xref: /openbmc/linux/drivers/net/bonding/bond_main.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 //#define BONDING_DEBUG 1
35 
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <linux/jiffies.h>
78 #include <net/route.h>
79 #include <net/net_namespace.h>
80 #include "bonding.h"
81 #include "bond_3ad.h"
82 #include "bond_alb.h"
83 
84 /*---------------------------- Module parameters ----------------------------*/
85 
86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
87 #define BOND_LINK_MON_INTERV	0
88 #define BOND_LINK_ARP_INTERV	0
89 
90 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
91 static int num_grat_arp = 1;
92 static int miimon	= BOND_LINK_MON_INTERV;
93 static int updelay	= 0;
94 static int downdelay	= 0;
95 static int use_carrier	= 1;
96 static char *mode	= NULL;
97 static char *primary	= NULL;
98 static char *lacp_rate	= NULL;
99 static char *xmit_hash_policy = NULL;
100 static int arp_interval = BOND_LINK_ARP_INTERV;
101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
102 static char *arp_validate = NULL;
103 static char *fail_over_mac = NULL;
104 struct bond_params bonding_defaults;
105 
106 module_param(max_bonds, int, 0);
107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
108 module_param(num_grat_arp, int, 0644);
109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event");
110 module_param(miimon, int, 0);
111 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
112 module_param(updelay, int, 0);
113 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
114 module_param(downdelay, int, 0);
115 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
116 			    "in milliseconds");
117 module_param(use_carrier, int, 0);
118 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
119 			      "0 for off, 1 for on (default)");
120 module_param(mode, charp, 0);
121 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
122 		       "1 for active-backup, 2 for balance-xor, "
123 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
124 		       "6 for balance-alb");
125 module_param(primary, charp, 0);
126 MODULE_PARM_DESC(primary, "Primary network device to use");
127 module_param(lacp_rate, charp, 0);
128 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
129 			    "(slow/fast)");
130 module_param(xmit_hash_policy, charp, 0);
131 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
132 				   ", 1 for layer 3+4");
133 module_param(arp_interval, int, 0);
134 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
135 module_param_array(arp_ip_target, charp, NULL, 0);
136 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
137 module_param(arp_validate, charp, 0);
138 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
139 module_param(fail_over_mac, charp, 0);
140 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC.  none (default), active or follow");
141 
142 /*----------------------------- Global variables ----------------------------*/
143 
144 static const char * const version =
145 	DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
146 
147 LIST_HEAD(bond_dev_list);
148 
149 #ifdef CONFIG_PROC_FS
150 static struct proc_dir_entry *bond_proc_dir = NULL;
151 #endif
152 
153 extern struct rw_semaphore bonding_rwsem;
154 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
155 static int arp_ip_count	= 0;
156 static int bond_mode	= BOND_MODE_ROUNDROBIN;
157 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
158 static int lacp_fast	= 0;
159 
160 
161 struct bond_parm_tbl bond_lacp_tbl[] = {
162 {	"slow",		AD_LACP_SLOW},
163 {	"fast",		AD_LACP_FAST},
164 {	NULL,		-1},
165 };
166 
167 struct bond_parm_tbl bond_mode_tbl[] = {
168 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
169 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
170 {	"balance-xor",		BOND_MODE_XOR},
171 {	"broadcast",		BOND_MODE_BROADCAST},
172 {	"802.3ad",		BOND_MODE_8023AD},
173 {	"balance-tlb",		BOND_MODE_TLB},
174 {	"balance-alb",		BOND_MODE_ALB},
175 {	NULL,			-1},
176 };
177 
178 struct bond_parm_tbl xmit_hashtype_tbl[] = {
179 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
180 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
181 {	"layer2+3",		BOND_XMIT_POLICY_LAYER23},
182 {	NULL,			-1},
183 };
184 
185 struct bond_parm_tbl arp_validate_tbl[] = {
186 {	"none",			BOND_ARP_VALIDATE_NONE},
187 {	"active",		BOND_ARP_VALIDATE_ACTIVE},
188 {	"backup",		BOND_ARP_VALIDATE_BACKUP},
189 {	"all",			BOND_ARP_VALIDATE_ALL},
190 {	NULL,			-1},
191 };
192 
193 struct bond_parm_tbl fail_over_mac_tbl[] = {
194 {	"none",			BOND_FOM_NONE},
195 {	"active",		BOND_FOM_ACTIVE},
196 {	"follow",		BOND_FOM_FOLLOW},
197 {	NULL,			-1},
198 };
199 
200 /*-------------------------- Forward declarations ---------------------------*/
201 
202 static void bond_send_gratuitous_arp(struct bonding *bond);
203 static void bond_deinit(struct net_device *bond_dev);
204 
205 /*---------------------------- General routines -----------------------------*/
206 
207 static const char *bond_mode_name(int mode)
208 {
209 	switch (mode) {
210 	case BOND_MODE_ROUNDROBIN :
211 		return "load balancing (round-robin)";
212 	case BOND_MODE_ACTIVEBACKUP :
213 		return "fault-tolerance (active-backup)";
214 	case BOND_MODE_XOR :
215 		return "load balancing (xor)";
216 	case BOND_MODE_BROADCAST :
217 		return "fault-tolerance (broadcast)";
218 	case BOND_MODE_8023AD:
219 		return "IEEE 802.3ad Dynamic link aggregation";
220 	case BOND_MODE_TLB:
221 		return "transmit load balancing";
222 	case BOND_MODE_ALB:
223 		return "adaptive load balancing";
224 	default:
225 		return "unknown";
226 	}
227 }
228 
229 /*---------------------------------- VLAN -----------------------------------*/
230 
231 /**
232  * bond_add_vlan - add a new vlan id on bond
233  * @bond: bond that got the notification
234  * @vlan_id: the vlan id to add
235  *
236  * Returns -ENOMEM if allocation failed.
237  */
238 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
239 {
240 	struct vlan_entry *vlan;
241 
242 	dprintk("bond: %s, vlan id %d\n",
243 		(bond ? bond->dev->name: "None"), vlan_id);
244 
245 	vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
246 	if (!vlan) {
247 		return -ENOMEM;
248 	}
249 
250 	INIT_LIST_HEAD(&vlan->vlan_list);
251 	vlan->vlan_id = vlan_id;
252 	vlan->vlan_ip = 0;
253 
254 	write_lock_bh(&bond->lock);
255 
256 	list_add_tail(&vlan->vlan_list, &bond->vlan_list);
257 
258 	write_unlock_bh(&bond->lock);
259 
260 	dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
261 
262 	return 0;
263 }
264 
265 /**
266  * bond_del_vlan - delete a vlan id from bond
267  * @bond: bond that got the notification
268  * @vlan_id: the vlan id to delete
269  *
270  * returns -ENODEV if @vlan_id was not found in @bond.
271  */
272 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
273 {
274 	struct vlan_entry *vlan;
275 	int res = -ENODEV;
276 
277 	dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
278 
279 	write_lock_bh(&bond->lock);
280 
281 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
282 		if (vlan->vlan_id == vlan_id) {
283 			list_del(&vlan->vlan_list);
284 
285 			if ((bond->params.mode == BOND_MODE_TLB) ||
286 			    (bond->params.mode == BOND_MODE_ALB)) {
287 				bond_alb_clear_vlan(bond, vlan_id);
288 			}
289 
290 			dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
291 				bond->dev->name);
292 
293 			kfree(vlan);
294 
295 			if (list_empty(&bond->vlan_list) &&
296 			    (bond->slave_cnt == 0)) {
297 				/* Last VLAN removed and no slaves, so
298 				 * restore block on adding VLANs. This will
299 				 * be removed once new slaves that are not
300 				 * VLAN challenged will be added.
301 				 */
302 				bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
303 			}
304 
305 			res = 0;
306 			goto out;
307 		}
308 	}
309 
310 	dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
311 		bond->dev->name);
312 
313 out:
314 	write_unlock_bh(&bond->lock);
315 	return res;
316 }
317 
318 /**
319  * bond_has_challenged_slaves
320  * @bond: the bond we're working on
321  *
322  * Searches the slave list. Returns 1 if a vlan challenged slave
323  * was found, 0 otherwise.
324  *
325  * Assumes bond->lock is held.
326  */
327 static int bond_has_challenged_slaves(struct bonding *bond)
328 {
329 	struct slave *slave;
330 	int i;
331 
332 	bond_for_each_slave(bond, slave, i) {
333 		if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
334 			dprintk("found VLAN challenged slave - %s\n",
335 				slave->dev->name);
336 			return 1;
337 		}
338 	}
339 
340 	dprintk("no VLAN challenged slaves found\n");
341 	return 0;
342 }
343 
344 /**
345  * bond_next_vlan - safely skip to the next item in the vlans list.
346  * @bond: the bond we're working on
347  * @curr: item we're advancing from
348  *
349  * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
350  * or @curr->next otherwise (even if it is @curr itself again).
351  *
352  * Caller must hold bond->lock
353  */
354 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
355 {
356 	struct vlan_entry *next, *last;
357 
358 	if (list_empty(&bond->vlan_list)) {
359 		return NULL;
360 	}
361 
362 	if (!curr) {
363 		next = list_entry(bond->vlan_list.next,
364 				  struct vlan_entry, vlan_list);
365 	} else {
366 		last = list_entry(bond->vlan_list.prev,
367 				  struct vlan_entry, vlan_list);
368 		if (last == curr) {
369 			next = list_entry(bond->vlan_list.next,
370 					  struct vlan_entry, vlan_list);
371 		} else {
372 			next = list_entry(curr->vlan_list.next,
373 					  struct vlan_entry, vlan_list);
374 		}
375 	}
376 
377 	return next;
378 }
379 
380 /**
381  * bond_dev_queue_xmit - Prepare skb for xmit.
382  *
383  * @bond: bond device that got this skb for tx.
384  * @skb: hw accel VLAN tagged skb to transmit
385  * @slave_dev: slave that is supposed to xmit this skbuff
386  *
387  * When the bond gets an skb to transmit that is
388  * already hardware accelerated VLAN tagged, and it
389  * needs to relay this skb to a slave that is not
390  * hw accel capable, the skb needs to be "unaccelerated",
391  * i.e. strip the hwaccel tag and re-insert it as part
392  * of the payload.
393  */
394 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
395 {
396 	unsigned short uninitialized_var(vlan_id);
397 
398 	if (!list_empty(&bond->vlan_list) &&
399 	    !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
400 	    vlan_get_tag(skb, &vlan_id) == 0) {
401 		skb->dev = slave_dev;
402 		skb = vlan_put_tag(skb, vlan_id);
403 		if (!skb) {
404 			/* vlan_put_tag() frees the skb in case of error,
405 			 * so return success here so the calling functions
406 			 * won't attempt to free is again.
407 			 */
408 			return 0;
409 		}
410 	} else {
411 		skb->dev = slave_dev;
412 	}
413 
414 	skb->priority = 1;
415 	dev_queue_xmit(skb);
416 
417 	return 0;
418 }
419 
420 /*
421  * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
422  * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
423  * lock because:
424  * a. This operation is performed in IOCTL context,
425  * b. The operation is protected by the RTNL semaphore in the 8021q code,
426  * c. Holding a lock with BH disabled while directly calling a base driver
427  *    entry point is generally a BAD idea.
428  *
429  * The design of synchronization/protection for this operation in the 8021q
430  * module is good for one or more VLAN devices over a single physical device
431  * and cannot be extended for a teaming solution like bonding, so there is a
432  * potential race condition here where a net device from the vlan group might
433  * be referenced (either by a base driver or the 8021q code) while it is being
434  * removed from the system. However, it turns out we're not making matters
435  * worse, and if it works for regular VLAN usage it will work here too.
436 */
437 
438 /**
439  * bond_vlan_rx_register - Propagates registration to slaves
440  * @bond_dev: bonding net device that got called
441  * @grp: vlan group being registered
442  */
443 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
444 {
445 	struct bonding *bond = bond_dev->priv;
446 	struct slave *slave;
447 	int i;
448 
449 	bond->vlgrp = grp;
450 
451 	bond_for_each_slave(bond, slave, i) {
452 		struct net_device *slave_dev = slave->dev;
453 
454 		if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
455 		    slave_dev->vlan_rx_register) {
456 			slave_dev->vlan_rx_register(slave_dev, grp);
457 		}
458 	}
459 }
460 
461 /**
462  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
463  * @bond_dev: bonding net device that got called
464  * @vid: vlan id being added
465  */
466 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
467 {
468 	struct bonding *bond = bond_dev->priv;
469 	struct slave *slave;
470 	int i, res;
471 
472 	bond_for_each_slave(bond, slave, i) {
473 		struct net_device *slave_dev = slave->dev;
474 
475 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
476 		    slave_dev->vlan_rx_add_vid) {
477 			slave_dev->vlan_rx_add_vid(slave_dev, vid);
478 		}
479 	}
480 
481 	res = bond_add_vlan(bond, vid);
482 	if (res) {
483 		printk(KERN_ERR DRV_NAME
484 		       ": %s: Error: Failed to add vlan id %d\n",
485 		       bond_dev->name, vid);
486 	}
487 }
488 
489 /**
490  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
491  * @bond_dev: bonding net device that got called
492  * @vid: vlan id being removed
493  */
494 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
495 {
496 	struct bonding *bond = bond_dev->priv;
497 	struct slave *slave;
498 	struct net_device *vlan_dev;
499 	int i, res;
500 
501 	bond_for_each_slave(bond, slave, i) {
502 		struct net_device *slave_dev = slave->dev;
503 
504 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
505 		    slave_dev->vlan_rx_kill_vid) {
506 			/* Save and then restore vlan_dev in the grp array,
507 			 * since the slave's driver might clear it.
508 			 */
509 			vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
510 			slave_dev->vlan_rx_kill_vid(slave_dev, vid);
511 			vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
512 		}
513 	}
514 
515 	res = bond_del_vlan(bond, vid);
516 	if (res) {
517 		printk(KERN_ERR DRV_NAME
518 		       ": %s: Error: Failed to remove vlan id %d\n",
519 		       bond_dev->name, vid);
520 	}
521 }
522 
523 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
524 {
525 	struct vlan_entry *vlan;
526 
527 	write_lock_bh(&bond->lock);
528 
529 	if (list_empty(&bond->vlan_list)) {
530 		goto out;
531 	}
532 
533 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
534 	    slave_dev->vlan_rx_register) {
535 		slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
536 	}
537 
538 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
539 	    !(slave_dev->vlan_rx_add_vid)) {
540 		goto out;
541 	}
542 
543 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
544 		slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
545 	}
546 
547 out:
548 	write_unlock_bh(&bond->lock);
549 }
550 
551 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
552 {
553 	struct vlan_entry *vlan;
554 	struct net_device *vlan_dev;
555 
556 	write_lock_bh(&bond->lock);
557 
558 	if (list_empty(&bond->vlan_list)) {
559 		goto out;
560 	}
561 
562 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
563 	    !(slave_dev->vlan_rx_kill_vid)) {
564 		goto unreg;
565 	}
566 
567 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
568 		/* Save and then restore vlan_dev in the grp array,
569 		 * since the slave's driver might clear it.
570 		 */
571 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
572 		slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
573 		vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
574 	}
575 
576 unreg:
577 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
578 	    slave_dev->vlan_rx_register) {
579 		slave_dev->vlan_rx_register(slave_dev, NULL);
580 	}
581 
582 out:
583 	write_unlock_bh(&bond->lock);
584 }
585 
586 /*------------------------------- Link status -------------------------------*/
587 
588 /*
589  * Set the carrier state for the master according to the state of its
590  * slaves.  If any slaves are up, the master is up.  In 802.3ad mode,
591  * do special 802.3ad magic.
592  *
593  * Returns zero if carrier state does not change, nonzero if it does.
594  */
595 static int bond_set_carrier(struct bonding *bond)
596 {
597 	struct slave *slave;
598 	int i;
599 
600 	if (bond->slave_cnt == 0)
601 		goto down;
602 
603 	if (bond->params.mode == BOND_MODE_8023AD)
604 		return bond_3ad_set_carrier(bond);
605 
606 	bond_for_each_slave(bond, slave, i) {
607 		if (slave->link == BOND_LINK_UP) {
608 			if (!netif_carrier_ok(bond->dev)) {
609 				netif_carrier_on(bond->dev);
610 				return 1;
611 			}
612 			return 0;
613 		}
614 	}
615 
616 down:
617 	if (netif_carrier_ok(bond->dev)) {
618 		netif_carrier_off(bond->dev);
619 		return 1;
620 	}
621 	return 0;
622 }
623 
624 /*
625  * Get link speed and duplex from the slave's base driver
626  * using ethtool. If for some reason the call fails or the
627  * values are invalid, fake speed and duplex to 100/Full
628  * and return error.
629  */
630 static int bond_update_speed_duplex(struct slave *slave)
631 {
632 	struct net_device *slave_dev = slave->dev;
633 	struct ethtool_cmd etool;
634 	int res;
635 
636 	/* Fake speed and duplex */
637 	slave->speed = SPEED_100;
638 	slave->duplex = DUPLEX_FULL;
639 
640 	if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
641 		return -1;
642 
643 	res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
644 	if (res < 0)
645 		return -1;
646 
647 	switch (etool.speed) {
648 	case SPEED_10:
649 	case SPEED_100:
650 	case SPEED_1000:
651 	case SPEED_10000:
652 		break;
653 	default:
654 		return -1;
655 	}
656 
657 	switch (etool.duplex) {
658 	case DUPLEX_FULL:
659 	case DUPLEX_HALF:
660 		break;
661 	default:
662 		return -1;
663 	}
664 
665 	slave->speed = etool.speed;
666 	slave->duplex = etool.duplex;
667 
668 	return 0;
669 }
670 
671 /*
672  * if <dev> supports MII link status reporting, check its link status.
673  *
674  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
675  * depening upon the setting of the use_carrier parameter.
676  *
677  * Return either BMSR_LSTATUS, meaning that the link is up (or we
678  * can't tell and just pretend it is), or 0, meaning that the link is
679  * down.
680  *
681  * If reporting is non-zero, instead of faking link up, return -1 if
682  * both ETHTOOL and MII ioctls fail (meaning the device does not
683  * support them).  If use_carrier is set, return whatever it says.
684  * It'd be nice if there was a good way to tell if a driver supports
685  * netif_carrier, but there really isn't.
686  */
687 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
688 {
689 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
690 	struct ifreq ifr;
691 	struct mii_ioctl_data *mii;
692 
693 	if (bond->params.use_carrier) {
694 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
695 	}
696 
697 	ioctl = slave_dev->do_ioctl;
698 	if (ioctl) {
699 		/* TODO: set pointer to correct ioctl on a per team member */
700 		/*       bases to make this more efficient. that is, once  */
701 		/*       we determine the correct ioctl, we will always    */
702 		/*       call it and not the others for that team          */
703 		/*       member.                                           */
704 
705 		/*
706 		 * We cannot assume that SIOCGMIIPHY will also read a
707 		 * register; not all network drivers (e.g., e100)
708 		 * support that.
709 		 */
710 
711 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
712 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
713 		mii = if_mii(&ifr);
714 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
715 			mii->reg_num = MII_BMSR;
716 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
717 				return (mii->val_out & BMSR_LSTATUS);
718 			}
719 		}
720 	}
721 
722 	/*
723 	 * Some drivers cache ETHTOOL_GLINK for a period of time so we only
724 	 * attempt to get link status from it if the above MII ioctls fail.
725 	 */
726 	if (slave_dev->ethtool_ops) {
727 		if (slave_dev->ethtool_ops->get_link) {
728 			u32 link;
729 
730 			link = slave_dev->ethtool_ops->get_link(slave_dev);
731 
732 			return link ? BMSR_LSTATUS : 0;
733 		}
734 	}
735 
736 	/*
737 	 * If reporting, report that either there's no dev->do_ioctl,
738 	 * or both SIOCGMIIREG and get_link failed (meaning that we
739 	 * cannot report link status).  If not reporting, pretend
740 	 * we're ok.
741 	 */
742 	return (reporting ? -1 : BMSR_LSTATUS);
743 }
744 
745 /*----------------------------- Multicast list ------------------------------*/
746 
747 /*
748  * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
749  */
750 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
751 {
752 	return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
753 			dmi1->dmi_addrlen == dmi2->dmi_addrlen;
754 }
755 
756 /*
757  * returns dmi entry if found, NULL otherwise
758  */
759 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
760 {
761 	struct dev_mc_list *idmi;
762 
763 	for (idmi = mc_list; idmi; idmi = idmi->next) {
764 		if (bond_is_dmi_same(dmi, idmi)) {
765 			return idmi;
766 		}
767 	}
768 
769 	return NULL;
770 }
771 
772 /*
773  * Push the promiscuity flag down to appropriate slaves
774  */
775 static int bond_set_promiscuity(struct bonding *bond, int inc)
776 {
777 	int err = 0;
778 	if (USES_PRIMARY(bond->params.mode)) {
779 		/* write lock already acquired */
780 		if (bond->curr_active_slave) {
781 			err = dev_set_promiscuity(bond->curr_active_slave->dev,
782 						  inc);
783 		}
784 	} else {
785 		struct slave *slave;
786 		int i;
787 		bond_for_each_slave(bond, slave, i) {
788 			err = dev_set_promiscuity(slave->dev, inc);
789 			if (err)
790 				return err;
791 		}
792 	}
793 	return err;
794 }
795 
796 /*
797  * Push the allmulti flag down to all slaves
798  */
799 static int bond_set_allmulti(struct bonding *bond, int inc)
800 {
801 	int err = 0;
802 	if (USES_PRIMARY(bond->params.mode)) {
803 		/* write lock already acquired */
804 		if (bond->curr_active_slave) {
805 			err = dev_set_allmulti(bond->curr_active_slave->dev,
806 					       inc);
807 		}
808 	} else {
809 		struct slave *slave;
810 		int i;
811 		bond_for_each_slave(bond, slave, i) {
812 			err = dev_set_allmulti(slave->dev, inc);
813 			if (err)
814 				return err;
815 		}
816 	}
817 	return err;
818 }
819 
820 /*
821  * Add a Multicast address to slaves
822  * according to mode
823  */
824 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
825 {
826 	if (USES_PRIMARY(bond->params.mode)) {
827 		/* write lock already acquired */
828 		if (bond->curr_active_slave) {
829 			dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
830 		}
831 	} else {
832 		struct slave *slave;
833 		int i;
834 		bond_for_each_slave(bond, slave, i) {
835 			dev_mc_add(slave->dev, addr, alen, 0);
836 		}
837 	}
838 }
839 
840 /*
841  * Remove a multicast address from slave
842  * according to mode
843  */
844 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
845 {
846 	if (USES_PRIMARY(bond->params.mode)) {
847 		/* write lock already acquired */
848 		if (bond->curr_active_slave) {
849 			dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
850 		}
851 	} else {
852 		struct slave *slave;
853 		int i;
854 		bond_for_each_slave(bond, slave, i) {
855 			dev_mc_delete(slave->dev, addr, alen, 0);
856 		}
857 	}
858 }
859 
860 
861 /*
862  * Retrieve the list of registered multicast addresses for the bonding
863  * device and retransmit an IGMP JOIN request to the current active
864  * slave.
