1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/types.h> 37 #include <linux/fcntl.h> 38 #include <linux/interrupt.h> 39 #include <linux/ptrace.h> 40 #include <linux/ioport.h> 41 #include <linux/in.h> 42 #include <net/ip.h> 43 #include <linux/ip.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/slab.h> 47 #include <linux/string.h> 48 #include <linux/init.h> 49 #include <linux/timer.h> 50 #include <linux/socket.h> 51 #include <linux/ctype.h> 52 #include <linux/inet.h> 53 #include <linux/bitops.h> 54 #include <asm/system.h> 55 #include <asm/io.h> 56 #include <asm/dma.h> 57 #include <asm/uaccess.h> 58 #include <linux/errno.h> 59 #include <linux/netdevice.h> 60 #include <linux/inetdevice.h> 61 #include <linux/igmp.h> 62 #include <linux/etherdevice.h> 63 #include <linux/skbuff.h> 64 #include <net/sock.h> 65 #include <linux/rtnetlink.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/smp.h> 69 #include <linux/if_ether.h> 70 #include <net/arp.h> 71 #include <linux/mii.h> 72 #include <linux/ethtool.h> 73 #include <linux/if_vlan.h> 74 #include <linux/if_bonding.h> 75 #include <linux/jiffies.h> 76 #include <net/route.h> 77 #include <net/net_namespace.h> 78 #include "bonding.h" 79 #include "bond_3ad.h" 80 #include "bond_alb.h" 81 82 /*---------------------------- Module parameters ----------------------------*/ 83 84 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 85 #define BOND_LINK_MON_INTERV 0 86 #define BOND_LINK_ARP_INTERV 0 87 88 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 89 static int num_grat_arp = 1; 90 static int num_unsol_na = 1; 91 static int miimon = BOND_LINK_MON_INTERV; 92 static int updelay = 0; 93 static int downdelay = 0; 94 static int use_carrier = 1; 95 static char *mode = NULL; 96 static char *primary = NULL; 97 static char *lacp_rate = NULL; 98 static char *ad_select = NULL; 99 static char *xmit_hash_policy = NULL; 100 static int arp_interval = BOND_LINK_ARP_INTERV; 101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; 102 static char *arp_validate = NULL; 103 static char *fail_over_mac = NULL; 104 struct bond_params bonding_defaults; 105 106 module_param(max_bonds, int, 0); 107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 108 module_param(num_grat_arp, int, 0644); 109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event"); 110 module_param(num_unsol_na, int, 0644); 111 MODULE_PARM_DESC(num_unsol_na, "Number of unsolicited IPv6 Neighbor Advertisements packets to send on failover event"); 112 module_param(miimon, int, 0); 113 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 114 module_param(updelay, int, 0); 115 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 116 module_param(downdelay, int, 0); 117 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 118 "in milliseconds"); 119 module_param(use_carrier, int, 0); 120 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 121 "0 for off, 1 for on (default)"); 122 module_param(mode, charp, 0); 123 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 124 "1 for active-backup, 2 for balance-xor, " 125 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 126 "6 for balance-alb"); 127 module_param(primary, charp, 0); 128 MODULE_PARM_DESC(primary, "Primary network device to use"); 129 module_param(lacp_rate, charp, 0); 130 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 131 "(slow/fast)"); 132 module_param(ad_select, charp, 0); 133 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic: stable (0, default), bandwidth (1), count (2)"); 134 module_param(xmit_hash_policy, charp, 0); 135 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 136 ", 1 for layer 3+4"); 137 module_param(arp_interval, int, 0); 138 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 139 module_param_array(arp_ip_target, charp, NULL, 0); 140 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 141 module_param(arp_validate, charp, 0); 142 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 143 module_param(fail_over_mac, charp, 0); 144 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow"); 145 146 /*----------------------------- Global variables ----------------------------*/ 147 148 static const char * const version = 149 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 150 151 LIST_HEAD(bond_dev_list); 152 153 #ifdef CONFIG_PROC_FS 154 static struct proc_dir_entry *bond_proc_dir = NULL; 155 #endif 156 157 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; 158 static int arp_ip_count = 0; 159 static int bond_mode = BOND_MODE_ROUNDROBIN; 160 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; 161 static int lacp_fast = 0; 162 163 164 const struct bond_parm_tbl bond_lacp_tbl[] = { 165 { "slow", AD_LACP_SLOW}, 166 { "fast", AD_LACP_FAST}, 167 { NULL, -1}, 168 }; 169 170 const struct bond_parm_tbl bond_mode_tbl[] = { 171 { "balance-rr", BOND_MODE_ROUNDROBIN}, 172 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 173 { "balance-xor", BOND_MODE_XOR}, 174 { "broadcast", BOND_MODE_BROADCAST}, 175 { "802.3ad", BOND_MODE_8023AD}, 176 { "balance-tlb", BOND_MODE_TLB}, 177 { "balance-alb", BOND_MODE_ALB}, 178 { NULL, -1}, 179 }; 180 181 const struct bond_parm_tbl xmit_hashtype_tbl[] = { 182 { "layer2", BOND_XMIT_POLICY_LAYER2}, 183 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 184 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 185 { NULL, -1}, 186 }; 187 188 const struct bond_parm_tbl arp_validate_tbl[] = { 189 { "none", BOND_ARP_VALIDATE_NONE}, 190 { "active", BOND_ARP_VALIDATE_ACTIVE}, 191 { "backup", BOND_ARP_VALIDATE_BACKUP}, 192 { "all", BOND_ARP_VALIDATE_ALL}, 193 { NULL, -1}, 194 }; 195 196 const struct bond_parm_tbl fail_over_mac_tbl[] = { 197 { "none", BOND_FOM_NONE}, 198 { "active", BOND_FOM_ACTIVE}, 199 { "follow", BOND_FOM_FOLLOW}, 200 { NULL, -1}, 201 }; 202 203 struct bond_parm_tbl ad_select_tbl[] = { 204 { "stable", BOND_AD_STABLE}, 205 { "bandwidth", BOND_AD_BANDWIDTH}, 206 { "count", BOND_AD_COUNT}, 207 { NULL, -1}, 208 }; 209 210 /*-------------------------- Forward declarations ---------------------------*/ 211 212 static void bond_send_gratuitous_arp(struct bonding *bond); 213 static void bond_deinit(struct net_device *bond_dev); 214 215 /*---------------------------- General routines -----------------------------*/ 216 217 static const char *bond_mode_name(int mode) 218 { 219 static const char *names[] = { 220 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)", 221 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)", 222 [BOND_MODE_XOR] = "load balancing (xor)", 223 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)", 224 [BOND_MODE_8023AD]= "IEEE 802.3ad Dynamic link aggregation", 225 [BOND_MODE_TLB] = "transmit load balancing", 226 [BOND_MODE_ALB] = "adaptive load balancing", 227 }; 228 229 if (mode < 0 || mode > BOND_MODE_ALB) 230 return "unknown"; 231 232 return names[mode]; 233 } 234 235 /*---------------------------------- VLAN -----------------------------------*/ 236 237 /** 238 * bond_add_vlan - add a new vlan id on bond 239 * @bond: bond that got the notification 240 * @vlan_id: the vlan id to add 241 * 242 * Returns -ENOMEM if allocation failed. 243 */ 244 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 245 { 246 struct vlan_entry *vlan; 247 248 pr_debug("bond: %s, vlan id %d\n", 249 (bond ? bond->dev->name: "None"), vlan_id); 250 251 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL); 252 if (!vlan) { 253 return -ENOMEM; 254 } 255 256 INIT_LIST_HEAD(&vlan->vlan_list); 257 vlan->vlan_id = vlan_id; 258 259 write_lock_bh(&bond->lock); 260 261 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 262 263 write_unlock_bh(&bond->lock); 264 265 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 266 267 return 0; 268 } 269 270 /** 271 * bond_del_vlan - delete a vlan id from bond 272 * @bond: bond that got the notification 273 * @vlan_id: the vlan id to delete 274 * 275 * returns -ENODEV if @vlan_id was not found in @bond. 276 */ 277 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 278 { 279 struct vlan_entry *vlan; 280 int res = -ENODEV; 281 282 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 283 284 write_lock_bh(&bond->lock); 285 286 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 287 if (vlan->vlan_id == vlan_id) { 288 list_del(&vlan->vlan_list); 289 290 if (bond_is_lb(bond)) 291 bond_alb_clear_vlan(bond, vlan_id); 292 293 pr_debug("removed VLAN ID %d from bond %s\n", vlan_id, 294 bond->dev->name); 295 296 kfree(vlan); 297 298 if (list_empty(&bond->vlan_list) && 299 (bond->slave_cnt == 0)) { 300 /* Last VLAN removed and no slaves, so 301 * restore block on adding VLANs. This will 302 * be removed once new slaves that are not 303 * VLAN challenged will be added. 304 */ 305 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 306 } 307 308 res = 0; 309 goto out; 310 } 311 } 312 313 pr_debug("couldn't find VLAN ID %d in bond %s\n", vlan_id, 314 bond->dev->name); 315 316 out: 317 write_unlock_bh(&bond->lock); 318 return res; 319 } 320 321 /** 322 * bond_has_challenged_slaves 323 * @bond: the bond we're working on 324 * 325 * Searches the slave list. Returns 1 if a vlan challenged slave 326 * was found, 0 otherwise. 327 * 328 * Assumes bond->lock is held. 329 */ 330 static int bond_has_challenged_slaves(struct bonding *bond) 331 { 332 struct slave *slave; 333 int i; 334 335 bond_for_each_slave(bond, slave, i) { 336 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 337 pr_debug("found VLAN challenged slave - %s\n", 338 slave->dev->name); 339 return 1; 340 } 341 } 342 343 pr_debug("no VLAN challenged slaves found\n"); 344 return 0; 345 } 346 347 /** 348 * bond_next_vlan - safely skip to the next item in the vlans list. 349 * @bond: the bond we're working on 350 * @curr: item we're advancing from 351 * 352 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 353 * or @curr->next otherwise (even if it is @curr itself again). 354 * 355 * Caller must hold bond->lock 356 */ 357 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 358 { 359 struct vlan_entry *next, *last; 360 361 if (list_empty(&bond->vlan_list)) { 362 return NULL; 363 } 364 365 if (!curr) { 366 next = list_entry(bond->vlan_list.next, 367 struct vlan_entry, vlan_list); 368 } else { 369 last = list_entry(bond->vlan_list.prev, 370 struct vlan_entry, vlan_list); 371 if (last == curr) { 372 next = list_entry(bond->vlan_list.next, 373 struct vlan_entry, vlan_list); 374 } else { 375 next = list_entry(curr->vlan_list.next, 376 struct vlan_entry, vlan_list); 377 } 378 } 379 380 return next; 381 } 382 383 /** 384 * bond_dev_queue_xmit - Prepare skb for xmit. 385 * 386 * @bond: bond device that got this skb for tx. 387 * @skb: hw accel VLAN tagged skb to transmit 388 * @slave_dev: slave that is supposed to xmit this skbuff 389 * 390 * When the bond gets an skb to transmit that is 391 * already hardware accelerated VLAN tagged, and it 392 * needs to relay this skb to a slave that is not 393 * hw accel capable, the skb needs to be "unaccelerated", 394 * i.e. strip the hwaccel tag and re-insert it as part 395 * of the payload. 396 */ 397 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) 398 { 399 unsigned short uninitialized_var(vlan_id); 400 401 if (!list_empty(&bond->vlan_list) && 402 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 403 vlan_get_tag(skb, &vlan_id) == 0) { 404 skb->dev = slave_dev; 405 skb = vlan_put_tag(skb, vlan_id); 406 if (!skb) { 407 /* vlan_put_tag() frees the skb in case of error, 408 * so return success here so the calling functions 409 * won't attempt to free is again. 410 */ 411 return 0; 412 } 413 } else { 414 skb->dev = slave_dev; 415 } 416 417 skb->priority = 1; 418 dev_queue_xmit(skb); 419 420 return 0; 421 } 422 423 /* 424 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 425 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 426 * lock because: 427 * a. This operation is performed in IOCTL context, 428 * b. The operation is protected by the RTNL semaphore in the 8021q code, 429 * c. Holding a lock with BH disabled while directly calling a base driver 430 * entry point is generally a BAD idea. 431 * 432 * The design of synchronization/protection for this operation in the 8021q 433 * module is good for one or more VLAN devices over a single physical device 434 * and cannot be extended for a teaming solution like bonding, so there is a 435 * potential race condition here where a net device from the vlan group might 436 * be referenced (either by a base driver or the 8021q code) while it is being 437 * removed from the system. However, it turns out we're not making matters 438 * worse, and if it works for regular VLAN usage it will work here too. 439 */ 440 441 /** 442 * bond_vlan_rx_register - Propagates registration to slaves 443 * @bond_dev: bonding net device that got called 444 * @grp: vlan group being registered 445 */ 446 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) 447 { 448 struct bonding *bond = netdev_priv(bond_dev); 449 struct slave *slave; 450 int i; 451 452 bond->vlgrp = grp; 453 454 bond_for_each_slave(bond, slave, i) { 455 struct net_device *slave_dev = slave->dev; 456 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 457 458 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 459 slave_ops->ndo_vlan_rx_register) { 460 slave_ops->ndo_vlan_rx_register(slave_dev, grp); 461 } 462 } 463 } 464 465 /** 466 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 467 * @bond_dev: bonding net device that got called 468 * @vid: vlan id being added 469 */ 470 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 471 { 472 struct bonding *bond = netdev_priv(bond_dev); 473 struct slave *slave; 474 int i, res; 475 476 bond_for_each_slave(bond, slave, i) { 477 struct net_device *slave_dev = slave->dev; 478 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 479 480 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 481 slave_ops->ndo_vlan_rx_add_vid) { 482 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vid); 483 } 484 } 485 486 res = bond_add_vlan(bond, vid); 487 if (res) { 488 printk(KERN_ERR DRV_NAME 489 ": %s: Error: Failed to add vlan id %d\n", 490 bond_dev->name, vid); 491 } 492 } 493 494 /** 495 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 496 * @bond_dev: bonding net device that got called 497 * @vid: vlan id being removed 498 */ 499 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 500 { 501 struct bonding *bond = netdev_priv(bond_dev); 502 struct slave *slave; 503 struct net_device *vlan_dev; 504 int i, res; 505 506 bond_for_each_slave(bond, slave, i) { 507 struct net_device *slave_dev = slave->dev; 508 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 509 510 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 511 slave_ops->ndo_vlan_rx_kill_vid) { 512 /* Save and then restore vlan_dev in the grp array, 513 * since the slave's driver might clear it. 514 */ 515 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 516 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vid); 517 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 518 } 519 } 520 521 res = bond_del_vlan(bond, vid); 522 if (res) { 523 printk(KERN_ERR DRV_NAME 524 ": %s: Error: Failed to remove vlan id %d\n", 525 bond_dev->name, vid); 526 } 527 } 528 529 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 530 { 531 struct vlan_entry *vlan; 532 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 533 534 write_lock_bh(&bond->lock); 535 536 if (list_empty(&bond->vlan_list)) 537 goto out; 538 539 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 540 slave_ops->ndo_vlan_rx_register) 541 slave_ops->ndo_vlan_rx_register(slave_dev, bond->vlgrp); 542 543 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 544 !(slave_ops->ndo_vlan_rx_add_vid)) 545 goto out; 546 547 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) 548 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vlan->vlan_id); 549 550 out: 551 write_unlock_bh(&bond->lock); 552 } 553 554 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) 555 { 556 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 557 struct vlan_entry *vlan; 558 struct net_device *vlan_dev; 559 560 write_lock_bh(&bond->lock); 561 562 if (list_empty(&bond->vlan_list)) 563 goto out; 564 565 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 566 !(slave_ops->ndo_vlan_rx_kill_vid)) 567 goto unreg; 568 569 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 570 /* Save and then restore vlan_dev in the grp array, 571 * since the slave's driver might clear it. 572 */ 573 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 574 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 575 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 576 } 577 578 unreg: 579 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 580 slave_ops->ndo_vlan_rx_register) 581 slave_ops->ndo_vlan_rx_register(slave_dev, NULL); 582 583 out: 584 write_unlock_bh(&bond->lock); 585 } 586 587 /*------------------------------- Link status -------------------------------*/ 588 589 /* 590 * Set the carrier state for the master according to the state of its 591 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 592 * do special 802.3ad magic. 593 * 594 * Returns zero if carrier state does not change, nonzero if it does. 595 */ 596 static int bond_set_carrier(struct bonding *bond) 597 { 598 struct slave *slave; 599 int i; 600 601 if (bond->slave_cnt == 0) 602 goto down; 603 604 if (bond->params.mode == BOND_MODE_8023AD) 605 return bond_3ad_set_carrier(bond); 606 607 bond_for_each_slave(bond, slave, i) { 608 if (slave->link == BOND_LINK_UP) { 609 if (!netif_carrier_ok(bond->dev)) { 610 netif_carrier_on(bond->dev); 611 return 1; 612 } 613 return 0; 614 } 615 } 616 617 down: 618 if (netif_carrier_ok(bond->dev)) { 619 netif_carrier_off(bond->dev); 620 return 1; 621 } 622 return 0; 623 } 624 625 /* 626 * Get link speed and duplex from the slave's base driver 627 * using ethtool. If for some reason the call fails or the 628 * values are invalid, fake speed and duplex to 100/Full 629 * and return error. 630 */ 631 static int bond_update_speed_duplex(struct slave *slave) 632 { 633 struct net_device *slave_dev = slave->dev; 634 struct ethtool_cmd etool; 635 int res; 636 637 /* Fake speed and duplex */ 638 slave->speed = SPEED_100; 639 slave->duplex = DUPLEX_FULL; 640 641 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) 642 return -1; 643 644 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 645 if (res < 0) 646 return -1; 647 648 switch (etool.speed) { 649 case SPEED_10: 650 case SPEED_100: 651 case SPEED_1000: 652 case SPEED_10000: 653 break; 654 default: 655 return -1; 656 } 657 658 switch (etool.duplex) { 659 case DUPLEX_FULL: 660 case DUPLEX_HALF: 661 break; 662 default: 663 return -1; 664 } 665 666 slave->speed = etool.speed; 667 slave->duplex = etool.duplex; 668 669 return 0; 670 } 671 672 /* 673 * if <dev> supports MII link status reporting, check its link status. 