, bond->curr_active_slave),
2479 			    bond->curr_active_slave->jiffies))
2480 		bond_validate_arp(bond, slave, tip, sip);
2481 
2482 out_unlock:
2483 	read_unlock(&bond->lock);
2484 	if (arp != (struct arphdr *)skb->data)
2485 		kfree(arp);
2486 	return RX_HANDLER_ANOTHER;
2487 }
2488 
2489 /* function to verify if we're in the arp_interval timeslice, returns true if
2490  * (last_act - arp_interval) <= jiffies <= (last_act + mod * arp_interval +
2491  * arp_interval/2) . the arp_interval/2 is needed for really fast networks.
2492  */
2493 static bool bond_time_in_interval(struct bonding *bond, unsigned long last_act,
2494 				  int mod)
2495 {
2496 	int delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2497 
2498 	return time_in_range(jiffies,
2499 			     last_act - delta_in_ticks,
2500 			     last_act + mod * delta_in_ticks + delta_in_ticks/2);
2501 }
2502 
2503 /*
2504  * this function is called regularly to monitor each slave's link
2505  * ensuring that traffic is being sent and received when arp monitoring
2506  * is used in load-balancing mode. if the adapter has been dormant, then an
2507  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2508  * arp monitoring in active backup mode.
2509  */
2510 void bond_loadbalance_arp_mon(struct work_struct *work)
2511 {
2512 	struct bonding *bond = container_of(work, struct bonding,
2513 					    arp_work.work);
2514 	struct slave *slave, *oldcurrent;
2515 	int do_failover = 0;
2516 
2517 	read_lock(&bond->lock);
2518 
2519 	if (list_empty(&bond->slave_list))
2520 		goto re_arm;
2521 
2522 	oldcurrent = bond->curr_active_slave;
2523 	/* see if any of the previous devices are up now (i.e. they have
2524 	 * xmt and rcv traffic). the curr_active_slave does not come into
2525 	 * the picture unless it is null. also, slave->jiffies is not needed
2526 	 * here because we send an arp on each slave and give a slave as
2527 	 * long as it needs to get the tx/rx within the delta.
2528 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2529 	 *       so it can wait
2530 	 */
2531 	bond_for_each_slave(bond, slave) {
2532 		unsigned long trans_start = dev_trans_start(slave->dev);
2533 
2534 		if (slave->link != BOND_LINK_UP) {
2535 			if (bond_time_in_interval(bond, trans_start, 1) &&
2536 			    bond_time_in_interval(bond, slave->dev->last_rx, 1)) {
2537 
2538 				slave->link  = BOND_LINK_UP;
2539 				bond_set_active_slave(slave);
2540 
2541 				/* primary_slave has no meaning in round-robin
2542 				 * mode. the window of a slave being up and
2543 				 * curr_active_slave being null after enslaving
2544 				 * is closed.
2545 				 */
2546 				if (!oldcurrent) {
2547 					pr_info("%s: link status definitely up for interface %s, ",
2548 						bond->dev->name,
2549 						slave->dev->name);
2550 					do_failover = 1;
2551 				} else {
2552 					pr_info("%s: interface %s is now up\n",
2553 						bond->dev->name,
2554 						slave->dev->name);
2555 				}
2556 			}
2557 		} else {
2558 			/* slave->link == BOND_LINK_UP */
2559 
2560 			/* not all switches will respond to an arp request
2561 			 * when the source ip is 0, so don't take the link down
2562 			 * if we don't know our ip yet
2563 			 */
2564 			if (!bond_time_in_interval(bond, trans_start, 2) ||
2565 			    !bond_time_in_interval(bond, slave->dev->last_rx, 2)) {
2566 
2567 				slave->link  = BOND_LINK_DOWN;
2568 				bond_set_backup_slave(slave);
2569 
2570 				if (slave->link_failure_count < UINT_MAX)
2571 					slave->link_failure_count++;
2572 
2573 				pr_info("%s: interface %s is now down.\n",
2574 					bond->dev->name,
2575 					slave->dev->name);
2576 
2577 				if (slave == oldcurrent)
2578 					do_failover = 1;
2579 			}
2580 		}
2581 
2582 		/* note: if switch is in round-robin mode, all links
2583 		 * must tx arp to ensure all links rx an arp - otherwise
2584 		 * links may oscillate or not come up at all; if switch is
2585 		 * in something like xor mode, there is nothing we can
2586 		 * do - all replies will be rx'ed on same link causing slaves
2587 		 * to be unstable during low/no traffic periods
2588 		 */
2589 		if (IS_UP(slave->dev))
2590 			bond_arp_send_all(bond, slave);
2591 	}
2592 
2593 	if (do_failover) {
2594 		block_netpoll_tx();
2595 		write_lock_bh(&bond->curr_slave_lock);
2596 
2597 		bond_select_active_slave(bond);
2598 
2599 		write_unlock_bh(&bond->curr_slave_lock);
2600 		unblock_netpoll_tx();
2601 	}
2602 
2603 re_arm:
2604 	if (bond->params.arp_interval)
2605 		queue_delayed_work(bond->wq, &bond->arp_work,
2606 				   msecs_to_jiffies(bond->params.arp_interval));
2607 
2608 	read_unlock(&bond->lock);
2609 }
2610 
2611 /*
2612  * Called to inspect slaves for active-backup mode ARP monitor link state
2613  * changes.  Sets new_link in slaves to specify what action should take
2614  * place for the slave.  Returns 0 if no changes are found, >0 if changes
2615  * to link states must be committed.
2616  *
2617  * Called with bond->lock held for read.
2618  */
2619 static int bond_ab_arp_inspect(struct bonding *bond)
2620 {
2621 	unsigned long trans_start, last_rx;
2622 	struct slave *slave;
2623 	int commit = 0;
2624 
2625 	bond_for_each_slave(bond, slave) {
2626 		slave->new_link = BOND_LINK_NOCHANGE;
2627 		last_rx = slave_last_rx(bond, slave);
2628 
2629 		if (slave->link != BOND_LINK_UP) {
2630 			if (bond_time_in_interval(bond, last_rx, 1)) {
2631 				slave->new_link = BOND_LINK_UP;
2632 				commit++;
2633 			}
2634 			continue;
2635 		}
2636 
2637 		/*
2638 		 * Give slaves 2*delta after being enslaved or made
2639 		 * active.  This avoids bouncing, as the last receive
2640 		 * times need a full ARP monitor cycle to be updated.
2641 		 */
2642 		if (bond_time_in_interval(bond, slave->jiffies, 2))
2643 			continue;
2644 
2645 		/*
2646 		 * Backup slave is down if:
2647 		 * - No current_arp_slave AND
2648 		 * - more than 3*delta since last receive AND
2649 		 * - the bond has an IP address
2650 		 *
2651 		 * Note: a non-null current_arp_slave indicates
2652 		 * the curr_active_slave went down and we are
2653 		 * searching for a new one; under this condition
2654 		 * we only take the curr_active_slave down - this
2655 		 * gives each slave a chance to tx/rx traffic
2656 		 * before being taken out
2657 		 */
2658 		if (!bond_is_active_slave(slave) &&
2659 		    !bond->current_arp_slave &&
2660 		    !bond_time_in_interval(bond, last_rx, 3)) {
2661 			slave->new_link = BOND_LINK_DOWN;
2662 			commit++;
2663 		}
2664 
2665 		/*
2666 		 * Active slave is down if:
2667 		 * - more than 2*delta since transmitting OR
2668 		 * - (more than 2*delta since receive AND
2669 		 *    the bond has an IP address)
2670 		 */
2671 		trans_start = dev_trans_start(slave->dev);
2672 		if (bond_is_active_slave(slave) &&
2673 		    (!bond_time_in_interval(bond, trans_start, 2) ||
2674 		     !bond_time_in_interval(bond, last_rx, 2))) {
2675 			slave->new_link = BOND_LINK_DOWN;
2676 			commit++;
2677 		}
2678 	}
2679 
2680 	return commit;
2681 }
2682 
2683 /*
2684  * Called to commit link state changes noted by inspection step of
2685  * active-backup mode ARP monitor.
2686  *
2687  * Called with RTNL and bond->lock for read.
2688  */
2689 static void bond_ab_arp_commit(struct bonding *bond)
2690 {
2691 	unsigned long trans_start;
2692 	struct slave *slave;
2693 
2694 	bond_for_each_slave(bond, slave) {
2695 		switch (slave->new_link) {
2696 		case BOND_LINK_NOCHANGE:
2697 			continue;
2698 
2699 		case BOND_LINK_UP:
2700 			trans_start = dev_trans_start(slave->dev);
2701 			if (bond->curr_active_slave != slave ||
2702 			    (!bond->curr_active_slave &&
2703 			     bond_time_in_interval(bond, trans_start, 1))) {
2704 				slave->link = BOND_LINK_UP;
2705 				if (bond->current_arp_slave) {
2706 					bond_set_slave_inactive_flags(
2707 						bond->current_arp_slave);
2708 					bond->current_arp_slave = NULL;
2709 				}
2710 
2711 				pr_info("%s: link status definitely up for interface %s.\n",
2712 					bond->dev->name, slave->dev->name);
2713 
2714 				if (!bond->curr_active_slave ||
2715 				    (slave == bond->primary_slave))
2716 					goto do_failover;
2717 
2718 			}
2719 
2720 			continue;
2721 
2722 		case BOND_LINK_DOWN:
2723 			if (slave->link_failure_count < UINT_MAX)
2724 				slave->link_failure_count++;
2725 
2726 			slave->link = BOND_LINK_DOWN;
2727 			bond_set_slave_inactive_flags(slave);
2728 
2729 			pr_info("%s: link status definitely down for interface %s, disabling it\n",
2730 				bond->dev->name, slave->dev->name);
2731 
2732 			if (slave == bond->curr_active_slave) {
2733 				bond->current_arp_slave = NULL;
2734 				goto do_failover;
2735 			}
2736 
2737 			continue;
2738 
2739 		default:
2740 			pr_err("%s: impossible: new_link %d on slave %s\n",
2741 			       bond->dev->name, slave->new_link,
2742 			       slave->dev->name);
2743 			continue;
2744 		}
2745 
2746 do_failover:
2747 		ASSERT_RTNL();
2748 		block_netpoll_tx();
2749 		write_lock_bh(&bond->curr_slave_lock);
2750 		bond_select_active_slave(bond);
2751 		write_unlock_bh(&bond->curr_slave_lock);
2752 		unblock_netpoll_tx();
2753 	}
2754 
2755 	bond_set_carrier(bond);
2756 }
2757 
2758 /*
2759  * Send ARP probes for active-backup mode ARP monitor.