865  */
866 static void bond_resend_igmp_join_requests(struct bonding *bond)
867 {
868 	struct in_device *in_dev;
869 	struct ip_mc_list *im;
870 
871 	rcu_read_lock();
872 	in_dev = __in_dev_get_rcu(bond->dev);
873 	if (in_dev) {
874 		for (im = in_dev->mc_list; im; im = im->next) {
875 			ip_mc_rejoin_group(im);
876 		}
877 	}
878 
879 	rcu_read_unlock();
880 }
881 
882 /*
883  * Totally destroys the mc_list in bond
884  */
885 static void bond_mc_list_destroy(struct bonding *bond)
886 {
887 	struct dev_mc_list *dmi;
888 
889 	dmi = bond->mc_list;
890 	while (dmi) {
891 		bond->mc_list = dmi->next;
892 		kfree(dmi);
893 		dmi = bond->mc_list;
894 	}
895         bond->mc_list = NULL;
896 }
897 
898 /*
899  * Copy all the Multicast addresses from src to the bonding device dst
900  */
901 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
902 			     gfp_t gfp_flag)
903 {
904 	struct dev_mc_list *dmi, *new_dmi;
905 
906 	for (dmi = mc_list; dmi; dmi = dmi->next) {
907 		new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
908 
909 		if (!new_dmi) {
910 			/* FIXME: Potential memory leak !!! */
911 			return -ENOMEM;
912 		}
913 
914 		new_dmi->next = bond->mc_list;
915 		bond->mc_list = new_dmi;
916 		new_dmi->dmi_addrlen = dmi->dmi_addrlen;
917 		memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
918 		new_dmi->dmi_users = dmi->dmi_users;
919 		new_dmi->dmi_gusers = dmi->dmi_gusers;
920 	}
921 
922 	return 0;
923 }
924 
925 /*
926  * flush all members of flush->mc_list from device dev->mc_list
927  */
928 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
929 {
930 	struct bonding *bond = bond_dev->priv;
931 	struct dev_mc_list *dmi;
932 
933 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
934 		dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
935 	}
936 
937 	if (bond->params.mode == BOND_MODE_8023AD) {
938 		/* del lacpdu mc addr from mc list */
939 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
940 
941 		dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
942 	}
943 }
944 
945 /*--------------------------- Active slave change ---------------------------*/
946 
947 /*
948  * Update the mc list and multicast-related flags for the new and
949  * old active slaves (if any) according to the multicast mode, and
950  * promiscuous flags unconditionally.
951  */
952 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
953 {
954 	struct dev_mc_list *dmi;
955 
956 	if (!USES_PRIMARY(bond->params.mode)) {
957 		/* nothing to do -  mc list is already up-to-date on
958 		 * all slaves
959 		 */
960 		return;
961 	}
962 
963 	if (old_active) {
964 		if (bond->dev->flags & IFF_PROMISC) {
965 			dev_set_promiscuity(old_active->dev, -1);
966 		}
967 
968 		if (bond->dev->flags & IFF_ALLMULTI) {
969 			dev_set_allmulti(old_active->dev, -1);
970 		}
971 
972 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
973 			dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
974 		}
975 	}
976 
977 	if (new_active) {
978 		/* FIXME: Signal errors upstream. */
979 		if (bond->dev->flags & IFF_PROMISC) {
980 			dev_set_promiscuity(new_active->dev, 1);
981 		}
982 
983 		if (bond->dev->flags & IFF_ALLMULTI) {
984 			dev_set_allmulti(new_active->dev, 1);
985 		}
986 
987 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
988 			dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
989 		}
990 		bond_resend_igmp_join_requests(bond);
991 	}
992 }
993 
994 /*
995  * bond_do_fail_over_mac
996  *
997  * Perform special MAC address swapping for fail_over_mac settings
998  *
999  * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh.
1000  */
1001 static void bond_do_fail_over_mac(struct bonding *bond,
1002 				  struct slave *new_active,
1003 				  struct slave *old_active)
1004 {
1005 	u8 tmp_mac[ETH_ALEN];
1006 	struct sockaddr saddr;
1007 	int rv;
1008 
1009 	switch (bond->params.fail_over_mac) {
1010 	case BOND_FOM_ACTIVE:
1011 		if (new_active)
1012 			memcpy(bond->dev->dev_addr,  new_active->dev->dev_addr,
1013 			       new_active->dev->addr_len);
1014 		break;
1015 	case BOND_FOM_FOLLOW:
1016 		/*
1017 		 * if new_active && old_active, swap them
1018 		 * if just old_active, do nothing (going to no active slave)
1019 		 * if just new_active, set new_active to bond's MAC
1020 		 */
1021 		if (!new_active)
1022 			return;
1023 
1024 		write_unlock_bh(&bond->curr_slave_lock);
1025 		read_unlock(&bond->lock);
1026 
1027 		if (old_active) {
1028 			memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN);
1029 			memcpy(saddr.sa_data, old_active->dev->dev_addr,
1030 			       ETH_ALEN);
1031 			saddr.sa_family = new_active->dev->type;
1032 		} else {
1033 			memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN);
1034 			saddr.sa_family = bond->dev->type;
1035 		}
1036 
1037 		rv = dev_set_mac_address(new_active->dev, &saddr);
1038 		if (rv) {
1039 			printk(KERN_ERR DRV_NAME
1040 			       ": %s: Error %d setting MAC of slave %s\n",
1041 			       bond->dev->name, -rv, new_active->dev->name);
1042 			goto out;
1043 		}
1044 
1045 		if (!old_active)
1046 			goto out;
1047 
1048 		memcpy(saddr.sa_data, tmp_mac, ETH_ALEN);
1049 		saddr.sa_family = old_active->dev->type;
1050 
1051 		rv = dev_set_mac_address(old_active->dev, &saddr);
1052 		if (rv)
1053 			printk(KERN_ERR DRV_NAME
1054 			       ": %s: Error %d setting MAC of slave %s\n",
1055 			       bond->dev->name, -rv, new_active->dev->name);
1056 out:
1057 		read_lock(&bond->lock);
1058 		write_lock_bh(&bond->curr_slave_lock);
1059 		break;
1060 	default:
1061 		printk(KERN_ERR DRV_NAME
1062 		       ": %s: bond_do_fail_over_mac impossible: bad policy %d\n",
1063 		       bond->dev->name, bond->params.fail_over_mac);
1064 		break;
1065 	}
1066 
1067 }
1068 
1069 
1070 /**
1071  * find_best_interface - select the best available slave to be the active one
1072  * @bond: our bonding struct
1073  *
1074  * Warning: Caller must hold curr_slave_lock for writing.
1075  */
1076 static struct slave *bond_find_best_slave(struct bonding *bond)
1077 {
1078 	struct slave *new_active, *old_active;
1079 	struct slave *bestslave = NULL;
1080 	int mintime = bond->params.updelay;
1081 	int i;
1082 
1083 	new_active = old_active = bond->curr_active_slave;
1084 
1085 	if (!new_active) { /* there were no active slaves left */
1086 		if (bond->slave_cnt > 0) {  /* found one slave */
1087 			new_active = bond->first_slave;
1088 		} else {
1089 			return NULL; /* still no slave, return NULL */
1090 		}
1091 	}
1092 
1093 	/* first try the primary link; if arping, a link must tx/rx traffic
1094 	 * before it can be considered the curr_active_slave - also, we would skip
1095 	 * slaves between the curr_active_slave and primary_slave that may be up
1096 	 * and able to arp
1097 	 */
1098 	if ((bond->primary_slave) &&
1099 	    (!bond->params.arp_interval) &&
1100 	    (IS_UP(bond->primary_slave->dev))) {
1101 		new_active = bond->primary_slave;
1102 	}
1103 
1104 	/* remember where to stop iterating over the slaves */
1105 	old_active = new_active;
1106 
1107 	bond_for_each_slave_from(bond, new_active, i, old_active) {
1108 		if (IS_UP(new_active->dev)) {
1109 			if (new_active->link == BOND_LINK_UP) {
1110 				return new_active;
1111 			} else if (new_active->link == BOND_LINK_BACK) {
1112 				/* link up, but waiting for stabilization */
1113 				if (new_active->delay < mintime) {
1114 					mintime = new_active->delay;
1115 					bestslave = new_active;
1116 				}
1117 			}
1118 		}
1119 	}
1120 
1121 	return bestslave;
1122 }
1123 
1124 /**
1125  * change_active_interface - change the active slave into the specified one
1126  * @bond: our bonding struct
1127  * @new: the new slave to make the active one
1128  *
1129  * Set the new slave to the bond's settings and unset them on the old
1130  * curr_active_slave.
1131  * Setting include flags, mc-list, promiscuity, allmulti, etc.
1132  *
1133  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1134  * because it is apparently the best available slave we have, even though its
1135  * updelay hasn't timed out yet.
1136  *
1137  * If new_active is not NULL, caller must hold bond->lock for read and
1138  * curr_slave_lock for write_bh.
1139  */
1140 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1141 {
1142 	struct slave *old_active = bond->curr_active_slave;
1143 
1144 	if (old_active == new_active) {
1145 		return;
1146 	}
1147 
1148 	if (new_active) {
1149 		new_active->jiffies = jiffies;
1150 
1151 		if (new_active->link == BOND_LINK_BACK) {
1152 			if (USES_PRIMARY(bond->params.mode)) {
1153 				printk(KERN_INFO DRV_NAME
1154 				       ": %s: making interface %s the new "
1155 				       "active one %d ms earlier.\n",
1156 				       bond->dev->name, new_active->dev->name,
1157 				       (bond->params.updelay - new_active->delay) * bond->params.miimon);
1158 			}
1159 
1160 			new_active->delay = 0;
1161 			new_active->link = BOND_LINK_UP;
1162 
1163 			if (bond->params.mode == BOND_MODE_8023AD) {
1164 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1165 			}
1166 
1167 			if ((bond->params.mode == BOND_MODE_TLB) ||
1168 			    (bond->params.mode == BOND_MODE_ALB)) {
1169 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1170 			}
1171 		} else {
1172 			if (USES_PRIMARY(bond->params.mode)) {
1173 				printk(KERN_INFO DRV_NAME
1174 				       ": %s: making interface %s the new "
1175 				       "active one.\n",
1176 				       bond->dev->name, new_active->dev->name);
1177 			}
1178 		}
1179 	}
1180 
1181 	if (USES_PRIMARY(bond->params.mode)) {
1182 		bond_mc_swap(bond, new_active, old_active);
1183 	}
1184 
1185 	if ((bond->params.mode == BOND_MODE_TLB) ||
1186 	    (bond->params.mode == BOND_MODE_ALB)) {
1187 		bond_alb_handle_active_change(bond, new_active);
1188 		if (old_active)
1189 			bond_set_slave_inactive_flags(old_active);
1190 		if (new_active)
1191 			bond_set_slave_active_flags(new_active);
1192 	} else {
1193 		bond->curr_active_slave = new_active;
1194 	}
1195 
1196 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1197 		if (old_active) {
1198 			bond_set_slave_inactive_flags(old_active);
1199 		}
1200 
1201 		if (new_active) {
1202 			bond_set_slave_active_flags(new_active);
1203 
1204 			if (bond->params.fail_over_mac)
1205 				bond_do_fail_over_mac(bond, new_active,
1206 						      old_active);
1207 
1208 			bond->send_grat_arp = bond->params.num_grat_arp;
1209 			bond_send_gratuitous_arp(bond);
1210 
1211 			write_unlock_bh(&bond->curr_slave_lock);
1212 			read_unlock(&bond->lock);
1213 
1214 			netdev_bonding_change(bond->dev);
1215 
1216 			read_lock(&bond->lock);
1217 			write_lock_bh(&bond->curr_slave_lock);
1218 		}
1219 	}
1220 }
1221 
1222 /**
1223  * bond_select_active_slave - select a new active slave, if needed
1224  * @bond: our bonding struct
1225  *
1226  * This functions shoud be called when one of the following occurs:
1227  * - The old curr_active_slave has been released or lost its link.
1228  * - The primary_slave has got its link back.
1229  * - A slave has got its link back and there's no old curr_active_slave.
1230  *
1231  * Caller must hold bond->lock for read and curr_slave_lock for write_bh.
1232  */
1233 void bond_select_active_slave(struct bonding *bond)
1234 {
1235 	struct slave *best_slave;
1236 	int rv;
1237 
1238 	best_slave = bond_find_best_slave(bond);
1239 	if (best_slave != bond->curr_active_slave) {
1240 		bond_change_active_slave(bond, best_slave);
1241 		rv = bond_set_carrier(bond);
1242 		if (!rv)
1243 			return;
1244 
1245 		if (netif_carrier_ok(bond->dev)) {
1246 			printk(KERN_INFO DRV_NAME
1247 			       ": %s: first active interface up!\n",
1248 			       bond->dev->name);
1249 		} else {
1250 			printk(KERN_INFO DRV_NAME ": %s: "
1251 			       "now running without any active interface !\n",
1252 			       bond->dev->name);
1253 		}
1254 	}
1255 }
1256 
1257 /*--------------------------- slave list handling ---------------------------*/
1258 
1259 /*
1260  * This function attaches the slave to the end of list.
1261  *
1262  * bond->lock held for writing by caller.
1263  */
1264 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1265 {
1266 	if (bond->first_slave == NULL) { /* attaching the first slave */
1267 		new_slave->next = new_slave;
1268 		new_slave->prev = new_slave;
1269 		bond->first_slave = new_slave;
1270 	} else {
1271 		new_slave->next = bond->first_slave;
1272 		new_slave->prev = bond->first_slave->prev;
1273 		new_slave->next->prev = new_slave;
1274 		new_slave->prev->next = new_slave;
1275 	}
1276 
1277 	bond->slave_cnt++;
1278 }
1279 
1280 /*
1281  * This function detaches the slave from the list.
1282  * WARNING: no check is made to verify if the slave effectively
1283  * belongs to <bond>.
1284  * Nothing is freed on return, structures are just unchained.
1285  * If any slave pointer in bond was pointing to <slave>,
1286  * it should be changed by the calling function.
1287  *
1288  * bond->lock held for writing by caller.
1289  */
1290 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1291 {
1292 	if (slave->next) {
1293 		slave->next->prev = slave->prev;
1294 	}
1295 
1296 	if (slave->prev) {
1297 		slave->prev->next = slave->next;
1298 	}
1299 
1300 	if (bond->first_slave == slave) { /* slave is the first slave */
1301 		if (bond->slave_cnt > 1) { /* there are more slave */
1302 			bond->first_slave = slave->next;
1303 		} else {
1304 			bond->first_slave = NULL; /* slave was the last one */
1305 		}
1306 	}
1307 
1308 	slave->next = NULL;
1309 	slave->prev = NULL;
1310 	bond->slave_cnt--;
1311 }
1312 
1313 /*---------------------------------- IOCTL ----------------------------------*/
1314 
1315 static int bond_sethwaddr(struct net_device *bond_dev,
1316 			  struct net_device *slave_dev)
1317 {
1318 	dprintk("bond_dev=%p\n", bond_dev);
1319 	dprintk("slave_dev=%p\n", slave_dev);
1320 	dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1321 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1322 	return 0;
1323 }
1324 
1325 #define BOND_VLAN_FEATURES \
1326 	(NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1327 	 NETIF_F_HW_VLAN_FILTER)
1328 
1329 /*
1330  * Compute the common dev->feature set available to all slaves.  Some
1331  * feature bits are managed elsewhere, so preserve those feature bits
1332  * on the master device.
1333  */
1334 static int bond_compute_features(struct bonding *bond)
1335 {
1336 	struct slave *slave;
1337 	struct net_device *bond_dev = bond->dev;
1338 	unsigned long features = bond_dev->features;
1339 	unsigned short max_hard_header_len = max((u16)ETH_HLEN,
1340 						bond_dev->hard_header_len);
1341 	int i;
1342 
1343 	features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1344 	features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA |
1345 		    NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1346 
1347 	bond_for_each_slave(bond, slave, i) {
1348 		features = netdev_compute_features(features,
1349 						   slave->dev->features);
1350 		if (slave->dev->hard_header_len > max_hard_header_len)
1351 			max_hard_header_len = slave->dev->hard_header_len;
1352 	}
1353 
1354 	features |= (bond_dev->features & BOND_VLAN_FEATURES);
1355 	bond_dev->features = features;
1356 	bond_dev->hard_header_len = max_hard_header_len;
1357 
1358 	return 0;
1359 }
1360 
1361 
1362 static void bond_setup_by_slave(struct net_device *bond_dev,
1363 				struct net_device *slave_dev)
1364 {
1365 	struct bonding *bond = bond_dev->priv;
1366 
1367 	bond_dev->neigh_setup           = slave_dev->neigh_setup;
1368 	bond_dev->header_ops		= slave_dev->header_ops;
1369 
1370 	bond_dev->type		    = slave_dev->type;
1371 	bond_dev->hard_header_len   = slave_dev->hard_header_len;
1372 	bond_dev->addr_len	    = slave_dev->addr_len;
1373 
1374 	memcpy(bond_dev->broadcast, slave_dev->broadcast,
1375 		slave_dev->addr_len);
1376 	bond->setup_by_slave = 1;
1377 }
1378 
1379 /* enslave device <slave> to bond device <master> */
1380 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1381 {
1382 	struct bonding *bond = bond_dev->priv;
1383 	struct slave *new_slave = NULL;
1384 	struct dev_mc_list *dmi;
1385 	struct sockaddr addr;
1386 	int link_reporting;
1387 	int old_features = bond_dev->features;
1388 	int res = 0;
1389 
1390 	if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1391 		slave_dev->do_ioctl == NULL) {
1392 		printk(KERN_WARNING DRV_NAME
1393 		       ": %s: Warning: no link monitoring support for %s\n",
1394 		       bond_dev->name, slave_dev->name);
1395 	}
1396 
1397 	/* bond must be initialized by bond_open() before enslaving */
1398 	if (!(bond_dev->flags & IFF_UP)) {
1399 		printk(KERN_WARNING DRV_NAME
1400 			" %s: master_dev is not up in bond_enslave\n",
1401 			bond_dev->name);
1402 	}
1403 
1404 	/* already enslaved */
1405 	if (slave_dev->flags & IFF_SLAVE) {
1406 		dprintk("Error, Device was already enslaved\n");
1407 		return -EBUSY;
1408 	}
1409 
1410 	/* vlan challenged mutual exclusion */
1411 	/* no need to lock since we're protected by rtnl_lock */
1412 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1413 		dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1414 		if (!list_empty(&bond->vlan_list)) {
1415 			printk(KERN_ERR DRV_NAME
1416 			       ": %s: Error: cannot enslave VLAN "
1417 			       "challenged slave %s on VLAN enabled "
1418 			       "bond %s\n", bond_dev->name, slave_dev->name,
1419 			       bond_dev->name);
1420 			return -EPERM;
1421 		} else {
1422 			printk(KERN_WARNING DRV_NAME
1423 			       ": %s: Warning: enslaved VLAN challenged "
1424 			       "slave %s. Adding VLANs will be blocked as "
1425 			       "long as %s is part of bond %s\n",
1426 			       bond_dev->name, slave_dev->name, slave_dev->name,
1427 			       bond_dev->name);
1428 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1429 		}
1430 	} else {
1431 		dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1432 		if (bond->slave_cnt == 0) {
1433 			/* First slave, and it is not VLAN challenged,
1434 			 * so remove the block of adding VLANs over the bond.
1435 			 */
1436 			bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * Old ifenslave binaries are no longer supported.  These can
1442 	 * be identified with moderate accurary by the state of the slave:
1443 	 * the current ifenslave will set the interface down prior to
1444 	 * enslaving it; the old ifenslave will not.
1445 	 */
1446 	if ((slave_dev->flags & IFF_UP)) {
1447 		printk(KERN_ERR DRV_NAME ": %s is up. "
1448 		       "This may be due to an out of date ifenslave.\n",
1449 		       slave_dev->name);
1450 		res = -EPERM;
1451 		goto err_undo_flags;
1452 	}
1453 
1454 	/* set bonding device ether type by slave - bonding netdevices are
1455 	 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1456 	 * there is a need to override some of the type dependent attribs/funcs.
