1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/types.h> 37 #include <linux/fcntl.h> 38 #include <linux/interrupt.h> 39 #include <linux/ptrace.h> 40 #include <linux/ioport.h> 41 #include <linux/in.h> 42 #include <net/ip.h> 43 #include <linux/ip.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/slab.h> 47 #include <linux/string.h> 48 #include <linux/init.h> 49 #include <linux/timer.h> 50 #include <linux/socket.h> 51 #include <linux/ctype.h> 52 #include <linux/inet.h> 53 #include <linux/bitops.h> 54 #include <asm/system.h> 55 #include <asm/io.h> 56 #include <asm/dma.h> 57 #include <asm/uaccess.h> 58 #include <linux/errno.h> 59 #include <linux/netdevice.h> 60 #include <linux/inetdevice.h> 61 #include <linux/igmp.h> 62 #include <linux/etherdevice.h> 63 #include <linux/skbuff.h> 64 #include <net/sock.h> 65 #include <linux/rtnetlink.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/smp.h> 69 #include <linux/if_ether.h> 70 #include <net/arp.h> 71 #include <linux/mii.h> 72 #include <linux/ethtool.h> 73 #include <linux/if_vlan.h> 74 #include <linux/if_bonding.h> 75 #include <linux/jiffies.h> 76 #include <net/route.h> 77 #include <net/net_namespace.h> 78 #include "bonding.h" 79 #include "bond_3ad.h" 80 #include "bond_alb.h" 81 82 /*---------------------------- Module parameters ----------------------------*/ 83 84 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 85 #define BOND_LINK_MON_INTERV 0 86 #define BOND_LINK_ARP_INTERV 0 87 88 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 89 static int num_grat_arp = 1; 90 static int num_unsol_na = 1; 91 static int miimon = BOND_LINK_MON_INTERV; 92 static int updelay = 0; 93 static int downdelay = 0; 94 static int use_carrier = 1; 95 static char *mode = NULL; 96 static char *primary = NULL; 97 static char *lacp_rate = NULL; 98 static char *ad_select = NULL; 99 static char *xmit_hash_policy = NULL; 100 static int arp_interval = BOND_LINK_ARP_INTERV; 101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; 102 static char *arp_validate = NULL; 103 static char *fail_over_mac = NULL; 104 struct bond_params bonding_defaults; 105 106 module_param(max_bonds, int, 0); 107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 108 module_param(num_grat_arp, int, 0644); 109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event"); 110 module_param(num_unsol_na, int, 0644); 111 MODULE_PARM_DESC(num_unsol_na, "Number of unsolicited IPv6 Neighbor Advertisements packets to send on failover event"); 112 module_param(miimon, int, 0); 113 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 114 module_param(updelay, int, 0); 115 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 116 module_param(downdelay, int, 0); 117 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 118 "in milliseconds"); 119 module_param(use_carrier, int, 0); 120 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 121 "0 for off, 1 for on (default)"); 122 module_param(mode, charp, 0); 123 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 124 "1 for active-backup, 2 for balance-xor, " 125 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 126 "6 for balance-alb"); 127 module_param(primary, charp, 0); 128 MODULE_PARM_DESC(primary, "Primary network device to use"); 129 module_param(lacp_rate, charp, 0); 130 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 131 "(slow/fast)"); 132 module_param(ad_select, charp, 0); 133 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic: stable (0, default), bandwidth (1), count (2)"); 134 module_param(xmit_hash_policy, charp, 0); 135 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 136 ", 1 for layer 3+4"); 137 module_param(arp_interval, int, 0); 138 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 139 module_param_array(arp_ip_target, charp, NULL, 0); 140 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 141 module_param(arp_validate, charp, 0); 142 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 143 module_param(fail_over_mac, charp, 0); 144 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow"); 145 146 /*----------------------------- Global variables ----------------------------*/ 147 148 static const char * const version = 149 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 150 151 LIST_HEAD(bond_dev_list); 152 153 #ifdef CONFIG_PROC_FS 154 static struct proc_dir_entry *bond_proc_dir = NULL; 155 #endif 156 157 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; 158 static int arp_ip_count = 0; 159 static int bond_mode = BOND_MODE_ROUNDROBIN; 160 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; 161 static int lacp_fast = 0; 162 163 164 const struct bond_parm_tbl bond_lacp_tbl[] = { 165 { "slow", AD_LACP_SLOW}, 166 { "fast", AD_LACP_FAST}, 167 { NULL, -1}, 168 }; 169 170 const struct bond_parm_tbl bond_mode_tbl[] = { 171 { "balance-rr", BOND_MODE_ROUNDROBIN}, 172 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 173 { "balance-xor", BOND_MODE_XOR}, 174 { "broadcast", BOND_MODE_BROADCAST}, 175 { "802.3ad", BOND_MODE_8023AD}, 176 { "balance-tlb", BOND_MODE_TLB}, 177 { "balance-alb", BOND_MODE_ALB}, 178 { NULL, -1}, 179 }; 180 181 const struct bond_parm_tbl xmit_hashtype_tbl[] = { 182 { "layer2", BOND_XMIT_POLICY_LAYER2}, 183 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 184 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 185 { NULL, -1}, 186 }; 187 188 const struct bond_parm_tbl arp_validate_tbl[] = { 189 { "none", BOND_ARP_VALIDATE_NONE}, 190 { "active", BOND_ARP_VALIDATE_ACTIVE}, 191 { "backup", BOND_ARP_VALIDATE_BACKUP}, 192 { "all", BOND_ARP_VALIDATE_ALL}, 193 { NULL, -1}, 194 }; 195 196 const struct bond_parm_tbl fail_over_mac_tbl[] = { 197 { "none", BOND_FOM_NONE}, 198 { "active", BOND_FOM_ACTIVE}, 199 { "follow", BOND_FOM_FOLLOW}, 200 { NULL, -1}, 201 }; 202 203 struct bond_parm_tbl ad_select_tbl[] = { 204 { "stable", BOND_AD_STABLE}, 205 { "bandwidth", BOND_AD_BANDWIDTH}, 206 { "count", BOND_AD_COUNT}, 207 { NULL, -1}, 208 }; 209 210 /*-------------------------- Forward declarations ---------------------------*/ 211 212 static void bond_send_gratuitous_arp(struct bonding *bond); 213 static void bond_deinit(struct net_device *bond_dev); 214 215 /*---------------------------- General routines -----------------------------*/ 216 217 static const char *bond_mode_name(int mode) 218 { 219 static const char *names[] = { 220 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)", 221 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)", 222 [BOND_MODE_XOR] = "load balancing (xor)", 223 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)", 224 [BOND_MODE_8023AD]= "IEEE 802.3ad Dynamic link aggregation", 225 [BOND_MODE_TLB] = "transmit load balancing", 226 [BOND_MODE_ALB] = "adaptive load balancing", 227 }; 228 229 if (mode < 0 || mode > BOND_MODE_ALB) 230 return "unknown"; 231 232 return names[mode]; 233 } 234 235 /*---------------------------------- VLAN -----------------------------------*/ 236 237 /** 238 * bond_add_vlan - add a new vlan id on bond 239 * @bond: bond that got the notification 240 * @vlan_id: the vlan id to add 241 * 242 * Returns -ENOMEM if allocation failed. 243 */ 244 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 245 { 246 struct vlan_entry *vlan; 247 248 pr_debug("bond: %s, vlan id %d\n", 249 (bond ? bond->dev->name: "None"), vlan_id); 250 251 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL); 252 if (!vlan) { 253 return -ENOMEM; 254 } 255 256 INIT_LIST_HEAD(&vlan->vlan_list); 257 vlan->vlan_id = vlan_id; 258 259 write_lock_bh(&bond->lock); 260 261 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 262 263 write_unlock_bh(&bond->lock); 264 265 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 266 267 return 0; 268 } 269 270 /** 271 * bond_del_vlan - delete a vlan id from bond 272 * @bond: bond that got the notification 273 * @vlan_id: the vlan id to delete 274 * 275 * returns -ENODEV if @vlan_id was not found in @bond. 276 */ 277 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 278 { 279 struct vlan_entry *vlan; 280 int res = -ENODEV; 281 282 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 283 284 write_lock_bh(&bond->lock); 285 286 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 287 if (vlan->vlan_id == vlan_id) { 288 list_del(&vlan->vlan_list); 289 290 if (bond_is_lb(bond)) 291 bond_alb_clear_vlan(bond, vlan_id); 292 293 pr_debug("removed VLAN ID %d from bond %s\n", vlan_id, 294 bond->dev->name); 295 296 kfree(vlan); 297 298 if (list_empty(&bond->vlan_list) && 299 (bond->slave_cnt == 0)) { 300 /* Last VLAN removed and no slaves, so 301 * restore block on adding VLANs. This will 302 * be removed once new slaves that are not 303 * VLAN challenged will be added. 304 */ 305 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 306 } 307 308 res = 0; 309 goto out; 310 } 311 } 312 313 pr_debug("couldn't find VLAN ID %d in bond %s\n", vlan_id, 314 bond->dev->name); 315 316 out: 317 write_unlock_bh(&bond->lock); 318 return res; 319 } 320 321 /** 322 * bond_has_challenged_slaves 323 * @bond: the bond we're working on 324 * 325 * Searches the slave list. Returns 1 if a vlan challenged slave 326 * was found, 0 otherwise. 327 * 328 * Assumes bond->lock is held. 329 */ 330 static int bond_has_challenged_slaves(struct bonding *bond) 331 { 332 struct slave *slave; 333 int i; 334 335 bond_for_each_slave(bond, slave, i) { 336 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 337 pr_debug("found VLAN challenged slave - %s\n", 338 slave->dev->name); 339 return 1; 340 } 341 } 342 343 pr_debug("no VLAN challenged slaves found\n"); 344 return 0; 345 } 346 347 /** 348 * bond_next_vlan - safely skip to the next item in the vlans list. 349 * @bond: the bond we're working on 350 * @curr: item we're advancing from 351 * 352 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 353 * or @curr->next otherwise (even if it is @curr itself again). 354 * 355 * Caller must hold bond->lock 356 */ 357 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 358 { 359 struct vlan_entry *next, *last; 360 361 if (list_empty(&bond->vlan_list)) { 362 return NULL; 363 } 364 365 if (!curr) { 366 next = list_entry(bond->vlan_list.next, 367 struct vlan_entry, vlan_list); 368 } else { 369 last = list_entry(bond->vlan_list.prev, 370 struct vlan_entry, vlan_list); 371 if (last == curr) { 372 next = list_entry(bond->vlan_list.next, 373 struct vlan_entry, vlan_list); 374 } else { 375 next = list_entry(curr->vlan_list.next, 376 struct vlan_entry, vlan_list); 377 } 378 } 379 380 return next; 381 } 382 383 /** 384 * bond_dev_queue_xmit - Prepare skb for xmit. 385 * 386 * @bond: bond device that got this skb for tx. 387 * @skb: hw accel VLAN tagged skb to transmit 388 * @slave_dev: slave that is supposed to xmit this skbuff 389 * 390 * When the bond gets an skb to transmit that is 391 * already hardware accelerated VLAN tagged, and it 392 * needs to relay this skb to a slave that is not 393 * hw accel capable, the skb needs to be "unaccelerated", 394 * i.e. strip the hwaccel tag and re-insert it as part 395 * of the payload. 396 */ 397 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) 398 { 399 unsigned short uninitialized_var(vlan_id); 400 401 if (!list_empty(&bond->vlan_list) && 402 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 403 vlan_get_tag(skb, &vlan_id) == 0) { 404 skb->dev = slave_dev; 405 skb = vlan_put_tag(skb, vlan_id); 406 if (!skb) { 407 /* vlan_put_tag() frees the skb in case of error, 408 * so return success here so the calling functions 409 * won't attempt to free is again. 410 */ 411 return 0; 412 } 413 } else { 414 skb->dev = slave_dev; 415 } 416 417 skb->priority = 1; 418 dev_queue_xmit(skb); 419 420 return 0; 421 } 422 423 /* 424 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 425 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 426 * lock because: 427 * a. This operation is performed in IOCTL context, 428 * b. The operation is protected by the RTNL semaphore in the 8021q code, 429 * c. Holding a lock with BH disabled while directly calling a base driver 430 * entry point is generally a BAD idea. 431 * 432 * The design of synchronization/protection for this operation in the 8021q 433 * module is good for one or more VLAN devices over a single physical device 434 * and cannot be extended for a teaming solution like bonding, so there is a 435 * potential race condition here where a net device from the vlan group might 436 * be referenced (either by a base driver or the 8021q code) while it is being 437 * removed from the system. However, it turns out we're not making matters 438 * worse, and if it works for regular VLAN usage it will work here too. 439 */ 440 441 /** 442 * bond_vlan_rx_register - Propagates registration to slaves 443 * @bond_dev: bonding net device that got called 444 * @grp: vlan group being registered 445 */ 446 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) 447 { 448 struct bonding *bond = netdev_priv(bond_dev); 449 struct slave *slave; 450 int i; 451 452 bond->vlgrp = grp; 453 454 bond_for_each_slave(bond, slave, i) { 455 struct net_device *slave_dev = slave->dev; 456 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 457 458 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 459 slave_ops->ndo_vlan_rx_register) { 460 slave_ops->ndo_vlan_rx_register(slave_dev, grp); 461 } 462 } 463 } 464 465 /** 466 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 467 * @bond_dev: bonding net device that got called 468 * @vid: vlan id being added 469 */ 470 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 471 { 472 struct bonding *bond = netdev_priv(bond_dev); 473 struct slave *slave; 474 int i, res; 475 476 bond_for_each_slave(bond, slave, i) { 477 struct net_device *slave_dev = slave->dev; 478 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 479 480 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 481 slave_ops->ndo_vlan_rx_add_vid) { 482 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vid); 483 } 484 } 485 486 res = bond_add_vlan(bond, vid); 487 if (res) { 488 printk(KERN_ERR DRV_NAME 489 ": %s: Error: Failed to add vlan id %d\n", 490 bond_dev->name, vid); 491 } 492 } 493 494 /** 495 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 496 * @bond_dev: bonding net device that got called 497 * @vid: vlan id being removed 498 */ 499 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 500 { 501 struct bonding *bond = netdev_priv(bond_dev); 502 struct slave *slave; 503 struct net_device *vlan_dev; 504 int i, res; 505 506 bond_for_each_slave(bond, slave, i) { 507 struct net_device *slave_dev = slave->dev; 508 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 509 510 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 511 slave_ops->ndo_vlan_rx_kill_vid) { 512 /* Save and then restore vlan_dev in the grp array, 513 * since the slave's driver might clear it. 514 */ 515 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 516 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vid); 517 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 518 } 519 } 520 521 res = bond_del_vlan(bond, vid); 522 if (res) { 523 printk(KERN_ERR DRV_NAME 524 ": %s: Error: Failed to remove vlan id %d\n", 525 bond_dev->name, vid); 526 } 527 } 528 529 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 530 { 531 struct vlan_entry *vlan; 532 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 533 534 write_lock_bh(&bond->lock); 535 536 if (list_empty(&bond->vlan_list)) 537 goto out; 538 539 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 540 slave_ops->ndo_vlan_rx_register) 541 slave_ops->ndo_vlan_rx_register(slave_dev, bond->vlgrp); 542 543 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 544 !(slave_ops->ndo_vlan_rx_add_vid)) 545 goto out; 546 547 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) 548 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vlan->vlan_id); 549 550 out: 551 write_unlock_bh(&bond->lock); 552 } 553 554 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) 555 { 556 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 557 struct vlan_entry *vlan; 558 struct net_device *vlan_dev; 559 560 write_lock_bh(&bond->lock); 561 562 if (list_empty(&bond->vlan_list)) 563 goto out; 564 565 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 566 !