1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/fcntl.h> 40 #include <linux/interrupt.h> 41 #include <linux/ptrace.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <net/ip.h> 45 #include <linux/ip.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/init.h> 51 #include <linux/timer.h> 52 #include <linux/socket.h> 53 #include <linux/ctype.h> 54 #include <linux/inet.h> 55 #include <linux/bitops.h> 56 #include <linux/io.h> 57 #include <asm/dma.h> 58 #include <linux/uaccess.h> 59 #include <linux/errno.h> 60 #include <linux/netdevice.h> 61 #include <linux/inetdevice.h> 62 #include <linux/igmp.h> 63 #include <linux/etherdevice.h> 64 #include <linux/skbuff.h> 65 #include <net/sock.h> 66 #include <linux/rtnetlink.h> 67 #include <linux/smp.h> 68 #include <linux/if_ether.h> 69 #include <net/arp.h> 70 #include <linux/mii.h> 71 #include <linux/ethtool.h> 72 #include <linux/if_vlan.h> 73 #include <linux/if_bonding.h> 74 #include <linux/jiffies.h> 75 #include <linux/preempt.h> 76 #include <net/route.h> 77 #include <net/net_namespace.h> 78 #include <net/netns/generic.h> 79 #include <net/pkt_sched.h> 80 #include "bonding.h" 81 #include "bond_3ad.h" 82 #include "bond_alb.h" 83 84 /*---------------------------- Module parameters ----------------------------*/ 85 86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 87 #define BOND_LINK_MON_INTERV 0 88 #define BOND_LINK_ARP_INTERV 0 89 90 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 91 static int tx_queues = BOND_DEFAULT_TX_QUEUES; 92 static int num_peer_notif = 1; 93 static int miimon = BOND_LINK_MON_INTERV; 94 static int updelay; 95 static int downdelay; 96 static int use_carrier = 1; 97 static char *mode; 98 static char *primary; 99 static char *primary_reselect; 100 static char *lacp_rate; 101 static int min_links; 102 static char *ad_select; 103 static char *xmit_hash_policy; 104 static int arp_interval = BOND_LINK_ARP_INTERV; 105 static char *arp_ip_target[BOND_MAX_ARP_TARGETS]; 106 static char *arp_validate; 107 static char *fail_over_mac; 108 static int all_slaves_active = 0; 109 static struct bond_params bonding_defaults; 110 static int resend_igmp = BOND_DEFAULT_RESEND_IGMP; 111 112 module_param(max_bonds, int, 0); 113 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 114 module_param(tx_queues, int, 0); 115 MODULE_PARM_DESC(tx_queues, "Max number of transmit queues (default = 16)"); 116 module_param_named(num_grat_arp, num_peer_notif, int, 0644); 117 MODULE_PARM_DESC(num_grat_arp, "Number of peer notifications to send on " 118 "failover event (alias of num_unsol_na)"); 119 module_param_named(num_unsol_na, num_peer_notif, int, 0644); 120 MODULE_PARM_DESC(num_unsol_na, "Number of peer notifications to send on " 121 "failover event (alias of num_grat_arp)"); 122 module_param(miimon, int, 0); 123 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 124 module_param(updelay, int, 0); 125 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 126 module_param(downdelay, int, 0); 127 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 128 "in milliseconds"); 129 module_param(use_carrier, int, 0); 130 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 131 "0 for off, 1 for on (default)"); 132 module_param(mode, charp, 0); 133 MODULE_PARM_DESC(mode, "Mode of operation; 0 for balance-rr, " 134 "1 for active-backup, 2 for balance-xor, " 135 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 136 "6 for balance-alb"); 137 module_param(primary, charp, 0); 138 MODULE_PARM_DESC(primary, "Primary network device to use"); 139 module_param(primary_reselect, charp, 0); 140 MODULE_PARM_DESC(primary_reselect, "Reselect primary slave " 141 "once it comes up; " 142 "0 for always (default), " 143 "1 for only if speed of primary is " 144 "better, " 145 "2 for only on active slave " 146 "failure"); 147 module_param(lacp_rate, charp, 0); 148 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner; " 149 "0 for slow, 1 for fast"); 150 module_param(ad_select, charp, 0); 151 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic; " 152 "0 for stable (default), 1 for bandwidth, " 153 "2 for count"); 154 module_param(min_links, int, 0); 155 MODULE_PARM_DESC(min_links, "Minimum number of available links before turning on carrier"); 156 157 module_param(xmit_hash_policy, charp, 0); 158 MODULE_PARM_DESC(xmit_hash_policy, "balance-xor and 802.3ad hashing method; " 159 "0 for layer 2 (default), 1 for layer 3+4, " 160 "2 for layer 2+3"); 161 module_param(arp_interval, int, 0); 162 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 163 module_param_array(arp_ip_target, charp, NULL, 0); 164 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 165 module_param(arp_validate, charp, 0); 166 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes; " 167 "0 for none (default), 1 for active, " 168 "2 for backup, 3 for all"); 169 module_param(fail_over_mac, charp, 0); 170 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to " 171 "the same MAC; 0 for none (default), " 172 "1 for active, 2 for follow"); 173 module_param(all_slaves_active, int, 0); 174 MODULE_PARM_DESC(all_slaves_active, "Keep all frames received on an interface" 175 "by setting active flag for all slaves; " 176 "0 for never (default), 1 for always."); 177 module_param(resend_igmp, int, 0); 178 MODULE_PARM_DESC(resend_igmp, "Number of IGMP membership reports to send on " 179 "link failure"); 180 181 /*----------------------------- Global variables ----------------------------*/ 182 183 #ifdef CONFIG_NET_POLL_CONTROLLER 184 atomic_t netpoll_block_tx = ATOMIC_INIT(0); 185 #endif 186 187 int bond_net_id __read_mostly; 188 189 static __be32 arp_target[BOND_MAX_ARP_TARGETS]; 190 static int arp_ip_count; 191 static int bond_mode = BOND_MODE_ROUNDROBIN; 192 static int xmit_hashtype = BOND_XMIT_POLICY_LAYER2; 193 static int lacp_fast; 194 195 const struct bond_parm_tbl bond_lacp_tbl[] = { 196 { "slow", AD_LACP_SLOW}, 197 { "fast", AD_LACP_FAST}, 198 { NULL, -1}, 199 }; 200 201 const struct bond_parm_tbl bond_mode_tbl[] = { 202 { "balance-rr", BOND_MODE_ROUNDROBIN}, 203 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 204 { "balance-xor", BOND_MODE_XOR}, 205 { "broadcast", BOND_MODE_BROADCAST}, 206 { "802.3ad", BOND_MODE_8023AD}, 207 { "balance-tlb", BOND_MODE_TLB}, 208 { "balance-alb", BOND_MODE_ALB}, 209 { NULL, -1}, 210 }; 211 212 const struct bond_parm_tbl xmit_hashtype_tbl[] = { 213 { "layer2", BOND_XMIT_POLICY_LAYER2}, 214 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 215 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 216 { NULL, -1}, 217 }; 218 219 const struct bond_parm_tbl arp_validate_tbl[] = { 220 { "none", BOND_ARP_VALIDATE_NONE}, 221 { "active", BOND_ARP_VALIDATE_ACTIVE}, 222 { "backup", BOND_ARP_VALIDATE_BACKUP}, 223 { "all", BOND_ARP_VALIDATE_ALL}, 224 { NULL, -1}, 225 }; 226 227 const struct bond_parm_tbl fail_over_mac_tbl[] = { 228 { "none", BOND_FOM_NONE}, 229 { "active", BOND_FOM_ACTIVE}, 230 { "follow", BOND_FOM_FOLLOW}, 231 { NULL, -1}, 232 }; 233 234 const struct bond_parm_tbl pri_reselect_tbl[] = { 235 { "always", BOND_PRI_RESELECT_ALWAYS}, 236 { "better", BOND_PRI_RESELECT_BETTER}, 237 { "failure", BOND_PRI_RESELECT_FAILURE}, 238 { NULL, -1}, 239 }; 240 241 struct bond_parm_tbl ad_select_tbl[] = { 242 { "stable", BOND_AD_STABLE}, 243 { "bandwidth", BOND_AD_BANDWIDTH}, 244 { "count", BOND_AD_COUNT}, 245 { NULL, -1}, 246 }; 247 248 /*-------------------------- Forward declarations ---------------------------*/ 249 250 static int bond_init(struct net_device *bond_dev); 251 static void bond_uninit(struct net_device *bond_dev); 252 253 /*---------------------------- General routines -----------------------------*/ 254 255 const char *bond_mode_name(int mode) 256 { 257 static const char *names[] = { 258 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)", 259 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)", 260 [BOND_MODE_XOR] = "load balancing (xor)", 261 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)", 262 [BOND_MODE_8023AD] = "IEEE 802.3ad Dynamic link aggregation", 263 [BOND_MODE_TLB] = "transmit load balancing", 264 [BOND_MODE_ALB] = "adaptive load balancing", 265 }; 266 267 if (mode < 0 || mode > BOND_MODE_ALB) 268 return "unknown"; 269 270 return names[mode]; 271 } 272 273 /*---------------------------------- VLAN -----------------------------------*/ 274 275 /** 276 * bond_add_vlan - add a new vlan id on bond 277 * @bond: bond that got the notification 278 * @vlan_id: the vlan id to add 279 * 280 * Returns -ENOMEM if allocation failed. 281 */ 282 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 283 { 284 struct vlan_entry *vlan; 285 286 pr_debug("bond: %s, vlan id %d\n", 287 (bond ? bond->dev->name : "None"), vlan_id); 288 289 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL); 290 if (!vlan) 291 return -ENOMEM; 292 293 INIT_LIST_HEAD(&vlan->vlan_list); 294 vlan->vlan_id = vlan_id; 295 296 write_lock_bh(&bond->lock); 297 298 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 299 300 write_unlock_bh(&bond->lock); 301 302 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 303 304 return 0; 305 } 306 307 /** 308 * bond_del_vlan - delete a vlan id from bond 309 * @bond: bond that got the notification 310 * @vlan_id: the vlan id to delete 311 * 312 * returns -ENODEV if @vlan_id was not found in @bond. 313 */ 314 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 315 { 316 struct vlan_entry *vlan; 317 int res = -ENODEV; 318 319 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 320 321 block_netpoll_tx(); 322 write_lock_bh(&bond->lock); 323 324 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 325 if (vlan->vlan_id == vlan_id) { 326 list_del(&vlan->vlan_list); 327 328 if (bond_is_lb(bond)) 329 bond_alb_clear_vlan(bond, vlan_id); 330 331 pr_debug("removed VLAN ID %d from bond %s\n", 332 vlan_id, bond->dev->name); 333 334 kfree(vlan); 335 336 res = 0; 337 goto out; 338 } 339 } 340 341 pr_debug("couldn't find VLAN ID %d in bond %s\n", 342 vlan_id, bond->dev->name); 343 344 out: 345 write_unlock_bh(&bond->lock); 346 unblock_netpoll_tx(); 347 return res; 348 } 349 350 /** 351 * bond_next_vlan - safely skip to the next item in the vlans list. 352 * @bond: the bond we're working on 353 * @curr: item we're advancing from 354 * 355 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 356 * or @curr->next otherwise (even if it is @curr itself again). 357 * 358 * Caller must hold bond->lock 359 */ 360 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 361 { 362 struct vlan_entry *next, *last; 363 364 if (list_empty(&bond->vlan_list)) 365 return NULL; 366 367 if (!curr) { 368 next = list_entry(bond->vlan_list.next, 369 struct vlan_entry, vlan_list); 370 } else { 371 last = list_entry(bond->vlan_list.prev, 372 struct vlan_entry, vlan_list); 373 if (last == curr) { 374 next = list_entry(bond->vlan_list.next, 375 struct vlan_entry, vlan_list); 376 } else { 377 next = list_entry(curr->vlan_list.next, 378 struct vlan_entry, vlan_list); 379 } 380 } 381 382 return next; 383 } 384 385 /** 386 * bond_dev_queue_xmit - Prepare skb for xmit. 387 * 388 * @bond: bond device that got this skb for tx. 389 * @skb: hw accel VLAN tagged skb to transmit 390 * @slave_dev: slave that is supposed to xmit this skbuff 391 */ 392 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, 393 struct net_device *slave_dev) 394 { 395 skb->dev = slave_dev; 396 397 BUILD_BUG_ON(sizeof(skb->queue_mapping) != 398 sizeof(qdisc_skb_cb(skb)->slave_dev_queue_mapping)); 399 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 400 401 if (unlikely(netpoll_tx_running(bond->dev))) 402 bond_netpoll_send_skb(bond_get_slave_by_dev(bond, slave_dev), skb); 403 else 404 dev_queue_xmit(skb); 405 406 return 0; 407 } 408 409 /* 410 * In the following 2 functions, bond_vlan_rx_add_vid and bond_vlan_rx_kill_vid, 411 * We don't protect the slave list iteration with a lock because: 412 * a. This operation is performed in IOCTL context, 413 * b. The operation is protected by the RTNL semaphore in the 8021q code, 414 * c. Holding a lock with BH disabled while directly calling a base driver 415 * entry point is generally a BAD idea. 416 * 417 * The design of synchronization/protection for this operation in the 8021q 418 * module is good for one or more VLAN devices over a single physical device 419 * and cannot be extended for a teaming solution like bonding, so there is a 420 * potential race condition here where a net device from the vlan group might 421 * be referenced (either by a base driver or the 8021q code) while it is being 422 * removed from the system. However, it turns out we're not making matters 423 * worse, and if it works for regular VLAN usage it will work here too. 424 */ 425 426 /** 427 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 428 * @bond_dev: bonding net device that got called 429 * @vid: vlan id being added 430 */ 431 static int bond_vlan_rx_add_vid(struct net_device *bond_dev, 432 __be16 proto, u16 vid) 433 { 434 struct bonding *bond = netdev_priv(bond_dev); 435 struct slave *slave, *stop_at; 436 int i, res; 437 438 bond_for_each_slave(bond, slave, i) { 439 res = vlan_vid_add(slave->dev, proto, vid); 440 if (res) 441 goto unwind; 442 } 443 444 res = bond_add_vlan(bond, vid); 445 if (res) { 446 pr_err("%s: Error: Failed to add vlan id %d\n", 447 bond_dev->name, vid); 448 return res; 449 } 450 451 return 0; 452 453 unwind: 454 /* unwind from head to the slave that failed */ 455 stop_at = slave; 456 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) 457 vlan_vid_del(slave->dev, proto, vid); 458 459 return res; 460 } 461 462 /** 463 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 464 * @bond_dev: bonding net device that got called 465 * @vid: vlan id being removed 466 */ 467 static int bond_vlan_rx_kill_vid(struct net_device *bond_dev, 468 __be16 proto, u16 vid) 469 { 470 struct bonding *bond = netdev_priv(bond_dev); 471 struct slave *slave; 472 int i, res; 473 474 bond_for_each_slave(bond, slave, i) 475 vlan_vid_del(slave->dev, proto, vid); 476 477 res = bond_del_vlan(bond, vid); 478 if (res) { 479 pr_err("%s: Error: Failed to remove vlan id %d\n", 480 bond_dev->name, vid); 481 return res; 482 } 483 484 return 0; 485 } 486 487 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 488 { 489 struct vlan_entry *vlan; 490 int res; 491 492 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 493 res = vlan_vid_add(slave_dev, htons(ETH_P_8021Q), 494 vlan->vlan_id); 495 if (res) 496 pr_warning("%s: Failed to add vlan id %d to device %s\n", 497 bond->dev->name, vlan->vlan_id, 498 slave_dev->name); 499 } 500 } 501 502 static void bond_del_vlans_from_slave(struct bonding *bond, 503 struct net_device *slave_dev) 504 { 505 struct vlan_entry *vlan; 506 507 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 508 if (!vlan->vlan_id) 509 continue; 510 vlan_vid_del(slave_dev, htons(ETH_P_8021Q), vlan->vlan_id); 511 } 512 } 513 514 /*------------------------------- Link status -------------------------------*/ 515 516 /* 517 * Set the carrier state for the master according to the state of its 518 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 519 * do special 802.3ad magic. 520 * 521 * Returns zero if carrier state does not change, nonzero if it does. 522 */ 523 static int bond_set_carrier(struct bonding *bond) 524 { 525 struct slave *slave; 526 int i; 527 528 if (bond->slave_cnt == 0) 529 goto down; 530 531 if (bond->params.mode == BOND_MODE_8023AD) 532 return bond_3ad_set_carrier(bond); 533 534 bond_for_each_slave(bond, slave, i) { 535 if (slave->link == BOND_LINK_UP) { 536 if (!netif_carrier_ok(bond->dev)) { 537 netif_carrier_on(bond->dev); 538 return 1; 539 } 540 return 0; 541 } 542 } 543 544 down: 545 if (netif_carrier_ok(bond->dev)) { 546 netif_carrier_off(bond->dev); 547 return 1; 548 } 549 return 0; 550 } 551 552 /* 553 * Get link speed and duplex from the slave's base driver 554 * using ethtool. If for some reason the call fails or the 555 * values are invalid, set speed and duplex to -1, 556 * and return. 557 */ 558 static void bond_update_speed_duplex(struct slave *slave) 559 { 560 struct net_device *slave_dev = slave->dev; 561 struct ethtool_cmd ecmd; 562 u32 slave_speed; 563 int res; 564 565 slave->speed = SPEED_UNKNOWN; 566 slave->duplex = DUPLEX_UNKNOWN; 567 568 res = __ethtool_get_settings(slave_dev, &ecmd); 569 if (res < 0) 570 return; 571 572 slave_speed = ethtool_cmd_speed(&ecmd); 573 if (slave_speed == 0 || slave_speed == ((__u32) -1)) 574 return; 575 576 switch (ecmd.duplex) { 577 case DUPLEX_FULL: 578 case DUPLEX_HALF: 579 break; 580 default: 581 return; 582 } 583 584 slave->speed = slave_speed; 585 slave->duplex = ecmd.duplex; 586 587 return; 588 } 589 590 /* 591 * if <dev> supports MII link status reporting, check its link status. 592 * 593 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 594 * depending upon the setting of the use_carrier parameter. 595 * 596 * Return either BMSR_LSTATUS, meaning that the link is up (or we 597 * can't tell and just pretend it is), or 0, meaning that the link is 598 * down. 599 * 600 * If reporting is non-zero, instead of faking link up, return -1 if 601 * both ETHTOOL and MII ioctls fail (meaning the device does not 602 * support them). If use_carrier is set, return whatever it says. 603 * It'd be nice if there was a good way to tell if a driver supports 604 * netif_carrier, but there really isn't. 605 */ 606 static int bond_check_dev_link(struct bonding *bond, 607 struct net_device *slave_dev, int reporting) 608 { 609 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 610 int (*ioctl)(struct net_device *, struct ifreq *, int); 611 struct ifreq ifr; 612 struct mii_ioctl_data *mii; 613 614 if (!reporting && !netif_running(slave_dev)) 615 return 0; 616 617 if (bond->params.use_carrier) 618 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 619 620 /* Try to get link status using Ethtool first. */ 621 if (slave_dev->ethtool_ops->get_link) 622 return slave_dev->ethtool_ops->get_link(slave_dev) ? 