1457 	 *
1458 	 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1459 	 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1460 	 */
1461 	if (bond->slave_cnt == 0) {
1462 		if (slave_dev->type != ARPHRD_ETHER)
1463 			bond_setup_by_slave(bond_dev, slave_dev);
1464 	} else if (bond_dev->type != slave_dev->type) {
1465 		printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different "
1466 			"from other slaves (%d), can not enslave it.\n",
1467 			slave_dev->name,
1468 			slave_dev->type, bond_dev->type);
1469 			res = -EINVAL;
1470 			goto err_undo_flags;
1471 	}
1472 
1473 	if (slave_dev->set_mac_address == NULL) {
1474 		if (bond->slave_cnt == 0) {
1475 			printk(KERN_WARNING DRV_NAME
1476 			       ": %s: Warning: The first slave device "
1477 			       "specified does not support setting the MAC "
1478 			       "address. Setting fail_over_mac to active.",
1479 			       bond_dev->name);
1480 			bond->params.fail_over_mac = BOND_FOM_ACTIVE;
1481 		} else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1482 			printk(KERN_ERR DRV_NAME
1483 				": %s: Error: The slave device specified "
1484 				"does not support setting the MAC address, "
1485 				"but fail_over_mac is not set to active.\n"
1486 				, bond_dev->name);
1487 			res = -EOPNOTSUPP;
1488 			goto err_undo_flags;
1489 		}
1490 	}
1491 
1492 	new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1493 	if (!new_slave) {
1494 		res = -ENOMEM;
1495 		goto err_undo_flags;
1496 	}
1497 
1498 	/* save slave's original flags before calling
1499 	 * netdev_set_master and dev_open
1500 	 */
1501 	new_slave->original_flags = slave_dev->flags;
1502 
1503 	/*
1504 	 * Save slave's original ("permanent") mac address for modes
1505 	 * that need it, and for restoring it upon release, and then
1506 	 * set it to the master's address
1507 	 */
1508 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1509 
1510 	if (!bond->params.fail_over_mac) {
1511 		/*
1512 		 * Set slave to master's mac address.  The application already
1513 		 * set the master's mac address to that of the first slave
1514 		 */
1515 		memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1516 		addr.sa_family = slave_dev->type;
1517 		res = dev_set_mac_address(slave_dev, &addr);
1518 		if (res) {
1519 			dprintk("Error %d calling set_mac_address\n", res);
1520 			goto err_free;
1521 		}
1522 	}
1523 
1524 	res = netdev_set_master(slave_dev, bond_dev);
1525 	if (res) {
1526 		dprintk("Error %d calling netdev_set_master\n", res);
1527 		goto err_restore_mac;
1528 	}
1529 	/* open the slave since the application closed it */
1530 	res = dev_open(slave_dev);
1531 	if (res) {
1532 		dprintk("Openning slave %s failed\n", slave_dev->name);
1533 		goto err_unset_master;
1534 	}
1535 
1536 	new_slave->dev = slave_dev;
1537 	slave_dev->priv_flags |= IFF_BONDING;
1538 
1539 	if ((bond->params.mode == BOND_MODE_TLB) ||
1540 	    (bond->params.mode == BOND_MODE_ALB)) {
1541 		/* bond_alb_init_slave() must be called before all other stages since
1542 		 * it might fail and we do not want to have to undo everything
1543 		 */
1544 		res = bond_alb_init_slave(bond, new_slave);
1545 		if (res) {
1546 			goto err_close;
1547 		}
1548 	}
1549 
1550 	/* If the mode USES_PRIMARY, then the new slave gets the
1551 	 * master's promisc (and mc) settings only if it becomes the
1552 	 * curr_active_slave, and that is taken care of later when calling
1553 	 * bond_change_active()
1554 	 */
1555 	if (!USES_PRIMARY(bond->params.mode)) {
1556 		/* set promiscuity level to new slave */
1557 		if (bond_dev->flags & IFF_PROMISC) {
1558 			res = dev_set_promiscuity(slave_dev, 1);
1559 			if (res)
1560 				goto err_close;
1561 		}
1562 
1563 		/* set allmulti level to new slave */
1564 		if (bond_dev->flags & IFF_ALLMULTI) {
1565 			res = dev_set_allmulti(slave_dev, 1);
1566 			if (res)
1567 				goto err_close;
1568 		}
1569 
1570 		netif_addr_lock_bh(bond_dev);
1571 		/* upload master's mc_list to new slave */
1572 		for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1573 			dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1574 		}
1575 		netif_addr_unlock_bh(bond_dev);
1576 	}
1577 
1578 	if (bond->params.mode == BOND_MODE_8023AD) {
1579 		/* add lacpdu mc addr to mc list */
1580 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1581 
1582 		dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1583 	}
1584 
1585 	bond_add_vlans_on_slave(bond, slave_dev);
1586 
1587 	write_lock_bh(&bond->lock);
1588 
1589 	bond_attach_slave(bond, new_slave);
1590 
1591 	new_slave->delay = 0;
1592 	new_slave->link_failure_count = 0;
1593 
1594 	bond_compute_features(bond);
1595 
1596 	write_unlock_bh(&bond->lock);
1597 
1598 	read_lock(&bond->lock);
1599 
1600 	new_slave->last_arp_rx = jiffies;
1601 
1602 	if (bond->params.miimon && !bond->params.use_carrier) {
1603 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1604 
1605 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1606 			/*
1607 			 * miimon is set but a bonded network driver
1608 			 * does not support ETHTOOL/MII and
1609 			 * arp_interval is not set.  Note: if
1610 			 * use_carrier is enabled, we will never go
1611 			 * here (because netif_carrier is always
1612 			 * supported); thus, we don't need to change
1613 			 * the messages for netif_carrier.
1614 			 */
1615 			printk(KERN_WARNING DRV_NAME
1616 			       ": %s: Warning: MII and ETHTOOL support not "
1617 			       "available for interface %s, and "
1618 			       "arp_interval/arp_ip_target module parameters "
1619 			       "not specified, thus bonding will not detect "
1620 			       "link failures! see bonding.txt for details.\n",
1621 			       bond_dev->name, slave_dev->name);
1622 		} else if (link_reporting == -1) {
1623 			/* unable get link status using mii/ethtool */
1624 			printk(KERN_WARNING DRV_NAME
1625 			       ": %s: Warning: can't get link status from "
1626 			       "interface %s; the network driver associated "
1627 			       "with this interface does not support MII or "
1628 			       "ETHTOOL link status reporting, thus miimon "
1629 			       "has no effect on this interface.\n",
1630 			       bond_dev->name, slave_dev->name);
1631 		}
1632 	}
1633 
1634 	/* check for initial state */
1635 	if (!bond->params.miimon ||
1636 	    (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1637 		if (bond->params.updelay) {
1638 			dprintk("Initial state of slave_dev is "
1639 				"BOND_LINK_BACK\n");
1640 			new_slave->link  = BOND_LINK_BACK;
1641 			new_slave->delay = bond->params.updelay;
1642 		} else {
1643 			dprintk("Initial state of slave_dev is "
1644 				"BOND_LINK_UP\n");
1645 			new_slave->link  = BOND_LINK_UP;
1646 		}
1647 		new_slave->jiffies = jiffies;
1648 	} else {
1649 		dprintk("Initial state of slave_dev is "
1650 			"BOND_LINK_DOWN\n");
1651 		new_slave->link  = BOND_LINK_DOWN;
1652 	}
1653 
1654 	if (bond_update_speed_duplex(new_slave) &&
1655 	    (new_slave->link != BOND_LINK_DOWN)) {
1656 		printk(KERN_WARNING DRV_NAME
1657 		       ": %s: Warning: failed to get speed and duplex from %s, "
1658 		       "assumed to be 100Mb/sec and Full.\n",
1659 		       bond_dev->name, new_slave->dev->name);
1660 
1661 		if (bond->params.mode == BOND_MODE_8023AD) {
1662 			printk(KERN_WARNING DRV_NAME
1663 			       ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1664 			       "support in base driver for proper aggregator "
1665 			       "selection.\n", bond_dev->name);
1666 		}
1667 	}
1668 
1669 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1670 		/* if there is a primary slave, remember it */
1671 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1672 			bond->primary_slave = new_slave;
1673 		}
1674 	}
1675 
1676 	write_lock_bh(&bond->curr_slave_lock);
1677 
1678 	switch (bond->params.mode) {
1679 	case BOND_MODE_ACTIVEBACKUP:
1680 		bond_set_slave_inactive_flags(new_slave);
1681 		bond_select_active_slave(bond);
1682 		break;
1683 	case BOND_MODE_8023AD:
1684 		/* in 802.3ad mode, the internal mechanism
1685 		 * will activate the slaves in the selected
1686 		 * aggregator
1687 		 */
1688 		bond_set_slave_inactive_flags(new_slave);
1689 		/* if this is the first slave */
1690 		if (bond->slave_cnt == 1) {
1691 			SLAVE_AD_INFO(new_slave).id = 1;
1692 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1693 			 * can be called only after the mac address of the bond is set
1694 			 */
1695 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1696 					    bond->params.lacp_fast);
1697 		} else {
1698 			SLAVE_AD_INFO(new_slave).id =
1699 				SLAVE_AD_INFO(new_slave->prev).id + 1;
1700 		}
1701 
1702 		bond_3ad_bind_slave(new_slave);
1703 		break;
1704 	case BOND_MODE_TLB:
1705 	case BOND_MODE_ALB:
1706 		new_slave->state = BOND_STATE_ACTIVE;
1707 		bond_set_slave_inactive_flags(new_slave);
1708 		break;
1709 	default:
1710 		dprintk("This slave is always active in trunk mode\n");
1711 
1712 		/* always active in trunk mode */
1713 		new_slave->state = BOND_STATE_ACTIVE;
1714 
1715 		/* In trunking mode there is little meaning to curr_active_slave
1716 		 * anyway (it holds no special properties of the bond device),
1717 		 * so we can change it without calling change_active_interface()
1718 		 */
1719 		if (!bond->curr_active_slave) {
1720 			bond->curr_active_slave = new_slave;
1721 		}
1722 		break;
1723 	} /* switch(bond_mode) */
1724 
1725 	write_unlock_bh(&bond->curr_slave_lock);
1726 
1727 	bond_set_carrier(bond);
1728 
1729 	read_unlock(&bond->lock);
1730 
1731 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1732 	if (res)
1733 		goto err_close;
1734 
1735 	printk(KERN_INFO DRV_NAME
1736 	       ": %s: enslaving %s as a%s interface with a%s link.\n",
1737 	       bond_dev->name, slave_dev->name,
1738 	       new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1739 	       new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1740 
1741 	/* enslave is successful */
1742 	return 0;
1743 
1744 /* Undo stages on error */
1745 err_close:
1746 	dev_close(slave_dev);
1747 
1748 err_unset_master:
1749 	netdev_set_master(slave_dev, NULL);
1750 
1751 err_restore_mac:
1752 	if (!bond->params.fail_over_mac) {
1753 		/* XXX TODO - fom follow mode needs to change master's
1754 		 * MAC if this slave's MAC is in use by the bond, or at
1755 		 * least print a warning.
1756 		 */
1757 		memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1758 		addr.sa_family = slave_dev->type;
1759 		dev_set_mac_address(slave_dev, &addr);
1760 	}
1761 
1762 err_free:
1763 	kfree(new_slave);
1764 
1765 err_undo_flags:
1766 	bond_dev->features = old_features;
1767 
1768 	return res;
1769 }
1770 
1771 /*
1772  * Try to release the slave device <slave> from the bond device <master>
1773  * It is legal to access curr_active_slave without a lock because all the function
1774  * is write-locked.
1775  *
1776  * The rules for slave state should be:
1777  *   for Active/Backup:
1778  *     Active stays on all backups go down
1779  *   for Bonded connections:
1780  *     The first up interface should be left on and all others downed.
1781  */
1782 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1783 {
1784 	struct bonding *bond = bond_dev->priv;
1785 	struct slave *slave, *oldcurrent;
1786 	struct sockaddr addr;
1787 	int mac_addr_differ;
1788 	DECLARE_MAC_BUF(mac);
1789 
1790 	/* slave is not a slave or master is not master of this slave */
1791 	if (!(slave_dev->flags & IFF_SLAVE) ||
1792 	    (slave_dev->master != bond_dev)) {
1793 		printk(KERN_ERR DRV_NAME
1794 		       ": %s: Error: cannot release %s.\n",
1795 		       bond_dev->name, slave_dev->name);
1796 		return -EINVAL;
1797 	}
1798 
1799 	write_lock_bh(&bond->lock);
1800 
1801 	slave = bond_get_slave_by_dev(bond, slave_dev);
1802 	if (!slave) {
1803 		/* not a slave of this bond */
1804 		printk(KERN_INFO DRV_NAME
1805 		       ": %s: %s not enslaved\n",
1806 		       bond_dev->name, slave_dev->name);
1807 		write_unlock_bh(&bond->lock);
1808 		return -EINVAL;
1809 	}
1810 
1811 	if (!bond->params.fail_over_mac) {
1812 		mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr,
1813 					 ETH_ALEN);
1814 		if (!mac_addr_differ && (bond->slave_cnt > 1))
1815 			printk(KERN_WARNING DRV_NAME
1816 			       ": %s: Warning: the permanent HWaddr of %s - "
1817 			       "%s - is still in use by %s. "
1818 			       "Set the HWaddr of %s to a different address "
1819 			       "to avoid conflicts.\n",
1820 			       bond_dev->name, slave_dev->name,
1821 			       print_mac(mac, slave->perm_hwaddr),
1822 			       bond_dev->name, slave_dev->name);
1823 	}
1824 
1825 	/* Inform AD package of unbinding of slave. */
1826 	if (bond->params.mode == BOND_MODE_8023AD) {
1827 		/* must be called before the slave is
1828 		 * detached from the list
1829 		 */
1830 		bond_3ad_unbind_slave(slave);
1831 	}
1832 
1833 	printk(KERN_INFO DRV_NAME
1834 	       ": %s: releasing %s interface %s\n",
1835 	       bond_dev->name,
1836 	       (slave->state == BOND_STATE_ACTIVE)
1837 	       ? "active" : "backup",
1838 	       slave_dev->name);
1839 
1840 	oldcurrent = bond->curr_active_slave;
1841 
1842 	bond->current_arp_slave = NULL;
1843 
1844 	/* release the slave from its bond */
1845 	bond_detach_slave(bond, slave);
1846 
1847 	bond_compute_features(bond);
1848 
1849 	if (bond->primary_slave == slave) {
1850 		bond->primary_slave = NULL;
1851 	}
1852 
1853 	if (oldcurrent == slave) {
1854 		bond_change_active_slave(bond, NULL);
1855 	}
1856 
1857 	if ((bond->params.mode == BOND_MODE_TLB) ||
1858 	    (bond->params.mode == BOND_MODE_ALB)) {
1859 		/* Must be called only after the slave has been
1860 		 * detached from the list and the curr_active_slave
1861 		 * has been cleared (if our_slave == old_current),
1862 		 * but before a new active slave is selected.
1863 		 */
1864 		write_unlock_bh(&bond->lock);
1865 		bond_alb_deinit_slave(bond, slave);
1866 		write_lock_bh(&bond->lock);
1867 	}
1868 
1869 	if (oldcurrent == slave) {
1870 		/*
1871 		 * Note that we hold RTNL over this sequence, so there
1872 		 * is no concern that another slave add/remove event
1873 		 * will interfere.
1874 		 */
1875 		write_unlock_bh(&bond->lock);
1876 		read_lock(&bond->lock);
1877 		write_lock_bh(&bond->curr_slave_lock);
1878 
1879 		bond_select_active_slave(bond);
1880 
1881 		write_unlock_bh(&bond->curr_slave_lock);
1882 		read_unlock(&bond->lock);
1883 		write_lock_bh(&bond->lock);
1884 	}
1885 
1886 	if (bond->slave_cnt == 0) {
1887 		bond_set_carrier(bond);
1888 
1889 		/* if the last slave was removed, zero the mac address
1890 		 * of the master so it will be set by the application
1891 		 * to the mac address of the first slave
1892 		 */
1893 		memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1894 
1895 		if (list_empty(&bond->vlan_list)) {
1896 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1897 		} else {
1898 			printk(KERN_WARNING DRV_NAME
1899 			       ": %s: Warning: clearing HW address of %s while it "
1900 			       "still has VLANs.\n",
1901 			       bond_dev->name, bond_dev->name);
1902 			printk(KERN_WARNING DRV_NAME
1903 			       ": %s: When re-adding slaves, make sure the bond's "
1904 			       "HW address matches its VLANs'.\n",
1905 			       bond_dev->name);
1906 		}
1907 	} else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1908 		   !bond_has_challenged_slaves(bond)) {
1909 		printk(KERN_INFO DRV_NAME
1910 		       ": %s: last VLAN challenged slave %s "
1911 		       "left bond %s. VLAN blocking is removed\n",
1912 		       bond_dev->name, slave_dev->name, bond_dev->name);
1913 		bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1914 	}
1915 
1916 	write_unlock_bh(&bond->lock);
1917 
1918 	/* must do this from outside any spinlocks */
1919 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1920 
1921 	bond_del_vlans_from_slave(bond, slave_dev);
1922 
1923 	/* If the mode USES_PRIMARY, then we should only remove its
1924 	 * promisc and mc settings if it was the curr_active_slave, but that was
1925 	 * already taken care of above when we detached the slave
1926 	 */
1927 	if (!USES_PRIMARY(bond->params.mode)) {
1928 		/* unset promiscuity level from slave */
1929 		if (bond_dev->flags & IFF_PROMISC) {
1930 			dev_set_promiscuity(slave_dev, -1);
1931 		}
1932 
1933 		/* unset allmulti level from slave */
1934 		if (bond_dev->flags & IFF_ALLMULTI) {
1935 			dev_set_allmulti(slave_dev, -1);
1936 		}
1937 
1938 		/* flush master's mc_list from slave */
1939 		netif_addr_lock_bh(bond_dev);
1940 		bond_mc_list_flush(bond_dev, slave_dev);
1941 		netif_addr_unlock_bh(bond_dev);
1942 	}
1943 
1944 	netdev_set_master(slave_dev, NULL);
1945 
1946 	/* close slave before restoring its mac address */
1947 	dev_close(slave_dev);
1948 
1949 	if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1950 		/* restore original ("permanent") mac address */
1951 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1952 		addr.sa_family = slave_dev->type;
1953 		dev_set_mac_address(slave_dev, &addr);
1954 	}
1955 
1956 	slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1957 				   IFF_SLAVE_INACTIVE | IFF_BONDING |
1958 				   IFF_SLAVE_NEEDARP);
1959 
1960 	kfree(slave);
1961 
1962 	return 0;  /* deletion OK */
1963 }
1964 
1965 /*
1966 * Destroy a bonding device.
1967 * Must be under rtnl_lock when this function is called.
1968 */
1969 void bond_destroy(struct bonding *bond)
1970 {
1971 	bond_deinit(bond->dev);
1972 	bond_destroy_sysfs_entry(bond);
1973 	unregister_netdevice(bond->dev);
1974 }
1975 
1976 /*
1977 * First release a slave and than destroy the bond if no more slaves iare left.
1978 * Must be under rtnl_lock when this function is called.
1979 */
1980 int  bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev)
1981 {
1982 	struct bonding *bond = bond_dev->priv;
1983 	int ret;
1984 
1985 	ret = bond_release(bond_dev, slave_dev);
1986 	if ((ret == 0) && (bond->slave_cnt == 0)) {
1987 		printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n",
1988 		       bond_dev->name, bond_dev->name);
1989 		bond_destroy(bond);
1990 	}
1991 	return ret;
1992 }
1993 
1994 /*
1995  * This function releases all slaves.
1996  */
1997 static int bond_release_all(struct net_device *bond_dev)
1998 {
1999 	struct bonding *bond = bond_dev->priv;
2000 	struct slave *slave;
2001 	struct net_device *slave_dev;
2002 	struct sockaddr addr;
2003 
2004 	write_lock_bh(&bond->lock);
2005 
2006 	netif_carrier_off(bond_dev);
2007 
2008 	if (bond->slave_cnt == 0) {
2009 		goto out;
2010 	}
2011 
2012 	bond->current_arp_slave = NULL;
2013 	bond->primary_slave = NULL;
2014 	bond_change_active_slave(bond, NULL);
2015 
2016 	while ((slave = bond->first_slave) != NULL) {
2017 		/* Inform AD package of unbinding of slave
2018 		 * before slave is detached from the list.
2019 		 */
2020 		if (bond->params.mode == BOND_MODE_8023AD) {
2021 			bond_3ad_unbind_slave(slave);
2022 		}
2023 
2024 		slave_dev = slave->dev;
2025 		bond_detach_slave(bond, slave);
2026 
2027 		/* now that the slave is detached, unlock and perform
2028 		 * all the undo steps that should not be called from
2029 		 * within a lock.