(slave_ops->ndo_vlan_rx_kill_vid)) 567 goto unreg; 568 569 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 570 /* Save and then restore vlan_dev in the grp array, 571 * since the slave's driver might clear it. 572 */ 573 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 574 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 575 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 576 } 577 578 unreg: 579 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 580 slave_ops->ndo_vlan_rx_register) 581 slave_ops->ndo_vlan_rx_register(slave_dev, NULL); 582 583 out: 584 write_unlock_bh(&bond->lock); 585 } 586 587 /*------------------------------- Link status -------------------------------*/ 588 589 /* 590 * Set the carrier state for the master according to the state of its 591 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 592 * do special 802.3ad magic. 593 * 594 * Returns zero if carrier state does not change, nonzero if it does. 595 */ 596 static int bond_set_carrier(struct bonding *bond) 597 { 598 struct slave *slave; 599 int i; 600 601 if (bond->slave_cnt == 0) 602 goto down; 603 604 if (bond->params.mode == BOND_MODE_8023AD) 605 return bond_3ad_set_carrier(bond); 606 607 bond_for_each_slave(bond, slave, i) { 608 if (slave->link == BOND_LINK_UP) { 609 if (!netif_carrier_ok(bond->dev)) { 610 netif_carrier_on(bond->dev); 611 return 1; 612 } 613 return 0; 614 } 615 } 616 617 down: 618 if (netif_carrier_ok(bond->dev)) { 619 netif_carrier_off(bond->dev); 620 return 1; 621 } 622 return 0; 623 } 624 625 /* 626 * Get link speed and duplex from the slave's base driver 627 * using ethtool. If for some reason the call fails or the 628 * values are invalid, fake speed and duplex to 100/Full 629 * and return error. 630 */ 631 static int bond_update_speed_duplex(struct slave *slave) 632 { 633 struct net_device *slave_dev = slave->dev; 634 struct ethtool_cmd etool; 635 int res; 636 637 /* Fake speed and duplex */ 638 slave->speed = SPEED_100; 639 slave->duplex = DUPLEX_FULL; 640 641 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) 642 return -1; 643 644 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 645 if (res < 0) 646 return -1; 647 648 switch (etool.speed) { 649 case SPEED_10: 650 case SPEED_100: 651 case SPEED_1000: 652 case SPEED_10000: 653 break; 654 default: 655 return -1; 656 } 657 658 switch (etool.duplex) { 659 case DUPLEX_FULL: 660 case DUPLEX_HALF: 661 break; 662 default: 663 return -1; 664 } 665 666 slave->speed = etool.speed; 667 slave->duplex = etool.duplex; 668 669 return 0; 670 } 671 672 /* 673 * if <dev> supports MII link status reporting, check its link status. 674 * 675 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 676 * depening upon the setting of the use_carrier parameter. 677 * 678 * Return either BMSR_LSTATUS, meaning that the link is up (or we 679 * can't tell and just pretend it is), or 0, meaning that the link is 680 * down. 681 * 682 * If reporting is non-zero, instead of faking link up, return -1 if 683 * both ETHTOOL and MII ioctls fail (meaning the device does not 684 * support them). If use_carrier is set, return whatever it says. 685 * It'd be nice if there was a good way to tell if a driver supports 686 * netif_carrier, but there really isn't. 687 */ 688 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) 689 { 690 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 691 static int (* ioctl)(struct net_device *, struct ifreq *, int); 692 struct ifreq ifr; 693 struct mii_ioctl_data *mii; 694 695 if (bond->params.use_carrier) 696 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 697 698 ioctl = slave_ops->ndo_do_ioctl; 699 if (ioctl) { 700 /* TODO: set pointer to correct ioctl on a per team member */ 701 /* bases to make this more efficient. that is, once */ 702 /* we determine the correct ioctl, we will always */ 703 /* call it and not the others for that team */ 704 /* member. */ 705 706 /* 707 * We cannot assume that SIOCGMIIPHY will also read a 708 * register; not all network drivers (e.g., e100) 709 * support that. 710 */ 711 712 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 713 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 714 mii = if_mii(&ifr); 715 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 716 mii->reg_num = MII_BMSR; 717 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { 718 return (mii->val_out & BMSR_LSTATUS); 719 } 720 } 721 } 722 723 /* 724 * Some drivers cache ETHTOOL_GLINK for a period of time so we only 725 * attempt to get link status from it if the above MII ioctls fail. 726 */ 727 if (slave_dev->ethtool_ops) { 728 if (slave_dev->ethtool_ops->get_link) { 729 u32 link; 730 731 link = slave_dev->ethtool_ops->get_link(slave_dev); 732 733 return link ? BMSR_LSTATUS : 0; 734 } 735 } 736 737 /* 738 * If reporting, report that either there's no dev->do_ioctl, 739 * or both SIOCGMIIREG and get_link failed (meaning that we 740 * cannot report link status). If not reporting, pretend 741 * we're ok. 742 */ 743 return (reporting ? -1 : BMSR_LSTATUS); 744 } 745 746 /*----------------------------- Multicast list ------------------------------*/ 747 748 /* 749 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise 750 */ 751 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) 752 { 753 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && 754 dmi1->dmi_addrlen == dmi2->dmi_addrlen; 755 } 756 757 /* 758 * returns dmi entry if found, NULL otherwise 759 */ 760 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 761 { 762 struct dev_mc_list *idmi; 763 764 for (idmi = mc_list; idmi; idmi = idmi->next) { 765 if (bond_is_dmi_same(dmi, idmi)) { 766 return idmi; 767 } 768 } 769 770 return NULL; 771 } 772 773 /* 774 * Push the promiscuity flag down to appropriate slaves 775 */ 776 static int bond_set_promiscuity(struct bonding *bond, int inc) 777 { 778 int err = 0; 779 if (USES_PRIMARY(bond->params.mode)) { 780 /* write lock already acquired */ 781 if (bond->curr_active_slave) { 782 err = dev_set_promiscuity(bond->curr_active_slave->dev, 783 inc); 784 } 785 } else { 786 struct slave *slave; 787 int i; 788 bond_for_each_slave(bond, slave, i) { 789 err = dev_set_promiscuity(slave->dev, inc); 790 if (err) 791 return err; 792 } 793 } 794 return err; 795 } 796 797 /* 798 * Push the allmulti flag down to all slaves 799 */ 800 static int bond_set_allmulti(struct bonding *bond, int inc) 801 { 802 int err = 0; 803 if (USES_PRIMARY(bond->params.mode)) { 804 /* write lock already acquired */ 805 if (bond->curr_active_slave) { 806 err = dev_set_allmulti(bond->curr_active_slave->dev, 807 inc); 808 } 809 } else { 810 struct slave *slave; 811 int i; 812 bond_for_each_slave(bond, slave, i) { 813 err = dev_set_allmulti(slave->dev, inc); 814 if (err) 815 return err; 816 } 817 } 818 return err; 819 } 820 821 /* 822 * Add a Multicast address to slaves 823 * according to mode 824 */ 825 static void bond_mc_add(struct bonding *bond, void *addr, int alen) 826 { 827 if (USES_PRIMARY(bond->params.mode)) { 828 /* write lock already acquired */ 829 if (bond->curr_active_slave) { 830 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); 831 } 832 } else { 833 struct slave *slave; 834 int i; 835 bond_for_each_slave(bond, slave, i) { 836 dev_mc_add(slave->dev, addr, alen, 0); 837 } 838 } 839 } 840 841 /* 842 * Remove a multicast address from slave 843 * according to mode 844 */ 845 static void bond_mc_delete(struct bonding *bond, void *addr, int alen) 846 { 847 if (USES_PRIMARY(bond->params.mode)) { 848 /* write lock already acquired */ 849 if (bond->curr_active_slave) { 850 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); 851 } 852 } else { 853 struct slave *slave; 854 int i; 855 bond_for_each_slave(bond, slave, i) { 856 dev_mc_delete(slave->dev, addr, alen, 0); 857 } 858 } 859 } 860 861 862 /* 863 * Retrieve the list of registered multicast addresses for the bonding 864 * device and retransmit an IGMP JOIN request to the current active 865 * slave. 866 */ 867 static void bond_resend_igmp_join_requests(struct bonding *bond) 868 { 869 struct in_device *in_dev; 870 struct ip_mc_list *im; 871 872 rcu_read_lock(); 873 in_dev = __in_dev_get_rcu(bond->dev); 874 if (in_dev) { 875 for (im = in_dev->mc_list; im; im = im->next) { 876 ip_mc_rejoin_group(im); 877 } 878 } 879 880 rcu_read_unlock(); 881 } 882 883 /* 884 * Totally destroys the mc_list in bond 885 */ 886 static void bond_mc_list_destroy(struct bonding *bond) 887 { 888 struct dev_mc_list *dmi; 889 890 dmi = bond->mc_list; 891 while (dmi) { 892 bond->mc_list = dmi->next; 893 kfree(dmi); 894 dmi = bond->mc_list; 895 } 896 bond->mc_list = NULL; 897 } 898 899 /* 900 * Copy all the Multicast addresses from src to the bonding device dst 901 */ 902 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, 903 gfp_t gfp_flag) 904 { 905 struct dev_mc_list *dmi, *new_dmi; 906 907 for (dmi = mc_list; dmi; dmi = dmi->next) { 908 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); 909 910 if (!new_dmi) { 911 /* FIXME: Potential memory leak !!! */ 912 return -ENOMEM; 913 } 914 915 new_dmi->next = bond->mc_list; 916 bond->mc_list = new_dmi; 917 new_dmi->dmi_addrlen = dmi->dmi_addrlen; 918 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); 919 new_dmi->dmi_users = dmi->dmi_users; 920 new_dmi->dmi_gusers = dmi->dmi_gusers; 921 } 922 923 return 0; 924 } 925 926 /* 927 * flush all members of flush->mc_list from device dev->mc_list 928 */ 929 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) 930 { 931 struct bonding *bond = netdev_priv(bond_dev); 932 struct dev_mc_list *dmi; 933 934 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 935 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 936 } 937 938 if (bond->params.mode == BOND_MODE_8023AD) { 939 /* del lacpdu mc addr from mc list */ 940 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 941 942 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 943 } 944 } 945 946 /*--------------------------- Active slave change ---------------------------*/ 947 948 /* 949 * Update the mc list and multicast-related flags for the new and 950 * old active slaves (if any) according to the multicast mode, and 951 * promiscuous flags unconditionally. 952 */ 953 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) 954 { 955 struct dev_mc_list *dmi; 956 957 if (!USES_PRIMARY(bond->params.mode)) { 958 /* nothing to do - mc list is already up-to-date on 959 * all slaves 960 */ 961 return; 962 } 963 964 if (old_active) { 965 if (bond->dev->flags & IFF_PROMISC) { 966 dev_set_promiscuity(old_active->dev, -1); 967 } 968 969 if (bond->dev->flags & IFF_ALLMULTI) { 970 dev_set_allmulti(old_active->dev, -1); 971 } 972 973 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 974 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 975 } 976 } 977 978 if (new_active) { 979 /* FIXME: Signal errors upstream. */ 980 if (bond->dev->flags & IFF_PROMISC) { 981 dev_set_promiscuity(new_active->dev, 1); 982 } 983 984 if (bond->dev->flags & IFF_ALLMULTI) { 985 dev_set_allmulti(new_active->dev, 1); 986 } 987 988 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 989 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 990 } 991 bond_resend_igmp_join_requests(bond); 992 } 993 } 994 995 /* 996 * bond_do_fail_over_mac 997 * 998 * Perform special MAC address swapping for fail_over_mac settings 999 * 1000 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 1001 */ 1002 static void bond_do_fail_over_mac(struct bonding *bond, 1003 struct slave *new_active, 1004 struct slave *old_active) 1005 __releases(&bond->curr_slave_lock) 1006 __releases(&bond->lock) 1007 __acquires(&bond->lock) 1008 __acquires(&bond->curr_slave_lock) 1009 { 1010 u8 tmp_mac[ETH_ALEN]; 1011 struct sockaddr saddr; 1012 int rv; 1013 1014 switch (bond->params.fail_over_mac) { 1015 case BOND_FOM_ACTIVE: 1016 if (new_active) 1017 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 1018 new_active->dev->addr_len); 1019 break; 1020 case BOND_FOM_FOLLOW: 1021 /* 1022 * if new_active && old_active, swap them 1023 * if just old_active, do nothing (going to no active slave) 1024 * if just new_active, set new_active to bond's MAC 1025 */ 1026 if (!new_active) 1027 return; 1028 1029 write_unlock_bh(&bond->curr_slave_lock); 1030 read_unlock(&bond->lock); 1031 1032 if (old_active) { 1033 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 1034 memcpy(saddr.sa_data, old_active->dev->dev_addr, 1035 ETH_ALEN); 1036 saddr.sa_family = new_active->dev->type; 1037 } else { 1038 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 1039 saddr.sa_family = bond->dev->type; 1040 } 1041 1042 rv = dev_set_mac_address(new_active->dev, &saddr); 1043 if (rv) { 1044 printk(KERN_ERR DRV_NAME 1045 ": %s: Error %d setting MAC of slave %s\n", 1046 bond->dev->name, -rv, new_active->dev->name); 1047 goto out; 1048 } 1049 1050 if (!old_active) 1051 goto out; 1052 1053 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 1054 saddr.sa_family = old_active->dev->type; 1055 1056 rv = dev_set_mac_address(old_active->dev, &saddr); 1057 if (rv) 1058 printk(KERN_ERR DRV_NAME 1059 ": %s: Error %d setting MAC of slave %s\n", 1060 bond->dev->name, -rv, new_active->dev->name); 1061 out: 1062 read_lock(&bond->lock); 1063 write_lock_bh(&bond->curr_slave_lock); 1064 break; 1065 default: 1066 printk(KERN_ERR DRV_NAME 1067 ": %s: bond_do_fail_over_mac impossible: bad policy %d\n", 1068 bond->dev->name, bond->params.fail_over_mac); 1069 break; 1070 } 1071 1072 } 1073 1074 1075 /** 1076 * find_best_interface - select the best available slave to be the active one 1077 * @bond: our bonding struct 1078 * 1079 * Warning: Caller must hold curr_slave_lock for writing. 1080 */ 1081 static struct slave *bond_find_best_slave(struct bonding *bond) 1082 { 1083 struct slave *new_active, *old_active; 1084 struct slave *bestslave = NULL; 1085 int mintime = bond->params.updelay; 1086 int i; 1087 1088 new_active = old_active = bond->curr_active_slave; 1089 1090 if (!new_active) { /* there were no active slaves left */ 1091 if (bond->slave_cnt > 0) { /* found one slave */ 1092 new_active = bond->first_slave; 1093 } else { 1094 return NULL; /* still no slave, return NULL */ 1095 } 1096 } 1097 1098 /* first try the primary link; if arping, a link must tx/rx traffic 1099 * before it can be considered the curr_active_slave - also, we would skip 1100 * slaves between the curr_active_slave and primary_slave that may be up 1101 * and able to arp 1102 */ 1103 if ((bond->primary_slave) && 1104 (!bond->params.arp_interval) && 1105 (IS_UP(bond->primary_slave->dev))) { 1106 new_active = bond->primary_slave; 1107 } 1108 1109 /* remember where to stop iterating over the slaves */ 1110 old_active = new_active; 1111 1112 bond_for_each_slave_from(bond, new_active, i, old_active) { 1113 if (IS_UP(new_active->dev)) { 1114 if (new_active->link == BOND_LINK_UP) { 1115 return new_active; 1116 } else if (new_active->link == BOND_LINK_BACK) { 1117 /* link up, but waiting for stabilization */ 1118 if (new_active->delay < mintime) { 1119 mintime = new_active->delay; 1120 bestslave = new_active; 1121 } 1122 } 1123 } 1124 } 1125 1126 return bestslave; 1127 } 1128 1129 /** 1130 * change_active_interface - change the active slave into the specified one 1131 * @bond: our bonding struct 1132 * @new: the new slave to make the active one 1133 * 1134 * Set the new slave to the bond's settings and unset them on the old 1135 * curr_active_slave. 1136 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1137 * 1138 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1139 * because it is apparently the best available slave we have, even though its 1140 * updelay hasn't timed out yet. 1141 * 1142 * If new_active is not NULL, caller must hold bond->lock for read and 1143 * curr_slave_lock for write_bh. 1144 */ 1145 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1146 { 1147 struct slave *old_active = bond->curr_active_slave; 1148 1149 if (old_active == new_active) { 1150 return; 1151 } 1152 1153 if (new_active) { 1154 new_active->jiffies = jiffies; 1155 1156 if (new_active->link == BOND_LINK_BACK) { 1157 if (USES_PRIMARY(bond->params.mode)) { 1158 printk(KERN_INFO DRV_NAME 1159 ": %s: making interface %s the new " 1160 "active one %d ms earlier.