1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 //#define BONDING_DEBUG 1 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/fcntl.h> 40 #include <linux/interrupt.h> 41 #include <linux/ptrace.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <net/ip.h> 45 #include <linux/ip.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/init.h> 51 #include <linux/timer.h> 52 #include <linux/socket.h> 53 #include <linux/ctype.h> 54 #include <linux/inet.h> 55 #include <linux/bitops.h> 56 #include <asm/system.h> 57 #include <asm/io.h> 58 #include <asm/dma.h> 59 #include <asm/uaccess.h> 60 #include <linux/errno.h> 61 #include <linux/netdevice.h> 62 #include <linux/inetdevice.h> 63 #include <linux/igmp.h> 64 #include <linux/etherdevice.h> 65 #include <linux/skbuff.h> 66 #include <net/sock.h> 67 #include <linux/rtnetlink.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/smp.h> 71 #include <linux/if_ether.h> 72 #include <net/arp.h> 73 #include <linux/mii.h> 74 #include <linux/ethtool.h> 75 #include <linux/if_vlan.h> 76 #include <linux/if_bonding.h> 77 #include <linux/jiffies.h> 78 #include <net/route.h> 79 #include <net/net_namespace.h> 80 #include "bonding.h" 81 #include "bond_3ad.h" 82 #include "bond_alb.h" 83 84 /*---------------------------- Module parameters ----------------------------*/ 85 86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 87 #define BOND_LINK_MON_INTERV 0 88 #define BOND_LINK_ARP_INTERV 0 89 90 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 91 static int num_grat_arp = 1; 92 static int miimon = BOND_LINK_MON_INTERV; 93 static int updelay = 0; 94 static int downdelay = 0; 95 static int use_carrier = 1; 96 static char *mode = NULL; 97 static char *primary = NULL; 98 static char *lacp_rate = NULL; 99 static char *xmit_hash_policy = NULL; 100 static int arp_interval = BOND_LINK_ARP_INTERV; 101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; 102 static char *arp_validate = NULL; 103 static char *fail_over_mac = NULL; 104 struct bond_params bonding_defaults; 105 106 module_param(max_bonds, int, 0); 107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 108 module_param(num_grat_arp, int, 0644); 109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event"); 110 module_param(miimon, int, 0); 111 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 112 module_param(updelay, int, 0); 113 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 114 module_param(downdelay, int, 0); 115 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 116 "in milliseconds"); 117 module_param(use_carrier, int, 0); 118 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 119 "0 for off, 1 for on (default)"); 120 module_param(mode, charp, 0); 121 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 122 "1 for active-backup, 2 for balance-xor, " 123 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 124 "6 for balance-alb"); 125 module_param(primary, charp, 0); 126 MODULE_PARM_DESC(primary, "Primary network device to use"); 127 module_param(lacp_rate, charp, 0); 128 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 129 "(slow/fast)"); 130 module_param(xmit_hash_policy, charp, 0); 131 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 132 ", 1 for layer 3+4"); 133 module_param(arp_interval, int, 0); 134 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 135 module_param_array(arp_ip_target, charp, NULL, 0); 136 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 137 module_param(arp_validate, charp, 0); 138 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 139 module_param(fail_over_mac, charp, 0); 140 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow"); 141 142 /*----------------------------- Global variables ----------------------------*/ 143 144 static const char * const version = 145 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 146 147 LIST_HEAD(bond_dev_list); 148 149 #ifdef CONFIG_PROC_FS 150 static struct proc_dir_entry *bond_proc_dir = NULL; 151 #endif 152 153 extern struct rw_semaphore bonding_rwsem; 154 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; 155 static int arp_ip_count = 0; 156 static int bond_mode = BOND_MODE_ROUNDROBIN; 157 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; 158 static int lacp_fast = 0; 159 160 161 struct bond_parm_tbl bond_lacp_tbl[] = { 162 { "slow", AD_LACP_SLOW}, 163 { "fast", AD_LACP_FAST}, 164 { NULL, -1}, 165 }; 166 167 struct bond_parm_tbl bond_mode_tbl[] = { 168 { "balance-rr", BOND_MODE_ROUNDROBIN}, 169 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 170 { "balance-xor", BOND_MODE_XOR}, 171 { "broadcast", BOND_MODE_BROADCAST}, 172 { "802.3ad", BOND_MODE_8023AD}, 173 { "balance-tlb", BOND_MODE_TLB}, 174 { "balance-alb", BOND_MODE_ALB}, 175 { NULL, -1}, 176 }; 177 178 struct bond_parm_tbl xmit_hashtype_tbl[] = { 179 { "layer2", BOND_XMIT_POLICY_LAYER2}, 180 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 181 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 182 { NULL, -1}, 183 }; 184 185 struct bond_parm_tbl arp_validate_tbl[] = { 186 { "none", BOND_ARP_VALIDATE_NONE}, 187 { "active", BOND_ARP_VALIDATE_ACTIVE}, 188 { "backup", BOND_ARP_VALIDATE_BACKUP}, 189 { "all", BOND_ARP_VALIDATE_ALL}, 190 { NULL, -1}, 191 }; 192 193 struct bond_parm_tbl fail_over_mac_tbl[] = { 194 { "none", BOND_FOM_NONE}, 195 { "active", BOND_FOM_ACTIVE}, 196 { "follow", BOND_FOM_FOLLOW}, 197 { NULL, -1}, 198 }; 199 200 /*-------------------------- Forward declarations ---------------------------*/ 201 202 static void bond_send_gratuitous_arp(struct bonding *bond); 203 static void bond_deinit(struct net_device *bond_dev); 204 205 /*---------------------------- General routines -----------------------------*/ 206 207 static const char *bond_mode_name(int mode) 208 { 209 switch (mode) { 210 case BOND_MODE_ROUNDROBIN : 211 return "load balancing (round-robin)"; 212 case BOND_MODE_ACTIVEBACKUP : 213 return "fault-tolerance (active-backup)"; 214 case BOND_MODE_XOR : 215 return "load balancing (xor)"; 216 case BOND_MODE_BROADCAST : 217 return "fault-tolerance (broadcast)"; 218 case BOND_MODE_8023AD: 219 return "IEEE 802.3ad Dynamic link aggregation"; 220 case BOND_MODE_TLB: 221 return "transmit load balancing"; 222 case BOND_MODE_ALB: 223 return "adaptive load balancing"; 224 default: 225 return "unknown"; 226 } 227 } 228 229 /*---------------------------------- VLAN -----------------------------------*/ 230 231 /** 232 * bond_add_vlan - add a new vlan id on bond 233 * @bond: bond that got the notification 234 * @vlan_id: the vlan id to add 235 * 236 * Returns -ENOMEM if allocation failed. 237 */ 238 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 239 { 240 struct vlan_entry *vlan; 241 242 dprintk("bond: %s, vlan id %d\n", 243 (bond ? bond->dev->name: "None"), vlan_id); 244 245 vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL); 246 if (!vlan) { 247 return -ENOMEM; 248 } 249 250 INIT_LIST_HEAD(&vlan->vlan_list); 251 vlan->vlan_id = vlan_id; 252 vlan->vlan_ip = 0; 253 254 write_lock_bh(&bond->lock); 255 256 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 257 258 write_unlock_bh(&bond->lock); 259 260 dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 261 262 return 0; 263 } 264 265 /** 266 * bond_del_vlan - delete a vlan id from bond 267 * @bond: bond that got the notification 268 * @vlan_id: the vlan id to delete 269 * 270 * returns -ENODEV if @vlan_id was not found in @bond. 271 */ 272 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 273 { 274 struct vlan_entry *vlan; 275 int res = -ENODEV; 276 277 dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 278 279 write_lock_bh(&bond->lock); 280 281 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 282 if (vlan->vlan_id == vlan_id) { 283 list_del(&vlan->vlan_list); 284 285 if ((bond->params.mode == BOND_MODE_TLB) || 286 (bond->params.mode == BOND_MODE_ALB)) { 287 bond_alb_clear_vlan(bond, vlan_id); 288 } 289 290 dprintk("removed VLAN ID %d from bond %s\n", vlan_id, 291 bond->dev->name); 292 293 kfree(vlan); 294 295 if (list_empty(&bond->vlan_list) && 296 (bond->slave_cnt == 0)) { 297 /* Last VLAN removed and no slaves, so 298 * restore block on adding VLANs. This will 299 * be removed once new slaves that are not 300 * VLAN challenged will be added. 301 */ 302 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 303 } 304 305 res = 0; 306 goto out; 307 } 308 } 309 310 dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id, 311 bond->dev->name); 312 313 out: 314 write_unlock_bh(&bond->lock); 315 return res; 316 } 317 318 /** 319 * bond_has_challenged_slaves 320 * @bond: the bond we're working on 321 * 322 * Searches the slave list. Returns 1 if a vlan challenged slave 323 * was found, 0 otherwise. 324 * 325 * Assumes bond->lock is held. 326 */ 327 static int bond_has_challenged_slaves(struct bonding *bond) 328 { 329 struct slave *slave; 330 int i; 331 332 bond_for_each_slave(bond, slave, i) { 333 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 334 dprintk("found VLAN challenged slave - %s\n", 335 slave->dev->name); 336 return 1; 337 } 338 } 339 340 dprintk("no VLAN challenged slaves found\n"); 341 return 0; 342 } 343 344 /** 345 * bond_next_vlan - safely skip to the next item in the vlans list. 346 * @bond: the bond we're working on 347 * @curr: item we're advancing from 348 * 349 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 350 * or @curr->next otherwise (even if it is @curr itself again). 351 * 352 * Caller must hold bond->lock 353 */ 354 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 355 { 356 struct vlan_entry *next, *last; 357 358 if (list_empty(&bond->vlan_list)) { 359 return NULL; 360 } 361 362 if (!curr) { 363 next = list_entry(bond->vlan_list.next, 364 struct vlan_entry, vlan_list); 365 } else { 366 last = list_entry(bond->vlan_list.prev, 367 struct vlan_entry, vlan_list); 368 if (last == curr) { 369 next = list_entry(bond->vlan_list.next, 370 struct vlan_entry, vlan_list); 371 } else { 372 next = list_entry(curr->vlan_list.next, 373 struct vlan_entry, vlan_list); 374 } 375 } 376 377 return next; 378 } 379 380 /** 381 * bond_dev_queue_xmit - Prepare skb for xmit. 382 * 383 * @bond: bond device that got this skb for tx. 384 * @skb: hw accel VLAN tagged skb to transmit 385 * @slave_dev: slave that is supposed to xmit this skbuff 386 * 387 * When the bond gets an skb to transmit that is 388 * already hardware accelerated VLAN tagged, and it 389 * needs to relay this skb to a slave that is not 390 * hw accel capable, the skb needs to be "unaccelerated", 391 * i.e. strip the hwaccel tag and re-insert it as part 392 * of the payload. 393 */ 394 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) 395 { 396 unsigned short uninitialized_var(vlan_id); 397 398 if (!list_empty(&bond->vlan_list) && 399 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 400 vlan_get_tag(skb, &vlan_id) == 0) { 401 skb->dev = slave_dev; 402 skb = vlan_put_tag(skb, vlan_id); 403 if (!skb) { 404 /* vlan_put_tag() frees the skb in case of error, 405 * so return success here so the calling functions 406 * won't attempt to free is again. 407 */ 408 return 0; 409 } 410 } else { 411 skb->dev = slave_dev; 412 } 413 414 skb->priority = 1; 415 dev_queue_xmit(skb); 416 417 return 0; 418 } 419 420 /* 421 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 422 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 423 * lock because: 424 * a. This operation is performed in IOCTL context, 425 * b. The operation is protected by the RTNL semaphore in the 8021q code, 426 * c. Holding a lock with BH disabled while directly calling a base driver 427 * entry point is generally a BAD idea. 428 * 429 * The design of synchronization/protection for this operation in the 8021q 430 * module is good for one or more VLAN devices over a single physical device 431 * and cannot be extended for a teaming solution like bonding, so there is a 432 * potential race condition here where a net device from the vlan group might 433 * be referenced (either by a base driver or the 8021q code) while it is being 434 * removed from the system. However, it turns out we're not making matters 435 * worse, and if it works for regular VLAN usage it will work here too. 436 */ 437 438 /** 439 * bond_vlan_rx_register - Propagates registration to slaves 440 * @bond_dev: bonding net device that got called 441 * @grp: vlan group being registered 442 */ 443 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) 444 { 445 struct bonding *bond = bond_dev->priv; 446 struct slave *slave; 447 int i; 448 449 bond->vlgrp = grp; 450 451 bond_for_each_slave(bond, slave, i) { 452 struct net_device *slave_dev = slave->dev; 453 454 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 455 slave_dev->vlan_rx_register) { 456 slave_dev->vlan_rx_register(slave_dev, grp); 457 } 458 } 459 } 460 461 /** 462 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 463 * @bond_dev: bonding net device that got called 464 * @vid: vlan id being added 465 */ 466 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 467 { 468 struct bonding *bond = bond_dev->priv; 469 struct slave *slave; 470 int i, res; 471 472 bond_for_each_slave(bond, slave, i) { 473 struct net_device *slave_dev = slave->dev; 474 475 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 476 slave_dev->vlan_rx_add_vid) { 477 slave_dev->vlan_rx_add_vid(slave_dev, vid); 478 } 479 } 480 481 res = bond_add_vlan(bond, vid); 482 if (res) { 483 printk(KERN_ERR DRV_NAME 484 ": %s: Error: Failed to add vlan id %d\n", 485 bond_dev->name, vid); 486 } 487 } 488 489 /** 490 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 491 * @bond_dev: bonding net device that got called 492 * @vid: vlan id being removed 493 */ 494 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 495 { 496 struct bonding *bond = bond_dev->priv; 497 struct slave *slave; 498 struct net_device *vlan_dev; 499 int i, res; 500 501 bond_for_each_slave(bond, slave, i) { 502 struct net_device *slave_dev = slave->dev; 503 504 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 505 slave_dev->vlan_rx_kill_vid) { 506 /* Save and then restore vlan_dev in the grp array, 507 * since the slave's driver might clear it. 508 */ 509 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 510 slave_dev->vlan_rx_kill_vid(slave_dev, vid); 511 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 512 } 513 } 514 515 res = bond_del_vlan(bond, vid); 516 if (res) { 517 printk(KERN_ERR DRV_NAME 518 ": %s: Error: Failed to remove vlan id %d\n", 519 bond_dev->name, vid); 520 } 521 } 522 523 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 524 { 525 struct vlan_entry *vlan; 526 527 write_lock_bh(&bond->lock); 528 529 if (list_empty(&bond->vlan_list)) { 530 goto out; 531 } 532 533 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 534 slave_dev->vlan_rx_register) { 535 slave_dev->vlan_rx_register(slave_dev, bond->vlgrp); 536 } 537 538 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 539 !(slave_dev->vlan_rx_add_vid)) { 540 goto out; 541 } 542 543 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 544 slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id); 545 } 546 547 out: 548 write_unlock_bh(&bond->lock); 549 } 550 551 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) 552 { 553 struct vlan_entry *vlan; 554 struct net_device *vlan_dev; 555 556 write_lock_bh(&bond->lock); 557 558 if (list_empty(&bond->vlan_list)) { 559 goto out; 560 } 561 562 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 563 !(slave_dev->vlan_rx_kill_vid)) { 564 goto unreg; 565 } 566 567 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 568 /* Save and then restore vlan_dev in the grp array, 569 * since the slave's driver might clear it. 570 */ 571 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 572 slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 573 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 574 } 575 576 unreg: 577 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 578 slave_dev->vlan_rx_register) { 579 slave_dev->vlan_rx_register(slave_dev, NULL); 580 } 581 582 out: 583 write_unlock_bh(&bond->lock); 584 } 585 586 /*------------------------------- Link status -------------------------------*/ 587 588 /* 589 * Set the carrier state for the master according to the state of its 590 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 591 * do special 802.3ad magic. 592 * 593 * Returns zero if carrier state does not change, nonzero if it does. 594 */ 595 static int bond_set_carrier(struct bonding *bond) 596 { 597 struct slave *slave; 598 int i; 599 600 if (bond->slave_cnt == 0) 601 goto down; 602 603 if (bond->params.mode == BOND_MODE_8023AD) 604 return bond_3ad_set_carrier(bond); 605 606 bond_for_each_slave(bond, slave, i) { 607 if (slave->link == BOND_LINK_UP) { 608 if (!netif_carrier_ok(bond->dev)) { 609 netif_carrier_on(bond->dev); 610 return 1; 611 } 612 return 0; 613 } 614 } 615 616 down: 617 if (netif_carrier_ok(bond->dev)) { 618 netif_carrier_off(bond->dev); 619 return 1; 620 } 621 return 0; 622 } 623 624 /* 625 * Get link speed and duplex from the slave's base driver 626 * using ethtool. If for some reason the call fails or the 627 * values are invalid, fake speed and duplex to 100/Full 628 * and return error. 629 */ 630 static int bond_update_speed_duplex(struct slave *slave) 631 { 632 struct net_device *slave_dev = slave->dev; 633 struct ethtool_cmd etool; 634 int res; 635 636 /* Fake speed and duplex */ 637 slave->speed = SPEED_100; 638 slave->duplex = DUPLEX_FULL; 639 640 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) 641 return -1; 642 643 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 644 if (res < 0) 645 return -1; 646 647 switch (etool.speed) { 648 case SPEED_10: 649 case SPEED_100: 650 case SPEED_1000: 651 case SPEED_10000: 652 break; 653 default: 654 return -1; 655 } 656 657 switch (etool.duplex) { 658 case DUPLEX_FULL: 659 case DUPLEX_HALF: 660 break; 661 default: 662 return -1; 663 } 664 665 slave->speed = etool.speed; 666 slave->duplex = etool.duplex; 667 668 return 0; 669 } 670 671 /* 672 * if <dev> supports MII link status reporting, check its link status. 673 * 674 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 675 * depening upon the setting of the use_carrier parameter. 