2030 		 */
2031 		write_unlock_bh(&bond->lock);
2032 
2033 		if ((bond->params.mode == BOND_MODE_TLB) ||
2034 		    (bond->params.mode == BOND_MODE_ALB)) {
2035 			/* must be called only after the slave
2036 			 * has been detached from the list
2037 			 */
2038 			bond_alb_deinit_slave(bond, slave);
2039 		}
2040 
2041 		bond_compute_features(bond);
2042 
2043 		bond_destroy_slave_symlinks(bond_dev, slave_dev);
2044 		bond_del_vlans_from_slave(bond, slave_dev);
2045 
2046 		/* If the mode USES_PRIMARY, then we should only remove its
2047 		 * promisc and mc settings if it was the curr_active_slave, but that was
2048 		 * already taken care of above when we detached the slave
2049 		 */
2050 		if (!USES_PRIMARY(bond->params.mode)) {
2051 			/* unset promiscuity level from slave */
2052 			if (bond_dev->flags & IFF_PROMISC) {
2053 				dev_set_promiscuity(slave_dev, -1);
2054 			}
2055 
2056 			/* unset allmulti level from slave */
2057 			if (bond_dev->flags & IFF_ALLMULTI) {
2058 				dev_set_allmulti(slave_dev, -1);
2059 			}
2060 
2061 			/* flush master's mc_list from slave */
2062 			netif_addr_lock_bh(bond_dev);
2063 			bond_mc_list_flush(bond_dev, slave_dev);
2064 			netif_addr_unlock_bh(bond_dev);
2065 		}
2066 
2067 		netdev_set_master(slave_dev, NULL);
2068 
2069 		/* close slave before restoring its mac address */
2070 		dev_close(slave_dev);
2071 
2072 		if (!bond->params.fail_over_mac) {
2073 			/* restore original ("permanent") mac address*/
2074 			memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
2075 			addr.sa_family = slave_dev->type;
2076 			dev_set_mac_address(slave_dev, &addr);
2077 		}
2078 
2079 		slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
2080 					   IFF_SLAVE_INACTIVE);
2081 
2082 		kfree(slave);
2083 
2084 		/* re-acquire the lock before getting the next slave */
2085 		write_lock_bh(&bond->lock);
2086 	}
2087 
2088 	/* zero the mac address of the master so it will be
2089 	 * set by the application to the mac address of the
2090 	 * first slave
2091 	 */
2092 	memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
2093 
2094 	if (list_empty(&bond->vlan_list)) {
2095 		bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
2096 	} else {
2097 		printk(KERN_WARNING DRV_NAME
2098 		       ": %s: Warning: clearing HW address of %s while it "
2099 		       "still has VLANs.\n",
2100 		       bond_dev->name, bond_dev->name);
2101 		printk(KERN_WARNING DRV_NAME
2102 		       ": %s: When re-adding slaves, make sure the bond's "
2103 		       "HW address matches its VLANs'.\n",
2104 		       bond_dev->name);
2105 	}
2106 
2107 	printk(KERN_INFO DRV_NAME
2108 	       ": %s: released all slaves\n",
2109 	       bond_dev->name);
2110 
2111 out:
2112 	write_unlock_bh(&bond->lock);
2113 
2114 	return 0;
2115 }
2116 
2117 /*
2118  * This function changes the active slave to slave <slave_dev>.
2119  * It returns -EINVAL in the following cases.
2120  *  - <slave_dev> is not found in the list.
2121  *  - There is not active slave now.
2122  *  - <slave_dev> is already active.
2123  *  - The link state of <slave_dev> is not BOND_LINK_UP.
2124  *  - <slave_dev> is not running.
2125  * In these cases, this fuction does nothing.
2126  * In the other cases, currnt_slave pointer is changed and 0 is returned.
2127  */
2128 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2129 {
2130 	struct bonding *bond = bond_dev->priv;
2131 	struct slave *old_active = NULL;
2132 	struct slave *new_active = NULL;
2133 	int res = 0;
2134 
2135 	if (!USES_PRIMARY(bond->params.mode)) {
2136 		return -EINVAL;
2137 	}
2138 
2139 	/* Verify that master_dev is indeed the master of slave_dev */
2140 	if (!(slave_dev->flags & IFF_SLAVE) ||
2141 	    (slave_dev->master != bond_dev)) {
2142 		return -EINVAL;
2143 	}
2144 
2145 	read_lock(&bond->lock);
2146 
2147 	read_lock(&bond->curr_slave_lock);
2148 	old_active = bond->curr_active_slave;
2149 	read_unlock(&bond->curr_slave_lock);
2150 
2151 	new_active = bond_get_slave_by_dev(bond, slave_dev);
2152 
2153 	/*
2154 	 * Changing to the current active: do nothing; return success.
2155 	 */
2156 	if (new_active && (new_active == old_active)) {
2157 		read_unlock(&bond->lock);
2158 		return 0;
2159 	}
2160 
2161 	if ((new_active) &&
2162 	    (old_active) &&
2163 	    (new_active->link == BOND_LINK_UP) &&
2164 	    IS_UP(new_active->dev)) {
2165 		write_lock_bh(&bond->curr_slave_lock);
2166 		bond_change_active_slave(bond, new_active);
2167 		write_unlock_bh(&bond->curr_slave_lock);
2168 	} else {
2169 		res = -EINVAL;
2170 	}
2171 
2172 	read_unlock(&bond->lock);
2173 
2174 	return res;
2175 }
2176 
2177 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2178 {
2179 	struct bonding *bond = bond_dev->priv;
2180 
2181 	info->bond_mode = bond->params.mode;
2182 	info->miimon = bond->params.miimon;
2183 
2184 	read_lock(&bond->lock);
2185 	info->num_slaves = bond->slave_cnt;
2186 	read_unlock(&bond->lock);
2187 
2188 	return 0;
2189 }
2190 
2191 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2192 {
2193 	struct bonding *bond = bond_dev->priv;
2194 	struct slave *slave;
2195 	int i, found = 0;
2196 
2197 	if (info->slave_id < 0) {
2198 		return -ENODEV;
2199 	}
2200 
2201 	read_lock(&bond->lock);
2202 
2203 	bond_for_each_slave(bond, slave, i) {
2204 		if (i == (int)info->slave_id) {
2205 			found = 1;
2206 			break;
2207 		}
2208 	}
2209 
2210 	read_unlock(&bond->lock);
2211 
2212 	if (found) {
2213 		strcpy(info->slave_name, slave->dev->name);
2214 		info->link = slave->link;
2215 		info->state = slave->state;
2216 		info->link_failure_count = slave->link_failure_count;
2217 	} else {
2218 		return -ENODEV;
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 /*-------------------------------- Monitoring -------------------------------*/
2225 
2226 /*
2227  * if !have_locks, return nonzero if a failover is necessary.  if
2228  * have_locks, do whatever failover activities are needed.
2229  *
2230  * This is to separate the inspection and failover steps for locking
2231  * purposes; failover requires rtnl, but acquiring it for every
2232  * inspection is undesirable, so a wrapper first does inspection, and
2233  * the acquires the necessary locks and calls again to perform
2234  * failover if needed.  Since all locks are dropped, a complete
2235  * restart is needed between calls.
2236  */
2237 static int __bond_mii_monitor(struct bonding *bond, int have_locks)
2238 {
2239 	struct slave *slave, *oldcurrent;
2240 	int do_failover = 0;
2241 	int i;
2242 
2243 	if (bond->slave_cnt == 0)
2244 		goto out;
2245 
2246 	/* we will try to read the link status of each of our slaves, and
2247 	 * set their IFF_RUNNING flag appropriately. For each slave not
2248 	 * supporting MII status, we won't do anything so that a user-space
2249 	 * program could monitor the link itself if needed.
2250 	 */
2251 
2252 	read_lock(&bond->curr_slave_lock);
2253 	oldcurrent = bond->curr_active_slave;
2254 	read_unlock(&bond->curr_slave_lock);
2255 
2256 	bond_for_each_slave(bond, slave, i) {
2257 		struct net_device *slave_dev = slave->dev;
2258 		int link_state;
2259 		u16 old_speed = slave->speed;
2260 		u8 old_duplex = slave->duplex;
2261 
2262 		link_state = bond_check_dev_link(bond, slave_dev, 0);
2263 
2264 		switch (slave->link) {
2265 		case BOND_LINK_UP:	/* the link was up */
2266 			if (link_state == BMSR_LSTATUS) {
2267 				if (!oldcurrent) {
2268 					if (!have_locks)
2269 						return 1;
2270 					do_failover = 1;
2271 				}
2272 				break;
2273 			} else { /* link going down */
2274 				slave->link  = BOND_LINK_FAIL;
2275 				slave->delay = bond->params.downdelay;
2276 
2277 				if (slave->link_failure_count < UINT_MAX) {
2278 					slave->link_failure_count++;
2279 				}
2280 
2281 				if (bond->params.downdelay) {
2282 					printk(KERN_INFO DRV_NAME
2283 					       ": %s: link status down for %s "
2284 					       "interface %s, disabling it in "
2285 					       "%d ms.\n",
2286 					       bond->dev->name,
2287 					       IS_UP(slave_dev)
2288 					       ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
2289 						  ? ((slave == oldcurrent)
2290 						     ? "active " : "backup ")
2291 						  : "")
2292 					       : "idle ",
2293 					       slave_dev->name,
2294 					       bond->params.downdelay * bond->params.miimon);
2295 				}
2296 			}
2297 			/* no break ! fall through the BOND_LINK_FAIL test to
2298 			   ensure proper action to be taken
2299 			*/
2300 		case BOND_LINK_FAIL:	/* the link has just gone down */
2301 			if (link_state != BMSR_LSTATUS) {
2302 				/* link stays down */
2303 				if (slave->delay <= 0) {
2304 					if (!have_locks)
2305 						return 1;
2306 
2307 					/* link down for too long time */
2308 					slave->link = BOND_LINK_DOWN;
2309 
2310 					/* in active/backup mode, we must
2311 					 * completely disable this interface
2312 					 */
2313 					if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ||
2314 					    (bond->params.mode == BOND_MODE_8023AD)) {
2315 						bond_set_slave_inactive_flags(slave);
2316 					}
2317 
2318 					printk(KERN_INFO DRV_NAME
2319 					       ": %s: link status definitely "
2320 					       "down for interface %s, "
2321 					       "disabling it\n",
2322 					       bond->dev->name,
2323 					       slave_dev->name);
2324 
2325 					/* notify ad that the link status has changed */
2326 					if (bond->params.mode == BOND_MODE_8023AD) {
2327 						bond_3ad_handle_link_change(slave, BOND_LINK_DOWN);
2328 					}
2329 
2330 					if ((bond->params.mode == BOND_MODE_TLB) ||
2331 					    (bond->params.mode == BOND_MODE_ALB)) {
2332 						bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN);
2333 					}
2334 
2335 					if (slave == oldcurrent) {
2336 						do_failover = 1;
2337 					}
2338 				} else {
2339 					slave->delay--;
2340 				}
2341 			} else {
2342 				/* link up again */
2343 				slave->link  = BOND_LINK_UP;
2344 				slave->jiffies = jiffies;
2345 				printk(KERN_INFO DRV_NAME
2346 				       ": %s: link status up again after %d "
2347 				       "ms for interface %s.\n",
2348 				       bond->dev->name,
2349 				       (bond->params.downdelay - slave->delay) * bond->params.miimon,
2350 				       slave_dev->name);
2351 			}
2352 			break;
2353 		case BOND_LINK_DOWN:	/* the link was down */
2354 			if (link_state != BMSR_LSTATUS) {
2355 				/* the link stays down, nothing more to do */
2356 				break;
2357 			} else {	/* link going up */
2358 				slave->link  = BOND_LINK_BACK;
2359 				slave->delay = bond->params.updelay;
2360 
2361 				if (bond->params.updelay) {
2362 					/* if updelay == 0, no need to
2363 					   advertise about a 0 ms delay */
2364 					printk(KERN_INFO DRV_NAME
2365 					       ": %s: link status up for "
2366 					       "interface %s, enabling it "
2367 					       "in %d ms.\n",
2368 					       bond->dev->name,
2369 					       slave_dev->name,
2370 					       bond->params.updelay * bond->params.miimon);
2371 				}
2372 			}
2373 			/* no break ! fall through the BOND_LINK_BACK state in
2374 			   case there's something to do.
2375 			*/
2376 		case BOND_LINK_BACK:	/* the link has just come back */
2377 			if (link_state != BMSR_LSTATUS) {
2378 				/* link down again */
2379 				slave->link  = BOND_LINK_DOWN;
2380 
2381 				printk(KERN_INFO DRV_NAME
2382 				       ": %s: link status down again after %d "
2383 				       "ms for interface %s.\n",
2384 				       bond->dev->name,
2385 				       (bond->params.updelay - slave->delay) * bond->params.miimon,
2386 				       slave_dev->name);
2387 			} else {
2388 				/* link stays up */
2389 				if (slave->delay == 0) {
2390 					if (!have_locks)
2391 						return 1;
2392 
2393 					/* now the link has been up for long time enough */
2394 					slave->link = BOND_LINK_UP;
2395 					slave->jiffies = jiffies;
2396 
2397 					if (bond->params.mode == BOND_MODE_8023AD) {
2398 						/* prevent it from being the active one */
2399 						slave->state = BOND_STATE_BACKUP;
2400 					} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2401 						/* make it immediately active */
2402 						slave->state = BOND_STATE_ACTIVE;
2403 					} else if (slave != bond->primary_slave) {
2404 						/* prevent it from being the active one */
2405 						slave->state = BOND_STATE_BACKUP;
2406 					}
2407 
2408 					printk(KERN_INFO DRV_NAME
2409 					       ": %s: link status definitely "
2410 					       "up for interface %s.\n",
2411 					       bond->dev->name,
2412 					       slave_dev->name);
2413 
2414 					/* notify ad that the link status has changed */
2415 					if (bond->params.mode == BOND_MODE_8023AD) {
2416 						bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2417 					}
2418 
2419 					if ((bond->params.mode == BOND_MODE_TLB) ||
2420 					    (bond->params.mode == BOND_MODE_ALB)) {
2421 						bond_alb_handle_link_change(bond, slave, BOND_LINK_UP);
2422 					}
2423 
2424 					if ((!oldcurrent) ||
2425 					    (slave == bond->primary_slave)) {
2426 						do_failover = 1;
2427 					}
2428 				} else {
2429 					slave->delay--;
2430 				}
2431 			}
2432 			break;
2433 		default:
2434 			/* Should not happen */
2435 			printk(KERN_ERR DRV_NAME
2436 			       ": %s: Error: %s Illegal value (link=%d)\n",
2437 			       bond->dev->name,
2438 			       slave->dev->name,
2439 			       slave->link);
2440 			goto out;
2441 		} /* end of switch (slave->link) */
2442 
2443 		bond_update_speed_duplex(slave);
2444 
2445 		if (bond->params.mode == BOND_MODE_8023AD) {
2446 			if (old_speed != slave->speed) {
2447 				bond_3ad_adapter_speed_changed(slave);
2448 			}
2449 
2450 			if (old_duplex != slave->duplex) {
2451 				bond_3ad_adapter_duplex_changed(slave);
2452 			}
2453 		}
2454 
2455 	} /* end of for */
2456 
2457 	if (do_failover) {
2458 		ASSERT_RTNL();
2459 
2460 		write_lock_bh(&bond->curr_slave_lock);
2461 
2462 		bond_select_active_slave(bond);
2463 
2464 		write_unlock_bh(&bond->curr_slave_lock);
2465 
2466 	} else
2467 		bond_set_carrier(bond);
2468 
2469 out:
2470 	return 0;
2471 }
2472 
2473 /*
2474  * bond_mii_monitor
2475  *
2476  * Really a wrapper that splits the mii monitor into two phases: an
2477  * inspection, then (if inspection indicates something needs to be
2478  * done) an acquisition of appropriate locks followed by another pass
2479  * to implement whatever link state changes are indicated.
2480  */
2481 void bond_mii_monitor(struct work_struct *work)
2482 {
2483 	struct bonding *bond = container_of(work, struct bonding,
2484 					    mii_work.work);
2485 	unsigned long delay;
2486 
2487 	read_lock(&bond->lock);
2488 	if (bond->kill_timers) {
2489 		read_unlock(&bond->lock);
2490 		return;
2491 	}
2492 
2493 	if (bond->send_grat_arp) {
2494 		read_lock(&bond->curr_slave_lock);
2495 		bond_send_gratuitous_arp(bond);
2496 		read_unlock(&bond->curr_slave_lock);
2497 	}
2498 
2499 	if (__bond_mii_monitor(bond, 0)) {
2500 		read_unlock(&bond->lock);
2501 		rtnl_lock();
2502 		read_lock(&bond->lock);
2503 		__bond_mii_monitor(bond, 1);
2504 		read_unlock(&bond->lock);
2505 		rtnl_unlock();	/* might sleep, hold no other locks */
2506 		read_lock(&bond->lock);
2507 	}
2508 
2509 	delay = msecs_to_jiffies(bond->params.miimon);
2510 	read_unlock(&bond->lock);
2511 	queue_delayed_work(bond->wq, &bond->mii_work, delay);
2512 }
2513 
2514 static __be32 bond_glean_dev_ip(struct net_device *dev)
2515 {
2516 	struct in_device *idev;
2517 	struct in_ifaddr *ifa;
2518 	__be32 addr = 0;
2519 
2520 	if (!dev)
2521 		return 0;
2522 
2523 	rcu_read_lock();
2524 	idev = __in_dev_get_rcu(dev);
2525 	if (!idev)
2526 		goto out;
2527 
2528 	ifa = idev->ifa_list;
2529 	if (!ifa)
2530 		goto out;
2531 
2532 	addr = ifa->ifa_local;
2533 out:
2534 	rcu_read_unlock();
2535 	return addr;
2536 }
2537 
2538 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2539 {
2540 	struct vlan_entry *vlan;
2541 
2542 	if (ip == bond->master_ip)
2543 		return 1;
2544 
2545 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2546 		if (ip == vlan->vlan_ip)
2547 			return 1;
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 /*
2554  * We go to the (large) trouble of VLAN tagging ARP frames because
2555  * switches in VLAN mode (especially if ports are configured as
2556  * "native" to a VLAN) might not pass non-tagged frames.
2557  */
2558 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2559 {
2560 	struct sk_buff *skb;
2561 
2562 	dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2563 	       slave_dev->name, dest_ip, src_ip, vlan_id);
2564 
2565 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2566 			 NULL, slave_dev->dev_addr, NULL);
2567 
2568 	if (!skb) {
2569 		printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2570 		return;
2571 	}
2572 	if (vlan_id) {
2573 		skb = vlan_put_tag(skb, vlan_id);
2574 		if (!skb) {
2575 			printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2576 			return;
2577 		}
2578 	}
2579 	arp_xmit(skb);
2580 }
2581 
2582 
2583 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2584 {
2585 	int i, vlan_id, rv;
2586 	__be32 *targets = bond->params.arp_targets;
2587 	struct vlan_entry *vlan;
2588 	struct net_device *vlan_dev;
2589 	struct flowi fl;
2590 	struct rtable *rt;
2591 
2592 	for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2593 		if (!targets[i])
2594 			continue;
2595 		dprintk("basa: target %x\n", targets[i]);
2596 		if (list_empty(&bond->vlan_list)) {
2597 			dprintk("basa: empty vlan: arp_send\n");
2598 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2599 				      bond->master_ip, 0);
2600 			continue;
2601 		}
2602 
2603 		/*
2604 		 * If VLANs are configured, we do a route lookup to
2605 		 * determine which VLAN interface would be used, so we
2606 		 * can tag the ARP with the proper VLAN tag.
2607 		 */
2608 		memset(&fl, 0, sizeof(fl));
2609 		fl.fl4_dst = targets[i];
2610 		fl.fl4_tos = RTO_ONLINK;
2611 
2612 		rv = ip_route_output_key(&init_net, &rt, &fl);
2613 		if (rv) {
2614 			if (net_ratelimit()) {
2615 				printk(KERN_WARNING DRV_NAME
2616 			     ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2617 				       bond->dev->name, NIPQUAD(fl.fl4_dst));
2618 			}
2619 			continue;
2620 		}
2621 
2622 		/*
2623 		 * This target is not on a VLAN
2624 		 */
2625 		if (rt->u.dst.dev == bond->dev) {
2626 			ip_rt_put(rt);
2627 			dprintk("basa: rtdev == bond->dev: arp_send\n");
2628 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2629 				      bond->master_ip, 0);
2630 			continue;
2631 		}
2632 
2633 		vlan_id = 0;
2634 		list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2635 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2636 			if (vlan_dev == rt->u.dst.dev) {
2637 				vlan_id = vlan->vlan_id;
2638 				dprintk("basa: vlan match on %s %d\n",
2639 				       vlan_dev->name, vlan_id);
2640 				break;
2641 			}
2642 		}
2643 
2644 		if (vlan_id) {
2645 			ip_rt_put(rt);
2646 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2647 				      vlan->vlan_ip, vlan_id);
2648 			continue;
2649 		}
2650 
2651 		if (net_ratelimit()) {
2652 			printk(KERN_WARNING DRV_NAME
2653 	       ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2654 			       bond->dev->name, NIPQUAD(fl.fl4_dst),
2655 			       rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2656 		}
2657 		ip_rt_put(rt);
2658 	}
2659 }
2660 
2661 /*
2662  * Kick out a gratuitous ARP for an IP on the bonding master plus one
2663  * for each VLAN above us.