\n", 1161 bond->dev->name, new_active->dev->name, 1162 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1163 } 1164 1165 new_active->delay = 0; 1166 new_active->link = BOND_LINK_UP; 1167 1168 if (bond->params.mode == BOND_MODE_8023AD) { 1169 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1170 } 1171 1172 if (bond_is_lb(bond)) 1173 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1174 } else { 1175 if (USES_PRIMARY(bond->params.mode)) { 1176 printk(KERN_INFO DRV_NAME 1177 ": %s: making interface %s the new " 1178 "active one.\n", 1179 bond->dev->name, new_active->dev->name); 1180 } 1181 } 1182 } 1183 1184 if (USES_PRIMARY(bond->params.mode)) { 1185 bond_mc_swap(bond, new_active, old_active); 1186 } 1187 1188 if (bond_is_lb(bond)) { 1189 bond_alb_handle_active_change(bond, new_active); 1190 if (old_active) 1191 bond_set_slave_inactive_flags(old_active); 1192 if (new_active) 1193 bond_set_slave_active_flags(new_active); 1194 } else { 1195 bond->curr_active_slave = new_active; 1196 } 1197 1198 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1199 if (old_active) { 1200 bond_set_slave_inactive_flags(old_active); 1201 } 1202 1203 if (new_active) { 1204 bond_set_slave_active_flags(new_active); 1205 1206 if (bond->params.fail_over_mac) 1207 bond_do_fail_over_mac(bond, new_active, 1208 old_active); 1209 1210 bond->send_grat_arp = bond->params.num_grat_arp; 1211 bond_send_gratuitous_arp(bond); 1212 1213 bond->send_unsol_na = bond->params.num_unsol_na; 1214 bond_send_unsolicited_na(bond); 1215 1216 write_unlock_bh(&bond->curr_slave_lock); 1217 read_unlock(&bond->lock); 1218 1219 netdev_bonding_change(bond->dev); 1220 1221 read_lock(&bond->lock); 1222 write_lock_bh(&bond->curr_slave_lock); 1223 } 1224 } 1225 } 1226 1227 /** 1228 * bond_select_active_slave - select a new active slave, if needed 1229 * @bond: our bonding struct 1230 * 1231 * This functions shoud be called when one of the following occurs: 1232 * - The old curr_active_slave has been released or lost its link. 1233 * - The primary_slave has got its link back. 1234 * - A slave has got its link back and there's no old curr_active_slave. 1235 * 1236 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1237 */ 1238 void bond_select_active_slave(struct bonding *bond) 1239 { 1240 struct slave *best_slave; 1241 int rv; 1242 1243 best_slave = bond_find_best_slave(bond); 1244 if (best_slave != bond->curr_active_slave) { 1245 bond_change_active_slave(bond, best_slave); 1246 rv = bond_set_carrier(bond); 1247 if (!rv) 1248 return; 1249 1250 if (netif_carrier_ok(bond->dev)) { 1251 printk(KERN_INFO DRV_NAME 1252 ": %s: first active interface up!\n", 1253 bond->dev->name); 1254 } else { 1255 printk(KERN_INFO DRV_NAME ": %s: " 1256 "now running without any active interface !\n", 1257 bond->dev->name); 1258 } 1259 } 1260 } 1261 1262 /*--------------------------- slave list handling ---------------------------*/ 1263 1264 /* 1265 * This function attaches the slave to the end of list. 1266 * 1267 * bond->lock held for writing by caller. 1268 */ 1269 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1270 { 1271 if (bond->first_slave == NULL) { /* attaching the first slave */ 1272 new_slave->next = new_slave; 1273 new_slave->prev = new_slave; 1274 bond->first_slave = new_slave; 1275 } else { 1276 new_slave->next = bond->first_slave; 1277 new_slave->prev = bond->first_slave->prev; 1278 new_slave->next->prev = new_slave; 1279 new_slave->prev->next = new_slave; 1280 } 1281 1282 bond->slave_cnt++; 1283 } 1284 1285 /* 1286 * This function detaches the slave from the list. 1287 * WARNING: no check is made to verify if the slave effectively 1288 * belongs to <bond>. 1289 * Nothing is freed on return, structures are just unchained. 1290 * If any slave pointer in bond was pointing to <slave>, 1291 * it should be changed by the calling function. 1292 * 1293 * bond->lock held for writing by caller. 1294 */ 1295 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1296 { 1297 if (slave->next) { 1298 slave->next->prev = slave->prev; 1299 } 1300 1301 if (slave->prev) { 1302 slave->prev->next = slave->next; 1303 } 1304 1305 if (bond->first_slave == slave) { /* slave is the first slave */ 1306 if (bond->slave_cnt > 1) { /* there are more slave */ 1307 bond->first_slave = slave->next; 1308 } else { 1309 bond->first_slave = NULL; /* slave was the last one */ 1310 } 1311 } 1312 1313 slave->next = NULL; 1314 slave->prev = NULL; 1315 bond->slave_cnt--; 1316 } 1317 1318 /*---------------------------------- IOCTL ----------------------------------*/ 1319 1320 static int bond_sethwaddr(struct net_device *bond_dev, 1321 struct net_device *slave_dev) 1322 { 1323 pr_debug("bond_dev=%p\n", bond_dev); 1324 pr_debug("slave_dev=%p\n", slave_dev); 1325 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1326 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1327 return 0; 1328 } 1329 1330 #define BOND_VLAN_FEATURES \ 1331 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ 1332 NETIF_F_HW_VLAN_FILTER) 1333 1334 /* 1335 * Compute the common dev->feature set available to all slaves. Some 1336 * feature bits are managed elsewhere, so preserve those feature bits 1337 * on the master device. 1338 */ 1339 static int bond_compute_features(struct bonding *bond) 1340 { 1341 struct slave *slave; 1342 struct net_device *bond_dev = bond->dev; 1343 unsigned long features = bond_dev->features; 1344 unsigned short max_hard_header_len = max((u16)ETH_HLEN, 1345 bond_dev->hard_header_len); 1346 int i; 1347 1348 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); 1349 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; 1350 1351 if (!bond->first_slave) 1352 goto done; 1353 1354 features &= ~NETIF_F_ONE_FOR_ALL; 1355 1356 bond_for_each_slave(bond, slave, i) { 1357 features = netdev_increment_features(features, 1358 slave->dev->features, 1359 NETIF_F_ONE_FOR_ALL); 1360 if (slave->dev->hard_header_len > max_hard_header_len) 1361 max_hard_header_len = slave->dev->hard_header_len; 1362 } 1363 1364 done: 1365 features |= (bond_dev->features & BOND_VLAN_FEATURES); 1366 bond_dev->features = netdev_fix_features(features, NULL); 1367 bond_dev->hard_header_len = max_hard_header_len; 1368 1369 return 0; 1370 } 1371 1372 static void bond_setup_by_slave(struct net_device *bond_dev, 1373 struct net_device *slave_dev) 1374 { 1375 struct bonding *bond = netdev_priv(bond_dev); 1376 1377 bond_dev->header_ops = slave_dev->header_ops; 1378 1379 bond_dev->type = slave_dev->type; 1380 bond_dev->hard_header_len = slave_dev->hard_header_len; 1381 bond_dev->addr_len = slave_dev->addr_len; 1382 1383 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1384 slave_dev->addr_len); 1385 bond->setup_by_slave = 1; 1386 } 1387 1388 /* enslave device <slave> to bond device <master> */ 1389 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1390 { 1391 struct bonding *bond = netdev_priv(bond_dev); 1392 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 1393 struct slave *new_slave = NULL; 1394 struct dev_mc_list *dmi; 1395 struct sockaddr addr; 1396 int link_reporting; 1397 int old_features = bond_dev->features; 1398 int res = 0; 1399 1400 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1401 slave_ops->ndo_do_ioctl == NULL) { 1402 printk(KERN_WARNING DRV_NAME 1403 ": %s: Warning: no link monitoring support for %s\n", 1404 bond_dev->name, slave_dev->name); 1405 } 1406 1407 /* bond must be initialized by bond_open() before enslaving */ 1408 if (!(bond_dev->flags & IFF_UP)) { 1409 printk(KERN_WARNING DRV_NAME 1410 " %s: master_dev is not up in bond_enslave\n", 1411 bond_dev->name); 1412 } 1413 1414 /* already enslaved */ 1415 if (slave_dev->flags & IFF_SLAVE) { 1416 pr_debug("Error, Device was already enslaved\n"); 1417 return -EBUSY; 1418 } 1419 1420 /* vlan challenged mutual exclusion */ 1421 /* no need to lock since we're protected by rtnl_lock */ 1422 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1423 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1424 if (!list_empty(&bond->vlan_list)) { 1425 printk(KERN_ERR DRV_NAME 1426 ": %s: Error: cannot enslave VLAN " 1427 "challenged slave %s on VLAN enabled " 1428 "bond %s\n", bond_dev->name, slave_dev->name, 1429 bond_dev->name); 1430 return -EPERM; 1431 } else { 1432 printk(KERN_WARNING DRV_NAME 1433 ": %s: Warning: enslaved VLAN challenged " 1434 "slave %s. Adding VLANs will be blocked as " 1435 "long as %s is part of bond %s\n", 1436 bond_dev->name, slave_dev->name, slave_dev->name, 1437 bond_dev->name); 1438 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1439 } 1440 } else { 1441 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1442 if (bond->slave_cnt == 0) { 1443 /* First slave, and it is not VLAN challenged, 1444 * so remove the block of adding VLANs over the bond. 1445 */ 1446 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1447 } 1448 } 1449 1450 /* 1451 * Old ifenslave binaries are no longer supported. These can 1452 * be identified with moderate accurary by the state of the slave: 1453 * the current ifenslave will set the interface down prior to 1454 * enslaving it; the old ifenslave will not. 1455 */ 1456 if ((slave_dev->flags & IFF_UP)) { 1457 printk(KERN_ERR DRV_NAME ": %s is up. " 1458 "This may be due to an out of date ifenslave.\n", 1459 slave_dev->name); 1460 res = -EPERM; 1461 goto err_undo_flags; 1462 } 1463 1464 /* set bonding device ether type by slave - bonding netdevices are 1465 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1466 * there is a need to override some of the type dependent attribs/funcs. 1467 * 1468 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1469 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1470 */ 1471 if (bond->slave_cnt == 0) { 1472 if (slave_dev->type != ARPHRD_ETHER) 1473 bond_setup_by_slave(bond_dev, slave_dev); 1474 } else if (bond_dev->type != slave_dev->type) { 1475 printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different " 1476 "from other slaves (%d), can not enslave it.\n", 1477 slave_dev->name, 1478 slave_dev->type, bond_dev->type); 1479 res = -EINVAL; 1480 goto err_undo_flags; 1481 } 1482 1483 if (slave_ops->ndo_set_mac_address == NULL) { 1484 if (bond->slave_cnt == 0) { 1485 printk(KERN_WARNING DRV_NAME 1486 ": %s: Warning: The first slave device " 1487 "specified does not support setting the MAC " 1488 "address. Setting fail_over_mac to active.", 1489 bond_dev->name); 1490 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1491 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1492 printk(KERN_ERR DRV_NAME 1493 ": %s: Error: The slave device specified " 1494 "does not support setting the MAC address, " 1495 "but fail_over_mac is not set to active.\n" 1496 , bond_dev->name); 1497 res = -EOPNOTSUPP; 1498 goto err_undo_flags; 1499 } 1500 } 1501 1502 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1503 if (!new_slave) { 1504 res = -ENOMEM; 1505 goto err_undo_flags; 1506 } 1507 1508 /* save slave's original flags before calling 1509 * netdev_set_master and dev_open 1510 */ 1511 new_slave->original_flags = slave_dev->flags; 1512 1513 /* 1514 * Save slave's original ("permanent") mac address for modes 1515 * that need it, and for restoring it upon release, and then 1516 * set it to the master's address 1517 */ 1518 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1519 1520 if (!bond->params.fail_over_mac) { 1521 /* 1522 * Set slave to master's mac address. The application already 1523 * set the master's mac address to that of the first slave 1524 */ 1525 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1526 addr.sa_family = slave_dev->type; 1527 res = dev_set_mac_address(slave_dev, &addr); 1528 if (res) { 1529 pr_debug("Error %d calling set_mac_address\n", res); 1530 goto err_free; 1531 } 1532 } 1533 1534 res = netdev_set_master(slave_dev, bond_dev); 1535 if (res) { 1536 pr_debug("Error %d calling netdev_set_master\n", res); 1537 goto err_restore_mac; 1538 } 1539 /* open the slave since the application closed it */ 1540 res = dev_open(slave_dev); 1541 if (res) { 1542 pr_debug("Openning slave %s failed\n", slave_dev->name); 1543 goto err_unset_master; 1544 } 1545 1546 new_slave->dev = slave_dev; 1547 slave_dev->priv_flags |= IFF_BONDING; 1548 1549 if (bond_is_lb(bond)) { 1550 /* bond_alb_init_slave() must be called before all other stages since 1551 * it might fail and we do not want to have to undo everything 1552 */ 1553 res = bond_alb_init_slave(bond, new_slave); 1554 if (res) { 1555 goto err_close; 1556 } 1557 } 1558 1559 /* If the mode USES_PRIMARY, then the new slave gets the 1560 * master's promisc (and mc) settings only if it becomes the 1561 * curr_active_slave, and that is taken care of later when calling 1562 * bond_change_active() 1563 */ 1564 if (!USES_PRIMARY(bond->params.mode)) { 1565 /* set promiscuity level to new slave */ 1566 if (bond_dev->flags & IFF_PROMISC) { 1567 res = dev_set_promiscuity(slave_dev, 1); 1568 if (res) 1569 goto err_close; 1570 } 1571 1572 /* set allmulti level to new slave */ 1573 if (bond_dev->flags & IFF_ALLMULTI) { 1574 res = dev_set_allmulti(slave_dev, 1); 1575 if (res) 1576 goto err_close; 1577 } 1578 1579 netif_addr_lock_bh(bond_dev); 1580 /* upload master's mc_list to new slave */ 1581 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 1582 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 1583 } 1584 netif_addr_unlock_bh(bond_dev); 1585 } 1586 1587 if (bond->params.mode == BOND_MODE_8023AD) { 1588 /* add lacpdu mc addr to mc list */ 1589 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1590 1591 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 1592 } 1593 1594 bond_add_vlans_on_slave(bond, slave_dev); 1595 1596 write_lock_bh(&bond->lock); 1597 1598 bond_attach_slave(bond, new_slave); 1599 1600 new_slave->delay = 0; 1601 new_slave->link_failure_count = 0; 1602 1603 bond_compute_features(bond); 1604 1605 write_unlock_bh(&bond->lock); 1606 1607 read_lock(&bond->lock); 1608 1609 new_slave->last_arp_rx = jiffies; 1610 1611 if (bond->params.miimon && !bond->params.use_carrier) { 1612 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1613 1614 if ((link_reporting == -1) && !bond->params.arp_interval) { 1615 /* 1616 * miimon is set but a bonded network driver 1617 * does not support ETHTOOL/MII and 1618 * arp_interval is not set. Note: if 1619 * use_carrier is enabled, we will never go 1620 * here (because netif_carrier is always 1621 * supported); thus, we don't need to change 1622 * the messages for netif_carrier. 1623 */ 1624 printk(KERN_WARNING DRV_NAME 1625 ": %s: Warning: MII and ETHTOOL support not " 1626 "available for interface %s, and " 1627 "arp_interval/arp_ip_target module parameters " 1628 "not specified, thus bonding will not detect " 1629 "link failures! see bonding.txt for details.\n", 1630 bond_dev->name, slave_dev->name); 1631 } else if (link_reporting == -1) { 1632 /* unable get link status using mii/ethtool */ 1633 printk(KERN_WARNING DRV_NAME 1634 ": %s: Warning: can't get link status from " 1635 "interface %s; the network driver associated " 1636 "with this interface does not support MII or " 1637 "ETHTOOL link status reporting, thus miimon " 1638 "has no effect on this interface.\n", 1639 bond_dev->name, slave_dev->name); 1640 } 1641 } 1642 1643 /* check for initial state */ 1644 if (!bond->params.miimon || 1645 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1646 if (bond->params.updelay) { 1647 pr_debug("Initial state of slave_dev is " 1648 "BOND_LINK_BACK\n"); 1649 new_slave->link = BOND_LINK_BACK; 1650 new_slave->delay = bond->params.updelay; 1651 } else { 1652 pr_debug("Initial state of slave_dev is " 1653 "BOND_LINK_UP\n"); 1654 new_slave->link = BOND_LINK_UP; 1655 } 1656 new_slave->jiffies = jiffies; 1657 } else { 1658 pr_debug("Initial state of slave_dev is " 1659 "BOND_LINK_DOWN\n"); 1660 new_slave->link = BOND_LINK_DOWN; 1661 } 1662 1663 if (bond_update_speed_duplex(new_slave) && 1664 (new_slave->link != BOND_LINK_DOWN)) { 1665 printk(KERN_WARNING DRV_NAME 1666 ": %s: Warning: failed to get speed and duplex from %s, " 1667 "assumed to be 100Mb/sec and Full.