623 BMSR_LSTATUS : 0; 624 625 /* Ethtool can't be used, fallback to MII ioctls. */ 626 ioctl = slave_ops->ndo_do_ioctl; 627 if (ioctl) { 628 /* TODO: set pointer to correct ioctl on a per team member */ 629 /* bases to make this more efficient. that is, once */ 630 /* we determine the correct ioctl, we will always */ 631 /* call it and not the others for that team */ 632 /* member. */ 633 634 /* 635 * We cannot assume that SIOCGMIIPHY will also read a 636 * register; not all network drivers (e.g., e100) 637 * support that. 638 */ 639 640 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 641 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 642 mii = if_mii(&ifr); 643 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 644 mii->reg_num = MII_BMSR; 645 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) 646 return mii->val_out & BMSR_LSTATUS; 647 } 648 } 649 650 /* 651 * If reporting, report that either there's no dev->do_ioctl, 652 * or both SIOCGMIIREG and get_link failed (meaning that we 653 * cannot report link status). If not reporting, pretend 654 * we're ok. 655 */ 656 return reporting ? -1 : BMSR_LSTATUS; 657 } 658 659 /*----------------------------- Multicast list ------------------------------*/ 660 661 /* 662 * Push the promiscuity flag down to appropriate slaves 663 */ 664 static int bond_set_promiscuity(struct bonding *bond, int inc) 665 { 666 int err = 0; 667 if (USES_PRIMARY(bond->params.mode)) { 668 /* write lock already acquired */ 669 if (bond->curr_active_slave) { 670 err = dev_set_promiscuity(bond->curr_active_slave->dev, 671 inc); 672 } 673 } else { 674 struct slave *slave; 675 int i; 676 bond_for_each_slave(bond, slave, i) { 677 err = dev_set_promiscuity(slave->dev, inc); 678 if (err) 679 return err; 680 } 681 } 682 return err; 683 } 684 685 /* 686 * Push the allmulti flag down to all slaves 687 */ 688 static int bond_set_allmulti(struct bonding *bond, int inc) 689 { 690 int err = 0; 691 if (USES_PRIMARY(bond->params.mode)) { 692 /* write lock already acquired */ 693 if (bond->curr_active_slave) { 694 err = dev_set_allmulti(bond->curr_active_slave->dev, 695 inc); 696 } 697 } else { 698 struct slave *slave; 699 int i; 700 bond_for_each_slave(bond, slave, i) { 701 err = dev_set_allmulti(slave->dev, inc); 702 if (err) 703 return err; 704 } 705 } 706 return err; 707 } 708 709 /* 710 * Add a Multicast address to slaves 711 * according to mode 712 */ 713 static void bond_mc_add(struct bonding *bond, void *addr) 714 { 715 if (USES_PRIMARY(bond->params.mode)) { 716 /* write lock already acquired */ 717 if (bond->curr_active_slave) 718 dev_mc_add(bond->curr_active_slave->dev, addr); 719 } else { 720 struct slave *slave; 721 int i; 722 723 bond_for_each_slave(bond, slave, i) 724 dev_mc_add(slave->dev, addr); 725 } 726 } 727 728 /* 729 * Remove a multicast address from slave 730 * according to mode 731 */ 732 static void bond_mc_del(struct bonding *bond, void *addr) 733 { 734 if (USES_PRIMARY(bond->params.mode)) { 735 /* write lock already acquired */ 736 if (bond->curr_active_slave) 737 dev_mc_del(bond->curr_active_slave->dev, addr); 738 } else { 739 struct slave *slave; 740 int i; 741 bond_for_each_slave(bond, slave, i) { 742 dev_mc_del(slave->dev, addr); 743 } 744 } 745 } 746 747 748 static void __bond_resend_igmp_join_requests(struct net_device *dev) 749 { 750 struct in_device *in_dev; 751 752 in_dev = __in_dev_get_rcu(dev); 753 if (in_dev) 754 ip_mc_rejoin_groups(in_dev); 755 } 756 757 /* 758 * Retrieve the list of registered multicast addresses for the bonding 759 * device and retransmit an IGMP JOIN request to the current active 760 * slave. 761 */ 762 static void bond_resend_igmp_join_requests(struct bonding *bond) 763 { 764 struct net_device *bond_dev, *vlan_dev, *upper_dev; 765 struct vlan_entry *vlan; 766 767 rcu_read_lock(); 768 read_lock(&bond->lock); 769 770 bond_dev = bond->dev; 771 772 /* rejoin all groups on bond device */ 773 __bond_resend_igmp_join_requests(bond_dev); 774 775 /* 776 * if bond is enslaved to a bridge, 777 * then rejoin all groups on its master 778 */ 779 upper_dev = netdev_master_upper_dev_get_rcu(bond_dev); 780 if (upper_dev && upper_dev->priv_flags & IFF_EBRIDGE) 781 __bond_resend_igmp_join_requests(upper_dev); 782 783 /* rejoin all groups on vlan devices */ 784 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 785 vlan_dev = __vlan_find_dev_deep(bond_dev, htons(ETH_P_8021Q), 786 vlan->vlan_id); 787 if (vlan_dev) 788 __bond_resend_igmp_join_requests(vlan_dev); 789 } 790 791 if (--bond->igmp_retrans > 0) 792 queue_delayed_work(bond->wq, &bond->mcast_work, HZ/5); 793 794 read_unlock(&bond->lock); 795 rcu_read_unlock(); 796 } 797 798 static void bond_resend_igmp_join_requests_delayed(struct work_struct *work) 799 { 800 struct bonding *bond = container_of(work, struct bonding, 801 mcast_work.work); 802 803 bond_resend_igmp_join_requests(bond); 804 } 805 806 /* 807 * flush all members of flush->mc_list from device dev->mc_list 808 */ 809 static void bond_mc_list_flush(struct net_device *bond_dev, 810 struct net_device *slave_dev) 811 { 812 struct bonding *bond = netdev_priv(bond_dev); 813 struct netdev_hw_addr *ha; 814 815 netdev_for_each_mc_addr(ha, bond_dev) 816 dev_mc_del(slave_dev, ha->addr); 817 818 if (bond->params.mode == BOND_MODE_8023AD) { 819 /* del lacpdu mc addr from mc list */ 820 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 821 822 dev_mc_del(slave_dev, lacpdu_multicast); 823 } 824 } 825 826 /*--------------------------- Active slave change ---------------------------*/ 827 828 /* 829 * Update the mc list and multicast-related flags for the new and 830 * old active slaves (if any) according to the multicast mode, and 831 * promiscuous flags unconditionally. 832 */ 833 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, 834 struct slave *old_active) 835 { 836 struct netdev_hw_addr *ha; 837 838 if (!USES_PRIMARY(bond->params.mode)) 839 /* nothing to do - mc list is already up-to-date on 840 * all slaves 841 */ 842 return; 843 844 if (old_active) { 845 if (bond->dev->flags & IFF_PROMISC) 846 dev_set_promiscuity(old_active->dev, -1); 847 848 if (bond->dev->flags & IFF_ALLMULTI) 849 dev_set_allmulti(old_active->dev, -1); 850 851 netif_addr_lock_bh(bond->dev); 852 netdev_for_each_mc_addr(ha, bond->dev) 853 dev_mc_del(old_active->dev, ha->addr); 854 netif_addr_unlock_bh(bond->dev); 855 } 856 857 if (new_active) { 858 /* FIXME: Signal errors upstream. */ 859 if (bond->dev->flags & IFF_PROMISC) 860 dev_set_promiscuity(new_active->dev, 1); 861 862 if (bond->dev->flags & IFF_ALLMULTI) 863 dev_set_allmulti(new_active->dev, 1); 864 865 netif_addr_lock_bh(bond->dev); 866 netdev_for_each_mc_addr(ha, bond->dev) 867 dev_mc_add(new_active->dev, ha->addr); 868 netif_addr_unlock_bh(bond->dev); 869 } 870 } 871 872 /* 873 * bond_do_fail_over_mac 874 * 875 * Perform special MAC address swapping for fail_over_mac settings 876 * 877 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 878 */ 879 static void bond_do_fail_over_mac(struct bonding *bond, 880 struct slave *new_active, 881 struct slave *old_active) 882 __releases(&bond->curr_slave_lock) 883 __releases(&bond->lock) 884 __acquires(&bond->lock) 885 __acquires(&bond->curr_slave_lock) 886 { 887 u8 tmp_mac[ETH_ALEN]; 888 struct sockaddr saddr; 889 int rv; 890 891 switch (bond->params.fail_over_mac) { 892 case BOND_FOM_ACTIVE: 893 if (new_active) { 894 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 895 new_active->dev->addr_len); 896 write_unlock_bh(&bond->curr_slave_lock); 897 read_unlock(&bond->lock); 898 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond->dev); 899 read_lock(&bond->lock); 900 write_lock_bh(&bond->curr_slave_lock); 901 } 902 break; 903 case BOND_FOM_FOLLOW: 904 /* 905 * if new_active && old_active, swap them 906 * if just old_active, do nothing (going to no active slave) 907 * if just new_active, set new_active to bond's MAC 908 */ 909 if (!new_active) 910 return; 911 912 write_unlock_bh(&bond->curr_slave_lock); 913 read_unlock(&bond->lock); 914 915 if (old_active) { 916 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 917 memcpy(saddr.sa_data, old_active->dev->dev_addr, 918 ETH_ALEN); 919 saddr.sa_family = new_active->dev->type; 920 } else { 921 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 922 saddr.sa_family = bond->dev->type; 923 } 924 925 rv = dev_set_mac_address(new_active->dev, &saddr); 926 if (rv) { 927 pr_err("%s: Error %d setting MAC of slave %s\n", 928 bond->dev->name, -rv, new_active->dev->name); 929 goto out; 930 } 931 932 if (!old_active) 933 goto out; 934 935 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 936 saddr.sa_family = old_active->dev->type; 937 938 rv = dev_set_mac_address(old_active->dev, &saddr); 939 if (rv) 940 pr_err("%s: Error %d setting MAC of slave %s\n", 941 bond->dev->name, -rv, new_active->dev->name); 942 out: 943 read_lock(&bond->lock); 944 write_lock_bh(&bond->curr_slave_lock); 945 break; 946 default: 947 pr_err("%s: bond_do_fail_over_mac impossible: bad policy %d\n", 948 bond->dev->name, bond->params.fail_over_mac); 949 break; 950 } 951 952 } 953 954 static bool bond_should_change_active(struct bonding *bond) 955 { 956 struct slave *prim = bond->primary_slave; 957 struct slave *curr = bond->curr_active_slave; 958 959 if (!prim || !curr || curr->link != BOND_LINK_UP) 960 return true; 961 if (bond->force_primary) { 962 bond->force_primary = false; 963 return true; 964 } 965 if (bond->params.primary_reselect == BOND_PRI_RESELECT_BETTER && 966 (prim->speed < curr->speed || 967 (prim->speed == curr->speed && prim->duplex <= curr->duplex))) 968 return false; 969 if (bond->params.primary_reselect == BOND_PRI_RESELECT_FAILURE) 970 return false; 971 return true; 972 } 973 974 /** 975 * find_best_interface - select the best available slave to be the active one 976 * @bond: our bonding struct 977 * 978 * Warning: Caller must hold curr_slave_lock for writing. 979 */ 980 static struct slave *bond_find_best_slave(struct bonding *bond) 981 { 982 struct slave *new_active, *old_active; 983 struct slave *bestslave = NULL; 984 int mintime = bond->params.updelay; 985 int i; 986 987 new_active = bond->curr_active_slave; 988 989 if (!new_active) { /* there were no active slaves left */ 990 if (bond->slave_cnt > 0) /* found one slave */ 991 new_active = bond->first_slave; 992 else 993 return NULL; /* still no slave, return NULL */ 994 } 995 996 if ((bond->primary_slave) && 997 bond->primary_slave->link == BOND_LINK_UP && 998 bond_should_change_active(bond)) { 999 new_active = bond->primary_slave; 1000 } 1001 1002 /* remember where to stop iterating over the slaves */ 1003 old_active = new_active; 1004 1005 bond_for_each_slave_from(bond, new_active, i, old_active) { 1006 if (new_active->link == BOND_LINK_UP) { 1007 return new_active; 1008 } else if (new_active->link == BOND_LINK_BACK && 1009 IS_UP(new_active->dev)) { 1010 /* link up, but waiting for stabilization */ 1011 if (new_active->delay < mintime) { 1012 mintime = new_active->delay; 1013 bestslave = new_active; 1014 } 1015 } 1016 } 1017 1018 return bestslave; 1019 } 1020 1021 static bool bond_should_notify_peers(struct bonding *bond) 1022 { 1023 struct slave *slave = bond->curr_active_slave; 1024 1025 pr_debug("bond_should_notify_peers: bond %s slave %s\n", 1026 bond->dev->name, slave ? slave->dev->name : "NULL"); 1027 1028 if (!slave || !bond->send_peer_notif || 1029 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 1030 return false; 1031 1032 bond->send_peer_notif--; 1033 return true; 1034 } 1035 1036 /** 1037 * change_active_interface - change the active slave into the specified one 1038 * @bond: our bonding struct 1039 * @new: the new slave to make the active one 1040 * 1041 * Set the new slave to the bond's settings and unset them on the old 1042 * curr_active_slave. 1043 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1044 * 1045 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1046 * because it is apparently the best available slave we have, even though its 1047 * updelay hasn't timed out yet. 1048 * 1049 * If new_active is not NULL, caller must hold bond->lock for read and 1050 * curr_slave_lock for write_bh. 1051 */ 1052 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1053 { 1054 struct slave *old_active = bond->curr_active_slave; 1055 1056 if (old_active == new_active) 1057 return; 1058 1059 if (new_active) { 1060 new_active->jiffies = jiffies; 1061 1062 if (new_active->link == BOND_LINK_BACK) { 1063 if (USES_PRIMARY(bond->params.mode)) { 1064 pr_info("%s: making interface %s the new active one %d ms earlier.\n", 1065 bond->dev->name, new_active->dev->name, 1066 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1067 } 1068 1069 new_active->delay = 0; 1070 new_active->link = BOND_LINK_UP; 1071 1072 if (bond->params.mode == BOND_MODE_8023AD) 1073 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1074 1075 if (bond_is_lb(bond)) 1076 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1077 } else { 1078 if (USES_PRIMARY(bond->params.mode)) { 1079 pr_info("%s: making interface %s the new active one.\n", 1080 bond->dev->name, new_active->dev->name); 1081 } 1082 } 1083 } 1084 1085 if (USES_PRIMARY(bond->params.mode)) 1086 bond_mc_swap(bond, new_active, old_active); 1087 1088 if (bond_is_lb(bond)) { 1089 bond_alb_handle_active_change(bond, new_active); 1090 if (old_active) 1091 bond_set_slave_inactive_flags(old_active); 1092 if (new_active) 1093 bond_set_slave_active_flags(new_active); 1094 } else { 1095 bond->curr_active_slave = new_active; 1096 } 1097 1098 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1099 if (old_active) 1100 bond_set_slave_inactive_flags(old_active); 1101 1102 if (new_active) { 1103 bool should_notify_peers = false; 1104 1105 bond_set_slave_active_flags(new_active); 1106 1107 if (bond->params.fail_over_mac) 1108 bond_do_fail_over_mac(bond, new_active, 1109 old_active); 1110 1111 if (netif_running(bond->dev)) { 1112 bond->send_peer_notif = 1113 bond->params.num_peer_notif; 1114 should_notify_peers = 1115 bond_should_notify_peers(bond); 1116 } 1117 1118 write_unlock_bh(&bond->curr_slave_lock); 1119 read_unlock(&bond->lock); 1120 1121 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, bond->dev); 1122 if (should_notify_peers) 1123 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, 1124 bond->dev); 1125 1126 read_lock(&bond->lock); 1127 write_lock_bh(&bond->curr_slave_lock); 1128 } 1129 } 1130 1131 /* resend IGMP joins since active slave has changed or 1132 * all were sent on curr_active_slave. 1133 * resend only if bond is brought up with the affected 1134 * bonding modes and the retransmission is enabled */ 1135 if (netif_running(bond->dev) && (bond->params.resend_igmp > 0) && 1136 ((USES_PRIMARY(bond->params.mode) && new_active) || 1137 bond->params.mode == BOND_MODE_ROUNDROBIN)) { 1138 bond->igmp_retrans = bond->params.resend_igmp; 1139 queue_delayed_work(bond->wq, &bond->mcast_work, 0); 1140 } 1141 } 1142 1143 /** 1144 * bond_select_active_slave - select a new active slave, if needed 1145 * @bond: our bonding struct 1146 * 1147 * This functions should be called when one of the following occurs: 1148 * - The old curr_active_slave has been released or lost its link. 1149 * - The primary_slave has got its link back. 1150 * - A slave has got its link back and there's no old curr_active_slave. 1151 * 1152 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1153 */ 1154 void bond_select_active_slave(struct bonding *bond) 1155 { 1156 struct slave *best_slave; 1157 int rv; 1158 1159 best_slave = bond_find_best_slave(bond); 1160 if (best_slave != bond->curr_active_slave) { 1161 bond_change_active_slave(bond, best_slave); 1162 rv = bond_set_carrier(bond); 1163 if (!rv) 1164 return; 1165 1166 if (netif_carrier_ok(bond->dev)) { 1167 pr_info("%s: first active interface up!\n", 1168 bond->dev->name); 1169 } else { 1170 pr_info("%s: now running without any active interface !\n", 1171 bond->dev->name); 1172 } 1173 } 1174 } 1175 1176 /*--------------------------- slave list handling ---------------------------*/ 1177 1178 /* 1179 * This function attaches the slave to the end of list. 1180 * 1181 * bond->lock held for writing by caller. 1182 */ 1183 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1184 { 1185 if (bond->first_slave == NULL) { /* attaching the first slave */ 1186 new_slave->next = new_slave; 1187 new_slave->prev = new_slave; 1188 bond->first_slave = new_slave; 1189 } else { 1190 new_slave->next = bond->first_slave; 1191 new_slave->prev = bond->first_slave->prev; 1192 new_slave->next->prev = new_slave; 1193 new_slave->prev->next = new_slave; 1194 } 1195 1196 bond->slave_cnt++; 1197 } 1198 1199 /* 1200 * This function detaches the slave from the list. 1201 * WARNING: no check is made to verify if the slave effectively 1202 * belongs to <bond>. 1203 * Nothing is freed on return, structures are just unchained. 1204 * If any slave pointer in bond was pointing to <slave>, 1205 * it should be changed by the calling function. 1206 * 1207 * bond->lock held for writing by caller. 