2760  *
2761  * Called with bond->lock held for read.
2762  */
2763 static void bond_ab_arp_probe(struct bonding *bond)
2764 {
2765 	struct slave *slave, *next_slave;
2766 	int i;
2767 
2768 	read_lock(&bond->curr_slave_lock);
2769 
2770 	if (bond->current_arp_slave && bond->curr_active_slave)
2771 		pr_info("PROBE: c_arp %s && cas %s BAD\n",
2772 			bond->current_arp_slave->dev->name,
2773 			bond->curr_active_slave->dev->name);
2774 
2775 	if (bond->curr_active_slave) {
2776 		bond_arp_send_all(bond, bond->curr_active_slave);
2777 		read_unlock(&bond->curr_slave_lock);
2778 		return;
2779 	}
2780 
2781 	read_unlock(&bond->curr_slave_lock);
2782 
2783 	/* if we don't have a curr_active_slave, search for the next available
2784 	 * backup slave from the current_arp_slave and make it the candidate
2785 	 * for becoming the curr_active_slave
2786 	 */
2787 
2788 	if (!bond->current_arp_slave) {
2789 		bond->current_arp_slave = bond_first_slave(bond);
2790 		if (!bond->current_arp_slave)
2791 			return;
2792 	}
2793 
2794 	bond_set_slave_inactive_flags(bond->current_arp_slave);
2795 
2796 	/* search for next candidate */
2797 	next_slave = bond_next_slave(bond, bond->current_arp_slave);
2798 	bond_for_each_slave_from(bond, slave, i, next_slave) {
2799 		if (IS_UP(slave->dev)) {
2800 			slave->link = BOND_LINK_BACK;
2801 			bond_set_slave_active_flags(slave);
2802 			bond_arp_send_all(bond, slave);
2803 			slave->jiffies = jiffies;
2804 			bond->current_arp_slave = slave;
2805 			break;
2806 		}
2807 
2808 		/* if the link state is up at this point, we
2809 		 * mark it down - this can happen if we have
2810 		 * simultaneous link failures and
2811 		 * reselect_active_interface doesn't make this
2812 		 * one the current slave so it is still marked
2813 		 * up when it is actually down
2814 		 */
2815 		if (slave->link == BOND_LINK_UP) {
2816 			slave->link = BOND_LINK_DOWN;
2817 			if (slave->link_failure_count < UINT_MAX)
2818 				slave->link_failure_count++;
2819 
2820 			bond_set_slave_inactive_flags(slave);
2821 
2822 			pr_info("%s: backup interface %s is now down.\n",
2823 				bond->dev->name, slave->dev->name);
2824 		}
2825 	}
2826 }
2827 
2828 void bond_activebackup_arp_mon(struct work_struct *work)
2829 {
2830 	struct bonding *bond = container_of(work, struct bonding,
2831 					    arp_work.work);
2832 	bool should_notify_peers = false;
2833 	int delta_in_ticks;
2834 
2835 	read_lock(&bond->lock);
2836 
2837 	delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2838 
2839 	if (list_empty(&bond->slave_list))
2840 		goto re_arm;
2841 
2842 	should_notify_peers = bond_should_notify_peers(bond);
2843 
2844 	if (bond_ab_arp_inspect(bond)) {
2845 		read_unlock(&bond->lock);
2846 
2847 		/* Race avoidance with bond_close flush of workqueue */
2848 		if (!rtnl_trylock()) {
2849 			read_lock(&bond->lock);
2850 			delta_in_ticks = 1;
2851 			should_notify_peers = false;
2852 			goto re_arm;
2853 		}
2854 
2855 		read_lock(&bond->lock);
2856 
2857 		bond_ab_arp_commit(bond);
2858 
2859 		read_unlock(&bond->lock);
2860 		rtnl_unlock();
2861 		read_lock(&bond->lock);
2862 	}
2863 
2864 	bond_ab_arp_probe(bond);
2865 
2866 re_arm:
2867 	if (bond->params.arp_interval)
2868 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2869 
2870 	read_unlock(&bond->lock);
2871 
2872 	if (should_notify_peers) {
2873 		if (!rtnl_trylock())
2874 			return;
2875 		call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev);
2876 		rtnl_unlock();
2877 	}
2878 }
2879 
2880 /*-------------------------- netdev event handling --------------------------*/
2881 
2882 /*
2883  * Change device name
2884  */
2885 static int bond_event_changename(struct bonding *bond)
2886 {
2887 	bond_remove_proc_entry(bond);
2888 	bond_create_proc_entry(bond);
2889 
2890 	bond_debug_reregister(bond);
2891 
2892 	return NOTIFY_DONE;
2893 }
2894 
2895 static int bond_master_netdev_event(unsigned long event,
2896 				    struct net_device *bond_dev)
2897 {
2898 	struct bonding *event_bond = netdev_priv(bond_dev);
2899 
2900 	switch (event) {
2901 	case NETDEV_CHANGENAME:
2902 		return bond_event_changename(event_bond);
2903 	case NETDEV_UNREGISTER:
2904 		bond_remove_proc_entry(event_bond);
2905 		break;
2906 	case NETDEV_REGISTER:
2907 		bond_create_proc_entry(event_bond);
2908 		break;
2909 	case NETDEV_NOTIFY_PEERS:
2910 		if (event_bond->send_peer_notif)
2911 			event_bond->send_peer_notif--;
2912 		break;
2913 	default:
2914 		break;
2915 	}
2916 
2917 	return NOTIFY_DONE;
2918 }
2919 
2920 static int bond_slave_netdev_event(unsigned long event,
2921 				   struct net_device *slave_dev)
2922 {
2923 	struct slave *slave = bond_slave_get_rtnl(slave_dev);
2924 	struct bonding *bond;
2925 	struct net_device *bond_dev;
2926 	u32 old_speed;
2927 	u8 old_duplex;
2928 
2929 	/* A netdev event can be generated while enslaving a device
2930 	 * before netdev_rx_handler_register is called in which case
2931 	 * slave will be NULL
2932 	 */
2933 	if (!slave)
2934 		return NOTIFY_DONE;
2935 	bond_dev = slave->bond->dev;
2936 	bond = slave->bond;
2937 
2938 	switch (event) {
2939 	case NETDEV_UNREGISTER:
2940 		if (bond_dev->type != ARPHRD_ETHER)
2941 			bond_release_and_destroy(bond_dev, slave_dev);
2942 		else
2943 			bond_release(bond_dev, slave_dev);
2944 		break;
2945 	case NETDEV_UP:
2946 	case NETDEV_CHANGE:
2947 		old_speed = slave->speed;
2948 		old_duplex = slave->duplex;
2949 
2950 		bond_update_speed_duplex(slave);
2951 
2952 		if (bond->params.mode == BOND_MODE_8023AD) {
2953 			if (old_speed != slave->speed)
2954 				bond_3ad_adapter_speed_changed(slave);
2955 			if (old_duplex != slave->duplex)
2956 				bond_3ad_adapter_duplex_changed(slave);
2957 		}
2958 		break;
2959 	case NETDEV_DOWN:
2960 		/*
2961 		 * ... Or is it this?
2962 		 */
2963 		break;
2964 	case NETDEV_CHANGEMTU:
2965 		/*
2966 		 * TODO: Should slaves be allowed to
2967 		 * independently alter their MTU?  For
2968 		 * an active-backup bond, slaves need
2969 		 * not be the same type of device, so
2970 		 * MTUs may vary.  For other modes,
2971 		 * slaves arguably should have the
2972 		 * same MTUs. To do this, we'd need to
2973 		 * take over the slave's change_mtu
2974 		 * function for the duration of their
2975 		 * servitude.
2976 		 */
2977 		break;
2978 	case NETDEV_CHANGENAME:
2979 		/*
2980 		 * TODO: handle changing the primary's name
2981 		 */
2982 		break;
2983 	case NETDEV_FEAT_CHANGE:
2984 		bond_compute_features(bond);
2985 		break;
2986 	case NETDEV_RESEND_IGMP:
2987 		/* Propagate to master device */
2988 		call_netdevice_notifiers(event, slave->bond->dev);
2989 		break;
2990 	default:
2991 		break;
2992 	}
2993 
2994 	return NOTIFY_DONE;
2995 }
2996 
2997 /*
2998  * bond_netdev_event: handle netdev notifier chain events.
2999  *
3000  * This function receives events for the netdev chain.  The caller (an
3001  * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3002  * locks for us to safely manipulate the slave devices (RTNL lock,
3003  * dev_probe_lock).