\n", 1668 bond_dev->name, new_slave->dev->name); 1669 1670 if (bond->params.mode == BOND_MODE_8023AD) { 1671 printk(KERN_WARNING DRV_NAME 1672 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " 1673 "support in base driver for proper aggregator " 1674 "selection.\n", bond_dev->name); 1675 } 1676 } 1677 1678 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1679 /* if there is a primary slave, remember it */ 1680 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1681 bond->primary_slave = new_slave; 1682 } 1683 } 1684 1685 write_lock_bh(&bond->curr_slave_lock); 1686 1687 switch (bond->params.mode) { 1688 case BOND_MODE_ACTIVEBACKUP: 1689 bond_set_slave_inactive_flags(new_slave); 1690 bond_select_active_slave(bond); 1691 break; 1692 case BOND_MODE_8023AD: 1693 /* in 802.3ad mode, the internal mechanism 1694 * will activate the slaves in the selected 1695 * aggregator 1696 */ 1697 bond_set_slave_inactive_flags(new_slave); 1698 /* if this is the first slave */ 1699 if (bond->slave_cnt == 1) { 1700 SLAVE_AD_INFO(new_slave).id = 1; 1701 /* Initialize AD with the number of times that the AD timer is called in 1 second 1702 * can be called only after the mac address of the bond is set 1703 */ 1704 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1705 bond->params.lacp_fast); 1706 } else { 1707 SLAVE_AD_INFO(new_slave).id = 1708 SLAVE_AD_INFO(new_slave->prev).id + 1; 1709 } 1710 1711 bond_3ad_bind_slave(new_slave); 1712 break; 1713 case BOND_MODE_TLB: 1714 case BOND_MODE_ALB: 1715 new_slave->state = BOND_STATE_ACTIVE; 1716 bond_set_slave_inactive_flags(new_slave); 1717 bond_select_active_slave(bond); 1718 break; 1719 default: 1720 pr_debug("This slave is always active in trunk mode\n"); 1721 1722 /* always active in trunk mode */ 1723 new_slave->state = BOND_STATE_ACTIVE; 1724 1725 /* In trunking mode there is little meaning to curr_active_slave 1726 * anyway (it holds no special properties of the bond device), 1727 * so we can change it without calling change_active_interface() 1728 */ 1729 if (!bond->curr_active_slave) { 1730 bond->curr_active_slave = new_slave; 1731 } 1732 break; 1733 } /* switch(bond_mode) */ 1734 1735 write_unlock_bh(&bond->curr_slave_lock); 1736 1737 bond_set_carrier(bond); 1738 1739 read_unlock(&bond->lock); 1740 1741 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1742 if (res) 1743 goto err_close; 1744 1745 printk(KERN_INFO DRV_NAME 1746 ": %s: enslaving %s as a%s interface with a%s link.\n", 1747 bond_dev->name, slave_dev->name, 1748 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1749 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1750 1751 /* enslave is successful */ 1752 return 0; 1753 1754 /* Undo stages on error */ 1755 err_close: 1756 dev_close(slave_dev); 1757 1758 err_unset_master: 1759 netdev_set_master(slave_dev, NULL); 1760 1761 err_restore_mac: 1762 if (!bond->params.fail_over_mac) { 1763 /* XXX TODO - fom follow mode needs to change master's 1764 * MAC if this slave's MAC is in use by the bond, or at 1765 * least print a warning. 1766 */ 1767 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1768 addr.sa_family = slave_dev->type; 1769 dev_set_mac_address(slave_dev, &addr); 1770 } 1771 1772 err_free: 1773 kfree(new_slave); 1774 1775 err_undo_flags: 1776 bond_dev->features = old_features; 1777 1778 return res; 1779 } 1780 1781 /* 1782 * Try to release the slave device <slave> from the bond device <master> 1783 * It is legal to access curr_active_slave without a lock because all the function 1784 * is write-locked. 1785 * 1786 * The rules for slave state should be: 1787 * for Active/Backup: 1788 * Active stays on all backups go down 1789 * for Bonded connections: 1790 * The first up interface should be left on and all others downed. 1791 */ 1792 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1793 { 1794 struct bonding *bond = netdev_priv(bond_dev); 1795 struct slave *slave, *oldcurrent; 1796 struct sockaddr addr; 1797 int mac_addr_differ; 1798 1799 /* slave is not a slave or master is not master of this slave */ 1800 if (!(slave_dev->flags & IFF_SLAVE) || 1801 (slave_dev->master != bond_dev)) { 1802 printk(KERN_ERR DRV_NAME 1803 ": %s: Error: cannot release %s.\n", 1804 bond_dev->name, slave_dev->name); 1805 return -EINVAL; 1806 } 1807 1808 write_lock_bh(&bond->lock); 1809 1810 slave = bond_get_slave_by_dev(bond, slave_dev); 1811 if (!slave) { 1812 /* not a slave of this bond */ 1813 printk(KERN_INFO DRV_NAME 1814 ": %s: %s not enslaved\n", 1815 bond_dev->name, slave_dev->name); 1816 write_unlock_bh(&bond->lock); 1817 return -EINVAL; 1818 } 1819 1820 if (!bond->params.fail_over_mac) { 1821 mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr, 1822 ETH_ALEN); 1823 if (!mac_addr_differ && (bond->slave_cnt > 1)) 1824 printk(KERN_WARNING DRV_NAME 1825 ": %s: Warning: the permanent HWaddr of %s - " 1826 "%pM - is still in use by %s. " 1827 "Set the HWaddr of %s to a different address " 1828 "to avoid conflicts.\n", 1829 bond_dev->name, slave_dev->name, 1830 slave->perm_hwaddr, 1831 bond_dev->name, slave_dev->name); 1832 } 1833 1834 /* Inform AD package of unbinding of slave. */ 1835 if (bond->params.mode == BOND_MODE_8023AD) { 1836 /* must be called before the slave is 1837 * detached from the list 1838 */ 1839 bond_3ad_unbind_slave(slave); 1840 } 1841 1842 printk(KERN_INFO DRV_NAME 1843 ": %s: releasing %s interface %s\n", 1844 bond_dev->name, 1845 (slave->state == BOND_STATE_ACTIVE) 1846 ? "active" : "backup", 1847 slave_dev->name); 1848 1849 oldcurrent = bond->curr_active_slave; 1850 1851 bond->current_arp_slave = NULL; 1852 1853 /* release the slave from its bond */ 1854 bond_detach_slave(bond, slave); 1855 1856 bond_compute_features(bond); 1857 1858 if (bond->primary_slave == slave) { 1859 bond->primary_slave = NULL; 1860 } 1861 1862 if (oldcurrent == slave) { 1863 bond_change_active_slave(bond, NULL); 1864 } 1865 1866 if (bond_is_lb(bond)) { 1867 /* Must be called only after the slave has been 1868 * detached from the list and the curr_active_slave 1869 * has been cleared (if our_slave == old_current), 1870 * but before a new active slave is selected. 1871 */ 1872 write_unlock_bh(&bond->lock); 1873 bond_alb_deinit_slave(bond, slave); 1874 write_lock_bh(&bond->lock); 1875 } 1876 1877 if (oldcurrent == slave) { 1878 /* 1879 * Note that we hold RTNL over this sequence, so there 1880 * is no concern that another slave add/remove event 1881 * will interfere. 1882 */ 1883 write_unlock_bh(&bond->lock); 1884 read_lock(&bond->lock); 1885 write_lock_bh(&bond->curr_slave_lock); 1886 1887 bond_select_active_slave(bond); 1888 1889 write_unlock_bh(&bond->curr_slave_lock); 1890 read_unlock(&bond->lock); 1891 write_lock_bh(&bond->lock); 1892 } 1893 1894 if (bond->slave_cnt == 0) { 1895 bond_set_carrier(bond); 1896 1897 /* if the last slave was removed, zero the mac address 1898 * of the master so it will be set by the application 1899 * to the mac address of the first slave 1900 */ 1901 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1902 1903 if (list_empty(&bond->vlan_list)) { 1904 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1905 } else { 1906 printk(KERN_WARNING DRV_NAME 1907 ": %s: Warning: clearing HW address of %s while it " 1908 "still has VLANs.\n", 1909 bond_dev->name, bond_dev->name); 1910 printk(KERN_WARNING DRV_NAME 1911 ": %s: When re-adding slaves, make sure the bond's " 1912 "HW address matches its VLANs'.\n", 1913 bond_dev->name); 1914 } 1915 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1916 !bond_has_challenged_slaves(bond)) { 1917 printk(KERN_INFO DRV_NAME 1918 ": %s: last VLAN challenged slave %s " 1919 "left bond %s. VLAN blocking is removed\n", 1920 bond_dev->name, slave_dev->name, bond_dev->name); 1921 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1922 } 1923 1924 write_unlock_bh(&bond->lock); 1925 1926 /* must do this from outside any spinlocks */ 1927 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1928 1929 bond_del_vlans_from_slave(bond, slave_dev); 1930 1931 /* If the mode USES_PRIMARY, then we should only remove its 1932 * promisc and mc settings if it was the curr_active_slave, but that was 1933 * already taken care of above when we detached the slave 1934 */ 1935 if (!USES_PRIMARY(bond->params.mode)) { 1936 /* unset promiscuity level from slave */ 1937 if (bond_dev->flags & IFF_PROMISC) { 1938 dev_set_promiscuity(slave_dev, -1); 1939 } 1940 1941 /* unset allmulti level from slave */ 1942 if (bond_dev->flags & IFF_ALLMULTI) { 1943 dev_set_allmulti(slave_dev, -1); 1944 } 1945 1946 /* flush master's mc_list from slave */ 1947 netif_addr_lock_bh(bond_dev); 1948 bond_mc_list_flush(bond_dev, slave_dev); 1949 netif_addr_unlock_bh(bond_dev); 1950 } 1951 1952 netdev_set_master(slave_dev, NULL); 1953 1954 /* close slave before restoring its mac address */ 1955 dev_close(slave_dev); 1956 1957 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1958 /* restore original ("permanent") mac address */ 1959 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1960 addr.sa_family = slave_dev->type; 1961 dev_set_mac_address(slave_dev, &addr); 1962 } 1963 1964 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1965 IFF_SLAVE_INACTIVE | IFF_BONDING | 1966 IFF_SLAVE_NEEDARP); 1967 1968 kfree(slave); 1969 1970 return 0; /* deletion OK */ 1971 } 1972 1973 /* 1974 * Destroy a bonding device. 1975 * Must be under rtnl_lock when this function is called. 1976 */ 1977 void bond_destroy(struct bonding *bond) 1978 { 1979 bond_deinit(bond->dev); 1980 bond_destroy_sysfs_entry(bond); 1981 unregister_netdevice(bond->dev); 1982 } 1983 1984 static void bond_destructor(struct net_device *bond_dev) 1985 { 1986 struct bonding *bond = netdev_priv(bond_dev); 1987 1988 if (bond->wq) 1989 destroy_workqueue(bond->wq); 1990 1991 netif_addr_lock_bh(bond_dev); 1992 bond_mc_list_destroy(bond); 1993 netif_addr_unlock_bh(bond_dev); 1994 1995 free_netdev(bond_dev); 1996 } 1997 1998 /* 1999 * First release a slave and than destroy the bond if no more slaves iare left. 2000 * Must be under rtnl_lock when this function is called. 2001 */ 2002 int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev) 2003 { 2004 struct bonding *bond = netdev_priv(bond_dev); 2005 int ret; 2006 2007 ret = bond_release(bond_dev, slave_dev); 2008 if ((ret == 0) && (bond->slave_cnt == 0)) { 2009 printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n", 2010 bond_dev->name, bond_dev->name); 2011 bond_destroy(bond); 2012 } 2013 return ret; 2014 } 2015 2016 /* 2017 * This function releases all slaves. 2018 */ 2019 static int bond_release_all(struct net_device *bond_dev) 2020 { 2021 struct bonding *bond = netdev_priv(bond_dev); 2022 struct slave *slave; 2023 struct net_device *slave_dev; 2024 struct sockaddr addr; 2025 2026 write_lock_bh(&bond->lock); 2027 2028 netif_carrier_off(bond_dev); 2029 2030 if (bond->slave_cnt == 0) { 2031 goto out; 2032 } 2033 2034 bond->current_arp_slave = NULL; 2035 bond->primary_slave = NULL; 2036 bond_change_active_slave(bond, NULL); 2037 2038 while ((slave = bond->first_slave) != NULL) { 2039 /* Inform AD package of unbinding of slave 2040 * before slave is detached from the list. 2041 */ 2042 if (bond->params.mode == BOND_MODE_8023AD) { 2043 bond_3ad_unbind_slave(slave); 2044 } 2045 2046 slave_dev = slave->dev; 2047 bond_detach_slave(bond, slave); 2048 2049 /* now that the slave is detached, unlock and perform 2050 * all the undo steps that should not be called from 2051 * within a lock. 2052 */ 2053 write_unlock_bh(&bond->lock); 2054 2055 if (bond_is_lb(bond)) { 2056 /* must be called only after the slave 2057 * has been detached from the list 2058 */ 2059 bond_alb_deinit_slave(bond, slave); 2060 } 2061 2062 bond_compute_features(bond); 2063 2064 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2065 bond_del_vlans_from_slave(bond, slave_dev); 2066 2067 /* If the mode USES_PRIMARY, then we should only remove its 2068 * promisc and mc settings if it was the curr_active_slave, but that was 2069 * already taken care of above when we detached the slave 2070 */ 2071 if (!USES_PRIMARY(bond->params.mode)) { 2072 /* unset promiscuity level from slave */ 2073 if (bond_dev->flags & IFF_PROMISC) { 2074 dev_set_promiscuity(slave_dev, -1); 2075 } 2076 2077 /* unset allmulti level from slave */ 2078 if (bond_dev->flags & IFF_ALLMULTI) { 2079 dev_set_allmulti(slave_dev, -1); 2080 } 2081 2082 /* flush master's mc_list from slave */ 2083 netif_addr_lock_bh(bond_dev); 2084 bond_mc_list_flush(bond_dev, slave_dev); 2085 netif_addr_unlock_bh(bond_dev); 2086 } 2087 2088 netdev_set_master(slave_dev, NULL); 2089 2090 /* close slave before restoring its mac address */ 2091 dev_close(slave_dev); 2092 2093 if (!bond->params.fail_over_mac) { 2094 /* restore original ("permanent") mac address*/ 2095 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2096 addr.sa_family = slave_dev->type; 2097 dev_set_mac_address(slave_dev, &addr); 2098 } 2099 2100 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 2101 IFF_SLAVE_INACTIVE); 2102 2103 kfree(slave); 2104 2105 /* re-acquire the lock before getting the next slave */ 2106 write_lock_bh(&bond->lock); 2107 } 2108 2109 /* zero the mac address of the master so it will be 2110 * set by the application to the mac address of the 2111 * first slave 2112 */ 2113 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2114 2115 if (list_empty(&bond->vlan_list)) { 2116 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2117 } else { 2118 printk(KERN_WARNING DRV_NAME 2119 ": %s: Warning: clearing HW address of %s while it " 2120 "still has VLANs.\n", 2121 bond_dev->name, bond_dev->name); 2122 printk(KERN_WARNING DRV_NAME 2123 ": %s: When re-adding slaves, make sure the bond's " 2124 "HW address matches its VLANs'.\n", 2125 bond_dev->name); 2126 } 2127 2128 printk(KERN_INFO DRV_NAME 2129 ": %s: released all slaves\n", 2130 bond_dev->name); 2131 2132 out: 2133 write_unlock_bh(&bond->lock); 2134 2135 return 0; 2136 } 2137 2138 /* 2139 * This function changes the active slave to slave <slave_dev>. 2140 * It returns -EINVAL in the following cases. 2141 * - <slave_dev> is not found in the list. 2142 * - There is not active slave now. 2143 * - <slave_dev> is already active. 2144 * - The link state of <slave_dev> is not BOND_LINK_UP. 2145 * - <slave_dev> is not running. 2146 * In these cases, this fuction does nothing. 2147 * In the other cases, currnt_slave pointer is changed and 0 is returned. 2148 */ 2149 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2150 { 2151 struct bonding *bond = netdev_priv(bond_dev); 2152 struct slave *old_active = NULL; 2153 struct slave *new_active = NULL; 2154 int res = 0; 2155 2156 if (!USES_PRIMARY(bond->params.mode)) { 2157 return -EINVAL; 2158 } 2159 2160 /* Verify that master_dev is indeed the master of slave_dev */ 2161 if (!(slave_dev->flags & IFF_SLAVE) || 2162 (slave_dev->master != bond_dev)) { 2163 return -EINVAL; 2164 } 2165 2166 read_lock(&bond->lock); 2167 2168 read_lock(&bond->curr_slave_lock); 2169 old_active = bond->curr_active_slave; 2170 read_unlock(&bond->curr_slave_lock); 2171 2172 new_active = bond_get_slave_by_dev(bond, slave_dev); 2173 2174 /* 2175 * Changing to the current active: do nothing; return success. 