1208 */ 1209 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1210 { 1211 if (slave->next) 1212 slave->next->prev = slave->prev; 1213 1214 if (slave->prev) 1215 slave->prev->next = slave->next; 1216 1217 if (bond->first_slave == slave) { /* slave is the first slave */ 1218 if (bond->slave_cnt > 1) { /* there are more slave */ 1219 bond->first_slave = slave->next; 1220 } else { 1221 bond->first_slave = NULL; /* slave was the last one */ 1222 } 1223 } 1224 1225 slave->next = NULL; 1226 slave->prev = NULL; 1227 bond->slave_cnt--; 1228 } 1229 1230 #ifdef CONFIG_NET_POLL_CONTROLLER 1231 static inline int slave_enable_netpoll(struct slave *slave) 1232 { 1233 struct netpoll *np; 1234 int err = 0; 1235 1236 np = kzalloc(sizeof(*np), GFP_ATOMIC); 1237 err = -ENOMEM; 1238 if (!np) 1239 goto out; 1240 1241 err = __netpoll_setup(np, slave->dev, GFP_ATOMIC); 1242 if (err) { 1243 kfree(np); 1244 goto out; 1245 } 1246 slave->np = np; 1247 out: 1248 return err; 1249 } 1250 static inline void slave_disable_netpoll(struct slave *slave) 1251 { 1252 struct netpoll *np = slave->np; 1253 1254 if (!np) 1255 return; 1256 1257 slave->np = NULL; 1258 __netpoll_free_async(np); 1259 } 1260 static inline bool slave_dev_support_netpoll(struct net_device *slave_dev) 1261 { 1262 if (slave_dev->priv_flags & IFF_DISABLE_NETPOLL) 1263 return false; 1264 if (!slave_dev->netdev_ops->ndo_poll_controller) 1265 return false; 1266 return true; 1267 } 1268 1269 static void bond_poll_controller(struct net_device *bond_dev) 1270 { 1271 } 1272 1273 static void __bond_netpoll_cleanup(struct bonding *bond) 1274 { 1275 struct slave *slave; 1276 int i; 1277 1278 bond_for_each_slave(bond, slave, i) 1279 if (IS_UP(slave->dev)) 1280 slave_disable_netpoll(slave); 1281 } 1282 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1283 { 1284 struct bonding *bond = netdev_priv(bond_dev); 1285 1286 read_lock(&bond->lock); 1287 __bond_netpoll_cleanup(bond); 1288 read_unlock(&bond->lock); 1289 } 1290 1291 static int bond_netpoll_setup(struct net_device *dev, struct netpoll_info *ni, gfp_t gfp) 1292 { 1293 struct bonding *bond = netdev_priv(dev); 1294 struct slave *slave; 1295 int i, err = 0; 1296 1297 read_lock(&bond->lock); 1298 bond_for_each_slave(bond, slave, i) { 1299 err = slave_enable_netpoll(slave); 1300 if (err) { 1301 __bond_netpoll_cleanup(bond); 1302 break; 1303 } 1304 } 1305 read_unlock(&bond->lock); 1306 return err; 1307 } 1308 1309 static struct netpoll_info *bond_netpoll_info(struct bonding *bond) 1310 { 1311 return bond->dev->npinfo; 1312 } 1313 1314 #else 1315 static inline int slave_enable_netpoll(struct slave *slave) 1316 { 1317 return 0; 1318 } 1319 static inline void slave_disable_netpoll(struct slave *slave) 1320 { 1321 } 1322 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1323 { 1324 } 1325 #endif 1326 1327 /*---------------------------------- IOCTL ----------------------------------*/ 1328 1329 static void bond_set_dev_addr(struct net_device *bond_dev, 1330 struct net_device *slave_dev) 1331 { 1332 pr_debug("bond_dev=%p\n", bond_dev); 1333 pr_debug("slave_dev=%p\n", slave_dev); 1334 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1335 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1336 bond_dev->addr_assign_type = NET_ADDR_SET; 1337 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond_dev); 1338 } 1339 1340 static netdev_features_t bond_fix_features(struct net_device *dev, 1341 netdev_features_t features) 1342 { 1343 struct slave *slave; 1344 struct bonding *bond = netdev_priv(dev); 1345 netdev_features_t mask; 1346 int i; 1347 1348 read_lock(&bond->lock); 1349 1350 if (!bond->first_slave) { 1351 /* Disable adding VLANs to empty bond. But why? --mq */ 1352 features |= NETIF_F_VLAN_CHALLENGED; 1353 goto out; 1354 } 1355 1356 mask = features; 1357 features &= ~NETIF_F_ONE_FOR_ALL; 1358 features |= NETIF_F_ALL_FOR_ALL; 1359 1360 bond_for_each_slave(bond, slave, i) { 1361 features = netdev_increment_features(features, 1362 slave->dev->features, 1363 mask); 1364 } 1365 1366 out: 1367 read_unlock(&bond->lock); 1368 return features; 1369 } 1370 1371 #define BOND_VLAN_FEATURES (NETIF_F_ALL_CSUM | NETIF_F_SG | \ 1372 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \ 1373 NETIF_F_HIGHDMA | NETIF_F_LRO) 1374 1375 static void bond_compute_features(struct bonding *bond) 1376 { 1377 struct slave *slave; 1378 struct net_device *bond_dev = bond->dev; 1379 netdev_features_t vlan_features = BOND_VLAN_FEATURES; 1380 unsigned short max_hard_header_len = ETH_HLEN; 1381 unsigned int gso_max_size = GSO_MAX_SIZE; 1382 u16 gso_max_segs = GSO_MAX_SEGS; 1383 int i; 1384 unsigned int flags, dst_release_flag = IFF_XMIT_DST_RELEASE; 1385 1386 read_lock(&bond->lock); 1387 1388 if (!bond->first_slave) 1389 goto done; 1390 1391 bond_for_each_slave(bond, slave, i) { 1392 vlan_features = netdev_increment_features(vlan_features, 1393 slave->dev->vlan_features, BOND_VLAN_FEATURES); 1394 1395 dst_release_flag &= slave->dev->priv_flags; 1396 if (slave->dev->hard_header_len > max_hard_header_len) 1397 max_hard_header_len = slave->dev->hard_header_len; 1398 1399 gso_max_size = min(gso_max_size, slave->dev->gso_max_size); 1400 gso_max_segs = min(gso_max_segs, slave->dev->gso_max_segs); 1401 } 1402 1403 done: 1404 bond_dev->vlan_features = vlan_features; 1405 bond_dev->hard_header_len = max_hard_header_len; 1406 bond_dev->gso_max_segs = gso_max_segs; 1407 netif_set_gso_max_size(bond_dev, gso_max_size); 1408 1409 flags = bond_dev->priv_flags & ~IFF_XMIT_DST_RELEASE; 1410 bond_dev->priv_flags = flags | dst_release_flag; 1411 1412 read_unlock(&bond->lock); 1413 1414 netdev_change_features(bond_dev); 1415 } 1416 1417 static void bond_setup_by_slave(struct net_device *bond_dev, 1418 struct net_device *slave_dev) 1419 { 1420 struct bonding *bond = netdev_priv(bond_dev); 1421 1422 bond_dev->header_ops = slave_dev->header_ops; 1423 1424 bond_dev->type = slave_dev->type; 1425 bond_dev->hard_header_len = slave_dev->hard_header_len; 1426 bond_dev->addr_len = slave_dev->addr_len; 1427 1428 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1429 slave_dev->addr_len); 1430 bond->setup_by_slave = 1; 1431 } 1432 1433 /* On bonding slaves other than the currently active slave, suppress 1434 * duplicates except for alb non-mcast/bcast. 1435 */ 1436 static bool bond_should_deliver_exact_match(struct sk_buff *skb, 1437 struct slave *slave, 1438 struct bonding *bond) 1439 { 1440 if (bond_is_slave_inactive(slave)) { 1441 if (bond->params.mode == BOND_MODE_ALB && 1442 skb->pkt_type != PACKET_BROADCAST && 1443 skb->pkt_type != PACKET_MULTICAST) 1444 return false; 1445 return true; 1446 } 1447 return false; 1448 } 1449 1450 static rx_handler_result_t bond_handle_frame(struct sk_buff **pskb) 1451 { 1452 struct sk_buff *skb = *pskb; 1453 struct slave *slave; 1454 struct bonding *bond; 1455 int (*recv_probe)(const struct sk_buff *, struct bonding *, 1456 struct slave *); 1457 int ret = RX_HANDLER_ANOTHER; 1458 1459 skb = skb_share_check(skb, GFP_ATOMIC); 1460 if (unlikely(!skb)) 1461 return RX_HANDLER_CONSUMED; 1462 1463 *pskb = skb; 1464 1465 slave = bond_slave_get_rcu(skb->dev); 1466 bond = slave->bond; 1467 1468 if (bond->params.arp_interval) 1469 slave->dev->last_rx = jiffies; 1470 1471 recv_probe = ACCESS_ONCE(bond->recv_probe); 1472 if (recv_probe) { 1473 ret = recv_probe(skb, bond, slave); 1474 if (ret == RX_HANDLER_CONSUMED) { 1475 consume_skb(skb); 1476 return ret; 1477 } 1478 } 1479 1480 if (bond_should_deliver_exact_match(skb, slave, bond)) { 1481 return RX_HANDLER_EXACT; 1482 } 1483 1484 skb->dev = bond->dev; 1485 1486 if (bond->params.mode == BOND_MODE_ALB && 1487 bond->dev->priv_flags & IFF_BRIDGE_PORT && 1488 skb->pkt_type == PACKET_HOST) { 1489 1490 if (unlikely(skb_cow_head(skb, 1491 skb->data - skb_mac_header(skb)))) { 1492 kfree_skb(skb); 1493 return RX_HANDLER_CONSUMED; 1494 } 1495 memcpy(eth_hdr(skb)->h_dest, bond->dev->dev_addr, ETH_ALEN); 1496 } 1497 1498 return ret; 1499 } 1500 1501 static int bond_master_upper_dev_link(struct net_device *bond_dev, 1502 struct net_device *slave_dev) 1503 { 1504 int err; 1505 1506 err = netdev_master_upper_dev_link(slave_dev, bond_dev); 1507 if (err) 1508 return err; 1509 slave_dev->flags |= IFF_SLAVE; 1510 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE); 1511 return 0; 1512 } 1513 1514 static void bond_upper_dev_unlink(struct net_device *bond_dev, 1515 struct net_device *slave_dev) 1516 { 1517 netdev_upper_dev_unlink(slave_dev, bond_dev); 1518 slave_dev->flags &= ~IFF_SLAVE; 1519 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE); 1520 } 1521 1522 /* enslave device <slave> to bond device <master> */ 1523 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1524 { 1525 struct bonding *bond = netdev_priv(bond_dev); 1526 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 1527 struct slave *new_slave = NULL; 1528 struct netdev_hw_addr *ha; 1529 struct sockaddr addr; 1530 int link_reporting; 1531 int res = 0; 1532 1533 if (!bond->params.use_carrier && 1534 slave_dev->ethtool_ops->get_link == NULL && 1535 slave_ops->ndo_do_ioctl == NULL) { 1536 pr_warning("%s: Warning: no link monitoring support for %s\n", 1537 bond_dev->name, slave_dev->name); 1538 } 1539 1540 /* already enslaved */ 1541 if (slave_dev->flags & IFF_SLAVE) { 1542 pr_debug("Error, Device was already enslaved\n"); 1543 return -EBUSY; 1544 } 1545 1546 /* vlan challenged mutual exclusion */ 1547 /* no need to lock since we're protected by rtnl_lock */ 1548 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1549 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1550 if (vlan_uses_dev(bond_dev)) { 1551 pr_err("%s: Error: cannot enslave VLAN challenged slave %s on VLAN enabled bond %s\n", 1552 bond_dev->name, slave_dev->name, bond_dev->name); 1553 return -EPERM; 1554 } else { 1555 pr_warning("%s: Warning: enslaved VLAN challenged slave %s. Adding VLANs will be blocked as long as %s is part of bond %s\n", 1556 bond_dev->name, slave_dev->name, 1557 slave_dev->name, bond_dev->name); 1558 } 1559 } else { 1560 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1561 } 1562 1563 /* 1564 * Old ifenslave binaries are no longer supported. These can 1565 * be identified with moderate accuracy by the state of the slave: 1566 * the current ifenslave will set the interface down prior to 1567 * enslaving it; the old ifenslave will not. 1568 */ 1569 if ((slave_dev->flags & IFF_UP)) { 1570 pr_err("%s is up. This may be due to an out of date ifenslave.\n", 1571 slave_dev->name); 1572 res = -EPERM; 1573 goto err_undo_flags; 1574 } 1575 1576 /* set bonding device ether type by slave - bonding netdevices are 1577 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1578 * there is a need to override some of the type dependent attribs/funcs. 1579 * 1580 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1581 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1582 */ 1583 if (bond->slave_cnt == 0) { 1584 if (bond_dev->type != slave_dev->type) { 1585 pr_debug("%s: change device type from %d to %d\n", 1586 bond_dev->name, 1587 bond_dev->type, slave_dev->type); 1588 1589 res = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE, 1590 bond_dev); 1591 res = notifier_to_errno(res); 1592 if (res) { 1593 pr_err("%s: refused to change device type\n", 1594 bond_dev->name); 1595 res = -EBUSY; 1596 goto err_undo_flags; 1597 } 1598 1599 /* Flush unicast and multicast addresses */ 1600 dev_uc_flush(bond_dev); 1601 dev_mc_flush(bond_dev); 1602 1603 if (slave_dev->type != ARPHRD_ETHER) 1604 bond_setup_by_slave(bond_dev, slave_dev); 1605 else { 1606 ether_setup(bond_dev); 1607 bond_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 1608 } 1609 1610 call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, 1611 bond_dev); 1612 } 1613 } else if (bond_dev->type != slave_dev->type) { 1614 pr_err("%s ether type (%d) is different from other slaves (%d), can not enslave it.\n", 1615 slave_dev->name, 1616 slave_dev->type, bond_dev->type); 1617 res = -EINVAL; 1618 goto err_undo_flags; 1619 } 1620 1621 if (slave_ops->ndo_set_mac_address == NULL) { 1622 if (bond->slave_cnt == 0) { 1623 pr_warning("%s: Warning: The first slave device specified does not support setting the MAC address. Setting fail_over_mac to active.", 1624 bond_dev->name); 1625 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1626 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1627 pr_err("%s: Error: The slave device specified does not support setting the MAC address, but fail_over_mac is not set to active.\n", 1628 bond_dev->name); 1629 res = -EOPNOTSUPP; 1630 goto err_undo_flags; 1631 } 1632 } 1633 1634 call_netdevice_notifiers(NETDEV_JOIN, slave_dev); 1635 1636 /* If this is the first slave, then we need to set the master's hardware 1637 * address to be the same as the slave's. */ 1638 if (bond->slave_cnt == 0 && bond->dev_addr_from_first) 1639 bond_set_dev_addr(bond->dev, slave_dev); 1640 1641 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1642 if (!new_slave) { 1643 res = -ENOMEM; 1644 goto err_undo_flags; 1645 } 1646 1647 /* 1648 * Set the new_slave's queue_id to be zero. Queue ID mapping 1649 * is set via sysfs or module option if desired. 1650 */ 1651 new_slave->queue_id = 0; 1652 1653 /* Save slave's original mtu and then set it to match the bond */ 1654 new_slave->original_mtu = slave_dev->mtu; 1655 res = dev_set_mtu(slave_dev, bond->dev->mtu); 1656 if (res) { 1657 pr_debug("Error %d calling dev_set_mtu\n", res); 1658 goto err_free; 1659 } 1660 1661 /* 1662 * Save slave's original ("permanent") mac address for modes 1663 * that need it, and for restoring it upon release, and then 1664 * set it to the master's address 1665 */ 1666 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1667 1668 if (!bond->params.fail_over_mac) { 1669 /* 1670 * Set slave to master's mac address. The application already 1671 * set the master's mac address to that of the first slave 1672 */ 1673 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1674 addr.sa_family = slave_dev->type; 1675 res = dev_set_mac_address(slave_dev, &addr); 1676 if (res) { 1677 pr_debug("Error %d calling set_mac_address\n", res); 1678 goto err_restore_mtu; 1679 } 1680 } 1681 1682 res = bond_master_upper_dev_link(bond_dev, slave_dev); 1683 if (res) { 1684 pr_debug("Error %d calling bond_master_upper_dev_link\n", res); 1685 goto err_restore_mac; 1686 } 1687 1688 /* open the slave since the application closed it */ 1689 res = dev_open(slave_dev); 1690 if (res) { 1691 pr_debug("Opening slave %s failed\n", slave_dev->name); 1692 goto err_unset_master; 1693 } 1694 1695 new_slave->bond = bond; 1696 new_slave->dev = slave_dev; 1697 slave_dev->priv_flags |= IFF_BONDING; 1698 1699 if (bond_is_lb(bond)) { 1700 /* bond_alb_init_slave() must be called before all other stages since 1701 * it might fail and we do not want to have to undo everything 1702 */ 1703 res = bond_alb_init_slave(bond, new_slave); 1704 if (res) 1705 goto err_close; 1706 } 1707 1708 /* If the mode USES_PRIMARY, then the new slave gets the 1709 * master's promisc (and mc) settings only if it becomes the 1710 * curr_active_slave, and that is taken care of later when calling 1711 * bond_change_active() 1712 */ 1713 if (!USES_PRIMARY(bond->params.mode)) { 1714 /* set promiscuity level to new slave */ 1715 if (bond_dev->flags & IFF_PROMISC) { 1716 res = dev_set_promiscuity(slave_dev, 1); 1717 if (res) 1718 goto err_close; 1719 } 1720 1721 /* set allmulti level to new slave */ 1722 if (bond_dev->flags & IFF_ALLMULTI) { 1723 res = dev_set_allmulti(slave_dev, 1); 1724 if (res) 1725 goto err_close; 1726 } 1727 1728 netif_addr_lock_bh(bond_dev); 1729 /* upload master's mc_list to new slave */ 1730 netdev_for_each_mc_addr(ha, bond_dev) 1731 dev_mc_add(slave_dev, ha->addr); 1732 netif_addr_unlock_bh(bond_dev); 1733 } 1734 1735 if (bond->params.mode == BOND_MODE_8023AD) { 1736 /* add lacpdu mc addr to mc list */ 1737 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1738 1739 dev_mc_add(slave_dev, lacpdu_multicast); 1740 } 1741 1742 bond_add_vlans_on_slave(bond, slave_dev); 1743 1744 write_lock_bh(&bond->lock); 1745 1746 bond_attach_slave(bond, new_slave); 1747 1748 new_slave->delay = 0; 1749 new_slave->link_failure_count = 0; 1750 1751 write_unlock_bh(&bond->lock); 1752 1753 bond_compute_features(bond); 1754 1755 bond_update_speed_duplex(new_slave); 1756 1757 read_lock(&bond->lock); 1758 1759 new_slave->last_arp_rx = jiffies - 1760 (msecs_to_jiffies(bond->params.arp_interval) + 1); 1761 1762 if (bond->params.miimon && !bond->params.use_carrier) { 1763 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1764 1765 if ((link_reporting == -1) && !bond->params.arp_interval) { 1766 /* 1767 * miimon is set but a bonded network driver 1768 * does not support ETHTOOL/MII and 1769 * arp_interval is not set. Note: if 1770 * use_carrier is enabled, we will never go 1771 * here (because netif_carrier is always 1772 * supported); thus, we don't need to change 1773 * the messages for netif_carrier. 1774 */ 1775 pr_warning("%s: Warning: MII and ETHTOOL support not available for interface %s, and arp_interval/arp_ip_target module parameters not specified, thus bonding will not detect link failures! see bonding.txt for details.\n", 1776 bond_dev->name, slave_dev->name); 1777 } else if (link_reporting == -1) { 1778 /* unable get link status using mii/ethtool */ 1779 pr_warning("%s: Warning: can't get link status from interface %s; the network driver associated with this interface does not support MII or ETHTOOL link status reporting, thus miimon has no effect on this interface.\n", 1780 bond_dev->name, slave_dev->name); 1781 } 1782 } 1783 1784 /* check for initial state */ 1785 if (bond->params.miimon) { 1786 if (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS) { 1787 if (bond->params.updelay) { 1788 new_slave->link = BOND_LINK_BACK; 1789 new_slave->delay = bond->params.updelay; 1790 } else { 1791 new_slave->link = BOND_LINK_UP; 1792 } 1793 } else { 1794 new_slave->link = BOND_LINK_DOWN; 1795 } 1796 } else if (bond->params.arp_interval) { 1797 new_slave->link = (netif_carrier_ok(slave_dev) ? 1798 BOND_LINK_UP : BOND_LINK_DOWN); 1799 } else { 1800 new_slave->link = BOND_LINK_UP; 1801 } 1802 1803 if (new_slave->link != BOND_LINK_DOWN) 1804 new_slave->jiffies = jiffies; 1805 pr_debug("Initial state of slave_dev is BOND_LINK_%s\n", 1806 new_slave->link == BOND_LINK_DOWN ? "DOWN" : 1807 (new_slave->link == BOND_LINK_UP ? "UP" : "BACK")); 1808 1809 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1810 /* if there is a primary slave, remember it */ 1811 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1812 bond->primary_slave = new_slave; 1813 bond->force_primary = true; 1814 } 1815 } 1816 1817 write_lock_bh(&bond->curr_slave_lock); 1818 1819 switch (bond->params.mode) { 1820 case BOND_MODE_ACTIVEBACKUP: 1821 bond_set_slave_inactive_flags(new_slave); 1822 bond_select_active_slave(bond); 1823 break; 1824 case BOND_MODE_8023AD: 1825 /* in 802.3ad mode, the internal mechanism 1826 * will activate the slaves in the selected 1827 * aggregator 1828 */ 1829 bond_set_slave_inactive_flags(new_slave); 1830 /* if this is the first slave */ 1831 if (bond->slave_cnt == 1) { 1832 SLAVE_AD_INFO(new_slave).id = 1; 1833 /* Initialize AD with the number of times that the AD timer is called in 1 second 1834 * can be called only after the mac address of the bond is set 1835 */ 1836 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL); 1837 } else { 1838 SLAVE_AD_INFO(new_slave).id = 1839 SLAVE_AD_INFO(new_slave->prev).id + 1; 1840 } 1841 1842 bond_3ad_bind_slave(new_slave); 1843 break; 1844 case BOND_MODE_TLB: 1845 case BOND_MODE_ALB: 1846 bond_set_active_slave(new_slave); 1847 bond_set_slave_inactive_flags(new_slave); 1848 bond_select_active_slave(bond); 1849 break; 1850 default: 1851 pr_debug("This slave is always active in trunk mode\n"); 1852 1853 /* always active in trunk mode */ 1854 bond_set_active_slave(new_slave); 1855 1856 /* In trunking mode there is little meaning to curr_active_slave 1857 * anyway (it holds no special properties of the bond device), 1858 * so we can change it without calling change_active_interface() 1859 */ 1860 if (!bond->curr_active_slave && new_slave->link == BOND_LINK_UP) 1861 bond->curr_active_slave = new_slave; 1862 1863 break; 1864 } /* switch(bond_mode) */ 1865 1866 write_unlock_bh(&bond->curr_slave_lock); 1867 1868 bond_set_carrier(bond); 1869 1870 #ifdef CONFIG_NET_POLL_CONTROLLER 1871 slave_dev->npinfo = bond_netpoll_info(bond); 1872 if (slave_dev->npinfo) { 1873 if (slave_enable_netpoll(new_slave)) { 1874 read_unlock(&bond->lock); 1875 pr_info("Error, %s: master_dev is using netpoll, " 1876 "but new slave device does not support netpoll.