676 * 677 * Return either BMSR_LSTATUS, meaning that the link is up (or we 678 * can't tell and just pretend it is), or 0, meaning that the link is 679 * down. 680 * 681 * If reporting is non-zero, instead of faking link up, return -1 if 682 * both ETHTOOL and MII ioctls fail (meaning the device does not 683 * support them). If use_carrier is set, return whatever it says. 684 * It'd be nice if there was a good way to tell if a driver supports 685 * netif_carrier, but there really isn't. 686 */ 687 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) 688 { 689 static int (* ioctl)(struct net_device *, struct ifreq *, int); 690 struct ifreq ifr; 691 struct mii_ioctl_data *mii; 692 693 if (bond->params.use_carrier) { 694 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 695 } 696 697 ioctl = slave_dev->do_ioctl; 698 if (ioctl) { 699 /* TODO: set pointer to correct ioctl on a per team member */ 700 /* bases to make this more efficient. that is, once */ 701 /* we determine the correct ioctl, we will always */ 702 /* call it and not the others for that team */ 703 /* member. */ 704 705 /* 706 * We cannot assume that SIOCGMIIPHY will also read a 707 * register; not all network drivers (e.g., e100) 708 * support that. 709 */ 710 711 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 712 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 713 mii = if_mii(&ifr); 714 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 715 mii->reg_num = MII_BMSR; 716 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { 717 return (mii->val_out & BMSR_LSTATUS); 718 } 719 } 720 } 721 722 /* 723 * Some drivers cache ETHTOOL_GLINK for a period of time so we only 724 * attempt to get link status from it if the above MII ioctls fail. 725 */ 726 if (slave_dev->ethtool_ops) { 727 if (slave_dev->ethtool_ops->get_link) { 728 u32 link; 729 730 link = slave_dev->ethtool_ops->get_link(slave_dev); 731 732 return link ? BMSR_LSTATUS : 0; 733 } 734 } 735 736 /* 737 * If reporting, report that either there's no dev->do_ioctl, 738 * or both SIOCGMIIREG and get_link failed (meaning that we 739 * cannot report link status). If not reporting, pretend 740 * we're ok. 741 */ 742 return (reporting ? -1 : BMSR_LSTATUS); 743 } 744 745 /*----------------------------- Multicast list ------------------------------*/ 746 747 /* 748 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise 749 */ 750 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) 751 { 752 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && 753 dmi1->dmi_addrlen == dmi2->dmi_addrlen; 754 } 755 756 /* 757 * returns dmi entry if found, NULL otherwise 758 */ 759 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 760 { 761 struct dev_mc_list *idmi; 762 763 for (idmi = mc_list; idmi; idmi = idmi->next) { 764 if (bond_is_dmi_same(dmi, idmi)) { 765 return idmi; 766 } 767 } 768 769 return NULL; 770 } 771 772 /* 773 * Push the promiscuity flag down to appropriate slaves 774 */ 775 static int bond_set_promiscuity(struct bonding *bond, int inc) 776 { 777 int err = 0; 778 if (USES_PRIMARY(bond->params.mode)) { 779 /* write lock already acquired */ 780 if (bond->curr_active_slave) { 781 err = dev_set_promiscuity(bond->curr_active_slave->dev, 782 inc); 783 } 784 } else { 785 struct slave *slave; 786 int i; 787 bond_for_each_slave(bond, slave, i) { 788 err = dev_set_promiscuity(slave->dev, inc); 789 if (err) 790 return err; 791 } 792 } 793 return err; 794 } 795 796 /* 797 * Push the allmulti flag down to all slaves 798 */ 799 static int bond_set_allmulti(struct bonding *bond, int inc) 800 { 801 int err = 0; 802 if (USES_PRIMARY(bond->params.mode)) { 803 /* write lock already acquired */ 804 if (bond->curr_active_slave) { 805 err = dev_set_allmulti(bond->curr_active_slave->dev, 806 inc); 807 } 808 } else { 809 struct slave *slave; 810 int i; 811 bond_for_each_slave(bond, slave, i) { 812 err = dev_set_allmulti(slave->dev, inc); 813 if (err) 814 return err; 815 } 816 } 817 return err; 818 } 819 820 /* 821 * Add a Multicast address to slaves 822 * according to mode 823 */ 824 static void bond_mc_add(struct bonding *bond, void *addr, int alen) 825 { 826 if (USES_PRIMARY(bond->params.mode)) { 827 /* write lock already acquired */ 828 if (bond->curr_active_slave) { 829 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); 830 } 831 } else { 832 struct slave *slave; 833 int i; 834 bond_for_each_slave(bond, slave, i) { 835 dev_mc_add(slave->dev, addr, alen, 0); 836 } 837 } 838 } 839 840 /* 841 * Remove a multicast address from slave 842 * according to mode 843 */ 844 static void bond_mc_delete(struct bonding *bond, void *addr, int alen) 845 { 846 if (USES_PRIMARY(bond->params.mode)) { 847 /* write lock already acquired */ 848 if (bond->curr_active_slave) { 849 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); 850 } 851 } else { 852 struct slave *slave; 853 int i; 854 bond_for_each_slave(bond, slave, i) { 855 dev_mc_delete(slave->dev, addr, alen, 0); 856 } 857 } 858 } 859 860 861 /* 862 * Retrieve the list of registered multicast addresses for the bonding 863 * device and retransmit an IGMP JOIN request to the current active 864 * slave. 865 */ 866 static void bond_resend_igmp_join_requests(struct bonding *bond) 867 { 868 struct in_device *in_dev; 869 struct ip_mc_list *im; 870 871 rcu_read_lock(); 872 in_dev = __in_dev_get_rcu(bond->dev); 873 if (in_dev) { 874 for (im = in_dev->mc_list; im; im = im->next) { 875 ip_mc_rejoin_group(im); 876 } 877 } 878 879 rcu_read_unlock(); 880 } 881 882 /* 883 * Totally destroys the mc_list in bond 884 */ 885 static void bond_mc_list_destroy(struct bonding *bond) 886 { 887 struct dev_mc_list *dmi; 888 889 dmi = bond->mc_list; 890 while (dmi) { 891 bond->mc_list = dmi->next; 892 kfree(dmi); 893 dmi = bond->mc_list; 894 } 895 bond->mc_list = NULL; 896 } 897 898 /* 899 * Copy all the Multicast addresses from src to the bonding device dst 900 */ 901 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, 902 gfp_t gfp_flag) 903 { 904 struct dev_mc_list *dmi, *new_dmi; 905 906 for (dmi = mc_list; dmi; dmi = dmi->next) { 907 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); 908 909 if (!new_dmi) { 910 /* FIXME: Potential memory leak !!! */ 911 return -ENOMEM; 912 } 913 914 new_dmi->next = bond->mc_list; 915 bond->mc_list = new_dmi; 916 new_dmi->dmi_addrlen = dmi->dmi_addrlen; 917 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); 918 new_dmi->dmi_users = dmi->dmi_users; 919 new_dmi->dmi_gusers = dmi->dmi_gusers; 920 } 921 922 return 0; 923 } 924 925 /* 926 * flush all members of flush->mc_list from device dev->mc_list 927 */ 928 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) 929 { 930 struct bonding *bond = bond_dev->priv; 931 struct dev_mc_list *dmi; 932 933 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 934 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 935 } 936 937 if (bond->params.mode == BOND_MODE_8023AD) { 938 /* del lacpdu mc addr from mc list */ 939 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 940 941 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 942 } 943 } 944 945 /*--------------------------- Active slave change ---------------------------*/ 946 947 /* 948 * Update the mc list and multicast-related flags for the new and 949 * old active slaves (if any) according to the multicast mode, and 950 * promiscuous flags unconditionally. 951 */ 952 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) 953 { 954 struct dev_mc_list *dmi; 955 956 if (!USES_PRIMARY(bond->params.mode)) { 957 /* nothing to do - mc list is already up-to-date on 958 * all slaves 959 */ 960 return; 961 } 962 963 if (old_active) { 964 if (bond->dev->flags & IFF_PROMISC) { 965 dev_set_promiscuity(old_active->dev, -1); 966 } 967 968 if (bond->dev->flags & IFF_ALLMULTI) { 969 dev_set_allmulti(old_active->dev, -1); 970 } 971 972 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 973 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 974 } 975 } 976 977 if (new_active) { 978 /* FIXME: Signal errors upstream. */ 979 if (bond->dev->flags & IFF_PROMISC) { 980 dev_set_promiscuity(new_active->dev, 1); 981 } 982 983 if (bond->dev->flags & IFF_ALLMULTI) { 984 dev_set_allmulti(new_active->dev, 1); 985 } 986 987 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 988 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 989 } 990 bond_resend_igmp_join_requests(bond); 991 } 992 } 993 994 /* 995 * bond_do_fail_over_mac 996 * 997 * Perform special MAC address swapping for fail_over_mac settings 998 * 999 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 1000 */ 1001 static void bond_do_fail_over_mac(struct bonding *bond, 1002 struct slave *new_active, 1003 struct slave *old_active) 1004 { 1005 u8 tmp_mac[ETH_ALEN]; 1006 struct sockaddr saddr; 1007 int rv; 1008 1009 switch (bond->params.fail_over_mac) { 1010 case BOND_FOM_ACTIVE: 1011 if (new_active) 1012 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 1013 new_active->dev->addr_len); 1014 break; 1015 case BOND_FOM_FOLLOW: 1016 /* 1017 * if new_active && old_active, swap them 1018 * if just old_active, do nothing (going to no active slave) 1019 * if just new_active, set new_active to bond's MAC 1020 */ 1021 if (!new_active) 1022 return; 1023 1024 write_unlock_bh(&bond->curr_slave_lock); 1025 read_unlock(&bond->lock); 1026 1027 if (old_active) { 1028 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 1029 memcpy(saddr.sa_data, old_active->dev->dev_addr, 1030 ETH_ALEN); 1031 saddr.sa_family = new_active->dev->type; 1032 } else { 1033 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 1034 saddr.sa_family = bond->dev->type; 1035 } 1036 1037 rv = dev_set_mac_address(new_active->dev, &saddr); 1038 if (rv) { 1039 printk(KERN_ERR DRV_NAME 1040 ": %s: Error %d setting MAC of slave %s\n", 1041 bond->dev->name, -rv, new_active->dev->name); 1042 goto out; 1043 } 1044 1045 if (!old_active) 1046 goto out; 1047 1048 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 1049 saddr.sa_family = old_active->dev->type; 1050 1051 rv = dev_set_mac_address(old_active->dev, &saddr); 1052 if (rv) 1053 printk(KERN_ERR DRV_NAME 1054 ": %s: Error %d setting MAC of slave %s\n", 1055 bond->dev->name, -rv, new_active->dev->name); 1056 out: 1057 read_lock(&bond->lock); 1058 write_lock_bh(&bond->curr_slave_lock); 1059 break; 1060 default: 1061 printk(KERN_ERR DRV_NAME 1062 ": %s: bond_do_fail_over_mac impossible: bad policy %d\n", 1063 bond->dev->name, bond->params.fail_over_mac); 1064 break; 1065 } 1066 1067 } 1068 1069 1070 /** 1071 * find_best_interface - select the best available slave to be the active one 1072 * @bond: our bonding struct 1073 * 1074 * Warning: Caller must hold curr_slave_lock for writing. 1075 */ 1076 static struct slave *bond_find_best_slave(struct bonding *bond) 1077 { 1078 struct slave *new_active, *old_active; 1079 struct slave *bestslave = NULL; 1080 int mintime = bond->params.updelay; 1081 int i; 1082 1083 new_active = old_active = bond->curr_active_slave; 1084 1085 if (!new_active) { /* there were no active slaves left */ 1086 if (bond->slave_cnt > 0) { /* found one slave */ 1087 new_active = bond->first_slave; 1088 } else { 1089 return NULL; /* still no slave, return NULL */ 1090 } 1091 } 1092 1093 /* first try the primary link; if arping, a link must tx/rx traffic 1094 * before it can be considered the curr_active_slave - also, we would skip 1095 * slaves between the curr_active_slave and primary_slave that may be up 1096 * and able to arp 1097 */ 1098 if ((bond->primary_slave) && 1099 (!bond->params.arp_interval) && 1100 (IS_UP(bond->primary_slave->dev))) { 1101 new_active = bond->primary_slave; 1102 } 1103 1104 /* remember where to stop iterating over the slaves */ 1105 old_active = new_active; 1106 1107 bond_for_each_slave_from(bond, new_active, i, old_active) { 1108 if (IS_UP(new_active->dev)) { 1109 if (new_active->link == BOND_LINK_UP) { 1110 return new_active; 1111 } else if (new_active->link == BOND_LINK_BACK) { 1112 /* link up, but waiting for stabilization */ 1113 if (new_active->delay < mintime) { 1114 mintime = new_active->delay; 1115 bestslave = new_active; 1116 } 1117 } 1118 } 1119 } 1120 1121 return bestslave; 1122 } 1123 1124 /** 1125 * change_active_interface - change the active slave into the specified one 1126 * @bond: our bonding struct 1127 * @new: the new slave to make the active one 1128 * 1129 * Set the new slave to the bond's settings and unset them on the old 1130 * curr_active_slave. 1131 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1132 * 1133 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1134 * because it is apparently the best available slave we have, even though its 1135 * updelay hasn't timed out yet. 1136 * 1137 * If new_active is not NULL, caller must hold bond->lock for read and 1138 * curr_slave_lock for write_bh. 1139 */ 1140 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1141 { 1142 struct slave *old_active = bond->curr_active_slave; 1143 1144 if (old_active == new_active) { 1145 return; 1146 } 1147 1148 if (new_active) { 1149 new_active->jiffies = jiffies; 1150 1151 if (new_active->link == BOND_LINK_BACK) { 1152 if (USES_PRIMARY(bond->params.mode)) { 1153 printk(KERN_INFO DRV_NAME 1154 ": %s: making interface %s the new " 1155 "active one %d ms earlier.\n", 1156 bond->dev->name, new_active->dev->name, 1157 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1158 } 1159 1160 new_active->delay = 0; 1161 new_active->link = BOND_LINK_UP; 1162 1163 if (bond->params.mode == BOND_MODE_8023AD) { 1164 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1165 } 1166 1167 if ((bond->params.mode == BOND_MODE_TLB) || 1168 (bond->params.mode == BOND_MODE_ALB)) { 1169 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1170 } 1171 } else { 1172 if (USES_PRIMARY(bond->params.mode)) { 1173 printk(KERN_INFO DRV_NAME 1174 ": %s: making interface %s the new " 1175 "active one.\n", 1176 bond->dev->name, new_active->dev->name); 1177 } 1178 } 1179 } 1180 1181 if (USES_PRIMARY(bond->params.mode)) { 1182 bond_mc_swap(bond, new_active, old_active); 1183 } 1184 1185 if ((bond->params.mode == BOND_MODE_TLB) || 1186 (bond->params.mode == BOND_MODE_ALB)) { 1187 bond_alb_handle_active_change(bond, new_active); 1188 if (old_active) 1189 bond_set_slave_inactive_flags(old_active); 1190 if (new_active) 1191 bond_set_slave_active_flags(new_active); 1192 } else { 1193 bond->curr_active_slave = new_active; 1194 } 1195 1196 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1197 if (old_active) { 1198 bond_set_slave_inactive_flags(old_active); 1199 } 1200 1201 if (new_active) { 1202 bond_set_slave_active_flags(new_active); 1203 1204 if (bond->params.fail_over_mac) 1205 bond_do_fail_over_mac(bond, new_active, 1206 old_active); 1207 1208 bond->send_grat_arp = bond->params.num_grat_arp; 1209 bond_send_gratuitous_arp(bond); 1210 1211 write_unlock_bh(&bond->curr_slave_lock); 1212 read_unlock(&bond->lock); 1213 1214 netdev_bonding_change(bond->dev); 1215 1216 read_lock(&bond->lock); 1217 write_lock_bh(&bond->curr_slave_lock); 1218 } 1219 } 1220 } 1221 1222 /** 1223 * bond_select_active_slave - select a new active slave, if needed 1224 * @bond: our bonding struct 1225 * 1226 * This functions shoud be called when one of the following occurs: 1227 * - The old curr_active_slave has been released or lost its link. 1228 * - The primary_slave has got its link back. 1229 * - A slave has got its link back and there's no old curr_active_slave. 1230 * 1231 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1232 */ 1233 void bond_select_active_slave(struct bonding *bond) 1234 { 1235 struct slave *best_slave; 1236 int rv; 1237 1238 best_slave = bond_find_best_slave(bond); 1239 if (best_slave != bond->curr_active_slave) { 1240 bond_change_active_slave(bond, best_slave); 1241 rv = bond_set_carrier(bond); 1242 if (!rv) 1243 return; 1244 1245 if (netif_carrier_ok(bond->dev)) { 1246 printk(KERN_INFO DRV_NAME 1247 ": %s: first active interface up!\n", 1248 bond->dev->name); 1249 } else { 1250 printk(KERN_INFO DRV_NAME ": %s: " 1251 "now running without any active interface !\n", 1252 bond->dev->name); 1253 } 1254 } 1255 } 1256 1257 /*--------------------------- slave list handling ---------------------------*/ 1258 1259 /* 1260 * This function attaches the slave to the end of list. 1261 * 1262 * bond->lock held for writing by caller. 1263 */ 1264 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1265 { 1266 if (bond->first_slave == NULL) { /* attaching the first slave */ 1267 new_slave->next = new_slave; 1268 new_slave->prev = new_slave; 1269 bond->first_slave = new_slave; 1270 } else { 1271 new_slave->next = bond->first_slave; 1272 new_slave->prev = bond->first_slave->prev; 1273 new_slave->next->prev = new_slave; 1274 new_slave->prev->next = new_slave; 1275 } 1276 1277 bond->slave_cnt++; 1278 } 1279 1280 /* 1281 * This function detaches the slave from the list. 1282 * WARNING: no check is made to verify if the slave effectively 1283 * belongs to <bond>. 1284 * Nothing is freed on return, structures are just unchained. 1285 * If any slave pointer in bond was pointing to <slave>, 1286 * it should be changed by the calling function. 1287 * 1288 * bond->lock held for writing by caller. 1289 */ 1290 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1291 { 1292 if (slave->next) { 1293 slave->next->prev = slave->prev; 1294 } 1295 1296 if (slave->prev) { 1297 slave->prev->next = slave->next; 1298 } 1299 1300 if (bond->first_slave == slave) { /* slave is the first slave */ 1301 if (bond->slave_cnt > 1) { /* there are more slave */ 1302 bond->first_slave = slave->next; 1303 } else { 1304 bond->first_slave = NULL; /* slave was the last one */ 1305 } 1306 } 1307 1308 slave->next = NULL; 1309 slave->prev = NULL; 1310 bond->slave_cnt--; 1311 } 1312 1313 /*---------------------------------- IOCTL ----------------------------------*/ 1314 1315 static int bond_sethwaddr(struct net_device *bond_dev, 1316 struct net_device *slave_dev) 1317 { 1318 dprintk("bond_dev=%p\n", bond_dev); 1319 dprintk("slave_dev=%p\n", slave_dev); 1320 dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1321 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1322 return 0; 1323 } 1324 1325 #define BOND_VLAN_FEATURES \ 1326 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ 1327 NETIF_F_HW_VLAN_FILTER) 1328 1329 /* 1330 * Compute the common dev->feature set available to all slaves. Some 1331 * feature bits are managed elsewhere, so preserve those feature bits 1332 * on the master device. 