2176 */ 2177 if (new_active && (new_active == old_active)) { 2178 read_unlock(&bond->lock); 2179 return 0; 2180 } 2181 2182 if ((new_active) && 2183 (old_active) && 2184 (new_active->link == BOND_LINK_UP) && 2185 IS_UP(new_active->dev)) { 2186 write_lock_bh(&bond->curr_slave_lock); 2187 bond_change_active_slave(bond, new_active); 2188 write_unlock_bh(&bond->curr_slave_lock); 2189 } else { 2190 res = -EINVAL; 2191 } 2192 2193 read_unlock(&bond->lock); 2194 2195 return res; 2196 } 2197 2198 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2199 { 2200 struct bonding *bond = netdev_priv(bond_dev); 2201 2202 info->bond_mode = bond->params.mode; 2203 info->miimon = bond->params.miimon; 2204 2205 read_lock(&bond->lock); 2206 info->num_slaves = bond->slave_cnt; 2207 read_unlock(&bond->lock); 2208 2209 return 0; 2210 } 2211 2212 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2213 { 2214 struct bonding *bond = netdev_priv(bond_dev); 2215 struct slave *slave; 2216 int i, res = -ENODEV; 2217 2218 read_lock(&bond->lock); 2219 2220 bond_for_each_slave(bond, slave, i) { 2221 if (i == (int)info->slave_id) { 2222 res = 0; 2223 strcpy(info->slave_name, slave->dev->name); 2224 info->link = slave->link; 2225 info->state = slave->state; 2226 info->link_failure_count = slave->link_failure_count; 2227 break; 2228 } 2229 } 2230 2231 read_unlock(&bond->lock); 2232 2233 return res; 2234 } 2235 2236 /*-------------------------------- Monitoring -------------------------------*/ 2237 2238 2239 static int bond_miimon_inspect(struct bonding *bond) 2240 { 2241 struct slave *slave; 2242 int i, link_state, commit = 0; 2243 2244 bond_for_each_slave(bond, slave, i) { 2245 slave->new_link = BOND_LINK_NOCHANGE; 2246 2247 link_state = bond_check_dev_link(bond, slave->dev, 0); 2248 2249 switch (slave->link) { 2250 case BOND_LINK_UP: 2251 if (link_state) 2252 continue; 2253 2254 slave->link = BOND_LINK_FAIL; 2255 slave->delay = bond->params.downdelay; 2256 if (slave->delay) { 2257 printk(KERN_INFO DRV_NAME 2258 ": %s: link status down for %s" 2259 "interface %s, disabling it in %d ms.\n", 2260 bond->dev->name, 2261 (bond->params.mode == 2262 BOND_MODE_ACTIVEBACKUP) ? 2263 ((slave->state == BOND_STATE_ACTIVE) ? 2264 "active " : "backup ") : "", 2265 slave->dev->name, 2266 bond->params.downdelay * bond->params.miimon); 2267 } 2268 /*FALLTHRU*/ 2269 case BOND_LINK_FAIL: 2270 if (link_state) { 2271 /* 2272 * recovered before downdelay expired 2273 */ 2274 slave->link = BOND_LINK_UP; 2275 slave->jiffies = jiffies; 2276 printk(KERN_INFO DRV_NAME 2277 ": %s: link status up again after %d " 2278 "ms for interface %s.\n", 2279 bond->dev->name, 2280 (bond->params.downdelay - slave->delay) * 2281 bond->params.miimon, 2282 slave->dev->name); 2283 continue; 2284 } 2285 2286 if (slave->delay <= 0) { 2287 slave->new_link = BOND_LINK_DOWN; 2288 commit++; 2289 continue; 2290 } 2291 2292 slave->delay--; 2293 break; 2294 2295 case BOND_LINK_DOWN: 2296 if (!link_state) 2297 continue; 2298 2299 slave->link = BOND_LINK_BACK; 2300 slave->delay = bond->params.updelay; 2301 2302 if (slave->delay) { 2303 printk(KERN_INFO DRV_NAME 2304 ": %s: link status up for " 2305 "interface %s, enabling it in %d ms.\n", 2306 bond->dev->name, slave->dev->name, 2307 bond->params.updelay * 2308 bond->params.miimon); 2309 } 2310 /*FALLTHRU*/ 2311 case BOND_LINK_BACK: 2312 if (!link_state) { 2313 slave->link = BOND_LINK_DOWN; 2314 printk(KERN_INFO DRV_NAME 2315 ": %s: link status down again after %d " 2316 "ms for interface %s.\n", 2317 bond->dev->name, 2318 (bond->params.updelay - slave->delay) * 2319 bond->params.miimon, 2320 slave->dev->name); 2321 2322 continue; 2323 } 2324 2325 if (slave->delay <= 0) { 2326 slave->new_link = BOND_LINK_UP; 2327 commit++; 2328 continue; 2329 } 2330 2331 slave->delay--; 2332 break; 2333 } 2334 } 2335 2336 return commit; 2337 } 2338 2339 static void bond_miimon_commit(struct bonding *bond) 2340 { 2341 struct slave *slave; 2342 int i; 2343 2344 bond_for_each_slave(bond, slave, i) { 2345 switch (slave->new_link) { 2346 case BOND_LINK_NOCHANGE: 2347 continue; 2348 2349 case BOND_LINK_UP: 2350 slave->link = BOND_LINK_UP; 2351 slave->jiffies = jiffies; 2352 2353 if (bond->params.mode == BOND_MODE_8023AD) { 2354 /* prevent it from being the active one */ 2355 slave->state = BOND_STATE_BACKUP; 2356 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2357 /* make it immediately active */ 2358 slave->state = BOND_STATE_ACTIVE; 2359 } else if (slave != bond->primary_slave) { 2360 /* prevent it from being the active one */ 2361 slave->state = BOND_STATE_BACKUP; 2362 } 2363 2364 printk(KERN_INFO DRV_NAME 2365 ": %s: link status definitely " 2366 "up for interface %s.\n", 2367 bond->dev->name, slave->dev->name); 2368 2369 /* notify ad that the link status has changed */ 2370 if (bond->params.mode == BOND_MODE_8023AD) 2371 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2372 2373 if (bond_is_lb(bond)) 2374 bond_alb_handle_link_change(bond, slave, 2375 BOND_LINK_UP); 2376 2377 if (!bond->curr_active_slave || 2378 (slave == bond->primary_slave)) 2379 goto do_failover; 2380 2381 continue; 2382 2383 case BOND_LINK_DOWN: 2384 if (slave->link_failure_count < UINT_MAX) 2385 slave->link_failure_count++; 2386 2387 slave->link = BOND_LINK_DOWN; 2388 2389 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2390 bond->params.mode == BOND_MODE_8023AD) 2391 bond_set_slave_inactive_flags(slave); 2392 2393 printk(KERN_INFO DRV_NAME 2394 ": %s: link status definitely down for " 2395 "interface %s, disabling it\n", 2396 bond->dev->name, slave->dev->name); 2397 2398 if (bond->params.mode == BOND_MODE_8023AD) 2399 bond_3ad_handle_link_change(slave, 2400 BOND_LINK_DOWN); 2401 2402 if (bond->params.mode == BOND_MODE_TLB || 2403 bond->params.mode == BOND_MODE_ALB) 2404 bond_alb_handle_link_change(bond, slave, 2405 BOND_LINK_DOWN); 2406 2407 if (slave == bond->curr_active_slave) 2408 goto do_failover; 2409 2410 continue; 2411 2412 default: 2413 printk(KERN_ERR DRV_NAME 2414 ": %s: invalid new link %d on slave %s\n", 2415 bond->dev->name, slave->new_link, 2416 slave->dev->name); 2417 slave->new_link = BOND_LINK_NOCHANGE; 2418 2419 continue; 2420 } 2421 2422 do_failover: 2423 ASSERT_RTNL(); 2424 write_lock_bh(&bond->curr_slave_lock); 2425 bond_select_active_slave(bond); 2426 write_unlock_bh(&bond->curr_slave_lock); 2427 } 2428 2429 bond_set_carrier(bond); 2430 } 2431 2432 /* 2433 * bond_mii_monitor 2434 * 2435 * Really a wrapper that splits the mii monitor into two phases: an 2436 * inspection, then (if inspection indicates something needs to be done) 2437 * an acquisition of appropriate locks followed by a commit phase to 2438 * implement whatever link state changes are indicated. 2439 */ 2440 void bond_mii_monitor(struct work_struct *work) 2441 { 2442 struct bonding *bond = container_of(work, struct bonding, 2443 mii_work.work); 2444 2445 read_lock(&bond->lock); 2446 if (bond->kill_timers) 2447 goto out; 2448 2449 if (bond->slave_cnt == 0) 2450 goto re_arm; 2451 2452 if (bond->send_grat_arp) { 2453 read_lock(&bond->curr_slave_lock); 2454 bond_send_gratuitous_arp(bond); 2455 read_unlock(&bond->curr_slave_lock); 2456 } 2457 2458 if (bond->send_unsol_na) { 2459 read_lock(&bond->curr_slave_lock); 2460 bond_send_unsolicited_na(bond); 2461 read_unlock(&bond->curr_slave_lock); 2462 } 2463 2464 if (bond_miimon_inspect(bond)) { 2465 read_unlock(&bond->lock); 2466 rtnl_lock(); 2467 read_lock(&bond->lock); 2468 2469 bond_miimon_commit(bond); 2470 2471 read_unlock(&bond->lock); 2472 rtnl_unlock(); /* might sleep, hold no other locks */ 2473 read_lock(&bond->lock); 2474 } 2475 2476 re_arm: 2477 if (bond->params.miimon) 2478 queue_delayed_work(bond->wq, &bond->mii_work, 2479 msecs_to_jiffies(bond->params.miimon)); 2480 out: 2481 read_unlock(&bond->lock); 2482 } 2483 2484 static __be32 bond_glean_dev_ip(struct net_device *dev) 2485 { 2486 struct in_device *idev; 2487 struct in_ifaddr *ifa; 2488 __be32 addr = 0; 2489 2490 if (!dev) 2491 return 0; 2492 2493 rcu_read_lock(); 2494 idev = __in_dev_get_rcu(dev); 2495 if (!idev) 2496 goto out; 2497 2498 ifa = idev->ifa_list; 2499 if (!ifa) 2500 goto out; 2501 2502 addr = ifa->ifa_local; 2503 out: 2504 rcu_read_unlock(); 2505 return addr; 2506 } 2507 2508 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2509 { 2510 struct vlan_entry *vlan; 2511 2512 if (ip == bond->master_ip) 2513 return 1; 2514 2515 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2516 if (ip == vlan->vlan_ip) 2517 return 1; 2518 } 2519 2520 return 0; 2521 } 2522 2523 /* 2524 * We go to the (large) trouble of VLAN tagging ARP frames because 2525 * switches in VLAN mode (especially if ports are configured as 2526 * "native" to a VLAN) might not pass non-tagged frames. 2527 */ 2528 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2529 { 2530 struct sk_buff *skb; 2531 2532 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2533 slave_dev->name, dest_ip, src_ip, vlan_id); 2534 2535 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2536 NULL, slave_dev->dev_addr, NULL); 2537 2538 if (!skb) { 2539 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); 2540 return; 2541 } 2542 if (vlan_id) { 2543 skb = vlan_put_tag(skb, vlan_id); 2544 if (!skb) { 2545 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); 2546 return; 2547 } 2548 } 2549 arp_xmit(skb); 2550 } 2551 2552 2553 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2554 { 2555 int i, vlan_id, rv; 2556 __be32 *targets = bond->params.arp_targets; 2557 struct vlan_entry *vlan; 2558 struct net_device *vlan_dev; 2559 struct flowi fl; 2560 struct rtable *rt; 2561 2562 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2563 if (!targets[i]) 2564 break; 2565 pr_debug("basa: target %x\n", targets[i]); 2566 if (list_empty(&bond->vlan_list)) { 2567 pr_debug("basa: empty vlan: arp_send\n"); 2568 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2569 bond->master_ip, 0); 2570 continue; 2571 } 2572 2573 /* 2574 * If VLANs are configured, we do a route lookup to 2575 * determine which VLAN interface would be used, so we 2576 * can tag the ARP with the proper VLAN tag. 2577 */ 2578 memset(&fl, 0, sizeof(fl)); 2579 fl.fl4_dst = targets[i]; 2580 fl.fl4_tos = RTO_ONLINK; 2581 2582 rv = ip_route_output_key(&init_net, &rt, &fl); 2583 if (rv) { 2584 if (net_ratelimit()) { 2585 printk(KERN_WARNING DRV_NAME 2586 ": %s: no route to arp_ip_target %pI4\n", 2587 bond->dev->name, &fl.fl4_dst); 2588 } 2589 continue; 2590 } 2591 2592 /* 2593 * This target is not on a VLAN 2594 */ 2595 if (rt->u.dst.dev == bond->dev) { 2596 ip_rt_put(rt); 2597 pr_debug("basa: rtdev == bond->dev: arp_send\n"); 2598 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2599 bond->master_ip, 0); 2600 continue; 2601 } 2602 2603 vlan_id = 0; 2604 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2605 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2606 if (vlan_dev == rt->u.dst.dev) { 2607 vlan_id = vlan->vlan_id; 2608 pr_debug("basa: vlan match on %s %d\n", 2609 vlan_dev->name, vlan_id); 2610 break; 2611 } 2612 } 2613 2614 if (vlan_id) { 2615 ip_rt_put(rt); 2616 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2617 vlan->vlan_ip, vlan_id); 2618 continue; 2619 } 2620 2621 if (net_ratelimit()) { 2622 printk(KERN_WARNING DRV_NAME 2623 ": %s: no path to arp_ip_target %pI4 via rt.dev %s\n", 2624 bond->dev->name, &fl.fl4_dst, 2625 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); 2626 } 2627 ip_rt_put(rt); 2628 } 2629 } 2630 2631 /* 2632 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2633 * for each VLAN above us. 2634 * 2635 * Caller must hold curr_slave_lock for read or better 2636 */ 2637 static void bond_send_gratuitous_arp(struct bonding *bond) 2638 { 2639 struct slave *slave = bond->curr_active_slave; 2640 struct vlan_entry *vlan; 2641 struct net_device *vlan_dev; 2642 2643 pr_debug("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, 2644 slave ? slave->dev->name : "NULL"); 2645 2646 if (!slave || !bond->send_grat_arp || 2647 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 2648 return; 2649 2650 bond->send_grat_arp--; 2651 2652 if (bond->master_ip) { 2653 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2654 bond->master_ip, 0); 2655 } 2656 2657 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2658 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2659 if (vlan->vlan_ip) { 2660 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2661 vlan->vlan_ip, vlan->vlan_id); 2662 } 2663 } 2664 } 2665 2666 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2667 { 2668 int i; 2669 __be32 *targets = bond->params.arp_targets; 2670 2671 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2672 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n", 2673 &sip, &tip, i, &targets[i], bond_has_this_ip(bond, tip)); 2674 if (sip == targets[i]) { 2675 if (bond_has_this_ip(bond, tip)) 2676 slave->last_arp_rx = jiffies; 2677 return; 2678 } 2679 } 2680 } 2681 2682 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2683 { 2684 struct arphdr *arp; 2685 struct slave *slave; 2686 struct bonding *bond; 2687 unsigned char *arp_ptr; 2688 __be32 sip, tip; 2689 2690 if (dev_net(dev) != &init_net) 2691 goto out; 2692 2693 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2694 goto out; 2695 2696 bond = netdev_priv(dev); 2697 read_lock(&bond->lock); 2698 2699 pr_debug("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2700 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2701 orig_dev ? orig_dev->name : "NULL"); 2702 2703 slave = bond_get_slave_by_dev(bond, orig_dev); 2704 if (!slave || !slave_do_arp_validate(bond, slave)) 2705 goto out_unlock; 2706 2707 if (!pskb_may_pull(skb, arp_hdr_len(dev))) 2708 goto out_unlock; 2709 2710 arp = arp_hdr(skb); 2711 if (arp->ar_hln != dev->addr_len || 2712 skb->pkt_type == PACKET_OTHERHOST || 2713 skb->pkt_type == PACKET_LOOPBACK || 2714 arp->ar_hrd != htons(ARPHRD_ETHER) || 2715 arp->ar_pro != htons(ETH_P_IP) || 2716 arp->ar_pln != 4) 2717 goto out_unlock; 2718 2719 arp_ptr = (unsigned char *)(arp + 1); 2720 arp_ptr += dev->addr_len; 2721 memcpy(&sip, arp_ptr, 4); 2722 arp_ptr += 4 + dev->addr_len; 2723 memcpy(&tip, arp_ptr, 4); 2724 2725 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n", 2726 bond->dev->name, slave->dev->name, slave->state, 2727 bond->params.arp_validate, slave_do_arp_validate(bond, slave), 2728 &sip, &tip); 2729 2730 /* 2731 * Backup slaves won't see the ARP reply, but do come through 2732 * here for each ARP probe (so we swap the sip/tip to validate 2733 * the probe). In a "redundant switch, common router" type of 2734 * configuration, the ARP probe will (hopefully) travel from 2735 * the active, through one switch, the router, then the other 2736 * switch before reaching the backup. 2737 */ 2738 if (slave->state == BOND_STATE_ACTIVE) 2739 bond_validate_arp(bond, slave, sip, tip); 2740 else 2741 bond_validate_arp(bond, slave, tip, sip); 2742 2743 out_unlock: 2744 read_unlock(&bond->lock); 2745 out: 2746 dev_kfree_skb(skb); 2747 return NET_RX_SUCCESS; 2748 } 2749 2750 /* 2751 * this function is called regularly to monitor each slave's link 2752 * ensuring that traffic is being sent and received when arp monitoring 2753 * is used in load-balancing mode. if the adapter has been dormant, then an 2754 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2755 * arp monitoring in active backup mode. 2756 */ 2757 void bond_loadbalance_arp_mon(struct work_struct *work) 2758 { 2759 struct bonding *bond = container_of(work, struct bonding, 2760 arp_work.work); 2761 struct slave *slave, *oldcurrent; 2762 int do_failover = 0; 2763 int delta_in_ticks; 2764 int i; 2765 2766 read_lock(&bond->lock); 2767 2768 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2769 2770 if (bond->kill_timers) { 2771 goto out; 2772 } 2773 2774 if (bond->slave_cnt == 0) { 2775 goto re_arm; 2776 } 2777 2778 read_lock(&bond->curr_slave_lock); 2779 oldcurrent = bond->curr_active_slave; 2780 read_unlock(&bond->curr_slave_lock); 2781 2782 /* see if any of the previous devices are up now (i.e. they have 2783 * xmt and rcv traffic). the curr_active_slave does not come into 2784 * the picture unless it is null. also, slave->jiffies is not needed 2785 * here because we send an arp on each slave and give a slave as 2786 * long as it needs to get the tx/rx within the delta. 2787 * TODO: what about up/down delay in arp mode? it wasn't here before 2788 * so it can wait 2789 */ 2790 bond_for_each_slave(bond, slave, i) { 2791 if (slave->link != BOND_LINK_UP) { 2792 if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) && 2793 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) { 2794 2795 slave->link = BOND_LINK_UP; 2796 slave->state = BOND_STATE_ACTIVE; 2797 2798 /* primary_slave has no meaning in round-robin 2799 * mode. the window of a slave being up and 2800 * curr_active_slave being null after enslaving 2801 * is closed. 