\n", 1877 bond_dev->name); 1878 res = -EBUSY; 1879 goto err_detach; 1880 } 1881 } 1882 #endif 1883 1884 read_unlock(&bond->lock); 1885 1886 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1887 if (res) 1888 goto err_detach; 1889 1890 res = netdev_rx_handler_register(slave_dev, bond_handle_frame, 1891 new_slave); 1892 if (res) { 1893 pr_debug("Error %d calling netdev_rx_handler_register\n", res); 1894 goto err_dest_symlinks; 1895 } 1896 1897 pr_info("%s: enslaving %s as a%s interface with a%s link.\n", 1898 bond_dev->name, slave_dev->name, 1899 bond_is_active_slave(new_slave) ? "n active" : " backup", 1900 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1901 1902 /* enslave is successful */ 1903 return 0; 1904 1905 /* Undo stages on error */ 1906 err_dest_symlinks: 1907 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1908 1909 err_detach: 1910 if (!USES_PRIMARY(bond->params.mode)) { 1911 netif_addr_lock_bh(bond_dev); 1912 bond_mc_list_flush(bond_dev, slave_dev); 1913 netif_addr_unlock_bh(bond_dev); 1914 } 1915 bond_del_vlans_from_slave(bond, slave_dev); 1916 write_lock_bh(&bond->lock); 1917 bond_detach_slave(bond, new_slave); 1918 if (bond->primary_slave == new_slave) 1919 bond->primary_slave = NULL; 1920 if (bond->curr_active_slave == new_slave) { 1921 bond_change_active_slave(bond, NULL); 1922 write_unlock_bh(&bond->lock); 1923 read_lock(&bond->lock); 1924 write_lock_bh(&bond->curr_slave_lock); 1925 bond_select_active_slave(bond); 1926 write_unlock_bh(&bond->curr_slave_lock); 1927 read_unlock(&bond->lock); 1928 } else { 1929 write_unlock_bh(&bond->lock); 1930 } 1931 slave_disable_netpoll(new_slave); 1932 1933 err_close: 1934 slave_dev->priv_flags &= ~IFF_BONDING; 1935 dev_close(slave_dev); 1936 1937 err_unset_master: 1938 bond_upper_dev_unlink(bond_dev, slave_dev); 1939 1940 err_restore_mac: 1941 if (!bond->params.fail_over_mac) { 1942 /* XXX TODO - fom follow mode needs to change master's 1943 * MAC if this slave's MAC is in use by the bond, or at 1944 * least print a warning. 1945 */ 1946 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1947 addr.sa_family = slave_dev->type; 1948 dev_set_mac_address(slave_dev, &addr); 1949 } 1950 1951 err_restore_mtu: 1952 dev_set_mtu(slave_dev, new_slave->original_mtu); 1953 1954 err_free: 1955 kfree(new_slave); 1956 1957 err_undo_flags: 1958 bond_compute_features(bond); 1959 1960 return res; 1961 } 1962 1963 /* 1964 * Try to release the slave device <slave> from the bond device <master> 1965 * It is legal to access curr_active_slave without a lock because all the function 1966 * is write-locked. If "all" is true it means that the function is being called 1967 * while destroying a bond interface and all slaves are being released. 1968 * 1969 * The rules for slave state should be: 1970 * for Active/Backup: 1971 * Active stays on all backups go down 1972 * for Bonded connections: 1973 * The first up interface should be left on and all others downed. 1974 */ 1975 static int __bond_release_one(struct net_device *bond_dev, 1976 struct net_device *slave_dev, 1977 bool all) 1978 { 1979 struct bonding *bond = netdev_priv(bond_dev); 1980 struct slave *slave, *oldcurrent; 1981 struct sockaddr addr; 1982 netdev_features_t old_features = bond_dev->features; 1983 1984 /* slave is not a slave or master is not master of this slave */ 1985 if (!(slave_dev->flags & IFF_SLAVE) || 1986 !netdev_has_upper_dev(slave_dev, bond_dev)) { 1987 pr_err("%s: Error: cannot release %s.\n", 1988 bond_dev->name, slave_dev->name); 1989 return -EINVAL; 1990 } 1991 1992 block_netpoll_tx(); 1993 write_lock_bh(&bond->lock); 1994 1995 slave = bond_get_slave_by_dev(bond, slave_dev); 1996 if (!slave) { 1997 /* not a slave of this bond */ 1998 pr_info("%s: %s not enslaved\n", 1999 bond_dev->name, slave_dev->name); 2000 write_unlock_bh(&bond->lock); 2001 unblock_netpoll_tx(); 2002 return -EINVAL; 2003 } 2004 2005 write_unlock_bh(&bond->lock); 2006 /* unregister rx_handler early so bond_handle_frame wouldn't be called 2007 * for this slave anymore. 2008 */ 2009 netdev_rx_handler_unregister(slave_dev); 2010 write_lock_bh(&bond->lock); 2011 2012 if (!all && !bond->params.fail_over_mac) { 2013 if (ether_addr_equal(bond_dev->dev_addr, slave->perm_hwaddr) && 2014 bond->slave_cnt > 1) 2015 pr_warning("%s: Warning: the permanent HWaddr of %s - %pM - is still in use by %s. Set the HWaddr of %s to a different address to avoid conflicts.\n", 2016 bond_dev->name, slave_dev->name, 2017 slave->perm_hwaddr, 2018 bond_dev->name, slave_dev->name); 2019 } 2020 2021 /* Inform AD package of unbinding of slave. */ 2022 if (bond->params.mode == BOND_MODE_8023AD) { 2023 /* must be called before the slave is 2024 * detached from the list 2025 */ 2026 bond_3ad_unbind_slave(slave); 2027 } 2028 2029 pr_info("%s: releasing %s interface %s\n", 2030 bond_dev->name, 2031 bond_is_active_slave(slave) ? "active" : "backup", 2032 slave_dev->name); 2033 2034 oldcurrent = bond->curr_active_slave; 2035 2036 bond->current_arp_slave = NULL; 2037 2038 /* release the slave from its bond */ 2039 bond_detach_slave(bond, slave); 2040 2041 if (bond->primary_slave == slave) 2042 bond->primary_slave = NULL; 2043 2044 if (oldcurrent == slave) 2045 bond_change_active_slave(bond, NULL); 2046 2047 if (bond_is_lb(bond)) { 2048 /* Must be called only after the slave has been 2049 * detached from the list and the curr_active_slave 2050 * has been cleared (if our_slave == old_current), 2051 * but before a new active slave is selected. 2052 */ 2053 write_unlock_bh(&bond->lock); 2054 bond_alb_deinit_slave(bond, slave); 2055 write_lock_bh(&bond->lock); 2056 } 2057 2058 if (all) { 2059 bond->curr_active_slave = NULL; 2060 } else if (oldcurrent == slave) { 2061 /* 2062 * Note that we hold RTNL over this sequence, so there 2063 * is no concern that another slave add/remove event 2064 * will interfere. 2065 */ 2066 write_unlock_bh(&bond->lock); 2067 read_lock(&bond->lock); 2068 write_lock_bh(&bond->curr_slave_lock); 2069 2070 bond_select_active_slave(bond); 2071 2072 write_unlock_bh(&bond->curr_slave_lock); 2073 read_unlock(&bond->lock); 2074 write_lock_bh(&bond->lock); 2075 } 2076 2077 if (bond->slave_cnt == 0) { 2078 bond_set_carrier(bond); 2079 eth_hw_addr_random(bond_dev); 2080 bond->dev_addr_from_first = true; 2081 2082 if (bond_vlan_used(bond)) { 2083 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n", 2084 bond_dev->name, bond_dev->name); 2085 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n", 2086 bond_dev->name); 2087 } 2088 } 2089 2090 write_unlock_bh(&bond->lock); 2091 unblock_netpoll_tx(); 2092 2093 if (bond->slave_cnt == 0) { 2094 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond->dev); 2095 call_netdevice_notifiers(NETDEV_RELEASE, bond->dev); 2096 } 2097 2098 bond_compute_features(bond); 2099 if (!(bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 2100 (old_features & NETIF_F_VLAN_CHALLENGED)) 2101 pr_info("%s: last VLAN challenged slave %s left bond %s. VLAN blocking is removed\n", 2102 bond_dev->name, slave_dev->name, bond_dev->name); 2103 2104 /* must do this from outside any spinlocks */ 2105 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2106 2107 bond_del_vlans_from_slave(bond, slave_dev); 2108 2109 /* If the mode USES_PRIMARY, then we should only remove its 2110 * promisc and mc settings if it was the curr_active_slave, but that was 2111 * already taken care of above when we detached the slave 2112 */ 2113 if (!USES_PRIMARY(bond->params.mode)) { 2114 /* unset promiscuity level from slave */ 2115 if (bond_dev->flags & IFF_PROMISC) 2116 dev_set_promiscuity(slave_dev, -1); 2117 2118 /* unset allmulti level from slave */ 2119 if (bond_dev->flags & IFF_ALLMULTI) 2120 dev_set_allmulti(slave_dev, -1); 2121 2122 /* flush master's mc_list from slave */ 2123 netif_addr_lock_bh(bond_dev); 2124 bond_mc_list_flush(bond_dev, slave_dev); 2125 netif_addr_unlock_bh(bond_dev); 2126 } 2127 2128 bond_upper_dev_unlink(bond_dev, slave_dev); 2129 2130 slave_disable_netpoll(slave); 2131 2132 /* close slave before restoring its mac address */ 2133 dev_close(slave_dev); 2134 2135 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 2136 /* restore original ("permanent") mac address */ 2137 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2138 addr.sa_family = slave_dev->type; 2139 dev_set_mac_address(slave_dev, &addr); 2140 } 2141 2142 dev_set_mtu(slave_dev, slave->original_mtu); 2143 2144 slave_dev->priv_flags &= ~IFF_BONDING; 2145 2146 kfree(slave); 2147 2148 return 0; /* deletion OK */ 2149 } 2150 2151 /* A wrapper used because of ndo_del_link */ 2152 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 2153 { 2154 return __bond_release_one(bond_dev, slave_dev, false); 2155 } 2156 2157 /* 2158 * First release a slave and then destroy the bond if no more slaves are left. 2159 * Must be under rtnl_lock when this function is called. 2160 */ 2161 static int bond_release_and_destroy(struct net_device *bond_dev, 2162 struct net_device *slave_dev) 2163 { 2164 struct bonding *bond = netdev_priv(bond_dev); 2165 int ret; 2166 2167 ret = bond_release(bond_dev, slave_dev); 2168 if ((ret == 0) && (bond->slave_cnt == 0)) { 2169 bond_dev->priv_flags |= IFF_DISABLE_NETPOLL; 2170 pr_info("%s: destroying bond %s.\n", 2171 bond_dev->name, bond_dev->name); 2172 unregister_netdevice(bond_dev); 2173 } 2174 return ret; 2175 } 2176 2177 /* 2178 * This function changes the active slave to slave <slave_dev>. 2179 * It returns -EINVAL in the following cases. 2180 * - <slave_dev> is not found in the list. 2181 * - There is not active slave now. 2182 * - <slave_dev> is already active. 2183 * - The link state of <slave_dev> is not BOND_LINK_UP. 2184 * - <slave_dev> is not running. 2185 * In these cases, this function does nothing. 2186 * In the other cases, current_slave pointer is changed and 0 is returned. 2187 */ 2188 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2189 { 2190 struct bonding *bond = netdev_priv(bond_dev); 2191 struct slave *old_active = NULL; 2192 struct slave *new_active = NULL; 2193 int res = 0; 2194 2195 if (!USES_PRIMARY(bond->params.mode)) 2196 return -EINVAL; 2197 2198 /* Verify that bond_dev is indeed the master of slave_dev */ 2199 if (!(slave_dev->flags & IFF_SLAVE) || 2200 !netdev_has_upper_dev(slave_dev, bond_dev)) 2201 return -EINVAL; 2202 2203 read_lock(&bond->lock); 2204 2205 read_lock(&bond->curr_slave_lock); 2206 old_active = bond->curr_active_slave; 2207 read_unlock(&bond->curr_slave_lock); 2208 2209 new_active = bond_get_slave_by_dev(bond, slave_dev); 2210 2211 /* 2212 * Changing to the current active: do nothing; return success. 2213 */ 2214 if (new_active && (new_active == old_active)) { 2215 read_unlock(&bond->lock); 2216 return 0; 2217 } 2218 2219 if ((new_active) && 2220 (old_active) && 2221 (new_active->link == BOND_LINK_UP) && 2222 IS_UP(new_active->dev)) { 2223 block_netpoll_tx(); 2224 write_lock_bh(&bond->curr_slave_lock); 2225 bond_change_active_slave(bond, new_active); 2226 write_unlock_bh(&bond->curr_slave_lock); 2227 unblock_netpoll_tx(); 2228 } else 2229 res = -EINVAL; 2230 2231 read_unlock(&bond->lock); 2232 2233 return res; 2234 } 2235 2236 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2237 { 2238 struct bonding *bond = netdev_priv(bond_dev); 2239 2240 info->bond_mode = bond->params.mode; 2241 info->miimon = bond->params.miimon; 2242 2243 read_lock(&bond->lock); 2244 info->num_slaves = bond->slave_cnt; 2245 read_unlock(&bond->lock); 2246 2247 return 0; 2248 } 2249 2250 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2251 { 2252 struct bonding *bond = netdev_priv(bond_dev); 2253 struct slave *slave; 2254 int i, res = -ENODEV; 2255 2256 read_lock(&bond->lock); 2257 2258 bond_for_each_slave(bond, slave, i) { 2259 if (i == (int)info->slave_id) { 2260 res = 0; 2261 strcpy(info->slave_name, slave->dev->name); 2262 info->link = slave->link; 2263 info->state = bond_slave_state(slave); 2264 info->link_failure_count = slave->link_failure_count; 2265 break; 2266 } 2267 } 2268 2269 read_unlock(&bond->lock); 2270 2271 return res; 2272 } 2273 2274 /*-------------------------------- Monitoring -------------------------------*/ 2275 2276 2277 static int bond_miimon_inspect(struct bonding *bond) 2278 { 2279 struct slave *slave; 2280 int i, link_state, commit = 0; 2281 bool ignore_updelay; 2282 2283 ignore_updelay = !bond->curr_active_slave ? true : false; 2284 2285 bond_for_each_slave(bond, slave, i) { 2286 slave->new_link = BOND_LINK_NOCHANGE; 2287 2288 link_state = bond_check_dev_link(bond, slave->dev, 0); 2289 2290 switch (slave->link) { 2291 case BOND_LINK_UP: 2292 if (link_state) 2293 continue; 2294 2295 slave->link = BOND_LINK_FAIL; 2296 slave->delay = bond->params.downdelay; 2297 if (slave->delay) { 2298 pr_info("%s: link status down for %sinterface %s, disabling it in %d ms.\n", 2299 bond->dev->name, 2300 (bond->params.mode == 2301 BOND_MODE_ACTIVEBACKUP) ? 2302 (bond_is_active_slave(slave) ? 2303 "active " : "backup ") : "", 2304 slave->dev->name, 2305 bond->params.downdelay * bond->params.miimon); 2306 } 2307 /*FALLTHRU*/ 2308 case BOND_LINK_FAIL: 2309 if (link_state) { 2310 /* 2311 * recovered before downdelay expired 2312 */ 2313 slave->link = BOND_LINK_UP; 2314 slave->jiffies = jiffies; 2315 pr_info("%s: link status up again after %d ms for interface %s.\n", 2316 bond->dev->name, 2317 (bond->params.downdelay - slave->delay) * 2318 bond->params.miimon, 2319 slave->dev->name); 2320 continue; 2321 } 2322 2323 if (slave->delay <= 0) { 2324 slave->new_link = BOND_LINK_DOWN; 2325 commit++; 2326 continue; 2327 } 2328 2329 slave->delay--; 2330 break; 2331 2332 case BOND_LINK_DOWN: 2333 if (!link_state) 2334 continue; 2335 2336 slave->link = BOND_LINK_BACK; 2337 slave->delay = bond->params.updelay; 2338 2339 if (slave->delay) { 2340 pr_info("%s: link status up for interface %s, enabling it in %d ms.\n", 2341 bond->dev->name, slave->dev->name, 2342 ignore_updelay ? 0 : 2343 bond->params.updelay * 2344 bond->params.miimon); 2345 } 2346 /*FALLTHRU*/ 2347 case BOND_LINK_BACK: 2348 if (!link_state) { 2349 slave->link = BOND_LINK_DOWN; 2350 pr_info("%s: link status down again after %d ms for interface %s.\n", 2351 bond->dev->name, 2352 (bond->params.updelay - slave->delay) * 2353 bond->params.miimon, 2354 slave->dev->name); 2355 2356 continue; 2357 } 2358 2359 if (ignore_updelay) 2360 slave->delay = 0; 2361 2362 if (slave->delay <= 0) { 2363 slave->new_link = BOND_LINK_UP; 2364 commit++; 2365 ignore_updelay = false; 2366 continue; 2367 } 2368 2369 slave->delay--; 2370 break; 2371 } 2372 } 2373 2374 return commit; 2375 } 2376 2377 static void bond_miimon_commit(struct bonding *bond) 2378 { 2379 struct slave *slave; 2380 int i; 2381 2382 bond_for_each_slave(bond, slave, i) { 2383 switch (slave->new_link) { 2384 case BOND_LINK_NOCHANGE: 2385 continue; 2386 2387 case BOND_LINK_UP: 2388 slave->link = BOND_LINK_UP; 2389 slave->jiffies = jiffies; 2390 2391 if (bond->params.mode == BOND_MODE_8023AD) { 2392 /* prevent it from being the active one */ 2393 bond_set_backup_slave(slave); 2394 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2395 /* make it immediately active */ 2396 bond_set_active_slave(slave); 2397 } else if (slave != bond->primary_slave) { 2398 /* prevent it from being the active one */ 2399 bond_set_backup_slave(slave); 2400 } 2401 2402 pr_info("%s: link status definitely up for interface %s, %u Mbps %s duplex.\n", 2403 bond->dev->name, slave->dev->name, 2404 slave->speed, slave->duplex ? "full" : "half"); 2405 2406 /* notify ad that the link status has changed */ 2407 if (bond->params.mode == BOND_MODE_8023AD) 2408 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2409 2410 if (bond_is_lb(bond)) 2411 bond_alb_handle_link_change(bond, slave, 2412 BOND_LINK_UP); 2413 2414 if (!bond->curr_active_slave || 2415 (slave == bond->primary_slave)) 2416 goto do_failover; 2417 2418 continue; 2419 2420 case BOND_LINK_DOWN: 2421 if (slave->link_failure_count < UINT_MAX) 2422 slave->link_failure_count++; 2423 2424 slave->link = BOND_LINK_DOWN; 2425 2426 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2427 bond->params.mode == BOND_MODE_8023AD) 2428 bond_set_slave_inactive_flags(slave); 2429 2430 pr_info("%s: link status definitely down for interface %s, disabling it\n", 2431 bond->dev->name, slave->dev->name); 2432 2433 if (bond->params.mode == BOND_MODE_8023AD) 2434 bond_3ad_handle_link_change(slave, 2435 BOND_LINK_DOWN); 2436 2437 if (bond_is_lb(bond)) 2438 bond_alb_handle_link_change(bond, slave, 2439 BOND_LINK_DOWN); 2440 2441 if (slave == bond->curr_active_slave) 2442 goto do_failover; 2443 2444 continue; 2445 2446 default: 2447 pr_err("%s: invalid new link %d on slave %s\n", 2448 bond->dev->name, slave->new_link, 2449 slave->dev->name); 2450 slave->new_link = BOND_LINK_NOCHANGE; 2451 2452 continue; 2453 } 2454 2455 do_failover: 2456 ASSERT_RTNL(); 2457 block_netpoll_tx(); 2458 write_lock_bh(&bond->curr_slave_lock); 2459 bond_select_active_slave(bond); 2460 write_unlock_bh(&bond->curr_slave_lock); 2461 unblock_netpoll_tx(); 2462 } 2463 2464 bond_set_carrier(bond); 2465 } 2466 2467 /* 2468 * bond_mii_monitor 2469 * 2470 * Really a wrapper that splits the mii monitor into two phases: an 2471 * inspection, then (if inspection indicates something needs to be done) 2472 * an acquisition of appropriate locks followed by a commit phase to 2473 * implement whatever link state changes are indicated. 