3004  */
3005 static int bond_netdev_event(struct notifier_block *this,
3006 			     unsigned long event, void *ptr)
3007 {
3008 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
3009 
3010 	pr_debug("event_dev: %s, event: %lx\n",
3011 		 event_dev ? event_dev->name : "None",
3012 		 event);
3013 
3014 	if (!(event_dev->priv_flags & IFF_BONDING))
3015 		return NOTIFY_DONE;
3016 
3017 	if (event_dev->flags & IFF_MASTER) {
3018 		pr_debug("IFF_MASTER\n");
3019 		return bond_master_netdev_event(event, event_dev);
3020 	}
3021 
3022 	if (event_dev->flags & IFF_SLAVE) {
3023 		pr_debug("IFF_SLAVE\n");
3024 		return bond_slave_netdev_event(event, event_dev);
3025 	}
3026 
3027 	return NOTIFY_DONE;
3028 }
3029 
3030 static struct notifier_block bond_netdev_notifier = {
3031 	.notifier_call = bond_netdev_event,
3032 };
3033 
3034 /*---------------------------- Hashing Policies -----------------------------*/
3035 
3036 /*
3037  * Hash for the output device based upon layer 2 data
3038  */
3039 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count)
3040 {
3041 	struct ethhdr *data = (struct ethhdr *)skb->data;
3042 
3043 	if (skb_headlen(skb) >= offsetof(struct ethhdr, h_proto))
3044 		return (data->h_dest[5] ^ data->h_source[5]) % count;
3045 
3046 	return 0;
3047 }
3048 
3049 /*
3050  * Hash for the output device based upon layer 2 and layer 3 data. If
3051  * the packet is not IP, fall back on bond_xmit_hash_policy_l2()
3052  */
3053 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count)
3054 {
3055 	const struct ethhdr *data;
3056 	const struct iphdr *iph;
3057 	const struct ipv6hdr *ipv6h;
3058 	u32 v6hash;
3059 	const __be32 *s, *d;
3060 
3061 	if (skb->protocol == htons(ETH_P_IP) &&
3062 	    pskb_network_may_pull(skb, sizeof(*iph))) {
3063 		iph = ip_hdr(skb);
3064 		data = (struct ethhdr *)skb->data;
3065 		return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3066 			(data->h_dest[5] ^ data->h_source[5])) % count;
3067 	} else if (skb->protocol == htons(ETH_P_IPV6) &&
3068 		   pskb_network_may_pull(skb, sizeof(*ipv6h))) {
3069 		ipv6h = ipv6_hdr(skb);
3070 		data = (struct ethhdr *)skb->data;
3071 		s = &ipv6h->saddr.s6_addr32[0];
3072 		d = &ipv6h->daddr.s6_addr32[0];
3073 		v6hash = (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]);
3074 		v6hash ^= (v6hash >> 24) ^ (v6hash >> 16) ^ (v6hash >> 8);
3075 		return (v6hash ^ data->h_dest[5] ^ data->h_source[5]) % count;
3076 	}
3077 
3078 	return bond_xmit_hash_policy_l2(skb, count);
3079 }
3080 
3081 /*
3082  * Hash for the output device based upon layer 3 and layer 4 data. If
3083  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3084  * altogether not IP, fall back on bond_xmit_hash_policy_l2()
3085  */
3086 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count)
3087 {
3088 	u32 layer4_xor = 0;
3089 	const struct iphdr *iph;
3090 	const struct ipv6hdr *ipv6h;
3091 	const __be32 *s, *d;
3092 	const __be16 *l4 = NULL;
3093 	__be16 _l4[2];
3094 	int noff = skb_network_offset(skb);
3095 	int poff;
3096 
3097 	if (skb->protocol == htons(ETH_P_IP) &&
3098 	    pskb_may_pull(skb, noff + sizeof(*iph))) {
3099 		iph = ip_hdr(skb);
3100 		poff = proto_ports_offset(iph->protocol);
3101 
3102 		if (!ip_is_fragment(iph) && poff >= 0) {
3103 			l4 = skb_header_pointer(skb, noff + (iph->ihl << 2) + poff,
3104 						sizeof(_l4), &_l4);
3105 			if (l4)
3106 				layer4_xor = ntohs(l4[0] ^ l4[1]);
3107 		}
3108 		return (layer4_xor ^
3109 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3110 	} else if (skb->protocol == htons(ETH_P_IPV6) &&
3111 		   pskb_may_pull(skb, noff + sizeof(*ipv6h))) {
3112 		ipv6h = ipv6_hdr(skb);
3113 		poff = proto_ports_offset(ipv6h->nexthdr);
3114 		if (poff >= 0) {
3115 			l4 = skb_header_pointer(skb, noff + sizeof(*ipv6h) + poff,
3116 						sizeof(_l4), &_l4);
3117 			if (l4)
3118 				layer4_xor = ntohs(l4[0] ^ l4[1]);
3119 		}
3120 		s = &ipv6h->saddr.s6_addr32[0];
3121 		d = &ipv6h->daddr.s6_addr32[0];
3122 		layer4_xor ^= (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]);
3123 		layer4_xor ^= (layer4_xor >> 24) ^ (layer4_xor >> 16) ^
3124 			       (layer4_xor >> 8);
3125 		return layer4_xor % count;
3126 	}
3127 
3128 	return bond_xmit_hash_policy_l2(skb, count);
3129 }
3130 
3131 /*-------------------------- Device entry points ----------------------------*/
3132 
3133 static void bond_work_init_all(struct bonding *bond)
3134 {
3135 	INIT_DELAYED_WORK(&bond->mcast_work,
3136 			  bond_resend_igmp_join_requests_delayed);
3137 	INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3138 	INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3139 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3140 		INIT_DELAYED_WORK(&bond->arp_work, bond_activebackup_arp_mon);
3141 	else
3142 		INIT_DELAYED_WORK(&bond->arp_work, bond_loadbalance_arp_mon);
3143 	INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3144 }
3145 
3146 static void bond_work_cancel_all(struct bonding *bond)
3147 {
3148 	cancel_delayed_work_sync(&bond->mii_work);
3149 	cancel_delayed_work_sync(&bond->arp_work);
3150 	cancel_delayed_work_sync(&bond->alb_work);
3151 	cancel_delayed_work_sync(&bond->ad_work);
3152 	cancel_delayed_work_sync(&bond->mcast_work);
3153 }
3154 
3155 static int bond_open(struct net_device *bond_dev)
3156 {
3157 	struct bonding *bond = netdev_priv(bond_dev);
3158 	struct slave *slave;
3159 
3160 	/* reset slave->backup and slave->inactive */
3161 	read_lock(&bond->lock);
3162 	if (!list_empty(&bond->slave_list)) {
3163 		read_lock(&bond->curr_slave_lock);
3164 		bond_for_each_slave(bond, slave) {
3165 			if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3166 				&& (slave != bond->curr_active_slave)) {
3167 				bond_set_slave_inactive_flags(slave);
3168 			} else {
3169 				bond_set_slave_active_flags(slave);
3170 			}
3171 		}
3172 		read_unlock(&bond->curr_slave_lock);
3173 	}
3174 	read_unlock(&bond->lock);
3175 
3176 	bond_work_init_all(bond);
3177 
3178 	if (bond_is_lb(bond)) {
3179 		/* bond_alb_initialize must be called before the timer
3180 		 * is started.
3181 		 */
3182 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB)))
3183 			return -ENOMEM;
3184 		queue_delayed_work(bond->wq, &bond->alb_work, 0);
3185 	}
3186 
3187 	if (bond->params.miimon)  /* link check interval, in milliseconds. */
3188 		queue_delayed_work(bond->wq, &bond->mii_work, 0);
3189 
3190 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3191 		queue_delayed_work(bond->wq, &bond->arp_work, 0);
3192 		if (bond->params.arp_validate)
3193 			bond->recv_probe = bond_arp_rcv;
3194 	}
3195 
3196 	if (bond->params.mode == BOND_MODE_8023AD) {
3197 		queue_delayed_work(bond->wq, &bond->ad_work, 0);
3198 		/* register to receive LACPDUs */
3199 		bond->recv_probe = bond_3ad_lacpdu_recv;
3200 		bond_3ad_initiate_agg_selection(bond, 1);
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 static int bond_close(struct net_device *bond_dev)
3207 {
3208 	struct bonding *bond = netdev_priv(bond_dev);
3209 
3210 	bond_work_cancel_all(bond);
3211 	bond->send_peer_notif = 0;
3212 	if (bond_is_lb(bond))
3213 		bond_alb_deinitialize(bond);
3214 	bond->recv_probe = NULL;
3215 
3216 	return 0;
3217 }
3218 
3219 static struct rtnl_link_stats64 *bond_get_stats(struct net_device *bond_dev,
3220 						struct rtnl_link_stats64 *stats)
3221 {
3222 	struct bonding *bond = netdev_priv(bond_dev);
3223 	struct rtnl_link_stats64 temp;
3224 	struct slave *slave;
3225 
3226 	memset(stats, 0, sizeof(*stats));
3227 
3228 	read_lock_bh(&bond->lock);
3229 	bond_for_each_slave(bond, slave) {
3230 		const struct rtnl_link_stats64 *sstats =
3231 			dev_get_stats(slave->dev, &temp);
3232 
3233 		stats->rx_packets += sstats->rx_packets;
3234 		stats->rx_bytes += sstats->rx_bytes;
3235 		stats->rx_errors += sstats->rx_errors;
3236 		stats->rx_dropped += sstats->rx_dropped;
3237 
3238 		stats->tx_packets += sstats->tx_packets;
3239 		stats->tx_bytes += sstats->tx_bytes;
3240 		stats->tx_errors += sstats->tx_errors;
3241 		stats->tx_dropped += sstats->tx_dropped;
3242 
3243 		stats->multicast += sstats->multicast;
3244 		stats->collisions += sstats->collisions;
3245 
3246 		stats->rx_length_errors += sstats->rx_length_errors;
3247 		stats->rx_over_errors += sstats->rx_over_errors;
3248 		stats->rx_crc_errors += sstats->rx_crc_errors;
3249 		stats->rx_frame_errors += sstats->rx_frame_errors;
3250 		stats->rx_fifo_errors += sstats->rx_fifo_errors;
3251 		stats->rx_missed_errors += sstats->rx_missed_errors;
3252 
3253 		stats->tx_aborted_errors += sstats->tx_aborted_errors;
3254 		stats->tx_carrier_errors += sstats->tx_carrier_errors;
3255 		stats->tx_fifo_errors += sstats->tx_fifo_errors;
3256 		stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3257 		stats->tx_window_errors += sstats->tx_window_errors;
3258 	}
3259 	read_unlock_bh(&bond->lock);
3260 
3261 	return stats;
3262 }
3263 
3264 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3265 {
3266 	struct net_device *slave_dev = NULL;
3267 	struct ifbond k_binfo;
3268 	struct ifbond __user *u_binfo = NULL;
3269 	struct ifslave k_sinfo;
3270 	struct ifslave __user *u_sinfo = NULL;
3271 	struct mii_ioctl_data *mii = NULL;
3272 	struct net *net;
3273 	int res = 0;
3274 
3275 	pr_debug("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd);
3276 
3277 	switch (cmd) {
3278 	case SIOCGMIIPHY:
3279 		mii = if_mii(ifr);
3280 		if (!mii)
3281 			return -EINVAL;
3282 
3283 		mii->phy_id = 0;
3284 		/* Fall Through */
3285 	case SIOCGMIIREG:
3286 		/*
3287 		 * We do this again just in case we were called by SIOCGMIIREG
3288 		 * instead of SIOCGMIIPHY.