1333 */ 1334 static int bond_compute_features(struct bonding *bond) 1335 { 1336 struct slave *slave; 1337 struct net_device *bond_dev = bond->dev; 1338 unsigned long features = bond_dev->features; 1339 unsigned short max_hard_header_len = max((u16)ETH_HLEN, 1340 bond_dev->hard_header_len); 1341 int i; 1342 1343 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); 1344 features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA | 1345 NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; 1346 1347 bond_for_each_slave(bond, slave, i) { 1348 features = netdev_compute_features(features, 1349 slave->dev->features); 1350 if (slave->dev->hard_header_len > max_hard_header_len) 1351 max_hard_header_len = slave->dev->hard_header_len; 1352 } 1353 1354 features |= (bond_dev->features & BOND_VLAN_FEATURES); 1355 bond_dev->features = features; 1356 bond_dev->hard_header_len = max_hard_header_len; 1357 1358 return 0; 1359 } 1360 1361 1362 static void bond_setup_by_slave(struct net_device *bond_dev, 1363 struct net_device *slave_dev) 1364 { 1365 struct bonding *bond = bond_dev->priv; 1366 1367 bond_dev->neigh_setup = slave_dev->neigh_setup; 1368 bond_dev->header_ops = slave_dev->header_ops; 1369 1370 bond_dev->type = slave_dev->type; 1371 bond_dev->hard_header_len = slave_dev->hard_header_len; 1372 bond_dev->addr_len = slave_dev->addr_len; 1373 1374 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1375 slave_dev->addr_len); 1376 bond->setup_by_slave = 1; 1377 } 1378 1379 /* enslave device <slave> to bond device <master> */ 1380 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1381 { 1382 struct bonding *bond = bond_dev->priv; 1383 struct slave *new_slave = NULL; 1384 struct dev_mc_list *dmi; 1385 struct sockaddr addr; 1386 int link_reporting; 1387 int old_features = bond_dev->features; 1388 int res = 0; 1389 1390 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1391 slave_dev->do_ioctl == NULL) { 1392 printk(KERN_WARNING DRV_NAME 1393 ": %s: Warning: no link monitoring support for %s\n", 1394 bond_dev->name, slave_dev->name); 1395 } 1396 1397 /* bond must be initialized by bond_open() before enslaving */ 1398 if (!(bond_dev->flags & IFF_UP)) { 1399 printk(KERN_WARNING DRV_NAME 1400 " %s: master_dev is not up in bond_enslave\n", 1401 bond_dev->name); 1402 } 1403 1404 /* already enslaved */ 1405 if (slave_dev->flags & IFF_SLAVE) { 1406 dprintk("Error, Device was already enslaved\n"); 1407 return -EBUSY; 1408 } 1409 1410 /* vlan challenged mutual exclusion */ 1411 /* no need to lock since we're protected by rtnl_lock */ 1412 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1413 dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1414 if (!list_empty(&bond->vlan_list)) { 1415 printk(KERN_ERR DRV_NAME 1416 ": %s: Error: cannot enslave VLAN " 1417 "challenged slave %s on VLAN enabled " 1418 "bond %s\n", bond_dev->name, slave_dev->name, 1419 bond_dev->name); 1420 return -EPERM; 1421 } else { 1422 printk(KERN_WARNING DRV_NAME 1423 ": %s: Warning: enslaved VLAN challenged " 1424 "slave %s. Adding VLANs will be blocked as " 1425 "long as %s is part of bond %s\n", 1426 bond_dev->name, slave_dev->name, slave_dev->name, 1427 bond_dev->name); 1428 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1429 } 1430 } else { 1431 dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1432 if (bond->slave_cnt == 0) { 1433 /* First slave, and it is not VLAN challenged, 1434 * so remove the block of adding VLANs over the bond. 1435 */ 1436 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1437 } 1438 } 1439 1440 /* 1441 * Old ifenslave binaries are no longer supported. These can 1442 * be identified with moderate accurary by the state of the slave: 1443 * the current ifenslave will set the interface down prior to 1444 * enslaving it; the old ifenslave will not. 1445 */ 1446 if ((slave_dev->flags & IFF_UP)) { 1447 printk(KERN_ERR DRV_NAME ": %s is up. " 1448 "This may be due to an out of date ifenslave.\n", 1449 slave_dev->name); 1450 res = -EPERM; 1451 goto err_undo_flags; 1452 } 1453 1454 /* set bonding device ether type by slave - bonding netdevices are 1455 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1456 * there is a need to override some of the type dependent attribs/funcs. 1457 * 1458 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1459 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1460 */ 1461 if (bond->slave_cnt == 0) { 1462 if (slave_dev->type != ARPHRD_ETHER) 1463 bond_setup_by_slave(bond_dev, slave_dev); 1464 } else if (bond_dev->type != slave_dev->type) { 1465 printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different " 1466 "from other slaves (%d), can not enslave it.\n", 1467 slave_dev->name, 1468 slave_dev->type, bond_dev->type); 1469 res = -EINVAL; 1470 goto err_undo_flags; 1471 } 1472 1473 if (slave_dev->set_mac_address == NULL) { 1474 if (bond->slave_cnt == 0) { 1475 printk(KERN_WARNING DRV_NAME 1476 ": %s: Warning: The first slave device " 1477 "specified does not support setting the MAC " 1478 "address. Setting fail_over_mac to active.", 1479 bond_dev->name); 1480 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1481 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1482 printk(KERN_ERR DRV_NAME 1483 ": %s: Error: The slave device specified " 1484 "does not support setting the MAC address, " 1485 "but fail_over_mac is not set to active.\n" 1486 , bond_dev->name); 1487 res = -EOPNOTSUPP; 1488 goto err_undo_flags; 1489 } 1490 } 1491 1492 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1493 if (!new_slave) { 1494 res = -ENOMEM; 1495 goto err_undo_flags; 1496 } 1497 1498 /* save slave's original flags before calling 1499 * netdev_set_master and dev_open 1500 */ 1501 new_slave->original_flags = slave_dev->flags; 1502 1503 /* 1504 * Save slave's original ("permanent") mac address for modes 1505 * that need it, and for restoring it upon release, and then 1506 * set it to the master's address 1507 */ 1508 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1509 1510 if (!bond->params.fail_over_mac) { 1511 /* 1512 * Set slave to master's mac address. The application already 1513 * set the master's mac address to that of the first slave 1514 */ 1515 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1516 addr.sa_family = slave_dev->type; 1517 res = dev_set_mac_address(slave_dev, &addr); 1518 if (res) { 1519 dprintk("Error %d calling set_mac_address\n", res); 1520 goto err_free; 1521 } 1522 } 1523 1524 res = netdev_set_master(slave_dev, bond_dev); 1525 if (res) { 1526 dprintk("Error %d calling netdev_set_master\n", res); 1527 goto err_restore_mac; 1528 } 1529 /* open the slave since the application closed it */ 1530 res = dev_open(slave_dev); 1531 if (res) { 1532 dprintk("Openning slave %s failed\n", slave_dev->name); 1533 goto err_unset_master; 1534 } 1535 1536 new_slave->dev = slave_dev; 1537 slave_dev->priv_flags |= IFF_BONDING; 1538 1539 if ((bond->params.mode == BOND_MODE_TLB) || 1540 (bond->params.mode == BOND_MODE_ALB)) { 1541 /* bond_alb_init_slave() must be called before all other stages since 1542 * it might fail and we do not want to have to undo everything 1543 */ 1544 res = bond_alb_init_slave(bond, new_slave); 1545 if (res) { 1546 goto err_close; 1547 } 1548 } 1549 1550 /* If the mode USES_PRIMARY, then the new slave gets the 1551 * master's promisc (and mc) settings only if it becomes the 1552 * curr_active_slave, and that is taken care of later when calling 1553 * bond_change_active() 1554 */ 1555 if (!USES_PRIMARY(bond->params.mode)) { 1556 /* set promiscuity level to new slave */ 1557 if (bond_dev->flags & IFF_PROMISC) { 1558 res = dev_set_promiscuity(slave_dev, 1); 1559 if (res) 1560 goto err_close; 1561 } 1562 1563 /* set allmulti level to new slave */ 1564 if (bond_dev->flags & IFF_ALLMULTI) { 1565 res = dev_set_allmulti(slave_dev, 1); 1566 if (res) 1567 goto err_close; 1568 } 1569 1570 netif_addr_lock_bh(bond_dev); 1571 /* upload master's mc_list to new slave */ 1572 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 1573 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 1574 } 1575 netif_addr_unlock_bh(bond_dev); 1576 } 1577 1578 if (bond->params.mode == BOND_MODE_8023AD) { 1579 /* add lacpdu mc addr to mc list */ 1580 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1581 1582 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 1583 } 1584 1585 bond_add_vlans_on_slave(bond, slave_dev); 1586 1587 write_lock_bh(&bond->lock); 1588 1589 bond_attach_slave(bond, new_slave); 1590 1591 new_slave->delay = 0; 1592 new_slave->link_failure_count = 0; 1593 1594 bond_compute_features(bond); 1595 1596 write_unlock_bh(&bond->lock); 1597 1598 read_lock(&bond->lock); 1599 1600 new_slave->last_arp_rx = jiffies; 1601 1602 if (bond->params.miimon && !bond->params.use_carrier) { 1603 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1604 1605 if ((link_reporting == -1) && !bond->params.arp_interval) { 1606 /* 1607 * miimon is set but a bonded network driver 1608 * does not support ETHTOOL/MII and 1609 * arp_interval is not set. Note: if 1610 * use_carrier is enabled, we will never go 1611 * here (because netif_carrier is always 1612 * supported); thus, we don't need to change 1613 * the messages for netif_carrier. 1614 */ 1615 printk(KERN_WARNING DRV_NAME 1616 ": %s: Warning: MII and ETHTOOL support not " 1617 "available for interface %s, and " 1618 "arp_interval/arp_ip_target module parameters " 1619 "not specified, thus bonding will not detect " 1620 "link failures! see bonding.txt for details.\n", 1621 bond_dev->name, slave_dev->name); 1622 } else if (link_reporting == -1) { 1623 /* unable get link status using mii/ethtool */ 1624 printk(KERN_WARNING DRV_NAME 1625 ": %s: Warning: can't get link status from " 1626 "interface %s; the network driver associated " 1627 "with this interface does not support MII or " 1628 "ETHTOOL link status reporting, thus miimon " 1629 "has no effect on this interface.\n", 1630 bond_dev->name, slave_dev->name); 1631 } 1632 } 1633 1634 /* check for initial state */ 1635 if (!bond->params.miimon || 1636 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1637 if (bond->params.updelay) { 1638 dprintk("Initial state of slave_dev is " 1639 "BOND_LINK_BACK\n"); 1640 new_slave->link = BOND_LINK_BACK; 1641 new_slave->delay = bond->params.updelay; 1642 } else { 1643 dprintk("Initial state of slave_dev is " 1644 "BOND_LINK_UP\n"); 1645 new_slave->link = BOND_LINK_UP; 1646 } 1647 new_slave->jiffies = jiffies; 1648 } else { 1649 dprintk("Initial state of slave_dev is " 1650 "BOND_LINK_DOWN\n"); 1651 new_slave->link = BOND_LINK_DOWN; 1652 } 1653 1654 if (bond_update_speed_duplex(new_slave) && 1655 (new_slave->link != BOND_LINK_DOWN)) { 1656 printk(KERN_WARNING DRV_NAME 1657 ": %s: Warning: failed to get speed and duplex from %s, " 1658 "assumed to be 100Mb/sec and Full.\n", 1659 bond_dev->name, new_slave->dev->name); 1660 1661 if (bond->params.mode == BOND_MODE_8023AD) { 1662 printk(KERN_WARNING DRV_NAME 1663 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " 1664 "support in base driver for proper aggregator " 1665 "selection.\n", bond_dev->name); 1666 } 1667 } 1668 1669 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1670 /* if there is a primary slave, remember it */ 1671 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1672 bond->primary_slave = new_slave; 1673 } 1674 } 1675 1676 write_lock_bh(&bond->curr_slave_lock); 1677 1678 switch (bond->params.mode) { 1679 case BOND_MODE_ACTIVEBACKUP: 1680 bond_set_slave_inactive_flags(new_slave); 1681 bond_select_active_slave(bond); 1682 break; 1683 case BOND_MODE_8023AD: 1684 /* in 802.3ad mode, the internal mechanism 1685 * will activate the slaves in the selected 1686 * aggregator 1687 */ 1688 bond_set_slave_inactive_flags(new_slave); 1689 /* if this is the first slave */ 1690 if (bond->slave_cnt == 1) { 1691 SLAVE_AD_INFO(new_slave).id = 1; 1692 /* Initialize AD with the number of times that the AD timer is called in 1 second 1693 * can be called only after the mac address of the bond is set 1694 */ 1695 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1696 bond->params.lacp_fast); 1697 } else { 1698 SLAVE_AD_INFO(new_slave).id = 1699 SLAVE_AD_INFO(new_slave->prev).id + 1; 1700 } 1701 1702 bond_3ad_bind_slave(new_slave); 1703 break; 1704 case BOND_MODE_TLB: 1705 case BOND_MODE_ALB: 1706 new_slave->state = BOND_STATE_ACTIVE; 1707 bond_set_slave_inactive_flags(new_slave); 1708 break; 1709 default: 1710 dprintk("This slave is always active in trunk mode\n"); 1711 1712 /* always active in trunk mode */ 1713 new_slave->state = BOND_STATE_ACTIVE; 1714 1715 /* In trunking mode there is little meaning to curr_active_slave 1716 * anyway (it holds no special properties of the bond device), 1717 * so we can change it without calling change_active_interface() 1718 */ 1719 if (!bond->curr_active_slave) { 1720 bond->curr_active_slave = new_slave; 1721 } 1722 break; 1723 } /* switch(bond_mode) */ 1724 1725 write_unlock_bh(&bond->curr_slave_lock); 1726 1727 bond_set_carrier(bond); 1728 1729 read_unlock(&bond->lock); 1730 1731 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1732 if (res) 1733 goto err_close; 1734 1735 printk(KERN_INFO DRV_NAME 1736 ": %s: enslaving %s as a%s interface with a%s link.\n", 1737 bond_dev->name, slave_dev->name, 1738 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1739 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1740 1741 /* enslave is successful */ 1742 return 0; 1743 1744 /* Undo stages on error */ 1745 err_close: 1746 dev_close(slave_dev); 1747 1748 err_unset_master: 1749 netdev_set_master(slave_dev, NULL); 1750 1751 err_restore_mac: 1752 if (!bond->params.fail_over_mac) { 1753 /* XXX TODO - fom follow mode needs to change master's 1754 * MAC if this slave's MAC is in use by the bond, or at 1755 * least print a warning. 1756 */ 1757 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1758 addr.sa_family = slave_dev->type; 1759 dev_set_mac_address(slave_dev, &addr); 1760 } 1761 1762 err_free: 1763 kfree(new_slave); 1764 1765 err_undo_flags: 1766 bond_dev->features = old_features; 1767 1768 return res; 1769 } 1770 1771 /* 1772 * Try to release the slave device <slave> from the bond device <master> 1773 * It is legal to access curr_active_slave without a lock because all the function 1774 * is write-locked. 1775 * 1776 * The rules for slave state should be: 1777 * for Active/Backup: 1778 * Active stays on all backups go down 1779 * for Bonded connections: 1780 * The first up interface should be left on and all others downed. 1781 */ 1782 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1783 { 1784 struct bonding *bond = bond_dev->priv; 1785 struct slave *slave, *oldcurrent; 1786 struct sockaddr addr; 1787 int mac_addr_differ; 1788 DECLARE_MAC_BUF(mac); 1789 1790 /* slave is not a slave or master is not master of this slave */ 1791 if (!(slave_dev->flags & IFF_SLAVE) || 1792 (slave_dev->master != bond_dev)) { 1793 printk(KERN_ERR DRV_NAME 1794 ": %s: Error: cannot release %s.\n", 1795 bond_dev->name, slave_dev->name); 1796 return -EINVAL; 1797 } 1798 1799 write_lock_bh(&bond->lock); 1800 1801 slave = bond_get_slave_by_dev(bond, slave_dev); 1802 if (!slave) { 1803 /* not a slave of this bond */ 1804 printk(KERN_INFO DRV_NAME 1805 ": %s: %s not enslaved\n", 1806 bond_dev->name, slave_dev->name); 1807 write_unlock_bh(&bond->lock); 1808 return -EINVAL; 1809 } 1810 1811 if (!bond->params.fail_over_mac) { 1812 mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr, 1813 ETH_ALEN); 1814 if (!mac_addr_differ && (bond->slave_cnt > 1)) 1815 printk(KERN_WARNING DRV_NAME 1816 ": %s: Warning: the permanent HWaddr of %s - " 1817 "%s - is still in use by %s. " 1818 "Set the HWaddr of %s to a different address " 1819 "to avoid conflicts.\n", 1820 bond_dev->name, slave_dev->name, 1821 print_mac(mac, slave->perm_hwaddr), 1822 bond_dev->name, slave_dev->name); 1823 } 1824 1825 /* Inform AD package of unbinding of slave. */ 1826 if (bond->params.mode == BOND_MODE_8023AD) { 1827 /* must be called before the slave is 1828 * detached from the list 1829 */ 1830 bond_3ad_unbind_slave(slave); 1831 } 1832 1833 printk(KERN_INFO DRV_NAME 1834 ": %s: releasing %s interface %s\n", 1835 bond_dev->name, 1836 (slave->state == BOND_STATE_ACTIVE) 1837 ? "active" : "backup", 1838 slave_dev->name); 1839 1840 oldcurrent = bond->curr_active_slave; 1841 1842 bond->current_arp_slave = NULL; 1843 1844 /* release the slave from its bond */ 1845 bond_detach_slave(bond, slave); 1846 1847 bond_compute_features(bond); 1848 1849 if (bond->primary_slave == slave) { 1850 bond->primary_slave = NULL; 1851 } 1852 1853 if (oldcurrent == slave) { 1854 bond_change_active_slave(bond, NULL); 1855 } 1856 1857 if ((bond->params.mode == BOND_MODE_TLB) || 1858 (bond->params.mode == BOND_MODE_ALB)) { 1859 /* Must be called only after the slave has been 1860 * detached from the list and the curr_active_slave 1861 * has been cleared (if our_slave == old_current), 1862 * but before a new active slave is selected. 1863 */ 1864 write_unlock_bh(&bond->lock); 1865 bond_alb_deinit_slave(bond, slave); 1866 write_lock_bh(&bond->lock); 1867 } 1868 1869 if (oldcurrent == slave) { 1870 /* 1871 * Note that we hold RTNL over this sequence, so there 1872 * is no concern that another slave add/remove event 1873 * will interfere. 1874 */ 1875 write_unlock_bh(&bond->lock); 1876 read_lock(&bond->lock); 1877 write_lock_bh(&bond->curr_slave_lock); 1878 1879 bond_select_active_slave(bond); 1880 1881 write_unlock_bh(&bond->curr_slave_lock); 1882 read_unlock(&bond->lock); 1883 write_lock_bh(&bond->lock); 1884 } 1885 1886 if (bond->slave_cnt == 0) { 1887 bond_set_carrier(bond); 1888 1889 /* if the last slave was removed, zero the mac address 1890 * of the master so it will be set by the application 1891 * to the mac address of the first slave 1892 */ 1893 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1894 1895 if (list_empty(&bond->vlan_list)) { 1896 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1897 } else { 1898 printk(KERN_WARNING DRV_NAME 1899 ": %s: Warning: clearing HW address of %s while it " 1900 "still has VLANs.\n", 1901 bond_dev->name, bond_dev->name); 1902 printk(KERN_WARNING DRV_NAME 1903 ": %s: When re-adding slaves, make sure the bond's " 1904 "HW address matches its VLANs'.