2474 */ 2475 void bond_mii_monitor(struct work_struct *work) 2476 { 2477 struct bonding *bond = container_of(work, struct bonding, 2478 mii_work.work); 2479 bool should_notify_peers = false; 2480 unsigned long delay; 2481 2482 read_lock(&bond->lock); 2483 2484 delay = msecs_to_jiffies(bond->params.miimon); 2485 2486 if (bond->slave_cnt == 0) 2487 goto re_arm; 2488 2489 should_notify_peers = bond_should_notify_peers(bond); 2490 2491 if (bond_miimon_inspect(bond)) { 2492 read_unlock(&bond->lock); 2493 2494 /* Race avoidance with bond_close cancel of workqueue */ 2495 if (!rtnl_trylock()) { 2496 read_lock(&bond->lock); 2497 delay = 1; 2498 should_notify_peers = false; 2499 goto re_arm; 2500 } 2501 2502 read_lock(&bond->lock); 2503 2504 bond_miimon_commit(bond); 2505 2506 read_unlock(&bond->lock); 2507 rtnl_unlock(); /* might sleep, hold no other locks */ 2508 read_lock(&bond->lock); 2509 } 2510 2511 re_arm: 2512 if (bond->params.miimon) 2513 queue_delayed_work(bond->wq, &bond->mii_work, delay); 2514 2515 read_unlock(&bond->lock); 2516 2517 if (should_notify_peers) { 2518 if (!rtnl_trylock()) { 2519 read_lock(&bond->lock); 2520 bond->send_peer_notif++; 2521 read_unlock(&bond->lock); 2522 return; 2523 } 2524 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev); 2525 rtnl_unlock(); 2526 } 2527 } 2528 2529 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2530 { 2531 struct vlan_entry *vlan; 2532 struct net_device *vlan_dev; 2533 2534 if (ip == bond_confirm_addr(bond->dev, 0, ip)) 2535 return 1; 2536 2537 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2538 rcu_read_lock(); 2539 vlan_dev = __vlan_find_dev_deep(bond->dev, htons(ETH_P_8021Q), 2540 vlan->vlan_id); 2541 rcu_read_unlock(); 2542 if (vlan_dev && ip == bond_confirm_addr(vlan_dev, 0, ip)) 2543 return 1; 2544 } 2545 2546 return 0; 2547 } 2548 2549 /* 2550 * We go to the (large) trouble of VLAN tagging ARP frames because 2551 * switches in VLAN mode (especially if ports are configured as 2552 * "native" to a VLAN) might not pass non-tagged frames. 2553 */ 2554 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2555 { 2556 struct sk_buff *skb; 2557 2558 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2559 slave_dev->name, dest_ip, src_ip, vlan_id); 2560 2561 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2562 NULL, slave_dev->dev_addr, NULL); 2563 2564 if (!skb) { 2565 pr_err("ARP packet allocation failed\n"); 2566 return; 2567 } 2568 if (vlan_id) { 2569 skb = vlan_put_tag(skb, htons(ETH_P_8021Q), vlan_id); 2570 if (!skb) { 2571 pr_err("failed to insert VLAN tag\n"); 2572 return; 2573 } 2574 } 2575 arp_xmit(skb); 2576 } 2577 2578 2579 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2580 { 2581 int i, vlan_id; 2582 __be32 *targets = bond->params.arp_targets; 2583 struct vlan_entry *vlan; 2584 struct net_device *vlan_dev = NULL; 2585 struct rtable *rt; 2586 2587 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2588 __be32 addr; 2589 if (!targets[i]) 2590 break; 2591 pr_debug("basa: target %x\n", targets[i]); 2592 if (!bond_vlan_used(bond)) { 2593 pr_debug("basa: empty vlan: arp_send\n"); 2594 addr = bond_confirm_addr(bond->dev, targets[i], 0); 2595 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2596 addr, 0); 2597 continue; 2598 } 2599 2600 /* 2601 * If VLANs are configured, we do a route lookup to 2602 * determine which VLAN interface would be used, so we 2603 * can tag the ARP with the proper VLAN tag. 2604 */ 2605 rt = ip_route_output(dev_net(bond->dev), targets[i], 0, 2606 RTO_ONLINK, 0); 2607 if (IS_ERR(rt)) { 2608 if (net_ratelimit()) { 2609 pr_warning("%s: no route to arp_ip_target %pI4\n", 2610 bond->dev->name, &targets[i]); 2611 } 2612 continue; 2613 } 2614 2615 /* 2616 * This target is not on a VLAN 2617 */ 2618 if (rt->dst.dev == bond->dev) { 2619 ip_rt_put(rt); 2620 pr_debug("basa: rtdev == bond->dev: arp_send\n"); 2621 addr = bond_confirm_addr(bond->dev, targets[i], 0); 2622 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2623 addr, 0); 2624 continue; 2625 } 2626 2627 vlan_id = 0; 2628 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2629 rcu_read_lock(); 2630 vlan_dev = __vlan_find_dev_deep(bond->dev, 2631 htons(ETH_P_8021Q), 2632 vlan->vlan_id); 2633 rcu_read_unlock(); 2634 if (vlan_dev == rt->dst.dev) { 2635 vlan_id = vlan->vlan_id; 2636 pr_debug("basa: vlan match on %s %d\n", 2637 vlan_dev->name, vlan_id); 2638 break; 2639 } 2640 } 2641 2642 if (vlan_id && vlan_dev) { 2643 ip_rt_put(rt); 2644 addr = bond_confirm_addr(vlan_dev, targets[i], 0); 2645 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2646 addr, vlan_id); 2647 continue; 2648 } 2649 2650 if (net_ratelimit()) { 2651 pr_warning("%s: no path to arp_ip_target %pI4 via rt.dev %s\n", 2652 bond->dev->name, &targets[i], 2653 rt->dst.dev ? rt->dst.dev->name : "NULL"); 2654 } 2655 ip_rt_put(rt); 2656 } 2657 } 2658 2659 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2660 { 2661 int i; 2662 __be32 *targets = bond->params.arp_targets; 2663 2664 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2665 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n", 2666 &sip, &tip, i, &targets[i], 2667 bond_has_this_ip(bond, tip)); 2668 if (sip == targets[i]) { 2669 if (bond_has_this_ip(bond, tip)) 2670 slave->last_arp_rx = jiffies; 2671 return; 2672 } 2673 } 2674 } 2675 2676 static int bond_arp_rcv(const struct sk_buff *skb, struct bonding *bond, 2677 struct slave *slave) 2678 { 2679 struct arphdr *arp = (struct arphdr *)skb->data; 2680 unsigned char *arp_ptr; 2681 __be32 sip, tip; 2682 int alen; 2683 2684 if (skb->protocol != __cpu_to_be16(ETH_P_ARP)) 2685 return RX_HANDLER_ANOTHER; 2686 2687 read_lock(&bond->lock); 2688 alen = arp_hdr_len(bond->dev); 2689 2690 pr_debug("bond_arp_rcv: bond %s skb->dev %s\n", 2691 bond->dev->name, skb->dev->name); 2692 2693 if (alen > skb_headlen(skb)) { 2694 arp = kmalloc(alen, GFP_ATOMIC); 2695 if (!arp) 2696 goto out_unlock; 2697 if (skb_copy_bits(skb, 0, arp, alen) < 0) 2698 goto out_unlock; 2699 } 2700 2701 if (arp->ar_hln != bond->dev->addr_len || 2702 skb->pkt_type == PACKET_OTHERHOST || 2703 skb->pkt_type == PACKET_LOOPBACK || 2704 arp->ar_hrd != htons(ARPHRD_ETHER) || 2705 arp->ar_pro != htons(ETH_P_IP) || 2706 arp->ar_pln != 4) 2707 goto out_unlock; 2708 2709 arp_ptr = (unsigned char *)(arp + 1); 2710 arp_ptr += bond->dev->addr_len; 2711 memcpy(&sip, arp_ptr, 4); 2712 arp_ptr += 4 + bond->dev->addr_len; 2713 memcpy(&tip, arp_ptr, 4); 2714 2715 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n", 2716 bond->dev->name, slave->dev->name, bond_slave_state(slave), 2717 bond->params.arp_validate, slave_do_arp_validate(bond, slave), 2718 &sip, &tip); 2719 2720 /* 2721 * Backup slaves won't see the ARP reply, but do come through 2722 * here for each ARP probe (so we swap the sip/tip to validate 2723 * the probe). In a "redundant switch, common router" type of 2724 * configuration, the ARP probe will (hopefully) travel from 2725 * the active, through one switch, the router, then the other 2726 * switch before reaching the backup. 2727 */ 2728 if (bond_is_active_slave(slave)) 2729 bond_validate_arp(bond, slave, sip, tip); 2730 else 2731 bond_validate_arp(bond, slave, tip, sip); 2732 2733 out_unlock: 2734 read_unlock(&bond->lock); 2735 if (arp != (struct arphdr *)skb->data) 2736 kfree(arp); 2737 return RX_HANDLER_ANOTHER; 2738 } 2739 2740 /* 2741 * this function is called regularly to monitor each slave's link 2742 * ensuring that traffic is being sent and received when arp monitoring 2743 * is used in load-balancing mode. if the adapter has been dormant, then an 2744 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2745 * arp monitoring in active backup mode. 2746 */ 2747 void bond_loadbalance_arp_mon(struct work_struct *work) 2748 { 2749 struct bonding *bond = container_of(work, struct bonding, 2750 arp_work.work); 2751 struct slave *slave, *oldcurrent; 2752 int do_failover = 0; 2753 int delta_in_ticks, extra_ticks; 2754 int i; 2755 2756 read_lock(&bond->lock); 2757 2758 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2759 extra_ticks = delta_in_ticks / 2; 2760 2761 if (bond->slave_cnt == 0) 2762 goto re_arm; 2763 2764 read_lock(&bond->curr_slave_lock); 2765 oldcurrent = bond->curr_active_slave; 2766 read_unlock(&bond->curr_slave_lock); 2767 2768 /* see if any of the previous devices are up now (i.e. they have 2769 * xmt and rcv traffic). the curr_active_slave does not come into 2770 * the picture unless it is null. also, slave->jiffies is not needed 2771 * here because we send an arp on each slave and give a slave as 2772 * long as it needs to get the tx/rx within the delta. 2773 * TODO: what about up/down delay in arp mode? it wasn't here before 2774 * so it can wait 2775 */ 2776 bond_for_each_slave(bond, slave, i) { 2777 unsigned long trans_start = dev_trans_start(slave->dev); 2778 2779 if (slave->link != BOND_LINK_UP) { 2780 if (time_in_range(jiffies, 2781 trans_start - delta_in_ticks, 2782 trans_start + delta_in_ticks + extra_ticks) && 2783 time_in_range(jiffies, 2784 slave->dev->last_rx - delta_in_ticks, 2785 slave->dev->last_rx + delta_in_ticks + extra_ticks)) { 2786 2787 slave->link = BOND_LINK_UP; 2788 bond_set_active_slave(slave); 2789 2790 /* primary_slave has no meaning in round-robin 2791 * mode. the window of a slave being up and 2792 * curr_active_slave being null after enslaving 2793 * is closed. 2794 */ 2795 if (!oldcurrent) { 2796 pr_info("%s: link status definitely up for interface %s, ", 2797 bond->dev->name, 2798 slave->dev->name); 2799 do_failover = 1; 2800 } else { 2801 pr_info("%s: interface %s is now up\n", 2802 bond->dev->name, 2803 slave->dev->name); 2804 } 2805 } 2806 } else { 2807 /* slave->link == BOND_LINK_UP */ 2808 2809 /* not all switches will respond to an arp request 2810 * when the source ip is 0, so don't take the link down 2811 * if we don't know our ip yet 2812 */ 2813 if (!time_in_range(jiffies, 2814 trans_start - delta_in_ticks, 2815 trans_start + 2 * delta_in_ticks + extra_ticks) || 2816 !time_in_range(jiffies, 2817 slave->dev->last_rx - delta_in_ticks, 2818 slave->dev->last_rx + 2 * delta_in_ticks + extra_ticks)) { 2819 2820 slave->link = BOND_LINK_DOWN; 2821 bond_set_backup_slave(slave); 2822 2823 if (slave->link_failure_count < UINT_MAX) 2824 slave->link_failure_count++; 2825 2826 pr_info("%s: interface %s is now down.\n", 2827 bond->dev->name, 2828 slave->dev->name); 2829 2830 if (slave == oldcurrent) 2831 do_failover = 1; 2832 } 2833 } 2834 2835 /* note: if switch is in round-robin mode, all links 2836 * must tx arp to ensure all links rx an arp - otherwise 2837 * links may oscillate or not come up at all; if switch is 2838 * in something like xor mode, there is nothing we can 2839 * do - all replies will be rx'ed on same link causing slaves 2840 * to be unstable during low/no traffic periods 2841 */ 2842 if (IS_UP(slave->dev)) 2843 bond_arp_send_all(bond, slave); 2844 } 2845 2846 if (do_failover) { 2847 block_netpoll_tx(); 2848 write_lock_bh(&bond->curr_slave_lock); 2849 2850 bond_select_active_slave(bond); 2851 2852 write_unlock_bh(&bond->curr_slave_lock); 2853 unblock_netpoll_tx(); 2854 } 2855 2856 re_arm: 2857 if (bond->params.arp_interval) 2858 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2859 2860 read_unlock(&bond->lock); 2861 } 2862 2863 /* 2864 * Called to inspect slaves for active-backup mode ARP monitor link state 2865 * changes. Sets new_link in slaves to specify what action should take 2866 * place for the slave. Returns 0 if no changes are found, >0 if changes 2867 * to link states must be committed. 2868 * 2869 * Called with bond->lock held for read. 2870 */ 2871 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2872 { 2873 struct slave *slave; 2874 int i, commit = 0; 2875 unsigned long trans_start; 2876 int extra_ticks; 2877 2878 /* All the time comparisons below need some extra time. Otherwise, on 2879 * fast networks the ARP probe/reply may arrive within the same jiffy 2880 * as it was sent. Then, the next time the ARP monitor is run, one 2881 * arp_interval will already have passed in the comparisons. 2882 */ 2883 extra_ticks = delta_in_ticks / 2; 2884 2885 bond_for_each_slave(bond, slave, i) { 2886 slave->new_link = BOND_LINK_NOCHANGE; 2887 2888 if (slave->link != BOND_LINK_UP) { 2889 if (time_in_range(jiffies, 2890 slave_last_rx(bond, slave) - delta_in_ticks, 2891 slave_last_rx(bond, slave) + delta_in_ticks + extra_ticks)) { 2892 2893 slave->new_link = BOND_LINK_UP; 2894 commit++; 2895 } 2896 2897 continue; 2898 } 2899 2900 /* 2901 * Give slaves 2*delta after being enslaved or made 2902 * active. This avoids bouncing, as the last receive 2903 * times need a full ARP monitor cycle to be updated. 2904 */ 2905 if (time_in_range(jiffies, 2906 slave->jiffies - delta_in_ticks, 2907 slave->jiffies + 2 * delta_in_ticks + extra_ticks)) 2908 continue; 2909 2910 /* 2911 * Backup slave is down if: 2912 * - No current_arp_slave AND 2913 * - more than 3*delta since last receive AND 2914 * - the bond has an IP address 2915 * 2916 * Note: a non-null current_arp_slave indicates 2917 * the curr_active_slave went down and we are 2918 * searching for a new one; under this condition 2919 * we only take the curr_active_slave down - this 2920 * gives each slave a chance to tx/rx traffic 2921 * before being taken out 2922 */ 2923 if (!bond_is_active_slave(slave) && 2924 !bond->current_arp_slave && 2925 !time_in_range(jiffies, 2926 slave_last_rx(bond, slave) - delta_in_ticks, 2927 slave_last_rx(bond, slave) + 3 * delta_in_ticks + extra_ticks)) { 2928 2929 slave->new_link = BOND_LINK_DOWN; 2930 commit++; 2931 } 2932 2933 /* 2934 * Active slave is down if: 2935 * - more than 2*delta since transmitting OR 2936 * - (more than 2*delta since receive AND 2937 * the bond has an IP address) 2938 */ 2939 trans_start = dev_trans_start(slave->dev); 2940 if (bond_is_active_slave(slave) && 2941 (!time_in_range(jiffies, 2942 trans_start - delta_in_ticks, 2943 trans_start + 2 * delta_in_ticks + extra_ticks) || 2944 !time_in_range(jiffies, 2945 slave_last_rx(bond, slave) - delta_in_ticks, 2946 slave_last_rx(bond, slave) + 2 * delta_in_ticks + extra_ticks))) { 2947 2948 slave->new_link = BOND_LINK_DOWN; 2949 commit++; 2950 } 2951 } 2952 2953 return commit; 2954 } 2955 2956 /* 2957 * Called to commit link state changes noted by inspection step of 2958 * active-backup mode ARP monitor. 2959 * 2960 * Called with RTNL and bond->lock for read. 2961 */ 2962 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2963 { 2964 struct slave *slave; 2965 int i; 2966 unsigned long trans_start; 2967 2968 bond_for_each_slave(bond, slave, i) { 2969 switch (slave->new_link) { 2970 case BOND_LINK_NOCHANGE: 2971 continue; 2972 2973 case BOND_LINK_UP: 2974 trans_start = dev_trans_start(slave->dev); 2975 if ((!bond->curr_active_slave && 2976 time_in_range(jiffies, 2977 trans_start - delta_in_ticks, 2978 trans_start + delta_in_ticks + delta_in_ticks / 2)) || 2979 bond->curr_active_slave != slave) { 2980 slave->link = BOND_LINK_UP; 2981 if (bond->current_arp_slave) { 2982 bond_set_slave_inactive_flags( 2983 bond->current_arp_slave); 2984 bond->current_arp_slave = NULL; 2985 } 2986 2987 pr_info("%s: link status definitely up for interface %s.\n", 2988 bond->dev->name, slave->dev->name); 2989 2990 if (!bond->curr_active_slave || 2991 (slave == bond->primary_slave)) 2992 goto do_failover; 2993 2994 } 2995 2996 continue; 2997 2998 case BOND_LINK_DOWN: 2999 if (slave->link_failure_count < UINT_MAX) 3000 slave->link_failure_count++; 3001 3002 slave->link = BOND_LINK_DOWN; 3003 bond_set_slave_inactive_flags(slave); 3004 3005 pr_info("%s: link status definitely down for interface %s, disabling it\n", 3006 bond->dev->name, slave->dev->name); 3007 3008 if (slave == bond->curr_active_slave) { 3009 bond->current_arp_slave = NULL; 3010 goto do_failover; 3011 } 3012 3013 continue; 3014 3015 default: 3016 pr_err("%s: impossible: new_link %d on slave %s\n", 3017 bond->dev->name, slave->new_link, 3018 slave->dev->name); 3019 continue; 3020 } 3021 3022 do_failover: 3023 ASSERT_RTNL(); 3024 block_netpoll_tx(); 3025 write_lock_bh(&bond->curr_slave_lock); 3026 bond_select_active_slave(bond); 3027 write_unlock_bh(&bond->curr_slave_lock); 3028 unblock_netpoll_tx(); 3029 } 3030 3031 bond_set_carrier(bond); 3032 } 3033 3034 /* 3035 * Send ARP probes for active-backup mode ARP monitor. 3036 * 3037 * Called with bond->lock held for read. 3038 */ 3039 static void bond_ab_arp_probe(struct bonding *bond) 3040 { 3041 struct slave *slave; 3042 int i; 3043 3044 read_lock(&bond->curr_slave_lock); 3045 3046 if (bond->current_arp_slave && bond->curr_active_slave) 3047 pr_info("PROBE: c_arp %s && cas %s BAD\n", 3048 bond->current_arp_slave->dev->name, 3049 bond->curr_active_slave->dev->name); 3050 3051 if (bond->curr_active_slave) { 3052 bond_arp_send_all(bond, bond->curr_active_slave); 3053 read_unlock(&bond->curr_slave_lock); 3054 return; 3055 } 3056 3057 read_unlock(&bond->curr_slave_lock); 3058 3059 /* if we don't have a curr_active_slave, search for the next available 3060 * backup slave from the current_arp_slave and make it the candidate 3061 * for becoming the curr_active_slave 3062 */ 3063 3064 if (!bond->current_arp_slave) { 3065 bond->current_arp_slave = bond->first_slave; 3066 if (!bond->current_arp_slave) 3067 return; 3068 } 3069 3070 bond_set_slave_inactive_flags(bond->current_arp_slave); 3071 3072 /* search for next candidate */ 3073 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3074 if (IS_UP(slave->dev)) { 3075 slave->link = BOND_LINK_BACK; 3076 bond_set_slave_active_flags(slave); 3077 bond_arp_send_all(bond, slave); 3078 slave->jiffies = jiffies; 3079 bond->current_arp_slave = slave; 3080 break; 3081 } 3082 3083 /* if the link state is up at this point, we 3084 * mark it down - this can happen if we have 3085 * simultaneous link failures and 3086 * reselect_active_interface doesn't make this 3087 * one the current slave so it is still marked 3088 * up when it is actually down 3089 */ 3090 if (slave->link == BOND_LINK_UP) { 3091 slave->link = BOND_LINK_DOWN; 3092 if (slave->link_failure_count < UINT_MAX) 3093 slave->link_failure_count++; 3094 3095 bond_set_slave_inactive_flags(slave); 3096 3097 pr_info("%s: backup interface %s is now down.