3289 		 */
3290 		mii = if_mii(ifr);
3291 		if (!mii)
3292 			return -EINVAL;
3293 
3294 
3295 		if (mii->reg_num == 1) {
3296 			struct bonding *bond = netdev_priv(bond_dev);
3297 			mii->val_out = 0;
3298 			read_lock(&bond->lock);
3299 			read_lock(&bond->curr_slave_lock);
3300 			if (netif_carrier_ok(bond->dev))
3301 				mii->val_out = BMSR_LSTATUS;
3302 
3303 			read_unlock(&bond->curr_slave_lock);
3304 			read_unlock(&bond->lock);
3305 		}
3306 
3307 		return 0;
3308 	case BOND_INFO_QUERY_OLD:
3309 	case SIOCBONDINFOQUERY:
3310 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3311 
3312 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond)))
3313 			return -EFAULT;
3314 
3315 		res = bond_info_query(bond_dev, &k_binfo);
3316 		if (res == 0 &&
3317 		    copy_to_user(u_binfo, &k_binfo, sizeof(ifbond)))
3318 			return -EFAULT;
3319 
3320 		return res;
3321 	case BOND_SLAVE_INFO_QUERY_OLD:
3322 	case SIOCBONDSLAVEINFOQUERY:
3323 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3324 
3325 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave)))
3326 			return -EFAULT;
3327 
3328 		res = bond_slave_info_query(bond_dev, &k_sinfo);
3329 		if (res == 0 &&
3330 		    copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave)))
3331 			return -EFAULT;
3332 
3333 		return res;
3334 	default:
3335 		/* Go on */
3336 		break;
3337 	}
3338 
3339 	net = dev_net(bond_dev);
3340 
3341 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3342 		return -EPERM;
3343 
3344 	slave_dev = dev_get_by_name(net, ifr->ifr_slave);
3345 
3346 	pr_debug("slave_dev=%p:\n", slave_dev);
3347 
3348 	if (!slave_dev)
3349 		res = -ENODEV;
3350 	else {
3351 		pr_debug("slave_dev->name=%s:\n", slave_dev->name);
3352 		switch (cmd) {
3353 		case BOND_ENSLAVE_OLD:
3354 		case SIOCBONDENSLAVE:
3355 			res = bond_enslave(bond_dev, slave_dev);
3356 			break;
3357 		case BOND_RELEASE_OLD:
3358 		case SIOCBONDRELEASE:
3359 			res = bond_release(bond_dev, slave_dev);
3360 			break;
3361 		case BOND_SETHWADDR_OLD:
3362 		case SIOCBONDSETHWADDR:
3363 			bond_set_dev_addr(bond_dev, slave_dev);
3364 			res = 0;
3365 			break;
3366 		case BOND_CHANGE_ACTIVE_OLD:
3367 		case SIOCBONDCHANGEACTIVE:
3368 			res = bond_ioctl_change_active(bond_dev, slave_dev);
3369 			break;
3370 		default:
3371 			res = -EOPNOTSUPP;
3372 		}
3373 
3374 		dev_put(slave_dev);
3375 	}
3376 
3377 	return res;
3378 }
3379 
3380 static void bond_change_rx_flags(struct net_device *bond_dev, int change)
3381 {
3382 	struct bonding *bond = netdev_priv(bond_dev);
3383 
3384 	if (change & IFF_PROMISC)
3385 		bond_set_promiscuity(bond,
3386 				     bond_dev->flags & IFF_PROMISC ? 1 : -1);
3387 
3388 	if (change & IFF_ALLMULTI)
3389 		bond_set_allmulti(bond,
3390 				  bond_dev->flags & IFF_ALLMULTI ? 1 : -1);
3391 }
3392 
3393 static void bond_set_rx_mode(struct net_device *bond_dev)
3394 {
3395 	struct bonding *bond = netdev_priv(bond_dev);
3396 	struct slave *slave;
3397 
3398 	ASSERT_RTNL();
3399 
3400 	if (USES_PRIMARY(bond->params.mode)) {
3401 		slave = rtnl_dereference(bond->curr_active_slave);
3402 		if (slave) {
3403 			dev_uc_sync(slave->dev, bond_dev);
3404 			dev_mc_sync(slave->dev, bond_dev);
3405 		}
3406 	} else {
3407 		bond_for_each_slave(bond, slave) {
3408 			dev_uc_sync_multiple(slave->dev, bond_dev);
3409 			dev_mc_sync_multiple(slave->dev, bond_dev);
3410 		}
3411 	}
3412 }
3413 
3414 static int bond_neigh_init(struct neighbour *n)
3415 {
3416 	struct bonding *bond = netdev_priv(n->dev);
3417 	const struct net_device_ops *slave_ops;
3418 	struct neigh_parms parms;
3419 	struct slave *slave;
3420 	int ret;
3421 
3422 	slave = bond_first_slave(bond);
3423 	if (!slave)
3424 		return 0;
3425 	slave_ops = slave->dev->netdev_ops;
3426 	if (!slave_ops->ndo_neigh_setup)
3427 		return 0;
3428 
3429 	parms.neigh_setup = NULL;
3430 	parms.neigh_cleanup = NULL;
3431 	ret = slave_ops->ndo_neigh_setup(slave->dev, &parms);
3432 	if (ret)
3433 		return ret;
3434 
3435 	/*
3436 	 * Assign slave's neigh_cleanup to neighbour in case cleanup is called
3437 	 * after the last slave has been detached.  Assumes that all slaves
3438 	 * utilize the same neigh_cleanup (true at this writing as only user
3439 	 * is ipoib).
3440 	 */
3441 	n->parms->neigh_cleanup = parms.neigh_cleanup;
3442 
3443 	if (!parms.neigh_setup)
3444 		return 0;
3445 
3446 	return parms.neigh_setup(n);
3447 }
3448 
3449 /*
3450  * The bonding ndo_neigh_setup is called at init time beofre any
3451  * slave exists. So we must declare proxy setup function which will
3452  * be used at run time to resolve the actual slave neigh param setup.
3453  *
3454  * It's also called by master devices (such as vlans) to setup their
3455  * underlying devices. In that case - do nothing, we're already set up from
3456  * our init.
3457  */
3458 static int bond_neigh_setup(struct net_device *dev,
3459 			    struct neigh_parms *parms)
3460 {
3461 	/* modify only our neigh_parms */
3462 	if (parms->dev == dev)
3463 		parms->neigh_setup = bond_neigh_init;
3464 
3465 	return 0;
3466 }
3467 
3468 /*
3469  * Change the MTU of all of a master's slaves to match the master
3470  */
3471 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3472 {
3473 	struct bonding *bond = netdev_priv(bond_dev);
3474 	struct slave *slave;
3475 	int res = 0;
3476 
3477 	pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond,
3478 		 (bond_dev ? bond_dev->name : "None"), new_mtu);
3479 
3480 	/* Can't hold bond->lock with bh disabled here since
3481 	 * some base drivers panic. On the other hand we can't
3482 	 * hold bond->lock without bh disabled because we'll
3483 	 * deadlock. The only solution is to rely on the fact
3484 	 * that we're under rtnl_lock here, and the slaves
3485 	 * list won't change. This doesn't solve the problem
3486 	 * of setting the slave's MTU while it is
3487 	 * transmitting, but the assumption is that the base
3488 	 * driver can handle that.
3489 	 *
3490 	 * TODO: figure out a way to safely iterate the slaves
3491 	 * list, but without holding a lock around the actual
3492 	 * call to the base driver.
3493 	 */
3494 
3495 	bond_for_each_slave(bond, slave) {
3496 		pr_debug("s %p s->p %p c_m %p\n",
3497 			 slave,
3498 			 bond_prev_slave(bond, slave),
3499 			 slave->dev->netdev_ops->ndo_change_mtu);
3500 
3501 		res = dev_set_mtu(slave->dev, new_mtu);
3502 
3503 		if (res) {
3504 			/* If we failed to set the slave's mtu to the new value
3505 			 * we must abort the operation even in ACTIVE_BACKUP
3506 			 * mode, because if we allow the backup slaves to have
3507 			 * different mtu values than the active slave we'll
3508 			 * need to change their mtu when doing a failover. That
3509 			 * means changing their mtu from timer context, which
3510 			 * is probably not a good idea.
3511 			 */
3512 			pr_debug("err %d %s\n", res, slave->dev->name);
3513 			goto unwind;
3514 		}
3515 	}
3516 
3517 	bond_dev->mtu = new_mtu;
3518 
3519 	return 0;
3520 
3521 unwind:
3522 	/* unwind from head to the slave that failed */
3523 	bond_for_each_slave_continue_reverse(bond, slave) {
3524 		int tmp_res;
3525 
3526 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
3527 		if (tmp_res) {
3528 			pr_debug("unwind err %d dev %s\n",
3529 				 tmp_res, slave->dev->name);
3530 		}
3531 	}
3532 
3533 	return res;
3534 }
3535 
3536 /*
3537  * Change HW address
3538  *
3539  * Note that many devices must be down to change the HW address, and
3540  * downing the master releases all slaves.  We can make bonds full of
3541  * bonding devices to test this, however.
3542  */
3543 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
3544 {
3545 	struct bonding *bond = netdev_priv(bond_dev);
3546 	struct sockaddr *sa = addr, tmp_sa;
3547 	struct slave *slave;
3548 	int res = 0;
3549 
3550 	if (bond->params.mode == BOND_MODE_ALB)
3551 		return bond_alb_set_mac_address(bond_dev, addr);
3552 
3553 
3554 	pr_debug("bond=%p, name=%s\n",
3555 		 bond, bond_dev ? bond_dev->name : "None");
3556 
3557 	/* If fail_over_mac is enabled, do nothing and return success.
3558 	 * Returning an error causes ifenslave to fail.
3559 	 */
3560 	if (bond->params.fail_over_mac)
3561 		return 0;
3562 
3563 	if (!is_valid_ether_addr(sa->sa_data))
3564 		return -EADDRNOTAVAIL;
3565 
3566 	/* Can't hold bond->lock with bh disabled here since
3567 	 * some base drivers panic. On the other hand we can't
3568 	 * hold bond->lock without bh disabled because we'll
3569 	 * deadlock. The only solution is to rely on the fact
3570 	 * that we're under rtnl_lock here, and the slaves
3571 	 * list won't change. This doesn't solve the problem
3572 	 * of setting the slave's hw address while it is
3573 	 * transmitting, but the assumption is that the base
3574 	 * driver can handle that.
3575 	 *
3576 	 * TODO: figure out a way to safely iterate the slaves
3577 	 * list, but without holding a lock around the actual
3578 	 * call to the base driver.