\n", 1905 bond_dev->name); 1906 } 1907 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1908 !bond_has_challenged_slaves(bond)) { 1909 printk(KERN_INFO DRV_NAME 1910 ": %s: last VLAN challenged slave %s " 1911 "left bond %s. VLAN blocking is removed\n", 1912 bond_dev->name, slave_dev->name, bond_dev->name); 1913 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1914 } 1915 1916 write_unlock_bh(&bond->lock); 1917 1918 /* must do this from outside any spinlocks */ 1919 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1920 1921 bond_del_vlans_from_slave(bond, slave_dev); 1922 1923 /* If the mode USES_PRIMARY, then we should only remove its 1924 * promisc and mc settings if it was the curr_active_slave, but that was 1925 * already taken care of above when we detached the slave 1926 */ 1927 if (!USES_PRIMARY(bond->params.mode)) { 1928 /* unset promiscuity level from slave */ 1929 if (bond_dev->flags & IFF_PROMISC) { 1930 dev_set_promiscuity(slave_dev, -1); 1931 } 1932 1933 /* unset allmulti level from slave */ 1934 if (bond_dev->flags & IFF_ALLMULTI) { 1935 dev_set_allmulti(slave_dev, -1); 1936 } 1937 1938 /* flush master's mc_list from slave */ 1939 netif_addr_lock_bh(bond_dev); 1940 bond_mc_list_flush(bond_dev, slave_dev); 1941 netif_addr_unlock_bh(bond_dev); 1942 } 1943 1944 netdev_set_master(slave_dev, NULL); 1945 1946 /* close slave before restoring its mac address */ 1947 dev_close(slave_dev); 1948 1949 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1950 /* restore original ("permanent") mac address */ 1951 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1952 addr.sa_family = slave_dev->type; 1953 dev_set_mac_address(slave_dev, &addr); 1954 } 1955 1956 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1957 IFF_SLAVE_INACTIVE | IFF_BONDING | 1958 IFF_SLAVE_NEEDARP); 1959 1960 kfree(slave); 1961 1962 return 0; /* deletion OK */ 1963 } 1964 1965 /* 1966 * Destroy a bonding device. 1967 * Must be under rtnl_lock when this function is called. 1968 */ 1969 void bond_destroy(struct bonding *bond) 1970 { 1971 bond_deinit(bond->dev); 1972 bond_destroy_sysfs_entry(bond); 1973 unregister_netdevice(bond->dev); 1974 } 1975 1976 /* 1977 * First release a slave and than destroy the bond if no more slaves iare left. 1978 * Must be under rtnl_lock when this function is called. 1979 */ 1980 int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev) 1981 { 1982 struct bonding *bond = bond_dev->priv; 1983 int ret; 1984 1985 ret = bond_release(bond_dev, slave_dev); 1986 if ((ret == 0) && (bond->slave_cnt == 0)) { 1987 printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n", 1988 bond_dev->name, bond_dev->name); 1989 bond_destroy(bond); 1990 } 1991 return ret; 1992 } 1993 1994 /* 1995 * This function releases all slaves. 1996 */ 1997 static int bond_release_all(struct net_device *bond_dev) 1998 { 1999 struct bonding *bond = bond_dev->priv; 2000 struct slave *slave; 2001 struct net_device *slave_dev; 2002 struct sockaddr addr; 2003 2004 write_lock_bh(&bond->lock); 2005 2006 netif_carrier_off(bond_dev); 2007 2008 if (bond->slave_cnt == 0) { 2009 goto out; 2010 } 2011 2012 bond->current_arp_slave = NULL; 2013 bond->primary_slave = NULL; 2014 bond_change_active_slave(bond, NULL); 2015 2016 while ((slave = bond->first_slave) != NULL) { 2017 /* Inform AD package of unbinding of slave 2018 * before slave is detached from the list. 2019 */ 2020 if (bond->params.mode == BOND_MODE_8023AD) { 2021 bond_3ad_unbind_slave(slave); 2022 } 2023 2024 slave_dev = slave->dev; 2025 bond_detach_slave(bond, slave); 2026 2027 /* now that the slave is detached, unlock and perform 2028 * all the undo steps that should not be called from 2029 * within a lock. 2030 */ 2031 write_unlock_bh(&bond->lock); 2032 2033 if ((bond->params.mode == BOND_MODE_TLB) || 2034 (bond->params.mode == BOND_MODE_ALB)) { 2035 /* must be called only after the slave 2036 * has been detached from the list 2037 */ 2038 bond_alb_deinit_slave(bond, slave); 2039 } 2040 2041 bond_compute_features(bond); 2042 2043 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2044 bond_del_vlans_from_slave(bond, slave_dev); 2045 2046 /* If the mode USES_PRIMARY, then we should only remove its 2047 * promisc and mc settings if it was the curr_active_slave, but that was 2048 * already taken care of above when we detached the slave 2049 */ 2050 if (!USES_PRIMARY(bond->params.mode)) { 2051 /* unset promiscuity level from slave */ 2052 if (bond_dev->flags & IFF_PROMISC) { 2053 dev_set_promiscuity(slave_dev, -1); 2054 } 2055 2056 /* unset allmulti level from slave */ 2057 if (bond_dev->flags & IFF_ALLMULTI) { 2058 dev_set_allmulti(slave_dev, -1); 2059 } 2060 2061 /* flush master's mc_list from slave */ 2062 netif_addr_lock_bh(bond_dev); 2063 bond_mc_list_flush(bond_dev, slave_dev); 2064 netif_addr_unlock_bh(bond_dev); 2065 } 2066 2067 netdev_set_master(slave_dev, NULL); 2068 2069 /* close slave before restoring its mac address */ 2070 dev_close(slave_dev); 2071 2072 if (!bond->params.fail_over_mac) { 2073 /* restore original ("permanent") mac address*/ 2074 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2075 addr.sa_family = slave_dev->type; 2076 dev_set_mac_address(slave_dev, &addr); 2077 } 2078 2079 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 2080 IFF_SLAVE_INACTIVE); 2081 2082 kfree(slave); 2083 2084 /* re-acquire the lock before getting the next slave */ 2085 write_lock_bh(&bond->lock); 2086 } 2087 2088 /* zero the mac address of the master so it will be 2089 * set by the application to the mac address of the 2090 * first slave 2091 */ 2092 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2093 2094 if (list_empty(&bond->vlan_list)) { 2095 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2096 } else { 2097 printk(KERN_WARNING DRV_NAME 2098 ": %s: Warning: clearing HW address of %s while it " 2099 "still has VLANs.\n", 2100 bond_dev->name, bond_dev->name); 2101 printk(KERN_WARNING DRV_NAME 2102 ": %s: When re-adding slaves, make sure the bond's " 2103 "HW address matches its VLANs'.\n", 2104 bond_dev->name); 2105 } 2106 2107 printk(KERN_INFO DRV_NAME 2108 ": %s: released all slaves\n", 2109 bond_dev->name); 2110 2111 out: 2112 write_unlock_bh(&bond->lock); 2113 2114 return 0; 2115 } 2116 2117 /* 2118 * This function changes the active slave to slave <slave_dev>. 2119 * It returns -EINVAL in the following cases. 2120 * - <slave_dev> is not found in the list. 2121 * - There is not active slave now. 2122 * - <slave_dev> is already active. 2123 * - The link state of <slave_dev> is not BOND_LINK_UP. 2124 * - <slave_dev> is not running. 2125 * In these cases, this fuction does nothing. 2126 * In the other cases, currnt_slave pointer is changed and 0 is returned. 2127 */ 2128 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2129 { 2130 struct bonding *bond = bond_dev->priv; 2131 struct slave *old_active = NULL; 2132 struct slave *new_active = NULL; 2133 int res = 0; 2134 2135 if (!USES_PRIMARY(bond->params.mode)) { 2136 return -EINVAL; 2137 } 2138 2139 /* Verify that master_dev is indeed the master of slave_dev */ 2140 if (!(slave_dev->flags & IFF_SLAVE) || 2141 (slave_dev->master != bond_dev)) { 2142 return -EINVAL; 2143 } 2144 2145 read_lock(&bond->lock); 2146 2147 read_lock(&bond->curr_slave_lock); 2148 old_active = bond->curr_active_slave; 2149 read_unlock(&bond->curr_slave_lock); 2150 2151 new_active = bond_get_slave_by_dev(bond, slave_dev); 2152 2153 /* 2154 * Changing to the current active: do nothing; return success. 2155 */ 2156 if (new_active && (new_active == old_active)) { 2157 read_unlock(&bond->lock); 2158 return 0; 2159 } 2160 2161 if ((new_active) && 2162 (old_active) && 2163 (new_active->link == BOND_LINK_UP) && 2164 IS_UP(new_active->dev)) { 2165 write_lock_bh(&bond->curr_slave_lock); 2166 bond_change_active_slave(bond, new_active); 2167 write_unlock_bh(&bond->curr_slave_lock); 2168 } else { 2169 res = -EINVAL; 2170 } 2171 2172 read_unlock(&bond->lock); 2173 2174 return res; 2175 } 2176 2177 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2178 { 2179 struct bonding *bond = bond_dev->priv; 2180 2181 info->bond_mode = bond->params.mode; 2182 info->miimon = bond->params.miimon; 2183 2184 read_lock(&bond->lock); 2185 info->num_slaves = bond->slave_cnt; 2186 read_unlock(&bond->lock); 2187 2188 return 0; 2189 } 2190 2191 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2192 { 2193 struct bonding *bond = bond_dev->priv; 2194 struct slave *slave; 2195 int i, found = 0; 2196 2197 if (info->slave_id < 0) { 2198 return -ENODEV; 2199 } 2200 2201 read_lock(&bond->lock); 2202 2203 bond_for_each_slave(bond, slave, i) { 2204 if (i == (int)info->slave_id) { 2205 found = 1; 2206 break; 2207 } 2208 } 2209 2210 read_unlock(&bond->lock); 2211 2212 if (found) { 2213 strcpy(info->slave_name, slave->dev->name); 2214 info->link = slave->link; 2215 info->state = slave->state; 2216 info->link_failure_count = slave->link_failure_count; 2217 } else { 2218 return -ENODEV; 2219 } 2220 2221 return 0; 2222 } 2223 2224 /*-------------------------------- Monitoring -------------------------------*/ 2225 2226 /* 2227 * if !have_locks, return nonzero if a failover is necessary. if 2228 * have_locks, do whatever failover activities are needed. 2229 * 2230 * This is to separate the inspection and failover steps for locking 2231 * purposes; failover requires rtnl, but acquiring it for every 2232 * inspection is undesirable, so a wrapper first does inspection, and 2233 * the acquires the necessary locks and calls again to perform 2234 * failover if needed. Since all locks are dropped, a complete 2235 * restart is needed between calls. 2236 */ 2237 static int __bond_mii_monitor(struct bonding *bond, int have_locks) 2238 { 2239 struct slave *slave, *oldcurrent; 2240 int do_failover = 0; 2241 int i; 2242 2243 if (bond->slave_cnt == 0) 2244 goto out; 2245 2246 /* we will try to read the link status of each of our slaves, and 2247 * set their IFF_RUNNING flag appropriately. For each slave not 2248 * supporting MII status, we won't do anything so that a user-space 2249 * program could monitor the link itself if needed. 2250 */ 2251 2252 read_lock(&bond->curr_slave_lock); 2253 oldcurrent = bond->curr_active_slave; 2254 read_unlock(&bond->curr_slave_lock); 2255 2256 bond_for_each_slave(bond, slave, i) { 2257 struct net_device *slave_dev = slave->dev; 2258 int link_state; 2259 u16 old_speed = slave->speed; 2260 u8 old_duplex = slave->duplex; 2261 2262 link_state = bond_check_dev_link(bond, slave_dev, 0); 2263 2264 switch (slave->link) { 2265 case BOND_LINK_UP: /* the link was up */ 2266 if (link_state == BMSR_LSTATUS) { 2267 if (!oldcurrent) { 2268 if (!have_locks) 2269 return 1; 2270 do_failover = 1; 2271 } 2272 break; 2273 } else { /* link going down */ 2274 slave->link = BOND_LINK_FAIL; 2275 slave->delay = bond->params.downdelay; 2276 2277 if (slave->link_failure_count < UINT_MAX) { 2278 slave->link_failure_count++; 2279 } 2280 2281 if (bond->params.downdelay) { 2282 printk(KERN_INFO DRV_NAME 2283 ": %s: link status down for %s " 2284 "interface %s, disabling it in " 2285 "%d ms.\n", 2286 bond->dev->name, 2287 IS_UP(slave_dev) 2288 ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) 2289 ? ((slave == oldcurrent) 2290 ? "active " : "backup ") 2291 : "") 2292 : "idle ", 2293 slave_dev->name, 2294 bond->params.downdelay * bond->params.miimon); 2295 } 2296 } 2297 /* no break ! fall through the BOND_LINK_FAIL test to 2298 ensure proper action to be taken 2299 */ 2300 case BOND_LINK_FAIL: /* the link has just gone down */ 2301 if (link_state != BMSR_LSTATUS) { 2302 /* link stays down */ 2303 if (slave->delay <= 0) { 2304 if (!have_locks) 2305 return 1; 2306 2307 /* link down for too long time */ 2308 slave->link = BOND_LINK_DOWN; 2309 2310 /* in active/backup mode, we must 2311 * completely disable this interface 2312 */ 2313 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) || 2314 (bond->params.mode == BOND_MODE_8023AD)) { 2315 bond_set_slave_inactive_flags(slave); 2316 } 2317 2318 printk(KERN_INFO DRV_NAME 2319 ": %s: link status definitely " 2320 "down for interface %s, " 2321 "disabling it\n", 2322 bond->dev->name, 2323 slave_dev->name); 2324 2325 /* notify ad that the link status has changed */ 2326 if (bond->params.mode == BOND_MODE_8023AD) { 2327 bond_3ad_handle_link_change(slave, BOND_LINK_DOWN); 2328 } 2329 2330 if ((bond->params.mode == BOND_MODE_TLB) || 2331 (bond->params.mode == BOND_MODE_ALB)) { 2332 bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN); 2333 } 2334 2335 if (slave == oldcurrent) { 2336 do_failover = 1; 2337 } 2338 } else { 2339 slave->delay--; 2340 } 2341 } else { 2342 /* link up again */ 2343 slave->link = BOND_LINK_UP; 2344 slave->jiffies = jiffies; 2345 printk(KERN_INFO DRV_NAME 2346 ": %s: link status up again after %d " 2347 "ms for interface %s.\n", 2348 bond->dev->name, 2349 (bond->params.downdelay - slave->delay) * bond->params.miimon, 2350 slave_dev->name); 2351 } 2352 break; 2353 case BOND_LINK_DOWN: /* the link was down */ 2354 if (link_state != BMSR_LSTATUS) { 2355 /* the link stays down, nothing more to do */ 2356 break; 2357 } else { /* link going up */ 2358 slave->link = BOND_LINK_BACK; 2359 slave->delay = bond->params.updelay; 2360 2361 if (bond->params.updelay) { 2362 /* if updelay == 0, no need to 2363 advertise about a 0 ms delay */ 2364 printk(KERN_INFO DRV_NAME 2365 ": %s: link status up for " 2366 "interface %s, enabling it " 2367 "in %d ms.\n", 2368 bond->dev->name, 2369 slave_dev->name, 2370 bond->params.updelay * bond->params.miimon); 2371 } 2372 } 2373 /* no break ! fall through the BOND_LINK_BACK state in 2374 case there's something to do. 2375 */ 2376 case BOND_LINK_BACK: /* the link has just come back */ 2377 if (link_state != BMSR_LSTATUS) { 2378 /* link down again */ 2379 slave->link = BOND_LINK_DOWN; 2380 2381 printk(KERN_INFO DRV_NAME 2382 ": %s: link status down again after %d " 2383 "ms for interface %s.\n", 2384 bond->dev->name, 2385 (bond->params.updelay - slave->delay) * bond->params.miimon, 2386 slave_dev->name); 2387 } else { 2388 /* link stays up */ 2389 if (slave->delay == 0) { 2390 if (!have_locks) 2391 return 1; 2392 2393 /* now the link has been up for long time enough */ 2394 slave->link = BOND_LINK_UP; 2395 slave->jiffies = jiffies; 2396 2397 if (bond->params.mode == BOND_MODE_8023AD) { 2398 /* prevent it from being the active one */ 2399 slave->state = BOND_STATE_BACKUP; 2400 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2401 /* make it immediately active */ 2402 slave->state = BOND_STATE_ACTIVE; 2403 } else if (slave != bond->primary_slave) { 2404 /* prevent it from being the active one */ 2405 slave->state = BOND_STATE_BACKUP; 2406 } 2407 2408 printk(KERN_INFO DRV_NAME 2409 ": %s: link status definitely " 2410 "up for interface %s.\n", 2411 bond->dev->name, 2412 slave_dev->name); 2413 2414 /* notify ad that the link status has changed */ 2415 if (bond->params.mode == BOND_MODE_8023AD) { 2416 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2417 } 2418 2419 if ((bond->params.mode == BOND_MODE_TLB) || 2420 (bond->params.mode == BOND_MODE_ALB)) { 2421 bond_alb_handle_link_change(bond, slave, BOND_LINK_UP); 2422 } 2423 2424 if ((!oldcurrent) || 2425 (slave == bond->primary_slave)) { 2426 do_failover = 1; 2427 } 2428 } else { 2429 slave->delay--; 2430 } 2431 } 2432 break; 2433 default: 2434 /* Should not happen */ 2435 printk(KERN_ERR DRV_NAME 2436 ": %s: Error: %s Illegal value (link=%d)\n", 2437 bond->dev->name, 2438 slave->dev->name, 2439 slave->link); 2440 goto out; 2441 } /* end of switch (slave->link) */ 2442 2443 bond_update_speed_duplex(slave); 2444 2445 if (bond->params.mode == BOND_MODE_8023AD) { 2446 if (old_speed != slave->speed) { 2447 bond_3ad_adapter_speed_changed(slave); 2448 } 2449 2450 if (old_duplex != slave->duplex) { 2451 bond_3ad_adapter_duplex_changed(slave); 2452 } 2453 } 2454 2455 } /* end of for */ 2456 2457 if (do_failover) { 2458 ASSERT_RTNL(); 2459 2460 write_lock_bh(&bond->curr_slave_lock); 2461 2462 bond_select_active_slave(bond); 2463 2464 write_unlock_bh(&bond->curr_slave_lock); 2465 2466 } else 2467 bond_set_carrier(bond); 2468 2469 out: 2470 return 0; 2471 } 2472 2473 /* 2474 * bond_mii_monitor 2475 * 2476 * Really a wrapper that splits the mii monitor into two phases: an 2477 * inspection, then (if inspection indicates something needs to be 2478 * done) an acquisition of appropriate locks followed by another pass 2479 * to implement whatever link state changes are indicated. 2480 */ 2481 void bond_mii_monitor(struct work_struct *work) 2482 { 2483 struct bonding *bond = container_of(work, struct bonding, 2484 mii_work.work); 2485 unsigned long delay; 2486 2487 read_lock(&bond->lock); 2488 if (bond->kill_timers) { 2489 read_unlock(&bond->lock); 2490 return; 2491 } 2492 2493 if (bond->send_grat_arp) { 2494 read_lock(&bond->curr_slave_lock); 2495 bond_send_gratuitous_arp(bond); 2496 read_unlock(&bond->curr_slave_lock); 2497 } 2498 2499 if (__bond_mii_monitor(bond, 0)) { 2500 read_unlock(&bond->lock); 2501 rtnl_lock(); 2502 read_lock(&bond->lock); 2503 __bond_mii_monitor(bond, 1); 2504 read_unlock(&bond->lock); 2505 rtnl_unlock(); /* might sleep, hold no other locks */ 2506 read_lock(&bond->lock); 2507 } 2508 2509 delay = msecs_to_jiffies(bond->params.miimon); 2510 read_unlock(&bond->lock); 2511 queue_delayed_work(bond->wq, &bond->mii_work, delay); 2512 } 2513 2514 static __be32 bond_glean_dev_ip(struct net_device *dev) 2515 { 2516 struct in_device *idev; 2517 struct in_ifaddr *ifa; 2518 __be32 addr = 0; 2519 2520 if (!dev) 2521 return 0; 2522 2523 rcu_read_lock(); 2524 idev = __in_dev_get_rcu(dev); 2525 if (!idev) 2526 goto out; 2527 2528 ifa = idev->ifa_list; 2529 if (!ifa) 2530 goto out; 2531 2532 addr = ifa->ifa_local; 2533 out: 2534 rcu_read_unlock(); 2535 return addr; 2536 } 2537 2538 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2539 { 2540 struct vlan_entry *vlan; 2541 2542 if (ip == bond->master_ip) 2543 return 1; 2544 2545 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2546 if (ip == vlan->vlan_ip) 2547 return 1; 2548 } 2549 2550 return 0; 2551 } 2552 2553 /* 2554 * We go to the (large) trouble of VLAN tagging ARP frames because 2555 * switches in VLAN mode (especially if ports are configured as 2556 * "native" to a VLAN) might not pass non-tagged frames. 