674 * 675 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 676 * depening upon the setting of the use_carrier parameter. 677 * 678 * Return either BMSR_LSTATUS, meaning that the link is up (or we 679 * can't tell and just pretend it is), or 0, meaning that the link is 680 * down. 681 * 682 * If reporting is non-zero, instead of faking link up, return -1 if 683 * both ETHTOOL and MII ioctls fail (meaning the device does not 684 * support them). If use_carrier is set, return whatever it says. 685 * It'd be nice if there was a good way to tell if a driver supports 686 * netif_carrier, but there really isn't. 687 */ 688 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) 689 { 690 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 691 static int (* ioctl)(struct net_device *, struct ifreq *, int); 692 struct ifreq ifr; 693 struct mii_ioctl_data *mii; 694 695 if (bond->params.use_carrier) 696 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 697 698 ioctl = slave_ops->ndo_do_ioctl; 699 if (ioctl) { 700 /* TODO: set pointer to correct ioctl on a per team member */ 701 /* bases to make this more efficient. that is, once */ 702 /* we determine the correct ioctl, we will always */ 703 /* call it and not the others for that team */ 704 /* member. */ 705 706 /* 707 * We cannot assume that SIOCGMIIPHY will also read a 708 * register; not all network drivers (e.g., e100) 709 * support that. 710 */ 711 712 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 713 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 714 mii = if_mii(&ifr); 715 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 716 mii->reg_num = MII_BMSR; 717 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { 718 return (mii->val_out & BMSR_LSTATUS); 719 } 720 } 721 } 722 723 /* 724 * Some drivers cache ETHTOOL_GLINK for a period of time so we only 725 * attempt to get link status from it if the above MII ioctls fail. 726 */ 727 if (slave_dev->ethtool_ops) { 728 if (slave_dev->ethtool_ops->get_link) { 729 u32 link; 730 731 link = slave_dev->ethtool_ops->get_link(slave_dev); 732 733 return link ? BMSR_LSTATUS : 0; 734 } 735 } 736 737 /* 738 * If reporting, report that either there's no dev->do_ioctl, 739 * or both SIOCGMIIREG and get_link failed (meaning that we 740 * cannot report link status). If not reporting, pretend 741 * we're ok. 742 */ 743 return (reporting ? -1 : BMSR_LSTATUS); 744 } 745 746 /*----------------------------- Multicast list ------------------------------*/ 747 748 /* 749 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise 750 */ 751 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) 752 { 753 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && 754 dmi1->dmi_addrlen == dmi2->dmi_addrlen; 755 } 756 757 /* 758 * returns dmi entry if found, NULL otherwise 759 */ 760 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 761 { 762 struct dev_mc_list *idmi; 763 764 for (idmi = mc_list; idmi; idmi = idmi->next) { 765 if (bond_is_dmi_same(dmi, idmi)) { 766 return idmi; 767 } 768 } 769 770 return NULL; 771 } 772 773 /* 774 * Push the promiscuity flag down to appropriate slaves 775 */ 776 static int bond_set_promiscuity(struct bonding *bond, int inc) 777 { 778 int err = 0; 779 if (USES_PRIMARY(bond->params.mode)) { 780 /* write lock already acquired */ 781 if (bond->curr_active_slave) { 782 err = dev_set_promiscuity(bond->curr_active_slave->dev, 783 inc); 784 } 785 } else { 786 struct slave *slave; 787 int i; 788 bond_for_each_slave(bond, slave, i) { 789 err = dev_set_promiscuity(slave->dev, inc); 790 if (err) 791 return err; 792 } 793 } 794 return err; 795 } 796 797 /* 798 * Push the allmulti flag down to all slaves 799 */ 800 static int bond_set_allmulti(struct bonding *bond, int inc) 801 { 802 int err = 0; 803 if (USES_PRIMARY(bond->params.mode)) { 804 /* write lock already acquired */ 805 if (bond->curr_active_slave) { 806 err = dev_set_allmulti(bond->curr_active_slave->dev, 807 inc); 808 } 809 } else { 810 struct slave *slave; 811 int i; 812 bond_for_each_slave(bond, slave, i) { 813 err = dev_set_allmulti(slave->dev, inc); 814 if (err) 815 return err; 816 } 817 } 818 return err; 819 } 820 821 /* 822 * Add a Multicast address to slaves 823 * according to mode 824 */ 825 static void bond_mc_add(struct bonding *bond, void *addr, int alen) 826 { 827 if (USES_PRIMARY(bond->params.mode)) { 828 /* write lock already acquired */ 829 if (bond->curr_active_slave) { 830 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); 831 } 832 } else { 833 struct slave *slave; 834 int i; 835 bond_for_each_slave(bond, slave, i) { 836 dev_mc_add(slave->dev, addr, alen, 0); 837 } 838 } 839 } 840 841 /* 842 * Remove a multicast address from slave 843 * according to mode 844 */ 845 static void bond_mc_delete(struct bonding *bond, void *addr, int alen) 846 { 847 if (USES_PRIMARY(bond->params.mode)) { 848 /* write lock already acquired */ 849 if (bond->curr_active_slave) { 850 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); 851 } 852 } else { 853 struct slave *slave; 854 int i; 855 bond_for_each_slave(bond, slave, i) { 856 dev_mc_delete(slave->dev, addr, alen, 0); 857 } 858 } 859 } 860 861 862 /* 863 * Retrieve the list of registered multicast addresses for the bonding 864 * device and retransmit an IGMP JOIN request to the current active 865 * slave. 866 */ 867 static void bond_resend_igmp_join_requests(struct bonding *bond) 868 { 869 struct in_device *in_dev; 870 struct ip_mc_list *im; 871 872 rcu_read_lock(); 873 in_dev = __in_dev_get_rcu(bond->dev); 874 if (in_dev) { 875 for (im = in_dev->mc_list; im; im = im->next) { 876 ip_mc_rejoin_group(im); 877 } 878 } 879 880 rcu_read_unlock(); 881 } 882 883 /* 884 * Totally destroys the mc_list in bond 885 */ 886 static void bond_mc_list_destroy(struct bonding *bond) 887 { 888 struct dev_mc_list *dmi; 889 890 dmi = bond->mc_list; 891 while (dmi) { 892 bond->mc_list = dmi->next; 893 kfree(dmi); 894 dmi = bond->mc_list; 895 } 896 bond->mc_list = NULL; 897 } 898 899 /* 900 * Copy all the Multicast addresses from src to the bonding device dst 901 */ 902 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, 903 gfp_t gfp_flag) 904 { 905 struct dev_mc_list *dmi, *new_dmi; 906 907 for (dmi = mc_list; dmi; dmi = dmi->next) { 908 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); 909 910 if (!new_dmi) { 911 /* FIXME: Potential memory leak !!! */ 912 return -ENOMEM; 913 } 914 915 new_dmi->next = bond->mc_list; 916 bond->mc_list = new_dmi; 917 new_dmi->dmi_addrlen = dmi->dmi_addrlen; 918 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); 919 new_dmi->dmi_users = dmi->dmi_users; 920 new_dmi->dmi_gusers = dmi->dmi_gusers; 921 } 922 923 return 0; 924 } 925 926 /* 927 * flush all members of flush->mc_list from device dev->mc_list 928 */ 929 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) 930 { 931 struct bonding *bond = netdev_priv(bond_dev); 932 struct dev_mc_list *dmi; 933 934 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 935 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 936 } 937 938 if (bond->params.mode == BOND_MODE_8023AD) { 939 /* del lacpdu mc addr from mc list */ 940 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 941 942 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 943 } 944 } 945 946 /*--------------------------- Active slave change ---------------------------*/ 947 948 /* 949 * Update the mc list and multicast-related flags for the new and 950 * old active slaves (if any) according to the multicast mode, and 951 * promiscuous flags unconditionally. 952 */ 953 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) 954 { 955 struct dev_mc_list *dmi; 956 957 if (!USES_PRIMARY(bond->params.mode)) { 958 /* nothing to do - mc list is already up-to-date on 959 * all slaves 960 */ 961 return; 962 } 963 964 if (old_active) { 965 if (bond->dev->flags & IFF_PROMISC) { 966 dev_set_promiscuity(old_active->dev, -1); 967 } 968 969 if (bond->dev->flags & IFF_ALLMULTI) { 970 dev_set_allmulti(old_active->dev, -1); 971 } 972 973 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 974 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 975 } 976 } 977 978 if (new_active) { 979 /* FIXME: Signal errors upstream. */ 980 if (bond->dev->flags & IFF_PROMISC) { 981 dev_set_promiscuity(new_active->dev, 1); 982 } 983 984 if (bond->dev->flags & IFF_ALLMULTI) { 985 dev_set_allmulti(new_active->dev, 1); 986 } 987 988 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 989 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 990 } 991 bond_resend_igmp_join_requests(bond); 992 } 993 } 994 995 /* 996 * bond_do_fail_over_mac 997 * 998 * Perform special MAC address swapping for fail_over_mac settings 999 * 1000 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 1001 */ 1002 static void bond_do_fail_over_mac(struct bonding *bond, 1003 struct slave *new_active, 1004 struct slave *old_active) 1005 __releases(&bond->curr_slave_lock) 1006 __releases(&bond->lock) 1007 __acquires(&bond->lock) 1008 __acquires(&bond->curr_slave_lock) 1009 { 1010 u8 tmp_mac[ETH_ALEN]; 1011 struct sockaddr saddr; 1012 int rv; 1013 1014 switch (bond->params.fail_over_mac) { 1015 case BOND_FOM_ACTIVE: 1016 if (new_active) 1017 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 1018 new_active->dev->addr_len); 1019 break; 1020 case BOND_FOM_FOLLOW: 1021 /* 1022 * if new_active && old_active, swap them 1023 * if just old_active, do nothing (going to no active slave) 1024 * if just new_active, set new_active to bond's MAC 1025 */ 1026 if (!new_active) 1027 return; 1028 1029 write_unlock_bh(&bond->curr_slave_lock); 1030 read_unlock(&bond->lock); 1031 1032 if (old_active) { 1033 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 1034 memcpy(saddr.sa_data, old_active->dev->dev_addr, 1035 ETH_ALEN); 1036 saddr.sa_family = new_active->dev->type; 1037 } else { 1038 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 1039 saddr.sa_family = bond->dev->type; 1040 } 1041 1042 rv = dev_set_mac_address(new_active->dev, &saddr); 1043 if (rv) { 1044 printk(KERN_ERR DRV_NAME 1045 ": %s: Error %d setting MAC of slave %s\n", 1046 bond->dev->name, -rv, new_active->dev->name); 1047 goto out; 1048 } 1049 1050 if (!old_active) 1051 goto out; 1052 1053 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 1054 saddr.sa_family = old_active->dev->type; 1055 1056 rv = dev_set_mac_address(old_active->dev, &saddr); 1057 if (rv) 1058 printk(KERN_ERR DRV_NAME 1059 ": %s: Error %d setting MAC of slave %s\n", 1060 bond->dev->name, -rv, new_active->dev->name); 1061 out: 1062 read_lock(&bond->lock); 1063 write_lock_bh(&bond->curr_slave_lock); 1064 break; 1065 default: 1066 printk(KERN_ERR DRV_NAME 1067 ": %s: bond_do_fail_over_mac impossible: bad policy %d\n", 1068 bond->dev->name, bond->params.fail_over_mac); 1069 break; 1070 } 1071 1072 } 1073 1074 1075 /** 1076 * find_best_interface - select the best available slave to be the active one 1077 * @bond: our bonding struct 1078 * 1079 * Warning: Caller must hold curr_slave_lock for writing. 1080 */ 1081 static struct slave *bond_find_best_slave(struct bonding *bond) 1082 { 1083 struct slave *new_active, *old_active; 1084 struct slave *bestslave = NULL; 1085 int mintime = bond->params.updelay; 1086 int i; 1087 1088 new_active = old_active = bond->curr_active_slave; 1089 1090 if (!new_active) { /* there were no active slaves left */ 1091 if (bond->slave_cnt > 0) { /* found one slave */ 1092 new_active = bond->first_slave; 1093 } else { 1094 return NULL; /* still no slave, return NULL */ 1095 } 1096 } 1097 1098 /* first try the primary link; if arping, a link must tx/rx traffic 1099 * before it can be considered the curr_active_slave - also, we would skip 1100 * slaves between the curr_active_slave and primary_slave that may be up 1101 * and able to arp 1102 */ 1103 if ((bond->primary_slave) && 1104 (!bond->params.arp_interval) && 1105 (IS_UP(bond->primary_slave->dev))) { 1106 new_active = bond->primary_slave; 1107 } 1108 1109 /* remember where to stop iterating over the slaves */ 1110 old_active = new_active; 1111 1112 bond_for_each_slave_from(bond, new_active, i, old_active) { 1113 if (IS_UP(new_active->dev)) { 1114 if (new_active->link == BOND_LINK_UP) { 1115 return new_active; 1116 } else if (new_active->link == BOND_LINK_BACK) { 1117 /* link up, but waiting for stabilization */ 1118 if (new_active->delay < mintime) { 1119 mintime = new_active->delay; 1120 bestslave = new_active; 1121 } 1122 } 1123 } 1124 } 1125 1126 return bestslave; 1127 } 1128 1129 /** 1130 * change_active_interface - change the active slave into the specified one 1131 * @bond: our bonding struct 1132 * @new: the new slave to make the active one 1133 * 1134 * Set the new slave to the bond's settings and unset them on the old 1135 * curr_active_slave. 1136 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1137 * 1138 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1139 * because it is apparently the best available slave we have, even though its 1140 * updelay hasn't timed out yet. 1141 * 1142 * If new_active is not NULL, caller must hold bond->lock for read and 1143 * curr_slave_lock for write_bh. 1144 */ 1145 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1146 { 1147 struct slave *old_active = bond->curr_active_slave; 1148 1149 if (old_active == new_active) { 1150 return; 1151 } 1152 1153 if (new_active) { 1154 new_active->jiffies = jiffies; 1155 1156 if (new_active->link == BOND_LINK_BACK) { 1157 if (USES_PRIMARY(bond->params.mode)) { 1158 printk(KERN_INFO DRV_NAME 1159 ": %s: making interface %s the new " 1160 "active one %d ms earlier.\n", 1161 bond->dev->name, new_active->dev->name, 1162 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1163 } 1164 1165 new_active->delay = 0; 1166 new_active->link = BOND_LINK_UP; 1167 1168 if (bond->params.mode == BOND_MODE_8023AD) { 1169 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1170 } 1171 1172 if (bond_is_lb(bond)) 1173 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1174 } else { 1175 if (USES_PRIMARY(bond->params.mode)) { 1176 printk(KERN_INFO DRV_NAME 1177 ": %s: making interface %s the new " 1178 "active one.\n", 1179 bond->dev->name, new_active->dev->name); 1180 } 1181 } 1182 } 1183 1184 if (USES_PRIMARY(bond->params.mode)) { 1185 bond_mc_swap(bond, new_active, old_active); 1186 } 1187 1188 if (bond_is_lb(bond)) { 1189 bond_alb_handle_active_change(bond, new_active); 1190 if (old_active) 1191 bond_set_slave_inactive_flags(old_active); 1192 if (new_active) 1193 bond_set_slave_active_flags(new_active); 1194 } else { 1195 bond->curr_active_slave = new_active; 1196 } 1197 1198 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1199 if (old_active) { 1200 bond_set_slave_inactive_flags(old_active); 1201 } 1202 1203 if (new_active) { 1204 bond_set_slave_active_flags(new_active); 1205 1206 if (bond->params.fail_over_mac) 1207 bond_do_fail_over_mac(bond, new_active, 1208 old_active); 1209 1210 bond->send_grat_arp = bond->params.num_grat_arp; 1211 bond_send_gratuitous_arp(bond); 1212 1213 bond->send_unsol_na = bond->params.num_unsol_na; 1214 bond_send_unsolicited_na(bond); 1215 1216 write_unlock_bh(&bond->curr_slave_lock); 1217 read_unlock(&bond->lock); 1218 1219 netdev_bonding_change(bond->dev); 1220 1221 read_lock(&bond->lock); 1222 write_lock_bh(&bond->curr_slave_lock); 1223 } 1224 } 1225 } 1226 1227 /** 1228 * bond_select_active_slave - select a new active slave, if needed 1229 * @bond: our bonding struct 1230 * 1231 * This functions shoud be called when one of the following occurs: 1232 * - The old curr_active_slave has been released or lost its link. 1233 * - The primary_slave has got its link back. 1234 * - A slave has got its link back and there's no old curr_active_slave. 1235 * 1236 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1237 */ 1238 void bond_select_active_slave(struct bonding *bond) 1239 { 1240 struct slave *best_slave; 1241 int rv; 1242 1243 best_slave = bond_find_best_slave(bond); 1244 if (best_slave != bond->curr_active_slave) { 1245 bond_change_active_slave(bond, best_slave); 1246 rv = bond_set_carrier(bond); 1247 if (!rv) 1248 return; 1249 1250 if (netif_carrier_ok(bond->dev)) { 1251 printk(KERN_INFO DRV_NAME 1252 ": %s: first active interface up!\n", 1253 bond->dev->name); 1254 } else { 1255 printk(KERN_INFO DRV_NAME ": %s: " 1256 "now running without any active interface !\n", 1257 bond->dev->name); 1258 } 1259 } 1260 } 1261 1262 /*--------------------------- slave list handling ---------------------------*/ 1263 1264 /* 1265 * This function attaches the slave to the end of list. 1266 * 1267 * bond->lock held for writing by caller. 1268 */ 1269 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1270 { 1271 if (bond->first_slave == NULL) { /* attaching the first slave */ 1272 new_slave->next = new_slave; 1273 new_slave->prev = new_slave; 1274 bond->first_slave = new_slave; 1275 } else { 1276 new_slave->next = bond->first_slave; 1277 new_slave->prev = bond->first_slave->prev; 1278 new_slave->next->prev = new_slave; 1279 new_slave->prev->next = new_slave; 1280 } 1281 1282 bond->slave_cnt++; 1283 } 1284 1285 /* 1286 * This function detaches the slave from the list. 1287 * WARNING: no check is made to verify if the slave effectively 1288 * belongs to <bond>. 1289 * Nothing is freed on return, structures are just unchained. 1290 * If any slave pointer in bond was pointing to <slave>, 1291 * it should be changed by the calling function. 1292 * 1293 * bond->lock held for writing by caller. 1294 */ 1295 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1296 { 1297 if (slave->next) { 1298 slave->next->prev = slave->prev; 1299 } 1300 1301 if (slave->prev) { 1302 slave->prev->next = slave->next; 1303 } 1304 1305 if (bond->first_slave == slave) { /* slave is the first slave */ 1306 if (bond->slave_cnt > 1) { /* there are more slave */ 1307 bond->first_slave = slave->next; 1308 } else { 1309 bond->first_slave = NULL; /* slave was the last one */ 1310 } 1311 } 1312 1313 slave->next = NULL; 1314 slave->prev = NULL; 1315 bond->slave_cnt--; 1316 } 1317 1318 /*---------------------------------- IOCTL ----------------------------------*/ 1319 1320 static int bond_sethwaddr(struct net_device *bond_dev, 1321 struct net_device *slave_dev) 1322 { 1323 pr_debug("bond_dev=%p\n", bond_dev); 1324 pr_debug("slave_dev=%p\n", slave_dev); 1325 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1326 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1327 return 0; 1328 } 1329 1330 #define BOND_VLAN_FEATURES \ 1331 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ 1332 NETIF_F_HW_VLAN_FILTER) 1333 1334 /* 1335 * Compute the common dev->feature set available to all slaves. Some 1336 * feature bits are managed elsewhere, so preserve those feature bits 1337 * on the master device. 