3579 	 */
3580 
3581 	bond_for_each_slave(bond, slave) {
3582 		const struct net_device_ops *slave_ops = slave->dev->netdev_ops;
3583 		pr_debug("slave %p %s\n", slave, slave->dev->name);
3584 
3585 		if (slave_ops->ndo_set_mac_address == NULL) {
3586 			res = -EOPNOTSUPP;
3587 			pr_debug("EOPNOTSUPP %s\n", slave->dev->name);
3588 			goto unwind;
3589 		}
3590 
3591 		res = dev_set_mac_address(slave->dev, addr);
3592 		if (res) {
3593 			/* TODO: consider downing the slave
3594 			 * and retry ?
3595 			 * User should expect communications
3596 			 * breakage anyway until ARP finish
3597 			 * updating, so...
3598 			 */
3599 			pr_debug("err %d %s\n", res, slave->dev->name);
3600 			goto unwind;
3601 		}
3602 	}
3603 
3604 	/* success */
3605 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
3606 	return 0;
3607 
3608 unwind:
3609 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
3610 	tmp_sa.sa_family = bond_dev->type;
3611 
3612 	/* unwind from head to the slave that failed */
3613 	bond_for_each_slave_continue_reverse(bond, slave) {
3614 		int tmp_res;
3615 
3616 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
3617 		if (tmp_res) {
3618 			pr_debug("unwind err %d dev %s\n",
3619 				 tmp_res, slave->dev->name);
3620 		}
3621 	}
3622 
3623 	return res;
3624 }
3625 
3626 /**
3627  * bond_xmit_slave_id - transmit skb through slave with slave_id
3628  * @bond: bonding device that is transmitting
3629  * @skb: buffer to transmit
3630  * @slave_id: slave id up to slave_cnt-1 through which to transmit
3631  *
3632  * This function tries to transmit through slave with slave_id but in case
3633  * it fails, it tries to find the first available slave for transmission.
3634  * The skb is consumed in all cases, thus the function is void.
3635  */
3636 void bond_xmit_slave_id(struct bonding *bond, struct sk_buff *skb, int slave_id)
3637 {
3638 	struct slave *slave;
3639 	int i = slave_id;
3640 
3641 	/* Here we start from the slave with slave_id */
3642 	bond_for_each_slave_rcu(bond, slave) {
3643 		if (--i < 0) {
3644 			if (slave_can_tx(slave)) {
3645 				bond_dev_queue_xmit(bond, skb, slave->dev);
3646 				return;
3647 			}
3648 		}
3649 	}
3650 
3651 	/* Here we start from the first slave up to slave_id */
3652 	i = slave_id;
3653 	bond_for_each_slave_rcu(bond, slave) {
3654 		if (--i < 0)
3655 			break;
3656 		if (slave_can_tx(slave)) {
3657 			bond_dev_queue_xmit(bond, skb, slave->dev);
3658 			return;
3659 		}
3660 	}
3661 	/* no slave that can tx has been found */
3662 	kfree_skb(skb);
3663 }
3664 
3665 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
3666 {
3667 	struct bonding *bond = netdev_priv(bond_dev);
3668 	struct iphdr *iph = ip_hdr(skb);
3669 	struct slave *slave;
3670 
3671 	/*
3672 	 * Start with the curr_active_slave that joined the bond as the
3673 	 * default for sending IGMP traffic.  For failover purposes one
3674 	 * needs to maintain some consistency for the interface that will
3675 	 * send the join/membership reports.  The curr_active_slave found
3676 	 * will send all of this type of traffic.
3677 	 */
3678 	if (iph->protocol == IPPROTO_IGMP && skb->protocol == htons(ETH_P_IP)) {
3679 		slave = rcu_dereference(bond->curr_active_slave);
3680 		if (slave && slave_can_tx(slave))
3681 			bond_dev_queue_xmit(bond, skb, slave->dev);
3682 		else
3683 			bond_xmit_slave_id(bond, skb, 0);
3684 	} else {
3685 		bond_xmit_slave_id(bond, skb,
3686 				   bond->rr_tx_counter++ % bond->slave_cnt);
3687 	}
3688 
3689 	return NETDEV_TX_OK;
3690 }
3691 
3692 /*
3693  * in active-backup mode, we know that bond->curr_active_slave is always valid if
3694  * the bond has a usable interface.
3695  */
3696 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
3697 {
3698 	struct bonding *bond = netdev_priv(bond_dev);
3699 	struct slave *slave;
3700 
3701 	slave = rcu_dereference(bond->curr_active_slave);
3702 	if (slave)
3703 		bond_dev_queue_xmit(bond, skb, slave->dev);
3704 	else
3705 		kfree_skb(skb);
3706 
3707 	return NETDEV_TX_OK;
3708 }
3709 
3710 /*
3711  * In bond_xmit_xor() , we determine the output device by using a pre-
3712  * determined xmit_hash_policy(), If the selected device is not enabled,
3713  * find the next active slave.
3714  */
3715 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
3716 {
3717 	struct bonding *bond = netdev_priv(bond_dev);
3718 
3719 	bond_xmit_slave_id(bond, skb,
3720 			   bond->xmit_hash_policy(skb, bond->slave_cnt));
3721 
3722 	return NETDEV_TX_OK;
3723 }
3724 
3725 /* in broadcast mode, we send everything to all usable interfaces. */
3726 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
3727 {
3728 	struct bonding *bond = netdev_priv(bond_dev);
3729 	struct slave *slave = NULL;
3730 
3731 	bond_for_each_slave_rcu(bond, slave) {
3732 		if (bond_is_last_slave(bond, slave))
3733 			break;
3734 		if (IS_UP(slave->dev) && slave->link == BOND_LINK_UP) {
3735 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3736 
3737 			if (!skb2) {
3738 				pr_err("%s: Error: bond_xmit_broadcast(): skb_clone() failed\n",
3739 				       bond_dev->name);
3740 				continue;
3741 			}
3742 			/* bond_dev_queue_xmit always returns 0 */
3743 			bond_dev_queue_xmit(bond, skb2, slave->dev);
3744 		}
3745 	}
3746 	if (slave && IS_UP(slave->dev) && slave->link == BOND_LINK_UP)
3747 		bond_dev_queue_xmit(bond, skb, slave->dev);
3748 	else
3749 		kfree_skb(skb);
3750 
3751 	return NETDEV_TX_OK;
3752 }
3753 
3754 /*------------------------- Device initialization ---------------------------*/
3755 
3756 static void bond_set_xmit_hash_policy(struct bonding *bond)
3757 {
3758 	switch (bond->params.xmit_policy) {
3759 	case BOND_XMIT_POLICY_LAYER23:
3760 		bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
3761 		break;
3762 	case BOND_XMIT_POLICY_LAYER34:
3763 		bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
3764 		break;
3765 	case BOND_XMIT_POLICY_LAYER2:
3766 	default:
3767 		bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
3768 		break;
3769 	}
3770 }
3771 
3772 /*
3773  * Lookup the slave that corresponds to a qid
3774  */
3775 static inline int bond_slave_override(struct bonding *bond,
3776 				      struct sk_buff *skb)
3777 {
3778 	struct slave *slave = NULL;
3779 	struct slave *check_slave;
3780 	int res = 1;
3781 
3782 	if (!skb->queue_mapping)
3783 		return 1;
3784 
3785 	/* Find out if any slaves have the same mapping as this skb. */
3786 	bond_for_each_slave_rcu(bond, check_slave) {
3787 		if (check_slave->queue_id == skb->queue_mapping) {
3788 			slave = check_slave;
3789 			break;
3790 		}
3791 	}
3792 
3793 	/* If the slave isn't UP, use default transmit policy. */
3794 	if (slave && slave->queue_id && IS_UP(slave->dev) &&
3795 	    (slave->link == BOND_LINK_UP)) {
3796 		res = bond_dev_queue_xmit(bond, skb, slave->dev);
3797 	}
3798 
3799 	return res;
3800 }
3801 
3802 
3803 static u16 bond_select_queue(struct net_device *dev, struct sk_buff *skb)
3804 {
3805 	/*
3806 	 * This helper function exists to help dev_pick_tx get the correct
3807 	 * destination queue.  Using a helper function skips a call to
3808 	 * skb_tx_hash and will put the skbs in the queue we expect on their
3809 	 * way down to the bonding driver.
3810 	 */
3811 	u16 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
3812 
3813 	/*
3814 	 * Save the original txq to restore before passing to the driver
3815 	 */
3816 	qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
3817 
3818 	if (unlikely(txq >= dev->real_num_tx_queues)) {
3819 		do {
3820 			txq -= dev->real_num_tx_queues;
3821 		} while (txq >= dev->real_num_tx_queues);
3822 	}
3823 	return txq;
3824 }
3825 
3826 static netdev_tx_t __bond_start_xmit(struct sk_buff *skb, struct net_device *dev)
3827 {
3828 	struct bonding *bond = netdev_priv(dev);
3829 
3830 	if (TX_QUEUE_OVERRIDE(bond->params.mode)) {
3831 		if (!bond_slave_override(bond, skb))
3832 			return NETDEV_TX_OK;
3833 	}
3834 
3835 	switch (bond->params.mode) {
3836 	case BOND_MODE_ROUNDROBIN:
3837 		return bond_xmit_roundrobin(skb, dev);
3838 	case BOND_MODE_ACTIVEBACKUP:
3839 		return bond_xmit_activebackup(skb, dev);
3840 	case BOND_MODE_XOR:
3841 		return bond_xmit_xor(skb, dev);
3842 	case BOND_MODE_BROADCAST:
3843 		return bond_xmit_broadcast(skb, dev);
3844 	case BOND_MODE_8023AD:
3845 		return bond_3ad_xmit_xor(skb, dev);
3846 	case BOND_MODE_ALB:
3847 	case BOND_MODE_TLB:
3848 		return bond_alb_xmit(skb, dev);
3849 	default:
3850 		/* Should never happen, mode already checked */
3851 		pr_err("%s: Error: Unknown bonding mode %d\n",
3852 		       dev->name, bond->params.mode);
3853 		WARN_ON_ONCE(1);
3854 		kfree_skb(skb);
3855 		return NETDEV_TX_OK;
3856 	}
3857 }
3858 
3859 static netdev_tx_t bond_start_xmit(struct sk_buff *skb, struct net_device *dev)
3860 {
3861 	struct bonding *bond = netdev_priv(dev);
3862 	netdev_tx_t ret = NETDEV_TX_OK;
3863 
3864 	/*
3865 	 * If we risk deadlock from transmitting this in the
3866 	 * netpoll path, tell netpoll to queue the frame for later tx
3867 	 */
3868 	if (is_netpoll_tx_blocked(dev))
3869 		return NETDEV_TX_BUSY;
3870 
3871 	rcu_read_lock();
3872 	if (!list_empty(&bond->slave_list))
3873 		ret = __bond_start_xmit(skb, dev);
3874 	else
3875 		kfree_skb(skb);
3876 	rcu_read_unlock();
3877 
3878 	return ret;
3879 }
3880 
3881 /*
3882  * set bond mode specific net device operations
3883  */
3884 void bond_set_mode_ops(struct bonding *bond, int mode)
3885 {
3886 	struct net_device *bond_dev = bond->dev;
3887 
3888 	switch (mode) {
3889 	case BOND_MODE_ROUNDROBIN:
3890 		break;
3891 	case BOND_MODE_ACTIVEBACKUP:
3892 		break;
3893 	case BOND_MODE_XOR:
3894 		bond_set_xmit_hash_policy(bond);
3895 		break;
3896 	case BOND_MODE_BROADCAST:
3897 		break;
3898 	case BOND_MODE_8023AD:
3899 		bond_set_xmit_hash_policy(bond);
3900 		break;
3901 	case BOND_MODE_ALB:
3902 		/* FALLTHRU */
3903 	case BOND_MODE_TLB:
3904 		break;
3905 	default:
3906 		/* Should never happen, mode already checked */
3907 		pr_err("%s: Error: Unknown bonding mode %d\n",
3908 		       bond_dev->name, mode);
3909 		break;
3910 	}
3911 }
3912 
3913 static int bond_ethtool_get_settings(struct net_device *bond_dev,
3914 				     struct ethtool_cmd *ecmd)
3915 {
3916 	struct bonding *bond = netdev_priv(bond_dev);
3917 	unsigned long speed = 0;
3918 	struct slave *slave;
3919 
3920 	ecmd->duplex = DUPLEX_UNKNOWN;
3921 	ecmd->port = PORT_OTHER;
3922 
3923 	/* Since SLAVE_IS_OK returns false for all inactive or down slaves, we
3924 	 * do not need to check mode.  Though link speed might not represent
3925 	 * the true receive or transmit bandwidth (not all modes are symmetric)
3926 	 * this is an accurate maximum.