2557 */ 2558 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2559 { 2560 struct sk_buff *skb; 2561 2562 dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2563 slave_dev->name, dest_ip, src_ip, vlan_id); 2564 2565 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2566 NULL, slave_dev->dev_addr, NULL); 2567 2568 if (!skb) { 2569 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); 2570 return; 2571 } 2572 if (vlan_id) { 2573 skb = vlan_put_tag(skb, vlan_id); 2574 if (!skb) { 2575 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); 2576 return; 2577 } 2578 } 2579 arp_xmit(skb); 2580 } 2581 2582 2583 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2584 { 2585 int i, vlan_id, rv; 2586 __be32 *targets = bond->params.arp_targets; 2587 struct vlan_entry *vlan; 2588 struct net_device *vlan_dev; 2589 struct flowi fl; 2590 struct rtable *rt; 2591 2592 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2593 if (!targets[i]) 2594 continue; 2595 dprintk("basa: target %x\n", targets[i]); 2596 if (list_empty(&bond->vlan_list)) { 2597 dprintk("basa: empty vlan: arp_send\n"); 2598 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2599 bond->master_ip, 0); 2600 continue; 2601 } 2602 2603 /* 2604 * If VLANs are configured, we do a route lookup to 2605 * determine which VLAN interface would be used, so we 2606 * can tag the ARP with the proper VLAN tag. 2607 */ 2608 memset(&fl, 0, sizeof(fl)); 2609 fl.fl4_dst = targets[i]; 2610 fl.fl4_tos = RTO_ONLINK; 2611 2612 rv = ip_route_output_key(&init_net, &rt, &fl); 2613 if (rv) { 2614 if (net_ratelimit()) { 2615 printk(KERN_WARNING DRV_NAME 2616 ": %s: no route to arp_ip_target %u.%u.%u.%u\n", 2617 bond->dev->name, NIPQUAD(fl.fl4_dst)); 2618 } 2619 continue; 2620 } 2621 2622 /* 2623 * This target is not on a VLAN 2624 */ 2625 if (rt->u.dst.dev == bond->dev) { 2626 ip_rt_put(rt); 2627 dprintk("basa: rtdev == bond->dev: arp_send\n"); 2628 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2629 bond->master_ip, 0); 2630 continue; 2631 } 2632 2633 vlan_id = 0; 2634 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2635 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2636 if (vlan_dev == rt->u.dst.dev) { 2637 vlan_id = vlan->vlan_id; 2638 dprintk("basa: vlan match on %s %d\n", 2639 vlan_dev->name, vlan_id); 2640 break; 2641 } 2642 } 2643 2644 if (vlan_id) { 2645 ip_rt_put(rt); 2646 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2647 vlan->vlan_ip, vlan_id); 2648 continue; 2649 } 2650 2651 if (net_ratelimit()) { 2652 printk(KERN_WARNING DRV_NAME 2653 ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n", 2654 bond->dev->name, NIPQUAD(fl.fl4_dst), 2655 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); 2656 } 2657 ip_rt_put(rt); 2658 } 2659 } 2660 2661 /* 2662 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2663 * for each VLAN above us. 2664 * 2665 * Caller must hold curr_slave_lock for read or better 2666 */ 2667 static void bond_send_gratuitous_arp(struct bonding *bond) 2668 { 2669 struct slave *slave = bond->curr_active_slave; 2670 struct vlan_entry *vlan; 2671 struct net_device *vlan_dev; 2672 2673 dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, 2674 slave ? slave->dev->name : "NULL"); 2675 2676 if (!slave || !bond->send_grat_arp || 2677 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 2678 return; 2679 2680 bond->send_grat_arp--; 2681 2682 if (bond->master_ip) { 2683 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2684 bond->master_ip, 0); 2685 } 2686 2687 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2688 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2689 if (vlan->vlan_ip) { 2690 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2691 vlan->vlan_ip, vlan->vlan_id); 2692 } 2693 } 2694 } 2695 2696 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2697 { 2698 int i; 2699 __be32 *targets = bond->params.arp_targets; 2700 2701 targets = bond->params.arp_targets; 2702 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2703 dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] " 2704 "%u.%u.%u.%u bhti(tip) %d\n", 2705 NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]), 2706 bond_has_this_ip(bond, tip)); 2707 if (sip == targets[i]) { 2708 if (bond_has_this_ip(bond, tip)) 2709 slave->last_arp_rx = jiffies; 2710 return; 2711 } 2712 } 2713 } 2714 2715 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2716 { 2717 struct arphdr *arp; 2718 struct slave *slave; 2719 struct bonding *bond; 2720 unsigned char *arp_ptr; 2721 __be32 sip, tip; 2722 2723 if (dev_net(dev) != &init_net) 2724 goto out; 2725 2726 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2727 goto out; 2728 2729 bond = dev->priv; 2730 read_lock(&bond->lock); 2731 2732 dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2733 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2734 orig_dev ? orig_dev->name : "NULL"); 2735 2736 slave = bond_get_slave_by_dev(bond, orig_dev); 2737 if (!slave || !slave_do_arp_validate(bond, slave)) 2738 goto out_unlock; 2739 2740 if (!pskb_may_pull(skb, arp_hdr_len(dev))) 2741 goto out_unlock; 2742 2743 arp = arp_hdr(skb); 2744 if (arp->ar_hln != dev->addr_len || 2745 skb->pkt_type == PACKET_OTHERHOST || 2746 skb->pkt_type == PACKET_LOOPBACK || 2747 arp->ar_hrd != htons(ARPHRD_ETHER) || 2748 arp->ar_pro != htons(ETH_P_IP) || 2749 arp->ar_pln != 4) 2750 goto out_unlock; 2751 2752 arp_ptr = (unsigned char *)(arp + 1); 2753 arp_ptr += dev->addr_len; 2754 memcpy(&sip, arp_ptr, 4); 2755 arp_ptr += 4 + dev->addr_len; 2756 memcpy(&tip, arp_ptr, 4); 2757 2758 dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u" 2759 " tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name, 2760 slave->state, bond->params.arp_validate, 2761 slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip)); 2762 2763 /* 2764 * Backup slaves won't see the ARP reply, but do come through 2765 * here for each ARP probe (so we swap the sip/tip to validate 2766 * the probe). In a "redundant switch, common router" type of 2767 * configuration, the ARP probe will (hopefully) travel from 2768 * the active, through one switch, the router, then the other 2769 * switch before reaching the backup. 2770 */ 2771 if (slave->state == BOND_STATE_ACTIVE) 2772 bond_validate_arp(bond, slave, sip, tip); 2773 else 2774 bond_validate_arp(bond, slave, tip, sip); 2775 2776 out_unlock: 2777 read_unlock(&bond->lock); 2778 out: 2779 dev_kfree_skb(skb); 2780 return NET_RX_SUCCESS; 2781 } 2782 2783 /* 2784 * this function is called regularly to monitor each slave's link 2785 * ensuring that traffic is being sent and received when arp monitoring 2786 * is used in load-balancing mode. if the adapter has been dormant, then an 2787 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2788 * arp monitoring in active backup mode. 2789 */ 2790 void bond_loadbalance_arp_mon(struct work_struct *work) 2791 { 2792 struct bonding *bond = container_of(work, struct bonding, 2793 arp_work.work); 2794 struct slave *slave, *oldcurrent; 2795 int do_failover = 0; 2796 int delta_in_ticks; 2797 int i; 2798 2799 read_lock(&bond->lock); 2800 2801 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2802 2803 if (bond->kill_timers) { 2804 goto out; 2805 } 2806 2807 if (bond->slave_cnt == 0) { 2808 goto re_arm; 2809 } 2810 2811 read_lock(&bond->curr_slave_lock); 2812 oldcurrent = bond->curr_active_slave; 2813 read_unlock(&bond->curr_slave_lock); 2814 2815 /* see if any of the previous devices are up now (i.e. they have 2816 * xmt and rcv traffic). the curr_active_slave does not come into 2817 * the picture unless it is null. also, slave->jiffies is not needed 2818 * here because we send an arp on each slave and give a slave as 2819 * long as it needs to get the tx/rx within the delta. 2820 * TODO: what about up/down delay in arp mode? it wasn't here before 2821 * so it can wait 2822 */ 2823 bond_for_each_slave(bond, slave, i) { 2824 if (slave->link != BOND_LINK_UP) { 2825 if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) && 2826 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) { 2827 2828 slave->link = BOND_LINK_UP; 2829 slave->state = BOND_STATE_ACTIVE; 2830 2831 /* primary_slave has no meaning in round-robin 2832 * mode. the window of a slave being up and 2833 * curr_active_slave being null after enslaving 2834 * is closed. 2835 */ 2836 if (!oldcurrent) { 2837 printk(KERN_INFO DRV_NAME 2838 ": %s: link status definitely " 2839 "up for interface %s, ", 2840 bond->dev->name, 2841 slave->dev->name); 2842 do_failover = 1; 2843 } else { 2844 printk(KERN_INFO DRV_NAME 2845 ": %s: interface %s is now up\n", 2846 bond->dev->name, 2847 slave->dev->name); 2848 } 2849 } 2850 } else { 2851 /* slave->link == BOND_LINK_UP */ 2852 2853 /* not all switches will respond to an arp request 2854 * when the source ip is 0, so don't take the link down 2855 * if we don't know our ip yet 2856 */ 2857 if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) || 2858 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) { 2859 2860 slave->link = BOND_LINK_DOWN; 2861 slave->state = BOND_STATE_BACKUP; 2862 2863 if (slave->link_failure_count < UINT_MAX) { 2864 slave->link_failure_count++; 2865 } 2866 2867 printk(KERN_INFO DRV_NAME 2868 ": %s: interface %s is now down.\n", 2869 bond->dev->name, 2870 slave->dev->name); 2871 2872 if (slave == oldcurrent) { 2873 do_failover = 1; 2874 } 2875 } 2876 } 2877 2878 /* note: if switch is in round-robin mode, all links 2879 * must tx arp to ensure all links rx an arp - otherwise 2880 * links may oscillate or not come up at all; if switch is 2881 * in something like xor mode, there is nothing we can 2882 * do - all replies will be rx'ed on same link causing slaves 2883 * to be unstable during low/no traffic periods 2884 */ 2885 if (IS_UP(slave->dev)) { 2886 bond_arp_send_all(bond, slave); 2887 } 2888 } 2889 2890 if (do_failover) { 2891 write_lock_bh(&bond->curr_slave_lock); 2892 2893 bond_select_active_slave(bond); 2894 2895 write_unlock_bh(&bond->curr_slave_lock); 2896 } 2897 2898 re_arm: 2899 if (bond->params.arp_interval) 2900 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2901 out: 2902 read_unlock(&bond->lock); 2903 } 2904 2905 /* 2906 * Called to inspect slaves for active-backup mode ARP monitor link state 2907 * changes. Sets new_link in slaves to specify what action should take 2908 * place for the slave. Returns 0 if no changes are found, >0 if changes 2909 * to link states must be committed. 2910 * 2911 * Called with bond->lock held for read. 2912 */ 2913 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2914 { 2915 struct slave *slave; 2916 int i, commit = 0; 2917 2918 bond_for_each_slave(bond, slave, i) { 2919 slave->new_link = BOND_LINK_NOCHANGE; 2920 2921 if (slave->link != BOND_LINK_UP) { 2922 if (time_before_eq(jiffies, slave_last_rx(bond, slave) + 2923 delta_in_ticks)) { 2924 slave->new_link = BOND_LINK_UP; 2925 commit++; 2926 } 2927 2928 continue; 2929 } 2930 2931 /* 2932 * Give slaves 2*delta after being enslaved or made 2933 * active. This avoids bouncing, as the last receive 2934 * times need a full ARP monitor cycle to be updated. 2935 */ 2936 if (!time_after_eq(jiffies, slave->jiffies + 2937 2 * delta_in_ticks)) 2938 continue; 2939 2940 /* 2941 * Backup slave is down if: 2942 * - No current_arp_slave AND 2943 * - more than 3*delta since last receive AND 2944 * - the bond has an IP address 2945 * 2946 * Note: a non-null current_arp_slave indicates 2947 * the curr_active_slave went down and we are 2948 * searching for a new one; under this condition 2949 * we only take the curr_active_slave down - this 2950 * gives each slave a chance to tx/rx traffic 2951 * before being taken out 2952 */ 2953 if (slave->state == BOND_STATE_BACKUP && 2954 !bond->current_arp_slave && 2955 time_after(jiffies, slave_last_rx(bond, slave) + 2956 3 * delta_in_ticks)) { 2957 slave->new_link = BOND_LINK_DOWN; 2958 commit++; 2959 } 2960 2961 /* 2962 * Active slave is down if: 2963 * - more than 2*delta since transmitting OR 2964 * - (more than 2*delta since receive AND 2965 * the bond has an IP address) 2966 */ 2967 if ((slave->state == BOND_STATE_ACTIVE) && 2968 (time_after_eq(jiffies, slave->dev->trans_start + 2969 2 * delta_in_ticks) || 2970 (time_after_eq(jiffies, slave_last_rx(bond, slave) 2971 + 2 * delta_in_ticks)))) { 2972 slave->new_link = BOND_LINK_DOWN; 2973 commit++; 2974 } 2975 } 2976 2977 read_lock(&bond->curr_slave_lock); 2978 2979 /* 2980 * Trigger a commit if the primary option setting has changed. 2981 */ 2982 if (bond->primary_slave && 2983 (bond->primary_slave != bond->curr_active_slave) && 2984 (bond->primary_slave->link == BOND_LINK_UP)) 2985 commit++; 2986 2987 read_unlock(&bond->curr_slave_lock); 2988 2989 return commit; 2990 } 2991 2992 /* 2993 * Called to commit link state changes noted by inspection step of 2994 * active-backup mode ARP monitor. 2995 * 2996 * Called with RTNL and bond->lock for read. 2997 */ 2998 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2999 { 3000 struct slave *slave; 3001 int i; 3002 3003 bond_for_each_slave(bond, slave, i) { 3004 switch (slave->new_link) { 3005 case BOND_LINK_NOCHANGE: 3006 continue; 3007 3008 case BOND_LINK_UP: 3009 write_lock_bh(&bond->curr_slave_lock); 3010 3011 if (!bond->curr_active_slave && 3012 time_before_eq(jiffies, slave->dev->trans_start + 3013 delta_in_ticks)) { 3014 slave->link = BOND_LINK_UP; 3015 bond_change_active_slave(bond, slave); 3016 bond->current_arp_slave = NULL; 3017 3018 printk(KERN_INFO DRV_NAME 3019 ": %s: %s is up and now the " 3020 "active interface\n", 3021 bond->dev->name, slave->dev->name); 3022 3023 } else if (bond->curr_active_slave != slave) { 3024 /* this slave has just come up but we 3025 * already have a current slave; this can 3026 * also happen if bond_enslave adds a new 3027 * slave that is up while we are searching 3028 * for a new slave 3029 */ 3030 slave->link = BOND_LINK_UP; 3031 bond_set_slave_inactive_flags(slave); 3032 bond->current_arp_slave = NULL; 3033 3034 printk(KERN_INFO DRV_NAME 3035 ": %s: backup interface %s is now up\n", 3036 bond->dev->name, slave->dev->name); 3037 } 3038 3039 write_unlock_bh(&bond->curr_slave_lock); 3040 3041 break; 3042 3043 case BOND_LINK_DOWN: 3044 if (slave->link_failure_count < UINT_MAX) 3045 slave->link_failure_count++; 3046 3047 slave->link = BOND_LINK_DOWN; 3048 3049 if (slave == bond->curr_active_slave) { 3050 printk(KERN_INFO DRV_NAME 3051 ": %s: link status down for active " 3052 "interface %s, disabling it\n", 3053 bond->dev->name, slave->dev->name); 3054 3055 bond_set_slave_inactive_flags(slave); 3056 3057 write_lock_bh(&bond->curr_slave_lock); 3058 3059 bond_select_active_slave(bond); 3060 if (bond->curr_active_slave) 3061 bond->curr_active_slave->jiffies = 3062 jiffies; 3063 3064 write_unlock_bh(&bond->curr_slave_lock); 3065 3066 bond->current_arp_slave = NULL; 3067 3068 } else if (slave->state == BOND_STATE_BACKUP) { 3069 printk(KERN_INFO DRV_NAME 3070 ": %s: backup interface %s is now down\n", 3071 bond->dev->name, slave->dev->name); 3072 3073 bond_set_slave_inactive_flags(slave); 3074 } 3075 break; 3076 3077 default: 3078 printk(KERN_ERR DRV_NAME 3079 ": %s: impossible: new_link %d on slave %s\n", 3080 bond->dev->name, slave->new_link, 3081 slave->dev->name); 3082 } 3083 } 3084 3085 /* 3086 * No race with changes to primary via sysfs, as we hold rtnl. 3087 */ 3088 if (bond->primary_slave && 3089 (bond->primary_slave != bond->curr_active_slave) && 3090 (bond->primary_slave->link == BOND_LINK_UP)) { 3091 write_lock_bh(&bond->curr_slave_lock); 3092 bond_change_active_slave(bond, bond->primary_slave); 3093 write_unlock_bh(&bond->curr_slave_lock); 3094 } 3095 3096 bond_set_carrier(bond); 3097 } 3098 3099 /* 3100 * Send ARP probes for active-backup mode ARP monitor. 3101 * 3102 * Called with bond->lock held for read. 3103 */ 3104 static void bond_ab_arp_probe(struct bonding *bond) 3105 { 3106 struct slave *slave; 3107 int i; 3108 3109 read_lock(&bond->curr_slave_lock); 3110 3111 if (bond->current_arp_slave && bond->curr_active_slave) 3112 printk("PROBE: c_arp %s && cas %s BAD\n", 3113 bond->current_arp_slave->dev->name, 3114 bond->curr_active_slave->dev->name); 3115 3116 if (bond->curr_active_slave) { 3117 bond_arp_send_all(bond, bond->curr_active_slave); 3118 read_unlock(&bond->curr_slave_lock); 3119 return; 3120 } 3121 3122 read_unlock(&bond->curr_slave_lock); 3123 3124 /* if we don't have a curr_active_slave, search for the next available 3125 * backup slave from the current_arp_slave and make it the candidate 3126 * for becoming the curr_active_slave 3127 */ 3128 3129 if (!bond->current_arp_slave) { 3130 bond->current_arp_slave = bond->first_slave; 3131 if (!bond->current_arp_slave) 3132 return; 3133 } 3134 3135 bond_set_slave_inactive_flags(bond->current_arp_slave); 3136 3137 /* search for next candidate */ 3138 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3139 if (IS_UP(slave->dev)) { 3140 slave->link = BOND_LINK_BACK; 3141 bond_set_slave_active_flags(slave); 3142 bond_arp_send_all(bond, slave); 3143 slave->jiffies = jiffies; 3144 bond->current_arp_slave = slave; 3145 break; 3146 } 3147 3148 /* if the link state is up at this point, we 3149 * mark it down - this can happen if we have 3150 * simultaneous link failures and 3151 * reselect_active_interface doesn't make this 3152 * one the current slave so it is still marked 3153 * up when it is actually down 3154 */ 3155 if (slave->link == BOND_LINK_UP) { 3156 slave->link = BOND_LINK_DOWN; 3157 if (slave->link_failure_count < UINT_MAX) 3158 slave->link_failure_count++; 3159 3160 bond_set_slave_inactive_flags(slave); 3161 3162 printk(KERN_INFO DRV_NAME 3163 ": %s: backup interface %s is now down.