1338 */ 1339 static int bond_compute_features(struct bonding *bond) 1340 { 1341 struct slave *slave; 1342 struct net_device *bond_dev = bond->dev; 1343 unsigned long features = bond_dev->features; 1344 unsigned short max_hard_header_len = max((u16)ETH_HLEN, 1345 bond_dev->hard_header_len); 1346 int i; 1347 1348 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); 1349 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; 1350 1351 if (!bond->first_slave) 1352 goto done; 1353 1354 features &= ~NETIF_F_ONE_FOR_ALL; 1355 1356 bond_for_each_slave(bond, slave, i) { 1357 features = netdev_increment_features(features, 1358 slave->dev->features, 1359 NETIF_F_ONE_FOR_ALL); 1360 if (slave->dev->hard_header_len > max_hard_header_len) 1361 max_hard_header_len = slave->dev->hard_header_len; 1362 } 1363 1364 done: 1365 features |= (bond_dev->features & BOND_VLAN_FEATURES); 1366 bond_dev->features = netdev_fix_features(features, NULL); 1367 bond_dev->hard_header_len = max_hard_header_len; 1368 1369 return 0; 1370 } 1371 1372 static void bond_setup_by_slave(struct net_device *bond_dev, 1373 struct net_device *slave_dev) 1374 { 1375 struct bonding *bond = netdev_priv(bond_dev); 1376 1377 bond_dev->header_ops = slave_dev->header_ops; 1378 1379 bond_dev->type = slave_dev->type; 1380 bond_dev->hard_header_len = slave_dev->hard_header_len; 1381 bond_dev->addr_len = slave_dev->addr_len; 1382 1383 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1384 slave_dev->addr_len); 1385 bond->setup_by_slave = 1; 1386 } 1387 1388 /* enslave device <slave> to bond device <master> */ 1389 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1390 { 1391 struct bonding *bond = netdev_priv(bond_dev); 1392 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 1393 struct slave *new_slave = NULL; 1394 struct dev_mc_list *dmi; 1395 struct sockaddr addr; 1396 int link_reporting; 1397 int old_features = bond_dev->features; 1398 int res = 0; 1399 1400 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1401 slave_ops->ndo_do_ioctl == NULL) { 1402 printk(KERN_WARNING DRV_NAME 1403 ": %s: Warning: no link monitoring support for %s\n", 1404 bond_dev->name, slave_dev->name); 1405 } 1406 1407 /* bond must be initialized by bond_open() before enslaving */ 1408 if (!(bond_dev->flags & IFF_UP)) { 1409 printk(KERN_WARNING DRV_NAME 1410 " %s: master_dev is not up in bond_enslave\n", 1411 bond_dev->name); 1412 } 1413 1414 /* already enslaved */ 1415 if (slave_dev->flags & IFF_SLAVE) { 1416 pr_debug("Error, Device was already enslaved\n"); 1417 return -EBUSY; 1418 } 1419 1420 /* vlan challenged mutual exclusion */ 1421 /* no need to lock since we're protected by rtnl_lock */ 1422 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1423 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1424 if (!list_empty(&bond->vlan_list)) { 1425 printk(KERN_ERR DRV_NAME 1426 ": %s: Error: cannot enslave VLAN " 1427 "challenged slave %s on VLAN enabled " 1428 "bond %s\n", bond_dev->name, slave_dev->name, 1429 bond_dev->name); 1430 return -EPERM; 1431 } else { 1432 printk(KERN_WARNING DRV_NAME 1433 ": %s: Warning: enslaved VLAN challenged " 1434 "slave %s. Adding VLANs will be blocked as " 1435 "long as %s is part of bond %s\n", 1436 bond_dev->name, slave_dev->name, slave_dev->name, 1437 bond_dev->name); 1438 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1439 } 1440 } else { 1441 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1442 if (bond->slave_cnt == 0) { 1443 /* First slave, and it is not VLAN challenged, 1444 * so remove the block of adding VLANs over the bond. 1445 */ 1446 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1447 } 1448 } 1449 1450 /* 1451 * Old ifenslave binaries are no longer supported. These can 1452 * be identified with moderate accurary by the state of the slave: 1453 * the current ifenslave will set the interface down prior to 1454 * enslaving it; the old ifenslave will not. 1455 */ 1456 if ((slave_dev->flags & IFF_UP)) { 1457 printk(KERN_ERR DRV_NAME ": %s is up. " 1458 "This may be due to an out of date ifenslave.\n", 1459 slave_dev->name); 1460 res = -EPERM; 1461 goto err_undo_flags; 1462 } 1463 1464 /* set bonding device ether type by slave - bonding netdevices are 1465 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1466 * there is a need to override some of the type dependent attribs/funcs. 1467 * 1468 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1469 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1470 */ 1471 if (bond->slave_cnt == 0) { 1472 if (slave_dev->type != ARPHRD_ETHER) 1473 bond_setup_by_slave(bond_dev, slave_dev); 1474 } else if (bond_dev->type != slave_dev->type) { 1475 printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different " 1476 "from other slaves (%d), can not enslave it.\n", 1477 slave_dev->name, 1478 slave_dev->type, bond_dev->type); 1479 res = -EINVAL; 1480 goto err_undo_flags; 1481 } 1482 1483 if (slave_ops->ndo_set_mac_address == NULL) { 1484 if (bond->slave_cnt == 0) { 1485 printk(KERN_WARNING DRV_NAME 1486 ": %s: Warning: The first slave device " 1487 "specified does not support setting the MAC " 1488 "address. Setting fail_over_mac to active.", 1489 bond_dev->name); 1490 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1491 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1492 printk(KERN_ERR DRV_NAME 1493 ": %s: Error: The slave device specified " 1494 "does not support setting the MAC address, " 1495 "but fail_over_mac is not set to active.\n" 1496 , bond_dev->name); 1497 res = -EOPNOTSUPP; 1498 goto err_undo_flags; 1499 } 1500 } 1501 1502 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1503 if (!new_slave) { 1504 res = -ENOMEM; 1505 goto err_undo_flags; 1506 } 1507 1508 /* save slave's original flags before calling 1509 * netdev_set_master and dev_open 1510 */ 1511 new_slave->original_flags = slave_dev->flags; 1512 1513 /* 1514 * Save slave's original ("permanent") mac address for modes 1515 * that need it, and for restoring it upon release, and then 1516 * set it to the master's address 1517 */ 1518 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1519 1520 if (!bond->params.fail_over_mac) { 1521 /* 1522 * Set slave to master's mac address. The application already 1523 * set the master's mac address to that of the first slave 1524 */ 1525 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1526 addr.sa_family = slave_dev->type; 1527 res = dev_set_mac_address(slave_dev, &addr); 1528 if (res) { 1529 pr_debug("Error %d calling set_mac_address\n", res); 1530 goto err_free; 1531 } 1532 } 1533 1534 res = netdev_set_master(slave_dev, bond_dev); 1535 if (res) { 1536 pr_debug("Error %d calling netdev_set_master\n", res); 1537 goto err_restore_mac; 1538 } 1539 /* open the slave since the application closed it */ 1540 res = dev_open(slave_dev); 1541 if (res) { 1542 pr_debug("Openning slave %s failed\n", slave_dev->name); 1543 goto err_unset_master; 1544 } 1545 1546 new_slave->dev = slave_dev; 1547 slave_dev->priv_flags |= IFF_BONDING; 1548 1549 if (bond_is_lb(bond)) { 1550 /* bond_alb_init_slave() must be called before all other stages since 1551 * it might fail and we do not want to have to undo everything 1552 */ 1553 res = bond_alb_init_slave(bond, new_slave); 1554 if (res) { 1555 goto err_close; 1556 } 1557 } 1558 1559 /* If the mode USES_PRIMARY, then the new slave gets the 1560 * master's promisc (and mc) settings only if it becomes the 1561 * curr_active_slave, and that is taken care of later when calling 1562 * bond_change_active() 1563 */ 1564 if (!USES_PRIMARY(bond->params.mode)) { 1565 /* set promiscuity level to new slave */ 1566 if (bond_dev->flags & IFF_PROMISC) { 1567 res = dev_set_promiscuity(slave_dev, 1); 1568 if (res) 1569 goto err_close; 1570 } 1571 1572 /* set allmulti level to new slave */ 1573 if (bond_dev->flags & IFF_ALLMULTI) { 1574 res = dev_set_allmulti(slave_dev, 1); 1575 if (res) 1576 goto err_close; 1577 } 1578 1579 netif_addr_lock_bh(bond_dev); 1580 /* upload master's mc_list to new slave */ 1581 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 1582 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 1583 } 1584 netif_addr_unlock_bh(bond_dev); 1585 } 1586 1587 if (bond->params.mode == BOND_MODE_8023AD) { 1588 /* add lacpdu mc addr to mc list */ 1589 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1590 1591 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 1592 } 1593 1594 bond_add_vlans_on_slave(bond, slave_dev); 1595 1596 write_lock_bh(&bond->lock); 1597 1598 bond_attach_slave(bond, new_slave); 1599 1600 new_slave->delay = 0; 1601 new_slave->link_failure_count = 0; 1602 1603 bond_compute_features(bond); 1604 1605 write_unlock_bh(&bond->lock); 1606 1607 read_lock(&bond->lock); 1608 1609 new_slave->last_arp_rx = jiffies; 1610 1611 if (bond->params.miimon && !bond->params.use_carrier) { 1612 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1613 1614 if ((link_reporting == -1) && !bond->params.arp_interval) { 1615 /* 1616 * miimon is set but a bonded network driver 1617 * does not support ETHTOOL/MII and 1618 * arp_interval is not set. Note: if 1619 * use_carrier is enabled, we will never go 1620 * here (because netif_carrier is always 1621 * supported); thus, we don't need to change 1622 * the messages for netif_carrier. 1623 */ 1624 printk(KERN_WARNING DRV_NAME 1625 ": %s: Warning: MII and ETHTOOL support not " 1626 "available for interface %s, and " 1627 "arp_interval/arp_ip_target module parameters " 1628 "not specified, thus bonding will not detect " 1629 "link failures! see bonding.txt for details.\n", 1630 bond_dev->name, slave_dev->name); 1631 } else if (link_reporting == -1) { 1632 /* unable get link status using mii/ethtool */ 1633 printk(KERN_WARNING DRV_NAME 1634 ": %s: Warning: can't get link status from " 1635 "interface %s; the network driver associated " 1636 "with this interface does not support MII or " 1637 "ETHTOOL link status reporting, thus miimon " 1638 "has no effect on this interface.\n", 1639 bond_dev->name, slave_dev->name); 1640 } 1641 } 1642 1643 /* check for initial state */ 1644 if (!bond->params.miimon || 1645 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1646 if (bond->params.updelay) { 1647 pr_debug("Initial state of slave_dev is " 1648 "BOND_LINK_BACK\n"); 1649 new_slave->link = BOND_LINK_BACK; 1650 new_slave->delay = bond->params.updelay; 1651 } else { 1652 pr_debug("Initial state of slave_dev is " 1653 "BOND_LINK_UP\n"); 1654 new_slave->link = BOND_LINK_UP; 1655 } 1656 new_slave->jiffies = jiffies; 1657 } else { 1658 pr_debug("Initial state of slave_dev is " 1659 "BOND_LINK_DOWN\n"); 1660 new_slave->link = BOND_LINK_DOWN; 1661 } 1662 1663 if (bond_update_speed_duplex(new_slave) && 1664 (new_slave->link != BOND_LINK_DOWN)) { 1665 printk(KERN_WARNING DRV_NAME 1666 ": %s: Warning: failed to get speed and duplex from %s, " 1667 "assumed to be 100Mb/sec and Full.\n", 1668 bond_dev->name, new_slave->dev->name); 1669 1670 if (bond->params.mode == BOND_MODE_8023AD) { 1671 printk(KERN_WARNING DRV_NAME 1672 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " 1673 "support in base driver for proper aggregator " 1674 "selection.\n", bond_dev->name); 1675 } 1676 } 1677 1678 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1679 /* if there is a primary slave, remember it */ 1680 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1681 bond->primary_slave = new_slave; 1682 } 1683 } 1684 1685 write_lock_bh(&bond->curr_slave_lock); 1686 1687 switch (bond->params.mode) { 1688 case BOND_MODE_ACTIVEBACKUP: 1689 bond_set_slave_inactive_flags(new_slave); 1690 bond_select_active_slave(bond); 1691 break; 1692 case BOND_MODE_8023AD: 1693 /* in 802.3ad mode, the internal mechanism 1694 * will activate the slaves in the selected 1695 * aggregator 1696 */ 1697 bond_set_slave_inactive_flags(new_slave); 1698 /* if this is the first slave */ 1699 if (bond->slave_cnt == 1) { 1700 SLAVE_AD_INFO(new_slave).id = 1; 1701 /* Initialize AD with the number of times that the AD timer is called in 1 second 1702 * can be called only after the mac address of the bond is set 1703 */ 1704 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1705 bond->params.lacp_fast); 1706 } else { 1707 SLAVE_AD_INFO(new_slave).id = 1708 SLAVE_AD_INFO(new_slave->prev).id + 1; 1709 } 1710 1711 bond_3ad_bind_slave(new_slave); 1712 break; 1713 case BOND_MODE_TLB: 1714 case BOND_MODE_ALB: 1715 new_slave->state = BOND_STATE_ACTIVE; 1716 bond_set_slave_inactive_flags(new_slave); 1717 bond_select_active_slave(bond); 1718 break; 1719 default: 1720 pr_debug("This slave is always active in trunk mode\n"); 1721 1722 /* always active in trunk mode */ 1723 new_slave->state = BOND_STATE_ACTIVE; 1724 1725 /* In trunking mode there is little meaning to curr_active_slave 1726 * anyway (it holds no special properties of the bond device), 1727 * so we can change it without calling change_active_interface() 1728 */ 1729 if (!bond->curr_active_slave) { 1730 bond->curr_active_slave = new_slave; 1731 } 1732 break; 1733 } /* switch(bond_mode) */ 1734 1735 write_unlock_bh(&bond->curr_slave_lock); 1736 1737 bond_set_carrier(bond); 1738 1739 read_unlock(&bond->lock); 1740 1741 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1742 if (res) 1743 goto err_close; 1744 1745 printk(KERN_INFO DRV_NAME 1746 ": %s: enslaving %s as a%s interface with a%s link.\n", 1747 bond_dev->name, slave_dev->name, 1748 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1749 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1750 1751 /* enslave is successful */ 1752 return 0; 1753 1754 /* Undo stages on error */ 1755 err_close: 1756 dev_close(slave_dev); 1757 1758 err_unset_master: 1759 netdev_set_master(slave_dev, NULL); 1760 1761 err_restore_mac: 1762 if (!bond->params.fail_over_mac) { 1763 /* XXX TODO - fom follow mode needs to change master's 1764 * MAC if this slave's MAC is in use by the bond, or at 1765 * least print a warning. 1766 */ 1767 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1768 addr.sa_family = slave_dev->type; 1769 dev_set_mac_address(slave_dev, &addr); 1770 } 1771 1772 err_free: 1773 kfree(new_slave); 1774 1775 err_undo_flags: 1776 bond_dev->features = old_features; 1777 1778 return res; 1779 } 1780 1781 /* 1782 * Try to release the slave device <slave> from the bond device <master> 1783 * It is legal to access curr_active_slave without a lock because all the function 1784 * is write-locked. 1785 * 1786 * The rules for slave state should be: 1787 * for Active/Backup: 1788 * Active stays on all backups go down 1789 * for Bonded connections: 1790 * The first up interface should be left on and all others downed. 1791 */ 1792 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1793 { 1794 struct bonding *bond = netdev_priv(bond_dev); 1795 struct slave *slave, *oldcurrent; 1796 struct sockaddr addr; 1797 int mac_addr_differ; 1798 1799 /* slave is not a slave or master is not master of this slave */ 1800 if (!(slave_dev->flags & IFF_SLAVE) || 1801 (slave_dev->master != bond_dev)) { 1802 printk(KERN_ERR DRV_NAME 1803 ": %s: Error: cannot release %s.\n", 1804 bond_dev->name, slave_dev->name); 1805 return -EINVAL; 1806 } 1807 1808 write_lock_bh(&bond->lock); 1809 1810 slave = bond_get_slave_by_dev(bond, slave_dev); 1811 if (!slave) { 1812 /* not a slave of this bond */ 1813 printk(KERN_INFO DRV_NAME 1814 ": %s: %s not enslaved\n", 1815 bond_dev->name, slave_dev->name); 1816 write_unlock_bh(&bond->lock); 1817 return -EINVAL; 1818 } 1819 1820 if (!bond->params.fail_over_mac) { 1821 mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr, 1822 ETH_ALEN); 1823 if (!mac_addr_differ && (bond->slave_cnt > 1)) 1824 printk(KERN_WARNING DRV_NAME 1825 ": %s: Warning: the permanent HWaddr of %s - " 1826 "%pM - is still in use by %s. " 1827 "Set the HWaddr of %s to a different address " 1828 "to avoid conflicts.\n", 1829 bond_dev->name, slave_dev->name, 1830 slave->perm_hwaddr, 1831 bond_dev->name, slave_dev->name); 1832 } 1833 1834 /* Inform AD package of unbinding of slave. */ 1835 if (bond->params.mode == BOND_MODE_8023AD) { 1836 /* must be called before the slave is 1837 * detached from the list 1838 */ 1839 bond_3ad_unbind_slave(slave); 1840 } 1841 1842 printk(KERN_INFO DRV_NAME 1843 ": %s: releasing %s interface %s\n", 1844 bond_dev->name, 1845 (slave->state == BOND_STATE_ACTIVE) 1846 ? "active" : "backup", 1847 slave_dev->name); 1848 1849 oldcurrent = bond->curr_active_slave; 1850 1851 bond->current_arp_slave = NULL; 1852 1853 /* release the slave from its bond */ 1854 bond_detach_slave(bond, slave); 1855 1856 bond_compute_features(bond); 1857 1858 if (bond->primary_slave == slave) { 1859 bond->primary_slave = NULL; 1860 } 1861 1862 if (oldcurrent == slave) { 1863 bond_change_active_slave(bond, NULL); 1864 } 1865 1866 if (bond_is_lb(bond)) { 1867 /* Must be called only after the slave has been 1868 * detached from the list and the curr_active_slave 1869 * has been cleared (if our_slave == old_current), 1870 * but before a new active slave is selected. 1871 */ 1872 write_unlock_bh(&bond->lock); 1873 bond_alb_deinit_slave(bond, slave); 1874 write_lock_bh(&bond->lock); 1875 } 1876 1877 if (oldcurrent == slave) { 1878 /* 1879 * Note that we hold RTNL over this sequence, so there 1880 * is no concern that another slave add/remove event 1881 * will interfere. 1882 */ 1883 write_unlock_bh(&bond->lock); 1884 read_lock(&bond->lock); 1885 write_lock_bh(&bond->curr_slave_lock); 1886 1887 bond_select_active_slave(bond); 1888 1889 write_unlock_bh(&bond->curr_slave_lock); 1890 read_unlock(&bond->lock); 1891 write_lock_bh(&bond->lock); 1892 } 1893 1894 if (bond->slave_cnt == 0) { 1895 bond_set_carrier(bond); 1896 1897 /* if the last slave was removed, zero the mac address 1898 * of the master so it will be set by the application 1899 * to the mac address of the first slave 1900 */ 1901 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1902 1903 if (list_empty(&bond->vlan_list)) { 1904 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1905 } else { 1906 printk(KERN_WARNING DRV_NAME 1907 ": %s: Warning: clearing HW address of %s while it " 1908 "still has VLANs.\n", 1909 bond_dev->name, bond_dev->name); 1910 printk(KERN_WARNING DRV_NAME 1911 ": %s: When re-adding slaves, make sure the bond's " 1912 "HW address matches its VLANs'.