3927 	 */
3928 	read_lock(&bond->lock);
3929 	bond_for_each_slave(bond, slave) {
3930 		if (SLAVE_IS_OK(slave)) {
3931 			if (slave->speed != SPEED_UNKNOWN)
3932 				speed += slave->speed;
3933 			if (ecmd->duplex == DUPLEX_UNKNOWN &&
3934 			    slave->duplex != DUPLEX_UNKNOWN)
3935 				ecmd->duplex = slave->duplex;
3936 		}
3937 	}
3938 	ethtool_cmd_speed_set(ecmd, speed ? : SPEED_UNKNOWN);
3939 	read_unlock(&bond->lock);
3940 
3941 	return 0;
3942 }
3943 
3944 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
3945 				     struct ethtool_drvinfo *drvinfo)
3946 {
3947 	strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
3948 	strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
3949 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), "%d",
3950 		 BOND_ABI_VERSION);
3951 }
3952 
3953 static const struct ethtool_ops bond_ethtool_ops = {
3954 	.get_drvinfo		= bond_ethtool_get_drvinfo,
3955 	.get_settings		= bond_ethtool_get_settings,
3956 	.get_link		= ethtool_op_get_link,
3957 };
3958 
3959 static const struct net_device_ops bond_netdev_ops = {
3960 	.ndo_init		= bond_init,
3961 	.ndo_uninit		= bond_uninit,
3962 	.ndo_open		= bond_open,
3963 	.ndo_stop		= bond_close,
3964 	.ndo_start_xmit		= bond_start_xmit,
3965 	.ndo_select_queue	= bond_select_queue,
3966 	.ndo_get_stats64	= bond_get_stats,
3967 	.ndo_do_ioctl		= bond_do_ioctl,
3968 	.ndo_change_rx_flags	= bond_change_rx_flags,
3969 	.ndo_set_rx_mode	= bond_set_rx_mode,
3970 	.ndo_change_mtu		= bond_change_mtu,
3971 	.ndo_set_mac_address	= bond_set_mac_address,
3972 	.ndo_neigh_setup	= bond_neigh_setup,
3973 	.ndo_vlan_rx_add_vid	= bond_vlan_rx_add_vid,
3974 	.ndo_vlan_rx_kill_vid	= bond_vlan_rx_kill_vid,
3975 #ifdef CONFIG_NET_POLL_CONTROLLER
3976 	.ndo_netpoll_setup	= bond_netpoll_setup,
3977 	.ndo_netpoll_cleanup	= bond_netpoll_cleanup,
3978 	.ndo_poll_controller	= bond_poll_controller,
3979 #endif
3980 	.ndo_add_slave		= bond_enslave,
3981 	.ndo_del_slave		= bond_release,
3982 	.ndo_fix_features	= bond_fix_features,
3983 };
3984 
3985 static const struct device_type bond_type = {
3986 	.name = "bond",
3987 };
3988 
3989 static void bond_destructor(struct net_device *bond_dev)
3990 {
3991 	struct bonding *bond = netdev_priv(bond_dev);
3992 	if (bond->wq)
3993 		destroy_workqueue(bond->wq);
3994 	free_netdev(bond_dev);
3995 }
3996 
3997 static void bond_setup(struct net_device *bond_dev)
3998 {
3999 	struct bonding *bond = netdev_priv(bond_dev);
4000 
4001 	/* initialize rwlocks */
4002 	rwlock_init(&bond->lock);
4003 	rwlock_init(&bond->curr_slave_lock);
4004 	INIT_LIST_HEAD(&bond->slave_list);
4005 	bond->params = bonding_defaults;
4006 
4007 	/* Initialize pointers */
4008 	bond->dev = bond_dev;
4009 
4010 	/* Initialize the device entry points */
4011 	ether_setup(bond_dev);
4012 	bond_dev->netdev_ops = &bond_netdev_ops;
4013 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4014 	bond_set_mode_ops(bond, bond->params.mode);
4015 
4016 	bond_dev->destructor = bond_destructor;
4017 
4018 	SET_NETDEV_DEVTYPE(bond_dev, &bond_type);
4019 
4020 	/* Initialize the device options */
4021 	bond_dev->tx_queue_len = 0;
4022 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4023 	bond_dev->priv_flags |= IFF_BONDING;
4024 	bond_dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING);
4025 
4026 	/* At first, we block adding VLANs. That's the only way to
4027 	 * prevent problems that occur when adding VLANs over an
4028 	 * empty bond. The block will be removed once non-challenged
4029 	 * slaves are enslaved.
4030 	 */
4031 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4032 
4033 	/* don't acquire bond device's netif_tx_lock when
4034 	 * transmitting */
4035 	bond_dev->features |= NETIF_F_LLTX;
4036 
4037 	/* By default, we declare the bond to be fully
4038 	 * VLAN hardware accelerated capable. Special
4039 	 * care is taken in the various xmit functions
4040 	 * when there are slaves that are not hw accel
4041 	 * capable
4042 	 */
4043 
4044 	bond_dev->hw_features = BOND_VLAN_FEATURES |
4045 				NETIF_F_HW_VLAN_CTAG_TX |
4046 				NETIF_F_HW_VLAN_CTAG_RX |
4047 				NETIF_F_HW_VLAN_CTAG_FILTER;
4048 
4049 	bond_dev->hw_features &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_HW_CSUM);
4050 	bond_dev->features |= bond_dev->hw_features;
4051 }
4052 
4053 /*
4054 * Destroy a bonding device.
4055 * Must be under rtnl_lock when this function is called.
4056 */
4057 static void bond_uninit(struct net_device *bond_dev)
4058 {
4059 	struct bonding *bond = netdev_priv(bond_dev);
4060 	struct slave *slave, *tmp_slave;
4061 
4062 	bond_netpoll_cleanup(bond_dev);
4063 
4064 	/* Release the bonded slaves */
4065 	list_for_each_entry_safe(slave, tmp_slave, &bond->slave_list, list)
4066 		__bond_release_one(bond_dev, slave->dev, true);
4067 	pr_info("%s: released all slaves\n", bond_dev->name);
4068 
4069 	list_del(&bond->bond_list);
4070 
4071 	bond_debug_unregister(bond);
4072 }
4073 
4074 /*------------------------- Module initialization ---------------------------*/
4075 
4076 /*
4077  * Convert string input module parms.  Accept either the
4078  * number of the mode or its string name.  A bit complicated because
4079  * some mode names are substrings of other names, and calls from sysfs
4080  * may have whitespace in the name (trailing newlines, for example).
4081  */
4082 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl)
4083 {
4084 	int modeint = -1, i, rv;
4085 	char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4086 
4087 	for (p = (char *)buf; *p; p++)
4088 		if (!(isdigit(*p) || isspace(*p)))
4089 			break;
4090 
4091 	if (*p)
4092 		rv = sscanf(buf, "%20s", modestr);
4093 	else
4094 		rv = sscanf(buf, "%d", &modeint);
4095 
4096 	if (!rv)
4097 		return -1;
4098 
4099 	for (i = 0; tbl[i].modename; i++) {
4100 		if (modeint == tbl[i].mode)
4101 			return tbl[i].mode;
4102 		if (strcmp(modestr, tbl[i].modename) == 0)
4103 			return tbl[i].mode;
4104 	}
4105 
4106 	return -1;
4107 }
4108 
4109 static int bond_check_params(struct bond_params *params)
4110 {
4111 	int arp_validate_value, fail_over_mac_value, primary_reselect_value, i;
4112 	int arp_all_targets_value;
4113 
4114 	/*
4115 	 * Convert string parameters.