2664  *
2665  * Caller must hold curr_slave_lock for read or better
2666  */
2667 static void bond_send_gratuitous_arp(struct bonding *bond)
2668 {
2669 	struct slave *slave = bond->curr_active_slave;
2670 	struct vlan_entry *vlan;
2671 	struct net_device *vlan_dev;
2672 
2673 	dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2674 				slave ? slave->dev->name : "NULL");
2675 
2676 	if (!slave || !bond->send_grat_arp ||
2677 	    test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state))
2678 		return;
2679 
2680 	bond->send_grat_arp--;
2681 
2682 	if (bond->master_ip) {
2683 		bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2684 				bond->master_ip, 0);
2685 	}
2686 
2687 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2688 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2689 		if (vlan->vlan_ip) {
2690 			bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2691 				      vlan->vlan_ip, vlan->vlan_id);
2692 		}
2693 	}
2694 }
2695 
2696 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2697 {
2698 	int i;
2699 	__be32 *targets = bond->params.arp_targets;
2700 
2701 	targets = bond->params.arp_targets;
2702 	for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2703 		dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2704 			"%u.%u.%u.%u bhti(tip) %d\n",
2705 		       NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2706 		       bond_has_this_ip(bond, tip));
2707 		if (sip == targets[i]) {
2708 			if (bond_has_this_ip(bond, tip))
2709 				slave->last_arp_rx = jiffies;
2710 			return;
2711 		}
2712 	}
2713 }
2714 
2715 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2716 {
2717 	struct arphdr *arp;
2718 	struct slave *slave;
2719 	struct bonding *bond;
2720 	unsigned char *arp_ptr;
2721 	__be32 sip, tip;
2722 
2723 	if (dev_net(dev) != &init_net)
2724 		goto out;
2725 
2726 	if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2727 		goto out;
2728 
2729 	bond = dev->priv;
2730 	read_lock(&bond->lock);
2731 
2732 	dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2733 		bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2734 		orig_dev ? orig_dev->name : "NULL");
2735 
2736 	slave = bond_get_slave_by_dev(bond, orig_dev);
2737 	if (!slave || !slave_do_arp_validate(bond, slave))
2738 		goto out_unlock;
2739 
2740 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
2741 		goto out_unlock;
2742 
2743 	arp = arp_hdr(skb);
2744 	if (arp->ar_hln != dev->addr_len ||
2745 	    skb->pkt_type == PACKET_OTHERHOST ||
2746 	    skb->pkt_type == PACKET_LOOPBACK ||
2747 	    arp->ar_hrd != htons(ARPHRD_ETHER) ||
2748 	    arp->ar_pro != htons(ETH_P_IP) ||
2749 	    arp->ar_pln != 4)
2750 		goto out_unlock;
2751 
2752 	arp_ptr = (unsigned char *)(arp + 1);
2753 	arp_ptr += dev->addr_len;
2754 	memcpy(&sip, arp_ptr, 4);
2755 	arp_ptr += 4 + dev->addr_len;
2756 	memcpy(&tip, arp_ptr, 4);
2757 
2758 	dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2759 		" tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2760 		slave->state, bond->params.arp_validate,
2761 		slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2762 
2763 	/*
2764 	 * Backup slaves won't see the ARP reply, but do come through
2765 	 * here for each ARP probe (so we swap the sip/tip to validate
2766 	 * the probe).  In a "redundant switch, common router" type of
2767 	 * configuration, the ARP probe will (hopefully) travel from
2768 	 * the active, through one switch, the router, then the other
2769 	 * switch before reaching the backup.
2770 	 */
2771 	if (slave->state == BOND_STATE_ACTIVE)
2772 		bond_validate_arp(bond, slave, sip, tip);
2773 	else
2774 		bond_validate_arp(bond, slave, tip, sip);
2775 
2776 out_unlock:
2777 	read_unlock(&bond->lock);
2778 out:
2779 	dev_kfree_skb(skb);
2780 	return NET_RX_SUCCESS;
2781 }
2782 
2783 /*
2784  * this function is called regularly to monitor each slave's link
2785  * ensuring that traffic is being sent and received when arp monitoring
2786  * is used in load-balancing mode. if the adapter has been dormant, then an
2787  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2788  * arp monitoring in active backup mode.
2789  */
2790 void bond_loadbalance_arp_mon(struct work_struct *work)
2791 {
2792 	struct bonding *bond = container_of(work, struct bonding,
2793 					    arp_work.work);
2794 	struct slave *slave, *oldcurrent;
2795 	int do_failover = 0;
2796 	int delta_in_ticks;
2797 	int i;
2798 
2799 	read_lock(&bond->lock);
2800 
2801 	delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2802 
2803 	if (bond->kill_timers) {
2804 		goto out;
2805 	}
2806 
2807 	if (bond->slave_cnt == 0) {
2808 		goto re_arm;
2809 	}
2810 
2811 	read_lock(&bond->curr_slave_lock);
2812 	oldcurrent = bond->curr_active_slave;
2813 	read_unlock(&bond->curr_slave_lock);
2814 
2815 	/* see if any of the previous devices are up now (i.e. they have
2816 	 * xmt and rcv traffic). the curr_active_slave does not come into
2817 	 * the picture unless it is null. also, slave->jiffies is not needed
2818 	 * here because we send an arp on each slave and give a slave as
2819 	 * long as it needs to get the tx/rx within the delta.
2820 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2821 	 *       so it can wait
2822 	 */
2823 	bond_for_each_slave(bond, slave, i) {
2824 		if (slave->link != BOND_LINK_UP) {
2825 			if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) &&
2826 			    time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) {
2827 
2828 				slave->link  = BOND_LINK_UP;
2829 				slave->state = BOND_STATE_ACTIVE;
2830 
2831 				/* primary_slave has no meaning in round-robin
2832 				 * mode. the window of a slave being up and
2833 				 * curr_active_slave being null after enslaving
2834 				 * is closed.
2835 				 */
2836 				if (!oldcurrent) {
2837 					printk(KERN_INFO DRV_NAME
2838 					       ": %s: link status definitely "
2839 					       "up for interface %s, ",
2840 					       bond->dev->name,
2841 					       slave->dev->name);
2842 					do_failover = 1;
2843 				} else {
2844 					printk(KERN_INFO DRV_NAME
2845 					       ": %s: interface %s is now up\n",
2846 					       bond->dev->name,
2847 					       slave->dev->name);
2848 				}
2849 			}
2850 		} else {
2851 			/* slave->link == BOND_LINK_UP */
2852 
2853 			/* not all switches will respond to an arp request
2854 			 * when the source ip is 0, so don't take the link down
2855 			 * if we don't know our ip yet
2856 			 */
2857 			if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) ||
2858 			    (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) {
2859 
2860 				slave->link  = BOND_LINK_DOWN;
2861 				slave->state = BOND_STATE_BACKUP;
2862 
2863 				if (slave->link_failure_count < UINT_MAX) {
2864 					slave->link_failure_count++;
2865 				}
2866 
2867 				printk(KERN_INFO DRV_NAME
2868 				       ": %s: interface %s is now down.\n",
2869 				       bond->dev->name,
2870 				       slave->dev->name);
2871 
2872 				if (slave == oldcurrent) {
2873 					do_failover = 1;
2874 				}
2875 			}
2876 		}
2877 
2878 		/* note: if switch is in round-robin mode, all links
2879 		 * must tx arp to ensure all links rx an arp - otherwise
2880 		 * links may oscillate or not come up at all; if switch is
2881 		 * in something like xor mode, there is nothing we can
2882 		 * do - all replies will be rx'ed on same link causing slaves
2883 		 * to be unstable during low/no traffic periods
2884 		 */
2885 		if (IS_UP(slave->dev)) {
2886 			bond_arp_send_all(bond, slave);
2887 		}
2888 	}
2889 
2890 	if (do_failover) {
2891 		write_lock_bh(&bond->curr_slave_lock);
2892 
2893 		bond_select_active_slave(bond);
2894 
2895 		write_unlock_bh(&bond->curr_slave_lock);
2896 	}
2897 
2898 re_arm:
2899 	if (bond->params.arp_interval)
2900 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2901 out:
2902 	read_unlock(&bond->lock);
2903 }
2904 
2905 /*
2906  * Called to inspect slaves for active-backup mode ARP monitor link state
2907  * changes.  Sets new_link in slaves to specify what action should take
2908  * place for the slave.  Returns 0 if no changes are found, >0 if changes
2909  * to link states must be committed.
2910  *
2911  * Called with bond->lock held for read.
2912  */
2913 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks)
2914 {
2915 	struct slave *slave;
2916 	int i, commit = 0;
2917 
2918 	bond_for_each_slave(bond, slave, i) {
2919 		slave->new_link = BOND_LINK_NOCHANGE;
2920 
2921 		if (slave->link != BOND_LINK_UP) {
2922 			if (time_before_eq(jiffies, slave_last_rx(bond, slave) +
2923 					   delta_in_ticks)) {
2924 				slave->new_link = BOND_LINK_UP;
2925 				commit++;
2926 			}
2927 
2928 			continue;
2929 		}
2930 
2931 		/*
2932 		 * Give slaves 2*delta after being enslaved or made
2933 		 * active.  This avoids bouncing, as the last receive
2934 		 * times need a full ARP monitor cycle to be updated.
2935 		 */
2936 		if (!time_after_eq(jiffies, slave->jiffies +
2937 				   2 * delta_in_ticks))
2938 			continue;
2939 
2940 		/*
2941 		 * Backup slave is down if:
2942 		 * - No current_arp_slave AND
2943 		 * - more than 3*delta since last receive AND
2944 		 * - the bond has an IP address
2945 		 *
2946 		 * Note: a non-null current_arp_slave indicates
2947 		 * the curr_active_slave went down and we are
2948 		 * searching for a new one; under this condition
2949 		 * we only take the curr_active_slave down - this
2950 		 * gives each slave a chance to tx/rx traffic
2951 		 * before being taken out
2952 		 */
2953 		if (slave->state == BOND_STATE_BACKUP &&
2954 		    !bond->current_arp_slave &&
2955 		    time_after(jiffies, slave_last_rx(bond, slave) +
2956 			       3 * delta_in_ticks)) {
2957 			slave->new_link = BOND_LINK_DOWN;
2958 			commit++;
2959 		}
2960 
2961 		/*
2962 		 * Active slave is down if:
2963 		 * - more than 2*delta since transmitting OR
2964 		 * - (more than 2*delta since receive AND
2965 		 *    the bond has an IP address)
2966 		 */
2967 		if ((slave->state == BOND_STATE_ACTIVE) &&
2968 		    (time_after_eq(jiffies, slave->dev->trans_start +
2969 				    2 * delta_in_ticks) ||
2970 		      (time_after_eq(jiffies, slave_last_rx(bond, slave)
2971 				     + 2 * delta_in_ticks)))) {
2972 			slave->new_link = BOND_LINK_DOWN;
2973 			commit++;
2974 		}
2975 	}
2976 
2977 	read_lock(&bond->curr_slave_lock);
2978 
2979 	/*
2980 	 * Trigger a commit if the primary option setting has changed.
2981 	 */
2982 	if (bond->primary_slave &&
2983 	    (bond->primary_slave != bond->curr_active_slave) &&
2984 	    (bond->primary_slave->link == BOND_LINK_UP))
2985 		commit++;
2986 
2987 	read_unlock(&bond->curr_slave_lock);
2988 
2989 	return commit;
2990 }
2991 
2992 /*
2993  * Called to commit link state changes noted by inspection step of
2994  * active-backup mode ARP monitor.
2995  *
2996  * Called with RTNL and bond->lock for read.
2997  */
2998 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks)
2999 {
3000 	struct slave *slave;
3001 	int i;
3002 
3003 	bond_for_each_slave(bond, slave, i) {
3004 		switch (slave->new_link) {
3005 		case BOND_LINK_NOCHANGE:
3006 			continue;
3007 
3008 		case BOND_LINK_UP:
3009 			write_lock_bh(&bond->curr_slave_lock);
3010 
3011 			if (!bond->curr_active_slave &&
3012 			    time_before_eq(jiffies, slave->dev->trans_start +
3013 					   delta_in_ticks)) {
3014 				slave->link = BOND_LINK_UP;
3015 				bond_change_active_slave(bond, slave);
3016 				bond->current_arp_slave = NULL;
3017 
3018 				printk(KERN_INFO DRV_NAME
3019 				       ": %s: %s is up and now the "
3020 				       "active interface\n",
3021 				       bond->dev->name, slave->dev->name);
3022 
3023 			} else if (bond->curr_active_slave != slave) {
3024 				/* this slave has just come up but we
3025 				 * already have a current slave; this can
3026 				 * also happen if bond_enslave adds a new
3027 				 * slave that is up while we are searching
3028 				 * for a new slave
3029 				 */
3030 				slave->link = BOND_LINK_UP;
3031 				bond_set_slave_inactive_flags(slave);
3032 				bond->current_arp_slave = NULL;
3033 
3034 				printk(KERN_INFO DRV_NAME
3035 				       ": %s: backup interface %s is now up\n",
3036 				       bond->dev->name, slave->dev->name);
3037 			}
3038 
3039 			write_unlock_bh(&bond->curr_slave_lock);
3040 
3041 			break;
3042 
3043 		case BOND_LINK_DOWN:
3044 			if (slave->link_failure_count < UINT_MAX)
3045 				slave->link_failure_count++;
3046 
3047 			slave->link = BOND_LINK_DOWN;
3048 
3049 			if (slave == bond->curr_active_slave) {
3050 				printk(KERN_INFO DRV_NAME
3051 				       ": %s: link status down for active "
3052 				       "interface %s, disabling it\n",
3053 				       bond->dev->name, slave->dev->name);
3054 
3055 				bond_set_slave_inactive_flags(slave);
3056 
3057 				write_lock_bh(&bond->curr_slave_lock);
3058 
3059 				bond_select_active_slave(bond);
3060 				if (bond->curr_active_slave)
3061 					bond->curr_active_slave->jiffies =
3062 						jiffies;
3063 
3064 				write_unlock_bh(&bond->curr_slave_lock);
3065 
3066 				bond->current_arp_slave = NULL;
3067 
3068 			} else if (slave->state == BOND_STATE_BACKUP) {
3069 				printk(KERN_INFO DRV_NAME
3070 				       ": %s: backup interface %s is now down\n",
3071 				       bond->dev->name, slave->dev->name);
3072 
3073 				bond_set_slave_inactive_flags(slave);
3074 			}
3075 			break;
3076 
3077 		default:
3078 			printk(KERN_ERR DRV_NAME
3079 			       ": %s: impossible: new_link %d on slave %s\n",
3080 			       bond->dev->name, slave->new_link,
3081 			       slave->dev->name);
3082 		}
3083 	}
3084 
3085 	/*
3086 	 * No race with changes to primary via sysfs, as we hold rtnl.
3087 	 */
3088 	if (bond->primary_slave &&
3089 	    (bond->primary_slave != bond->curr_active_slave) &&
3090 	    (bond->primary_slave->link == BOND_LINK_UP)) {
3091 		write_lock_bh(&bond->curr_slave_lock);
3092 		bond_change_active_slave(bond, bond->primary_slave);
3093 		write_unlock_bh(&bond->curr_slave_lock);
3094 	}
3095 
3096 	bond_set_carrier(bond);
3097 }
3098 
3099 /*
3100  * Send ARP probes for active-backup mode ARP monitor.
3101  *
3102  * Called with bond->lock held for read.
3103  */
3104 static void bond_ab_arp_probe(struct bonding *bond)
3105 {
3106 	struct slave *slave;
3107 	int i;
3108 
3109 	read_lock(&bond->curr_slave_lock);
3110 
3111 	if (bond->current_arp_slave && bond->curr_active_slave)
3112 		printk("PROBE: c_arp %s && cas %s BAD\n",
3113 		       bond->current_arp_slave->dev->name,
3114 		       bond->curr_active_slave->dev->name);
3115 
3116 	if (bond->curr_active_slave) {
3117 		bond_arp_send_all(bond, bond->curr_active_slave);
3118 		read_unlock(&bond->curr_slave_lock);
3119 		return;
3120 	}
3121 
3122 	read_unlock(&bond->curr_slave_lock);
3123 
3124 	/* if we don't have a curr_active_slave, search for the next available
3125 	 * backup slave from the current_arp_slave and make it the candidate
3126 	 * for becoming the curr_active_slave
3127 	 */
3128 
3129 	if (!bond->current_arp_slave) {
3130 		bond->current_arp_slave = bond->first_slave;
3131 		if (!bond->current_arp_slave)
3132 			return;
3133 	}
3134 
3135 	bond_set_slave_inactive_flags(bond->current_arp_slave);
3136 
3137 	/* search for next candidate */
3138 	bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3139 		if (IS_UP(slave->dev)) {
3140 			slave->link = BOND_LINK_BACK;
3141 			bond_set_slave_active_flags(slave);
3142 			bond_arp_send_all(bond, slave);
3143 			slave->jiffies = jiffies;
3144 			bond->current_arp_slave = slave;
3145 			break;
3146 		}
3147 
3148 		/* if the link state is up at this point, we
3149 		 * mark it down - this can happen if we have
3150 		 * simultaneous link failures and
3151 		 * reselect_active_interface doesn't make this
3152 		 * one the current slave so it is still marked
3153 		 * up when it is actually down
3154 		 */
3155 		if (slave->link == BOND_LINK_UP) {
3156 			slave->link = BOND_LINK_DOWN;
3157 			if (slave->link_failure_count < UINT_MAX)
3158 				slave->link_failure_count++;
3159 
3160 			bond_set_slave_inactive_flags(slave);
3161 
3162 			printk(KERN_INFO DRV_NAME
3163 			       ": %s: backup interface %s is now down.\n",
3164 			       bond->dev->name, slave->dev->name);
3165 		}
3166 	}
3167 }
3168 
3169 void bond_activebackup_arp_mon(struct work_struct *work)
3170 {
3171 	struct bonding *bond = container_of(work, struct bonding,
3172 					    arp_work.work);
3173 	int delta_in_ticks;
3174 
3175 	read_lock(&bond->lock);
3176 
3177 	if (bond->kill_timers)
3178 		goto out;
3179 
3180 	delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
3181 
3182 	if (bond->slave_cnt == 0)
3183 		goto re_arm;
3184 
3185 	if (bond->send_grat_arp) {
3186 		read_lock(&bond->curr_slave_lock);
3187 		bond_send_gratuitous_arp(bond);
3188 		read_unlock(&bond->curr_slave_lock);
3189 	}
3190 
3191 	if (bond_ab_arp_inspect(bond, delta_in_ticks)) {
3192 		read_unlock(&bond->lock);
3193 		rtnl_lock();
3194 		read_lock(&bond->lock);
3195 
3196 		bond_ab_arp_commit(bond, delta_in_ticks);
3197 
3198 		read_unlock(&bond->lock);
3199 		rtnl_unlock();
3200 		read_lock(&bond->lock);
3201 	}
3202 
3203 	bond_ab_arp_probe(bond);
3204 
3205 re_arm:
3206 	if (bond->params.arp_interval) {
3207 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3208 	}
3209 out:
3210 	read_unlock(&bond->lock);
3211 }
3212 
3213 /*------------------------------ proc/seq_file-------------------------------*/
3214 
3215 #ifdef CONFIG_PROC_FS
3216 
3217 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
3218 {
3219 	struct bonding *bond = seq->private;
3220 	loff_t off = 0;
3221 	struct slave *slave;
3222 	int i;
3223 
3224 	/* make sure the bond won't be taken away */
3225 	read_lock(&dev_base_lock);
3226 	read_lock(&bond->lock);
3227 
3228 	if (*pos == 0) {
3229 		return SEQ_START_TOKEN;
3230 	}
3231 
3232 	bond_for_each_slave(bond, slave, i) {
3233 		if (++off == *pos) {
3234 			return slave;
3235 		}
3236 	}
3237 
3238 	return NULL;
3239 }
3240 
3241 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3242 {
3243 	struct bonding *bond = seq->private;
3244 	struct slave *slave = v;
3245 
3246 	++*pos;
3247 	if (v == SEQ_START_TOKEN) {
3248 		return bond->first_slave;
3249 	}
3250 
3251 	slave = slave->next;
3252 
3253 	return (slave == bond->first_slave) ? NULL : slave;
3254 }
3255 
3256 static void bond_info_seq_stop(struct seq_file *seq, void *v)
3257 {
3258 	struct bonding *bond = seq->private;
3259 
3260 	read_unlock(&bond->lock);
3261 	read_unlock(&dev_base_lock);
3262 }
3263 
3264 static void bond_info_show_master(struct seq_file *seq)
3265 {
3266 	struct bonding *bond = seq->private;
3267 	struct slave *curr;
3268 	int i;
3269 	u32 target;
3270 
3271 	read_lock(&bond->curr_slave_lock);
3272 	curr = bond->curr_active_slave;
3273 	read_unlock(&bond->curr_slave_lock);
3274 
3275 	seq_printf(seq, "Bonding Mode: %s",
3276 		   bond_mode_name(bond->params.mode));
3277 
3278 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP &&
3279 	    bond->params.fail_over_mac)
3280 		seq_printf(seq, " (fail_over_mac %s)",
3281 		   fail_over_mac_tbl[bond->params.fail_over_mac].modename);
3282 
3283 	seq_printf(seq, "\n");
3284 
3285 	if (bond->params.mode == BOND_MODE_XOR ||
3286 		bond->params.mode == BOND_MODE_8023AD) {
3287 		seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3288 			xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3289 			bond->params.xmit_policy);
3290 	}
3291 
3292 	if (USES_PRIMARY(bond->params.mode)) {
3293 		seq_printf(seq, "Primary Slave: %s\n",
3294 			   (bond->primary_slave) ?