\n", 3164 bond->dev->name, slave->dev->name); 3165 } 3166 } 3167 } 3168 3169 void bond_activebackup_arp_mon(struct work_struct *work) 3170 { 3171 struct bonding *bond = container_of(work, struct bonding, 3172 arp_work.work); 3173 int delta_in_ticks; 3174 3175 read_lock(&bond->lock); 3176 3177 if (bond->kill_timers) 3178 goto out; 3179 3180 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3181 3182 if (bond->slave_cnt == 0) 3183 goto re_arm; 3184 3185 if (bond->send_grat_arp) { 3186 read_lock(&bond->curr_slave_lock); 3187 bond_send_gratuitous_arp(bond); 3188 read_unlock(&bond->curr_slave_lock); 3189 } 3190 3191 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3192 read_unlock(&bond->lock); 3193 rtnl_lock(); 3194 read_lock(&bond->lock); 3195 3196 bond_ab_arp_commit(bond, delta_in_ticks); 3197 3198 read_unlock(&bond->lock); 3199 rtnl_unlock(); 3200 read_lock(&bond->lock); 3201 } 3202 3203 bond_ab_arp_probe(bond); 3204 3205 re_arm: 3206 if (bond->params.arp_interval) { 3207 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3208 } 3209 out: 3210 read_unlock(&bond->lock); 3211 } 3212 3213 /*------------------------------ proc/seq_file-------------------------------*/ 3214 3215 #ifdef CONFIG_PROC_FS 3216 3217 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 3218 { 3219 struct bonding *bond = seq->private; 3220 loff_t off = 0; 3221 struct slave *slave; 3222 int i; 3223 3224 /* make sure the bond won't be taken away */ 3225 read_lock(&dev_base_lock); 3226 read_lock(&bond->lock); 3227 3228 if (*pos == 0) { 3229 return SEQ_START_TOKEN; 3230 } 3231 3232 bond_for_each_slave(bond, slave, i) { 3233 if (++off == *pos) { 3234 return slave; 3235 } 3236 } 3237 3238 return NULL; 3239 } 3240 3241 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3242 { 3243 struct bonding *bond = seq->private; 3244 struct slave *slave = v; 3245 3246 ++*pos; 3247 if (v == SEQ_START_TOKEN) { 3248 return bond->first_slave; 3249 } 3250 3251 slave = slave->next; 3252 3253 return (slave == bond->first_slave) ? NULL : slave; 3254 } 3255 3256 static void bond_info_seq_stop(struct seq_file *seq, void *v) 3257 { 3258 struct bonding *bond = seq->private; 3259 3260 read_unlock(&bond->lock); 3261 read_unlock(&dev_base_lock); 3262 } 3263 3264 static void bond_info_show_master(struct seq_file *seq) 3265 { 3266 struct bonding *bond = seq->private; 3267 struct slave *curr; 3268 int i; 3269 u32 target; 3270 3271 read_lock(&bond->curr_slave_lock); 3272 curr = bond->curr_active_slave; 3273 read_unlock(&bond->curr_slave_lock); 3274 3275 seq_printf(seq, "Bonding Mode: %s", 3276 bond_mode_name(bond->params.mode)); 3277 3278 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP && 3279 bond->params.fail_over_mac) 3280 seq_printf(seq, " (fail_over_mac %s)", 3281 fail_over_mac_tbl[bond->params.fail_over_mac].modename); 3282 3283 seq_printf(seq, "\n"); 3284 3285 if (bond->params.mode == BOND_MODE_XOR || 3286 bond->params.mode == BOND_MODE_8023AD) { 3287 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 3288 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 3289 bond->params.xmit_policy); 3290 } 3291 3292 if (USES_PRIMARY(bond->params.mode)) { 3293 seq_printf(seq, "Primary Slave: %s\n", 3294 (bond->primary_slave) ? 3295 bond->primary_slave->dev->name : "None"); 3296 3297 seq_printf(seq, "Currently Active Slave: %s\n", 3298 (curr) ? curr->dev->name : "None"); 3299 } 3300 3301 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3302 "up" : "down"); 3303 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3304 seq_printf(seq, "Up Delay (ms): %d\n", 3305 bond->params.updelay * bond->params.miimon); 3306 seq_printf(seq, "Down Delay (ms): %d\n", 3307 bond->params.downdelay * bond->params.miimon); 3308 3309 3310 /* ARP information */ 3311 if(bond->params.arp_interval > 0) { 3312 int printed=0; 3313 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3314 bond->params.arp_interval); 3315 3316 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3317 3318 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { 3319 if (!bond->params.arp_targets[i]) 3320 continue; 3321 if (printed) 3322 seq_printf(seq, ","); 3323 target = ntohl(bond->params.arp_targets[i]); 3324 seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target)); 3325 printed = 1; 3326 } 3327 seq_printf(seq, "\n"); 3328 } 3329 3330 if (bond->params.mode == BOND_MODE_8023AD) { 3331 struct ad_info ad_info; 3332 DECLARE_MAC_BUF(mac); 3333 3334 seq_puts(seq, "\n802.3ad info\n"); 3335 seq_printf(seq, "LACP rate: %s\n", 3336 (bond->params.lacp_fast) ? "fast" : "slow"); 3337 3338 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3339 seq_printf(seq, "bond %s has no active aggregator\n", 3340 bond->dev->name); 3341 } else { 3342 seq_printf(seq, "Active Aggregator Info:\n"); 3343 3344 seq_printf(seq, "\tAggregator ID: %d\n", 3345 ad_info.aggregator_id); 3346 seq_printf(seq, "\tNumber of ports: %d\n", 3347 ad_info.ports); 3348 seq_printf(seq, "\tActor Key: %d\n", 3349 ad_info.actor_key); 3350 seq_printf(seq, "\tPartner Key: %d\n", 3351 ad_info.partner_key); 3352 seq_printf(seq, "\tPartner Mac Address: %s\n", 3353 print_mac(mac, ad_info.partner_system)); 3354 } 3355 } 3356 } 3357 3358 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) 3359 { 3360 struct bonding *bond = seq->private; 3361 DECLARE_MAC_BUF(mac); 3362 3363 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3364 seq_printf(seq, "MII Status: %s\n", 3365 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3366 seq_printf(seq, "Link Failure Count: %u\n", 3367 slave->link_failure_count); 3368 3369 seq_printf(seq, 3370 "Permanent HW addr: %s\n", 3371 print_mac(mac, slave->perm_hwaddr)); 3372 3373 if (bond->params.mode == BOND_MODE_8023AD) { 3374 const struct aggregator *agg 3375 = SLAVE_AD_INFO(slave).port.aggregator; 3376 3377 if (agg) { 3378 seq_printf(seq, "Aggregator ID: %d\n", 3379 agg->aggregator_identifier); 3380 } else { 3381 seq_puts(seq, "Aggregator ID: N/A\n"); 3382 } 3383 } 3384 } 3385 3386 static int bond_info_seq_show(struct seq_file *seq, void *v) 3387 { 3388 if (v == SEQ_START_TOKEN) { 3389 seq_printf(seq, "%s\n", version); 3390 bond_info_show_master(seq); 3391 } else { 3392 bond_info_show_slave(seq, v); 3393 } 3394 3395 return 0; 3396 } 3397 3398 static struct seq_operations bond_info_seq_ops = { 3399 .start = bond_info_seq_start, 3400 .next = bond_info_seq_next, 3401 .stop = bond_info_seq_stop, 3402 .show = bond_info_seq_show, 3403 }; 3404 3405 static int bond_info_open(struct inode *inode, struct file *file) 3406 { 3407 struct seq_file *seq; 3408 struct proc_dir_entry *proc; 3409 int res; 3410 3411 res = seq_open(file, &bond_info_seq_ops); 3412 if (!res) { 3413 /* recover the pointer buried in proc_dir_entry data */ 3414 seq = file->private_data; 3415 proc = PDE(inode); 3416 seq->private = proc->data; 3417 } 3418 3419 return res; 3420 } 3421 3422 static const struct file_operations bond_info_fops = { 3423 .owner = THIS_MODULE, 3424 .open = bond_info_open, 3425 .read = seq_read, 3426 .llseek = seq_lseek, 3427 .release = seq_release, 3428 }; 3429 3430 static int bond_create_proc_entry(struct bonding *bond) 3431 { 3432 struct net_device *bond_dev = bond->dev; 3433 3434 if (bond_proc_dir) { 3435 bond->proc_entry = proc_create_data(bond_dev->name, 3436 S_IRUGO, bond_proc_dir, 3437 &bond_info_fops, bond); 3438 if (bond->proc_entry == NULL) { 3439 printk(KERN_WARNING DRV_NAME 3440 ": Warning: Cannot create /proc/net/%s/%s\n", 3441 DRV_NAME, bond_dev->name); 3442 } else { 3443 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3444 } 3445 } 3446 3447 return 0; 3448 } 3449 3450 static void bond_remove_proc_entry(struct bonding *bond) 3451 { 3452 if (bond_proc_dir && bond->proc_entry) { 3453 remove_proc_entry(bond->proc_file_name, bond_proc_dir); 3454 memset(bond->proc_file_name, 0, IFNAMSIZ); 3455 bond->proc_entry = NULL; 3456 } 3457 } 3458 3459 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3460 * Caller must hold rtnl_lock. 3461 */ 3462 static void bond_create_proc_dir(void) 3463 { 3464 int len = strlen(DRV_NAME); 3465 3466 for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir; 3467 bond_proc_dir = bond_proc_dir->next) { 3468 if ((bond_proc_dir->namelen == len) && 3469 !memcmp(bond_proc_dir->name, DRV_NAME, len)) { 3470 break; 3471 } 3472 } 3473 3474 if (!bond_proc_dir) { 3475 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net); 3476 if (bond_proc_dir) { 3477 bond_proc_dir->owner = THIS_MODULE; 3478 } else { 3479 printk(KERN_WARNING DRV_NAME 3480 ": Warning: cannot create /proc/net/%s\n", 3481 DRV_NAME); 3482 } 3483 } 3484 } 3485 3486 /* Destroy the bonding directory under /proc/net, if empty. 3487 * Caller must hold rtnl_lock. 3488 */ 3489 static void bond_destroy_proc_dir(void) 3490 { 3491 struct proc_dir_entry *de; 3492 3493 if (!bond_proc_dir) { 3494 return; 3495 } 3496 3497 /* verify that the /proc dir is empty */ 3498 for (de = bond_proc_dir->subdir; de; de = de->next) { 3499 /* ignore . and .. */ 3500 if (*(de->name) != '.') { 3501 break; 3502 } 3503 } 3504 3505 if (de) { 3506 if (bond_proc_dir->owner == THIS_MODULE) { 3507 bond_proc_dir->owner = NULL; 3508 } 3509 } else { 3510 remove_proc_entry(DRV_NAME, init_net.proc_net); 3511 bond_proc_dir = NULL; 3512 } 3513 } 3514 #endif /* CONFIG_PROC_FS */ 3515 3516 /*-------------------------- netdev event handling --------------------------*/ 3517 3518 /* 3519 * Change device name 3520 */ 3521 static int bond_event_changename(struct bonding *bond) 3522 { 3523 #ifdef CONFIG_PROC_FS 3524 bond_remove_proc_entry(bond); 3525 bond_create_proc_entry(bond); 3526 #endif 3527 down_write(&(bonding_rwsem)); 3528 bond_destroy_sysfs_entry(bond); 3529 bond_create_sysfs_entry(bond); 3530 up_write(&(bonding_rwsem)); 3531 return NOTIFY_DONE; 3532 } 3533 3534 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) 3535 { 3536 struct bonding *event_bond = bond_dev->priv; 3537 3538 switch (event) { 3539 case NETDEV_CHANGENAME: 3540 return bond_event_changename(event_bond); 3541 case NETDEV_UNREGISTER: 3542 bond_release_all(event_bond->dev); 3543 break; 3544 default: 3545 break; 3546 } 3547 3548 return NOTIFY_DONE; 3549 } 3550 3551 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) 3552 { 3553 struct net_device *bond_dev = slave_dev->master; 3554 struct bonding *bond = bond_dev->priv; 3555 3556 switch (event) { 3557 case NETDEV_UNREGISTER: 3558 if (bond_dev) { 3559 if (bond->setup_by_slave) 3560 bond_release_and_destroy(bond_dev, slave_dev); 3561 else 3562 bond_release(bond_dev, slave_dev); 3563 } 3564 break; 3565 case NETDEV_CHANGE: 3566 /* 3567 * TODO: is this what we get if somebody 3568 * sets up a hierarchical bond, then rmmod's 3569 * one of the slave bonding devices? 3570 */ 3571 break; 3572 case NETDEV_DOWN: 3573 /* 3574 * ... Or is it this? 3575 */ 3576 break; 3577 case NETDEV_CHANGEMTU: 3578 /* 3579 * TODO: Should slaves be allowed to 3580 * independently alter their MTU? For 3581 * an active-backup bond, slaves need 3582 * not be the same type of device, so 3583 * MTUs may vary. For other modes, 3584 * slaves arguably should have the 3585 * same MTUs. To do this, we'd need to 3586 * take over the slave's change_mtu 3587 * function for the duration of their 3588 * servitude. 3589 */ 3590 break; 3591 case NETDEV_CHANGENAME: 3592 /* 3593 * TODO: handle changing the primary's name 3594 */ 3595 break; 3596 case NETDEV_FEAT_CHANGE: 3597 bond_compute_features(bond); 3598 break; 3599 default: 3600 break; 3601 } 3602 3603 return NOTIFY_DONE; 3604 } 3605 3606 /* 3607 * bond_netdev_event: handle netdev notifier chain events. 3608 * 3609 * This function receives events for the netdev chain. The caller (an 3610 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3611 * locks for us to safely manipulate the slave devices (RTNL lock, 3612 * dev_probe_lock). 3613 */ 3614 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) 3615 { 3616 struct net_device *event_dev = (struct net_device *)ptr; 3617 3618 if (dev_net(event_dev) != &init_net) 3619 return NOTIFY_DONE; 3620 3621 dprintk("event_dev: %s, event: %lx\n", 3622 (event_dev ? event_dev->name : "None"), 3623 event); 3624 3625 if (!(event_dev->priv_flags & IFF_BONDING)) 3626 return NOTIFY_DONE; 3627 3628 if (event_dev->flags & IFF_MASTER) { 3629 dprintk("IFF_MASTER\n"); 3630 return bond_master_netdev_event(event, event_dev); 3631 } 3632 3633 if (event_dev->flags & IFF_SLAVE) { 3634 dprintk("IFF_SLAVE\n"); 3635 return bond_slave_netdev_event(event, event_dev); 3636 } 3637 3638 return NOTIFY_DONE; 3639 } 3640 3641 /* 3642 * bond_inetaddr_event: handle inetaddr notifier chain events. 3643 * 3644 * We keep track of device IPs primarily to use as source addresses in 3645 * ARP monitor probes (rather than spewing out broadcasts all the time). 3646 * 3647 * We track one IP for the main device (if it has one), plus one per VLAN. 3648 */ 3649 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3650 { 3651 struct in_ifaddr *ifa = ptr; 3652 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3653 struct bonding *bond; 3654 struct vlan_entry *vlan; 3655 3656 if (dev_net(ifa->ifa_dev->dev) != &init_net) 3657 return NOTIFY_DONE; 3658 3659 list_for_each_entry(bond, &bond_dev_list, bond_list) { 3660 if (bond->dev == event_dev) { 3661 switch (event) { 3662 case NETDEV_UP: 3663 bond->master_ip = ifa->ifa_local; 3664 return NOTIFY_OK; 3665 case NETDEV_DOWN: 3666 bond->master_ip = bond_glean_dev_ip(bond->dev); 3667 return NOTIFY_OK; 3668 default: 3669 return NOTIFY_DONE; 3670 } 3671 } 3672 3673 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 3674 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3675 if (vlan_dev == event_dev) { 3676 switch (event) { 3677 case NETDEV_UP: 3678 vlan->vlan_ip = ifa->ifa_local; 3679 return NOTIFY_OK; 3680 case NETDEV_DOWN: 3681 vlan->vlan_ip = 3682 bond_glean_dev_ip(vlan_dev); 3683 return NOTIFY_OK; 3684 default: 3685 return NOTIFY_DONE; 3686 } 3687 } 3688 } 3689 } 3690 return NOTIFY_DONE; 3691 } 3692 3693 static struct notifier_block bond_netdev_notifier = { 3694 .notifier_call = bond_netdev_event, 3695 }; 3696 3697 static struct notifier_block bond_inetaddr_notifier = { 3698 .notifier_call = bond_inetaddr_event, 3699 }; 3700 3701 /*-------------------------- Packet type handling ---------------------------*/ 3702 3703 /* register to receive lacpdus on a bond */ 3704 static void bond_register_lacpdu(struct bonding *bond) 3705 { 3706 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3707 3708 /* initialize packet type */ 3709 pk_type->type = PKT_TYPE_LACPDU; 3710 pk_type->dev = bond->dev; 3711 pk_type->func = bond_3ad_lacpdu_recv; 3712 3713 dev_add_pack(pk_type); 3714 } 3715 3716 /* unregister to receive lacpdus on a bond */ 3717 static void bond_unregister_lacpdu(struct bonding *bond) 3718 { 3719 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3720 } 3721 3722 void bond_register_arp(struct bonding *bond) 3723 { 3724 struct packet_type *pt = &bond->arp_mon_pt; 3725 3726 if (pt->type) 3727 return; 3728 3729 pt->type = htons(ETH_P_ARP); 3730 pt->dev = bond->dev; 3731 pt->func = bond_arp_rcv; 3732 dev_add_pack(pt); 3733 } 3734 3735 void bond_unregister_arp(struct bonding *bond) 3736 { 3737 struct packet_type *pt = &bond->arp_mon_pt; 3738 3739 dev_remove_pack(pt); 3740 pt->type = 0; 3741 } 3742 3743 /*---------------------------- Hashing Policies -----------------------------*/ 3744 3745 /* 3746 * Hash for the output device based upon layer 2 and layer 3 data. If 3747 * the packet is not IP mimic bond_xmit_hash_policy_l2() 3748 */ 3749 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, 3750 struct net_device *bond_dev, int count) 3751 { 3752 struct ethhdr *data = (struct ethhdr *)skb->data; 3753 struct iphdr *iph = ip_hdr(skb); 3754 3755 if (skb->protocol == __constant_htons(ETH_P_IP)) { 3756 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3757 (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count; 3758 } 3759 3760 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3761 } 3762 3763 /* 3764 * Hash for the output device based upon layer 3 and layer 4 data. If 3765 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3766 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3767 */ 3768 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, 3769 struct net_device *bond_dev, int count) 3770 { 3771 struct ethhdr *data = (struct ethhdr *)skb->data; 3772 struct iphdr *iph = ip_hdr(skb); 3773 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); 3774 int layer4_xor = 0; 3775 3776 if (skb->protocol == __constant_htons(ETH_P_IP)) { 3777 if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) && 3778 (iph->protocol == IPPROTO_TCP || 3779 iph->protocol == IPPROTO_UDP)) { 3780 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); 3781 } 3782 return (layer4_xor ^ 3783 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3784 3785 } 3786 3787 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3788 } 3789 3790 /* 3791 * Hash for the output device based upon layer 2 data 3792 */ 3793 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, 3794 struct net_device *bond_dev, int count) 3795 { 3796 struct ethhdr *data = (struct ethhdr *)skb->data; 3797 3798 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3799 } 3800 3801 /*-------------------------- Device entry points ----------------------------*/ 3802 3803 static int bond_open(struct net_device *bond_dev) 3804 { 3805 struct bonding *bond = bond_dev->priv; 3806 3807 bond->kill_timers = 0; 3808 3809 if ((bond->params.mode == BOND_MODE_TLB) || 3810 (bond->params.mode == BOND_MODE_ALB)) { 3811 /* bond_alb_initialize must be called before the timer 3812 * is started. 