4116 	 */
4117 	if (mode) {
4118 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4119 		if (bond_mode == -1) {
4120 			pr_err("Error: Invalid bonding mode \"%s\"\n",
4121 			       mode == NULL ? "NULL" : mode);
4122 			return -EINVAL;
4123 		}
4124 	}
4125 
4126 	if (xmit_hash_policy) {
4127 		if ((bond_mode != BOND_MODE_XOR) &&
4128 		    (bond_mode != BOND_MODE_8023AD)) {
4129 			pr_info("xmit_hash_policy param is irrelevant in mode %s\n",
4130 			       bond_mode_name(bond_mode));
4131 		} else {
4132 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4133 							xmit_hashtype_tbl);
4134 			if (xmit_hashtype == -1) {
4135 				pr_err("Error: Invalid xmit_hash_policy \"%s\"\n",
4136 				       xmit_hash_policy == NULL ? "NULL" :
4137 				       xmit_hash_policy);
4138 				return -EINVAL;
4139 			}
4140 		}
4141 	}
4142 
4143 	if (lacp_rate) {
4144 		if (bond_mode != BOND_MODE_8023AD) {
4145 			pr_info("lacp_rate param is irrelevant in mode %s\n",
4146 				bond_mode_name(bond_mode));
4147 		} else {
4148 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4149 			if (lacp_fast == -1) {
4150 				pr_err("Error: Invalid lacp rate \"%s\"\n",
4151 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4152 				return -EINVAL;
4153 			}
4154 		}
4155 	}
4156 
4157 	if (ad_select) {
4158 		params->ad_select = bond_parse_parm(ad_select, ad_select_tbl);
4159 		if (params->ad_select == -1) {
4160 			pr_err("Error: Invalid ad_select \"%s\"\n",
4161 			       ad_select == NULL ? "NULL" : ad_select);
4162 			return -EINVAL;
4163 		}
4164 
4165 		if (bond_mode != BOND_MODE_8023AD) {
4166 			pr_warning("ad_select param only affects 802.3ad mode\n");
4167 		}
4168 	} else {
4169 		params->ad_select = BOND_AD_STABLE;
4170 	}
4171 
4172 	if (max_bonds < 0) {
4173 		pr_warning("Warning: max_bonds (%d) not in range %d-%d, so it was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4174 			   max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4175 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4176 	}
4177 
4178 	if (miimon < 0) {
4179 		pr_warning("Warning: miimon module parameter (%d), not in range 0-%d, so it was reset to %d\n",
4180 			   miimon, INT_MAX, BOND_LINK_MON_INTERV);
4181 		miimon = BOND_LINK_MON_INTERV;
4182 	}
4183 
4184 	if (updelay < 0) {
4185 		pr_warning("Warning: updelay module parameter (%d), not in range 0-%d, so it was reset to 0\n",
4186 			   updelay, INT_MAX);
4187 		updelay = 0;
4188 	}
4189 
4190 	if (downdelay < 0) {
4191 		pr_warning("Warning: downdelay module parameter (%d), not in range 0-%d, so it was reset to 0\n",
4192 			   downdelay, INT_MAX);
4193 		downdelay = 0;
4194 	}
4195 
4196 	if ((use_carrier != 0) && (use_carrier != 1)) {
4197 		pr_warning("Warning: use_carrier module parameter (%d), not of valid value (0/1), so it was set to 1\n",
4198 			   use_carrier);
4199 		use_carrier = 1;
4200 	}
4201 
4202 	if (num_peer_notif < 0 || num_peer_notif > 255) {
4203 		pr_warning("Warning: num_grat_arp/num_unsol_na (%d) not in range 0-255 so it was reset to 1\n",
4204 			   num_peer_notif);
4205 		num_peer_notif = 1;
4206 	}
4207 
4208 	/* reset values for 802.3ad */
4209 	if (bond_mode == BOND_MODE_8023AD) {
4210 		if (!miimon) {
4211 			pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure, speed and duplex which are essential for 802.3ad operation\n");
4212 			pr_warning("Forcing miimon to 100msec\n");
4213 			miimon = 100;
4214 		}
4215 	}
4216 
4217 	if (tx_queues < 1 || tx_queues > 255) {
4218 		pr_warning("Warning: tx_queues (%d) should be between "
4219 			   "1 and 255, resetting to %d\n",
4220 			   tx_queues, BOND_DEFAULT_TX_QUEUES);
4221 		tx_queues = BOND_DEFAULT_TX_QUEUES;
4222 	}
4223 
4224 	if ((all_slaves_active != 0) && (all_slaves_active != 1)) {
4225 		pr_warning("Warning: all_slaves_active module parameter (%d), "
4226 			   "not of valid value (0/1), so it was set to "
4227 			   "0\n", all_slaves_active);
4228 		all_slaves_active = 0;
4229 	}
4230 
4231 	if (resend_igmp < 0 || resend_igmp > 255) {
4232 		pr_warning("Warning: resend_igmp (%d) should be between "
4233 			   "0 and 255, resetting to %d\n",
4234 			   resend_igmp, BOND_DEFAULT_RESEND_IGMP);
4235 		resend_igmp = BOND_DEFAULT_RESEND_IGMP;
4236 	}
4237 
4238 	/* reset values for TLB/ALB */
4239 	if ((bond_mode == BOND_MODE_TLB) ||
4240 	    (bond_mode == BOND_MODE_ALB)) {
4241 		if (!miimon) {
4242 			pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure and link speed which are essential for TLB/ALB load balancing\n");
4243 			pr_warning("Forcing miimon to 100msec\n");
4244 			miimon = 100;
4245 		}
4246 	}
4247 
4248 	if (bond_mode == BOND_MODE_ALB) {
4249 		pr_notice("In ALB mode you might experience client disconnections upon reconnection of a link if the bonding module updelay parameter (%d msec) is incompatible with the forwarding delay time of the switch\n",
4250 			  updelay);
4251 	}
4252 
4253 	if (!miimon) {
4254 		if (updelay || downdelay) {
4255 			/* just warn the user the up/down delay will have
4256 			 * no effect since miimon is zero...
4257 			 */
4258 			pr_warning("Warning: miimon module parameter not set and updelay (%d) or downdelay (%d) module parameter is set; updelay and downdelay have no effect unless miimon is set\n",
4259 				   updelay, downdelay);
4260 		}
4261 	} else {
4262 		/* don't allow arp monitoring */
4263 		if (arp_interval) {
4264 			pr_warning("Warning: miimon (%d) and arp_interval (%d) can't be used simultaneously, disabling ARP monitoring\n",
4265 				   miimon, arp_interval);
4266 			arp_interval = 0;
4267 		}
4268 
4269 		if ((updelay % miimon) != 0) {
4270 			pr_warning("Warning: updelay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n",
4271 				   updelay, miimon,
4272 				   (updelay / miimon) * miimon);
4273 		}
4274 
4275 		updelay /= miimon;
4276 
4277 		if ((downdelay % miimon) != 0) {
4278 			pr_warning("Warning: downdelay (%d) is not a multiple of miimon (%d), downdelay rounded to %d ms\n",
4279 				   downdelay, miimon,
4280 				   (downdelay / miimon) * miimon);
4281 		}
4282 
4283 		downdelay /= miimon;
4284 	}
4285 
4286 	if (arp_interval < 0) {
4287 		pr_warning("Warning: arp_interval module parameter (%d) , not in range 0-%d, so it was reset to %d\n",
4288 			   arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4289 		arp_interval = BOND_LINK_ARP_INTERV;
4290 	}
4291 
4292 	for (arp_ip_count = 0, i = 0;
4293 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[i]; i++) {
4294 		/* not complete check, but should be good enough to
4295 		   catch mistakes */
4296 		__be32 ip = in_aton(arp_ip_target[i]);
4297 		if (!isdigit(arp_ip_target[i][0]) || ip == 0 ||
4298 		    ip == htonl(INADDR_BROADCAST)) {
4299 			pr_warning("Warning: bad arp_ip_target module parameter (%s), ARP monitoring will not be performed\n",
4300 				   arp_ip_target[i]);
4301 			arp_interval = 0;
4302 		} else {
4303 			if (bond_get_targets_ip(arp_target, ip) == -1)
4304 				arp_target[arp_ip_count++] = ip;
4305 			else
4306 				pr_warning("Warning: duplicate address %pI4 in arp_ip_target, skipping\n",
4307 					   &ip);
4308 		}
4309 	}
4310 
4311 	if (arp_interval && !arp_ip_count) {
4312 		/* don't allow arping if no arp_ip_target given... */
4313 		pr_warning("Warning: arp_interval module parameter (%d) specified without providing an arp_ip_target parameter, arp_interval was reset to 0\n",
4314 			   arp_interval);
4315 		arp_interval = 0;
4316 	}
4317 
4318 	if (arp_validate) {
4319 		if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4320 			pr_err("arp_validate only supported in active-backup mode\n");
4321 			return -EINVAL;
4322 		}
4323 		if (!arp_interval) {
4324 			pr_err("arp_validate requires arp_interval\n");
4325 			return -EINVAL;
4326 		}
4327 
4328 		arp_validate_value = bond_parse_parm(arp_validate,
4329 						     arp_validate_tbl);
4330 		if (arp_validate_value == -1) {
4331 			pr_err("Error: invalid arp_validate \"%s\"\n",
4332 			       arp_validate == NULL ? "NULL" : arp_validate);
4333 			return -EINVAL;
4334 		}
4335 	} else
4336 		arp_validate_value = 0;
4337 
4338 	arp_all_targets_value = 0;
4339 	if (arp_all_targets) {
4340 		arp_all_targets_value = bond_parse_parm(arp_all_targets,
4341 							arp_all_targets_tbl);
4342 
4343 		if (arp_all_targets_value == -1) {
4344 			pr_err("Error: invalid arp_all_targets_value \"%s\"\n",
4345 			       arp_all_targets);
4346 			arp_all_targets_value = 0;
4347 		}
4348 	}
4349 
4350 	if (miimon) {
4351 		pr_info("MII link monitoring set to %d ms\n", miimon);
4352 	} else if (arp_interval) {
4353 		pr_info("ARP monitoring set to %d ms, validate %s, with %d target(s):",
4354 			arp_interval,
4355 			arp_validate_tbl[arp_validate_value].modename,
4356 			arp_ip_count);
4357 
4358 		for (i = 0; i < arp_ip_count; i++)
4359 			pr_info(" %s", arp_ip_target[i]);
4360 
4361 		pr_info("\n");
4362 
4363 	} else if (max_bonds) {