\n", 3098 bond->dev->name, slave->dev->name); 3099 } 3100 } 3101 } 3102 3103 void bond_activebackup_arp_mon(struct work_struct *work) 3104 { 3105 struct bonding *bond = container_of(work, struct bonding, 3106 arp_work.work); 3107 bool should_notify_peers = false; 3108 int delta_in_ticks; 3109 3110 read_lock(&bond->lock); 3111 3112 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3113 3114 if (bond->slave_cnt == 0) 3115 goto re_arm; 3116 3117 should_notify_peers = bond_should_notify_peers(bond); 3118 3119 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3120 read_unlock(&bond->lock); 3121 3122 /* Race avoidance with bond_close flush of workqueue */ 3123 if (!rtnl_trylock()) { 3124 read_lock(&bond->lock); 3125 delta_in_ticks = 1; 3126 should_notify_peers = false; 3127 goto re_arm; 3128 } 3129 3130 read_lock(&bond->lock); 3131 3132 bond_ab_arp_commit(bond, delta_in_ticks); 3133 3134 read_unlock(&bond->lock); 3135 rtnl_unlock(); 3136 read_lock(&bond->lock); 3137 } 3138 3139 bond_ab_arp_probe(bond); 3140 3141 re_arm: 3142 if (bond->params.arp_interval) 3143 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3144 3145 read_unlock(&bond->lock); 3146 3147 if (should_notify_peers) { 3148 if (!rtnl_trylock()) { 3149 read_lock(&bond->lock); 3150 bond->send_peer_notif++; 3151 read_unlock(&bond->lock); 3152 return; 3153 } 3154 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev); 3155 rtnl_unlock(); 3156 } 3157 } 3158 3159 /*-------------------------- netdev event handling --------------------------*/ 3160 3161 /* 3162 * Change device name 3163 */ 3164 static int bond_event_changename(struct bonding *bond) 3165 { 3166 bond_remove_proc_entry(bond); 3167 bond_create_proc_entry(bond); 3168 3169 bond_debug_reregister(bond); 3170 3171 return NOTIFY_DONE; 3172 } 3173 3174 static int bond_master_netdev_event(unsigned long event, 3175 struct net_device *bond_dev) 3176 { 3177 struct bonding *event_bond = netdev_priv(bond_dev); 3178 3179 switch (event) { 3180 case NETDEV_CHANGENAME: 3181 return bond_event_changename(event_bond); 3182 case NETDEV_UNREGISTER: 3183 bond_remove_proc_entry(event_bond); 3184 break; 3185 case NETDEV_REGISTER: 3186 bond_create_proc_entry(event_bond); 3187 break; 3188 default: 3189 break; 3190 } 3191 3192 return NOTIFY_DONE; 3193 } 3194 3195 static int bond_slave_netdev_event(unsigned long event, 3196 struct net_device *slave_dev) 3197 { 3198 struct slave *slave = bond_slave_get_rtnl(slave_dev); 3199 struct bonding *bond; 3200 struct net_device *bond_dev; 3201 u32 old_speed; 3202 u8 old_duplex; 3203 3204 /* A netdev event can be generated while enslaving a device 3205 * before netdev_rx_handler_register is called in which case 3206 * slave will be NULL 3207 */ 3208 if (!slave) 3209 return NOTIFY_DONE; 3210 bond_dev = slave->bond->dev; 3211 bond = slave->bond; 3212 3213 switch (event) { 3214 case NETDEV_UNREGISTER: 3215 if (bond->setup_by_slave) 3216 bond_release_and_destroy(bond_dev, slave_dev); 3217 else 3218 bond_release(bond_dev, slave_dev); 3219 break; 3220 case NETDEV_UP: 3221 case NETDEV_CHANGE: 3222 old_speed = slave->speed; 3223 old_duplex = slave->duplex; 3224 3225 bond_update_speed_duplex(slave); 3226 3227 if (bond->params.mode == BOND_MODE_8023AD) { 3228 if (old_speed != slave->speed) 3229 bond_3ad_adapter_speed_changed(slave); 3230 if (old_duplex != slave->duplex) 3231 bond_3ad_adapter_duplex_changed(slave); 3232 } 3233 break; 3234 case NETDEV_DOWN: 3235 /* 3236 * ... Or is it this? 3237 */ 3238 break; 3239 case NETDEV_CHANGEMTU: 3240 /* 3241 * TODO: Should slaves be allowed to 3242 * independently alter their MTU? For 3243 * an active-backup bond, slaves need 3244 * not be the same type of device, so 3245 * MTUs may vary. For other modes, 3246 * slaves arguably should have the 3247 * same MTUs. To do this, we'd need to 3248 * take over the slave's change_mtu 3249 * function for the duration of their 3250 * servitude. 3251 */ 3252 break; 3253 case NETDEV_CHANGENAME: 3254 /* 3255 * TODO: handle changing the primary's name 3256 */ 3257 break; 3258 case NETDEV_FEAT_CHANGE: 3259 bond_compute_features(bond); 3260 break; 3261 default: 3262 break; 3263 } 3264 3265 return NOTIFY_DONE; 3266 } 3267 3268 /* 3269 * bond_netdev_event: handle netdev notifier chain events. 3270 * 3271 * This function receives events for the netdev chain. The caller (an 3272 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3273 * locks for us to safely manipulate the slave devices (RTNL lock, 3274 * dev_probe_lock). 3275 */ 3276 static int bond_netdev_event(struct notifier_block *this, 3277 unsigned long event, void *ptr) 3278 { 3279 struct net_device *event_dev = (struct net_device *)ptr; 3280 3281 pr_debug("event_dev: %s, event: %lx\n", 3282 event_dev ? event_dev->name : "None", 3283 event); 3284 3285 if (!(event_dev->priv_flags & IFF_BONDING)) 3286 return NOTIFY_DONE; 3287 3288 if (event_dev->flags & IFF_MASTER) { 3289 pr_debug("IFF_MASTER\n"); 3290 return bond_master_netdev_event(event, event_dev); 3291 } 3292 3293 if (event_dev->flags & IFF_SLAVE) { 3294 pr_debug("IFF_SLAVE\n"); 3295 return bond_slave_netdev_event(event, event_dev); 3296 } 3297 3298 return NOTIFY_DONE; 3299 } 3300 3301 static struct notifier_block bond_netdev_notifier = { 3302 .notifier_call = bond_netdev_event, 3303 }; 3304 3305 /*---------------------------- Hashing Policies -----------------------------*/ 3306 3307 /* 3308 * Hash for the output device based upon layer 2 data 3309 */ 3310 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count) 3311 { 3312 struct ethhdr *data = (struct ethhdr *)skb->data; 3313 3314 if (skb_headlen(skb) >= offsetof(struct ethhdr, h_proto)) 3315 return (data->h_dest[5] ^ data->h_source[5]) % count; 3316 3317 return 0; 3318 } 3319 3320 /* 3321 * Hash for the output device based upon layer 2 and layer 3 data. If 3322 * the packet is not IP, fall back on bond_xmit_hash_policy_l2() 3323 */ 3324 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count) 3325 { 3326 const struct ethhdr *data; 3327 const struct iphdr *iph; 3328 const struct ipv6hdr *ipv6h; 3329 u32 v6hash; 3330 const __be32 *s, *d; 3331 3332 if (skb->protocol == htons(ETH_P_IP) && 3333 pskb_network_may_pull(skb, sizeof(*iph))) { 3334 iph = ip_hdr(skb); 3335 data = (struct ethhdr *)skb->data; 3336 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3337 (data->h_dest[5] ^ data->h_source[5])) % count; 3338 } else if (skb->protocol == htons(ETH_P_IPV6) && 3339 pskb_network_may_pull(skb, sizeof(*ipv6h))) { 3340 ipv6h = ipv6_hdr(skb); 3341 data = (struct ethhdr *)skb->data; 3342 s = &ipv6h->saddr.s6_addr32[0]; 3343 d = &ipv6h->daddr.s6_addr32[0]; 3344 v6hash = (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]); 3345 v6hash ^= (v6hash >> 24) ^ (v6hash >> 16) ^ (v6hash >> 8); 3346 return (v6hash ^ data->h_dest[5] ^ data->h_source[5]) % count; 3347 } 3348 3349 return bond_xmit_hash_policy_l2(skb, count); 3350 } 3351 3352 /* 3353 * Hash for the output device based upon layer 3 and layer 4 data. If 3354 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3355 * altogether not IP, fall back on bond_xmit_hash_policy_l2() 3356 */ 3357 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count) 3358 { 3359 u32 layer4_xor = 0; 3360 const struct iphdr *iph; 3361 const struct ipv6hdr *ipv6h; 3362 const __be32 *s, *d; 3363 const __be16 *l4 = NULL; 3364 __be16 _l4[2]; 3365 int noff = skb_network_offset(skb); 3366 int poff; 3367 3368 if (skb->protocol == htons(ETH_P_IP) && 3369 pskb_may_pull(skb, noff + sizeof(*iph))) { 3370 iph = ip_hdr(skb); 3371 poff = proto_ports_offset(iph->protocol); 3372 3373 if (!ip_is_fragment(iph) && poff >= 0) { 3374 l4 = skb_header_pointer(skb, noff + (iph->ihl << 2) + poff, 3375 sizeof(_l4), &_l4); 3376 if (l4) 3377 layer4_xor = ntohs(l4[0] ^ l4[1]); 3378 } 3379 return (layer4_xor ^ 3380 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3381 } else if (skb->protocol == htons(ETH_P_IPV6) && 3382 pskb_may_pull(skb, noff + sizeof(*ipv6h))) { 3383 ipv6h = ipv6_hdr(skb); 3384 poff = proto_ports_offset(ipv6h->nexthdr); 3385 if (poff >= 0) { 3386 l4 = skb_header_pointer(skb, noff + sizeof(*ipv6h) + poff, 3387 sizeof(_l4), &_l4); 3388 if (l4) 3389 layer4_xor = ntohs(l4[0] ^ l4[1]); 3390 } 3391 s = &ipv6h->saddr.s6_addr32[0]; 3392 d = &ipv6h->daddr.s6_addr32[0]; 3393 layer4_xor ^= (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]); 3394 layer4_xor ^= (layer4_xor >> 24) ^ (layer4_xor >> 16) ^ 3395 (layer4_xor >> 8); 3396 return layer4_xor % count; 3397 } 3398 3399 return bond_xmit_hash_policy_l2(skb, count); 3400 } 3401 3402 /*-------------------------- Device entry points ----------------------------*/ 3403 3404 static void bond_work_init_all(struct bonding *bond) 3405 { 3406 INIT_DELAYED_WORK(&bond->mcast_work, 3407 bond_resend_igmp_join_requests_delayed); 3408 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3409 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3410 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3411 INIT_DELAYED_WORK(&bond->arp_work, bond_activebackup_arp_mon); 3412 else 3413 INIT_DELAYED_WORK(&bond->arp_work, bond_loadbalance_arp_mon); 3414 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3415 } 3416 3417 static void bond_work_cancel_all(struct bonding *bond) 3418 { 3419 cancel_delayed_work_sync(&bond->mii_work); 3420 cancel_delayed_work_sync(&bond->arp_work); 3421 cancel_delayed_work_sync(&bond->alb_work); 3422 cancel_delayed_work_sync(&bond->ad_work); 3423 cancel_delayed_work_sync(&bond->mcast_work); 3424 } 3425 3426 static int bond_open(struct net_device *bond_dev) 3427 { 3428 struct bonding *bond = netdev_priv(bond_dev); 3429 struct slave *slave; 3430 int i; 3431 3432 /* reset slave->backup and slave->inactive */ 3433 read_lock(&bond->lock); 3434 if (bond->slave_cnt > 0) { 3435 read_lock(&bond->curr_slave_lock); 3436 bond_for_each_slave(bond, slave, i) { 3437 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3438 && (slave != bond->curr_active_slave)) { 3439 bond_set_slave_inactive_flags(slave); 3440 } else { 3441 bond_set_slave_active_flags(slave); 3442 } 3443 } 3444 read_unlock(&bond->curr_slave_lock); 3445 } 3446 read_unlock(&bond->lock); 3447 3448 bond_work_init_all(bond); 3449 3450 if (bond_is_lb(bond)) { 3451 /* bond_alb_initialize must be called before the timer 3452 * is started. 3453 */ 3454 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) 3455 return -ENOMEM; 3456 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3457 } 3458 3459 if (bond->params.miimon) /* link check interval, in milliseconds. */ 3460 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3461 3462 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3463 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3464 if (bond->params.arp_validate) 3465 bond->recv_probe = bond_arp_rcv; 3466 } 3467 3468 if (bond->params.mode == BOND_MODE_8023AD) { 3469 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3470 /* register to receive LACPDUs */ 3471 bond->recv_probe = bond_3ad_lacpdu_recv; 3472 bond_3ad_initiate_agg_selection(bond, 1); 3473 } 3474 3475 return 0; 3476 } 3477 3478 static int bond_close(struct net_device *bond_dev) 3479 { 3480 struct bonding *bond = netdev_priv(bond_dev); 3481 3482 write_lock_bh(&bond->lock); 3483 bond->send_peer_notif = 0; 3484 write_unlock_bh(&bond->lock); 3485 3486 bond_work_cancel_all(bond); 3487 if (bond_is_lb(bond)) { 3488 /* Must be called only after all 3489 * slaves have been released 3490 */ 3491 bond_alb_deinitialize(bond); 3492 } 3493 bond->recv_probe = NULL; 3494 3495 return 0; 3496 } 3497 3498 static struct rtnl_link_stats64 *bond_get_stats(struct net_device *bond_dev, 3499 struct rtnl_link_stats64 *stats) 3500 { 3501 struct bonding *bond = netdev_priv(bond_dev); 3502 struct rtnl_link_stats64 temp; 3503 struct slave *slave; 3504 int i; 3505 3506 memset(stats, 0, sizeof(*stats)); 3507 3508 read_lock_bh(&bond->lock); 3509 3510 bond_for_each_slave(bond, slave, i) { 3511 const struct rtnl_link_stats64 *sstats = 3512 dev_get_stats(slave->dev, &temp); 3513 3514 stats->rx_packets += sstats->rx_packets; 3515 stats->rx_bytes += sstats->rx_bytes; 3516 stats->rx_errors += sstats->rx_errors; 3517 stats->rx_dropped += sstats->rx_dropped; 3518 3519 stats->tx_packets += sstats->tx_packets; 3520 stats->tx_bytes += sstats->tx_bytes; 3521 stats->tx_errors += sstats->tx_errors; 3522 stats->tx_dropped += sstats->tx_dropped; 3523 3524 stats->multicast += sstats->multicast; 3525 stats->collisions += sstats->collisions; 3526 3527 stats->rx_length_errors += sstats->rx_length_errors; 3528 stats->rx_over_errors += sstats->rx_over_errors; 3529 stats->rx_crc_errors += sstats->rx_crc_errors; 3530 stats->rx_frame_errors += sstats->rx_frame_errors; 3531 stats->rx_fifo_errors += sstats->rx_fifo_errors; 3532 stats->rx_missed_errors += sstats->rx_missed_errors; 3533 3534 stats->tx_aborted_errors += sstats->tx_aborted_errors; 3535 stats->tx_carrier_errors += sstats->tx_carrier_errors; 3536 stats->tx_fifo_errors += sstats->tx_fifo_errors; 3537 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3538 stats->tx_window_errors += sstats->tx_window_errors; 3539 } 3540 3541 read_unlock_bh(&bond->lock); 3542 3543 return stats; 3544 } 3545 3546 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3547 { 3548 struct net_device *slave_dev = NULL; 3549 struct ifbond k_binfo; 3550 struct ifbond __user *u_binfo = NULL; 3551 struct ifslave k_sinfo; 3552 struct ifslave __user *u_sinfo = NULL; 3553 struct mii_ioctl_data *mii = NULL; 3554 struct net *net; 3555 int res = 0; 3556 3557 pr_debug("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd); 3558 3559 switch (cmd) { 3560 case SIOCGMIIPHY: 3561 mii = if_mii(ifr); 3562 if (!mii) 3563 return -EINVAL; 3564 3565 mii->phy_id = 0; 3566 /* Fall Through */ 3567 case SIOCGMIIREG: 3568 /* 3569 * We do this again just in case we were called by SIOCGMIIREG 3570 * instead of SIOCGMIIPHY. 3571 */ 3572 mii = if_mii(ifr); 3573 if (!mii) 3574 return -EINVAL; 3575 3576 3577 if (mii->reg_num == 1) { 3578 struct bonding *bond = netdev_priv(bond_dev); 3579 mii->val_out = 0; 3580 read_lock(&bond->lock); 3581 read_lock(&bond->curr_slave_lock); 3582 if (netif_carrier_ok(bond->dev)) 3583 mii->val_out = BMSR_LSTATUS; 3584 3585 read_unlock(&bond->curr_slave_lock); 3586 read_unlock(&bond->lock); 3587 } 3588 3589 return 0; 3590 case BOND_INFO_QUERY_OLD: 3591 case SIOCBONDINFOQUERY: 3592 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3593 3594 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) 3595 return -EFAULT; 3596 3597 res = bond_info_query(bond_dev, &k_binfo); 3598 if (res == 0 && 3599 copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) 3600 return -EFAULT; 3601 3602 return res; 3603 case BOND_SLAVE_INFO_QUERY_OLD: 3604 case SIOCBONDSLAVEINFOQUERY: 3605 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3606 3607 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) 3608 return -EFAULT; 3609 3610 res = bond_slave_info_query(bond_dev, &k_sinfo); 3611 if (res == 0 && 3612 copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) 3613 return -EFAULT; 3614 3615 return res; 3616 default: 3617 /* Go on */ 3618 break; 3619 } 3620 3621 net = dev_net(bond_dev); 3622 3623 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 3624 return -EPERM; 3625 3626 slave_dev = dev_get_by_name(net, ifr->ifr_slave); 3627 3628 pr_debug("slave_dev=%p:\n", slave_dev); 3629 3630 if (!slave_dev) 3631 res = -ENODEV; 3632 else { 3633 pr_debug("slave_dev->name=%s:\n", slave_dev->name); 3634 switch (cmd) { 3635 case BOND_ENSLAVE_OLD: 3636 case SIOCBONDENSLAVE: 3637 res = bond_enslave(bond_dev, slave_dev); 3638 break; 3639 case BOND_RELEASE_OLD: 3640 case SIOCBONDRELEASE: 3641 res = bond_release(bond_dev, slave_dev); 3642 break; 3643 case BOND_SETHWADDR_OLD: 3644 case SIOCBONDSETHWADDR: 3645 bond_set_dev_addr(bond_dev, slave_dev); 3646 res = 0; 3647 break; 3648 case BOND_CHANGE_ACTIVE_OLD: 3649 case SIOCBONDCHANGEACTIVE: 3650 res = bond_ioctl_change_active(bond_dev, slave_dev); 3651 break; 3652 default: 3653 res = -EOPNOTSUPP; 3654 } 3655 3656 dev_put(slave_dev); 3657 } 3658 3659 return res; 3660 } 3661 3662 static bool bond_addr_in_mc_list(unsigned char *addr, 3663 struct netdev_hw_addr_list *list, 3664 int addrlen) 3665 { 3666 struct netdev_hw_addr *ha; 3667 3668 netdev_hw_addr_list_for_each(ha, list) 3669 if (!memcmp(ha->addr, addr, addrlen)) 3670 return true; 3671 3672 return false; 3673 } 3674 3675 static void bond_change_rx_flags(struct net_device *bond_dev, int change) 3676 { 3677 struct bonding *bond = netdev_priv(bond_dev); 3678 3679 if (change & IFF_PROMISC) 3680 bond_set_promiscuity(bond, 3681 bond_dev->flags & IFF_PROMISC ? 1 : -1); 3682 3683 if (change & IFF_ALLMULTI) 3684 bond_set_allmulti(bond, 3685 bond_dev->flags & IFF_ALLMULTI ? 1 : -1); 3686 } 3687 3688 static void bond_set_multicast_list(struct net_device *bond_dev) 3689 { 3690 struct bonding *bond = netdev_priv(bond_dev); 3691 struct netdev_hw_addr *ha; 3692 bool found; 3693 3694 read_lock(&bond->lock); 3695 3696 /* looking for addresses to add to slaves' mc list */ 3697 netdev_for_each_mc_addr(ha, bond_dev) { 3698 found = bond_addr_in_mc_list(ha->addr, &bond->mc_list, 3699 bond_dev->addr_len); 3700 if (!found) 3701 bond_mc_add(bond, ha->addr); 3702 } 3703 3704 /* looking for addresses to delete from slaves' list */ 3705 netdev_hw_addr_list_for_each(ha, &bond->mc_list) { 3706 found = bond_addr_in_mc_list(ha->addr, &bond_dev->mc, 3707 bond_dev->addr_len); 3708 if (!found) 3709 bond_mc_del(bond, ha->addr); 3710 } 3711 3712 /* save master's multicast list */ 3713 __hw_addr_flush(&bond->mc_list); 3714 __hw_addr_add_multiple(&bond->mc_list, &bond_dev->mc, 3715 bond_dev->addr_len, NETDEV_HW_ADDR_T_MULTICAST); 3716 3717 read_unlock(&bond->lock); 3718 } 3719 3720 static int bond_neigh_init(struct neighbour *n) 3721 { 3722 struct bonding *bond = netdev_priv(n->dev); 3723 struct slave *slave = bond->first_slave; 3724 const struct net_device_ops *slave_ops; 3725 struct neigh_parms parms; 3726 int ret; 3727 3728 if (!slave) 3729 return 0; 3730 3731 slave_ops = slave->dev->netdev_ops; 3732 3733 if (!slave_ops->ndo_neigh_setup) 3734 return 0; 3735 3736 parms.neigh_setup = NULL; 3737 parms.neigh_cleanup = NULL; 3738 ret = slave_ops->ndo_neigh_setup(slave->dev, &parms); 3739 if (ret) 3740 return ret; 3741 3742 /* 3743 * Assign slave's neigh_cleanup to neighbour in case cleanup is called 3744 * after the last slave has been detached. Assumes that all slaves 3745 * utilize the same neigh_cleanup (true at this writing as only user 3746 * is ipoib). 3747 */ 3748 n->parms->neigh_cleanup = parms.neigh_cleanup; 3749 3750 if (!parms.neigh_setup) 3751 return 0; 3752 3753 return parms.neigh_setup(n); 3754 } 3755 3756 /* 3757 * The bonding ndo_neigh_setup is called at init time beofre any 3758 * slave exists. So we must declare proxy setup function which will 3759 * be used at run time to resolve the actual slave neigh param setup. 