2802 */ 2803 if (!oldcurrent) { 2804 printk(KERN_INFO DRV_NAME 2805 ": %s: link status definitely " 2806 "up for interface %s, ", 2807 bond->dev->name, 2808 slave->dev->name); 2809 do_failover = 1; 2810 } else { 2811 printk(KERN_INFO DRV_NAME 2812 ": %s: interface %s is now up\n", 2813 bond->dev->name, 2814 slave->dev->name); 2815 } 2816 } 2817 } else { 2818 /* slave->link == BOND_LINK_UP */ 2819 2820 /* not all switches will respond to an arp request 2821 * when the source ip is 0, so don't take the link down 2822 * if we don't know our ip yet 2823 */ 2824 if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) || 2825 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) { 2826 2827 slave->link = BOND_LINK_DOWN; 2828 slave->state = BOND_STATE_BACKUP; 2829 2830 if (slave->link_failure_count < UINT_MAX) { 2831 slave->link_failure_count++; 2832 } 2833 2834 printk(KERN_INFO DRV_NAME 2835 ": %s: interface %s is now down.\n", 2836 bond->dev->name, 2837 slave->dev->name); 2838 2839 if (slave == oldcurrent) { 2840 do_failover = 1; 2841 } 2842 } 2843 } 2844 2845 /* note: if switch is in round-robin mode, all links 2846 * must tx arp to ensure all links rx an arp - otherwise 2847 * links may oscillate or not come up at all; if switch is 2848 * in something like xor mode, there is nothing we can 2849 * do - all replies will be rx'ed on same link causing slaves 2850 * to be unstable during low/no traffic periods 2851 */ 2852 if (IS_UP(slave->dev)) { 2853 bond_arp_send_all(bond, slave); 2854 } 2855 } 2856 2857 if (do_failover) { 2858 write_lock_bh(&bond->curr_slave_lock); 2859 2860 bond_select_active_slave(bond); 2861 2862 write_unlock_bh(&bond->curr_slave_lock); 2863 } 2864 2865 re_arm: 2866 if (bond->params.arp_interval) 2867 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2868 out: 2869 read_unlock(&bond->lock); 2870 } 2871 2872 /* 2873 * Called to inspect slaves for active-backup mode ARP monitor link state 2874 * changes. Sets new_link in slaves to specify what action should take 2875 * place for the slave. Returns 0 if no changes are found, >0 if changes 2876 * to link states must be committed. 2877 * 2878 * Called with bond->lock held for read. 2879 */ 2880 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2881 { 2882 struct slave *slave; 2883 int i, commit = 0; 2884 2885 bond_for_each_slave(bond, slave, i) { 2886 slave->new_link = BOND_LINK_NOCHANGE; 2887 2888 if (slave->link != BOND_LINK_UP) { 2889 if (time_before_eq(jiffies, slave_last_rx(bond, slave) + 2890 delta_in_ticks)) { 2891 slave->new_link = BOND_LINK_UP; 2892 commit++; 2893 } 2894 2895 continue; 2896 } 2897 2898 /* 2899 * Give slaves 2*delta after being enslaved or made 2900 * active. This avoids bouncing, as the last receive 2901 * times need a full ARP monitor cycle to be updated. 2902 */ 2903 if (!time_after_eq(jiffies, slave->jiffies + 2904 2 * delta_in_ticks)) 2905 continue; 2906 2907 /* 2908 * Backup slave is down if: 2909 * - No current_arp_slave AND 2910 * - more than 3*delta since last receive AND 2911 * - the bond has an IP address 2912 * 2913 * Note: a non-null current_arp_slave indicates 2914 * the curr_active_slave went down and we are 2915 * searching for a new one; under this condition 2916 * we only take the curr_active_slave down - this 2917 * gives each slave a chance to tx/rx traffic 2918 * before being taken out 2919 */ 2920 if (slave->state == BOND_STATE_BACKUP && 2921 !bond->current_arp_slave && 2922 time_after(jiffies, slave_last_rx(bond, slave) + 2923 3 * delta_in_ticks)) { 2924 slave->new_link = BOND_LINK_DOWN; 2925 commit++; 2926 } 2927 2928 /* 2929 * Active slave is down if: 2930 * - more than 2*delta since transmitting OR 2931 * - (more than 2*delta since receive AND 2932 * the bond has an IP address) 2933 */ 2934 if ((slave->state == BOND_STATE_ACTIVE) && 2935 (time_after_eq(jiffies, slave->dev->trans_start + 2936 2 * delta_in_ticks) || 2937 (time_after_eq(jiffies, slave_last_rx(bond, slave) 2938 + 2 * delta_in_ticks)))) { 2939 slave->new_link = BOND_LINK_DOWN; 2940 commit++; 2941 } 2942 } 2943 2944 read_lock(&bond->curr_slave_lock); 2945 2946 /* 2947 * Trigger a commit if the primary option setting has changed. 2948 */ 2949 if (bond->primary_slave && 2950 (bond->primary_slave != bond->curr_active_slave) && 2951 (bond->primary_slave->link == BOND_LINK_UP)) 2952 commit++; 2953 2954 read_unlock(&bond->curr_slave_lock); 2955 2956 return commit; 2957 } 2958 2959 /* 2960 * Called to commit link state changes noted by inspection step of 2961 * active-backup mode ARP monitor. 2962 * 2963 * Called with RTNL and bond->lock for read. 2964 */ 2965 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2966 { 2967 struct slave *slave; 2968 int i; 2969 2970 bond_for_each_slave(bond, slave, i) { 2971 switch (slave->new_link) { 2972 case BOND_LINK_NOCHANGE: 2973 continue; 2974 2975 case BOND_LINK_UP: 2976 write_lock_bh(&bond->curr_slave_lock); 2977 2978 if (!bond->curr_active_slave && 2979 time_before_eq(jiffies, slave->dev->trans_start + 2980 delta_in_ticks)) { 2981 slave->link = BOND_LINK_UP; 2982 bond_change_active_slave(bond, slave); 2983 bond->current_arp_slave = NULL; 2984 2985 printk(KERN_INFO DRV_NAME 2986 ": %s: %s is up and now the " 2987 "active interface\n", 2988 bond->dev->name, slave->dev->name); 2989 2990 } else if (bond->curr_active_slave != slave) { 2991 /* this slave has just come up but we 2992 * already have a current slave; this can 2993 * also happen if bond_enslave adds a new 2994 * slave that is up while we are searching 2995 * for a new slave 2996 */ 2997 slave->link = BOND_LINK_UP; 2998 bond_set_slave_inactive_flags(slave); 2999 bond->current_arp_slave = NULL; 3000 3001 printk(KERN_INFO DRV_NAME 3002 ": %s: backup interface %s is now up\n", 3003 bond->dev->name, slave->dev->name); 3004 } 3005 3006 write_unlock_bh(&bond->curr_slave_lock); 3007 3008 break; 3009 3010 case BOND_LINK_DOWN: 3011 if (slave->link_failure_count < UINT_MAX) 3012 slave->link_failure_count++; 3013 3014 slave->link = BOND_LINK_DOWN; 3015 3016 if (slave == bond->curr_active_slave) { 3017 printk(KERN_INFO DRV_NAME 3018 ": %s: link status down for active " 3019 "interface %s, disabling it\n", 3020 bond->dev->name, slave->dev->name); 3021 3022 bond_set_slave_inactive_flags(slave); 3023 3024 write_lock_bh(&bond->curr_slave_lock); 3025 3026 bond_select_active_slave(bond); 3027 if (bond->curr_active_slave) 3028 bond->curr_active_slave->jiffies = 3029 jiffies; 3030 3031 write_unlock_bh(&bond->curr_slave_lock); 3032 3033 bond->current_arp_slave = NULL; 3034 3035 } else if (slave->state == BOND_STATE_BACKUP) { 3036 printk(KERN_INFO DRV_NAME 3037 ": %s: backup interface %s is now down\n", 3038 bond->dev->name, slave->dev->name); 3039 3040 bond_set_slave_inactive_flags(slave); 3041 } 3042 break; 3043 3044 default: 3045 printk(KERN_ERR DRV_NAME 3046 ": %s: impossible: new_link %d on slave %s\n", 3047 bond->dev->name, slave->new_link, 3048 slave->dev->name); 3049 } 3050 } 3051 3052 /* 3053 * No race with changes to primary via sysfs, as we hold rtnl. 3054 */ 3055 if (bond->primary_slave && 3056 (bond->primary_slave != bond->curr_active_slave) && 3057 (bond->primary_slave->link == BOND_LINK_UP)) { 3058 write_lock_bh(&bond->curr_slave_lock); 3059 bond_change_active_slave(bond, bond->primary_slave); 3060 write_unlock_bh(&bond->curr_slave_lock); 3061 } 3062 3063 bond_set_carrier(bond); 3064 } 3065 3066 /* 3067 * Send ARP probes for active-backup mode ARP monitor. 3068 * 3069 * Called with bond->lock held for read. 3070 */ 3071 static void bond_ab_arp_probe(struct bonding *bond) 3072 { 3073 struct slave *slave; 3074 int i; 3075 3076 read_lock(&bond->curr_slave_lock); 3077 3078 if (bond->current_arp_slave && bond->curr_active_slave) 3079 printk("PROBE: c_arp %s && cas %s BAD\n", 3080 bond->current_arp_slave->dev->name, 3081 bond->curr_active_slave->dev->name); 3082 3083 if (bond->curr_active_slave) { 3084 bond_arp_send_all(bond, bond->curr_active_slave); 3085 read_unlock(&bond->curr_slave_lock); 3086 return; 3087 } 3088 3089 read_unlock(&bond->curr_slave_lock); 3090 3091 /* if we don't have a curr_active_slave, search for the next available 3092 * backup slave from the current_arp_slave and make it the candidate 3093 * for becoming the curr_active_slave 3094 */ 3095 3096 if (!bond->current_arp_slave) { 3097 bond->current_arp_slave = bond->first_slave; 3098 if (!bond->current_arp_slave) 3099 return; 3100 } 3101 3102 bond_set_slave_inactive_flags(bond->current_arp_slave); 3103 3104 /* search for next candidate */ 3105 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3106 if (IS_UP(slave->dev)) { 3107 slave->link = BOND_LINK_BACK; 3108 bond_set_slave_active_flags(slave); 3109 bond_arp_send_all(bond, slave); 3110 slave->jiffies = jiffies; 3111 bond->current_arp_slave = slave; 3112 break; 3113 } 3114 3115 /* if the link state is up at this point, we 3116 * mark it down - this can happen if we have 3117 * simultaneous link failures and 3118 * reselect_active_interface doesn't make this 3119 * one the current slave so it is still marked 3120 * up when it is actually down 3121 */ 3122 if (slave->link == BOND_LINK_UP) { 3123 slave->link = BOND_LINK_DOWN; 3124 if (slave->link_failure_count < UINT_MAX) 3125 slave->link_failure_count++; 3126 3127 bond_set_slave_inactive_flags(slave); 3128 3129 printk(KERN_INFO DRV_NAME 3130 ": %s: backup interface %s is now down.\n", 3131 bond->dev->name, slave->dev->name); 3132 } 3133 } 3134 } 3135 3136 void bond_activebackup_arp_mon(struct work_struct *work) 3137 { 3138 struct bonding *bond = container_of(work, struct bonding, 3139 arp_work.work); 3140 int delta_in_ticks; 3141 3142 read_lock(&bond->lock); 3143 3144 if (bond->kill_timers) 3145 goto out; 3146 3147 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3148 3149 if (bond->slave_cnt == 0) 3150 goto re_arm; 3151 3152 if (bond->send_grat_arp) { 3153 read_lock(&bond->curr_slave_lock); 3154 bond_send_gratuitous_arp(bond); 3155 read_unlock(&bond->curr_slave_lock); 3156 } 3157 3158 if (bond->send_unsol_na) { 3159 read_lock(&bond->curr_slave_lock); 3160 bond_send_unsolicited_na(bond); 3161 read_unlock(&bond->curr_slave_lock); 3162 } 3163 3164 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3165 read_unlock(&bond->lock); 3166 rtnl_lock(); 3167 read_lock(&bond->lock); 3168 3169 bond_ab_arp_commit(bond, delta_in_ticks); 3170 3171 read_unlock(&bond->lock); 3172 rtnl_unlock(); 3173 read_lock(&bond->lock); 3174 } 3175 3176 bond_ab_arp_probe(bond); 3177 3178 re_arm: 3179 if (bond->params.arp_interval) { 3180 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3181 } 3182 out: 3183 read_unlock(&bond->lock); 3184 } 3185 3186 /*------------------------------ proc/seq_file-------------------------------*/ 3187 3188 #ifdef CONFIG_PROC_FS 3189 3190 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 3191 __acquires(&dev_base_lock) 3192 __acquires(&bond->lock) 3193 { 3194 struct bonding *bond = seq->private; 3195 loff_t off = 0; 3196 struct slave *slave; 3197 int i; 3198 3199 /* make sure the bond won't be taken away */ 3200 read_lock(&dev_base_lock); 3201 read_lock(&bond->lock); 3202 3203 if (*pos == 0) { 3204 return SEQ_START_TOKEN; 3205 } 3206 3207 bond_for_each_slave(bond, slave, i) { 3208 if (++off == *pos) { 3209 return slave; 3210 } 3211 } 3212 3213 return NULL; 3214 } 3215 3216 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3217 { 3218 struct bonding *bond = seq->private; 3219 struct slave *slave = v; 3220 3221 ++*pos; 3222 if (v == SEQ_START_TOKEN) { 3223 return bond->first_slave; 3224 } 3225 3226 slave = slave->next; 3227 3228 return (slave == bond->first_slave) ? NULL : slave; 3229 } 3230 3231 static void bond_info_seq_stop(struct seq_file *seq, void *v) 3232 __releases(&bond->lock) 3233 __releases(&dev_base_lock) 3234 { 3235 struct bonding *bond = seq->private; 3236 3237 read_unlock(&bond->lock); 3238 read_unlock(&dev_base_lock); 3239 } 3240 3241 static void bond_info_show_master(struct seq_file *seq) 3242 { 3243 struct bonding *bond = seq->private; 3244 struct slave *curr; 3245 int i; 3246 3247 read_lock(&bond->curr_slave_lock); 3248 curr = bond->curr_active_slave; 3249 read_unlock(&bond->curr_slave_lock); 3250 3251 seq_printf(seq, "Bonding Mode: %s", 3252 bond_mode_name(bond->params.mode)); 3253 3254 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP && 3255 bond->params.fail_over_mac) 3256 seq_printf(seq, " (fail_over_mac %s)", 3257 fail_over_mac_tbl[bond->params.fail_over_mac].modename); 3258 3259 seq_printf(seq, "\n"); 3260 3261 if (bond->params.mode == BOND_MODE_XOR || 3262 bond->params.mode == BOND_MODE_8023AD) { 3263 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 3264 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 3265 bond->params.xmit_policy); 3266 } 3267 3268 if (USES_PRIMARY(bond->params.mode)) { 3269 seq_printf(seq, "Primary Slave: %s\n", 3270 (bond->primary_slave) ? 3271 bond->primary_slave->dev->name : "None"); 3272 3273 seq_printf(seq, "Currently Active Slave: %s\n", 3274 (curr) ? curr->dev->name : "None"); 3275 } 3276 3277 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3278 "up" : "down"); 3279 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3280 seq_printf(seq, "Up Delay (ms): %d\n", 3281 bond->params.updelay * bond->params.miimon); 3282 seq_printf(seq, "Down Delay (ms): %d\n", 3283 bond->params.downdelay * bond->params.miimon); 3284 3285 3286 /* ARP information */ 3287 if(bond->params.arp_interval > 0) { 3288 int printed=0; 3289 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3290 bond->params.arp_interval); 3291 3292 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3293 3294 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { 3295 if (!bond->params.arp_targets[i]) 3296 break; 3297 if (printed) 3298 seq_printf(seq, ","); 3299 seq_printf(seq, " %pI4", &bond->params.arp_targets[i]); 3300 printed = 1; 3301 } 3302 seq_printf(seq, "\n"); 3303 } 3304 3305 if (bond->params.mode == BOND_MODE_8023AD) { 3306 struct ad_info ad_info; 3307 3308 seq_puts(seq, "\n802.3ad info\n"); 3309 seq_printf(seq, "LACP rate: %s\n", 3310 (bond->params.lacp_fast) ? "fast" : "slow"); 3311 seq_printf(seq, "Aggregator selection policy (ad_select): %s\n", 3312 ad_select_tbl[bond->params.ad_select].modename); 3313 3314 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3315 seq_printf(seq, "bond %s has no active aggregator\n", 3316 bond->dev->name); 3317 } else { 3318 seq_printf(seq, "Active Aggregator Info:\n"); 3319 3320 seq_printf(seq, "\tAggregator ID: %d\n", 3321 ad_info.aggregator_id); 3322 seq_printf(seq, "\tNumber of ports: %d\n", 3323 ad_info.ports); 3324 seq_printf(seq, "\tActor Key: %d\n", 3325 ad_info.actor_key); 3326 seq_printf(seq, "\tPartner Key: %d\n", 3327 ad_info.partner_key); 3328 seq_printf(seq, "\tPartner Mac Address: %pM\n", 3329 ad_info.partner_system); 3330 } 3331 } 3332 } 3333 3334 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) 3335 { 3336 struct bonding *bond = seq->private; 3337 3338 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3339 seq_printf(seq, "MII Status: %s\n", 3340 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3341 seq_printf(seq, "Link Failure Count: %u\n", 3342 slave->link_failure_count); 3343 3344 seq_printf(seq, "Permanent HW addr: %pM\n", slave->perm_hwaddr); 3345 3346 if (bond->params.mode == BOND_MODE_8023AD) { 3347 const struct aggregator *agg 3348 = SLAVE_AD_INFO(slave).port.aggregator; 3349 3350 if (agg) { 3351 seq_printf(seq, "Aggregator ID: %d\n", 3352 agg->aggregator_identifier); 3353 } else { 3354 seq_puts(seq, "Aggregator ID: N/A\n"); 3355 } 3356 } 3357 } 3358 3359 static int bond_info_seq_show(struct seq_file *seq, void *v) 3360 { 3361 if (v == SEQ_START_TOKEN) { 3362 seq_printf(seq, "%s\n", version); 3363 bond_info_show_master(seq); 3364 } else { 3365 bond_info_show_slave(seq, v); 3366 } 3367 3368 return 0; 3369 } 3370 3371 static const struct seq_operations bond_info_seq_ops = { 3372 .start = bond_info_seq_start, 3373 .next = bond_info_seq_next, 3374 .stop = bond_info_seq_stop, 3375 .show = bond_info_seq_show, 3376 }; 3377 3378 static int bond_info_open(struct inode *inode, struct file *file) 3379 { 3380 struct seq_file *seq; 3381 struct proc_dir_entry *proc; 3382 int res; 3383 3384 res = seq_open(file, &bond_info_seq_ops); 3385 if (!res) { 3386 /* recover the pointer buried in proc_dir_entry data */ 3387 seq = file->private_data; 3388 proc = PDE(inode); 3389 seq->private = proc->data; 3390 } 3391 3392 return res; 3393 } 3394 3395 static const struct file_operations bond_info_fops = { 3396 .owner = THIS_MODULE, 3397 .open = bond_info_open, 3398 .read = seq_read, 3399 .llseek = seq_lseek, 3400 .release = seq_release, 3401 }; 3402 3403 static int bond_create_proc_entry(struct bonding *bond) 3404 { 3405 struct net_device *bond_dev = bond->dev; 3406 3407 if (bond_proc_dir) { 3408 bond->proc_entry = proc_create_data(bond_dev->name, 3409 S_IRUGO, bond_proc_dir, 3410 &bond_info_fops, bond); 3411 if (bond->proc_entry == NULL) { 3412 printk(KERN_WARNING DRV_NAME 3413 ": Warning: Cannot create /proc/net/%s/%s\n", 3414 DRV_NAME, bond_dev->name); 3415 } else { 3416 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3417 } 3418 } 3419 3420 return 0; 3421 } 3422 3423 static void bond_remove_proc_entry(struct bonding *bond) 3424 { 3425 if (bond_proc_dir && bond->proc_entry) { 3426 remove_proc_entry(bond->proc_file_name, bond_proc_dir); 3427 memset(bond->proc_file_name, 0, IFNAMSIZ); 3428 bond->proc_entry = NULL; 3429 } 3430 } 3431 3432 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3433 * Caller must hold rtnl_lock. 3434 */ 3435 static void bond_create_proc_dir(void) 3436 { 3437 if (!bond_proc_dir) { 3438 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net); 3439 if (!bond_proc_dir) 3440 printk(KERN_WARNING DRV_NAME 3441 ": Warning: cannot create /proc/net/%s\n", 3442 DRV_NAME); 3443 } 3444 } 3445 3446 /* Destroy the bonding directory under /proc/net, if empty. 