3813 */ 3814 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3815 /* something went wrong - fail the open operation */ 3816 return -1; 3817 } 3818 3819 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3820 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3821 } 3822 3823 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3824 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3825 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3826 } 3827 3828 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3829 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3830 INIT_DELAYED_WORK(&bond->arp_work, 3831 bond_activebackup_arp_mon); 3832 else 3833 INIT_DELAYED_WORK(&bond->arp_work, 3834 bond_loadbalance_arp_mon); 3835 3836 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3837 if (bond->params.arp_validate) 3838 bond_register_arp(bond); 3839 } 3840 3841 if (bond->params.mode == BOND_MODE_8023AD) { 3842 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3843 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3844 /* register to receive LACPDUs */ 3845 bond_register_lacpdu(bond); 3846 } 3847 3848 return 0; 3849 } 3850 3851 static int bond_close(struct net_device *bond_dev) 3852 { 3853 struct bonding *bond = bond_dev->priv; 3854 3855 if (bond->params.mode == BOND_MODE_8023AD) { 3856 /* Unregister the receive of LACPDUs */ 3857 bond_unregister_lacpdu(bond); 3858 } 3859 3860 if (bond->params.arp_validate) 3861 bond_unregister_arp(bond); 3862 3863 write_lock_bh(&bond->lock); 3864 3865 bond->send_grat_arp = 0; 3866 3867 /* signal timers not to re-arm */ 3868 bond->kill_timers = 1; 3869 3870 write_unlock_bh(&bond->lock); 3871 3872 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3873 cancel_delayed_work(&bond->mii_work); 3874 } 3875 3876 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3877 cancel_delayed_work(&bond->arp_work); 3878 } 3879 3880 switch (bond->params.mode) { 3881 case BOND_MODE_8023AD: 3882 cancel_delayed_work(&bond->ad_work); 3883 break; 3884 case BOND_MODE_TLB: 3885 case BOND_MODE_ALB: 3886 cancel_delayed_work(&bond->alb_work); 3887 break; 3888 default: 3889 break; 3890 } 3891 3892 3893 if ((bond->params.mode == BOND_MODE_TLB) || 3894 (bond->params.mode == BOND_MODE_ALB)) { 3895 /* Must be called only after all 3896 * slaves have been released 3897 */ 3898 bond_alb_deinitialize(bond); 3899 } 3900 3901 return 0; 3902 } 3903 3904 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) 3905 { 3906 struct bonding *bond = bond_dev->priv; 3907 struct net_device_stats *stats = &(bond->stats), *sstats; 3908 struct net_device_stats local_stats; 3909 struct slave *slave; 3910 int i; 3911 3912 memset(&local_stats, 0, sizeof(struct net_device_stats)); 3913 3914 read_lock_bh(&bond->lock); 3915 3916 bond_for_each_slave(bond, slave, i) { 3917 sstats = slave->dev->get_stats(slave->dev); 3918 local_stats.rx_packets += sstats->rx_packets; 3919 local_stats.rx_bytes += sstats->rx_bytes; 3920 local_stats.rx_errors += sstats->rx_errors; 3921 local_stats.rx_dropped += sstats->rx_dropped; 3922 3923 local_stats.tx_packets += sstats->tx_packets; 3924 local_stats.tx_bytes += sstats->tx_bytes; 3925 local_stats.tx_errors += sstats->tx_errors; 3926 local_stats.tx_dropped += sstats->tx_dropped; 3927 3928 local_stats.multicast += sstats->multicast; 3929 local_stats.collisions += sstats->collisions; 3930 3931 local_stats.rx_length_errors += sstats->rx_length_errors; 3932 local_stats.rx_over_errors += sstats->rx_over_errors; 3933 local_stats.rx_crc_errors += sstats->rx_crc_errors; 3934 local_stats.rx_frame_errors += sstats->rx_frame_errors; 3935 local_stats.rx_fifo_errors += sstats->rx_fifo_errors; 3936 local_stats.rx_missed_errors += sstats->rx_missed_errors; 3937 3938 local_stats.tx_aborted_errors += sstats->tx_aborted_errors; 3939 local_stats.tx_carrier_errors += sstats->tx_carrier_errors; 3940 local_stats.tx_fifo_errors += sstats->tx_fifo_errors; 3941 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3942 local_stats.tx_window_errors += sstats->tx_window_errors; 3943 } 3944 3945 memcpy(stats, &local_stats, sizeof(struct net_device_stats)); 3946 3947 read_unlock_bh(&bond->lock); 3948 3949 return stats; 3950 } 3951 3952 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3953 { 3954 struct net_device *slave_dev = NULL; 3955 struct ifbond k_binfo; 3956 struct ifbond __user *u_binfo = NULL; 3957 struct ifslave k_sinfo; 3958 struct ifslave __user *u_sinfo = NULL; 3959 struct mii_ioctl_data *mii = NULL; 3960 int res = 0; 3961 3962 dprintk("bond_ioctl: master=%s, cmd=%d\n", 3963 bond_dev->name, cmd); 3964 3965 switch (cmd) { 3966 case SIOCGMIIPHY: 3967 mii = if_mii(ifr); 3968 if (!mii) { 3969 return -EINVAL; 3970 } 3971 mii->phy_id = 0; 3972 /* Fall Through */ 3973 case SIOCGMIIREG: 3974 /* 3975 * We do this again just in case we were called by SIOCGMIIREG 3976 * instead of SIOCGMIIPHY. 3977 */ 3978 mii = if_mii(ifr); 3979 if (!mii) { 3980 return -EINVAL; 3981 } 3982 3983 if (mii->reg_num == 1) { 3984 struct bonding *bond = bond_dev->priv; 3985 mii->val_out = 0; 3986 read_lock(&bond->lock); 3987 read_lock(&bond->curr_slave_lock); 3988 if (netif_carrier_ok(bond->dev)) { 3989 mii->val_out = BMSR_LSTATUS; 3990 } 3991 read_unlock(&bond->curr_slave_lock); 3992 read_unlock(&bond->lock); 3993 } 3994 3995 return 0; 3996 case BOND_INFO_QUERY_OLD: 3997 case SIOCBONDINFOQUERY: 3998 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3999 4000 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { 4001 return -EFAULT; 4002 } 4003 4004 res = bond_info_query(bond_dev, &k_binfo); 4005 if (res == 0) { 4006 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { 4007 return -EFAULT; 4008 } 4009 } 4010 4011 return res; 4012 case BOND_SLAVE_INFO_QUERY_OLD: 4013 case SIOCBONDSLAVEINFOQUERY: 4014 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 4015 4016 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { 4017 return -EFAULT; 4018 } 4019 4020 res = bond_slave_info_query(bond_dev, &k_sinfo); 4021 if (res == 0) { 4022 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { 4023 return -EFAULT; 4024 } 4025 } 4026 4027 return res; 4028 default: 4029 /* Go on */ 4030 break; 4031 } 4032 4033 if (!capable(CAP_NET_ADMIN)) { 4034 return -EPERM; 4035 } 4036 4037 down_write(&(bonding_rwsem)); 4038 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave); 4039 4040 dprintk("slave_dev=%p: \n", slave_dev); 4041 4042 if (!slave_dev) { 4043 res = -ENODEV; 4044 } else { 4045 dprintk("slave_dev->name=%s: \n", slave_dev->name); 4046 switch (cmd) { 4047 case BOND_ENSLAVE_OLD: 4048 case SIOCBONDENSLAVE: 4049 res = bond_enslave(bond_dev, slave_dev); 4050 break; 4051 case BOND_RELEASE_OLD: 4052 case SIOCBONDRELEASE: 4053 res = bond_release(bond_dev, slave_dev); 4054 break; 4055 case BOND_SETHWADDR_OLD: 4056 case SIOCBONDSETHWADDR: 4057 res = bond_sethwaddr(bond_dev, slave_dev); 4058 break; 4059 case BOND_CHANGE_ACTIVE_OLD: 4060 case SIOCBONDCHANGEACTIVE: 4061 res = bond_ioctl_change_active(bond_dev, slave_dev); 4062 break; 4063 default: 4064 res = -EOPNOTSUPP; 4065 } 4066 4067 dev_put(slave_dev); 4068 } 4069 4070 up_write(&(bonding_rwsem)); 4071 return res; 4072 } 4073 4074 static void bond_set_multicast_list(struct net_device *bond_dev) 4075 { 4076 struct bonding *bond = bond_dev->priv; 4077 struct dev_mc_list *dmi; 4078 4079 /* 4080 * Do promisc before checking multicast_mode 4081 */ 4082 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { 4083 /* 4084 * FIXME: Need to handle the error when one of the multi-slaves 4085 * encounters error. 4086 */ 4087 bond_set_promiscuity(bond, 1); 4088 } 4089 4090 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { 4091 bond_set_promiscuity(bond, -1); 4092 } 4093 4094 /* set allmulti flag to slaves */ 4095 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { 4096 /* 4097 * FIXME: Need to handle the error when one of the multi-slaves 4098 * encounters error. 4099 */ 4100 bond_set_allmulti(bond, 1); 4101 } 4102 4103 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { 4104 bond_set_allmulti(bond, -1); 4105 } 4106 4107 read_lock(&bond->lock); 4108 4109 bond->flags = bond_dev->flags; 4110 4111 /* looking for addresses to add to slaves' mc list */ 4112 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 4113 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { 4114 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4115 } 4116 } 4117 4118 /* looking for addresses to delete from slaves' list */ 4119 for (dmi = bond->mc_list; dmi; dmi = dmi->next) { 4120 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { 4121 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4122 } 4123 } 4124 4125 /* save master's multicast list */ 4126 bond_mc_list_destroy(bond); 4127 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); 4128 4129 read_unlock(&bond->lock); 4130 } 4131 4132 /* 4133 * Change the MTU of all of a master's slaves to match the master 4134 */ 4135 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 4136 { 4137 struct bonding *bond = bond_dev->priv; 4138 struct slave *slave, *stop_at; 4139 int res = 0; 4140 int i; 4141 4142 dprintk("bond=%p, name=%s, new_mtu=%d\n", bond, 4143 (bond_dev ? bond_dev->name : "None"), new_mtu); 4144 4145 /* Can't hold bond->lock with bh disabled here since 4146 * some base drivers panic. On the other hand we can't 4147 * hold bond->lock without bh disabled because we'll 4148 * deadlock. The only solution is to rely on the fact 4149 * that we're under rtnl_lock here, and the slaves 4150 * list won't change. This doesn't solve the problem 4151 * of setting the slave's MTU while it is 4152 * transmitting, but the assumption is that the base 4153 * driver can handle that. 4154 * 4155 * TODO: figure out a way to safely iterate the slaves 4156 * list, but without holding a lock around the actual 4157 * call to the base driver. 4158 */ 4159 4160 bond_for_each_slave(bond, slave, i) { 4161 dprintk("s %p s->p %p c_m %p\n", slave, 4162 slave->prev, slave->dev->change_mtu); 4163 4164 res = dev_set_mtu(slave->dev, new_mtu); 4165 4166 if (res) { 4167 /* If we failed to set the slave's mtu to the new value 4168 * we must abort the operation even in ACTIVE_BACKUP 4169 * mode, because if we allow the backup slaves to have 4170 * different mtu values than the active slave we'll 4171 * need to change their mtu when doing a failover. That 4172 * means changing their mtu from timer context, which 4173 * is probably not a good idea. 4174 */ 4175 dprintk("err %d %s\n", res, slave->dev->name); 4176 goto unwind; 4177 } 4178 } 4179 4180 bond_dev->mtu = new_mtu; 4181 4182 return 0; 4183 4184 unwind: 4185 /* unwind from head to the slave that failed */ 4186 stop_at = slave; 4187 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4188 int tmp_res; 4189 4190 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 4191 if (tmp_res) { 4192 dprintk("unwind err %d dev %s\n", tmp_res, 4193 slave->dev->name); 4194 } 4195 } 4196 4197 return res; 4198 } 4199 4200 /* 4201 * Change HW address 4202 * 4203 * Note that many devices must be down to change the HW address, and 4204 * downing the master releases all slaves. We can make bonds full of 4205 * bonding devices to test this, however. 4206 */ 4207 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 4208 { 4209 struct bonding *bond = bond_dev->priv; 4210 struct sockaddr *sa = addr, tmp_sa; 4211 struct slave *slave, *stop_at; 4212 int res = 0; 4213 int i; 4214 4215 dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); 4216 4217 /* 4218 * If fail_over_mac is set to active, do nothing and return 4219 * success. Returning an error causes ifenslave to fail. 4220 */ 4221 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 4222 return 0; 4223 4224 if (!is_valid_ether_addr(sa->sa_data)) { 4225 return -EADDRNOTAVAIL; 4226 } 4227 4228 /* Can't hold bond->lock with bh disabled here since 4229 * some base drivers panic. On the other hand we can't 4230 * hold bond->lock without bh disabled because we'll 4231 * deadlock. The only solution is to rely on the fact 4232 * that we're under rtnl_lock here, and the slaves 4233 * list won't change. This doesn't solve the problem 4234 * of setting the slave's hw address while it is 4235 * transmitting, but the assumption is that the base 4236 * driver can handle that. 4237 * 4238 * TODO: figure out a way to safely iterate the slaves 4239 * list, but without holding a lock around the actual 4240 * call to the base driver. 4241 */ 4242 4243 bond_for_each_slave(bond, slave, i) { 4244 dprintk("slave %p %s\n", slave, slave->dev->name); 4245 4246 if (slave->dev->set_mac_address == NULL) { 4247 res = -EOPNOTSUPP; 4248 dprintk("EOPNOTSUPP %s\n", slave->dev->name); 4249 goto unwind; 4250 } 4251 4252 res = dev_set_mac_address(slave->dev, addr); 4253 if (res) { 4254 /* TODO: consider downing the slave 4255 * and retry ? 4256 * User should expect communications 4257 * breakage anyway until ARP finish 4258 * updating, so... 4259 */ 4260 dprintk("err %d %s\n", res, slave->dev->name); 4261 goto unwind; 4262 } 4263 } 4264 4265 /* success */ 4266 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 4267 return 0; 4268 4269 unwind: 4270 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 4271 tmp_sa.sa_family = bond_dev->type; 4272 4273 /* unwind from head to the slave that failed */ 4274 stop_at = slave; 4275 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4276 int tmp_res; 4277 4278 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 4279 if (tmp_res) { 4280 dprintk("unwind err %d dev %s\n", tmp_res, 4281 slave->dev->name); 4282 } 4283 } 4284 4285 return res; 4286 } 4287 4288 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4289 { 4290 struct bonding *bond = bond_dev->priv; 4291 struct slave *slave, *start_at; 4292 int i, slave_no, res = 1; 4293 4294 read_lock(&bond->lock); 4295 4296 if (!BOND_IS_OK(bond)) { 4297 goto out; 4298 } 4299 4300 /* 4301 * Concurrent TX may collide on rr_tx_counter; we accept that 4302 * as being rare enough not to justify using an atomic op here 4303 */ 4304 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 4305 4306 bond_for_each_slave(bond, slave, i) { 4307 slave_no--; 4308 if (slave_no < 0) { 4309 break; 4310 } 4311 } 4312 4313 start_at = slave; 4314 bond_for_each_slave_from(bond, slave, i, start_at) { 4315 if (IS_UP(slave->dev) && 4316 (slave->link == BOND_LINK_UP) && 4317 (slave->state == BOND_STATE_ACTIVE)) { 4318 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4319 break; 4320 } 4321 } 4322 4323 out: 4324 if (res) { 4325 /* no suitable interface, frame not sent */ 4326 dev_kfree_skb(skb); 4327 } 4328 read_unlock(&bond->lock); 4329 return 0; 4330 } 4331 4332 4333 /* 4334 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4335 * the bond has a usable interface. 4336 */ 4337 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4338 { 4339 struct bonding *bond = bond_dev->priv; 4340 int res = 1; 4341 4342 read_lock(&bond->lock); 4343 read_lock(&bond->curr_slave_lock); 4344 4345 if (!BOND_IS_OK(bond)) { 4346 goto out; 4347 } 4348 4349 if (!bond->curr_active_slave) 4350 goto out; 4351 4352 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4353 4354 out: 4355 if (res) { 4356 /* no suitable interface, frame not sent */ 4357 dev_kfree_skb(skb); 4358 } 4359 read_unlock(&bond->curr_slave_lock); 4360 read_unlock(&bond->lock); 4361 return 0; 4362 } 4363 4364 /* 4365 * In bond_xmit_xor() , we determine the output device by using a pre- 4366 * determined xmit_hash_policy(), If the selected device is not enabled, 4367 * find the next active slave. 4368 */ 4369 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4370 { 4371 struct bonding *bond = bond_dev->priv; 4372 struct slave *slave, *start_at; 4373 int slave_no; 4374 int i; 4375 int res = 1; 4376 4377 read_lock(&bond->lock); 4378 4379 if (!BOND_IS_OK(bond)) { 4380 goto out; 4381 } 4382 4383 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); 4384 4385 bond_for_each_slave(bond, slave, i) { 4386 slave_no--; 4387 if (slave_no < 0) { 4388 break; 4389 } 4390 } 4391 4392 start_at = slave; 4393 4394 bond_for_each_slave_from(bond, slave, i, start_at) { 4395 if (IS_UP(slave->dev) && 4396 (slave->link == BOND_LINK_UP) && 4397 (slave->state == BOND_STATE_ACTIVE)) { 4398 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4399 break; 4400 } 4401 } 4402 4403 out: 4404 if (res) { 4405 /* no suitable interface, frame not sent */ 4406 dev_kfree_skb(skb); 4407 } 4408 read_unlock(&bond->lock); 4409 return 0; 4410 } 4411 4412 /* 4413 * in broadcast mode, we send everything to all usable interfaces. 4414 */ 4415 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4416 { 4417 struct bonding *bond = bond_dev->priv; 4418 struct slave *slave, *start_at; 4419 struct net_device *tx_dev = NULL; 4420 int i; 4421 int res = 1; 4422 4423 read_lock(&bond->lock); 4424 4425 if (!BOND_IS_OK(bond)) { 4426 goto out; 4427 } 4428 4429 read_lock(&bond->curr_slave_lock); 4430 start_at = bond->curr_active_slave; 4431 read_unlock(&bond->curr_slave_lock); 4432 4433 if (!start_at) { 4434 goto out; 4435 } 4436 4437 bond_for_each_slave_from(bond, slave, i, start_at) { 4438 if (IS_UP(slave->dev) && 4439 (slave->link == BOND_LINK_UP) && 4440 (slave->state == BOND_STATE_ACTIVE)) { 4441 if (tx_dev) { 4442 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4443 if (!skb2) { 4444 printk(KERN_ERR DRV_NAME 4445 ": %s: Error: bond_xmit_broadcast(): " 4446 "skb_clone() failed\n", 4447 bond_dev->name); 4448 continue; 4449 } 4450 4451 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4452 if (res) { 4453 dev_kfree_skb(skb2); 4454 continue; 4455 } 4456 } 4457 tx_dev = slave->dev; 4458 } 4459 } 4460 4461 if (tx_dev) { 4462 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4463 } 4464 4465 out: 4466 if (res) { 4467 /* no suitable interface, frame not sent */ 4468 dev_kfree_skb(skb); 4469 } 4470 /* frame sent to all suitable interfaces */ 4471 read_unlock(&bond->lock); 4472 return 0; 4473 } 4474 4475 /*------------------------- Device initialization ---------------------------*/ 4476 4477 static void bond_set_xmit_hash_policy(struct bonding *bond) 4478 { 4479 switch (bond->params.xmit_policy) { 4480 case BOND_XMIT_POLICY_LAYER23: 4481 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4482 break; 4483 case BOND_XMIT_POLICY_LAYER34: 4484 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4485 break; 4486 case BOND_XMIT_POLICY_LAYER2: 4487 default: 4488 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4489 break; 4490 } 4491 } 4492 4493 /* 4494 * set bond mode specific net device operations 4495 */ 4496 void bond_set_mode_ops(struct bonding *bond, int mode) 4497 { 4498 struct net_device *bond_dev = bond->dev; 4499 4500 switch (mode) { 4501 case BOND_MODE_ROUNDROBIN: 4502 bond_dev->hard_start_xmit = bond_xmit_roundrobin; 4503 break; 4504 case BOND_MODE_ACTIVEBACKUP: 4505 bond_dev->hard_start_xmit = bond_xmit_activebackup; 4506 break; 4507 case BOND_MODE_XOR: 4508 bond_dev->hard_start_xmit = bond_xmit_xor; 4509 bond_set_xmit_hash_policy(bond); 4510 break; 4511 case BOND_MODE_BROADCAST: 4512 bond_dev->hard_start_xmit = bond_xmit_broadcast; 4513 break; 4514 case BOND_MODE_8023AD: 4515 bond_set_master_3ad_flags(bond); 4516 bond_dev->hard_start_xmit = bond_3ad_xmit_xor; 4517 bond_set_xmit_hash_policy(bond); 4518 break; 4519 case BOND_MODE_ALB: 4520 bond_set_master_alb_flags(bond); 4521 /* FALLTHRU */ 4522 case BOND_MODE_TLB: 4523 bond_dev->hard_start_xmit = bond_alb_xmit; 4524 bond_dev->set_mac_address = bond_alb_set_mac_address; 4525 break; 4526 default: 4527 /* Should never happen, mode already checked */ 4528 printk(KERN_ERR DRV_NAME 4529 ": %s: Error: Unknown bonding mode %d\n", 4530 bond_dev->name, 4531 mode); 4532 break; 4533 } 4534 } 4535 4536 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4537 struct ethtool_drvinfo *drvinfo) 4538 { 4539 strncpy(drvinfo->driver, DRV_NAME, 32); 4540 strncpy(drvinfo->version, DRV_VERSION, 32); 4541 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4542 } 4543 4544 static const struct ethtool_ops bond_ethtool_ops = { 4545 .get_drvinfo = bond_ethtool_get_drvinfo, 4546 }; 4547 4548 /* 4549 * Does not allocate but creates a /proc entry. 