3760 */ 3761 static int bond_neigh_setup(struct net_device *dev, 3762 struct neigh_parms *parms) 3763 { 3764 parms->neigh_setup = bond_neigh_init; 3765 3766 return 0; 3767 } 3768 3769 /* 3770 * Change the MTU of all of a master's slaves to match the master 3771 */ 3772 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 3773 { 3774 struct bonding *bond = netdev_priv(bond_dev); 3775 struct slave *slave, *stop_at; 3776 int res = 0; 3777 int i; 3778 3779 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond, 3780 (bond_dev ? bond_dev->name : "None"), new_mtu); 3781 3782 /* Can't hold bond->lock with bh disabled here since 3783 * some base drivers panic. On the other hand we can't 3784 * hold bond->lock without bh disabled because we'll 3785 * deadlock. The only solution is to rely on the fact 3786 * that we're under rtnl_lock here, and the slaves 3787 * list won't change. This doesn't solve the problem 3788 * of setting the slave's MTU while it is 3789 * transmitting, but the assumption is that the base 3790 * driver can handle that. 3791 * 3792 * TODO: figure out a way to safely iterate the slaves 3793 * list, but without holding a lock around the actual 3794 * call to the base driver. 3795 */ 3796 3797 bond_for_each_slave(bond, slave, i) { 3798 pr_debug("s %p s->p %p c_m %p\n", 3799 slave, 3800 slave->prev, 3801 slave->dev->netdev_ops->ndo_change_mtu); 3802 3803 res = dev_set_mtu(slave->dev, new_mtu); 3804 3805 if (res) { 3806 /* If we failed to set the slave's mtu to the new value 3807 * we must abort the operation even in ACTIVE_BACKUP 3808 * mode, because if we allow the backup slaves to have 3809 * different mtu values than the active slave we'll 3810 * need to change their mtu when doing a failover. That 3811 * means changing their mtu from timer context, which 3812 * is probably not a good idea. 3813 */ 3814 pr_debug("err %d %s\n", res, slave->dev->name); 3815 goto unwind; 3816 } 3817 } 3818 3819 bond_dev->mtu = new_mtu; 3820 3821 return 0; 3822 3823 unwind: 3824 /* unwind from head to the slave that failed */ 3825 stop_at = slave; 3826 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 3827 int tmp_res; 3828 3829 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 3830 if (tmp_res) { 3831 pr_debug("unwind err %d dev %s\n", 3832 tmp_res, slave->dev->name); 3833 } 3834 } 3835 3836 return res; 3837 } 3838 3839 /* 3840 * Change HW address 3841 * 3842 * Note that many devices must be down to change the HW address, and 3843 * downing the master releases all slaves. We can make bonds full of 3844 * bonding devices to test this, however. 3845 */ 3846 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 3847 { 3848 struct bonding *bond = netdev_priv(bond_dev); 3849 struct sockaddr *sa = addr, tmp_sa; 3850 struct slave *slave, *stop_at; 3851 int res = 0; 3852 int i; 3853 3854 if (bond->params.mode == BOND_MODE_ALB) 3855 return bond_alb_set_mac_address(bond_dev, addr); 3856 3857 3858 pr_debug("bond=%p, name=%s\n", 3859 bond, bond_dev ? bond_dev->name : "None"); 3860 3861 /* 3862 * If fail_over_mac is set to active, do nothing and return 3863 * success. Returning an error causes ifenslave to fail. 3864 */ 3865 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 3866 return 0; 3867 3868 if (!is_valid_ether_addr(sa->sa_data)) 3869 return -EADDRNOTAVAIL; 3870 3871 /* Can't hold bond->lock with bh disabled here since 3872 * some base drivers panic. On the other hand we can't 3873 * hold bond->lock without bh disabled because we'll 3874 * deadlock. The only solution is to rely on the fact 3875 * that we're under rtnl_lock here, and the slaves 3876 * list won't change. This doesn't solve the problem 3877 * of setting the slave's hw address while it is 3878 * transmitting, but the assumption is that the base 3879 * driver can handle that. 3880 * 3881 * TODO: figure out a way to safely iterate the slaves 3882 * list, but without holding a lock around the actual 3883 * call to the base driver. 3884 */ 3885 3886 bond_for_each_slave(bond, slave, i) { 3887 const struct net_device_ops *slave_ops = slave->dev->netdev_ops; 3888 pr_debug("slave %p %s\n", slave, slave->dev->name); 3889 3890 if (slave_ops->ndo_set_mac_address == NULL) { 3891 res = -EOPNOTSUPP; 3892 pr_debug("EOPNOTSUPP %s\n", slave->dev->name); 3893 goto unwind; 3894 } 3895 3896 res = dev_set_mac_address(slave->dev, addr); 3897 if (res) { 3898 /* TODO: consider downing the slave 3899 * and retry ? 3900 * User should expect communications 3901 * breakage anyway until ARP finish 3902 * updating, so... 3903 */ 3904 pr_debug("err %d %s\n", res, slave->dev->name); 3905 goto unwind; 3906 } 3907 } 3908 3909 /* success */ 3910 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 3911 return 0; 3912 3913 unwind: 3914 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 3915 tmp_sa.sa_family = bond_dev->type; 3916 3917 /* unwind from head to the slave that failed */ 3918 stop_at = slave; 3919 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 3920 int tmp_res; 3921 3922 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 3923 if (tmp_res) { 3924 pr_debug("unwind err %d dev %s\n", 3925 tmp_res, slave->dev->name); 3926 } 3927 } 3928 3929 return res; 3930 } 3931 3932 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 3933 { 3934 struct bonding *bond = netdev_priv(bond_dev); 3935 struct slave *slave, *start_at; 3936 int i, slave_no, res = 1; 3937 struct iphdr *iph = ip_hdr(skb); 3938 3939 /* 3940 * Start with the curr_active_slave that joined the bond as the 3941 * default for sending IGMP traffic. For failover purposes one 3942 * needs to maintain some consistency for the interface that will 3943 * send the join/membership reports. The curr_active_slave found 3944 * will send all of this type of traffic. 3945 */ 3946 if ((iph->protocol == IPPROTO_IGMP) && 3947 (skb->protocol == htons(ETH_P_IP))) { 3948 3949 read_lock(&bond->curr_slave_lock); 3950 slave = bond->curr_active_slave; 3951 read_unlock(&bond->curr_slave_lock); 3952 3953 if (!slave) 3954 goto out; 3955 } else { 3956 /* 3957 * Concurrent TX may collide on rr_tx_counter; we accept 3958 * that as being rare enough not to justify using an 3959 * atomic op here. 3960 */ 3961 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 3962 3963 bond_for_each_slave(bond, slave, i) { 3964 slave_no--; 3965 if (slave_no < 0) 3966 break; 3967 } 3968 } 3969 3970 start_at = slave; 3971 bond_for_each_slave_from(bond, slave, i, start_at) { 3972 if (IS_UP(slave->dev) && 3973 (slave->link == BOND_LINK_UP) && 3974 bond_is_active_slave(slave)) { 3975 res = bond_dev_queue_xmit(bond, skb, slave->dev); 3976 break; 3977 } 3978 } 3979 3980 out: 3981 if (res) { 3982 /* no suitable interface, frame not sent */ 3983 kfree_skb(skb); 3984 } 3985 3986 return NETDEV_TX_OK; 3987 } 3988 3989 3990 /* 3991 * in active-backup mode, we know that bond->curr_active_slave is always valid if 3992 * the bond has a usable interface. 3993 */ 3994 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 3995 { 3996 struct bonding *bond = netdev_priv(bond_dev); 3997 int res = 1; 3998 3999 read_lock(&bond->curr_slave_lock); 4000 4001 if (bond->curr_active_slave) 4002 res = bond_dev_queue_xmit(bond, skb, 4003 bond->curr_active_slave->dev); 4004 4005 read_unlock(&bond->curr_slave_lock); 4006 4007 if (res) 4008 /* no suitable interface, frame not sent */ 4009 kfree_skb(skb); 4010 4011 return NETDEV_TX_OK; 4012 } 4013 4014 /* 4015 * In bond_xmit_xor() , we determine the output device by using a pre- 4016 * determined xmit_hash_policy(), If the selected device is not enabled, 4017 * find the next active slave. 4018 */ 4019 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4020 { 4021 struct bonding *bond = netdev_priv(bond_dev); 4022 struct slave *slave, *start_at; 4023 int slave_no; 4024 int i; 4025 int res = 1; 4026 4027 slave_no = bond->xmit_hash_policy(skb, bond->slave_cnt); 4028 4029 bond_for_each_slave(bond, slave, i) { 4030 slave_no--; 4031 if (slave_no < 0) 4032 break; 4033 } 4034 4035 start_at = slave; 4036 4037 bond_for_each_slave_from(bond, slave, i, start_at) { 4038 if (IS_UP(slave->dev) && 4039 (slave->link == BOND_LINK_UP) && 4040 bond_is_active_slave(slave)) { 4041 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4042 break; 4043 } 4044 } 4045 4046 if (res) { 4047 /* no suitable interface, frame not sent */ 4048 kfree_skb(skb); 4049 } 4050 4051 return NETDEV_TX_OK; 4052 } 4053 4054 /* 4055 * in broadcast mode, we send everything to all usable interfaces. 4056 */ 4057 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4058 { 4059 struct bonding *bond = netdev_priv(bond_dev); 4060 struct slave *slave, *start_at; 4061 struct net_device *tx_dev = NULL; 4062 int i; 4063 int res = 1; 4064 4065 read_lock(&bond->curr_slave_lock); 4066 start_at = bond->curr_active_slave; 4067 read_unlock(&bond->curr_slave_lock); 4068 4069 if (!start_at) 4070 goto out; 4071 4072 bond_for_each_slave_from(bond, slave, i, start_at) { 4073 if (IS_UP(slave->dev) && 4074 (slave->link == BOND_LINK_UP) && 4075 bond_is_active_slave(slave)) { 4076 if (tx_dev) { 4077 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4078 if (!skb2) { 4079 pr_err("%s: Error: bond_xmit_broadcast(): skb_clone() failed\n", 4080 bond_dev->name); 4081 continue; 4082 } 4083 4084 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4085 if (res) { 4086 kfree_skb(skb2); 4087 continue; 4088 } 4089 } 4090 tx_dev = slave->dev; 4091 } 4092 } 4093 4094 if (tx_dev) 4095 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4096 4097 out: 4098 if (res) 4099 /* no suitable interface, frame not sent */ 4100 kfree_skb(skb); 4101 4102 /* frame sent to all suitable interfaces */ 4103 return NETDEV_TX_OK; 4104 } 4105 4106 /*------------------------- Device initialization ---------------------------*/ 4107 4108 static void bond_set_xmit_hash_policy(struct bonding *bond) 4109 { 4110 switch (bond->params.xmit_policy) { 4111 case BOND_XMIT_POLICY_LAYER23: 4112 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4113 break; 4114 case BOND_XMIT_POLICY_LAYER34: 4115 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4116 break; 4117 case BOND_XMIT_POLICY_LAYER2: 4118 default: 4119 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4120 break; 4121 } 4122 } 4123 4124 /* 4125 * Lookup the slave that corresponds to a qid 4126 */ 4127 static inline int bond_slave_override(struct bonding *bond, 4128 struct sk_buff *skb) 4129 { 4130 int i, res = 1; 4131 struct slave *slave = NULL; 4132 struct slave *check_slave; 4133 4134 if (!skb->queue_mapping) 4135 return 1; 4136 4137 /* Find out if any slaves have the same mapping as this skb. */ 4138 bond_for_each_slave(bond, check_slave, i) { 4139 if (check_slave->queue_id == skb->queue_mapping) { 4140 slave = check_slave; 4141 break; 4142 } 4143 } 4144 4145 /* If the slave isn't UP, use default transmit policy. */ 4146 if (slave && slave->queue_id && IS_UP(slave->dev) && 4147 (slave->link == BOND_LINK_UP)) { 4148 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4149 } 4150 4151 return res; 4152 } 4153 4154 4155 static u16 bond_select_queue(struct net_device *dev, struct sk_buff *skb) 4156 { 4157 /* 4158 * This helper function exists to help dev_pick_tx get the correct 4159 * destination queue. Using a helper function skips a call to 4160 * skb_tx_hash and will put the skbs in the queue we expect on their 4161 * way down to the bonding driver. 4162 */ 4163 u16 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0; 4164 4165 /* 4166 * Save the original txq to restore before passing to the driver 4167 */ 4168 qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping; 4169 4170 if (unlikely(txq >= dev->real_num_tx_queues)) { 4171 do { 4172 txq -= dev->real_num_tx_queues; 4173 } while (txq >= dev->real_num_tx_queues); 4174 } 4175 return txq; 4176 } 4177 4178 static netdev_tx_t __bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4179 { 4180 struct bonding *bond = netdev_priv(dev); 4181 4182 if (TX_QUEUE_OVERRIDE(bond->params.mode)) { 4183 if (!bond_slave_override(bond, skb)) 4184 return NETDEV_TX_OK; 4185 } 4186 4187 switch (bond->params.mode) { 4188 case BOND_MODE_ROUNDROBIN: 4189 return bond_xmit_roundrobin(skb, dev); 4190 case BOND_MODE_ACTIVEBACKUP: 4191 return bond_xmit_activebackup(skb, dev); 4192 case BOND_MODE_XOR: 4193 return bond_xmit_xor(skb, dev); 4194 case BOND_MODE_BROADCAST: 4195 return bond_xmit_broadcast(skb, dev); 4196 case BOND_MODE_8023AD: 4197 return bond_3ad_xmit_xor(skb, dev); 4198 case BOND_MODE_ALB: 4199 case BOND_MODE_TLB: 4200 return bond_alb_xmit(skb, dev); 4201 default: 4202 /* Should never happen, mode already checked */ 4203 pr_err("%s: Error: Unknown bonding mode %d\n", 4204 dev->name, bond->params.mode); 4205 WARN_ON_ONCE(1); 4206 kfree_skb(skb); 4207 return NETDEV_TX_OK; 4208 } 4209 } 4210 4211 static netdev_tx_t bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4212 { 4213 struct bonding *bond = netdev_priv(dev); 4214 netdev_tx_t ret = NETDEV_TX_OK; 4215 4216 /* 4217 * If we risk deadlock from transmitting this in the 4218 * netpoll path, tell netpoll to queue the frame for later tx 4219 */ 4220 if (is_netpoll_tx_blocked(dev)) 4221 return NETDEV_TX_BUSY; 4222 4223 read_lock(&bond->lock); 4224 4225 if (bond->slave_cnt) 4226 ret = __bond_start_xmit(skb, dev); 4227 else 4228 kfree_skb(skb); 4229 4230 read_unlock(&bond->lock); 4231 4232 return ret; 4233 } 4234 4235 /* 4236 * set bond mode specific net device operations 4237 */ 4238 void bond_set_mode_ops(struct bonding *bond, int mode) 4239 { 4240 struct net_device *bond_dev = bond->dev; 4241 4242 switch (mode) { 4243 case BOND_MODE_ROUNDROBIN: 4244 break; 4245 case BOND_MODE_ACTIVEBACKUP: 4246 break; 4247 case BOND_MODE_XOR: 4248 bond_set_xmit_hash_policy(bond); 4249 break; 4250 case BOND_MODE_BROADCAST: 4251 break; 4252 case BOND_MODE_8023AD: 4253 bond_set_xmit_hash_policy(bond); 4254 break; 4255 case BOND_MODE_ALB: 4256 /* FALLTHRU */ 4257 case BOND_MODE_TLB: 4258 break; 4259 default: 4260 /* Should never happen, mode already checked */ 4261 pr_err("%s: Error: Unknown bonding mode %d\n", 4262 bond_dev->name, mode); 4263 break; 4264 } 4265 } 4266 4267 static int bond_ethtool_get_settings(struct net_device *bond_dev, 4268 struct ethtool_cmd *ecmd) 4269 { 4270 struct bonding *bond = netdev_priv(bond_dev); 4271 struct slave *slave; 4272 int i; 4273 unsigned long speed = 0; 4274 4275 ecmd->duplex = DUPLEX_UNKNOWN; 4276 ecmd->port = PORT_OTHER; 4277 4278 /* Since SLAVE_IS_OK returns false for all inactive or down slaves, we 4279 * do not need to check mode. Though link speed might not represent 4280 * the true receive or transmit bandwidth (not all modes are symmetric) 4281 * this is an accurate maximum. 4282 */ 4283 read_lock(&bond->lock); 4284 bond_for_each_slave(bond, slave, i) { 4285 if (SLAVE_IS_OK(slave)) { 4286 if (slave->speed != SPEED_UNKNOWN) 4287 speed += slave->speed; 4288 if (ecmd->duplex == DUPLEX_UNKNOWN && 4289 slave->duplex != DUPLEX_UNKNOWN) 4290 ecmd->duplex = slave->duplex; 4291 } 4292 } 4293 ethtool_cmd_speed_set(ecmd, speed ? : SPEED_UNKNOWN); 4294 read_unlock(&bond->lock); 4295 return 0; 4296 } 4297 4298 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4299 struct ethtool_drvinfo *drvinfo) 4300 { 4301 strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver)); 4302 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 4303 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), "%d", 4304 BOND_ABI_VERSION); 4305 } 4306 4307 static const struct ethtool_ops bond_ethtool_ops = { 4308 .get_drvinfo = bond_ethtool_get_drvinfo, 4309 .get_settings = bond_ethtool_get_settings, 4310 .get_link = ethtool_op_get_link, 4311 }; 4312 4313 static const struct net_device_ops bond_netdev_ops = { 4314 .ndo_init = bond_init, 4315 .ndo_uninit = bond_uninit, 4316 .ndo_open = bond_open, 4317 .ndo_stop = bond_close, 4318 .ndo_start_xmit = bond_start_xmit, 4319 .ndo_select_queue = bond_select_queue, 4320 .ndo_get_stats64 = bond_get_stats, 4321 .ndo_do_ioctl = bond_do_ioctl, 4322 .ndo_change_rx_flags = bond_change_rx_flags, 4323 .ndo_set_rx_mode = bond_set_multicast_list, 4324 .ndo_change_mtu = bond_change_mtu, 4325 .ndo_set_mac_address = bond_set_mac_address, 4326 .ndo_neigh_setup = bond_neigh_setup, 4327 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid, 4328 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid, 4329 #ifdef CONFIG_NET_POLL_CONTROLLER 4330 .ndo_netpoll_setup = bond_netpoll_setup, 4331 .ndo_netpoll_cleanup = bond_netpoll_cleanup, 4332 .ndo_poll_controller = bond_poll_controller, 4333 #endif 4334 .ndo_add_slave = bond_enslave, 4335 .ndo_del_slave = bond_release, 4336 .ndo_fix_features = bond_fix_features, 4337 }; 4338 4339 static const struct device_type bond_type = { 4340 .name = "bond", 4341 }; 4342 4343 static void bond_destructor(struct net_device *bond_dev) 4344 { 4345 struct bonding *bond = netdev_priv(bond_dev); 4346 if (bond->wq) 4347 destroy_workqueue(bond->wq); 4348 free_netdev(bond_dev); 4349 } 4350 4351 static void bond_setup(struct net_device *bond_dev) 4352 { 4353 struct bonding *bond = netdev_priv(bond_dev); 4354 4355 /* initialize rwlocks */ 4356 rwlock_init(&bond->lock); 4357 rwlock_init(&bond->curr_slave_lock); 4358 4359 bond->params = bonding_defaults; 4360 4361 /* Initialize pointers */ 4362 bond->dev = bond_dev; 4363 INIT_LIST_HEAD(&bond->vlan_list); 4364 4365 /* Initialize the device entry points */ 4366 ether_setup(bond_dev); 4367 bond_dev->netdev_ops = &bond_netdev_ops; 4368 bond_dev->ethtool_ops = &bond_ethtool_ops; 4369 bond_set_mode_ops(bond, bond->params.mode); 4370 4371 bond_dev->destructor = bond_destructor; 4372 4373 SET_NETDEV_DEVTYPE(bond_dev, &bond_type); 4374 4375 /* Initialize the device options */ 4376 bond_dev->tx_queue_len = 0; 4377 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4378 bond_dev->priv_flags |= IFF_BONDING; 4379 bond_dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING); 4380 4381 /* At first, we block adding VLANs. That's the only way to 4382 * prevent problems that occur when adding VLANs over an 4383 * empty bond. The block will be removed once non-challenged 4384 * slaves are enslaved. 4385 */ 4386 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4387 4388 /* don't acquire bond device's netif_tx_lock when 4389 * transmitting */ 4390 bond_dev->features |= NETIF_F_LLTX; 4391 4392 /* By default, we declare the bond to be fully 4393 * VLAN hardware accelerated capable. Special 4394 * care is taken in the various xmit functions 4395 * when there are slaves that are not hw accel 4396 * capable 4397 */ 4398 4399 bond_dev->hw_features = BOND_VLAN_FEATURES | 4400 NETIF_F_HW_VLAN_CTAG_TX | 4401 NETIF_F_HW_VLAN_CTAG_RX | 4402 NETIF_F_HW_VLAN_CTAG_FILTER; 4403 4404 bond_dev->hw_features &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_HW_CSUM); 4405 bond_dev->features |= bond_dev->hw_features; 4406 } 4407 4408 /* 4409 * Destroy a bonding device. 