4364 		/* miimon and arp_interval not set, we need one so things
4365 		 * work as expected, see bonding.txt for details
4366 		 */
4367 		pr_debug("Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details.\n");
4368 	}
4369 
4370 	if (primary && !USES_PRIMARY(bond_mode)) {
4371 		/* currently, using a primary only makes sense
4372 		 * in active backup, TLB or ALB modes
4373 		 */
4374 		pr_warning("Warning: %s primary device specified but has no effect in %s mode\n",
4375 			   primary, bond_mode_name(bond_mode));
4376 		primary = NULL;
4377 	}
4378 
4379 	if (primary && primary_reselect) {
4380 		primary_reselect_value = bond_parse_parm(primary_reselect,
4381 							 pri_reselect_tbl);
4382 		if (primary_reselect_value == -1) {
4383 			pr_err("Error: Invalid primary_reselect \"%s\"\n",
4384 			       primary_reselect ==
4385 					NULL ? "NULL" : primary_reselect);
4386 			return -EINVAL;
4387 		}
4388 	} else {
4389 		primary_reselect_value = BOND_PRI_RESELECT_ALWAYS;
4390 	}
4391 
4392 	if (fail_over_mac) {
4393 		fail_over_mac_value = bond_parse_parm(fail_over_mac,
4394 						      fail_over_mac_tbl);
4395 		if (fail_over_mac_value == -1) {
4396 			pr_err("Error: invalid fail_over_mac \"%s\"\n",
4397 			       arp_validate == NULL ? "NULL" : arp_validate);
4398 			return -EINVAL;
4399 		}
4400 
4401 		if (bond_mode != BOND_MODE_ACTIVEBACKUP)
4402 			pr_warning("Warning: fail_over_mac only affects active-backup mode.\n");
4403 	} else {
4404 		fail_over_mac_value = BOND_FOM_NONE;
4405 	}
4406 
4407 	/* fill params struct with the proper values */
4408 	params->mode = bond_mode;
4409 	params->xmit_policy = xmit_hashtype;
4410 	params->miimon = miimon;
4411 	params->num_peer_notif = num_peer_notif;
4412 	params->arp_interval = arp_interval;
4413 	params->arp_validate = arp_validate_value;
4414 	params->arp_all_targets = arp_all_targets_value;
4415 	params->updelay = updelay;
4416 	params->downdelay = downdelay;
4417 	params->use_carrier = use_carrier;
4418 	params->lacp_fast = lacp_fast;
4419 	params->primary[0] = 0;
4420 	params->primary_reselect = primary_reselect_value;
4421 	params->fail_over_mac = fail_over_mac_value;
4422 	params->tx_queues = tx_queues;
4423 	params->all_slaves_active = all_slaves_active;
4424 	params->resend_igmp = resend_igmp;
4425 	params->min_links = min_links;
4426 	params->lp_interval = BOND_ALB_DEFAULT_LP_INTERVAL;
4427 
4428 	if (primary) {
4429 		strncpy(params->primary, primary, IFNAMSIZ);
4430 		params->primary[IFNAMSIZ - 1] = 0;
4431 	}
4432 
4433 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4434 
4435 	return 0;
4436 }
4437 
4438 static struct lock_class_key bonding_netdev_xmit_lock_key;
4439 static struct lock_class_key bonding_netdev_addr_lock_key;
4440 static struct lock_class_key bonding_tx_busylock_key;
4441 
4442 static void bond_set_lockdep_class_one(struct net_device *dev,
4443 				       struct netdev_queue *txq,
4444 				       void *_unused)
4445 {
4446 	lockdep_set_class(&txq->_xmit_lock,
4447 			  &bonding_netdev_xmit_lock_key);
4448 }
4449 
4450 static void bond_set_lockdep_class(struct net_device *dev)
4451 {
4452 	lockdep_set_class(&dev->addr_list_lock,
4453 			  &bonding_netdev_addr_lock_key);
4454 	netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL);
4455 	dev->qdisc_tx_busylock = &bonding_tx_busylock_key;
4456 }
4457 
4458 /*
4459  * Called from registration process
4460  */
4461 static int bond_init(struct net_device *bond_dev)
4462 {
4463 	struct bonding *bond = netdev_priv(bond_dev);
4464 	struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id);
4465 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
4466 
4467 	pr_debug("Begin bond_init for %s\n", bond_dev->name);
4468 
4469 	/*
4470 	 * Initialize locks that may be required during
4471 	 * en/deslave operations.  All of the bond_open work
4472 	 * (of which this is part) should really be moved to
4473 	 * a phase prior to dev_open
4474 	 */
4475 	spin_lock_init(&(bond_info->tx_hashtbl_lock));
4476 	spin_lock_init(&(bond_info->rx_hashtbl_lock));
4477 
4478 	bond->wq = create_singlethread_workqueue(bond_dev->name);
4479 	if (!bond->wq)
4480 		return -ENOMEM;
4481 
4482 	bond_set_lockdep_class(bond_dev);
4483 
4484 	list_add_tail(&bond->bond_list, &bn->dev_list);
4485 
4486 	bond_prepare_sysfs_group(bond);
4487 
4488 	bond_debug_register(bond);
4489 
4490 	/* Ensure valid dev_addr */
4491 	if (is_zero_ether_addr(bond_dev->dev_addr) &&
4492 	    bond_dev->addr_assign_type == NET_ADDR_PERM)
4493 		eth_hw_addr_random(bond_dev);
4494 
4495 	return 0;
4496 }
4497 
4498 static int bond_validate(struct nlattr *tb[], struct nlattr *data[])
4499 {
4500 	if (tb[IFLA_ADDRESS]) {
4501 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
4502 			return -EINVAL;
4503 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
4504 			return -EADDRNOTAVAIL;
4505 	}
4506 	return 0;
4507 }
4508 
4509 static unsigned int bond_get_num_tx_queues(void)
4510 {
4511 	return tx_queues;
4512 }
4513 
4514 static struct rtnl_link_ops bond_link_ops __read_mostly = {
4515 	.kind			= "bond",
4516 	.priv_size		= sizeof(struct bonding),
4517 	.setup			= bond_setup,
4518 	.validate		= bond_validate,
4519 	.get_num_tx_queues	= bond_get_num_tx_queues,
4520 	.get_num_rx_queues	= bond_get_num_tx_queues, /* Use the same number
4521 							     as for TX queues */
4522 };
4523 
4524 /* Create a new bond based on the specified name and bonding parameters.
4525  * If name is NULL, obtain a suitable "bond%d" name for us.
4526  * Caller must NOT hold rtnl_lock; we need to release it here before we
4527  * set up our sysfs entries.
4528  */
4529 int bond_create(struct net *net, const char *name)
4530 {
4531 	struct net_device *bond_dev;
4532 	int res;
4533 
4534 	rtnl_lock();
4535 
4536 	bond_dev = alloc_netdev_mq(sizeof(struct bonding),
4537 				   name ? name : "bond%d",
4538 				   bond_setup, tx_queues);
4539 	if (!bond_dev) {
4540 		pr_err("%s: eek! can't alloc netdev!\n", name);
4541 		rtnl_unlock();
4542 		return -ENOMEM;
4543 	}
4544 
4545 	dev_net_set(bond_dev, net);
4546 	bond_dev->rtnl_link_ops = &bond_link_ops;
4547 
4548 	res = register_netdevice(bond_dev);
4549 
4550 	netif_carrier_off(bond_dev);
4551 
4552 	rtnl_unlock();
4553 	if (res < 0)
4554 		bond_destructor(bond_dev);
4555 	return res;
4556 }
4557 
4558 static int __net_init bond_net_init(struct net *net)
4559 {
4560 	struct bond_net *bn = net_generic(net, bond_net_id);
4561 
4562 	bn->net = net;
4563 	INIT_LIST_HEAD(&bn->dev_list);
4564 
4565 	bond_create_proc_dir(bn);
4566 	bond_create_sysfs(bn);
4567 
4568 	return 0;
4569 }
4570 
4571 static void __net_exit bond_net_exit(struct net *net)
4572 {
4573 	struct bond_net *bn = net_generic(net, bond_net_id);
4574 	struct bonding *bond, *tmp_bond;
4575 	LIST_HEAD(list);
4576 
4577 	bond_destroy_sysfs(bn);
4578 	bond_destroy_proc_dir(bn);
4579 
4580 	/* Kill off any bonds created after unregistering bond rtnl ops */
4581 	rtnl_lock();
4582 	list_for_each_entry_safe(bond, tmp_bond, &bn->dev_list, bond_list)
4583 		unregister_netdevice_queue(bond->dev, &list);
4584 	unregister_netdevice_many(&list);
4585 	rtnl_unlock();
4586 }
4587 
4588 static struct pernet_operations bond_net_ops = {
4589 	.init = bond_net_init,
4590 	.exit = bond_net_exit,
4591 	.id   = &bond_net_id,
4592 	.size = sizeof(struct bond_net),
4593 };
4594 
4595 static int __init bonding_init(void)
4596 {
4597 	int i;
4598 	int res;
4599 
4600 	pr_info("%s", bond_version);
4601 
4602 	res = bond_check_params(&bonding_defaults);
4603 	if (res)
4604 		goto out;
4605 
4606 	res = register_pernet_subsys(&bond_net_ops);
4607 	if (res)
4608 		goto out;
4609 
4610 	res = rtnl_link_register(&bond_link_ops);
4611 	if (res)
4612 		goto err_link;
4613 
4614 	bond_create_debugfs();
4615 
4616 	for (i = 0; i < max_bonds; i++) {
4617 		res = bond_create(&init_net, NULL);
4618 		if (res)
4619 			goto err;
4620 	}
4621 
4622 	register_netdevice_notifier(&bond_netdev_notifier);
4623 out:
4624 	return res;
4625 err:
4626 	rtnl_link_unregister(&bond_link_ops);
4627 err_link:
4628 	unregister_pernet_subsys(&bond_net_ops);
4629 	goto out;
4630 
4631 }
4632 
4633 static void __exit bonding_exit(void)
4634 {
4635 	unregister_netdevice_notifier(&bond_netdev_notifier);
4636 
4637 	bond_destroy_debugfs();
4638 
4639 	rtnl_link_unregister(&bond_link_ops);
4640 	unregister_pernet_subsys(&bond_net_ops);
4641 
4642 #ifdef CONFIG_NET_POLL_CONTROLLER
4643 	/*
4644 	 * Make sure we don't have an imbalance on our netpoll blocking
4645 	 */
4646 	WARN_ON(atomic_read(&netpoll_block_tx));
4647 #endif
4648 }
4649 
4650 module_init(bonding_init);
4651 module_exit(bonding_exit);
4652 MODULE_LICENSE("GPL");
4653 MODULE_VERSION(DRV_VERSION);
4654 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
4655 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
4656 MODULE_ALIAS_RTNL_LINK("bond");
4657