4550 * Allowed to fail. 4551 */ 4552 static int bond_init(struct net_device *bond_dev, struct bond_params *params) 4553 { 4554 struct bonding *bond = bond_dev->priv; 4555 4556 dprintk("Begin bond_init for %s\n", bond_dev->name); 4557 4558 /* initialize rwlocks */ 4559 rwlock_init(&bond->lock); 4560 rwlock_init(&bond->curr_slave_lock); 4561 4562 bond->params = *params; /* copy params struct */ 4563 4564 bond->wq = create_singlethread_workqueue(bond_dev->name); 4565 if (!bond->wq) 4566 return -ENOMEM; 4567 4568 /* Initialize pointers */ 4569 bond->first_slave = NULL; 4570 bond->curr_active_slave = NULL; 4571 bond->current_arp_slave = NULL; 4572 bond->primary_slave = NULL; 4573 bond->dev = bond_dev; 4574 bond->send_grat_arp = 0; 4575 bond->setup_by_slave = 0; 4576 INIT_LIST_HEAD(&bond->vlan_list); 4577 4578 /* Initialize the device entry points */ 4579 bond_dev->open = bond_open; 4580 bond_dev->stop = bond_close; 4581 bond_dev->get_stats = bond_get_stats; 4582 bond_dev->do_ioctl = bond_do_ioctl; 4583 bond_dev->ethtool_ops = &bond_ethtool_ops; 4584 bond_dev->set_multicast_list = bond_set_multicast_list; 4585 bond_dev->change_mtu = bond_change_mtu; 4586 bond_dev->set_mac_address = bond_set_mac_address; 4587 bond_dev->validate_addr = NULL; 4588 4589 bond_set_mode_ops(bond, bond->params.mode); 4590 4591 bond_dev->destructor = free_netdev; 4592 4593 /* Initialize the device options */ 4594 bond_dev->tx_queue_len = 0; 4595 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4596 bond_dev->priv_flags |= IFF_BONDING; 4597 4598 /* At first, we block adding VLANs. That's the only way to 4599 * prevent problems that occur when adding VLANs over an 4600 * empty bond. The block will be removed once non-challenged 4601 * slaves are enslaved. 4602 */ 4603 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4604 4605 /* don't acquire bond device's netif_tx_lock when 4606 * transmitting */ 4607 bond_dev->features |= NETIF_F_LLTX; 4608 4609 /* By default, we declare the bond to be fully 4610 * VLAN hardware accelerated capable. Special 4611 * care is taken in the various xmit functions 4612 * when there are slaves that are not hw accel 4613 * capable 4614 */ 4615 bond_dev->vlan_rx_register = bond_vlan_rx_register; 4616 bond_dev->vlan_rx_add_vid = bond_vlan_rx_add_vid; 4617 bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid; 4618 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4619 NETIF_F_HW_VLAN_RX | 4620 NETIF_F_HW_VLAN_FILTER); 4621 4622 #ifdef CONFIG_PROC_FS 4623 bond_create_proc_entry(bond); 4624 #endif 4625 list_add_tail(&bond->bond_list, &bond_dev_list); 4626 4627 return 0; 4628 } 4629 4630 /* De-initialize device specific data. 4631 * Caller must hold rtnl_lock. 4632 */ 4633 static void bond_deinit(struct net_device *bond_dev) 4634 { 4635 struct bonding *bond = bond_dev->priv; 4636 4637 list_del(&bond->bond_list); 4638 4639 #ifdef CONFIG_PROC_FS 4640 bond_remove_proc_entry(bond); 4641 #endif 4642 } 4643 4644 static void bond_work_cancel_all(struct bonding *bond) 4645 { 4646 write_lock_bh(&bond->lock); 4647 bond->kill_timers = 1; 4648 write_unlock_bh(&bond->lock); 4649 4650 if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) 4651 cancel_delayed_work(&bond->mii_work); 4652 4653 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) 4654 cancel_delayed_work(&bond->arp_work); 4655 4656 if (bond->params.mode == BOND_MODE_ALB && 4657 delayed_work_pending(&bond->alb_work)) 4658 cancel_delayed_work(&bond->alb_work); 4659 4660 if (bond->params.mode == BOND_MODE_8023AD && 4661 delayed_work_pending(&bond->ad_work)) 4662 cancel_delayed_work(&bond->ad_work); 4663 } 4664 4665 /* Unregister and free all bond devices. 4666 * Caller must hold rtnl_lock. 4667 */ 4668 static void bond_free_all(void) 4669 { 4670 struct bonding *bond, *nxt; 4671 4672 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { 4673 struct net_device *bond_dev = bond->dev; 4674 4675 bond_work_cancel_all(bond); 4676 netif_addr_lock_bh(bond_dev); 4677 bond_mc_list_destroy(bond); 4678 netif_addr_unlock_bh(bond_dev); 4679 /* Release the bonded slaves */ 4680 bond_release_all(bond_dev); 4681 bond_destroy(bond); 4682 } 4683 4684 #ifdef CONFIG_PROC_FS 4685 bond_destroy_proc_dir(); 4686 #endif 4687 } 4688 4689 /*------------------------- Module initialization ---------------------------*/ 4690 4691 /* 4692 * Convert string input module parms. Accept either the 4693 * number of the mode or its string name. A bit complicated because 4694 * some mode names are substrings of other names, and calls from sysfs 4695 * may have whitespace in the name (trailing newlines, for example). 4696 */ 4697 int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl) 4698 { 4699 int mode = -1, i, rv; 4700 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4701 4702 for (p = (char *)buf; *p; p++) 4703 if (!(isdigit(*p) || isspace(*p))) 4704 break; 4705 4706 if (*p) 4707 rv = sscanf(buf, "%20s", modestr); 4708 else 4709 rv = sscanf(buf, "%d", &mode); 4710 4711 if (!rv) 4712 return -1; 4713 4714 for (i = 0; tbl[i].modename; i++) { 4715 if (mode == tbl[i].mode) 4716 return tbl[i].mode; 4717 if (strcmp(modestr, tbl[i].modename) == 0) 4718 return tbl[i].mode; 4719 } 4720 4721 return -1; 4722 } 4723 4724 static int bond_check_params(struct bond_params *params) 4725 { 4726 int arp_validate_value, fail_over_mac_value; 4727 4728 /* 4729 * Convert string parameters. 4730 */ 4731 if (mode) { 4732 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4733 if (bond_mode == -1) { 4734 printk(KERN_ERR DRV_NAME 4735 ": Error: Invalid bonding mode \"%s\"\n", 4736 mode == NULL ? "NULL" : mode); 4737 return -EINVAL; 4738 } 4739 } 4740 4741 if (xmit_hash_policy) { 4742 if ((bond_mode != BOND_MODE_XOR) && 4743 (bond_mode != BOND_MODE_8023AD)) { 4744 printk(KERN_INFO DRV_NAME 4745 ": xor_mode param is irrelevant in mode %s\n", 4746 bond_mode_name(bond_mode)); 4747 } else { 4748 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4749 xmit_hashtype_tbl); 4750 if (xmit_hashtype == -1) { 4751 printk(KERN_ERR DRV_NAME 4752 ": Error: Invalid xmit_hash_policy \"%s\"\n", 4753 xmit_hash_policy == NULL ? "NULL" : 4754 xmit_hash_policy); 4755 return -EINVAL; 4756 } 4757 } 4758 } 4759 4760 if (lacp_rate) { 4761 if (bond_mode != BOND_MODE_8023AD) { 4762 printk(KERN_INFO DRV_NAME 4763 ": lacp_rate param is irrelevant in mode %s\n", 4764 bond_mode_name(bond_mode)); 4765 } else { 4766 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4767 if (lacp_fast == -1) { 4768 printk(KERN_ERR DRV_NAME 4769 ": Error: Invalid lacp rate \"%s\"\n", 4770 lacp_rate == NULL ? "NULL" : lacp_rate); 4771 return -EINVAL; 4772 } 4773 } 4774 } 4775 4776 if (max_bonds < 0 || max_bonds > INT_MAX) { 4777 printk(KERN_WARNING DRV_NAME 4778 ": Warning: max_bonds (%d) not in range %d-%d, so it " 4779 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4780 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4781 max_bonds = BOND_DEFAULT_MAX_BONDS; 4782 } 4783 4784 if (miimon < 0) { 4785 printk(KERN_WARNING DRV_NAME 4786 ": Warning: miimon module parameter (%d), " 4787 "not in range 0-%d, so it was reset to %d\n", 4788 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4789 miimon = BOND_LINK_MON_INTERV; 4790 } 4791 4792 if (updelay < 0) { 4793 printk(KERN_WARNING DRV_NAME 4794 ": Warning: updelay module parameter (%d), " 4795 "not in range 0-%d, so it was reset to 0\n", 4796 updelay, INT_MAX); 4797 updelay = 0; 4798 } 4799 4800 if (downdelay < 0) { 4801 printk(KERN_WARNING DRV_NAME 4802 ": Warning: downdelay module parameter (%d), " 4803 "not in range 0-%d, so it was reset to 0\n", 4804 downdelay, INT_MAX); 4805 downdelay = 0; 4806 } 4807 4808 if ((use_carrier != 0) && (use_carrier != 1)) { 4809 printk(KERN_WARNING DRV_NAME 4810 ": Warning: use_carrier module parameter (%d), " 4811 "not of valid value (0/1), so it was set to 1\n", 4812 use_carrier); 4813 use_carrier = 1; 4814 } 4815 4816 if (num_grat_arp < 0 || num_grat_arp > 255) { 4817 printk(KERN_WARNING DRV_NAME 4818 ": Warning: num_grat_arp (%d) not in range 0-255 so it " 4819 "was reset to 1 \n", num_grat_arp); 4820 num_grat_arp = 1; 4821 } 4822 4823 /* reset values for 802.3ad */ 4824 if (bond_mode == BOND_MODE_8023AD) { 4825 if (!miimon) { 4826 printk(KERN_WARNING DRV_NAME 4827 ": Warning: miimon must be specified, " 4828 "otherwise bonding will not detect link " 4829 "failure, speed and duplex which are " 4830 "essential for 802.3ad operation\n"); 4831 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4832 miimon = 100; 4833 } 4834 } 4835 4836 /* reset values for TLB/ALB */ 4837 if ((bond_mode == BOND_MODE_TLB) || 4838 (bond_mode == BOND_MODE_ALB)) { 4839 if (!miimon) { 4840 printk(KERN_WARNING DRV_NAME 4841 ": Warning: miimon must be specified, " 4842 "otherwise bonding will not detect link " 4843 "failure and link speed which are essential " 4844 "for TLB/ALB load balancing\n"); 4845 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4846 miimon = 100; 4847 } 4848 } 4849 4850 if (bond_mode == BOND_MODE_ALB) { 4851 printk(KERN_NOTICE DRV_NAME 4852 ": In ALB mode you might experience client " 4853 "disconnections upon reconnection of a link if the " 4854 "bonding module updelay parameter (%d msec) is " 4855 "incompatible with the forwarding delay time of the " 4856 "switch\n", 4857 updelay); 4858 } 4859 4860 if (!miimon) { 4861 if (updelay || downdelay) { 4862 /* just warn the user the up/down delay will have 4863 * no effect since miimon is zero... 4864 */ 4865 printk(KERN_WARNING DRV_NAME 4866 ": Warning: miimon module parameter not set " 4867 "and updelay (%d) or downdelay (%d) module " 4868 "parameter is set; updelay and downdelay have " 4869 "no effect unless miimon is set\n", 4870 updelay, downdelay); 4871 } 4872 } else { 4873 /* don't allow arp monitoring */ 4874 if (arp_interval) { 4875 printk(KERN_WARNING DRV_NAME 4876 ": Warning: miimon (%d) and arp_interval (%d) " 4877 "can't be used simultaneously, disabling ARP " 4878 "monitoring\n", 4879 miimon, arp_interval); 4880 arp_interval = 0; 4881 } 4882 4883 if ((updelay % miimon) != 0) { 4884 printk(KERN_WARNING DRV_NAME 4885 ": Warning: updelay (%d) is not a multiple " 4886 "of miimon (%d), updelay rounded to %d ms\n", 4887 updelay, miimon, (updelay / miimon) * miimon); 4888 } 4889 4890 updelay /= miimon; 4891 4892 if ((downdelay % miimon) != 0) { 4893 printk(KERN_WARNING DRV_NAME 4894 ": Warning: downdelay (%d) is not a multiple " 4895 "of miimon (%d), downdelay rounded to %d ms\n", 4896 downdelay, miimon, 4897 (downdelay / miimon) * miimon); 4898 } 4899 4900 downdelay /= miimon; 4901 } 4902 4903 if (arp_interval < 0) { 4904 printk(KERN_WARNING DRV_NAME 4905 ": Warning: arp_interval module parameter (%d) " 4906 ", not in range 0-%d, so it was reset to %d\n", 4907 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4908 arp_interval = BOND_LINK_ARP_INTERV; 4909 } 4910 4911 for (arp_ip_count = 0; 4912 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4913 arp_ip_count++) { 4914 /* not complete check, but should be good enough to 4915 catch mistakes */ 4916 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4917 printk(KERN_WARNING DRV_NAME 4918 ": Warning: bad arp_ip_target module parameter " 4919 "(%s), ARP monitoring will not be performed\n", 4920 arp_ip_target[arp_ip_count]); 4921 arp_interval = 0; 4922 } else { 4923 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4924 arp_target[arp_ip_count] = ip; 4925 } 4926 } 4927 4928 if (arp_interval && !arp_ip_count) { 4929 /* don't allow arping if no arp_ip_target given... */ 4930 printk(KERN_WARNING DRV_NAME 4931 ": Warning: arp_interval module parameter (%d) " 4932 "specified without providing an arp_ip_target " 4933 "parameter, arp_interval was reset to 0\n", 4934 arp_interval); 4935 arp_interval = 0; 4936 } 4937 4938 if (arp_validate) { 4939 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4940 printk(KERN_ERR DRV_NAME 4941 ": arp_validate only supported in active-backup mode\n"); 4942 return -EINVAL; 4943 } 4944 if (!arp_interval) { 4945 printk(KERN_ERR DRV_NAME 4946 ": arp_validate requires arp_interval\n"); 4947 return -EINVAL; 4948 } 4949 4950 arp_validate_value = bond_parse_parm(arp_validate, 4951 arp_validate_tbl); 4952 if (arp_validate_value == -1) { 4953 printk(KERN_ERR DRV_NAME 4954 ": Error: invalid arp_validate \"%s\"\n", 4955 arp_validate == NULL ? "NULL" : arp_validate); 4956 return -EINVAL; 4957 } 4958 } else 4959 arp_validate_value = 0; 4960 4961 if (miimon) { 4962 printk(KERN_INFO DRV_NAME 4963 ": MII link monitoring set to %d ms\n", 4964 miimon); 4965 } else if (arp_interval) { 4966 int i; 4967 4968 printk(KERN_INFO DRV_NAME 4969 ": ARP monitoring set to %d ms, validate %s, with %d target(s):", 4970 arp_interval, 4971 arp_validate_tbl[arp_validate_value].modename, 4972 arp_ip_count); 4973 4974 for (i = 0; i < arp_ip_count; i++) 4975 printk (" %s", arp_ip_target[i]); 4976 4977 printk("\n"); 4978 4979 } else if (max_bonds) { 4980 /* miimon and arp_interval not set, we need one so things 4981 * work as expected, see bonding.txt for details 4982 */ 4983 printk(KERN_WARNING DRV_NAME 4984 ": Warning: either miimon or arp_interval and " 4985 "arp_ip_target module parameters must be specified, " 4986 "otherwise bonding will not detect link failures! see " 4987 "bonding.txt for details.\n"); 4988 } 4989 4990 if (primary && !USES_PRIMARY(bond_mode)) { 4991 /* currently, using a primary only makes sense 4992 * in active backup, TLB or ALB modes 4993 */ 4994 printk(KERN_WARNING DRV_NAME 4995 ": Warning: %s primary device specified but has no " 4996 "effect in %s mode\n", 4997 primary, bond_mode_name(bond_mode)); 4998 primary = NULL; 4999 } 5000 5001 if (fail_over_mac) { 5002 fail_over_mac_value = bond_parse_parm(fail_over_mac, 5003 fail_over_mac_tbl); 5004 if (fail_over_mac_value == -1) { 5005 printk(KERN_ERR DRV_NAME 5006 ": Error: invalid fail_over_mac \"%s\"\n", 5007 arp_validate == NULL ? "NULL" : arp_validate); 5008 return -EINVAL; 5009 } 5010 5011 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 5012 printk(KERN_WARNING DRV_NAME 5013 ": Warning: fail_over_mac only affects " 5014 "active-backup mode.\n"); 5015 } else { 5016 fail_over_mac_value = BOND_FOM_NONE; 5017 } 5018 5019 /* fill params struct with the proper values */ 5020 params->mode = bond_mode; 5021 params->xmit_policy = xmit_hashtype; 5022 params->miimon = miimon; 5023 params->num_grat_arp = num_grat_arp; 5024 params->arp_interval = arp_interval; 5025 params->arp_validate = arp_validate_value; 5026 params->updelay = updelay; 5027 params->downdelay = downdelay; 5028 params->use_carrier = use_carrier; 5029 params->lacp_fast = lacp_fast; 5030 params->primary[0] = 0; 5031 params->fail_over_mac = fail_over_mac_value; 5032 5033 if (primary) { 5034 strncpy(params->primary, primary, IFNAMSIZ); 5035 params->primary[IFNAMSIZ - 1] = 0; 5036 } 5037 5038 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 5039 5040 return 0; 5041 } 5042 5043 static struct lock_class_key bonding_netdev_xmit_lock_key; 5044 static struct lock_class_key bonding_netdev_addr_lock_key; 5045 5046 static void bond_set_lockdep_class_one(struct net_device *dev, 5047 struct netdev_queue *txq, 5048 void *_unused) 5049 { 5050 lockdep_set_class(&txq->_xmit_lock, 5051 &bonding_netdev_xmit_lock_key); 5052 } 5053 5054 static void bond_set_lockdep_class(struct net_device *dev) 5055 { 5056 lockdep_set_class(&dev->addr_list_lock, 5057 &bonding_netdev_addr_lock_key); 5058 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 5059 } 5060 5061 /* Create a new bond based on the specified name and bonding parameters. 5062 * If name is NULL, obtain a suitable "bond%d" name for us. 5063 * Caller must NOT hold rtnl_lock; we need to release it here before we 5064 * set up our sysfs entries. 5065 */ 5066 int bond_create(char *name, struct bond_params *params) 5067 { 5068 struct net_device *bond_dev; 5069 struct bonding *bond; 5070 int res; 5071 5072 rtnl_lock(); 5073 down_write(&bonding_rwsem); 5074 5075 /* Check to see if the bond already exists. */ 5076 if (name) { 5077 list_for_each_entry(bond, &bond_dev_list, bond_list) 5078 if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) { 5079 printk(KERN_ERR DRV_NAME 5080 ": cannot add bond %s; it already exists\n", 5081 name); 5082 res = -EPERM; 5083 goto out_rtnl; 5084 } 5085 } 5086 5087 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", 5088 ether_setup); 5089 if (!bond_dev) { 5090 printk(KERN_ERR DRV_NAME 5091 ": %s: eek! can't alloc netdev!\n", 5092 name); 5093 res = -ENOMEM; 5094 goto out_rtnl; 5095 } 5096 5097 if (!name) { 5098 res = dev_alloc_name(bond_dev, "bond%d"); 5099 if (res < 0) 5100 goto out_netdev; 5101 } 5102 5103 /* bond_init() must be called after dev_alloc_name() (for the 5104 * /proc files), but before register_netdevice(), because we 5105 * need to set function pointers. 5106 */ 5107 5108 res = bond_init(bond_dev, params); 5109 if (res < 0) { 5110 goto out_netdev; 5111 } 5112 5113 res = register_netdevice(bond_dev); 5114 if (res < 0) { 5115 goto out_bond; 5116 } 5117 5118 bond_set_lockdep_class(bond_dev); 5119 5120 netif_carrier_off(bond_dev); 5121 5122 up_write(&bonding_rwsem); 5123 rtnl_unlock(); /* allows sysfs registration of net device */ 5124 res = bond_create_sysfs_entry(bond_dev->priv); 5125 if (res < 0) { 5126 rtnl_lock(); 5127 down_write(&bonding_rwsem); 5128 bond_deinit(bond_dev); 5129 unregister_netdevice(bond_dev); 5130 goto out_rtnl; 5131 } 5132 5133 return 0; 5134 5135 out_bond: 5136 bond_deinit(bond_dev); 5137 out_netdev: 5138 free_netdev(bond_dev); 5139 out_rtnl: 5140 up_write(&bonding_rwsem); 5141 rtnl_unlock(); 5142 return res; 5143 } 5144 5145 static int __init bonding_init(void) 5146 { 5147 int i; 5148 int res; 5149 struct bonding *bond; 5150 5151 printk(KERN_INFO "%s", version); 5152 5153 res = bond_check_params(&bonding_defaults); 5154 if (res) { 5155 goto out; 5156 } 5157 5158 #ifdef CONFIG_PROC_FS 5159 bond_create_proc_dir(); 5160 #endif 5161 5162 init_rwsem(&bonding_rwsem); 5163 5164 for (i = 0; i < max_bonds; i++) { 5165 res = bond_create(NULL, &bonding_defaults); 5166 if (res) 5167 goto err; 5168 } 5169 5170 res = bond_create_sysfs(); 5171 if (res) 5172 goto err; 5173 5174 register_netdevice_notifier(&bond_netdev_notifier); 5175 register_inetaddr_notifier(&bond_inetaddr_notifier); 5176 5177 goto out; 5178 err: 5179 list_for_each_entry(bond, &bond_dev_list, bond_list) { 5180 bond_work_cancel_all(bond); 5181 destroy_workqueue(bond->wq); 5182 } 5183 5184 bond_destroy_sysfs(); 5185 5186 rtnl_lock(); 5187 bond_free_all(); 5188 rtnl_unlock(); 5189 out: 5190 return res; 5191 5192 } 5193 5194 static void __exit bonding_exit(void) 5195 { 5196 unregister_netdevice_notifier(&bond_netdev_notifier); 5197 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 5198 5199 bond_destroy_sysfs(); 5200 5201 rtnl_lock(); 5202 bond_free_all(); 5203 rtnl_unlock(); 5204 } 5205 5206 module_init(bonding_init); 5207 module_exit(bonding_exit); 5208 MODULE_LICENSE("GPL"); 5209 MODULE_VERSION(DRV_VERSION); 5210 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5211 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5212 MODULE_SUPPORTED_DEVICE("most ethernet devices"); 5213 5214 /* 5215 * Local variables: 5216 * c-indent-level: 8 5217 * c-basic-offset: 8 5218 * tab-width: 8 5219 * End: 5220 */ 5221 5222