4410 * Must be under rtnl_lock when this function is called. 4411 */ 4412 static void bond_uninit(struct net_device *bond_dev) 4413 { 4414 struct bonding *bond = netdev_priv(bond_dev); 4415 struct vlan_entry *vlan, *tmp; 4416 4417 bond_netpoll_cleanup(bond_dev); 4418 4419 /* Release the bonded slaves */ 4420 while (bond->first_slave != NULL) 4421 __bond_release_one(bond_dev, bond->first_slave->dev, true); 4422 pr_info("%s: released all slaves\n", bond_dev->name); 4423 4424 list_del(&bond->bond_list); 4425 4426 bond_debug_unregister(bond); 4427 4428 __hw_addr_flush(&bond->mc_list); 4429 4430 list_for_each_entry_safe(vlan, tmp, &bond->vlan_list, vlan_list) { 4431 list_del(&vlan->vlan_list); 4432 kfree(vlan); 4433 } 4434 } 4435 4436 /*------------------------- Module initialization ---------------------------*/ 4437 4438 /* 4439 * Convert string input module parms. Accept either the 4440 * number of the mode or its string name. A bit complicated because 4441 * some mode names are substrings of other names, and calls from sysfs 4442 * may have whitespace in the name (trailing newlines, for example). 4443 */ 4444 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl) 4445 { 4446 int modeint = -1, i, rv; 4447 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4448 4449 for (p = (char *)buf; *p; p++) 4450 if (!(isdigit(*p) || isspace(*p))) 4451 break; 4452 4453 if (*p) 4454 rv = sscanf(buf, "%20s", modestr); 4455 else 4456 rv = sscanf(buf, "%d", &modeint); 4457 4458 if (!rv) 4459 return -1; 4460 4461 for (i = 0; tbl[i].modename; i++) { 4462 if (modeint == tbl[i].mode) 4463 return tbl[i].mode; 4464 if (strcmp(modestr, tbl[i].modename) == 0) 4465 return tbl[i].mode; 4466 } 4467 4468 return -1; 4469 } 4470 4471 static int bond_check_params(struct bond_params *params) 4472 { 4473 int arp_validate_value, fail_over_mac_value, primary_reselect_value; 4474 4475 /* 4476 * Convert string parameters. 4477 */ 4478 if (mode) { 4479 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4480 if (bond_mode == -1) { 4481 pr_err("Error: Invalid bonding mode \"%s\"\n", 4482 mode == NULL ? "NULL" : mode); 4483 return -EINVAL; 4484 } 4485 } 4486 4487 if (xmit_hash_policy) { 4488 if ((bond_mode != BOND_MODE_XOR) && 4489 (bond_mode != BOND_MODE_8023AD)) { 4490 pr_info("xmit_hash_policy param is irrelevant in mode %s\n", 4491 bond_mode_name(bond_mode)); 4492 } else { 4493 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4494 xmit_hashtype_tbl); 4495 if (xmit_hashtype == -1) { 4496 pr_err("Error: Invalid xmit_hash_policy \"%s\"\n", 4497 xmit_hash_policy == NULL ? "NULL" : 4498 xmit_hash_policy); 4499 return -EINVAL; 4500 } 4501 } 4502 } 4503 4504 if (lacp_rate) { 4505 if (bond_mode != BOND_MODE_8023AD) { 4506 pr_info("lacp_rate param is irrelevant in mode %s\n", 4507 bond_mode_name(bond_mode)); 4508 } else { 4509 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4510 if (lacp_fast == -1) { 4511 pr_err("Error: Invalid lacp rate \"%s\"\n", 4512 lacp_rate == NULL ? "NULL" : lacp_rate); 4513 return -EINVAL; 4514 } 4515 } 4516 } 4517 4518 if (ad_select) { 4519 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl); 4520 if (params->ad_select == -1) { 4521 pr_err("Error: Invalid ad_select \"%s\"\n", 4522 ad_select == NULL ? "NULL" : ad_select); 4523 return -EINVAL; 4524 } 4525 4526 if (bond_mode != BOND_MODE_8023AD) { 4527 pr_warning("ad_select param only affects 802.3ad mode\n"); 4528 } 4529 } else { 4530 params->ad_select = BOND_AD_STABLE; 4531 } 4532 4533 if (max_bonds < 0) { 4534 pr_warning("Warning: max_bonds (%d) not in range %d-%d, so it was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4535 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4536 max_bonds = BOND_DEFAULT_MAX_BONDS; 4537 } 4538 4539 if (miimon < 0) { 4540 pr_warning("Warning: miimon module parameter (%d), not in range 0-%d, so it was reset to %d\n", 4541 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4542 miimon = BOND_LINK_MON_INTERV; 4543 } 4544 4545 if (updelay < 0) { 4546 pr_warning("Warning: updelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4547 updelay, INT_MAX); 4548 updelay = 0; 4549 } 4550 4551 if (downdelay < 0) { 4552 pr_warning("Warning: downdelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4553 downdelay, INT_MAX); 4554 downdelay = 0; 4555 } 4556 4557 if ((use_carrier != 0) && (use_carrier != 1)) { 4558 pr_warning("Warning: use_carrier module parameter (%d), not of valid value (0/1), so it was set to 1\n", 4559 use_carrier); 4560 use_carrier = 1; 4561 } 4562 4563 if (num_peer_notif < 0 || num_peer_notif > 255) { 4564 pr_warning("Warning: num_grat_arp/num_unsol_na (%d) not in range 0-255 so it was reset to 1\n", 4565 num_peer_notif); 4566 num_peer_notif = 1; 4567 } 4568 4569 /* reset values for 802.3ad */ 4570 if (bond_mode == BOND_MODE_8023AD) { 4571 if (!miimon) { 4572 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure, speed and duplex which are essential for 802.3ad operation\n"); 4573 pr_warning("Forcing miimon to 100msec\n"); 4574 miimon = 100; 4575 } 4576 } 4577 4578 if (tx_queues < 1 || tx_queues > 255) { 4579 pr_warning("Warning: tx_queues (%d) should be between " 4580 "1 and 255, resetting to %d\n", 4581 tx_queues, BOND_DEFAULT_TX_QUEUES); 4582 tx_queues = BOND_DEFAULT_TX_QUEUES; 4583 } 4584 4585 if ((all_slaves_active != 0) && (all_slaves_active != 1)) { 4586 pr_warning("Warning: all_slaves_active module parameter (%d), " 4587 "not of valid value (0/1), so it was set to " 4588 "0\n", all_slaves_active); 4589 all_slaves_active = 0; 4590 } 4591 4592 if (resend_igmp < 0 || resend_igmp > 255) { 4593 pr_warning("Warning: resend_igmp (%d) should be between " 4594 "0 and 255, resetting to %d\n", 4595 resend_igmp, BOND_DEFAULT_RESEND_IGMP); 4596 resend_igmp = BOND_DEFAULT_RESEND_IGMP; 4597 } 4598 4599 /* reset values for TLB/ALB */ 4600 if ((bond_mode == BOND_MODE_TLB) || 4601 (bond_mode == BOND_MODE_ALB)) { 4602 if (!miimon) { 4603 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure and link speed which are essential for TLB/ALB load balancing\n"); 4604 pr_warning("Forcing miimon to 100msec\n"); 4605 miimon = 100; 4606 } 4607 } 4608 4609 if (bond_mode == BOND_MODE_ALB) { 4610 pr_notice("In ALB mode you might experience client disconnections upon reconnection of a link if the bonding module updelay parameter (%d msec) is incompatible with the forwarding delay time of the switch\n", 4611 updelay); 4612 } 4613 4614 if (!miimon) { 4615 if (updelay || downdelay) { 4616 /* just warn the user the up/down delay will have 4617 * no effect since miimon is zero... 4618 */ 4619 pr_warning("Warning: miimon module parameter not set and updelay (%d) or downdelay (%d) module parameter is set; updelay and downdelay have no effect unless miimon is set\n", 4620 updelay, downdelay); 4621 } 4622 } else { 4623 /* don't allow arp monitoring */ 4624 if (arp_interval) { 4625 pr_warning("Warning: miimon (%d) and arp_interval (%d) can't be used simultaneously, disabling ARP monitoring\n", 4626 miimon, arp_interval); 4627 arp_interval = 0; 4628 } 4629 4630 if ((updelay % miimon) != 0) { 4631 pr_warning("Warning: updelay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n", 4632 updelay, miimon, 4633 (updelay / miimon) * miimon); 4634 } 4635 4636 updelay /= miimon; 4637 4638 if ((downdelay % miimon) != 0) { 4639 pr_warning("Warning: downdelay (%d) is not a multiple of miimon (%d), downdelay rounded to %d ms\n", 4640 downdelay, miimon, 4641 (downdelay / miimon) * miimon); 4642 } 4643 4644 downdelay /= miimon; 4645 } 4646 4647 if (arp_interval < 0) { 4648 pr_warning("Warning: arp_interval module parameter (%d) , not in range 0-%d, so it was reset to %d\n", 4649 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4650 arp_interval = BOND_LINK_ARP_INTERV; 4651 } 4652 4653 for (arp_ip_count = 0; 4654 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4655 arp_ip_count++) { 4656 /* not complete check, but should be good enough to 4657 catch mistakes */ 4658 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4659 if (!isdigit(arp_ip_target[arp_ip_count][0]) || 4660 ip == 0 || ip == htonl(INADDR_BROADCAST)) { 4661 pr_warning("Warning: bad arp_ip_target module parameter (%s), ARP monitoring will not be performed\n", 4662 arp_ip_target[arp_ip_count]); 4663 arp_interval = 0; 4664 } else { 4665 arp_target[arp_ip_count] = ip; 4666 } 4667 } 4668 4669 if (arp_interval && !arp_ip_count) { 4670 /* don't allow arping if no arp_ip_target given... */ 4671 pr_warning("Warning: arp_interval module parameter (%d) specified without providing an arp_ip_target parameter, arp_interval was reset to 0\n", 4672 arp_interval); 4673 arp_interval = 0; 4674 } 4675 4676 if (arp_validate) { 4677 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4678 pr_err("arp_validate only supported in active-backup mode\n"); 4679 return -EINVAL; 4680 } 4681 if (!arp_interval) { 4682 pr_err("arp_validate requires arp_interval\n"); 4683 return -EINVAL; 4684 } 4685 4686 arp_validate_value = bond_parse_parm(arp_validate, 4687 arp_validate_tbl); 4688 if (arp_validate_value == -1) { 4689 pr_err("Error: invalid arp_validate \"%s\"\n", 4690 arp_validate == NULL ? "NULL" : arp_validate); 4691 return -EINVAL; 4692 } 4693 } else 4694 arp_validate_value = 0; 4695 4696 if (miimon) { 4697 pr_info("MII link monitoring set to %d ms\n", miimon); 4698 } else if (arp_interval) { 4699 int i; 4700 4701 pr_info("ARP monitoring set to %d ms, validate %s, with %d target(s):", 4702 arp_interval, 4703 arp_validate_tbl[arp_validate_value].modename, 4704 arp_ip_count); 4705 4706 for (i = 0; i < arp_ip_count; i++) 4707 pr_info(" %s", arp_ip_target[i]); 4708 4709 pr_info("\n"); 4710 4711 } else if (max_bonds) { 4712 /* miimon and arp_interval not set, we need one so things 4713 * work as expected, see bonding.txt for details 4714 */ 4715 pr_debug("Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details.\n"); 4716 } 4717 4718 if (primary && !USES_PRIMARY(bond_mode)) { 4719 /* currently, using a primary only makes sense 4720 * in active backup, TLB or ALB modes 4721 */ 4722 pr_warning("Warning: %s primary device specified but has no effect in %s mode\n", 4723 primary, bond_mode_name(bond_mode)); 4724 primary = NULL; 4725 } 4726 4727 if (primary && primary_reselect) { 4728 primary_reselect_value = bond_parse_parm(primary_reselect, 4729 pri_reselect_tbl); 4730 if (primary_reselect_value == -1) { 4731 pr_err("Error: Invalid primary_reselect \"%s\"\n", 4732 primary_reselect == 4733 NULL ? "NULL" : primary_reselect); 4734 return -EINVAL; 4735 } 4736 } else { 4737 primary_reselect_value = BOND_PRI_RESELECT_ALWAYS; 4738 } 4739 4740 if (fail_over_mac) { 4741 fail_over_mac_value = bond_parse_parm(fail_over_mac, 4742 fail_over_mac_tbl); 4743 if (fail_over_mac_value == -1) { 4744 pr_err("Error: invalid fail_over_mac \"%s\"\n", 4745 arp_validate == NULL ? "NULL" : arp_validate); 4746 return -EINVAL; 4747 } 4748 4749 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 4750 pr_warning("Warning: fail_over_mac only affects active-backup mode.\n"); 4751 } else { 4752 fail_over_mac_value = BOND_FOM_NONE; 4753 } 4754 4755 /* fill params struct with the proper values */ 4756 params->mode = bond_mode; 4757 params->xmit_policy = xmit_hashtype; 4758 params->miimon = miimon; 4759 params->num_peer_notif = num_peer_notif; 4760 params->arp_interval = arp_interval; 4761 params->arp_validate = arp_validate_value; 4762 params->updelay = updelay; 4763 params->downdelay = downdelay; 4764 params->use_carrier = use_carrier; 4765 params->lacp_fast = lacp_fast; 4766 params->primary[0] = 0; 4767 params->primary_reselect = primary_reselect_value; 4768 params->fail_over_mac = fail_over_mac_value; 4769 params->tx_queues = tx_queues; 4770 params->all_slaves_active = all_slaves_active; 4771 params->resend_igmp = resend_igmp; 4772 params->min_links = min_links; 4773 4774 if (primary) { 4775 strncpy(params->primary, primary, IFNAMSIZ); 4776 params->primary[IFNAMSIZ - 1] = 0; 4777 } 4778 4779 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 4780 4781 return 0; 4782 } 4783 4784 static struct lock_class_key bonding_netdev_xmit_lock_key; 4785 static struct lock_class_key bonding_netdev_addr_lock_key; 4786 static struct lock_class_key bonding_tx_busylock_key; 4787 4788 static void bond_set_lockdep_class_one(struct net_device *dev, 4789 struct netdev_queue *txq, 4790 void *_unused) 4791 { 4792 lockdep_set_class(&txq->_xmit_lock, 4793 &bonding_netdev_xmit_lock_key); 4794 } 4795 4796 static void bond_set_lockdep_class(struct net_device *dev) 4797 { 4798 lockdep_set_class(&dev->addr_list_lock, 4799 &bonding_netdev_addr_lock_key); 4800 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 4801 dev->qdisc_tx_busylock = &bonding_tx_busylock_key; 4802 } 4803 4804 /* 4805 * Called from registration process 4806 */ 4807 static int bond_init(struct net_device *bond_dev) 4808 { 4809 struct bonding *bond = netdev_priv(bond_dev); 4810 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id); 4811 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 4812 4813 pr_debug("Begin bond_init for %s\n", bond_dev->name); 4814 4815 /* 4816 * Initialize locks that may be required during 4817 * en/deslave operations. All of the bond_open work 4818 * (of which this is part) should really be moved to 4819 * a phase prior to dev_open 4820 */ 4821 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 4822 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 4823 4824 bond->wq = create_singlethread_workqueue(bond_dev->name); 4825 if (!bond->wq) 4826 return -ENOMEM; 4827 4828 bond_set_lockdep_class(bond_dev); 4829 4830 list_add_tail(&bond->bond_list, &bn->dev_list); 4831 4832 bond_prepare_sysfs_group(bond); 4833 4834 bond_debug_register(bond); 4835 4836 /* Ensure valid dev_addr */ 4837 if (is_zero_ether_addr(bond_dev->dev_addr) && 4838 bond_dev->addr_assign_type == NET_ADDR_PERM) { 4839 eth_hw_addr_random(bond_dev); 4840 bond->dev_addr_from_first = true; 4841 } 4842 4843 __hw_addr_init(&bond->mc_list); 4844 return 0; 4845 } 4846 4847 static int bond_validate(struct nlattr *tb[], struct nlattr *data[]) 4848 { 4849 if (tb[IFLA_ADDRESS]) { 4850 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 4851 return -EINVAL; 4852 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 4853 return -EADDRNOTAVAIL; 4854 } 4855 return 0; 4856 } 4857 4858 static unsigned int bond_get_num_tx_queues(void) 4859 { 4860 return tx_queues; 4861 } 4862 4863 static struct rtnl_link_ops bond_link_ops __read_mostly = { 4864 .kind = "bond", 4865 .priv_size = sizeof(struct bonding), 4866 .setup = bond_setup, 4867 .validate = bond_validate, 4868 .get_num_tx_queues = bond_get_num_tx_queues, 4869 .get_num_rx_queues = bond_get_num_tx_queues, /* Use the same number 4870 as for TX queues */ 4871 }; 4872 4873 /* Create a new bond based on the specified name and bonding parameters. 4874 * If name is NULL, obtain a suitable "bond%d" name for us. 4875 * Caller must NOT hold rtnl_lock; we need to release it here before we 4876 * set up our sysfs entries. 4877 */ 4878 int bond_create(struct net *net, const char *name) 4879 { 4880 struct net_device *bond_dev; 4881 int res; 4882 4883 rtnl_lock(); 4884 4885 bond_dev = alloc_netdev_mq(sizeof(struct bonding), 4886 name ? name : "bond%d", 4887 bond_setup, tx_queues); 4888 if (!bond_dev) { 4889 pr_err("%s: eek! can't alloc netdev!\n", name); 4890 rtnl_unlock(); 4891 return -ENOMEM; 4892 } 4893 4894 dev_net_set(bond_dev, net); 4895 bond_dev->rtnl_link_ops = &bond_link_ops; 4896 4897 res = register_netdevice(bond_dev); 4898 4899 netif_carrier_off(bond_dev); 4900 4901 rtnl_unlock(); 4902 if (res < 0) 4903 bond_destructor(bond_dev); 4904 return res; 4905 } 4906 4907 static int __net_init bond_net_init(struct net *net) 4908 { 4909 struct bond_net *bn = net_generic(net, bond_net_id); 4910 4911 bn->net = net; 4912 INIT_LIST_HEAD(&bn->dev_list); 4913 4914 bond_create_proc_dir(bn); 4915 bond_create_sysfs(bn); 4916 4917 return 0; 4918 } 4919 4920 static void __net_exit bond_net_exit(struct net *net) 4921 { 4922 struct bond_net *bn = net_generic(net, bond_net_id); 4923 struct bonding *bond, *tmp_bond; 4924 LIST_HEAD(list); 4925 4926 bond_destroy_sysfs(bn); 4927 bond_destroy_proc_dir(bn); 4928 4929 /* Kill off any bonds created after unregistering bond rtnl ops */ 4930 rtnl_lock(); 4931 list_for_each_entry_safe(bond, tmp_bond, &bn->dev_list, bond_list) 4932 unregister_netdevice_queue(bond->dev, &list); 4933 unregister_netdevice_many(&list); 4934 rtnl_unlock(); 4935 } 4936 4937 static struct pernet_operations bond_net_ops = { 4938 .init = bond_net_init, 4939 .exit = bond_net_exit, 4940 .id = &bond_net_id, 4941 .size = sizeof(struct bond_net), 4942 }; 4943 4944 static int __init bonding_init(void) 4945 { 4946 int i; 4947 int res; 4948 4949 pr_info("%s", bond_version); 4950 4951 res = bond_check_params(&bonding_defaults); 4952 if (res) 4953 goto out; 4954 4955 res = register_pernet_subsys(&bond_net_ops); 4956 if (res) 4957 goto out; 4958 4959 res = rtnl_link_register(&bond_link_ops); 4960 if (res) 4961 goto err_link; 4962 4963 bond_create_debugfs(); 4964 4965 for (i = 0; i < max_bonds; i++) { 4966 res = bond_create(&init_net, NULL); 4967 if (res) 4968 goto err; 4969 } 4970 4971 register_netdevice_notifier(&bond_netdev_notifier); 4972 out: 4973 return res; 4974 err: 4975 rtnl_link_unregister(&bond_link_ops); 4976 err_link: 4977 unregister_pernet_subsys(&bond_net_ops); 4978 goto out; 4979 4980 } 4981 4982 static void __exit bonding_exit(void) 4983 { 4984 unregister_netdevice_notifier(&bond_netdev_notifier); 4985 4986 bond_destroy_debugfs(); 4987 4988 rtnl_link_unregister(&bond_link_ops); 4989 unregister_pernet_subsys(&bond_net_ops); 4990 4991 #ifdef CONFIG_NET_POLL_CONTROLLER 4992 /* 4993 * Make sure we don't have an imbalance on our netpoll blocking 4994 */ 4995 WARN_ON(atomic_read(&netpoll_block_tx)); 4996 #endif 4997 } 4998 4999 module_init(bonding_init); 5000 module_exit(bonding_exit); 5001 MODULE_LICENSE("GPL"); 5002 MODULE_VERSION(DRV_VERSION); 5003 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5004 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5005 MODULE_ALIAS_RTNL_LINK("bond"); 5006