\n", 1913 bond_dev->name); 1914 } 1915 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1916 !bond_has_challenged_slaves(bond)) { 1917 printk(KERN_INFO DRV_NAME 1918 ": %s: last VLAN challenged slave %s " 1919 "left bond %s. VLAN blocking is removed\n", 1920 bond_dev->name, slave_dev->name, bond_dev->name); 1921 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1922 } 1923 1924 write_unlock_bh(&bond->lock); 1925 1926 /* must do this from outside any spinlocks */ 1927 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1928 1929 bond_del_vlans_from_slave(bond, slave_dev); 1930 1931 /* If the mode USES_PRIMARY, then we should only remove its 1932 * promisc and mc settings if it was the curr_active_slave, but that was 1933 * already taken care of above when we detached the slave 1934 */ 1935 if (!USES_PRIMARY(bond->params.mode)) { 1936 /* unset promiscuity level from slave */ 1937 if (bond_dev->flags & IFF_PROMISC) { 1938 dev_set_promiscuity(slave_dev, -1); 1939 } 1940 1941 /* unset allmulti level from slave */ 1942 if (bond_dev->flags & IFF_ALLMULTI) { 1943 dev_set_allmulti(slave_dev, -1); 1944 } 1945 1946 /* flush master's mc_list from slave */ 1947 netif_addr_lock_bh(bond_dev); 1948 bond_mc_list_flush(bond_dev, slave_dev); 1949 netif_addr_unlock_bh(bond_dev); 1950 } 1951 1952 netdev_set_master(slave_dev, NULL); 1953 1954 /* close slave before restoring its mac address */ 1955 dev_close(slave_dev); 1956 1957 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1958 /* restore original ("permanent") mac address */ 1959 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1960 addr.sa_family = slave_dev->type; 1961 dev_set_mac_address(slave_dev, &addr); 1962 } 1963 1964 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1965 IFF_SLAVE_INACTIVE | IFF_BONDING | 1966 IFF_SLAVE_NEEDARP); 1967 1968 kfree(slave); 1969 1970 return 0; /* deletion OK */ 1971 } 1972 1973 /* 1974 * Destroy a bonding device. 1975 * Must be under rtnl_lock when this function is called. 1976 */ 1977 void bond_destroy(struct bonding *bond) 1978 { 1979 bond_deinit(bond->dev); 1980 bond_destroy_sysfs_entry(bond); 1981 unregister_netdevice(bond->dev); 1982 } 1983 1984 static void bond_destructor(struct net_device *bond_dev) 1985 { 1986 struct bonding *bond = netdev_priv(bond_dev); 1987 1988 if (bond->wq) 1989 destroy_workqueue(bond->wq); 1990 1991 netif_addr_lock_bh(bond_dev); 1992 bond_mc_list_destroy(bond); 1993 netif_addr_unlock_bh(bond_dev); 1994 1995 free_netdev(bond_dev); 1996 } 1997 1998 /* 1999 * First release a slave and than destroy the bond if no more slaves iare left. 2000 * Must be under rtnl_lock when this function is called. 2001 */ 2002 int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev) 2003 { 2004 struct bonding *bond = netdev_priv(bond_dev); 2005 int ret; 2006 2007 ret = bond_release(bond_dev, slave_dev); 2008 if ((ret == 0) && (bond->slave_cnt == 0)) { 2009 printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n", 2010 bond_dev->name, bond_dev->name); 2011 bond_destroy(bond); 2012 } 2013 return ret; 2014 } 2015 2016 /* 2017 * This function releases all slaves. 2018 */ 2019 static int bond_release_all(struct net_device *bond_dev) 2020 { 2021 struct bonding *bond = netdev_priv(bond_dev); 2022 struct slave *slave; 2023 struct net_device *slave_dev; 2024 struct sockaddr addr; 2025 2026 write_lock_bh(&bond->lock); 2027 2028 netif_carrier_off(bond_dev); 2029 2030 if (bond->slave_cnt == 0) { 2031 goto out; 2032 } 2033 2034 bond->current_arp_slave = NULL; 2035 bond->primary_slave = NULL; 2036 bond_change_active_slave(bond, NULL); 2037 2038 while ((slave = bond->first_slave) != NULL) { 2039 /* Inform AD package of unbinding of slave 2040 * before slave is detached from the list. 2041 */ 2042 if (bond->params.mode == BOND_MODE_8023AD) { 2043 bond_3ad_unbind_slave(slave); 2044 } 2045 2046 slave_dev = slave->dev; 2047 bond_detach_slave(bond, slave); 2048 2049 /* now that the slave is detached, unlock and perform 2050 * all the undo steps that should not be called from 2051 * within a lock. 2052 */ 2053 write_unlock_bh(&bond->lock); 2054 2055 if (bond_is_lb(bond)) { 2056 /* must be called only after the slave 2057 * has been detached from the list 2058 */ 2059 bond_alb_deinit_slave(bond, slave); 2060 } 2061 2062 bond_compute_features(bond); 2063 2064 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2065 bond_del_vlans_from_slave(bond, slave_dev); 2066 2067 /* If the mode USES_PRIMARY, then we should only remove its 2068 * promisc and mc settings if it was the curr_active_slave, but that was 2069 * already taken care of above when we detached the slave 2070 */ 2071 if (!USES_PRIMARY(bond->params.mode)) { 2072 /* unset promiscuity level from slave */ 2073 if (bond_dev->flags & IFF_PROMISC) { 2074 dev_set_promiscuity(slave_dev, -1); 2075 } 2076 2077 /* unset allmulti level from slave */ 2078 if (bond_dev->flags & IFF_ALLMULTI) { 2079 dev_set_allmulti(slave_dev, -1); 2080 } 2081 2082 /* flush master's mc_list from slave */ 2083 netif_addr_lock_bh(bond_dev); 2084 bond_mc_list_flush(bond_dev, slave_dev); 2085 netif_addr_unlock_bh(bond_dev); 2086 } 2087 2088 netdev_set_master(slave_dev, NULL); 2089 2090 /* close slave before restoring its mac address */ 2091 dev_close(slave_dev); 2092 2093 if (!bond->params.fail_over_mac) { 2094 /* restore original ("permanent") mac address*/ 2095 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2096 addr.sa_family = slave_dev->type; 2097 dev_set_mac_address(slave_dev, &addr); 2098 } 2099 2100 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 2101 IFF_SLAVE_INACTIVE); 2102 2103 kfree(slave); 2104 2105 /* re-acquire the lock before getting the next slave */ 2106 write_lock_bh(&bond->lock); 2107 } 2108 2109 /* zero the mac address of the master so it will be 2110 * set by the application to the mac address of the 2111 * first slave 2112 */ 2113 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2114 2115 if (list_empty(&bond->vlan_list)) { 2116 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2117 } else { 2118 printk(KERN_WARNING DRV_NAME 2119 ": %s: Warning: clearing HW address of %s while it " 2120 "still has VLANs.\n", 2121 bond_dev->name, bond_dev->name); 2122 printk(KERN_WARNING DRV_NAME 2123 ": %s: When re-adding slaves, make sure the bond's " 2124 "HW address matches its VLANs'.\n", 2125 bond_dev->name); 2126 } 2127 2128 printk(KERN_INFO DRV_NAME 2129 ": %s: released all slaves\n", 2130 bond_dev->name); 2131 2132 out: 2133 write_unlock_bh(&bond->lock); 2134 2135 return 0; 2136 } 2137 2138 /* 2139 * This function changes the active slave to slave <slave_dev>. 2140 * It returns -EINVAL in the following cases. 2141 * - <slave_dev> is not found in the list. 2142 * - There is not active slave now. 2143 * - <slave_dev> is already active. 2144 * - The link state of <slave_dev> is not BOND_LINK_UP. 2145 * - <slave_dev> is not running. 2146 * In these cases, this fuction does nothing. 2147 * In the other cases, currnt_slave pointer is changed and 0 is returned. 2148 */ 2149 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2150 { 2151 struct bonding *bond = netdev_priv(bond_dev); 2152 struct slave *old_active = NULL; 2153 struct slave *new_active = NULL; 2154 int res = 0; 2155 2156 if (!USES_PRIMARY(bond->params.mode)) { 2157 return -EINVAL; 2158 } 2159 2160 /* Verify that master_dev is indeed the master of slave_dev */ 2161 if (!(slave_dev->flags & IFF_SLAVE) || 2162 (slave_dev->master != bond_dev)) { 2163 return -EINVAL; 2164 } 2165 2166 read_lock(&bond->lock); 2167 2168 read_lock(&bond->curr_slave_lock); 2169 old_active = bond->curr_active_slave; 2170 read_unlock(&bond->curr_slave_lock); 2171 2172 new_active = bond_get_slave_by_dev(bond, slave_dev); 2173 2174 /* 2175 * Changing to the current active: do nothing; return success. 2176 */ 2177 if (new_active && (new_active == old_active)) { 2178 read_unlock(&bond->lock); 2179 return 0; 2180 } 2181 2182 if ((new_active) && 2183 (old_active) && 2184 (new_active->link == BOND_LINK_UP) && 2185 IS_UP(new_active->dev)) { 2186 write_lock_bh(&bond->curr_slave_lock); 2187 bond_change_active_slave(bond, new_active); 2188 write_unlock_bh(&bond->curr_slave_lock); 2189 } else { 2190 res = -EINVAL; 2191 } 2192 2193 read_unlock(&bond->lock); 2194 2195 return res; 2196 } 2197 2198 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2199 { 2200 struct bonding *bond = netdev_priv(bond_dev); 2201 2202 info->bond_mode = bond->params.mode; 2203 info->miimon = bond->params.miimon; 2204 2205 read_lock(&bond->lock); 2206 info->num_slaves = bond->slave_cnt; 2207 read_unlock(&bond->lock); 2208 2209 return 0; 2210 } 2211 2212 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2213 { 2214 struct bonding *bond = netdev_priv(bond_dev); 2215 struct slave *slave; 2216 int i, found = 0; 2217 2218 if (info->slave_id < 0) { 2219 return -ENODEV; 2220 } 2221 2222 read_lock(&bond->lock); 2223 2224 bond_for_each_slave(bond, slave, i) { 2225 if (i == (int)info->slave_id) { 2226 found = 1; 2227 break; 2228 } 2229 } 2230 2231 read_unlock(&bond->lock); 2232 2233 if (found) { 2234 strcpy(info->slave_name, slave->dev->name); 2235 info->link = slave->link; 2236 info->state = slave->state; 2237 info->link_failure_count = slave->link_failure_count; 2238 } else { 2239 return -ENODEV; 2240 } 2241 2242 return 0; 2243 } 2244 2245 /*-------------------------------- Monitoring -------------------------------*/ 2246 2247 2248 static int bond_miimon_inspect(struct bonding *bond) 2249 { 2250 struct slave *slave; 2251 int i, link_state, commit = 0; 2252 2253 bond_for_each_slave(bond, slave, i) { 2254 slave->new_link = BOND_LINK_NOCHANGE; 2255 2256 link_state = bond_check_dev_link(bond, slave->dev, 0); 2257 2258 switch (slave->link) { 2259 case BOND_LINK_UP: 2260 if (link_state) 2261 continue; 2262 2263 slave->link = BOND_LINK_FAIL; 2264 slave->delay = bond->params.downdelay; 2265 if (slave->delay) { 2266 printk(KERN_INFO DRV_NAME 2267 ": %s: link status down for %s" 2268 "interface %s, disabling it in %d ms.\n", 2269 bond->dev->name, 2270 (bond->params.mode == 2271 BOND_MODE_ACTIVEBACKUP) ? 2272 ((slave->state == BOND_STATE_ACTIVE) ? 2273 "active " : "backup ") : "", 2274 slave->dev->name, 2275 bond->params.downdelay * bond->params.miimon); 2276 } 2277 /*FALLTHRU*/ 2278 case BOND_LINK_FAIL: 2279 if (link_state) { 2280 /* 2281 * recovered before downdelay expired 2282 */ 2283 slave->link = BOND_LINK_UP; 2284 slave->jiffies = jiffies; 2285 printk(KERN_INFO DRV_NAME 2286 ": %s: link status up again after %d " 2287 "ms for interface %s.\n", 2288 bond->dev->name, 2289 (bond->params.downdelay - slave->delay) * 2290 bond->params.miimon, 2291 slave->dev->name); 2292 continue; 2293 } 2294 2295 if (slave->delay <= 0) { 2296 slave->new_link = BOND_LINK_DOWN; 2297 commit++; 2298 continue; 2299 } 2300 2301 slave->delay--; 2302 break; 2303 2304 case BOND_LINK_DOWN: 2305 if (!link_state) 2306 continue; 2307 2308 slave->link = BOND_LINK_BACK; 2309 slave->delay = bond->params.updelay; 2310 2311 if (slave->delay) { 2312 printk(KERN_INFO DRV_NAME 2313 ": %s: link status up for " 2314 "interface %s, enabling it in %d ms.\n", 2315 bond->dev->name, slave->dev->name, 2316 bond->params.updelay * 2317 bond->params.miimon); 2318 } 2319 /*FALLTHRU*/ 2320 case BOND_LINK_BACK: 2321 if (!link_state) { 2322 slave->link = BOND_LINK_DOWN; 2323 printk(KERN_INFO DRV_NAME 2324 ": %s: link status down again after %d " 2325 "ms for interface %s.\n", 2326 bond->dev->name, 2327 (bond->params.updelay - slave->delay) * 2328 bond->params.miimon, 2329 slave->dev->name); 2330 2331 continue; 2332 } 2333 2334 if (slave->delay <= 0) { 2335 slave->new_link = BOND_LINK_UP; 2336 commit++; 2337 continue; 2338 } 2339 2340 slave->delay--; 2341 break; 2342 } 2343 } 2344 2345 return commit; 2346 } 2347 2348 static void bond_miimon_commit(struct bonding *bond) 2349 { 2350 struct slave *slave; 2351 int i; 2352 2353 bond_for_each_slave(bond, slave, i) { 2354 switch (slave->new_link) { 2355 case BOND_LINK_NOCHANGE: 2356 continue; 2357 2358 case BOND_LINK_UP: 2359 slave->link = BOND_LINK_UP; 2360 slave->jiffies = jiffies; 2361 2362 if (bond->params.mode == BOND_MODE_8023AD) { 2363 /* prevent it from being the active one */ 2364 slave->state = BOND_STATE_BACKUP; 2365 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2366 /* make it immediately active */ 2367 slave->state = BOND_STATE_ACTIVE; 2368 } else if (slave != bond->primary_slave) { 2369 /* prevent it from being the active one */ 2370 slave->state = BOND_STATE_BACKUP; 2371 } 2372 2373 printk(KERN_INFO DRV_NAME 2374 ": %s: link status definitely " 2375 "up for interface %s.\n", 2376 bond->dev->name, slave->dev->name); 2377 2378 /* notify ad that the link status has changed */ 2379 if (bond->params.mode == BOND_MODE_8023AD) 2380 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2381 2382 if (bond_is_lb(bond)) 2383 bond_alb_handle_link_change(bond, slave, 2384 BOND_LINK_UP); 2385 2386 if (!bond->curr_active_slave || 2387 (slave == bond->primary_slave)) 2388 goto do_failover; 2389 2390 continue; 2391 2392 case BOND_LINK_DOWN: 2393 if (slave->link_failure_count < UINT_MAX) 2394 slave->link_failure_count++; 2395 2396 slave->link = BOND_LINK_DOWN; 2397 2398 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2399 bond->params.mode == BOND_MODE_8023AD) 2400 bond_set_slave_inactive_flags(slave); 2401 2402 printk(KERN_INFO DRV_NAME 2403 ": %s: link status definitely down for " 2404 "interface %s, disabling it\n", 2405 bond->dev->name, slave->dev->name); 2406 2407 if (bond->params.mode == BOND_MODE_8023AD) 2408 bond_3ad_handle_link_change(slave, 2409 BOND_LINK_DOWN); 2410 2411 if (bond->params.mode == BOND_MODE_TLB || 2412 bond->params.mode == BOND_MODE_ALB) 2413 bond_alb_handle_link_change(bond, slave, 2414 BOND_LINK_DOWN); 2415 2416 if (slave == bond->curr_active_slave) 2417 goto do_failover; 2418 2419 continue; 2420 2421 default: 2422 printk(KERN_ERR DRV_NAME 2423 ": %s: invalid new link %d on slave %s\n", 2424 bond->dev->name, slave->new_link, 2425 slave->dev->name); 2426 slave->new_link = BOND_LINK_NOCHANGE; 2427 2428 continue; 2429 } 2430 2431 do_failover: 2432 ASSERT_RTNL(); 2433 write_lock_bh(&bond->curr_slave_lock); 2434 bond_select_active_slave(bond); 2435 write_unlock_bh(&bond->curr_slave_lock); 2436 } 2437 2438 bond_set_carrier(bond); 2439 } 2440 2441 /* 2442 * bond_mii_monitor 2443 * 2444 * Really a wrapper that splits the mii monitor into two phases: an 2445 * inspection, then (if inspection indicates something needs to be done) 2446 * an acquisition of appropriate locks followed by a commit phase to 2447 * implement whatever link state changes are indicated. 2448 */ 2449 void bond_mii_monitor(struct work_struct *work) 2450 { 2451 struct bonding *bond = container_of(work, struct bonding, 2452 mii_work.work); 2453 2454 read_lock(&bond->lock); 2455 if (bond->kill_timers) 2456 goto out; 2457 2458 if (bond->slave_cnt == 0) 2459 goto re_arm; 2460 2461 if (bond->send_grat_arp) { 2462 read_lock(&bond->curr_slave_lock); 2463 bond_send_gratuitous_arp(bond); 2464 read_unlock(&bond->curr_slave_lock); 2465 } 2466 2467 if (bond->send_unsol_na) { 2468 read_lock(&bond->curr_slave_lock); 2469 bond_send_unsolicited_na(bond); 2470 read_unlock(&bond->curr_slave_lock); 2471 } 2472 2473 if (bond_miimon_inspect(bond)) { 2474 read_unlock(&bond->lock); 2475 rtnl_lock(); 2476 read_lock(&bond->lock); 2477 2478 bond_miimon_commit(bond); 2479 2480 read_unlock(&bond->lock); 2481 rtnl_unlock(); /* might sleep, hold no other locks */ 2482 read_lock(&bond->lock); 2483 } 2484 2485 re_arm: 2486 if (bond->params.miimon) 2487 queue_delayed_work(bond->wq, &bond->mii_work, 2488 msecs_to_jiffies(bond->params.miimon)); 2489 out: 2490 read_unlock(&bond->lock); 2491 } 2492 2493 static __be32 bond_glean_dev_ip(struct net_device *dev) 2494 { 2495 struct in_device *idev; 2496 struct in_ifaddr *ifa; 2497 __be32 addr = 0; 2498 2499 if (!dev) 2500 return 0; 2501 2502 rcu_read_lock(); 2503 idev = __in_dev_get_rcu(dev); 2504 if (!idev) 2505 goto out; 2506 2507 ifa = idev->ifa_list; 2508 if (!ifa) 2509 goto out; 2510 2511 addr = ifa->ifa_local; 2512 out: 2513 rcu_read_unlock(); 2514 return addr; 2515 } 2516 2517 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2518 { 2519 struct vlan_entry *vlan; 2520 2521 if (ip == bond->master_ip) 2522 return 1; 2523 2524 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2525 if (ip == vlan->vlan_ip) 2526 return 1; 2527 } 2528 2529 return 0; 2530 } 2531 2532 /* 2533 * We go to the (large) trouble of VLAN tagging ARP frames because 2534 * switches in VLAN mode (especially if ports are configured as 2535 * "native" to a VLAN) might not pass non-tagged frames. 