3447 * Caller must hold rtnl_lock. 3448 */ 3449 static void bond_destroy_proc_dir(void) 3450 { 3451 if (bond_proc_dir) { 3452 remove_proc_entry(DRV_NAME, init_net.proc_net); 3453 bond_proc_dir = NULL; 3454 } 3455 } 3456 #endif /* CONFIG_PROC_FS */ 3457 3458 /*-------------------------- netdev event handling --------------------------*/ 3459 3460 /* 3461 * Change device name 3462 */ 3463 static int bond_event_changename(struct bonding *bond) 3464 { 3465 #ifdef CONFIG_PROC_FS 3466 bond_remove_proc_entry(bond); 3467 bond_create_proc_entry(bond); 3468 #endif 3469 down_write(&(bonding_rwsem)); 3470 bond_destroy_sysfs_entry(bond); 3471 bond_create_sysfs_entry(bond); 3472 up_write(&(bonding_rwsem)); 3473 return NOTIFY_DONE; 3474 } 3475 3476 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) 3477 { 3478 struct bonding *event_bond = netdev_priv(bond_dev); 3479 3480 switch (event) { 3481 case NETDEV_CHANGENAME: 3482 return bond_event_changename(event_bond); 3483 case NETDEV_UNREGISTER: 3484 bond_release_all(event_bond->dev); 3485 break; 3486 default: 3487 break; 3488 } 3489 3490 return NOTIFY_DONE; 3491 } 3492 3493 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) 3494 { 3495 struct net_device *bond_dev = slave_dev->master; 3496 struct bonding *bond = netdev_priv(bond_dev); 3497 3498 switch (event) { 3499 case NETDEV_UNREGISTER: 3500 if (bond_dev) { 3501 if (bond->setup_by_slave) 3502 bond_release_and_destroy(bond_dev, slave_dev); 3503 else 3504 bond_release(bond_dev, slave_dev); 3505 } 3506 break; 3507 case NETDEV_CHANGE: 3508 if (bond->params.mode == BOND_MODE_8023AD || bond_is_lb(bond)) { 3509 struct slave *slave; 3510 3511 slave = bond_get_slave_by_dev(bond, slave_dev); 3512 if (slave) { 3513 u16 old_speed = slave->speed; 3514 u16 old_duplex = slave->duplex; 3515 3516 bond_update_speed_duplex(slave); 3517 3518 if (bond_is_lb(bond)) 3519 break; 3520 3521 if (old_speed != slave->speed) 3522 bond_3ad_adapter_speed_changed(slave); 3523 if (old_duplex != slave->duplex) 3524 bond_3ad_adapter_duplex_changed(slave); 3525 } 3526 } 3527 3528 break; 3529 case NETDEV_DOWN: 3530 /* 3531 * ... Or is it this? 3532 */ 3533 break; 3534 case NETDEV_CHANGEMTU: 3535 /* 3536 * TODO: Should slaves be allowed to 3537 * independently alter their MTU? For 3538 * an active-backup bond, slaves need 3539 * not be the same type of device, so 3540 * MTUs may vary. For other modes, 3541 * slaves arguably should have the 3542 * same MTUs. To do this, we'd need to 3543 * take over the slave's change_mtu 3544 * function for the duration of their 3545 * servitude. 3546 */ 3547 break; 3548 case NETDEV_CHANGENAME: 3549 /* 3550 * TODO: handle changing the primary's name 3551 */ 3552 break; 3553 case NETDEV_FEAT_CHANGE: 3554 bond_compute_features(bond); 3555 break; 3556 default: 3557 break; 3558 } 3559 3560 return NOTIFY_DONE; 3561 } 3562 3563 /* 3564 * bond_netdev_event: handle netdev notifier chain events. 3565 * 3566 * This function receives events for the netdev chain. The caller (an 3567 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3568 * locks for us to safely manipulate the slave devices (RTNL lock, 3569 * dev_probe_lock). 3570 */ 3571 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) 3572 { 3573 struct net_device *event_dev = (struct net_device *)ptr; 3574 3575 if (dev_net(event_dev) != &init_net) 3576 return NOTIFY_DONE; 3577 3578 pr_debug("event_dev: %s, event: %lx\n", 3579 (event_dev ? event_dev->name : "None"), 3580 event); 3581 3582 if (!(event_dev->priv_flags & IFF_BONDING)) 3583 return NOTIFY_DONE; 3584 3585 if (event_dev->flags & IFF_MASTER) { 3586 pr_debug("IFF_MASTER\n"); 3587 return bond_master_netdev_event(event, event_dev); 3588 } 3589 3590 if (event_dev->flags & IFF_SLAVE) { 3591 pr_debug("IFF_SLAVE\n"); 3592 return bond_slave_netdev_event(event, event_dev); 3593 } 3594 3595 return NOTIFY_DONE; 3596 } 3597 3598 /* 3599 * bond_inetaddr_event: handle inetaddr notifier chain events. 3600 * 3601 * We keep track of device IPs primarily to use as source addresses in 3602 * ARP monitor probes (rather than spewing out broadcasts all the time). 3603 * 3604 * We track one IP for the main device (if it has one), plus one per VLAN. 3605 */ 3606 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3607 { 3608 struct in_ifaddr *ifa = ptr; 3609 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3610 struct bonding *bond; 3611 struct vlan_entry *vlan; 3612 3613 if (dev_net(ifa->ifa_dev->dev) != &init_net) 3614 return NOTIFY_DONE; 3615 3616 list_for_each_entry(bond, &bond_dev_list, bond_list) { 3617 if (bond->dev == event_dev) { 3618 switch (event) { 3619 case NETDEV_UP: 3620 bond->master_ip = ifa->ifa_local; 3621 return NOTIFY_OK; 3622 case NETDEV_DOWN: 3623 bond->master_ip = bond_glean_dev_ip(bond->dev); 3624 return NOTIFY_OK; 3625 default: 3626 return NOTIFY_DONE; 3627 } 3628 } 3629 3630 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 3631 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3632 if (vlan_dev == event_dev) { 3633 switch (event) { 3634 case NETDEV_UP: 3635 vlan->vlan_ip = ifa->ifa_local; 3636 return NOTIFY_OK; 3637 case NETDEV_DOWN: 3638 vlan->vlan_ip = 3639 bond_glean_dev_ip(vlan_dev); 3640 return NOTIFY_OK; 3641 default: 3642 return NOTIFY_DONE; 3643 } 3644 } 3645 } 3646 } 3647 return NOTIFY_DONE; 3648 } 3649 3650 static struct notifier_block bond_netdev_notifier = { 3651 .notifier_call = bond_netdev_event, 3652 }; 3653 3654 static struct notifier_block bond_inetaddr_notifier = { 3655 .notifier_call = bond_inetaddr_event, 3656 }; 3657 3658 /*-------------------------- Packet type handling ---------------------------*/ 3659 3660 /* register to receive lacpdus on a bond */ 3661 static void bond_register_lacpdu(struct bonding *bond) 3662 { 3663 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3664 3665 /* initialize packet type */ 3666 pk_type->type = PKT_TYPE_LACPDU; 3667 pk_type->dev = bond->dev; 3668 pk_type->func = bond_3ad_lacpdu_recv; 3669 3670 dev_add_pack(pk_type); 3671 } 3672 3673 /* unregister to receive lacpdus on a bond */ 3674 static void bond_unregister_lacpdu(struct bonding *bond) 3675 { 3676 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3677 } 3678 3679 void bond_register_arp(struct bonding *bond) 3680 { 3681 struct packet_type *pt = &bond->arp_mon_pt; 3682 3683 if (pt->type) 3684 return; 3685 3686 pt->type = htons(ETH_P_ARP); 3687 pt->dev = bond->dev; 3688 pt->func = bond_arp_rcv; 3689 dev_add_pack(pt); 3690 } 3691 3692 void bond_unregister_arp(struct bonding *bond) 3693 { 3694 struct packet_type *pt = &bond->arp_mon_pt; 3695 3696 dev_remove_pack(pt); 3697 pt->type = 0; 3698 } 3699 3700 /*---------------------------- Hashing Policies -----------------------------*/ 3701 3702 /* 3703 * Hash for the output device based upon layer 2 and layer 3 data. If 3704 * the packet is not IP mimic bond_xmit_hash_policy_l2() 3705 */ 3706 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, 3707 struct net_device *bond_dev, int count) 3708 { 3709 struct ethhdr *data = (struct ethhdr *)skb->data; 3710 struct iphdr *iph = ip_hdr(skb); 3711 3712 if (skb->protocol == htons(ETH_P_IP)) { 3713 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3714 (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count; 3715 } 3716 3717 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3718 } 3719 3720 /* 3721 * Hash for the output device based upon layer 3 and layer 4 data. If 3722 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3723 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3724 */ 3725 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, 3726 struct net_device *bond_dev, int count) 3727 { 3728 struct ethhdr *data = (struct ethhdr *)skb->data; 3729 struct iphdr *iph = ip_hdr(skb); 3730 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); 3731 int layer4_xor = 0; 3732 3733 if (skb->protocol == htons(ETH_P_IP)) { 3734 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) && 3735 (iph->protocol == IPPROTO_TCP || 3736 iph->protocol == IPPROTO_UDP)) { 3737 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); 3738 } 3739 return (layer4_xor ^ 3740 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3741 3742 } 3743 3744 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3745 } 3746 3747 /* 3748 * Hash for the output device based upon layer 2 data 3749 */ 3750 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, 3751 struct net_device *bond_dev, int count) 3752 { 3753 struct ethhdr *data = (struct ethhdr *)skb->data; 3754 3755 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3756 } 3757 3758 /*-------------------------- Device entry points ----------------------------*/ 3759 3760 static int bond_open(struct net_device *bond_dev) 3761 { 3762 struct bonding *bond = netdev_priv(bond_dev); 3763 3764 bond->kill_timers = 0; 3765 3766 if (bond_is_lb(bond)) { 3767 /* bond_alb_initialize must be called before the timer 3768 * is started. 3769 */ 3770 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3771 /* something went wrong - fail the open operation */ 3772 return -1; 3773 } 3774 3775 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3776 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3777 } 3778 3779 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3780 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3781 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3782 } 3783 3784 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3785 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3786 INIT_DELAYED_WORK(&bond->arp_work, 3787 bond_activebackup_arp_mon); 3788 else 3789 INIT_DELAYED_WORK(&bond->arp_work, 3790 bond_loadbalance_arp_mon); 3791 3792 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3793 if (bond->params.arp_validate) 3794 bond_register_arp(bond); 3795 } 3796 3797 if (bond->params.mode == BOND_MODE_8023AD) { 3798 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3799 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3800 /* register to receive LACPDUs */ 3801 bond_register_lacpdu(bond); 3802 bond_3ad_initiate_agg_selection(bond, 1); 3803 } 3804 3805 return 0; 3806 } 3807 3808 static int bond_close(struct net_device *bond_dev) 3809 { 3810 struct bonding *bond = netdev_priv(bond_dev); 3811 3812 if (bond->params.mode == BOND_MODE_8023AD) { 3813 /* Unregister the receive of LACPDUs */ 3814 bond_unregister_lacpdu(bond); 3815 } 3816 3817 if (bond->params.arp_validate) 3818 bond_unregister_arp(bond); 3819 3820 write_lock_bh(&bond->lock); 3821 3822 bond->send_grat_arp = 0; 3823 bond->send_unsol_na = 0; 3824 3825 /* signal timers not to re-arm */ 3826 bond->kill_timers = 1; 3827 3828 write_unlock_bh(&bond->lock); 3829 3830 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3831 cancel_delayed_work(&bond->mii_work); 3832 } 3833 3834 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3835 cancel_delayed_work(&bond->arp_work); 3836 } 3837 3838 switch (bond->params.mode) { 3839 case BOND_MODE_8023AD: 3840 cancel_delayed_work(&bond->ad_work); 3841 break; 3842 case BOND_MODE_TLB: 3843 case BOND_MODE_ALB: 3844 cancel_delayed_work(&bond->alb_work); 3845 break; 3846 default: 3847 break; 3848 } 3849 3850 3851 if (bond_is_lb(bond)) { 3852 /* Must be called only after all 3853 * slaves have been released 3854 */ 3855 bond_alb_deinitialize(bond); 3856 } 3857 3858 return 0; 3859 } 3860 3861 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) 3862 { 3863 struct bonding *bond = netdev_priv(bond_dev); 3864 struct net_device_stats *stats = &bond->stats; 3865 struct net_device_stats local_stats; 3866 struct slave *slave; 3867 int i; 3868 3869 memset(&local_stats, 0, sizeof(struct net_device_stats)); 3870 3871 read_lock_bh(&bond->lock); 3872 3873 bond_for_each_slave(bond, slave, i) { 3874 const struct net_device_stats *sstats = dev_get_stats(slave->dev); 3875 3876 local_stats.rx_packets += sstats->rx_packets; 3877 local_stats.rx_bytes += sstats->rx_bytes; 3878 local_stats.rx_errors += sstats->rx_errors; 3879 local_stats.rx_dropped += sstats->rx_dropped; 3880 3881 local_stats.tx_packets += sstats->tx_packets; 3882 local_stats.tx_bytes += sstats->tx_bytes; 3883 local_stats.tx_errors += sstats->tx_errors; 3884 local_stats.tx_dropped += sstats->tx_dropped; 3885 3886 local_stats.multicast += sstats->multicast; 3887 local_stats.collisions += sstats->collisions; 3888 3889 local_stats.rx_length_errors += sstats->rx_length_errors; 3890 local_stats.rx_over_errors += sstats->rx_over_errors; 3891 local_stats.rx_crc_errors += sstats->rx_crc_errors; 3892 local_stats.rx_frame_errors += sstats->rx_frame_errors; 3893 local_stats.rx_fifo_errors += sstats->rx_fifo_errors; 3894 local_stats.rx_missed_errors += sstats->rx_missed_errors; 3895 3896 local_stats.tx_aborted_errors += sstats->tx_aborted_errors; 3897 local_stats.tx_carrier_errors += sstats->tx_carrier_errors; 3898 local_stats.tx_fifo_errors += sstats->tx_fifo_errors; 3899 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3900 local_stats.tx_window_errors += sstats->tx_window_errors; 3901 } 3902 3903 memcpy(stats, &local_stats, sizeof(struct net_device_stats)); 3904 3905 read_unlock_bh(&bond->lock); 3906 3907 return stats; 3908 } 3909 3910 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3911 { 3912 struct net_device *slave_dev = NULL; 3913 struct ifbond k_binfo; 3914 struct ifbond __user *u_binfo = NULL; 3915 struct ifslave k_sinfo; 3916 struct ifslave __user *u_sinfo = NULL; 3917 struct mii_ioctl_data *mii = NULL; 3918 int res = 0; 3919 3920 pr_debug("bond_ioctl: master=%s, cmd=%d\n", 3921 bond_dev->name, cmd); 3922 3923 switch (cmd) { 3924 case SIOCGMIIPHY: 3925 mii = if_mii(ifr); 3926 if (!mii) { 3927 return -EINVAL; 3928 } 3929 mii->phy_id = 0; 3930 /* Fall Through */ 3931 case SIOCGMIIREG: 3932 /* 3933 * We do this again just in case we were called by SIOCGMIIREG 3934 * instead of SIOCGMIIPHY. 