3295 			   bond->primary_slave->dev->name : "None");
3296 
3297 		seq_printf(seq, "Currently Active Slave: %s\n",
3298 			   (curr) ? curr->dev->name : "None");
3299 	}
3300 
3301 	seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3302 		   "up" : "down");
3303 	seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3304 	seq_printf(seq, "Up Delay (ms): %d\n",
3305 		   bond->params.updelay * bond->params.miimon);
3306 	seq_printf(seq, "Down Delay (ms): %d\n",
3307 		   bond->params.downdelay * bond->params.miimon);
3308 
3309 
3310 	/* ARP information */
3311 	if(bond->params.arp_interval > 0) {
3312 		int printed=0;
3313 		seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3314 				bond->params.arp_interval);
3315 
3316 		seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3317 
3318 		for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3319 			if (!bond->params.arp_targets[i])
3320 				continue;
3321 			if (printed)
3322 				seq_printf(seq, ",");
3323 			target = ntohl(bond->params.arp_targets[i]);
3324 			seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3325 			printed = 1;
3326 		}
3327 		seq_printf(seq, "\n");
3328 	}
3329 
3330 	if (bond->params.mode == BOND_MODE_8023AD) {
3331 		struct ad_info ad_info;
3332 		DECLARE_MAC_BUF(mac);
3333 
3334 		seq_puts(seq, "\n802.3ad info\n");
3335 		seq_printf(seq, "LACP rate: %s\n",
3336 			   (bond->params.lacp_fast) ? "fast" : "slow");
3337 
3338 		if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3339 			seq_printf(seq, "bond %s has no active aggregator\n",
3340 				   bond->dev->name);
3341 		} else {
3342 			seq_printf(seq, "Active Aggregator Info:\n");
3343 
3344 			seq_printf(seq, "\tAggregator ID: %d\n",
3345 				   ad_info.aggregator_id);
3346 			seq_printf(seq, "\tNumber of ports: %d\n",
3347 				   ad_info.ports);
3348 			seq_printf(seq, "\tActor Key: %d\n",
3349 				   ad_info.actor_key);
3350 			seq_printf(seq, "\tPartner Key: %d\n",
3351 				   ad_info.partner_key);
3352 			seq_printf(seq, "\tPartner Mac Address: %s\n",
3353 				   print_mac(mac, ad_info.partner_system));
3354 		}
3355 	}
3356 }
3357 
3358 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3359 {
3360 	struct bonding *bond = seq->private;
3361 	DECLARE_MAC_BUF(mac);
3362 
3363 	seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3364 	seq_printf(seq, "MII Status: %s\n",
3365 		   (slave->link == BOND_LINK_UP) ?  "up" : "down");
3366 	seq_printf(seq, "Link Failure Count: %u\n",
3367 		   slave->link_failure_count);
3368 
3369 	seq_printf(seq,
3370 		   "Permanent HW addr: %s\n",
3371 		   print_mac(mac, slave->perm_hwaddr));
3372 
3373 	if (bond->params.mode == BOND_MODE_8023AD) {
3374 		const struct aggregator *agg
3375 			= SLAVE_AD_INFO(slave).port.aggregator;
3376 
3377 		if (agg) {
3378 			seq_printf(seq, "Aggregator ID: %d\n",
3379 				   agg->aggregator_identifier);
3380 		} else {
3381 			seq_puts(seq, "Aggregator ID: N/A\n");
3382 		}
3383 	}
3384 }
3385 
3386 static int bond_info_seq_show(struct seq_file *seq, void *v)
3387 {
3388 	if (v == SEQ_START_TOKEN) {
3389 		seq_printf(seq, "%s\n", version);
3390 		bond_info_show_master(seq);
3391 	} else {
3392 		bond_info_show_slave(seq, v);
3393 	}
3394 
3395 	return 0;
3396 }
3397 
3398 static struct seq_operations bond_info_seq_ops = {
3399 	.start = bond_info_seq_start,
3400 	.next  = bond_info_seq_next,
3401 	.stop  = bond_info_seq_stop,
3402 	.show  = bond_info_seq_show,
3403 };
3404 
3405 static int bond_info_open(struct inode *inode, struct file *file)
3406 {
3407 	struct seq_file *seq;
3408 	struct proc_dir_entry *proc;
3409 	int res;
3410 
3411 	res = seq_open(file, &bond_info_seq_ops);
3412 	if (!res) {
3413 		/* recover the pointer buried in proc_dir_entry data */
3414 		seq = file->private_data;
3415 		proc = PDE(inode);
3416 		seq->private = proc->data;
3417 	}
3418 
3419 	return res;
3420 }
3421 
3422 static const struct file_operations bond_info_fops = {
3423 	.owner   = THIS_MODULE,
3424 	.open    = bond_info_open,
3425 	.read    = seq_read,
3426 	.llseek  = seq_lseek,
3427 	.release = seq_release,
3428 };
3429 
3430 static int bond_create_proc_entry(struct bonding *bond)
3431 {
3432 	struct net_device *bond_dev = bond->dev;
3433 
3434 	if (bond_proc_dir) {
3435 		bond->proc_entry = proc_create_data(bond_dev->name,
3436 						    S_IRUGO, bond_proc_dir,
3437 						    &bond_info_fops, bond);
3438 		if (bond->proc_entry == NULL) {
3439 			printk(KERN_WARNING DRV_NAME
3440 			       ": Warning: Cannot create /proc/net/%s/%s\n",
3441 			       DRV_NAME, bond_dev->name);
3442 		} else {
3443 			memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3444 		}
3445 	}
3446 
3447 	return 0;
3448 }
3449 
3450 static void bond_remove_proc_entry(struct bonding *bond)
3451 {
3452 	if (bond_proc_dir && bond->proc_entry) {
3453 		remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3454 		memset(bond->proc_file_name, 0, IFNAMSIZ);
3455 		bond->proc_entry = NULL;
3456 	}
3457 }
3458 
3459 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3460  * Caller must hold rtnl_lock.
3461  */
3462 static void bond_create_proc_dir(void)
3463 {
3464 	int len = strlen(DRV_NAME);
3465 
3466 	for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir;
3467 	     bond_proc_dir = bond_proc_dir->next) {
3468 		if ((bond_proc_dir->namelen == len) &&
3469 		    !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3470 			break;
3471 		}
3472 	}
3473 
3474 	if (!bond_proc_dir) {
3475 		bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net);
3476 		if (bond_proc_dir) {
3477 			bond_proc_dir->owner = THIS_MODULE;
3478 		} else {
3479 			printk(KERN_WARNING DRV_NAME
3480 				": Warning: cannot create /proc/net/%s\n",
3481 				DRV_NAME);
3482 		}
3483 	}
3484 }
3485 
3486 /* Destroy the bonding directory under /proc/net, if empty.
3487  * Caller must hold rtnl_lock.
3488  */
3489 static void bond_destroy_proc_dir(void)
3490 {
3491 	struct proc_dir_entry *de;
3492 
3493 	if (!bond_proc_dir) {
3494 		return;
3495 	}
3496 
3497 	/* verify that the /proc dir is empty */
3498 	for (de = bond_proc_dir->subdir; de; de = de->next) {
3499 		/* ignore . and .. */
3500 		if (*(de->name) != '.') {
3501 			break;
3502 		}
3503 	}
3504 
3505 	if (de) {
3506 		if (bond_proc_dir->owner == THIS_MODULE) {
3507 			bond_proc_dir->owner = NULL;
3508 		}
3509 	} else {
3510 		remove_proc_entry(DRV_NAME, init_net.proc_net);
3511 		bond_proc_dir = NULL;
3512 	}
3513 }
3514 #endif /* CONFIG_PROC_FS */
3515 
3516 /*-------------------------- netdev event handling --------------------------*/
3517 
3518 /*
3519  * Change device name
3520  */
3521 static int bond_event_changename(struct bonding *bond)
3522 {
3523 #ifdef CONFIG_PROC_FS
3524 	bond_remove_proc_entry(bond);
3525 	bond_create_proc_entry(bond);
3526 #endif
3527 	down_write(&(bonding_rwsem));
3528         bond_destroy_sysfs_entry(bond);
3529         bond_create_sysfs_entry(bond);
3530 	up_write(&(bonding_rwsem));
3531 	return NOTIFY_DONE;
3532 }
3533 
3534 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3535 {
3536 	struct bonding *event_bond = bond_dev->priv;
3537 
3538 	switch (event) {
3539 	case NETDEV_CHANGENAME:
3540 		return bond_event_changename(event_bond);
3541 	case NETDEV_UNREGISTER:
3542 		bond_release_all(event_bond->dev);
3543 		break;
3544 	default:
3545 		break;
3546 	}
3547 
3548 	return NOTIFY_DONE;
3549 }
3550 
3551 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3552 {
3553 	struct net_device *bond_dev = slave_dev->master;
3554 	struct bonding *bond = bond_dev->priv;
3555 
3556 	switch (event) {
3557 	case NETDEV_UNREGISTER:
3558 		if (bond_dev) {
3559 			if (bond->setup_by_slave)
3560 				bond_release_and_destroy(bond_dev, slave_dev);
3561 			else
3562 				bond_release(bond_dev, slave_dev);
3563 		}
3564 		break;
3565 	case NETDEV_CHANGE:
3566 		/*
3567 		 * TODO: is this what we get if somebody
3568 		 * sets up a hierarchical bond, then rmmod's
3569 		 * one of the slave bonding devices?
3570 		 */
3571 		break;
3572 	case NETDEV_DOWN:
3573 		/*
3574 		 * ... Or is it this?
3575 		 */
3576 		break;
3577 	case NETDEV_CHANGEMTU:
3578 		/*
3579 		 * TODO: Should slaves be allowed to
3580 		 * independently alter their MTU?  For
3581 		 * an active-backup bond, slaves need
3582 		 * not be the same type of device, so
3583 		 * MTUs may vary.  For other modes,
3584 		 * slaves arguably should have the
3585 		 * same MTUs. To do this, we'd need to
3586 		 * take over the slave's change_mtu
3587 		 * function for the duration of their
3588 		 * servitude.
3589 		 */
3590 		break;
3591 	case NETDEV_CHANGENAME:
3592 		/*
3593 		 * TODO: handle changing the primary's name
3594 		 */
3595 		break;
3596 	case NETDEV_FEAT_CHANGE:
3597 		bond_compute_features(bond);
3598 		break;
3599 	default:
3600 		break;
3601 	}
3602 
3603 	return NOTIFY_DONE;
3604 }
3605 
3606 /*
3607  * bond_netdev_event: handle netdev notifier chain events.
3608  *
3609  * This function receives events for the netdev chain.  The caller (an
3610  * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3611  * locks for us to safely manipulate the slave devices (RTNL lock,
3612  * dev_probe_lock).
3613  */
3614 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3615 {
3616 	struct net_device *event_dev = (struct net_device *)ptr;
3617 
3618 	if (dev_net(event_dev) != &init_net)
3619 		return NOTIFY_DONE;
3620 
3621 	dprintk("event_dev: %s, event: %lx\n",
3622 		(event_dev ? event_dev->name : "None"),
3623 		event);
3624 
3625 	if (!(event_dev->priv_flags & IFF_BONDING))
3626 		return NOTIFY_DONE;
3627 
3628 	if (event_dev->flags & IFF_MASTER) {
3629 		dprintk("IFF_MASTER\n");
3630 		return bond_master_netdev_event(event, event_dev);
3631 	}
3632 
3633 	if (event_dev->flags & IFF_SLAVE) {
3634 		dprintk("IFF_SLAVE\n");
3635 		return bond_slave_netdev_event(event, event_dev);
3636 	}
3637 
3638 	return NOTIFY_DONE;
3639 }
3640 
3641 /*
3642  * bond_inetaddr_event: handle inetaddr notifier chain events.
3643  *
3644  * We keep track of device IPs primarily to use as source addresses in
3645  * ARP monitor probes (rather than spewing out broadcasts all the time).
3646  *
3647  * We track one IP for the main device (if it has one), plus one per VLAN.
3648  */
3649 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3650 {
3651 	struct in_ifaddr *ifa = ptr;
3652 	struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3653 	struct bonding *bond;
3654 	struct vlan_entry *vlan;
3655 
3656 	if (dev_net(ifa->ifa_dev->dev) != &init_net)
3657 		return NOTIFY_DONE;
3658 
3659 	list_for_each_entry(bond, &bond_dev_list, bond_list) {
3660 		if (bond->dev == event_dev) {
3661 			switch (event) {
3662 			case NETDEV_UP:
3663 				bond->master_ip = ifa->ifa_local;
3664 				return NOTIFY_OK;
3665 			case NETDEV_DOWN:
3666 				bond->master_ip = bond_glean_dev_ip(bond->dev);
3667 				return NOTIFY_OK;
3668 			default:
3669 				return NOTIFY_DONE;
3670 			}
3671 		}
3672 
3673 		list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
3674 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3675 			if (vlan_dev == event_dev) {
3676 				switch (event) {
3677 				case NETDEV_UP:
3678 					vlan->vlan_ip = ifa->ifa_local;
3679 					return NOTIFY_OK;
3680 				case NETDEV_DOWN:
3681 					vlan->vlan_ip =
3682 						bond_glean_dev_ip(vlan_dev);
3683 					return NOTIFY_OK;
3684 				default:
3685 					return NOTIFY_DONE;
3686 				}
3687 			}
3688 		}
3689 	}
3690 	return NOTIFY_DONE;
3691 }
3692 
3693 static struct notifier_block bond_netdev_notifier = {
3694 	.notifier_call = bond_netdev_event,
3695 };
3696 
3697 static struct notifier_block bond_inetaddr_notifier = {
3698 	.notifier_call = bond_inetaddr_event,
3699 };
3700 
3701 /*-------------------------- Packet type handling ---------------------------*/
3702 
3703 /* register to receive lacpdus on a bond */
3704 static void bond_register_lacpdu(struct bonding *bond)
3705 {
3706 	struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3707 
3708 	/* initialize packet type */
3709 	pk_type->type = PKT_TYPE_LACPDU;
3710 	pk_type->dev = bond->dev;
3711 	pk_type->func = bond_3ad_lacpdu_recv;
3712 
3713 	dev_add_pack(pk_type);
3714 }
3715 
3716 /* unregister to receive lacpdus on a bond */
3717 static void bond_unregister_lacpdu(struct bonding *bond)
3718 {
3719 	dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3720 }
3721 
3722 void bond_register_arp(struct bonding *bond)
3723 {
3724 	struct packet_type *pt = &bond->arp_mon_pt;
3725 
3726 	if (pt->type)
3727 		return;
3728 
3729 	pt->type = htons(ETH_P_ARP);
3730 	pt->dev = bond->dev;
3731 	pt->func = bond_arp_rcv;
3732 	dev_add_pack(pt);
3733 }
3734 
3735 void bond_unregister_arp(struct bonding *bond)
3736 {
3737 	struct packet_type *pt = &bond->arp_mon_pt;
3738 
3739 	dev_remove_pack(pt);
3740 	pt->type = 0;
3741 }
3742 
3743 /*---------------------------- Hashing Policies -----------------------------*/
3744 
3745 /*
3746  * Hash for the output device based upon layer 2 and layer 3 data. If
3747  * the packet is not IP mimic bond_xmit_hash_policy_l2()
3748  */
3749 static int bond_xmit_hash_policy_l23(struct sk_buff *skb,
3750 				     struct net_device *bond_dev, int count)
3751 {
3752 	struct ethhdr *data = (struct ethhdr *)skb->data;
3753 	struct iphdr *iph = ip_hdr(skb);
3754 
3755 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3756 		return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3757 			(data->h_dest[5] ^ bond_dev->dev_addr[5])) % count;
3758 	}
3759 
3760 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3761 }
3762 
3763 /*
3764  * Hash for the output device based upon layer 3 and layer 4 data. If
3765  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3766  * altogether not IP, mimic bond_xmit_hash_policy_l2()
3767  */
3768 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3769 				    struct net_device *bond_dev, int count)
3770 {
3771 	struct ethhdr *data = (struct ethhdr *)skb->data;
3772 	struct iphdr *iph = ip_hdr(skb);
3773 	__be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3774 	int layer4_xor = 0;
3775 
3776 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3777 		if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3778 		    (iph->protocol == IPPROTO_TCP ||
3779 		     iph->protocol == IPPROTO_UDP)) {
3780 			layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
3781 		}
3782 		return (layer4_xor ^
3783 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3784 
3785 	}
3786 
3787 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3788 }
3789 
3790 /*
3791  * Hash for the output device based upon layer 2 data
3792  */
3793 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3794 				   struct net_device *bond_dev, int count)
3795 {
3796 	struct ethhdr *data = (struct ethhdr *)skb->data;
3797 
3798 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3799 }
3800 
3801 /*-------------------------- Device entry points ----------------------------*/
3802 
3803 static int bond_open(struct net_device *bond_dev)
3804 {
3805 	struct bonding *bond = bond_dev->priv;
3806 
3807 	bond->kill_timers = 0;
3808 
3809 	if ((bond->params.mode == BOND_MODE_TLB) ||
3810 	    (bond->params.mode == BOND_MODE_ALB)) {
3811 		/* bond_alb_initialize must be called before the timer
3812 		 * is started.
3813 		 */
3814 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3815 			/* something went wrong - fail the open operation */
3816 			return -1;
3817 		}
3818 
3819 		INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3820 		queue_delayed_work(bond->wq, &bond->alb_work, 0);
3821 	}
3822 
3823 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3824 		INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3825 		queue_delayed_work(bond->wq, &bond->mii_work, 0);
3826 	}
3827 
3828 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3829 		if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3830 			INIT_DELAYED_WORK(&bond->arp_work,
3831 					  bond_activebackup_arp_mon);
3832 		else
3833 			INIT_DELAYED_WORK(&bond->arp_work,
3834 					  bond_loadbalance_arp_mon);
3835 
3836 		queue_delayed_work(bond->wq, &bond->arp_work, 0);
3837 		if (bond->params.arp_validate)
3838 			bond_register_arp(bond);
3839 	}
3840 
3841 	if (bond->params.mode == BOND_MODE_8023AD) {
3842 		INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3843 		queue_delayed_work(bond->wq, &bond->ad_work, 0);
3844 		/* register to receive LACPDUs */
3845 		bond_register_lacpdu(bond);
3846 	}
3847 
3848 	return 0;
3849 }
3850 
3851 static int bond_close(struct net_device *bond_dev)
3852 {
3853 	struct bonding *bond = bond_dev->priv;
3854 
3855 	if (bond->params.mode == BOND_MODE_8023AD) {
3856 		/* Unregister the receive of LACPDUs */
3857 		bond_unregister_lacpdu(bond);
3858 	}
3859 
3860 	if (bond->params.arp_validate)
3861 		bond_unregister_arp(bond);
3862 
3863 	write_lock_bh(&bond->lock);
3864 
3865 	bond->send_grat_arp = 0;
3866 
3867 	/* signal timers not to re-arm */
3868 	bond->kill_timers = 1;
3869 
3870 	write_unlock_bh(&bond->lock);
3871 
3872 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3873 		cancel_delayed_work(&bond->mii_work);
3874 	}
3875 
3876 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3877 		cancel_delayed_work(&bond->arp_work);
3878 	}
3879 
3880 	switch (bond->params.mode) {
3881 	case BOND_MODE_8023AD:
3882 		cancel_delayed_work(&bond->ad_work);
3883 		break;
3884 	case BOND_MODE_TLB:
3885 	case BOND_MODE_ALB:
3886 		cancel_delayed_work(&bond->alb_work);
3887 		break;
3888 	default:
3889 		break;
3890 	}
3891 
3892 
3893 	if ((bond->params.mode == BOND_MODE_TLB) ||
3894 	    (bond->params.mode == BOND_MODE_ALB)) {
3895 		/* Must be called only after all
3896 		 * slaves have been released
3897 		 */
3898 		bond_alb_deinitialize(bond);
3899 	}
3900 
3901 	return 0;
3902 }
3903 
3904 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3905 {
3906 	struct bonding *bond = bond_dev->priv;
3907 	struct net_device_stats *stats = &(bond->stats), *sstats;
3908 	struct net_device_stats local_stats;
3909 	struct slave *slave;
3910 	int i;
3911 
3912 	memset(&local_stats, 0, sizeof(struct net_device_stats));
3913 
3914 	read_lock_bh(&bond->lock);
3915 
3916 	bond_for_each_slave(bond, slave, i) {
3917 		sstats = slave->dev->get_stats(slave->dev);
3918 		local_stats.rx_packets += sstats->rx_packets;
3919 		local_stats.rx_bytes += sstats->rx_bytes;
3920 		local_stats.rx_errors += sstats->rx_errors;
3921 		local_stats.rx_dropped += sstats->rx_dropped;
3922 
3923 		local_stats.tx_packets += sstats->tx_packets;
3924 		local_stats.tx_bytes += sstats->tx_bytes;
3925 		local_stats.tx_errors += sstats->tx_errors;
3926 		local_stats.tx_dropped += sstats->tx_dropped;
3927 
3928 		local_stats.multicast += sstats->multicast;
3929 		local_stats.collisions += sstats->collisions;
3930 
3931 		local_stats.rx_length_errors += sstats->rx_length_errors;
3932 		local_stats.rx_over_errors += sstats->rx_over_errors;
3933 		local_stats.rx_crc_errors += sstats->rx_crc_errors;
3934 		local_stats.rx_frame_errors += sstats->rx_frame_errors;
3935 		local_stats.rx_fifo_errors += sstats->rx_fifo_errors;
3936 		local_stats.rx_missed_errors += sstats->rx_missed_errors;
3937 
3938 		local_stats.tx_aborted_errors += sstats->tx_aborted_errors;
3939 		local_stats.tx_carrier_errors += sstats->tx_carrier_errors;
3940 		local_stats.tx_fifo_errors += sstats->tx_fifo_errors;
3941 		local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3942 		local_stats.tx_window_errors += sstats->tx_window_errors;
3943 	}
3944 
3945 	memcpy(stats, &local_stats, sizeof(struct net_device_stats));
3946 
3947 	read_unlock_bh(&bond->lock);
3948 
3949 	return stats;
3950 }
3951 
3952 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3953 {
3954 	struct net_device *slave_dev = NULL;
3955 	struct ifbond k_binfo;
3956 	struct ifbond __user *u_binfo = NULL;
3957 	struct ifslave k_sinfo;
3958 	struct ifslave __user *u_sinfo = NULL;
3959 	struct mii_ioctl_data *mii = NULL;
3960 	int res = 0;
3961 
3962 	dprintk("bond_ioctl: master=%s, cmd=%d\n",
3963 		bond_dev->name, cmd);
3964 
3965 	switch (cmd) {
3966 	case SIOCGMIIPHY:
3967 		mii = if_mii(ifr);
3968 		if (!mii) {
3969 			return -EINVAL;
3970 		}
3971 		mii->phy_id = 0;
3972 		/* Fall Through */
3973 	case SIOCGMIIREG:
3974 		/*
3975 		 * We do this again just in case we were called by SIOCGMIIREG
3976 		 * instead of SIOCGMIIPHY.