2536 */ 2537 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2538 { 2539 struct sk_buff *skb; 2540 2541 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2542 slave_dev->name, dest_ip, src_ip, vlan_id); 2543 2544 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2545 NULL, slave_dev->dev_addr, NULL); 2546 2547 if (!skb) { 2548 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); 2549 return; 2550 } 2551 if (vlan_id) { 2552 skb = vlan_put_tag(skb, vlan_id); 2553 if (!skb) { 2554 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); 2555 return; 2556 } 2557 } 2558 arp_xmit(skb); 2559 } 2560 2561 2562 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2563 { 2564 int i, vlan_id, rv; 2565 __be32 *targets = bond->params.arp_targets; 2566 struct vlan_entry *vlan; 2567 struct net_device *vlan_dev; 2568 struct flowi fl; 2569 struct rtable *rt; 2570 2571 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2572 if (!targets[i]) 2573 continue; 2574 pr_debug("basa: target %x\n", targets[i]); 2575 if (list_empty(&bond->vlan_list)) { 2576 pr_debug("basa: empty vlan: arp_send\n"); 2577 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2578 bond->master_ip, 0); 2579 continue; 2580 } 2581 2582 /* 2583 * If VLANs are configured, we do a route lookup to 2584 * determine which VLAN interface would be used, so we 2585 * can tag the ARP with the proper VLAN tag. 2586 */ 2587 memset(&fl, 0, sizeof(fl)); 2588 fl.fl4_dst = targets[i]; 2589 fl.fl4_tos = RTO_ONLINK; 2590 2591 rv = ip_route_output_key(&init_net, &rt, &fl); 2592 if (rv) { 2593 if (net_ratelimit()) { 2594 printk(KERN_WARNING DRV_NAME 2595 ": %s: no route to arp_ip_target %pI4\n", 2596 bond->dev->name, &fl.fl4_dst); 2597 } 2598 continue; 2599 } 2600 2601 /* 2602 * This target is not on a VLAN 2603 */ 2604 if (rt->u.dst.dev == bond->dev) { 2605 ip_rt_put(rt); 2606 pr_debug("basa: rtdev == bond->dev: arp_send\n"); 2607 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2608 bond->master_ip, 0); 2609 continue; 2610 } 2611 2612 vlan_id = 0; 2613 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2614 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2615 if (vlan_dev == rt->u.dst.dev) { 2616 vlan_id = vlan->vlan_id; 2617 pr_debug("basa: vlan match on %s %d\n", 2618 vlan_dev->name, vlan_id); 2619 break; 2620 } 2621 } 2622 2623 if (vlan_id) { 2624 ip_rt_put(rt); 2625 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2626 vlan->vlan_ip, vlan_id); 2627 continue; 2628 } 2629 2630 if (net_ratelimit()) { 2631 printk(KERN_WARNING DRV_NAME 2632 ": %s: no path to arp_ip_target %pI4 via rt.dev %s\n", 2633 bond->dev->name, &fl.fl4_dst, 2634 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); 2635 } 2636 ip_rt_put(rt); 2637 } 2638 } 2639 2640 /* 2641 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2642 * for each VLAN above us. 2643 * 2644 * Caller must hold curr_slave_lock for read or better 2645 */ 2646 static void bond_send_gratuitous_arp(struct bonding *bond) 2647 { 2648 struct slave *slave = bond->curr_active_slave; 2649 struct vlan_entry *vlan; 2650 struct net_device *vlan_dev; 2651 2652 pr_debug("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, 2653 slave ? slave->dev->name : "NULL"); 2654 2655 if (!slave || !bond->send_grat_arp || 2656 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 2657 return; 2658 2659 bond->send_grat_arp--; 2660 2661 if (bond->master_ip) { 2662 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2663 bond->master_ip, 0); 2664 } 2665 2666 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2667 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2668 if (vlan->vlan_ip) { 2669 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2670 vlan->vlan_ip, vlan->vlan_id); 2671 } 2672 } 2673 } 2674 2675 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2676 { 2677 int i; 2678 __be32 *targets = bond->params.arp_targets; 2679 2680 targets = bond->params.arp_targets; 2681 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2682 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n", 2683 &sip, &tip, i, &targets[i], bond_has_this_ip(bond, tip)); 2684 if (sip == targets[i]) { 2685 if (bond_has_this_ip(bond, tip)) 2686 slave->last_arp_rx = jiffies; 2687 return; 2688 } 2689 } 2690 } 2691 2692 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2693 { 2694 struct arphdr *arp; 2695 struct slave *slave; 2696 struct bonding *bond; 2697 unsigned char *arp_ptr; 2698 __be32 sip, tip; 2699 2700 if (dev_net(dev) != &init_net) 2701 goto out; 2702 2703 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2704 goto out; 2705 2706 bond = netdev_priv(dev); 2707 read_lock(&bond->lock); 2708 2709 pr_debug("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2710 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2711 orig_dev ? orig_dev->name : "NULL"); 2712 2713 slave = bond_get_slave_by_dev(bond, orig_dev); 2714 if (!slave || !slave_do_arp_validate(bond, slave)) 2715 goto out_unlock; 2716 2717 if (!pskb_may_pull(skb, arp_hdr_len(dev))) 2718 goto out_unlock; 2719 2720 arp = arp_hdr(skb); 2721 if (arp->ar_hln != dev->addr_len || 2722 skb->pkt_type == PACKET_OTHERHOST || 2723 skb->pkt_type == PACKET_LOOPBACK || 2724 arp->ar_hrd != htons(ARPHRD_ETHER) || 2725 arp->ar_pro != htons(ETH_P_IP) || 2726 arp->ar_pln != 4) 2727 goto out_unlock; 2728 2729 arp_ptr = (unsigned char *)(arp + 1); 2730 arp_ptr += dev->addr_len; 2731 memcpy(&sip, arp_ptr, 4); 2732 arp_ptr += 4 + dev->addr_len; 2733 memcpy(&tip, arp_ptr, 4); 2734 2735 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n", 2736 bond->dev->name, slave->dev->name, slave->state, 2737 bond->params.arp_validate, slave_do_arp_validate(bond, slave), 2738 &sip, &tip); 2739 2740 /* 2741 * Backup slaves won't see the ARP reply, but do come through 2742 * here for each ARP probe (so we swap the sip/tip to validate 2743 * the probe). In a "redundant switch, common router" type of 2744 * configuration, the ARP probe will (hopefully) travel from 2745 * the active, through one switch, the router, then the other 2746 * switch before reaching the backup. 2747 */ 2748 if (slave->state == BOND_STATE_ACTIVE) 2749 bond_validate_arp(bond, slave, sip, tip); 2750 else 2751 bond_validate_arp(bond, slave, tip, sip); 2752 2753 out_unlock: 2754 read_unlock(&bond->lock); 2755 out: 2756 dev_kfree_skb(skb); 2757 return NET_RX_SUCCESS; 2758 } 2759 2760 /* 2761 * this function is called regularly to monitor each slave's link 2762 * ensuring that traffic is being sent and received when arp monitoring 2763 * is used in load-balancing mode. if the adapter has been dormant, then an 2764 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2765 * arp monitoring in active backup mode. 2766 */ 2767 void bond_loadbalance_arp_mon(struct work_struct *work) 2768 { 2769 struct bonding *bond = container_of(work, struct bonding, 2770 arp_work.work); 2771 struct slave *slave, *oldcurrent; 2772 int do_failover = 0; 2773 int delta_in_ticks; 2774 int i; 2775 2776 read_lock(&bond->lock); 2777 2778 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2779 2780 if (bond->kill_timers) { 2781 goto out; 2782 } 2783 2784 if (bond->slave_cnt == 0) { 2785 goto re_arm; 2786 } 2787 2788 read_lock(&bond->curr_slave_lock); 2789 oldcurrent = bond->curr_active_slave; 2790 read_unlock(&bond->curr_slave_lock); 2791 2792 /* see if any of the previous devices are up now (i.e. they have 2793 * xmt and rcv traffic). the curr_active_slave does not come into 2794 * the picture unless it is null. also, slave->jiffies is not needed 2795 * here because we send an arp on each slave and give a slave as 2796 * long as it needs to get the tx/rx within the delta. 2797 * TODO: what about up/down delay in arp mode? it wasn't here before 2798 * so it can wait 2799 */ 2800 bond_for_each_slave(bond, slave, i) { 2801 if (slave->link != BOND_LINK_UP) { 2802 if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) && 2803 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) { 2804 2805 slave->link = BOND_LINK_UP; 2806 slave->state = BOND_STATE_ACTIVE; 2807 2808 /* primary_slave has no meaning in round-robin 2809 * mode. the window of a slave being up and 2810 * curr_active_slave being null after enslaving 2811 * is closed. 2812 */ 2813 if (!oldcurrent) { 2814 printk(KERN_INFO DRV_NAME 2815 ": %s: link status definitely " 2816 "up for interface %s, ", 2817 bond->dev->name, 2818 slave->dev->name); 2819 do_failover = 1; 2820 } else { 2821 printk(KERN_INFO DRV_NAME 2822 ": %s: interface %s is now up\n", 2823 bond->dev->name, 2824 slave->dev->name); 2825 } 2826 } 2827 } else { 2828 /* slave->link == BOND_LINK_UP */ 2829 2830 /* not all switches will respond to an arp request 2831 * when the source ip is 0, so don't take the link down 2832 * if we don't know our ip yet 2833 */ 2834 if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) || 2835 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) { 2836 2837 slave->link = BOND_LINK_DOWN; 2838 slave->state = BOND_STATE_BACKUP; 2839 2840 if (slave->link_failure_count < UINT_MAX) { 2841 slave->link_failure_count++; 2842 } 2843 2844 printk(KERN_INFO DRV_NAME 2845 ": %s: interface %s is now down.\n", 2846 bond->dev->name, 2847 slave->dev->name); 2848 2849 if (slave == oldcurrent) { 2850 do_failover = 1; 2851 } 2852 } 2853 } 2854 2855 /* note: if switch is in round-robin mode, all links 2856 * must tx arp to ensure all links rx an arp - otherwise 2857 * links may oscillate or not come up at all; if switch is 2858 * in something like xor mode, there is nothing we can 2859 * do - all replies will be rx'ed on same link causing slaves 2860 * to be unstable during low/no traffic periods 2861 */ 2862 if (IS_UP(slave->dev)) { 2863 bond_arp_send_all(bond, slave); 2864 } 2865 } 2866 2867 if (do_failover) { 2868 write_lock_bh(&bond->curr_slave_lock); 2869 2870 bond_select_active_slave(bond); 2871 2872 write_unlock_bh(&bond->curr_slave_lock); 2873 } 2874 2875 re_arm: 2876 if (bond->params.arp_interval) 2877 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2878 out: 2879 read_unlock(&bond->lock); 2880 } 2881 2882 /* 2883 * Called to inspect slaves for active-backup mode ARP monitor link state 2884 * changes. Sets new_link in slaves to specify what action should take 2885 * place for the slave. Returns 0 if no changes are found, >0 if changes 2886 * to link states must be committed. 2887 * 2888 * Called with bond->lock held for read. 2889 */ 2890 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2891 { 2892 struct slave *slave; 2893 int i, commit = 0; 2894 2895 bond_for_each_slave(bond, slave, i) { 2896 slave->new_link = BOND_LINK_NOCHANGE; 2897 2898 if (slave->link != BOND_LINK_UP) { 2899 if (time_before_eq(jiffies, slave_last_rx(bond, slave) + 2900 delta_in_ticks)) { 2901 slave->new_link = BOND_LINK_UP; 2902 commit++; 2903 } 2904 2905 continue; 2906 } 2907 2908 /* 2909 * Give slaves 2*delta after being enslaved or made 2910 * active. This avoids bouncing, as the last receive 2911 * times need a full ARP monitor cycle to be updated. 2912 */ 2913 if (!time_after_eq(jiffies, slave->jiffies + 2914 2 * delta_in_ticks)) 2915 continue; 2916 2917 /* 2918 * Backup slave is down if: 2919 * - No current_arp_slave AND 2920 * - more than 3*delta since last receive AND 2921 * - the bond has an IP address 2922 * 2923 * Note: a non-null current_arp_slave indicates 2924 * the curr_active_slave went down and we are 2925 * searching for a new one; under this condition 2926 * we only take the curr_active_slave down - this 2927 * gives each slave a chance to tx/rx traffic 2928 * before being taken out 2929 */ 2930 if (slave->state == BOND_STATE_BACKUP && 2931 !bond->current_arp_slave && 2932 time_after(jiffies, slave_last_rx(bond, slave) + 2933 3 * delta_in_ticks)) { 2934 slave->new_link = BOND_LINK_DOWN; 2935 commit++; 2936 } 2937 2938 /* 2939 * Active slave is down if: 2940 * - more than 2*delta since transmitting OR 2941 * - (more than 2*delta since receive AND 2942 * the bond has an IP address) 2943 */ 2944 if ((slave->state == BOND_STATE_ACTIVE) && 2945 (time_after_eq(jiffies, slave->dev->trans_start + 2946 2 * delta_in_ticks) || 2947 (time_after_eq(jiffies, slave_last_rx(bond, slave) 2948 + 2 * delta_in_ticks)))) { 2949 slave->new_link = BOND_LINK_DOWN; 2950 commit++; 2951 } 2952 } 2953 2954 read_lock(&bond->curr_slave_lock); 2955 2956 /* 2957 * Trigger a commit if the primary option setting has changed. 2958 */ 2959 if (bond->primary_slave && 2960 (bond->primary_slave != bond->curr_active_slave) && 2961 (bond->primary_slave->link == BOND_LINK_UP)) 2962 commit++; 2963 2964 read_unlock(&bond->curr_slave_lock); 2965 2966 return commit; 2967 } 2968 2969 /* 2970 * Called to commit link state changes noted by inspection step of 2971 * active-backup mode ARP monitor. 2972 * 2973 * Called with RTNL and bond->lock for read. 2974 */ 2975 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2976 { 2977 struct slave *slave; 2978 int i; 2979 2980 bond_for_each_slave(bond, slave, i) { 2981 switch (slave->new_link) { 2982 case BOND_LINK_NOCHANGE: 2983 continue; 2984 2985 case BOND_LINK_UP: 2986 write_lock_bh(&bond->curr_slave_lock); 2987 2988 if (!bond->curr_active_slave && 2989 time_before_eq(jiffies, slave->dev->trans_start + 2990 delta_in_ticks)) { 2991 slave->link = BOND_LINK_UP; 2992 bond_change_active_slave(bond, slave); 2993 bond->current_arp_slave = NULL; 2994 2995 printk(KERN_INFO DRV_NAME 2996 ": %s: %s is up and now the " 2997 "active interface\n", 2998 bond->dev->name, slave->dev->name); 2999 3000 } else if (bond->curr_active_slave != slave) { 3001 /* this slave has just come up but we 3002 * already have a current slave; this can 3003 * also happen if bond_enslave adds a new 3004 * slave that is up while we are searching 3005 * for a new slave 3006 */ 3007 slave->link = BOND_LINK_UP; 3008 bond_set_slave_inactive_flags(slave); 3009 bond->current_arp_slave = NULL; 3010 3011 printk(KERN_INFO DRV_NAME 3012 ": %s: backup interface %s is now up\n", 3013 bond->dev->name, slave->dev->name); 3014 } 3015 3016 write_unlock_bh(&bond->curr_slave_lock); 3017 3018 break; 3019 3020 case BOND_LINK_DOWN: 3021 if (slave->link_failure_count < UINT_MAX) 3022 slave->link_failure_count++; 3023 3024 slave->link = BOND_LINK_DOWN; 3025 3026 if (slave == bond->curr_active_slave) { 3027 printk(KERN_INFO DRV_NAME 3028 ": %s: link status down for active " 3029 "interface %s, disabling it\n", 3030 bond->dev->name, slave->dev->name); 3031 3032 bond_set_slave_inactive_flags(slave); 3033 3034 write_lock_bh(&bond->curr_slave_lock); 3035 3036 bond_select_active_slave(bond); 3037 if (bond->curr_active_slave) 3038 bond->curr_active_slave->jiffies = 3039 jiffies; 3040 3041 write_unlock_bh(&bond->curr_slave_lock); 3042 3043 bond->current_arp_slave = NULL; 3044 3045 } else if (slave->state == BOND_STATE_BACKUP) { 3046 printk(KERN_INFO DRV_NAME 3047 ": %s: backup interface %s is now down\n", 3048 bond->dev->name, slave->dev->name); 3049 3050 bond_set_slave_inactive_flags(slave); 3051 } 3052 break; 3053 3054 default: 3055 printk(KERN_ERR DRV_NAME 3056 ": %s: impossible: new_link %d on slave %s\n", 3057 bond->dev->name, slave->new_link, 3058 slave->dev->name); 3059 } 3060 } 3061 3062 /* 3063 * No race with changes to primary via sysfs, as we hold rtnl. 3064 */ 3065 if (bond->primary_slave && 3066 (bond->primary_slave != bond->curr_active_slave) && 3067 (bond->primary_slave->link == BOND_LINK_UP)) { 3068 write_lock_bh(&bond->curr_slave_lock); 3069 bond_change_active_slave(bond, bond->primary_slave); 3070 write_unlock_bh(&bond->curr_slave_lock); 3071 } 3072 3073 bond_set_carrier(bond); 3074 } 3075 3076 /* 3077 * Send ARP probes for active-backup mode ARP monitor. 3078 * 3079 * Called with bond->lock held for read. 3080 */ 3081 static void bond_ab_arp_probe(struct bonding *bond) 3082 { 3083 struct slave *slave; 3084 int i; 3085 3086 read_lock(&bond->curr_slave_lock); 3087 3088 if (bond->current_arp_slave && bond->curr_active_slave) 3089 printk("PROBE: c_arp %s && cas %s BAD\n", 3090 bond->current_arp_slave->dev->name, 3091 bond->curr_active_slave->dev->name); 3092 3093 if (bond->curr_active_slave) { 3094 bond_arp_send_all(bond, bond->curr_active_slave); 3095 read_unlock(&bond->curr_slave_lock); 3096 return; 3097 } 3098 3099 read_unlock(&bond->curr_slave_lock); 3100 3101 /* if we don't have a curr_active_slave, search for the next available 3102 * backup slave from the current_arp_slave and make it the candidate 3103 * for becoming the curr_active_slave 3104 */ 3105 3106 if (!bond->current_arp_slave) { 3107 bond->current_arp_slave = bond->first_slave; 3108 if (!bond->current_arp_slave) 3109 return; 3110 } 3111 3112 bond_set_slave_inactive_flags(bond->current_arp_slave); 3113 3114 /* search for next candidate */ 3115 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3116 if (IS_UP(slave->dev)) { 3117 slave->link = BOND_LINK_BACK; 3118 bond_set_slave_active_flags(slave); 3119 bond_arp_send_all(bond, slave); 3120 slave->jiffies = jiffies; 3121 bond->current_arp_slave = slave; 3122 break; 3123 } 3124 3125 /* if the link state is up at this point, we 3126 * mark it down - this can happen if we have 3127 * simultaneous link failures and 3128 * reselect_active_interface doesn't make this 3129 * one the current slave so it is still marked 3130 * up when it is actually down 3131 */ 3132 if (slave->link == BOND_LINK_UP) { 3133 slave->link = BOND_LINK_DOWN; 3134 if (slave->link_failure_count < UINT_MAX) 3135 slave->link_failure_count++; 3136 3137 bond_set_slave_inactive_flags(slave); 3138 3139 printk(KERN_INFO DRV_NAME 3140 ": %s: backup interface %s is now down.\n", 3141 bond->dev->name, slave->dev->name); 3142 } 3143 } 3144 } 3145 3146 void bond_activebackup_arp_mon(struct work_struct *work) 3147 { 3148 struct bonding *bond = container_of(work, struct bonding, 3149 arp_work.work); 3150 int delta_in_ticks; 3151 3152 read_lock(&bond->lock); 3153 3154 if (bond->kill_timers) 3155 goto out; 3156 3157 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3158 3159 if (bond->slave_cnt == 0) 3160 goto re_arm; 3161 3162 if (bond->send_grat_arp) { 3163 read_lock(&bond->curr_slave_lock); 3164 bond_send_gratuitous_arp(bond); 3165 read_unlock(&bond->curr_slave_lock); 3166 } 3167 3168 if (bond->send_unsol_na) { 3169 read_lock(&bond->curr_slave_lock); 3170 bond_send_unsolicited_na(bond); 3171 read_unlock(&bond->curr_slave_lock); 3172 } 3173 3174 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3175 read_unlock(&bond->lock); 3176 rtnl_lock(); 3177 read_lock(&bond->lock); 3178 3179 bond_ab_arp_commit(bond, delta_in_ticks); 3180 3181 read_unlock(&bond->lock); 3182 rtnl_unlock(); 3183 read_lock(&bond->lock); 3184 } 3185 3186 bond_ab_arp_probe(bond); 3187 3188 re_arm: 3189 if (bond->params.arp_interval) { 3190 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3191 } 3192 out: 3193 read_unlock(&bond->lock); 3194 } 3195 3196 /*------------------------------ proc/seq_file-------------------------------*/ 3197 3198 #ifdef CONFIG_PROC_FS 3199 3200 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 3201 __acquires(&dev_base_lock) 3202 __acquires(&bond->lock) 3203 { 3204 struct bonding *bond = seq->private; 3205 loff_t off = 0; 3206 struct slave *slave; 3207 int i; 3208 3209 /* make sure the bond won't be taken away */ 3210 read_lock(&dev_base_lock); 3211 read_lock(&bond->lock); 3212 3213 if (*pos == 0) { 3214 return SEQ_START_TOKEN; 3215 } 3216 3217 bond_for_each_slave(bond, slave, i) { 3218 if (++off == *pos) { 3219 return slave; 3220 } 3221 } 3222 3223 return NULL; 3224 } 3225 3226 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3227 { 3228 struct bonding *bond = seq->private; 3229 struct slave *slave = v; 3230 3231 ++*pos; 3232 if (v == SEQ_START_TOKEN) { 3233 return bond->first_slave; 3234 } 3235 3236 slave = slave->next; 3237 3238 return (slave == bond->first_slave) ? NULL : slave; 3239 } 3240 3241 static void bond_info_seq_stop(struct seq_file *seq, void *v) 3242 __releases(&bond->lock) 3243 __releases(&dev_base_lock) 3244 { 3245 struct bonding *bond = seq->private; 3246 3247 read_unlock(&bond->lock); 3248 read_unlock(&dev_base_lock); 3249 } 3250 3251 static void bond_info_show_master(struct seq_file *seq) 3252 { 3253 struct bonding *bond = seq->private; 3254 struct slave *curr; 3255 int i; 3256 3257 read_lock(&bond->curr_slave_lock); 3258 curr = bond->curr_active_slave; 3259 read_unlock(&bond->curr_slave_lock); 3260 3261 seq_printf(seq, "Bonding Mode: %s", 3262 bond_mode_name(bond->params.mode)); 3263 3264 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP && 3265 bond->params.fail_over_mac) 3266 seq_printf(seq, " (fail_over_mac %s)", 3267 fail_over_mac_tbl[bond->params.fail_over_mac].modename); 3268 3269 seq_printf(seq, "\n"); 3270 3271 if (bond->params.mode == BOND_MODE_XOR || 3272 bond->params.mode == BOND_MODE_8023AD) { 3273 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 3274 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 3275 bond->params.xmit_policy); 3276 } 3277 3278 if (USES_PRIMARY(bond->params.mode)) { 3279 seq_printf(seq, "Primary Slave: %s\n", 3280 (bond->primary_slave) ? 3281 bond->primary_slave->dev->name : "None"); 3282 3283 seq_printf(seq, "Currently Active Slave: %s\n", 3284 (curr) ? curr->dev->name : "None"); 3285 } 3286 3287 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3288 "up" : "down"); 3289 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3290 seq_printf(seq, "Up Delay (ms): %d\n", 3291 bond->params.updelay * bond->params.miimon); 3292 seq_printf(seq, "Down Delay (ms): %d\n", 3293 bond->params.downdelay * bond->params.miimon); 3294 3295 3296 /* ARP information */ 3297 if(bond->params.arp_interval > 0) { 3298 int printed=0; 3299 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3300 bond->params.arp_interval); 3301 3302 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3303 3304 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { 3305 if (!bond->params.arp_targets[i]) 3306 continue; 3307 if (printed) 3308 seq_printf(seq, ","); 3309 seq_printf(seq, " %pI4", &bond->params.arp_targets[i]); 3310 printed = 1; 3311 } 3312 seq_printf(seq, "\n"); 3313 } 3314 3315 if (bond->params.mode == BOND_MODE_8023AD) { 3316 struct ad_info ad_info; 3317 3318 seq_puts(seq, "\n802.3ad info\n"); 3319 seq_printf(seq, "LACP rate: %s\n", 3320 (bond->params.lacp_fast) ? "fast" : "slow"); 3321 seq_printf(seq, "Aggregator selection policy (ad_select): %s\n", 3322 ad_select_tbl[bond->params.ad_select].modename); 3323 3324 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3325 seq_printf(seq, "bond %s has no active aggregator\n", 3326 bond->dev->name); 3327 } else { 3328 seq_printf(seq, "Active Aggregator Info:\n"); 3329 3330 seq_printf(seq, "\tAggregator ID: %d\n", 3331 ad_info.aggregator_id); 3332 seq_printf(seq, "\tNumber of ports: %d\n", 3333 ad_info.ports); 3334 seq_printf(seq, "\tActor Key: %d\n", 3335 ad_info.actor_key); 3336 seq_printf(seq, "\tPartner Key: %d\n", 3337 ad_info.partner_key); 3338 seq_printf(seq, "\tPartner Mac Address: %pM\n", 3339 ad_info.partner_system); 3340 } 3341 } 3342 } 3343 3344 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) 3345 { 3346 struct bonding *bond = seq->private; 3347 3348 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3349 seq_printf(seq, "MII Status: %s\n", 3350 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3351 seq_printf(seq, "Link Failure Count: %u\n", 3352 slave->link_failure_count); 3353 3354 seq_printf(seq, "Permanent HW addr: %pM\n", slave->perm_hwaddr); 3355 3356 if (bond->params.mode == BOND_MODE_8023AD) { 3357 const struct aggregator *agg 3358 = SLAVE_AD_INFO(slave).port.aggregator; 3359 3360 if (agg) { 3361 seq_printf(seq, "Aggregator ID: %d\n", 3362 agg->aggregator_identifier); 3363 } else { 3364 seq_puts(seq, "Aggregator ID: N/A\n"); 3365 } 3366 } 3367 } 3368 3369 static int bond_info_seq_show(struct seq_file *seq, void *v) 3370 { 3371 if (v == SEQ_START_TOKEN) { 3372 seq_printf(seq, "%s\n", version); 3373 bond_info_show_master(seq); 3374 } else { 3375 bond_info_show_slave(seq, v); 3376 } 3377 3378 return 0; 3379 } 3380 3381 static const struct seq_operations bond_info_seq_ops = { 3382 .start = bond_info_seq_start, 3383 .next = bond_info_seq_next, 3384 .stop = bond_info_seq_stop, 3385 .show = bond_info_seq_show, 3386 }; 3387 3388 static int bond_info_open(struct inode *inode, struct file *file) 3389 { 3390 struct seq_file *seq; 3391 struct proc_dir_entry *proc; 3392 int res; 3393 3394 res = seq_open(file, &bond_info_seq_ops); 3395 if (!res) { 3396 /* recover the pointer buried in proc_dir_entry data */ 3397 seq = file->private_data; 3398 proc = PDE(inode); 3399 seq->private = proc->data; 3400 } 3401 3402 return res; 3403 } 3404 3405 static const struct file_operations bond_info_fops = { 3406 .owner = THIS_MODULE, 3407 .open = bond_info_open, 3408 .read = seq_read, 3409 .llseek = seq_lseek, 3410 .release = seq_release, 3411 }; 3412 3413 static int bond_create_proc_entry(struct bonding *bond) 3414 { 3415 struct net_device *bond_dev = bond->dev; 3416 3417 if (bond_proc_dir) { 3418 bond->proc_entry = proc_create_data(bond_dev->name, 3419 S_IRUGO, bond_proc_dir, 3420 &bond_info_fops, bond); 3421 if (bond->proc_entry == NULL) { 3422 printk(KERN_WARNING DRV_NAME 3423 ": Warning: Cannot create /proc/net/%s/%s\n", 3424 DRV_NAME, bond_dev->name); 3425 } else { 3426 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3427 } 3428 } 3429 3430 return 0; 3431 } 3432 3433 static void bond_remove_proc_entry(struct bonding *bond) 3434 { 3435 if (bond_proc_dir && bond->proc_entry) { 3436 remove_proc_entry(bond->proc_file_name, bond_proc_dir); 3437 memset(bond->proc_file_name, 0, IFNAMSIZ); 3438 bond->proc_entry = NULL; 3439 } 3440 } 3441 3442 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3443 * Caller must hold rtnl_lock. 3444 */ 3445 static void bond_create_proc_dir(void) 3446 { 3447 if (!bond_proc_dir) { 3448 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net); 3449 if (!bond_proc_dir) 3450 printk(KERN_WARNING DRV_NAME 3451 ": Warning: cannot create /proc/net/%s\n", 3452 DRV_NAME); 3453 } 3454 } 3455 3456 /* Destroy the bonding directory under /proc/net, if empty. 3457 * Caller must hold rtnl_lock. 3458 */ 3459 static void bond_destroy_proc_dir(void) 3460 { 3461 if (bond_proc_dir) { 3462 remove_proc_entry(DRV_NAME, init_net.proc_net); 3463 bond_proc_dir = NULL; 3464 } 3465 } 3466 #endif /* CONFIG_PROC_FS */ 3467 3468 /*-------------------------- netdev event handling --------------------------*/ 3469 3470 /* 3471 * Change device name 3472 */ 3473 static int bond_event_changename(struct bonding *bond) 3474 { 3475 #ifdef CONFIG_PROC_FS 3476 bond_remove_proc_entry(bond); 3477 bond_create_proc_entry(bond); 3478 #endif 3479 down_write(&(bonding_rwsem)); 3480 bond_destroy_sysfs_entry(bond); 3481 bond_create_sysfs_entry(bond); 3482 up_write(&(bonding_rwsem)); 3483 return NOTIFY_DONE; 3484 } 3485 3486 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) 3487 { 3488 struct bonding *event_bond = netdev_priv(bond_dev); 3489 3490 switch (event) { 3491 case NETDEV_CHANGENAME: 3492 return bond_event_changename(event_bond); 3493 case NETDEV_UNREGISTER: 3494 bond_release_all(event_bond->dev); 3495 break; 3496 default: 3497 break; 3498 } 3499 3500 return NOTIFY_DONE; 3501 } 3502 3503 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) 3504 { 3505 struct net_device *bond_dev = slave_dev->master; 3506 struct bonding *bond = netdev_priv(bond_dev); 3507 3508 switch (event) { 3509 case NETDEV_UNREGISTER: 3510 if (bond_dev) { 3511 if (bond->setup_by_slave) 3512 bond_release_and_destroy(bond_dev, slave_dev); 3513 else 3514 bond_release(bond_dev, slave_dev); 3515 } 3516 break; 3517 case NETDEV_CHANGE: 3518 if (bond->params.mode == BOND_MODE_8023AD || bond_is_lb(bond)) { 3519 struct slave *slave; 3520 3521 slave = bond_get_slave_by_dev(bond, slave_dev); 3522 if (slave) { 3523 u16 old_speed = slave->speed; 3524 u16 old_duplex = slave->duplex; 3525 3526 bond_update_speed_duplex(slave); 3527 3528 if (bond_is_lb(bond)) 3529 break; 3530 3531 if (old_speed != slave->speed) 3532 bond_3ad_adapter_speed_changed(slave); 3533 if (old_duplex != slave->duplex) 3534 bond_3ad_adapter_duplex_changed(slave); 3535 } 3536 } 3537 3538 break; 3539 case NETDEV_DOWN: 3540 /* 3541 * ... Or is it this? 3542 */ 3543 break; 3544 case NETDEV_CHANGEMTU: 3545 /* 3546 * TODO: Should slaves be allowed to 3547 * independently alter their MTU? For 3548 * an active-backup bond, slaves need 3549 * not be the same type of device, so 3550 * MTUs may vary. For other modes, 3551 * slaves arguably should have the 3552 * same MTUs. To do this, we'd need to 3553 * take over the slave's change_mtu 3554 * function for the duration of their 3555 * servitude. 3556 */ 3557 break; 3558 case NETDEV_CHANGENAME: 3559 /* 3560 * TODO: handle changing the primary's name 3561 */ 3562 break; 3563 case NETDEV_FEAT_CHANGE: 3564 bond_compute_features(bond); 3565 break; 3566 default: 3567 break; 3568 } 3569 3570 return NOTIFY_DONE; 3571 } 3572 3573 /* 3574 * bond_netdev_event: handle netdev notifier chain events. 3575 * 3576 * This function receives events for the netdev chain. The caller (an 3577 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3578 * locks for us to safely manipulate the slave devices (RTNL lock, 3579 * dev_probe_lock). 3580 */ 3581 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) 3582 { 3583 struct net_device *event_dev = (struct net_device *)ptr; 3584 3585 if (dev_net(event_dev) != &init_net) 3586 return NOTIFY_DONE; 3587 3588 pr_debug("event_dev: %s, event: %lx\n", 3589 (event_dev ? event_dev->name : "None"), 3590 event); 3591 3592 if (!(event_dev->priv_flags & IFF_BONDING)) 3593 return NOTIFY_DONE; 3594 3595 if (event_dev->flags & IFF_MASTER) { 3596 pr_debug("IFF_MASTER\n"); 3597 return bond_master_netdev_event(event, event_dev); 3598 } 3599 3600 if (event_dev->flags & IFF_SLAVE) { 3601 pr_debug("IFF_SLAVE\n"); 3602 return bond_slave_netdev_event(event, event_dev); 3603 } 3604 3605 return NOTIFY_DONE; 3606 } 3607 3608 /* 3609 * bond_inetaddr_event: handle inetaddr notifier chain events. 3610 * 3611 * We keep track of device IPs primarily to use as source addresses in 3612 * ARP monitor probes (rather than spewing out broadcasts all the time). 3613 * 3614 * We track one IP for the main device (if it has one), plus one per VLAN. 3615 */ 3616 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3617 { 3618 struct in_ifaddr *ifa = ptr; 3619 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3620 struct bonding *bond; 3621 struct vlan_entry *vlan; 3622 3623 if (dev_net(ifa->ifa_dev->dev) != &init_net) 3624 return NOTIFY_DONE; 3625 3626 list_for_each_entry(bond, &bond_dev_list, bond_list) { 3627 if (bond->dev == event_dev) { 3628 switch (event) { 3629 case NETDEV_UP: 3630 bond->master_ip = ifa->ifa_local; 3631 return NOTIFY_OK; 3632 case NETDEV_DOWN: 3633 bond->master_ip = bond_glean_dev_ip(bond->dev); 3634 return NOTIFY_OK; 3635 default: 3636 return NOTIFY_DONE; 3637 } 3638 } 3639 3640 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 3641 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3642 if (vlan_dev == event_dev) { 3643 switch (event) { 3644 case NETDEV_UP: 3645 vlan->vlan_ip = ifa->ifa_local; 3646 return NOTIFY_OK; 3647 case NETDEV_DOWN: 3648 vlan->vlan_ip = 3649 bond_glean_dev_ip(vlan_dev); 3650 return NOTIFY_OK; 3651 default: 3652 return NOTIFY_DONE; 3653 } 3654 } 3655 } 3656 } 3657 return NOTIFY_DONE; 3658 } 3659 3660 static struct notifier_block bond_netdev_notifier = { 3661 .notifier_call = bond_netdev_event, 3662 }; 3663 3664 static struct notifier_block bond_inetaddr_notifier = { 3665 .notifier_call = bond_inetaddr_event, 3666 }; 3667 3668 /*-------------------------- Packet type handling ---------------------------*/ 3669 3670 /* register to receive lacpdus on a bond */ 3671 static void bond_register_lacpdu(struct bonding *bond) 3672 { 3673 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3674 3675 /* initialize packet type */ 3676 pk_type->type = PKT_TYPE_LACPDU; 3677 pk_type->dev = bond->dev; 3678 pk_type->func = bond_3ad_lacpdu_recv; 3679 3680 dev_add_pack(pk_type); 3681 } 3682 3683 /* unregister to receive lacpdus on a bond */ 3684 static void bond_unregister_lacpdu(struct bonding *bond) 3685 { 3686 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3687 } 3688 3689 void bond_register_arp(struct bonding *bond) 3690 { 3691 struct packet_type *pt = &bond->arp_mon_pt; 3692 3693 if (pt->type) 3694 return; 3695 3696 pt->type = htons(ETH_P_ARP); 3697 pt->dev = bond->dev; 3698 pt->func = bond_arp_rcv; 3699 dev_add_pack(pt); 3700 } 3701 3702 void bond_unregister_arp(struct bonding *bond) 3703 { 3704 struct packet_type *pt = &bond->arp_mon_pt; 3705 3706 dev_remove_pack(pt); 3707 pt->type = 0; 3708 } 3709 3710 /*---------------------------- Hashing Policies -----------------------------*/ 3711 3712 /* 3713 * Hash for the output device based upon layer 2 and layer 3 data. If 3714 * the packet is not IP mimic bond_xmit_hash_policy_l2() 3715 */ 3716 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, 3717 struct net_device *bond_dev, int count) 3718 { 3719 struct ethhdr *data = (struct ethhdr *)skb->data; 3720 struct iphdr *iph = ip_hdr(skb); 3721 3722 if (skb->protocol == htons(ETH_P_IP)) { 3723 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3724 (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count; 3725 } 3726 3727 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3728 } 3729 3730 /* 3731 * Hash for the output device based upon layer 3 and layer 4 data. If 3732 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3733 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3734 */ 3735 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, 3736 struct net_device *bond_dev, int count) 3737 { 3738 struct ethhdr *data = (struct ethhdr *)skb->data; 3739 struct iphdr *iph = ip_hdr(skb); 3740 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); 3741 int layer4_xor = 0; 3742 3743 if (skb->protocol == htons(ETH_P_IP)) { 3744 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) && 3745 (iph->protocol == IPPROTO_TCP || 3746 iph->protocol == IPPROTO_UDP)) { 3747 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); 3748 } 3749 return (layer4_xor ^ 3750 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3751 3752 } 3753 3754 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3755 } 3756 3757 /* 3758 * Hash for the output device based upon layer 2 data 3759 */ 3760 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, 3761 struct net_device *bond_dev, int count) 3762 { 3763 struct ethhdr *data = (struct ethhdr *)skb->data; 3764 3765 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3766 } 3767 3768 /*-------------------------- Device entry points ----------------------------*/ 3769 3770 static int bond_open(struct net_device *bond_dev) 3771 { 3772 struct bonding *bond = netdev_priv(bond_dev); 3773 3774 bond->kill_timers = 0; 3775 3776 if (bond_is_lb(bond)) { 3777 /* bond_alb_initialize must be called before the timer 3778 * is started. 3779 */ 3780 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3781 /* something went wrong - fail the open operation */ 3782 return -1; 3783 } 3784 3785 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3786 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3787 } 3788 3789 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3790 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3791 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3792 } 3793 3794 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3795 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3796 INIT_DELAYED_WORK(&bond->arp_work, 3797 bond_activebackup_arp_mon); 3798 else 3799 INIT_DELAYED_WORK(&bond->arp_work, 3800 bond_loadbalance_arp_mon); 3801 3802 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3803 if (bond->params.arp_validate) 3804 bond_register_arp(bond); 3805 } 3806 3807 if (bond->params.mode == BOND_MODE_8023AD) { 3808 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3809 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3810 /* register to receive LACPDUs */ 3811 bond_register_lacpdu(bond); 3812 bond_3ad_initiate_agg_selection(bond, 1); 3813 } 3814 3815 return 0; 3816 } 3817 3818 static int bond_close(struct net_device *bond_dev) 3819 { 3820 struct bonding *bond = netdev_priv(bond_dev); 3821 3822 if (bond->params.mode == BOND_MODE_8023AD) { 3823 /* Unregister the receive of LACPDUs */ 3824 bond_unregister_lacpdu(bond); 3825 } 3826 3827 if (bond->params.arp_validate) 3828 bond_unregister_arp(bond); 3829 3830 write_lock_bh(&bond->lock); 3831 3832 bond->send_grat_arp = 0; 3833 bond->send_unsol_na = 0; 3834 3835 /* signal timers not to re-arm */ 3836 bond->kill_timers = 1; 3837 3838 write_unlock_bh(&bond->lock); 3839 3840 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3841 cancel_delayed_work(&bond->mii_work); 3842 } 3843 3844 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3845 cancel_delayed_work(&bond->arp_work); 3846 } 3847 3848 switch (bond->params.mode) { 3849 case BOND_MODE_8023AD: 3850 cancel_delayed_work(&bond->ad_work); 3851 break; 3852 case BOND_MODE_TLB: 3853 case BOND_MODE_ALB: 3854 cancel_delayed_work(&bond->alb_work); 3855 break; 3856 default: 3857 break; 3858 } 3859 3860 3861 if (bond_is_lb(bond)) { 3862 /* Must be called only after all 3863 * slaves have been released 3864 */ 3865 bond_alb_deinitialize(bond); 3866 } 3867 3868 return 0; 3869 } 3870 3871 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) 3872 { 3873 struct bonding *bond = netdev_priv(bond_dev); 3874 struct net_device_stats *stats = &bond->stats; 3875 struct net_device_stats local_stats; 3876 struct slave *slave; 3877 int i; 3878 3879 memset(&local_stats, 0, sizeof(struct net_device_stats)); 3880 3881 read_lock_bh(&bond->lock); 3882 3883 bond_for_each_slave(bond, slave, i) { 3884 const struct net_device_stats *sstats = dev_get_stats(slave->dev); 3885 3886 local_stats.rx_packets += sstats->rx_packets; 3887 local_stats.rx_bytes += sstats->rx_bytes; 3888 local_stats.rx_errors += sstats->rx_errors; 3889 local_stats.rx_dropped += sstats->rx_dropped; 3890 3891 local_stats.tx_packets += sstats->tx_packets; 3892 local_stats.tx_bytes += sstats->tx_bytes; 3893 local_stats.tx_errors += sstats->tx_errors; 3894 local_stats.tx_dropped += sstats->tx_dropped; 3895 3896 local_stats.multicast += sstats->multicast; 3897 local_stats.collisions += sstats->collisions; 3898 3899 local_stats.rx_length_errors += sstats->rx_length_errors; 3900 local_stats.rx_over_errors += sstats->rx_over_errors; 3901 local_stats.rx_crc_errors += sstats->rx_crc_errors; 3902 local_stats.rx_frame_errors += sstats->rx_frame_errors; 3903 local_stats.rx_fifo_errors += sstats->rx_fifo_errors; 3904 local_stats.rx_missed_errors += sstats->rx_missed_errors; 3905 3906 local_stats.tx_aborted_errors += sstats->tx_aborted_errors; 3907 local_stats.tx_carrier_errors += sstats->tx_carrier_errors; 3908 local_stats.tx_fifo_errors += sstats->tx_fifo_errors; 3909 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3910 local_stats.tx_window_errors += sstats->tx_window_errors; 3911 } 3912 3913 memcpy(stats, &local_stats, sizeof(struct net_device_stats)); 3914 3915 read_unlock_bh(&bond->lock); 3916 3917 return stats; 3918 } 3919 3920 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3921 { 3922 struct net_device *slave_dev = NULL; 3923 struct ifbond k_binfo; 3924 struct ifbond __user *u_binfo = NULL; 3925 struct ifslave k_sinfo; 3926 struct ifslave __user *u_sinfo = NULL; 3927 struct mii_ioctl_data *mii = NULL; 3928 int res = 0; 3929 3930 pr_debug("bond_ioctl: master=%s, cmd=%d\n", 3931 bond_dev->name, cmd); 3932 3933 switch (cmd) { 3934 case SIOCGMIIPHY: 3935 mii = if_mii(ifr); 3936 if (!mii) { 3937 return -EINVAL; 3938 } 3939 mii->phy_id = 0; 3940 /* Fall Through */ 3941 case SIOCGMIIREG: 3942 /* 3943 * We do this again just in case we were called by SIOCGMIIREG 3944 * instead of SIOCGMIIPHY. 