3977 		 */
3978 		mii = if_mii(ifr);
3979 		if (!mii) {
3980 			return -EINVAL;
3981 		}
3982 
3983 		if (mii->reg_num == 1) {
3984 			struct bonding *bond = bond_dev->priv;
3985 			mii->val_out = 0;
3986 			read_lock(&bond->lock);
3987 			read_lock(&bond->curr_slave_lock);
3988 			if (netif_carrier_ok(bond->dev)) {
3989 				mii->val_out = BMSR_LSTATUS;
3990 			}
3991 			read_unlock(&bond->curr_slave_lock);
3992 			read_unlock(&bond->lock);
3993 		}
3994 
3995 		return 0;
3996 	case BOND_INFO_QUERY_OLD:
3997 	case SIOCBONDINFOQUERY:
3998 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3999 
4000 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
4001 			return -EFAULT;
4002 		}
4003 
4004 		res = bond_info_query(bond_dev, &k_binfo);
4005 		if (res == 0) {
4006 			if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
4007 				return -EFAULT;
4008 			}
4009 		}
4010 
4011 		return res;
4012 	case BOND_SLAVE_INFO_QUERY_OLD:
4013 	case SIOCBONDSLAVEINFOQUERY:
4014 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
4015 
4016 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
4017 			return -EFAULT;
4018 		}
4019 
4020 		res = bond_slave_info_query(bond_dev, &k_sinfo);
4021 		if (res == 0) {
4022 			if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
4023 				return -EFAULT;
4024 			}
4025 		}
4026 
4027 		return res;
4028 	default:
4029 		/* Go on */
4030 		break;
4031 	}
4032 
4033 	if (!capable(CAP_NET_ADMIN)) {
4034 		return -EPERM;
4035 	}
4036 
4037 	down_write(&(bonding_rwsem));
4038 	slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave);
4039 
4040 	dprintk("slave_dev=%p: \n", slave_dev);
4041 
4042 	if (!slave_dev) {
4043 		res = -ENODEV;
4044 	} else {
4045 		dprintk("slave_dev->name=%s: \n", slave_dev->name);
4046 		switch (cmd) {
4047 		case BOND_ENSLAVE_OLD:
4048 		case SIOCBONDENSLAVE:
4049 			res = bond_enslave(bond_dev, slave_dev);
4050 			break;
4051 		case BOND_RELEASE_OLD:
4052 		case SIOCBONDRELEASE:
4053 			res = bond_release(bond_dev, slave_dev);
4054 			break;
4055 		case BOND_SETHWADDR_OLD:
4056 		case SIOCBONDSETHWADDR:
4057 			res = bond_sethwaddr(bond_dev, slave_dev);
4058 			break;
4059 		case BOND_CHANGE_ACTIVE_OLD:
4060 		case SIOCBONDCHANGEACTIVE:
4061 			res = bond_ioctl_change_active(bond_dev, slave_dev);
4062 			break;
4063 		default:
4064 			res = -EOPNOTSUPP;
4065 		}
4066 
4067 		dev_put(slave_dev);
4068 	}
4069 
4070 	up_write(&(bonding_rwsem));
4071 	return res;
4072 }
4073 
4074 static void bond_set_multicast_list(struct net_device *bond_dev)
4075 {
4076 	struct bonding *bond = bond_dev->priv;
4077 	struct dev_mc_list *dmi;
4078 
4079 	/*
4080 	 * Do promisc before checking multicast_mode
4081 	 */
4082 	if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
4083 		/*
4084 		 * FIXME: Need to handle the error when one of the multi-slaves
4085 		 * encounters error.
4086 		 */
4087 		bond_set_promiscuity(bond, 1);
4088 	}
4089 
4090 	if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
4091 		bond_set_promiscuity(bond, -1);
4092 	}
4093 
4094 	/* set allmulti flag to slaves */
4095 	if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
4096 		/*
4097 		 * FIXME: Need to handle the error when one of the multi-slaves
4098 		 * encounters error.
4099 		 */
4100 		bond_set_allmulti(bond, 1);
4101 	}
4102 
4103 	if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
4104 		bond_set_allmulti(bond, -1);
4105 	}
4106 
4107 	read_lock(&bond->lock);
4108 
4109 	bond->flags = bond_dev->flags;
4110 
4111 	/* looking for addresses to add to slaves' mc list */
4112 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
4113 		if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
4114 			bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4115 		}
4116 	}
4117 
4118 	/* looking for addresses to delete from slaves' list */
4119 	for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
4120 		if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
4121 			bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4122 		}
4123 	}
4124 
4125 	/* save master's multicast list */
4126 	bond_mc_list_destroy(bond);
4127 	bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
4128 
4129 	read_unlock(&bond->lock);
4130 }
4131 
4132 /*
4133  * Change the MTU of all of a master's slaves to match the master
4134  */
4135 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
4136 {
4137 	struct bonding *bond = bond_dev->priv;
4138 	struct slave *slave, *stop_at;
4139 	int res = 0;
4140 	int i;
4141 
4142 	dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
4143 		(bond_dev ? bond_dev->name : "None"), new_mtu);
4144 
4145 	/* Can't hold bond->lock with bh disabled here since
4146 	 * some base drivers panic. On the other hand we can't
4147 	 * hold bond->lock without bh disabled because we'll
4148 	 * deadlock. The only solution is to rely on the fact
4149 	 * that we're under rtnl_lock here, and the slaves
4150 	 * list won't change. This doesn't solve the problem
4151 	 * of setting the slave's MTU while it is
4152 	 * transmitting, but the assumption is that the base
4153 	 * driver can handle that.
4154 	 *
4155 	 * TODO: figure out a way to safely iterate the slaves
4156 	 * list, but without holding a lock around the actual
4157 	 * call to the base driver.
4158 	 */
4159 
4160 	bond_for_each_slave(bond, slave, i) {
4161 		dprintk("s %p s->p %p c_m %p\n", slave,
4162 			slave->prev, slave->dev->change_mtu);
4163 
4164 		res = dev_set_mtu(slave->dev, new_mtu);
4165 
4166 		if (res) {
4167 			/* If we failed to set the slave's mtu to the new value
4168 			 * we must abort the operation even in ACTIVE_BACKUP
4169 			 * mode, because if we allow the backup slaves to have
4170 			 * different mtu values than the active slave we'll
4171 			 * need to change their mtu when doing a failover. That
4172 			 * means changing their mtu from timer context, which
4173 			 * is probably not a good idea.
4174 			 */
4175 			dprintk("err %d %s\n", res, slave->dev->name);
4176 			goto unwind;
4177 		}
4178 	}
4179 
4180 	bond_dev->mtu = new_mtu;
4181 
4182 	return 0;
4183 
4184 unwind:
4185 	/* unwind from head to the slave that failed */
4186 	stop_at = slave;
4187 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4188 		int tmp_res;
4189 
4190 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
4191 		if (tmp_res) {
4192 			dprintk("unwind err %d dev %s\n", tmp_res,
4193 				slave->dev->name);
4194 		}
4195 	}
4196 
4197 	return res;
4198 }
4199 
4200 /*
4201  * Change HW address
4202  *
4203  * Note that many devices must be down to change the HW address, and
4204  * downing the master releases all slaves.  We can make bonds full of
4205  * bonding devices to test this, however.
4206  */
4207 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
4208 {
4209 	struct bonding *bond = bond_dev->priv;
4210 	struct sockaddr *sa = addr, tmp_sa;
4211 	struct slave *slave, *stop_at;
4212 	int res = 0;
4213 	int i;
4214 
4215 	dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
4216 
4217 	/*
4218 	 * If fail_over_mac is set to active, do nothing and return
4219 	 * success.  Returning an error causes ifenslave to fail.
4220 	 */
4221 	if (bond->params.fail_over_mac == BOND_FOM_ACTIVE)
4222 		return 0;
4223 
4224 	if (!is_valid_ether_addr(sa->sa_data)) {
4225 		return -EADDRNOTAVAIL;
4226 	}
4227 
4228 	/* Can't hold bond->lock with bh disabled here since
4229 	 * some base drivers panic. On the other hand we can't
4230 	 * hold bond->lock without bh disabled because we'll
4231 	 * deadlock. The only solution is to rely on the fact
4232 	 * that we're under rtnl_lock here, and the slaves
4233 	 * list won't change. This doesn't solve the problem
4234 	 * of setting the slave's hw address while it is
4235 	 * transmitting, but the assumption is that the base
4236 	 * driver can handle that.
4237 	 *
4238 	 * TODO: figure out a way to safely iterate the slaves
4239 	 * list, but without holding a lock around the actual
4240 	 * call to the base driver.
4241 	 */
4242 
4243 	bond_for_each_slave(bond, slave, i) {
4244 		dprintk("slave %p %s\n", slave, slave->dev->name);
4245 
4246 		if (slave->dev->set_mac_address == NULL) {
4247 			res = -EOPNOTSUPP;
4248 			dprintk("EOPNOTSUPP %s\n", slave->dev->name);
4249 			goto unwind;
4250 		}
4251 
4252 		res = dev_set_mac_address(slave->dev, addr);
4253 		if (res) {
4254 			/* TODO: consider downing the slave
4255 			 * and retry ?
4256 			 * User should expect communications
4257 			 * breakage anyway until ARP finish
4258 			 * updating, so...
4259 			 */
4260 			dprintk("err %d %s\n", res, slave->dev->name);
4261 			goto unwind;
4262 		}
4263 	}
4264 
4265 	/* success */
4266 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
4267 	return 0;
4268 
4269 unwind:
4270 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
4271 	tmp_sa.sa_family = bond_dev->type;
4272 
4273 	/* unwind from head to the slave that failed */
4274 	stop_at = slave;
4275 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4276 		int tmp_res;
4277 
4278 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
4279 		if (tmp_res) {
4280 			dprintk("unwind err %d dev %s\n", tmp_res,
4281 				slave->dev->name);
4282 		}
4283 	}
4284 
4285 	return res;
4286 }
4287 
4288 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4289 {
4290 	struct bonding *bond = bond_dev->priv;
4291 	struct slave *slave, *start_at;
4292 	int i, slave_no, res = 1;
4293 
4294 	read_lock(&bond->lock);
4295 
4296 	if (!BOND_IS_OK(bond)) {
4297 		goto out;
4298 	}
4299 
4300 	/*
4301 	 * Concurrent TX may collide on rr_tx_counter; we accept that
4302 	 * as being rare enough not to justify using an atomic op here
4303 	 */
4304 	slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
4305 
4306 	bond_for_each_slave(bond, slave, i) {
4307 		slave_no--;
4308 		if (slave_no < 0) {
4309 			break;
4310 		}
4311 	}
4312 
4313 	start_at = slave;
4314 	bond_for_each_slave_from(bond, slave, i, start_at) {
4315 		if (IS_UP(slave->dev) &&
4316 		    (slave->link == BOND_LINK_UP) &&
4317 		    (slave->state == BOND_STATE_ACTIVE)) {
4318 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4319 			break;
4320 		}
4321 	}
4322 
4323 out:
4324 	if (res) {
4325 		/* no suitable interface, frame not sent */
4326 		dev_kfree_skb(skb);
4327 	}
4328 	read_unlock(&bond->lock);
4329 	return 0;
4330 }
4331 
4332 
4333 /*
4334  * in active-backup mode, we know that bond->curr_active_slave is always valid if
4335  * the bond has a usable interface.
4336  */
4337 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4338 {
4339 	struct bonding *bond = bond_dev->priv;
4340 	int res = 1;
4341 
4342 	read_lock(&bond->lock);
4343 	read_lock(&bond->curr_slave_lock);
4344 
4345 	if (!BOND_IS_OK(bond)) {
4346 		goto out;
4347 	}
4348 
4349 	if (!bond->curr_active_slave)
4350 		goto out;
4351 
4352 	res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4353 
4354 out:
4355 	if (res) {
4356 		/* no suitable interface, frame not sent */
4357 		dev_kfree_skb(skb);
4358 	}
4359 	read_unlock(&bond->curr_slave_lock);
4360 	read_unlock(&bond->lock);
4361 	return 0;
4362 }
4363 
4364 /*
4365  * In bond_xmit_xor() , we determine the output device by using a pre-
4366  * determined xmit_hash_policy(), If the selected device is not enabled,
4367  * find the next active slave.
4368  */
4369 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4370 {
4371 	struct bonding *bond = bond_dev->priv;
4372 	struct slave *slave, *start_at;
4373 	int slave_no;
4374 	int i;
4375 	int res = 1;
4376 
4377 	read_lock(&bond->lock);
4378 
4379 	if (!BOND_IS_OK(bond)) {
4380 		goto out;
4381 	}
4382 
4383 	slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4384 
4385 	bond_for_each_slave(bond, slave, i) {
4386 		slave_no--;
4387 		if (slave_no < 0) {
4388 			break;
4389 		}
4390 	}
4391 
4392 	start_at = slave;
4393 
4394 	bond_for_each_slave_from(bond, slave, i, start_at) {
4395 		if (IS_UP(slave->dev) &&
4396 		    (slave->link == BOND_LINK_UP) &&
4397 		    (slave->state == BOND_STATE_ACTIVE)) {
4398 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4399 			break;
4400 		}
4401 	}
4402 
4403 out:
4404 	if (res) {
4405 		/* no suitable interface, frame not sent */
4406 		dev_kfree_skb(skb);
4407 	}
4408 	read_unlock(&bond->lock);
4409 	return 0;
4410 }
4411 
4412 /*
4413  * in broadcast mode, we send everything to all usable interfaces.
4414  */
4415 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4416 {
4417 	struct bonding *bond = bond_dev->priv;
4418 	struct slave *slave, *start_at;
4419 	struct net_device *tx_dev = NULL;
4420 	int i;
4421 	int res = 1;
4422 
4423 	read_lock(&bond->lock);
4424 
4425 	if (!BOND_IS_OK(bond)) {
4426 		goto out;
4427 	}
4428 
4429 	read_lock(&bond->curr_slave_lock);
4430 	start_at = bond->curr_active_slave;
4431 	read_unlock(&bond->curr_slave_lock);
4432 
4433 	if (!start_at) {
4434 		goto out;
4435 	}
4436 
4437 	bond_for_each_slave_from(bond, slave, i, start_at) {
4438 		if (IS_UP(slave->dev) &&
4439 		    (slave->link == BOND_LINK_UP) &&
4440 		    (slave->state == BOND_STATE_ACTIVE)) {
4441 			if (tx_dev) {
4442 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4443 				if (!skb2) {
4444 					printk(KERN_ERR DRV_NAME
4445 					       ": %s: Error: bond_xmit_broadcast(): "
4446 					       "skb_clone() failed\n",
4447 					       bond_dev->name);
4448 					continue;
4449 				}
4450 
4451 				res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4452 				if (res) {
4453 					dev_kfree_skb(skb2);
4454 					continue;
4455 				}
4456 			}
4457 			tx_dev = slave->dev;
4458 		}
4459 	}
4460 
4461 	if (tx_dev) {
4462 		res = bond_dev_queue_xmit(bond, skb, tx_dev);
4463 	}
4464 
4465 out:
4466 	if (res) {
4467 		/* no suitable interface, frame not sent */
4468 		dev_kfree_skb(skb);
4469 	}
4470 	/* frame sent to all suitable interfaces */
4471 	read_unlock(&bond->lock);
4472 	return 0;
4473 }
4474 
4475 /*------------------------- Device initialization ---------------------------*/
4476 
4477 static void bond_set_xmit_hash_policy(struct bonding *bond)
4478 {
4479 	switch (bond->params.xmit_policy) {
4480 	case BOND_XMIT_POLICY_LAYER23:
4481 		bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
4482 		break;
4483 	case BOND_XMIT_POLICY_LAYER34:
4484 		bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4485 		break;
4486 	case BOND_XMIT_POLICY_LAYER2:
4487 	default:
4488 		bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4489 		break;
4490 	}
4491 }
4492 
4493 /*
4494  * set bond mode specific net device operations
4495  */
4496 void bond_set_mode_ops(struct bonding *bond, int mode)
4497 {
4498 	struct net_device *bond_dev = bond->dev;
4499 
4500 	switch (mode) {
4501 	case BOND_MODE_ROUNDROBIN:
4502 		bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4503 		break;
4504 	case BOND_MODE_ACTIVEBACKUP:
4505 		bond_dev->hard_start_xmit = bond_xmit_activebackup;
4506 		break;
4507 	case BOND_MODE_XOR:
4508 		bond_dev->hard_start_xmit = bond_xmit_xor;
4509 		bond_set_xmit_hash_policy(bond);
4510 		break;
4511 	case BOND_MODE_BROADCAST:
4512 		bond_dev->hard_start_xmit = bond_xmit_broadcast;
4513 		break;
4514 	case BOND_MODE_8023AD:
4515 		bond_set_master_3ad_flags(bond);
4516 		bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4517 		bond_set_xmit_hash_policy(bond);
4518 		break;
4519 	case BOND_MODE_ALB:
4520 		bond_set_master_alb_flags(bond);
4521 		/* FALLTHRU */
4522 	case BOND_MODE_TLB:
4523 		bond_dev->hard_start_xmit = bond_alb_xmit;
4524 		bond_dev->set_mac_address = bond_alb_set_mac_address;
4525 		break;
4526 	default:
4527 		/* Should never happen, mode already checked */
4528 		printk(KERN_ERR DRV_NAME
4529 		       ": %s: Error: Unknown bonding mode %d\n",
4530 		       bond_dev->name,
4531 		       mode);
4532 		break;
4533 	}
4534 }
4535 
4536 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4537 				    struct ethtool_drvinfo *drvinfo)
4538 {
4539 	strncpy(drvinfo->driver, DRV_NAME, 32);
4540 	strncpy(drvinfo->version, DRV_VERSION, 32);
4541 	snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4542 }
4543 
4544 static const struct ethtool_ops bond_ethtool_ops = {
4545 	.get_drvinfo		= bond_ethtool_get_drvinfo,
4546 };
4547 
4548 /*
4549  * Does not allocate but creates a /proc entry.
4550  * Allowed to fail.
4551  */
4552 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4553 {
4554 	struct bonding *bond = bond_dev->priv;
4555 
4556 	dprintk("Begin bond_init for %s\n", bond_dev->name);
4557 
4558 	/* initialize rwlocks */
4559 	rwlock_init(&bond->lock);
4560 	rwlock_init(&bond->curr_slave_lock);
4561 
4562 	bond->params = *params; /* copy params struct */
4563 
4564 	bond->wq = create_singlethread_workqueue(bond_dev->name);
4565 	if (!bond->wq)
4566 		return -ENOMEM;
4567 
4568 	/* Initialize pointers */
4569 	bond->first_slave = NULL;
4570 	bond->curr_active_slave = NULL;
4571 	bond->current_arp_slave = NULL;
4572 	bond->primary_slave = NULL;
4573 	bond->dev = bond_dev;
4574 	bond->send_grat_arp = 0;
4575 	bond->setup_by_slave = 0;
4576 	INIT_LIST_HEAD(&bond->vlan_list);
4577 
4578 	/* Initialize the device entry points */
4579 	bond_dev->open = bond_open;
4580 	bond_dev->stop = bond_close;
4581 	bond_dev->get_stats = bond_get_stats;
4582 	bond_dev->do_ioctl = bond_do_ioctl;
4583 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4584 	bond_dev->set_multicast_list = bond_set_multicast_list;
4585 	bond_dev->change_mtu = bond_change_mtu;
4586 	bond_dev->set_mac_address = bond_set_mac_address;
4587 	bond_dev->validate_addr = NULL;
4588 
4589 	bond_set_mode_ops(bond, bond->params.mode);
4590 
4591 	bond_dev->destructor = free_netdev;
4592 
4593 	/* Initialize the device options */
4594 	bond_dev->tx_queue_len = 0;
4595 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4596 	bond_dev->priv_flags |= IFF_BONDING;
4597 
4598 	/* At first, we block adding VLANs. That's the only way to
4599 	 * prevent problems that occur when adding VLANs over an
4600 	 * empty bond. The block will be removed once non-challenged
4601 	 * slaves are enslaved.
4602 	 */
4603 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4604 
4605 	/* don't acquire bond device's netif_tx_lock when
4606 	 * transmitting */
4607 	bond_dev->features |= NETIF_F_LLTX;
4608 
4609 	/* By default, we declare the bond to be fully
4610 	 * VLAN hardware accelerated capable. Special
4611 	 * care is taken in the various xmit functions
4612 	 * when there are slaves that are not hw accel
4613 	 * capable
4614 	 */
4615 	bond_dev->vlan_rx_register = bond_vlan_rx_register;
4616 	bond_dev->vlan_rx_add_vid  = bond_vlan_rx_add_vid;
4617 	bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4618 	bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4619 			       NETIF_F_HW_VLAN_RX |
4620 			       NETIF_F_HW_VLAN_FILTER);
4621 
4622 #ifdef CONFIG_PROC_FS
4623 	bond_create_proc_entry(bond);
4624 #endif
4625 	list_add_tail(&bond->bond_list, &bond_dev_list);
4626 
4627 	return 0;
4628 }
4629 
4630 /* De-initialize device specific data.