3945 */ 3946 mii = if_mii(ifr); 3947 if (!mii) { 3948 return -EINVAL; 3949 } 3950 3951 if (mii->reg_num == 1) { 3952 struct bonding *bond = netdev_priv(bond_dev); 3953 mii->val_out = 0; 3954 read_lock(&bond->lock); 3955 read_lock(&bond->curr_slave_lock); 3956 if (netif_carrier_ok(bond->dev)) { 3957 mii->val_out = BMSR_LSTATUS; 3958 } 3959 read_unlock(&bond->curr_slave_lock); 3960 read_unlock(&bond->lock); 3961 } 3962 3963 return 0; 3964 case BOND_INFO_QUERY_OLD: 3965 case SIOCBONDINFOQUERY: 3966 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3967 3968 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { 3969 return -EFAULT; 3970 } 3971 3972 res = bond_info_query(bond_dev, &k_binfo); 3973 if (res == 0) { 3974 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { 3975 return -EFAULT; 3976 } 3977 } 3978 3979 return res; 3980 case BOND_SLAVE_INFO_QUERY_OLD: 3981 case SIOCBONDSLAVEINFOQUERY: 3982 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3983 3984 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { 3985 return -EFAULT; 3986 } 3987 3988 res = bond_slave_info_query(bond_dev, &k_sinfo); 3989 if (res == 0) { 3990 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { 3991 return -EFAULT; 3992 } 3993 } 3994 3995 return res; 3996 default: 3997 /* Go on */ 3998 break; 3999 } 4000 4001 if (!capable(CAP_NET_ADMIN)) { 4002 return -EPERM; 4003 } 4004 4005 down_write(&(bonding_rwsem)); 4006 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave); 4007 4008 pr_debug("slave_dev=%p: \n", slave_dev); 4009 4010 if (!slave_dev) { 4011 res = -ENODEV; 4012 } else { 4013 pr_debug("slave_dev->name=%s: \n", slave_dev->name); 4014 switch (cmd) { 4015 case BOND_ENSLAVE_OLD: 4016 case SIOCBONDENSLAVE: 4017 res = bond_enslave(bond_dev, slave_dev); 4018 break; 4019 case BOND_RELEASE_OLD: 4020 case SIOCBONDRELEASE: 4021 res = bond_release(bond_dev, slave_dev); 4022 break; 4023 case BOND_SETHWADDR_OLD: 4024 case SIOCBONDSETHWADDR: 4025 res = bond_sethwaddr(bond_dev, slave_dev); 4026 break; 4027 case BOND_CHANGE_ACTIVE_OLD: 4028 case SIOCBONDCHANGEACTIVE: 4029 res = bond_ioctl_change_active(bond_dev, slave_dev); 4030 break; 4031 default: 4032 res = -EOPNOTSUPP; 4033 } 4034 4035 dev_put(slave_dev); 4036 } 4037 4038 up_write(&(bonding_rwsem)); 4039 return res; 4040 } 4041 4042 static void bond_set_multicast_list(struct net_device *bond_dev) 4043 { 4044 struct bonding *bond = netdev_priv(bond_dev); 4045 struct dev_mc_list *dmi; 4046 4047 /* 4048 * Do promisc before checking multicast_mode 4049 */ 4050 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { 4051 /* 4052 * FIXME: Need to handle the error when one of the multi-slaves 4053 * encounters error. 4054 */ 4055 bond_set_promiscuity(bond, 1); 4056 } 4057 4058 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { 4059 bond_set_promiscuity(bond, -1); 4060 } 4061 4062 /* set allmulti flag to slaves */ 4063 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { 4064 /* 4065 * FIXME: Need to handle the error when one of the multi-slaves 4066 * encounters error. 4067 */ 4068 bond_set_allmulti(bond, 1); 4069 } 4070 4071 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { 4072 bond_set_allmulti(bond, -1); 4073 } 4074 4075 read_lock(&bond->lock); 4076 4077 bond->flags = bond_dev->flags; 4078 4079 /* looking for addresses to add to slaves' mc list */ 4080 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 4081 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { 4082 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4083 } 4084 } 4085 4086 /* looking for addresses to delete from slaves' list */ 4087 for (dmi = bond->mc_list; dmi; dmi = dmi->next) { 4088 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { 4089 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4090 } 4091 } 4092 4093 /* save master's multicast list */ 4094 bond_mc_list_destroy(bond); 4095 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); 4096 4097 read_unlock(&bond->lock); 4098 } 4099 4100 static int bond_neigh_setup(struct net_device *dev, struct neigh_parms *parms) 4101 { 4102 struct bonding *bond = netdev_priv(dev); 4103 struct slave *slave = bond->first_slave; 4104 4105 if (slave) { 4106 const struct net_device_ops *slave_ops 4107 = slave->dev->netdev_ops; 4108 if (slave_ops->ndo_neigh_setup) 4109 return slave_ops->ndo_neigh_setup(slave->dev, parms); 4110 } 4111 return 0; 4112 } 4113 4114 /* 4115 * Change the MTU of all of a master's slaves to match the master 4116 */ 4117 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 4118 { 4119 struct bonding *bond = netdev_priv(bond_dev); 4120 struct slave *slave, *stop_at; 4121 int res = 0; 4122 int i; 4123 4124 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond, 4125 (bond_dev ? bond_dev->name : "None"), new_mtu); 4126 4127 /* Can't hold bond->lock with bh disabled here since 4128 * some base drivers panic. On the other hand we can't 4129 * hold bond->lock without bh disabled because we'll 4130 * deadlock. The only solution is to rely on the fact 4131 * that we're under rtnl_lock here, and the slaves 4132 * list won't change. This doesn't solve the problem 4133 * of setting the slave's MTU while it is 4134 * transmitting, but the assumption is that the base 4135 * driver can handle that. 4136 * 4137 * TODO: figure out a way to safely iterate the slaves 4138 * list, but without holding a lock around the actual 4139 * call to the base driver. 4140 */ 4141 4142 bond_for_each_slave(bond, slave, i) { 4143 pr_debug("s %p s->p %p c_m %p\n", slave, 4144 slave->prev, slave->dev->netdev_ops->ndo_change_mtu); 4145 4146 res = dev_set_mtu(slave->dev, new_mtu); 4147 4148 if (res) { 4149 /* If we failed to set the slave's mtu to the new value 4150 * we must abort the operation even in ACTIVE_BACKUP 4151 * mode, because if we allow the backup slaves to have 4152 * different mtu values than the active slave we'll 4153 * need to change their mtu when doing a failover. That 4154 * means changing their mtu from timer context, which 4155 * is probably not a good idea. 4156 */ 4157 pr_debug("err %d %s\n", res, slave->dev->name); 4158 goto unwind; 4159 } 4160 } 4161 4162 bond_dev->mtu = new_mtu; 4163 4164 return 0; 4165 4166 unwind: 4167 /* unwind from head to the slave that failed */ 4168 stop_at = slave; 4169 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4170 int tmp_res; 4171 4172 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 4173 if (tmp_res) { 4174 pr_debug("unwind err %d dev %s\n", tmp_res, 4175 slave->dev->name); 4176 } 4177 } 4178 4179 return res; 4180 } 4181 4182 /* 4183 * Change HW address 4184 * 4185 * Note that many devices must be down to change the HW address, and 4186 * downing the master releases all slaves. We can make bonds full of 4187 * bonding devices to test this, however. 4188 */ 4189 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 4190 { 4191 struct bonding *bond = netdev_priv(bond_dev); 4192 struct sockaddr *sa = addr, tmp_sa; 4193 struct slave *slave, *stop_at; 4194 int res = 0; 4195 int i; 4196 4197 if (bond->params.mode == BOND_MODE_ALB) 4198 return bond_alb_set_mac_address(bond_dev, addr); 4199 4200 4201 pr_debug("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); 4202 4203 /* 4204 * If fail_over_mac is set to active, do nothing and return 4205 * success. Returning an error causes ifenslave to fail. 4206 */ 4207 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 4208 return 0; 4209 4210 if (!is_valid_ether_addr(sa->sa_data)) { 4211 return -EADDRNOTAVAIL; 4212 } 4213 4214 /* Can't hold bond->lock with bh disabled here since 4215 * some base drivers panic. On the other hand we can't 4216 * hold bond->lock without bh disabled because we'll 4217 * deadlock. The only solution is to rely on the fact 4218 * that we're under rtnl_lock here, and the slaves 4219 * list won't change. This doesn't solve the problem 4220 * of setting the slave's hw address while it is 4221 * transmitting, but the assumption is that the base 4222 * driver can handle that. 4223 * 4224 * TODO: figure out a way to safely iterate the slaves 4225 * list, but without holding a lock around the actual 4226 * call to the base driver. 4227 */ 4228 4229 bond_for_each_slave(bond, slave, i) { 4230 const struct net_device_ops *slave_ops = slave->dev->netdev_ops; 4231 pr_debug("slave %p %s\n", slave, slave->dev->name); 4232 4233 if (slave_ops->ndo_set_mac_address == NULL) { 4234 res = -EOPNOTSUPP; 4235 pr_debug("EOPNOTSUPP %s\n", slave->dev->name); 4236 goto unwind; 4237 } 4238 4239 res = dev_set_mac_address(slave->dev, addr); 4240 if (res) { 4241 /* TODO: consider downing the slave 4242 * and retry ? 4243 * User should expect communications 4244 * breakage anyway until ARP finish 4245 * updating, so... 4246 */ 4247 pr_debug("err %d %s\n", res, slave->dev->name); 4248 goto unwind; 4249 } 4250 } 4251 4252 /* success */ 4253 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 4254 return 0; 4255 4256 unwind: 4257 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 4258 tmp_sa.sa_family = bond_dev->type; 4259 4260 /* unwind from head to the slave that failed */ 4261 stop_at = slave; 4262 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4263 int tmp_res; 4264 4265 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 4266 if (tmp_res) { 4267 pr_debug("unwind err %d dev %s\n", tmp_res, 4268 slave->dev->name); 4269 } 4270 } 4271 4272 return res; 4273 } 4274 4275 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4276 { 4277 struct bonding *bond = netdev_priv(bond_dev); 4278 struct slave *slave, *start_at; 4279 int i, slave_no, res = 1; 4280 4281 read_lock(&bond->lock); 4282 4283 if (!BOND_IS_OK(bond)) { 4284 goto out; 4285 } 4286 4287 /* 4288 * Concurrent TX may collide on rr_tx_counter; we accept that 4289 * as being rare enough not to justify using an atomic op here 4290 */ 4291 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 4292 4293 bond_for_each_slave(bond, slave, i) { 4294 slave_no--; 4295 if (slave_no < 0) { 4296 break; 4297 } 4298 } 4299 4300 start_at = slave; 4301 bond_for_each_slave_from(bond, slave, i, start_at) { 4302 if (IS_UP(slave->dev) && 4303 (slave->link == BOND_LINK_UP) && 4304 (slave->state == BOND_STATE_ACTIVE)) { 4305 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4306 break; 4307 } 4308 } 4309 4310 out: 4311 if (res) { 4312 /* no suitable interface, frame not sent */ 4313 dev_kfree_skb(skb); 4314 } 4315 read_unlock(&bond->lock); 4316 return 0; 4317 } 4318 4319 4320 /* 4321 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4322 * the bond has a usable interface. 4323 */ 4324 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4325 { 4326 struct bonding *bond = netdev_priv(bond_dev); 4327 int res = 1; 4328 4329 read_lock(&bond->lock); 4330 read_lock(&bond->curr_slave_lock); 4331 4332 if (!BOND_IS_OK(bond)) { 4333 goto out; 4334 } 4335 4336 if (!bond->curr_active_slave) 4337 goto out; 4338 4339 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4340 4341 out: 4342 if (res) { 4343 /* no suitable interface, frame not sent */ 4344 dev_kfree_skb(skb); 4345 } 4346 read_unlock(&bond->curr_slave_lock); 4347 read_unlock(&bond->lock); 4348 return 0; 4349 } 4350 4351 /* 4352 * In bond_xmit_xor() , we determine the output device by using a pre- 4353 * determined xmit_hash_policy(), If the selected device is not enabled, 4354 * find the next active slave. 4355 */ 4356 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4357 { 4358 struct bonding *bond = netdev_priv(bond_dev); 4359 struct slave *slave, *start_at; 4360 int slave_no; 4361 int i; 4362 int res = 1; 4363 4364 read_lock(&bond->lock); 4365 4366 if (!BOND_IS_OK(bond)) { 4367 goto out; 4368 } 4369 4370 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); 4371 4372 bond_for_each_slave(bond, slave, i) { 4373 slave_no--; 4374 if (slave_no < 0) { 4375 break; 4376 } 4377 } 4378 4379 start_at = slave; 4380 4381 bond_for_each_slave_from(bond, slave, i, start_at) { 4382 if (IS_UP(slave->dev) && 4383 (slave->link == BOND_LINK_UP) && 4384 (slave->state == BOND_STATE_ACTIVE)) { 4385 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4386 break; 4387 } 4388 } 4389 4390 out: 4391 if (res) { 4392 /* no suitable interface, frame not sent */ 4393 dev_kfree_skb(skb); 4394 } 4395 read_unlock(&bond->lock); 4396 return 0; 4397 } 4398 4399 /* 4400 * in broadcast mode, we send everything to all usable interfaces. 4401 */ 4402 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4403 { 4404 struct bonding *bond = netdev_priv(bond_dev); 4405 struct slave *slave, *start_at; 4406 struct net_device *tx_dev = NULL; 4407 int i; 4408 int res = 1; 4409 4410 read_lock(&bond->lock); 4411 4412 if (!BOND_IS_OK(bond)) { 4413 goto out; 4414 } 4415 4416 read_lock(&bond->curr_slave_lock); 4417 start_at = bond->curr_active_slave; 4418 read_unlock(&bond->curr_slave_lock); 4419 4420 if (!start_at) { 4421 goto out; 4422 } 4423 4424 bond_for_each_slave_from(bond, slave, i, start_at) { 4425 if (IS_UP(slave->dev) && 4426 (slave->link == BOND_LINK_UP) && 4427 (slave->state == BOND_STATE_ACTIVE)) { 4428 if (tx_dev) { 4429 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4430 if (!skb2) { 4431 printk(KERN_ERR DRV_NAME 4432 ": %s: Error: bond_xmit_broadcast(): " 4433 "skb_clone() failed\n", 4434 bond_dev->name); 4435 continue; 4436 } 4437 4438 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4439 if (res) { 4440 dev_kfree_skb(skb2); 4441 continue; 4442 } 4443 } 4444 tx_dev = slave->dev; 4445 } 4446 } 4447 4448 if (tx_dev) { 4449 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4450 } 4451 4452 out: 4453 if (res) { 4454 /* no suitable interface, frame not sent */ 4455 dev_kfree_skb(skb); 4456 } 4457 /* frame sent to all suitable interfaces */ 4458 read_unlock(&bond->lock); 4459 return 0; 4460 } 4461 4462 /*------------------------- Device initialization ---------------------------*/ 4463 4464 static void bond_set_xmit_hash_policy(struct bonding *bond) 4465 { 4466 switch (bond->params.xmit_policy) { 4467 case BOND_XMIT_POLICY_LAYER23: 4468 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4469 break; 4470 case BOND_XMIT_POLICY_LAYER34: 4471 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4472 break; 4473 case BOND_XMIT_POLICY_LAYER2: 4474 default: 4475 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4476 break; 4477 } 4478 } 4479 4480 static int bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4481 { 4482 const struct bonding *bond = netdev_priv(dev); 4483 4484 switch (bond->params.mode) { 4485 case BOND_MODE_ROUNDROBIN: 4486 return bond_xmit_roundrobin(skb, dev); 4487 case BOND_MODE_ACTIVEBACKUP: 4488 return bond_xmit_activebackup(skb, dev); 4489 case BOND_MODE_XOR: 4490 return bond_xmit_xor(skb, dev); 4491 case BOND_MODE_BROADCAST: 4492 return bond_xmit_broadcast(skb, dev); 4493 case BOND_MODE_8023AD: 4494 return bond_3ad_xmit_xor(skb, dev); 4495 case BOND_MODE_ALB: 4496 case BOND_MODE_TLB: 4497 return bond_alb_xmit(skb, dev); 4498 default: 4499 /* Should never happen, mode already checked */ 4500 printk(KERN_ERR DRV_NAME ": %s: Error: Unknown bonding mode %d\n", 4501 dev->name, bond->params.mode); 4502 WARN_ON_ONCE(1); 4503 dev_kfree_skb(skb); 4504 return NETDEV_TX_OK; 4505 } 4506 } 4507 4508 4509 /* 4510 * set bond mode specific net device operations 4511 */ 4512 void bond_set_mode_ops(struct bonding *bond, int mode) 4513 { 4514 struct net_device *bond_dev = bond->dev; 4515 4516 switch (mode) { 4517 case BOND_MODE_ROUNDROBIN: 4518 break; 4519 case BOND_MODE_ACTIVEBACKUP: 4520 break; 4521 case BOND_MODE_XOR: 4522 bond_set_xmit_hash_policy(bond); 4523 break; 4524 case BOND_MODE_BROADCAST: 4525 break; 4526 case BOND_MODE_8023AD: 4527 bond_set_master_3ad_flags(bond); 4528 bond_set_xmit_hash_policy(bond); 4529 break; 4530 case BOND_MODE_ALB: 4531 bond_set_master_alb_flags(bond); 4532 /* FALLTHRU */ 4533 case BOND_MODE_TLB: 4534 break; 4535 default: 4536 /* Should never happen, mode already checked */ 4537 printk(KERN_ERR DRV_NAME 4538 ": %s: Error: Unknown bonding mode %d\n", 4539 bond_dev->name, 4540 mode); 4541 break; 4542 } 4543 } 4544 4545 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4546 struct ethtool_drvinfo *drvinfo) 4547 { 4548 strncpy(drvinfo->driver, DRV_NAME, 32); 4549 strncpy(drvinfo->version, DRV_VERSION, 32); 4550 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4551 } 4552 4553 static const struct ethtool_ops bond_ethtool_ops = { 4554 .get_drvinfo = bond_ethtool_get_drvinfo, 4555 .get_link = ethtool_op_get_link, 4556 .get_tx_csum = ethtool_op_get_tx_csum, 4557 .get_sg = ethtool_op_get_sg, 4558 .get_tso = ethtool_op_get_tso, 4559 .get_ufo = ethtool_op_get_ufo, 4560 .get_flags = ethtool_op_get_flags, 4561 }; 4562 4563 static const struct net_device_ops bond_netdev_ops = { 4564 .ndo_open = bond_open, 4565 .ndo_stop = bond_close, 4566 .ndo_start_xmit = bond_start_xmit, 4567 .ndo_get_stats = bond_get_stats, 4568 .ndo_do_ioctl = bond_do_ioctl, 4569 .ndo_set_multicast_list = bond_set_multicast_list, 4570 .ndo_change_mtu = bond_change_mtu, 4571 .ndo_set_mac_address = bond_set_mac_address, 4572 .ndo_neigh_setup = bond_neigh_setup, 4573 .ndo_vlan_rx_register = bond_vlan_rx_register, 4574 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid, 4575 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid, 4576 }; 4577 4578 /* 4579 * Does not allocate but creates a /proc entry. 4580 * Allowed to fail. 4581 */ 4582 static int bond_init(struct net_device *bond_dev, struct bond_params *params) 4583 { 4584 struct bonding *bond = netdev_priv(bond_dev); 4585 4586 pr_debug("Begin bond_init for %s\n", bond_dev->name); 4587 4588 /* initialize rwlocks */ 4589 rwlock_init(&bond->lock); 4590 rwlock_init(&bond->curr_slave_lock); 4591 4592 bond->params = *params; /* copy params struct */ 4593 4594 bond->wq = create_singlethread_workqueue(bond_dev->name); 4595 if (!bond->wq) 4596 return -ENOMEM; 4597 4598 /* Initialize pointers */ 4599 bond->first_slave = NULL; 4600 bond->curr_active_slave = NULL; 4601 bond->current_arp_slave = NULL; 4602 bond->primary_slave = NULL; 4603 bond->dev = bond_dev; 4604 bond->send_grat_arp = 0; 4605 bond->send_unsol_na = 0; 4606 bond->setup_by_slave = 0; 4607 INIT_LIST_HEAD(&bond->vlan_list); 4608 4609 /* Initialize the device entry points */ 4610 bond_dev->netdev_ops = &bond_netdev_ops; 4611 bond_dev->ethtool_ops = &bond_ethtool_ops; 4612 bond_set_mode_ops(bond, bond->params.mode); 4613 4614 bond_dev->destructor = bond_destructor; 4615 4616 /* Initialize the device options */ 4617 bond_dev->tx_queue_len = 0; 4618 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4619 bond_dev->priv_flags |= IFF_BONDING; 4620 if (bond->params.arp_interval) 4621 bond_dev->priv_flags |= IFF_MASTER_ARPMON; 4622 4623 /* At first, we block adding VLANs. That's the only way to 4624 * prevent problems that occur when adding VLANs over an 4625 * empty bond. The block will be removed once non-challenged 4626 * slaves are enslaved. 4627 */ 4628 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4629 4630 /* don't acquire bond device's netif_tx_lock when 4631 * transmitting */ 4632 bond_dev->features |= NETIF_F_LLTX; 4633 4634 /* By default, we declare the bond to be fully 4635 * VLAN hardware accelerated capable. Special 4636 * care is taken in the various xmit functions 4637 * when there are slaves that are not hw accel 4638 * capable 4639 */ 4640 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4641 NETIF_F_HW_VLAN_RX | 4642 NETIF_F_HW_VLAN_FILTER); 4643 4644 #ifdef CONFIG_PROC_FS 4645 bond_create_proc_entry(bond); 4646 #endif 4647 list_add_tail(&bond->bond_list, &bond_dev_list); 4648 4649 return 0; 4650 } 4651 4652 static void bond_work_cancel_all(struct bonding *bond) 4653 { 4654 write_lock_bh(&bond->lock); 4655 bond->kill_timers = 1; 4656 write_unlock_bh(&bond->lock); 4657 4658 if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) 4659 cancel_delayed_work(&bond->mii_work); 4660 4661 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) 4662 cancel_delayed_work(&bond->arp_work); 4663 4664 if (bond->params.mode == BOND_MODE_ALB && 4665 delayed_work_pending(&bond->alb_work)) 4666 cancel_delayed_work(&bond->alb_work); 4667 4668 if (bond->params.mode == BOND_MODE_8023AD && 4669 delayed_work_pending(&bond->ad_work)) 4670 cancel_delayed_work(&bond->ad_work); 4671 } 4672 4673 /* De-initialize device specific data. 4674 * Caller must hold rtnl_lock. 4675 */ 4676 static void bond_deinit(struct net_device *bond_dev) 4677 { 4678 struct bonding *bond = netdev_priv(bond_dev); 4679 4680 list_del(&bond->bond_list); 4681 4682 bond_work_cancel_all(bond); 4683 4684 #ifdef CONFIG_PROC_FS 4685 bond_remove_proc_entry(bond); 4686 #endif 4687 } 4688 4689 /* Unregister and free all bond devices. 4690 * Caller must hold rtnl_lock. 4691 */ 4692 static void bond_free_all(void) 4693 { 4694 struct bonding *bond, *nxt; 4695 4696 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { 4697 struct net_device *bond_dev = bond->dev; 4698 4699 bond_work_cancel_all(bond); 4700 /* Release the bonded slaves */ 4701 bond_release_all(bond_dev); 4702 bond_destroy(bond); 4703 } 4704 4705 #ifdef CONFIG_PROC_FS 4706 bond_destroy_proc_dir(); 4707 #endif 4708 } 4709 4710 /*------------------------- Module initialization ---------------------------*/ 4711 4712 /* 4713 * Convert string input module parms. Accept either the 4714 * number of the mode or its string name. A bit complicated because 4715 * some mode names are substrings of other names, and calls from sysfs 4716 * may have whitespace in the name (trailing newlines, for example). 4717 */ 4718 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl) 4719 { 4720 int modeint = -1, i, rv; 4721 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4722 4723 for (p = (char *)buf; *p; p++) 4724 if (!(isdigit(*p) || isspace(*p))) 4725 break; 4726 4727 if (*p) 4728 rv = sscanf(buf, "%20s", modestr); 4729 else 4730 rv = sscanf(buf, "%d", &modeint); 4731 4732 if (!rv) 4733 return -1; 4734 4735 for (i = 0; tbl[i].modename; i++) { 4736 if (modeint == tbl[i].mode) 4737 return tbl[i].mode; 4738 if (strcmp(modestr, tbl[i].modename) == 0) 4739 return tbl[i].mode; 4740 } 4741 4742 return -1; 4743 } 4744 4745 static int bond_check_params(struct bond_params *params) 4746 { 4747 int arp_validate_value, fail_over_mac_value; 4748 4749 /* 4750 * Convert string parameters. 4751 */ 4752 if (mode) { 4753 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4754 if (bond_mode == -1) { 4755 printk(KERN_ERR DRV_NAME 4756 ": Error: Invalid bonding mode \"%s\"\n", 4757 mode == NULL ? "NULL" : mode); 4758 return -EINVAL; 4759 } 4760 } 4761 4762 if (xmit_hash_policy) { 4763 if ((bond_mode != BOND_MODE_XOR) && 4764 (bond_mode != BOND_MODE_8023AD)) { 4765 printk(KERN_INFO DRV_NAME 4766 ": xor_mode param is irrelevant in mode %s\n", 4767 bond_mode_name(bond_mode)); 4768 } else { 4769 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4770 xmit_hashtype_tbl); 4771 if (xmit_hashtype == -1) { 4772 printk(KERN_ERR DRV_NAME 4773 ": Error: Invalid xmit_hash_policy \"%s\"\n", 4774 xmit_hash_policy == NULL ? "NULL" : 4775 xmit_hash_policy); 4776 return -EINVAL; 4777 } 4778 } 4779 } 4780 4781 if (lacp_rate) { 4782 if (bond_mode != BOND_MODE_8023AD) { 4783 printk(KERN_INFO DRV_NAME 4784 ": lacp_rate param is irrelevant in mode %s\n", 4785 bond_mode_name(bond_mode)); 4786 } else { 4787 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4788 if (lacp_fast == -1) { 4789 printk(KERN_ERR DRV_NAME 4790 ": Error: Invalid lacp rate \"%s\"\n", 4791 lacp_rate == NULL ? "NULL" : lacp_rate); 4792 return -EINVAL; 4793 } 4794 } 4795 } 4796 4797 if (ad_select) { 4798 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl); 4799 if (params->ad_select == -1) { 4800 printk(KERN_ERR DRV_NAME 4801 ": Error: Invalid ad_select \"%s\"\n", 4802 ad_select == NULL ? "NULL" : ad_select); 4803 return -EINVAL; 4804 } 4805 4806 if (bond_mode != BOND_MODE_8023AD) { 4807 printk(KERN_WARNING DRV_NAME 4808 ": ad_select param only affects 802.3ad mode\n"); 4809 } 4810 } else { 4811 params->ad_select = BOND_AD_STABLE; 4812 } 4813 4814 if (max_bonds < 0 || max_bonds > INT_MAX) { 4815 printk(KERN_WARNING DRV_NAME 4816 ": Warning: max_bonds (%d) not in range %d-%d, so it " 4817 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4818 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4819 max_bonds = BOND_DEFAULT_MAX_BONDS; 4820 } 4821 4822 if (miimon < 0) { 4823 printk(KERN_WARNING DRV_NAME 4824 ": Warning: miimon module parameter (%d), " 4825 "not in range 0-%d, so it was reset to %d\n", 4826 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4827 miimon = BOND_LINK_MON_INTERV; 4828 } 4829 4830 if (updelay < 0) { 4831 printk(KERN_WARNING DRV_NAME 4832 ": Warning: updelay module parameter (%d), " 4833 "not in range 0-%d, so it was reset to 0\n", 4834 updelay, INT_MAX); 4835 updelay = 0; 4836 } 4837 4838 if (downdelay < 0) { 4839 printk(KERN_WARNING DRV_NAME 4840 ": Warning: downdelay module parameter (%d), " 4841 "not in range 0-%d, so it was reset to 0\n", 4842 downdelay, INT_MAX); 4843 downdelay = 0; 4844 } 4845 4846 if ((use_carrier != 0) && (use_carrier != 1)) { 4847 printk(KERN_WARNING DRV_NAME 4848 ": Warning: use_carrier module parameter (%d), " 4849 "not of valid value (0/1), so it was set to 1\n", 4850 use_carrier); 4851 use_carrier = 1; 4852 } 4853 4854 if (num_grat_arp < 0 || num_grat_arp > 255) { 4855 printk(KERN_WARNING DRV_NAME 4856 ": Warning: num_grat_arp (%d) not in range 0-255 so it " 4857 "was reset to 1 \n", num_grat_arp); 4858 num_grat_arp = 1; 4859 } 4860 4861 if (num_unsol_na < 0 || num_unsol_na > 255) { 4862 printk(KERN_WARNING DRV_NAME 4863 ": Warning: num_unsol_na (%d) not in range 0-255 so it " 4864 "was reset to 1 \n", num_unsol_na); 4865 num_unsol_na = 1; 4866 } 4867 4868 /* reset values for 802.3ad */ 4869 if (bond_mode == BOND_MODE_8023AD) { 4870 if (!miimon) { 4871 printk(KERN_WARNING DRV_NAME 4872 ": Warning: miimon must be specified, " 4873 "otherwise bonding will not detect link " 4874 "failure, speed and duplex which are " 4875 "essential for 802.3ad operation\n"); 4876 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4877 miimon = 100; 4878 } 4879 } 4880 4881 /* reset values for TLB/ALB */ 4882 if ((bond_mode == BOND_MODE_TLB) || 4883 (bond_mode == BOND_MODE_ALB)) { 4884 if (!miimon) { 4885 printk(KERN_WARNING DRV_NAME 4886 ": Warning: miimon must be specified, " 4887 "otherwise bonding will not detect link " 4888 "failure and link speed which are essential " 4889 "for TLB/ALB load balancing\n"); 4890 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4891 miimon = 100; 4892 } 4893 } 4894 4895 if (bond_mode == BOND_MODE_ALB) { 4896 printk(KERN_NOTICE DRV_NAME 4897 ": In ALB mode you might experience client " 4898 "disconnections upon reconnection of a link if the " 4899 "bonding module updelay parameter (%d msec) is " 4900 "incompatible with the forwarding delay time of the " 4901 "switch\n", 4902 updelay); 4903 } 4904 4905 if (!miimon) { 4906 if (updelay || downdelay) { 4907 /* just warn the user the up/down delay will have 4908 * no effect since miimon is zero... 4909 */ 4910 printk(KERN_WARNING DRV_NAME 4911 ": Warning: miimon module parameter not set " 4912 "and updelay (%d) or downdelay (%d) module " 4913 "parameter is set; updelay and downdelay have " 4914 "no effect unless miimon is set\n", 4915 updelay, downdelay); 4916 } 4917 } else { 4918 /* don't allow arp monitoring */ 4919 if (arp_interval) { 4920 printk(KERN_WARNING DRV_NAME 4921 ": Warning: miimon (%d) and arp_interval (%d) " 4922 "can't be used simultaneously, disabling ARP " 4923 "monitoring\n", 4924 miimon, arp_interval); 4925 arp_interval = 0; 4926 } 4927 4928 if ((updelay % miimon) != 0) { 4929 printk(KERN_WARNING DRV_NAME 4930 ": Warning: updelay (%d) is not a multiple " 4931 "of miimon (%d), updelay rounded to %d ms\n", 4932 updelay, miimon, (updelay / miimon) * miimon); 4933 } 4934 4935 updelay /= miimon; 4936 4937 if ((downdelay % miimon) != 0) { 4938 printk(KERN_WARNING DRV_NAME 4939 ": Warning: downdelay (%d) is not a multiple " 4940 "of miimon (%d), downdelay rounded to %d ms\n", 4941 downdelay, miimon, 4942 (downdelay / miimon) * miimon); 4943 } 4944 4945 downdelay /= miimon; 4946 } 4947 4948 if (arp_interval < 0) { 4949 printk(KERN_WARNING DRV_NAME 4950 ": Warning: arp_interval module parameter (%d) " 4951 ", not in range 0-%d, so it was reset to %d\n", 4952 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4953 arp_interval = BOND_LINK_ARP_INTERV; 4954 } 4955 4956 for (arp_ip_count = 0; 4957 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4958 arp_ip_count++) { 4959 /* not complete check, but should be good enough to 4960 catch mistakes */ 4961 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4962 printk(KERN_WARNING DRV_NAME 4963 ": Warning: bad arp_ip_target module parameter " 4964 "(%s), ARP monitoring will not be performed\n", 4965 arp_ip_target[arp_ip_count]); 4966 arp_interval = 0; 4967 } else { 4968 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4969 arp_target[arp_ip_count] = ip; 4970 } 4971 } 4972 4973 if (arp_interval && !arp_ip_count) { 4974 /* don't allow arping if no arp_ip_target given... */ 4975 printk(KERN_WARNING DRV_NAME 4976 ": Warning: arp_interval module parameter (%d) " 4977 "specified without providing an arp_ip_target " 4978 "parameter, arp_interval was reset to 0\n", 4979 arp_interval); 4980 arp_interval = 0; 4981 } 4982 4983 if (arp_validate) { 4984 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4985 printk(KERN_ERR DRV_NAME 4986 ": arp_validate only supported in active-backup mode\n"); 4987 return -EINVAL; 4988 } 4989 if (!arp_interval) { 4990 printk(KERN_ERR DRV_NAME 4991 ": arp_validate requires arp_interval\n"); 4992 return -EINVAL; 4993 } 4994 4995 arp_validate_value = bond_parse_parm(arp_validate, 4996 arp_validate_tbl); 4997 if (arp_validate_value == -1) { 4998 printk(KERN_ERR DRV_NAME 4999 ": Error: invalid arp_validate \"%s\"\n", 5000 arp_validate == NULL ? "NULL" : arp_validate); 5001 return -EINVAL; 5002 } 5003 } else 5004 arp_validate_value = 0; 5005 5006 if (miimon) { 5007 printk(KERN_INFO DRV_NAME 5008 ": MII link monitoring set to %d ms\n", 5009 miimon); 5010 } else if (arp_interval) { 5011 int i; 5012 5013 printk(KERN_INFO DRV_NAME 5014 ": ARP monitoring set to %d ms, validate %s, with %d target(s):", 5015 arp_interval, 5016 arp_validate_tbl[arp_validate_value].modename, 5017 arp_ip_count); 5018 5019 for (i = 0; i < arp_ip_count; i++) 5020 printk (" %s", arp_ip_target[i]); 5021 5022 printk("\n"); 5023 5024 } else if (max_bonds) { 5025 /* miimon and arp_interval not set, we need one so things 5026 * work as expected, see bonding.txt for details 5027 */ 5028 printk(KERN_WARNING DRV_NAME 5029 ": Warning: either miimon or arp_interval and " 5030 "arp_ip_target module parameters must be specified, " 5031 "otherwise bonding will not detect link failures! see " 5032 "bonding.txt for details.\n"); 5033 } 5034 5035 if (primary && !USES_PRIMARY(bond_mode)) { 5036 /* currently, using a primary only makes sense 5037 * in active backup, TLB or ALB modes 5038 */ 5039 printk(KERN_WARNING DRV_NAME 5040 ": Warning: %s primary device specified but has no " 5041 "effect in %s mode\n", 5042 primary, bond_mode_name(bond_mode)); 5043 primary = NULL; 5044 } 5045 5046 if (fail_over_mac) { 5047 fail_over_mac_value = bond_parse_parm(fail_over_mac, 5048 fail_over_mac_tbl); 5049 if (fail_over_mac_value == -1) { 5050 printk(KERN_ERR DRV_NAME 5051 ": Error: invalid fail_over_mac \"%s\"\n", 5052 arp_validate == NULL ? "NULL" : arp_validate); 5053 return -EINVAL; 5054 } 5055 5056 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 5057 printk(KERN_WARNING DRV_NAME 5058 ": Warning: fail_over_mac only affects " 5059 "active-backup mode.\n"); 5060 } else { 5061 fail_over_mac_value = BOND_FOM_NONE; 5062 } 5063 5064 /* fill params struct with the proper values */ 5065 params->mode = bond_mode; 5066 params->xmit_policy = xmit_hashtype; 5067 params->miimon = miimon; 5068 params->num_grat_arp = num_grat_arp; 5069 params->num_unsol_na = num_unsol_na; 5070 params->arp_interval = arp_interval; 5071 params->arp_validate = arp_validate_value; 5072 params->updelay = updelay; 5073 params->downdelay = downdelay; 5074 params->use_carrier = use_carrier; 5075 params->lacp_fast = lacp_fast; 5076 params->primary[0] = 0; 5077 params->fail_over_mac = fail_over_mac_value; 5078 5079 if (primary) { 5080 strncpy(params->primary, primary, IFNAMSIZ); 5081 params->primary[IFNAMSIZ - 1] = 0; 5082 } 5083 5084 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 5085 5086 return 0; 5087 } 5088 5089 static struct lock_class_key bonding_netdev_xmit_lock_key; 5090 static struct lock_class_key bonding_netdev_addr_lock_key; 5091 5092 static void bond_set_lockdep_class_one(struct net_device *dev, 5093 struct netdev_queue *txq, 5094 void *_unused) 5095 { 5096 lockdep_set_class(&txq->_xmit_lock, 5097 &bonding_netdev_xmit_lock_key); 5098 } 5099 5100 static void bond_set_lockdep_class(struct net_device *dev) 5101 { 5102 lockdep_set_class(&dev->addr_list_lock, 5103 &bonding_netdev_addr_lock_key); 5104 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 5105 } 5106 5107 /* Create a new bond based on the specified name and bonding parameters. 5108 * If name is NULL, obtain a suitable "bond%d" name for us. 5109 * Caller must NOT hold rtnl_lock; we need to release it here before we 5110 * set up our sysfs entries. 5111 */ 5112 int bond_create(char *name, struct bond_params *params) 5113 { 5114 struct net_device *bond_dev; 5115 struct bonding *bond; 5116 int res; 5117 5118 rtnl_lock(); 5119 down_write(&bonding_rwsem); 5120 5121 /* Check to see if the bond already exists. */ 5122 if (name) { 5123 list_for_each_entry(bond, &bond_dev_list, bond_list) 5124 if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) { 5125 printk(KERN_ERR DRV_NAME 5126 ": cannot add bond %s; it already exists\n", 5127 name); 5128 res = -EPERM; 5129 goto out_rtnl; 5130 } 5131 } 5132 5133 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", 5134 ether_setup); 5135 if (!bond_dev) { 5136 printk(KERN_ERR DRV_NAME 5137 ": %s: eek! can't alloc netdev!\n", 5138 name); 5139 res = -ENOMEM; 5140 goto out_rtnl; 5141 } 5142 5143 if (!name) { 5144 res = dev_alloc_name(bond_dev, "bond%d"); 5145 if (res < 0) 5146 goto out_netdev; 5147 } 5148 5149 /* bond_init() must be called after dev_alloc_name() (for the 5150 * /proc files), but before register_netdevice(), because we 5151 * need to set function pointers. 5152 */ 5153 5154 res = bond_init(bond_dev, params); 5155 if (res < 0) { 5156 goto out_netdev; 5157 } 5158 5159 res = register_netdevice(bond_dev); 5160 if (res < 0) { 5161 goto out_bond; 5162 } 5163 5164 bond_set_lockdep_class(bond_dev); 5165 5166 netif_carrier_off(bond_dev); 5167 5168 up_write(&bonding_rwsem); 5169 rtnl_unlock(); /* allows sysfs registration of net device */ 5170 res = bond_create_sysfs_entry(netdev_priv(bond_dev)); 5171 if (res < 0) { 5172 rtnl_lock(); 5173 down_write(&bonding_rwsem); 5174 bond_deinit(bond_dev); 5175 unregister_netdevice(bond_dev); 5176 goto out_rtnl; 5177 } 5178 5179 return 0; 5180 5181 out_bond: 5182 bond_deinit(bond_dev); 5183 out_netdev: 5184 free_netdev(bond_dev); 5185 out_rtnl: 5186 up_write(&bonding_rwsem); 5187 rtnl_unlock(); 5188 return res; 5189 } 5190 5191 static int __init bonding_init(void) 5192 { 5193 int i; 5194 int res; 5195 struct bonding *bond; 5196 5197 printk(KERN_INFO "%s", version); 5198 5199 res = bond_check_params(&bonding_defaults); 5200 if (res) { 5201 goto out; 5202 } 5203 5204 #ifdef CONFIG_PROC_FS 5205 bond_create_proc_dir(); 5206 #endif 5207 5208 init_rwsem(&bonding_rwsem); 5209 5210 for (i = 0; i < max_bonds; i++) { 5211 res = bond_create(NULL, &bonding_defaults); 5212 if (res) 5213 goto err; 5214 } 5215 5216 res = bond_create_sysfs(); 5217 if (res) 5218 goto err; 5219 5220 register_netdevice_notifier(&bond_netdev_notifier); 5221 register_inetaddr_notifier(&bond_inetaddr_notifier); 5222 bond_register_ipv6_notifier(); 5223 5224 goto out; 5225 err: 5226 list_for_each_entry(bond, &bond_dev_list, bond_list) { 5227 bond_work_cancel_all(bond); 5228 destroy_workqueue(bond->wq); 5229 } 5230 5231 bond_destroy_sysfs(); 5232 5233 rtnl_lock(); 5234 bond_free_all(); 5235 rtnl_unlock(); 5236 out: 5237 return res; 5238 5239 } 5240 5241 static void __exit bonding_exit(void) 5242 { 5243 unregister_netdevice_notifier(&bond_netdev_notifier); 5244 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 5245 bond_unregister_ipv6_notifier(); 5246 5247 bond_destroy_sysfs(); 5248 5249 rtnl_lock(); 5250 bond_free_all(); 5251 rtnl_unlock(); 5252 } 5253 5254 module_init(bonding_init); 5255 module_exit(bonding_exit); 5256 MODULE_LICENSE("GPL"); 5257 MODULE_VERSION(DRV_VERSION); 5258 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5259 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5260 MODULE_SUPPORTED_DEVICE("most ethernet devices"); 5261 5262 /* 5263 * Local variables: 5264 * c-indent-level: 8 5265 * c-basic-offset: 8 5266 * tab-width: 8 5267 * End: 5268 */ 5269 5270