4631  * Caller must hold rtnl_lock.
4632  */
4633 static void bond_deinit(struct net_device *bond_dev)
4634 {
4635 	struct bonding *bond = bond_dev->priv;
4636 
4637 	list_del(&bond->bond_list);
4638 
4639 #ifdef CONFIG_PROC_FS
4640 	bond_remove_proc_entry(bond);
4641 #endif
4642 }
4643 
4644 static void bond_work_cancel_all(struct bonding *bond)
4645 {
4646 	write_lock_bh(&bond->lock);
4647 	bond->kill_timers = 1;
4648 	write_unlock_bh(&bond->lock);
4649 
4650 	if (bond->params.miimon && delayed_work_pending(&bond->mii_work))
4651 		cancel_delayed_work(&bond->mii_work);
4652 
4653 	if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work))
4654 		cancel_delayed_work(&bond->arp_work);
4655 
4656 	if (bond->params.mode == BOND_MODE_ALB &&
4657 	    delayed_work_pending(&bond->alb_work))
4658 		cancel_delayed_work(&bond->alb_work);
4659 
4660 	if (bond->params.mode == BOND_MODE_8023AD &&
4661 	    delayed_work_pending(&bond->ad_work))
4662 		cancel_delayed_work(&bond->ad_work);
4663 }
4664 
4665 /* Unregister and free all bond devices.
4666  * Caller must hold rtnl_lock.
4667  */
4668 static void bond_free_all(void)
4669 {
4670 	struct bonding *bond, *nxt;
4671 
4672 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4673 		struct net_device *bond_dev = bond->dev;
4674 
4675 		bond_work_cancel_all(bond);
4676 		netif_addr_lock_bh(bond_dev);
4677 		bond_mc_list_destroy(bond);
4678 		netif_addr_unlock_bh(bond_dev);
4679 		/* Release the bonded slaves */
4680 		bond_release_all(bond_dev);
4681 		bond_destroy(bond);
4682 	}
4683 
4684 #ifdef CONFIG_PROC_FS
4685 	bond_destroy_proc_dir();
4686 #endif
4687 }
4688 
4689 /*------------------------- Module initialization ---------------------------*/
4690 
4691 /*
4692  * Convert string input module parms.  Accept either the
4693  * number of the mode or its string name.  A bit complicated because
4694  * some mode names are substrings of other names, and calls from sysfs
4695  * may have whitespace in the name (trailing newlines, for example).
4696  */
4697 int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl)
4698 {
4699 	int mode = -1, i, rv;
4700 	char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4701 
4702 	for (p = (char *)buf; *p; p++)
4703 		if (!(isdigit(*p) || isspace(*p)))
4704 			break;
4705 
4706 	if (*p)
4707 		rv = sscanf(buf, "%20s", modestr);
4708 	else
4709 		rv = sscanf(buf, "%d", &mode);
4710 
4711 	if (!rv)
4712 		return -1;
4713 
4714 	for (i = 0; tbl[i].modename; i++) {
4715 		if (mode == tbl[i].mode)
4716 			return tbl[i].mode;
4717 		if (strcmp(modestr, tbl[i].modename) == 0)
4718 			return tbl[i].mode;
4719 	}
4720 
4721 	return -1;
4722 }
4723 
4724 static int bond_check_params(struct bond_params *params)
4725 {
4726 	int arp_validate_value, fail_over_mac_value;
4727 
4728 	/*
4729 	 * Convert string parameters.
4730 	 */
4731 	if (mode) {
4732 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4733 		if (bond_mode == -1) {
4734 			printk(KERN_ERR DRV_NAME
4735 			       ": Error: Invalid bonding mode \"%s\"\n",
4736 			       mode == NULL ? "NULL" : mode);
4737 			return -EINVAL;
4738 		}
4739 	}
4740 
4741 	if (xmit_hash_policy) {
4742 		if ((bond_mode != BOND_MODE_XOR) &&
4743 		    (bond_mode != BOND_MODE_8023AD)) {
4744 			printk(KERN_INFO DRV_NAME
4745 			       ": xor_mode param is irrelevant in mode %s\n",
4746 			       bond_mode_name(bond_mode));
4747 		} else {
4748 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4749 							xmit_hashtype_tbl);
4750 			if (xmit_hashtype == -1) {
4751 				printk(KERN_ERR DRV_NAME
4752 			       	": Error: Invalid xmit_hash_policy \"%s\"\n",
4753 			       	xmit_hash_policy == NULL ? "NULL" :
4754 				       xmit_hash_policy);
4755 				return -EINVAL;
4756 			}
4757 		}
4758 	}
4759 
4760 	if (lacp_rate) {
4761 		if (bond_mode != BOND_MODE_8023AD) {
4762 			printk(KERN_INFO DRV_NAME
4763 			       ": lacp_rate param is irrelevant in mode %s\n",
4764 			       bond_mode_name(bond_mode));
4765 		} else {
4766 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4767 			if (lacp_fast == -1) {
4768 				printk(KERN_ERR DRV_NAME
4769 				       ": Error: Invalid lacp rate \"%s\"\n",
4770 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4771 				return -EINVAL;
4772 			}
4773 		}
4774 	}
4775 
4776 	if (max_bonds < 0 || max_bonds > INT_MAX) {
4777 		printk(KERN_WARNING DRV_NAME
4778 		       ": Warning: max_bonds (%d) not in range %d-%d, so it "
4779 		       "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4780 		       max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4781 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4782 	}
4783 
4784 	if (miimon < 0) {
4785 		printk(KERN_WARNING DRV_NAME
4786 		       ": Warning: miimon module parameter (%d), "
4787 		       "not in range 0-%d, so it was reset to %d\n",
4788 		       miimon, INT_MAX, BOND_LINK_MON_INTERV);
4789 		miimon = BOND_LINK_MON_INTERV;
4790 	}
4791 
4792 	if (updelay < 0) {
4793 		printk(KERN_WARNING DRV_NAME
4794 		       ": Warning: updelay module parameter (%d), "
4795 		       "not in range 0-%d, so it was reset to 0\n",
4796 		       updelay, INT_MAX);
4797 		updelay = 0;
4798 	}
4799 
4800 	if (downdelay < 0) {
4801 		printk(KERN_WARNING DRV_NAME
4802 		       ": Warning: downdelay module parameter (%d), "
4803 		       "not in range 0-%d, so it was reset to 0\n",
4804 		       downdelay, INT_MAX);
4805 		downdelay = 0;
4806 	}
4807 
4808 	if ((use_carrier != 0) && (use_carrier != 1)) {
4809 		printk(KERN_WARNING DRV_NAME
4810 		       ": Warning: use_carrier module parameter (%d), "
4811 		       "not of valid value (0/1), so it was set to 1\n",
4812 		       use_carrier);
4813 		use_carrier = 1;
4814 	}
4815 
4816 	if (num_grat_arp < 0 || num_grat_arp > 255) {
4817 		printk(KERN_WARNING DRV_NAME
4818 		       ": Warning: num_grat_arp (%d) not in range 0-255 so it "
4819 		       "was reset to 1 \n", num_grat_arp);
4820 		num_grat_arp = 1;
4821 	}
4822 
4823 	/* reset values for 802.3ad */
4824 	if (bond_mode == BOND_MODE_8023AD) {
4825 		if (!miimon) {
4826 			printk(KERN_WARNING DRV_NAME
4827 			       ": Warning: miimon must be specified, "
4828 			       "otherwise bonding will not detect link "
4829 			       "failure, speed and duplex which are "
4830 			       "essential for 802.3ad operation\n");
4831 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4832 			miimon = 100;
4833 		}
4834 	}
4835 
4836 	/* reset values for TLB/ALB */
4837 	if ((bond_mode == BOND_MODE_TLB) ||
4838 	    (bond_mode == BOND_MODE_ALB)) {
4839 		if (!miimon) {
4840 			printk(KERN_WARNING DRV_NAME
4841 			       ": Warning: miimon must be specified, "
4842 			       "otherwise bonding will not detect link "
4843 			       "failure and link speed which are essential "
4844 			       "for TLB/ALB load balancing\n");
4845 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4846 			miimon = 100;
4847 		}
4848 	}
4849 
4850 	if (bond_mode == BOND_MODE_ALB) {
4851 		printk(KERN_NOTICE DRV_NAME
4852 		       ": In ALB mode you might experience client "
4853 		       "disconnections upon reconnection of a link if the "
4854 		       "bonding module updelay parameter (%d msec) is "
4855 		       "incompatible with the forwarding delay time of the "
4856 		       "switch\n",
4857 		       updelay);
4858 	}
4859 
4860 	if (!miimon) {
4861 		if (updelay || downdelay) {
4862 			/* just warn the user the up/down delay will have
4863 			 * no effect since miimon is zero...
4864 			 */
4865 			printk(KERN_WARNING DRV_NAME
4866 			       ": Warning: miimon module parameter not set "
4867 			       "and updelay (%d) or downdelay (%d) module "
4868 			       "parameter is set; updelay and downdelay have "
4869 			       "no effect unless miimon is set\n",
4870 			       updelay, downdelay);
4871 		}
4872 	} else {
4873 		/* don't allow arp monitoring */
4874 		if (arp_interval) {
4875 			printk(KERN_WARNING DRV_NAME
4876 			       ": Warning: miimon (%d) and arp_interval (%d) "
4877 			       "can't be used simultaneously, disabling ARP "
4878 			       "monitoring\n",
4879 			       miimon, arp_interval);
4880 			arp_interval = 0;
4881 		}
4882 
4883 		if ((updelay % miimon) != 0) {
4884 			printk(KERN_WARNING DRV_NAME
4885 			       ": Warning: updelay (%d) is not a multiple "
4886 			       "of miimon (%d), updelay rounded to %d ms\n",
4887 			       updelay, miimon, (updelay / miimon) * miimon);
4888 		}
4889 
4890 		updelay /= miimon;
4891 
4892 		if ((downdelay % miimon) != 0) {
4893 			printk(KERN_WARNING DRV_NAME
4894 			       ": Warning: downdelay (%d) is not a multiple "
4895 			       "of miimon (%d), downdelay rounded to %d ms\n",
4896 			       downdelay, miimon,
4897 			       (downdelay / miimon) * miimon);
4898 		}
4899 
4900 		downdelay /= miimon;
4901 	}
4902 
4903 	if (arp_interval < 0) {
4904 		printk(KERN_WARNING DRV_NAME
4905 		       ": Warning: arp_interval module parameter (%d) "
4906 		       ", not in range 0-%d, so it was reset to %d\n",
4907 		       arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4908 		arp_interval = BOND_LINK_ARP_INTERV;
4909 	}
4910 
4911 	for (arp_ip_count = 0;
4912 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4913 	     arp_ip_count++) {
4914 		/* not complete check, but should be good enough to
4915 		   catch mistakes */
4916 		if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4917 			printk(KERN_WARNING DRV_NAME
4918 			       ": Warning: bad arp_ip_target module parameter "
4919 			       "(%s), ARP monitoring will not be performed\n",
4920 			       arp_ip_target[arp_ip_count]);
4921 			arp_interval = 0;
4922 		} else {
4923 			__be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4924 			arp_target[arp_ip_count] = ip;
4925 		}
4926 	}
4927 
4928 	if (arp_interval && !arp_ip_count) {
4929 		/* don't allow arping if no arp_ip_target given... */
4930 		printk(KERN_WARNING DRV_NAME
4931 		       ": Warning: arp_interval module parameter (%d) "
4932 		       "specified without providing an arp_ip_target "
4933 		       "parameter, arp_interval was reset to 0\n",
4934 		       arp_interval);
4935 		arp_interval = 0;
4936 	}
4937 
4938 	if (arp_validate) {
4939 		if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4940 			printk(KERN_ERR DRV_NAME
4941 	       ": arp_validate only supported in active-backup mode\n");
4942 			return -EINVAL;
4943 		}
4944 		if (!arp_interval) {
4945 			printk(KERN_ERR DRV_NAME
4946 			       ": arp_validate requires arp_interval\n");
4947 			return -EINVAL;
4948 		}
4949 
4950 		arp_validate_value = bond_parse_parm(arp_validate,
4951 						     arp_validate_tbl);
4952 		if (arp_validate_value == -1) {
4953 			printk(KERN_ERR DRV_NAME
4954 			       ": Error: invalid arp_validate \"%s\"\n",
4955 			       arp_validate == NULL ? "NULL" : arp_validate);
4956 			return -EINVAL;
4957 		}
4958 	} else
4959 		arp_validate_value = 0;
4960 
4961 	if (miimon) {
4962 		printk(KERN_INFO DRV_NAME
4963 		       ": MII link monitoring set to %d ms\n",
4964 		       miimon);
4965 	} else if (arp_interval) {
4966 		int i;
4967 
4968 		printk(KERN_INFO DRV_NAME
4969 		       ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4970 		       arp_interval,
4971 		       arp_validate_tbl[arp_validate_value].modename,
4972 		       arp_ip_count);
4973 
4974 		for (i = 0; i < arp_ip_count; i++)
4975 			printk (" %s", arp_ip_target[i]);
4976 
4977 		printk("\n");
4978 
4979 	} else if (max_bonds) {
4980 		/* miimon and arp_interval not set, we need one so things
4981 		 * work as expected, see bonding.txt for details
4982 		 */
4983 		printk(KERN_WARNING DRV_NAME
4984 		       ": Warning: either miimon or arp_interval and "
4985 		       "arp_ip_target module parameters must be specified, "
4986 		       "otherwise bonding will not detect link failures! see "
4987 		       "bonding.txt for details.\n");
4988 	}
4989 
4990 	if (primary && !USES_PRIMARY(bond_mode)) {
4991 		/* currently, using a primary only makes sense
4992 		 * in active backup, TLB or ALB modes
4993 		 */
4994 		printk(KERN_WARNING DRV_NAME
4995 		       ": Warning: %s primary device specified but has no "
4996 		       "effect in %s mode\n",
4997 		       primary, bond_mode_name(bond_mode));
4998 		primary = NULL;
4999 	}
5000 
5001 	if (fail_over_mac) {
5002 		fail_over_mac_value = bond_parse_parm(fail_over_mac,
5003 						      fail_over_mac_tbl);
5004 		if (fail_over_mac_value == -1) {
5005 			printk(KERN_ERR DRV_NAME
5006 			       ": Error: invalid fail_over_mac \"%s\"\n",
5007 			       arp_validate == NULL ? "NULL" : arp_validate);
5008 			return -EINVAL;
5009 		}
5010 
5011 		if (bond_mode != BOND_MODE_ACTIVEBACKUP)
5012 			printk(KERN_WARNING DRV_NAME
5013 			       ": Warning: fail_over_mac only affects "
5014 			       "active-backup mode.\n");
5015 	} else {
5016 		fail_over_mac_value = BOND_FOM_NONE;
5017 	}
5018 
5019 	/* fill params struct with the proper values */
5020 	params->mode = bond_mode;
5021 	params->xmit_policy = xmit_hashtype;
5022 	params->miimon = miimon;
5023 	params->num_grat_arp = num_grat_arp;
5024 	params->arp_interval = arp_interval;
5025 	params->arp_validate = arp_validate_value;
5026 	params->updelay = updelay;
5027 	params->downdelay = downdelay;
5028 	params->use_carrier = use_carrier;
5029 	params->lacp_fast = lacp_fast;
5030 	params->primary[0] = 0;
5031 	params->fail_over_mac = fail_over_mac_value;
5032 
5033 	if (primary) {
5034 		strncpy(params->primary, primary, IFNAMSIZ);
5035 		params->primary[IFNAMSIZ - 1] = 0;
5036 	}
5037 
5038 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
5039 
5040 	return 0;
5041 }
5042 
5043 static struct lock_class_key bonding_netdev_xmit_lock_key;
5044 static struct lock_class_key bonding_netdev_addr_lock_key;
5045 
5046 static void bond_set_lockdep_class_one(struct net_device *dev,
5047 				       struct netdev_queue *txq,
5048 				       void *_unused)
5049 {
5050 	lockdep_set_class(&txq->_xmit_lock,
5051 			  &bonding_netdev_xmit_lock_key);
5052 }
5053 
5054 static void bond_set_lockdep_class(struct net_device *dev)
5055 {
5056 	lockdep_set_class(&dev->addr_list_lock,
5057 			  &bonding_netdev_addr_lock_key);
5058 	netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL);
5059 }
5060 
5061 /* Create a new bond based on the specified name and bonding parameters.
5062  * If name is NULL, obtain a suitable "bond%d" name for us.
5063  * Caller must NOT hold rtnl_lock; we need to release it here before we
5064  * set up our sysfs entries.
5065  */
5066 int bond_create(char *name, struct bond_params *params)
5067 {
5068 	struct net_device *bond_dev;
5069 	struct bonding *bond;
5070 	int res;
5071 
5072 	rtnl_lock();
5073 	down_write(&bonding_rwsem);
5074 
5075 	/* Check to see if the bond already exists. */
5076 	if (name) {
5077 		list_for_each_entry(bond, &bond_dev_list, bond_list)
5078 			if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) {
5079 				printk(KERN_ERR DRV_NAME
5080 			       ": cannot add bond %s; it already exists\n",
5081 				       name);
5082 				res = -EPERM;
5083 				goto out_rtnl;
5084 			}
5085 	}
5086 
5087 	bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
5088 				ether_setup);
5089 	if (!bond_dev) {
5090 		printk(KERN_ERR DRV_NAME
5091 		       ": %s: eek! can't alloc netdev!\n",
5092 		       name);
5093 		res = -ENOMEM;
5094 		goto out_rtnl;
5095 	}
5096 
5097 	if (!name) {
5098 		res = dev_alloc_name(bond_dev, "bond%d");
5099 		if (res < 0)
5100 			goto out_netdev;
5101 	}
5102 
5103 	/* bond_init() must be called after dev_alloc_name() (for the
5104 	 * /proc files), but before register_netdevice(), because we
5105 	 * need to set function pointers.
5106 	 */
5107 
5108 	res = bond_init(bond_dev, params);
5109 	if (res < 0) {
5110 		goto out_netdev;
5111 	}
5112 
5113 	res = register_netdevice(bond_dev);
5114 	if (res < 0) {
5115 		goto out_bond;
5116 	}
5117 
5118 	bond_set_lockdep_class(bond_dev);
5119 
5120 	netif_carrier_off(bond_dev);
5121 
5122 	up_write(&bonding_rwsem);
5123 	rtnl_unlock(); /* allows sysfs registration of net device */
5124 	res = bond_create_sysfs_entry(bond_dev->priv);
5125 	if (res < 0) {
5126 		rtnl_lock();
5127 		down_write(&bonding_rwsem);
5128 		bond_deinit(bond_dev);
5129 		unregister_netdevice(bond_dev);
5130 		goto out_rtnl;
5131 	}
5132 
5133 	return 0;
5134 
5135 out_bond:
5136 	bond_deinit(bond_dev);
5137 out_netdev:
5138 	free_netdev(bond_dev);
5139 out_rtnl:
5140 	up_write(&bonding_rwsem);
5141 	rtnl_unlock();
5142 	return res;
5143 }
5144 
5145 static int __init bonding_init(void)
5146 {
5147 	int i;
5148 	int res;
5149 	struct bonding *bond;
5150 
5151 	printk(KERN_INFO "%s", version);
5152 
5153 	res = bond_check_params(&bonding_defaults);
5154 	if (res) {
5155 		goto out;
5156 	}
5157 
5158 #ifdef CONFIG_PROC_FS
5159 	bond_create_proc_dir();
5160 #endif
5161 
5162 	init_rwsem(&bonding_rwsem);
5163 
5164 	for (i = 0; i < max_bonds; i++) {
5165 		res = bond_create(NULL, &bonding_defaults);
5166 		if (res)
5167 			goto err;
5168 	}
5169 
5170 	res = bond_create_sysfs();
5171 	if (res)
5172 		goto err;
5173 
5174 	register_netdevice_notifier(&bond_netdev_notifier);
5175 	register_inetaddr_notifier(&bond_inetaddr_notifier);
5176 
5177 	goto out;
5178 err:
5179 	list_for_each_entry(bond, &bond_dev_list, bond_list) {
5180 		bond_work_cancel_all(bond);
5181 		destroy_workqueue(bond->wq);
5182 	}
5183 
5184 	bond_destroy_sysfs();
5185 
5186 	rtnl_lock();
5187 	bond_free_all();
5188 	rtnl_unlock();
5189 out:
5190 	return res;
5191 
5192 }
5193 
5194 static void __exit bonding_exit(void)
5195 {
5196 	unregister_netdevice_notifier(&bond_netdev_notifier);
5197 	unregister_inetaddr_notifier(&bond_inetaddr_notifier);
5198 
5199 	bond_destroy_sysfs();
5200 
5201 	rtnl_lock();
5202 	bond_free_all();
5203 	rtnl_unlock();
5204 }
5205 
5206 module_init(bonding_init);
5207 module_exit(bonding_exit);
5208 MODULE_LICENSE("GPL");
5209 MODULE_VERSION(DRV_VERSION);
5210 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
5211 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
5212 MODULE_SUPPORTED_DEVICE("most ethernet devices");
5213 
5214 /*
5215  * Local variables:
5216  *  c-indent-level: 8
5217  *  c-basic-offset: 8
5218  *  tab-width: 8
5219  * End:
5220  */
5221 
5222