3935 */ 3936 mii = if_mii(ifr); 3937 if (!mii) { 3938 return -EINVAL; 3939 } 3940 3941 if (mii->reg_num == 1) { 3942 struct bonding *bond = netdev_priv(bond_dev); 3943 mii->val_out = 0; 3944 read_lock(&bond->lock); 3945 read_lock(&bond->curr_slave_lock); 3946 if (netif_carrier_ok(bond->dev)) { 3947 mii->val_out = BMSR_LSTATUS; 3948 } 3949 read_unlock(&bond->curr_slave_lock); 3950 read_unlock(&bond->lock); 3951 } 3952 3953 return 0; 3954 case BOND_INFO_QUERY_OLD: 3955 case SIOCBONDINFOQUERY: 3956 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3957 3958 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { 3959 return -EFAULT; 3960 } 3961 3962 res = bond_info_query(bond_dev, &k_binfo); 3963 if (res == 0) { 3964 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { 3965 return -EFAULT; 3966 } 3967 } 3968 3969 return res; 3970 case BOND_SLAVE_INFO_QUERY_OLD: 3971 case SIOCBONDSLAVEINFOQUERY: 3972 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3973 3974 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { 3975 return -EFAULT; 3976 } 3977 3978 res = bond_slave_info_query(bond_dev, &k_sinfo); 3979 if (res == 0) { 3980 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { 3981 return -EFAULT; 3982 } 3983 } 3984 3985 return res; 3986 default: 3987 /* Go on */ 3988 break; 3989 } 3990 3991 if (!capable(CAP_NET_ADMIN)) { 3992 return -EPERM; 3993 } 3994 3995 down_write(&(bonding_rwsem)); 3996 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave); 3997 3998 pr_debug("slave_dev=%p: \n", slave_dev); 3999 4000 if (!slave_dev) { 4001 res = -ENODEV; 4002 } else { 4003 pr_debug("slave_dev->name=%s: \n", slave_dev->name); 4004 switch (cmd) { 4005 case BOND_ENSLAVE_OLD: 4006 case SIOCBONDENSLAVE: 4007 res = bond_enslave(bond_dev, slave_dev); 4008 break; 4009 case BOND_RELEASE_OLD: 4010 case SIOCBONDRELEASE: 4011 res = bond_release(bond_dev, slave_dev); 4012 break; 4013 case BOND_SETHWADDR_OLD: 4014 case SIOCBONDSETHWADDR: 4015 res = bond_sethwaddr(bond_dev, slave_dev); 4016 break; 4017 case BOND_CHANGE_ACTIVE_OLD: 4018 case SIOCBONDCHANGEACTIVE: 4019 res = bond_ioctl_change_active(bond_dev, slave_dev); 4020 break; 4021 default: 4022 res = -EOPNOTSUPP; 4023 } 4024 4025 dev_put(slave_dev); 4026 } 4027 4028 up_write(&(bonding_rwsem)); 4029 return res; 4030 } 4031 4032 static void bond_set_multicast_list(struct net_device *bond_dev) 4033 { 4034 struct bonding *bond = netdev_priv(bond_dev); 4035 struct dev_mc_list *dmi; 4036 4037 /* 4038 * Do promisc before checking multicast_mode 4039 */ 4040 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { 4041 /* 4042 * FIXME: Need to handle the error when one of the multi-slaves 4043 * encounters error. 4044 */ 4045 bond_set_promiscuity(bond, 1); 4046 } 4047 4048 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { 4049 bond_set_promiscuity(bond, -1); 4050 } 4051 4052 /* set allmulti flag to slaves */ 4053 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { 4054 /* 4055 * FIXME: Need to handle the error when one of the multi-slaves 4056 * encounters error. 4057 */ 4058 bond_set_allmulti(bond, 1); 4059 } 4060 4061 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { 4062 bond_set_allmulti(bond, -1); 4063 } 4064 4065 read_lock(&bond->lock); 4066 4067 bond->flags = bond_dev->flags; 4068 4069 /* looking for addresses to add to slaves' mc list */ 4070 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 4071 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { 4072 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4073 } 4074 } 4075 4076 /* looking for addresses to delete from slaves' list */ 4077 for (dmi = bond->mc_list; dmi; dmi = dmi->next) { 4078 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { 4079 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4080 } 4081 } 4082 4083 /* save master's multicast list */ 4084 bond_mc_list_destroy(bond); 4085 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); 4086 4087 read_unlock(&bond->lock); 4088 } 4089 4090 static int bond_neigh_setup(struct net_device *dev, struct neigh_parms *parms) 4091 { 4092 struct bonding *bond = netdev_priv(dev); 4093 struct slave *slave = bond->first_slave; 4094 4095 if (slave) { 4096 const struct net_device_ops *slave_ops 4097 = slave->dev->netdev_ops; 4098 if (slave_ops->ndo_neigh_setup) 4099 return slave_ops->ndo_neigh_setup(slave->dev, parms); 4100 } 4101 return 0; 4102 } 4103 4104 /* 4105 * Change the MTU of all of a master's slaves to match the master 4106 */ 4107 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 4108 { 4109 struct bonding *bond = netdev_priv(bond_dev); 4110 struct slave *slave, *stop_at; 4111 int res = 0; 4112 int i; 4113 4114 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond, 4115 (bond_dev ? bond_dev->name : "None"), new_mtu); 4116 4117 /* Can't hold bond->lock with bh disabled here since 4118 * some base drivers panic. On the other hand we can't 4119 * hold bond->lock without bh disabled because we'll 4120 * deadlock. The only solution is to rely on the fact 4121 * that we're under rtnl_lock here, and the slaves 4122 * list won't change. This doesn't solve the problem 4123 * of setting the slave's MTU while it is 4124 * transmitting, but the assumption is that the base 4125 * driver can handle that. 4126 * 4127 * TODO: figure out a way to safely iterate the slaves 4128 * list, but without holding a lock around the actual 4129 * call to the base driver. 4130 */ 4131 4132 bond_for_each_slave(bond, slave, i) { 4133 pr_debug("s %p s->p %p c_m %p\n", slave, 4134 slave->prev, slave->dev->netdev_ops->ndo_change_mtu); 4135 4136 res = dev_set_mtu(slave->dev, new_mtu); 4137 4138 if (res) { 4139 /* If we failed to set the slave's mtu to the new value 4140 * we must abort the operation even in ACTIVE_BACKUP 4141 * mode, because if we allow the backup slaves to have 4142 * different mtu values than the active slave we'll 4143 * need to change their mtu when doing a failover. That 4144 * means changing their mtu from timer context, which 4145 * is probably not a good idea. 4146 */ 4147 pr_debug("err %d %s\n", res, slave->dev->name); 4148 goto unwind; 4149 } 4150 } 4151 4152 bond_dev->mtu = new_mtu; 4153 4154 return 0; 4155 4156 unwind: 4157 /* unwind from head to the slave that failed */ 4158 stop_at = slave; 4159 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4160 int tmp_res; 4161 4162 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 4163 if (tmp_res) { 4164 pr_debug("unwind err %d dev %s\n", tmp_res, 4165 slave->dev->name); 4166 } 4167 } 4168 4169 return res; 4170 } 4171 4172 /* 4173 * Change HW address 4174 * 4175 * Note that many devices must be down to change the HW address, and 4176 * downing the master releases all slaves. We can make bonds full of 4177 * bonding devices to test this, however. 4178 */ 4179 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 4180 { 4181 struct bonding *bond = netdev_priv(bond_dev); 4182 struct sockaddr *sa = addr, tmp_sa; 4183 struct slave *slave, *stop_at; 4184 int res = 0; 4185 int i; 4186 4187 if (bond->params.mode == BOND_MODE_ALB) 4188 return bond_alb_set_mac_address(bond_dev, addr); 4189 4190 4191 pr_debug("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); 4192 4193 /* 4194 * If fail_over_mac is set to active, do nothing and return 4195 * success. Returning an error causes ifenslave to fail. 4196 */ 4197 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 4198 return 0; 4199 4200 if (!is_valid_ether_addr(sa->sa_data)) { 4201 return -EADDRNOTAVAIL; 4202 } 4203 4204 /* Can't hold bond->lock with bh disabled here since 4205 * some base drivers panic. On the other hand we can't 4206 * hold bond->lock without bh disabled because we'll 4207 * deadlock. The only solution is to rely on the fact 4208 * that we're under rtnl_lock here, and the slaves 4209 * list won't change. This doesn't solve the problem 4210 * of setting the slave's hw address while it is 4211 * transmitting, but the assumption is that the base 4212 * driver can handle that. 4213 * 4214 * TODO: figure out a way to safely iterate the slaves 4215 * list, but without holding a lock around the actual 4216 * call to the base driver. 4217 */ 4218 4219 bond_for_each_slave(bond, slave, i) { 4220 const struct net_device_ops *slave_ops = slave->dev->netdev_ops; 4221 pr_debug("slave %p %s\n", slave, slave->dev->name); 4222 4223 if (slave_ops->ndo_set_mac_address == NULL) { 4224 res = -EOPNOTSUPP; 4225 pr_debug("EOPNOTSUPP %s\n", slave->dev->name); 4226 goto unwind; 4227 } 4228 4229 res = dev_set_mac_address(slave->dev, addr); 4230 if (res) { 4231 /* TODO: consider downing the slave 4232 * and retry ? 4233 * User should expect communications 4234 * breakage anyway until ARP finish 4235 * updating, so... 4236 */ 4237 pr_debug("err %d %s\n", res, slave->dev->name); 4238 goto unwind; 4239 } 4240 } 4241 4242 /* success */ 4243 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 4244 return 0; 4245 4246 unwind: 4247 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 4248 tmp_sa.sa_family = bond_dev->type; 4249 4250 /* unwind from head to the slave that failed */ 4251 stop_at = slave; 4252 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4253 int tmp_res; 4254 4255 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 4256 if (tmp_res) { 4257 pr_debug("unwind err %d dev %s\n", tmp_res, 4258 slave->dev->name); 4259 } 4260 } 4261 4262 return res; 4263 } 4264 4265 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4266 { 4267 struct bonding *bond = netdev_priv(bond_dev); 4268 struct slave *slave, *start_at; 4269 int i, slave_no, res = 1; 4270 4271 read_lock(&bond->lock); 4272 4273 if (!BOND_IS_OK(bond)) { 4274 goto out; 4275 } 4276 4277 /* 4278 * Concurrent TX may collide on rr_tx_counter; we accept that 4279 * as being rare enough not to justify using an atomic op here 4280 */ 4281 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 4282 4283 bond_for_each_slave(bond, slave, i) { 4284 slave_no--; 4285 if (slave_no < 0) { 4286 break; 4287 } 4288 } 4289 4290 start_at = slave; 4291 bond_for_each_slave_from(bond, slave, i, start_at) { 4292 if (IS_UP(slave->dev) && 4293 (slave->link == BOND_LINK_UP) && 4294 (slave->state == BOND_STATE_ACTIVE)) { 4295 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4296 break; 4297 } 4298 } 4299 4300 out: 4301 if (res) { 4302 /* no suitable interface, frame not sent */ 4303 dev_kfree_skb(skb); 4304 } 4305 read_unlock(&bond->lock); 4306 return 0; 4307 } 4308 4309 4310 /* 4311 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4312 * the bond has a usable interface. 4313 */ 4314 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4315 { 4316 struct bonding *bond = netdev_priv(bond_dev); 4317 int res = 1; 4318 4319 read_lock(&bond->lock); 4320 read_lock(&bond->curr_slave_lock); 4321 4322 if (!BOND_IS_OK(bond)) { 4323 goto out; 4324 } 4325 4326 if (!bond->curr_active_slave) 4327 goto out; 4328 4329 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4330 4331 out: 4332 if (res) { 4333 /* no suitable interface, frame not sent */ 4334 dev_kfree_skb(skb); 4335 } 4336 read_unlock(&bond->curr_slave_lock); 4337 read_unlock(&bond->lock); 4338 return 0; 4339 } 4340 4341 /* 4342 * In bond_xmit_xor() , we determine the output device by using a pre- 4343 * determined xmit_hash_policy(), If the selected device is not enabled, 4344 * find the next active slave. 4345 */ 4346 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4347 { 4348 struct bonding *bond = netdev_priv(bond_dev); 4349 struct slave *slave, *start_at; 4350 int slave_no; 4351 int i; 4352 int res = 1; 4353 4354 read_lock(&bond->lock); 4355 4356 if (!BOND_IS_OK(bond)) { 4357 goto out; 4358 } 4359 4360 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); 4361 4362 bond_for_each_slave(bond, slave, i) { 4363 slave_no--; 4364 if (slave_no < 0) { 4365 break; 4366 } 4367 } 4368 4369 start_at = slave; 4370 4371 bond_for_each_slave_from(bond, slave, i, start_at) { 4372 if (IS_UP(slave->dev) && 4373 (slave->link == BOND_LINK_UP) && 4374 (slave->state == BOND_STATE_ACTIVE)) { 4375 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4376 break; 4377 } 4378 } 4379 4380 out: 4381 if (res) { 4382 /* no suitable interface, frame not sent */ 4383 dev_kfree_skb(skb); 4384 } 4385 read_unlock(&bond->lock); 4386 return 0; 4387 } 4388 4389 /* 4390 * in broadcast mode, we send everything to all usable interfaces. 4391 */ 4392 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4393 { 4394 struct bonding *bond = netdev_priv(bond_dev); 4395 struct slave *slave, *start_at; 4396 struct net_device *tx_dev = NULL; 4397 int i; 4398 int res = 1; 4399 4400 read_lock(&bond->lock); 4401 4402 if (!BOND_IS_OK(bond)) { 4403 goto out; 4404 } 4405 4406 read_lock(&bond->curr_slave_lock); 4407 start_at = bond->curr_active_slave; 4408 read_unlock(&bond->curr_slave_lock); 4409 4410 if (!start_at) { 4411 goto out; 4412 } 4413 4414 bond_for_each_slave_from(bond, slave, i, start_at) { 4415 if (IS_UP(slave->dev) && 4416 (slave->link == BOND_LINK_UP) && 4417 (slave->state == BOND_STATE_ACTIVE)) { 4418 if (tx_dev) { 4419 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4420 if (!skb2) { 4421 printk(KERN_ERR DRV_NAME 4422 ": %s: Error: bond_xmit_broadcast(): " 4423 "skb_clone() failed\n", 4424 bond_dev->name); 4425 continue; 4426 } 4427 4428 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4429 if (res) { 4430 dev_kfree_skb(skb2); 4431 continue; 4432 } 4433 } 4434 tx_dev = slave->dev; 4435 } 4436 } 4437 4438 if (tx_dev) { 4439 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4440 } 4441 4442 out: 4443 if (res) { 4444 /* no suitable interface, frame not sent */ 4445 dev_kfree_skb(skb); 4446 } 4447 /* frame sent to all suitable interfaces */ 4448 read_unlock(&bond->lock); 4449 return 0; 4450 } 4451 4452 /*------------------------- Device initialization ---------------------------*/ 4453 4454 static void bond_set_xmit_hash_policy(struct bonding *bond) 4455 { 4456 switch (bond->params.xmit_policy) { 4457 case BOND_XMIT_POLICY_LAYER23: 4458 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4459 break; 4460 case BOND_XMIT_POLICY_LAYER34: 4461 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4462 break; 4463 case BOND_XMIT_POLICY_LAYER2: 4464 default: 4465 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4466 break; 4467 } 4468 } 4469 4470 static int bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4471 { 4472 const struct bonding *bond = netdev_priv(dev); 4473 4474 switch (bond->params.mode) { 4475 case BOND_MODE_ROUNDROBIN: 4476 return bond_xmit_roundrobin(skb, dev); 4477 case BOND_MODE_ACTIVEBACKUP: 4478 return bond_xmit_activebackup(skb, dev); 4479 case BOND_MODE_XOR: 4480 return bond_xmit_xor(skb, dev); 4481 case BOND_MODE_BROADCAST: 4482 return bond_xmit_broadcast(skb, dev); 4483 case BOND_MODE_8023AD: 4484 return bond_3ad_xmit_xor(skb, dev); 4485 case BOND_MODE_ALB: 4486 case BOND_MODE_TLB: 4487 return bond_alb_xmit(skb, dev); 4488 default: 4489 /* Should never happen, mode already checked */ 4490 printk(KERN_ERR DRV_NAME ": %s: Error: Unknown bonding mode %d\n", 4491 dev->name, bond->params.mode); 4492 WARN_ON_ONCE(1); 4493 dev_kfree_skb(skb); 4494 return NETDEV_TX_OK; 4495 } 4496 } 4497 4498 4499 /* 4500 * set bond mode specific net device operations 4501 */ 4502 void bond_set_mode_ops(struct bonding *bond, int mode) 4503 { 4504 struct net_device *bond_dev = bond->dev; 4505 4506 switch (mode) { 4507 case BOND_MODE_ROUNDROBIN: 4508 break; 4509 case BOND_MODE_ACTIVEBACKUP: 4510 break; 4511 case BOND_MODE_XOR: 4512 bond_set_xmit_hash_policy(bond); 4513 break; 4514 case BOND_MODE_BROADCAST: 4515 break; 4516 case BOND_MODE_8023AD: 4517 bond_set_master_3ad_flags(bond); 4518 bond_set_xmit_hash_policy(bond); 4519 break; 4520 case BOND_MODE_ALB: 4521 bond_set_master_alb_flags(bond); 4522 /* FALLTHRU */ 4523 case BOND_MODE_TLB: 4524 break; 4525 default: 4526 /* Should never happen, mode already checked */ 4527 printk(KERN_ERR DRV_NAME 4528 ": %s: Error: Unknown bonding mode %d\n", 4529 bond_dev->name, 4530 mode); 4531 break; 4532 } 4533 } 4534 4535 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4536 struct ethtool_drvinfo *drvinfo) 4537 { 4538 strncpy(drvinfo->driver, DRV_NAME, 32); 4539 strncpy(drvinfo->version, DRV_VERSION, 32); 4540 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4541 } 4542 4543 static const struct ethtool_ops bond_ethtool_ops = { 4544 .get_drvinfo = bond_ethtool_get_drvinfo, 4545 .get_link = ethtool_op_get_link, 4546 .get_tx_csum = ethtool_op_get_tx_csum, 4547 .get_sg = ethtool_op_get_sg, 4548 .get_tso = ethtool_op_get_tso, 4549 .get_ufo = ethtool_op_get_ufo, 4550 .get_flags = ethtool_op_get_flags, 4551 }; 4552 4553 static const struct net_device_ops bond_netdev_ops = { 4554 .ndo_open = bond_open, 4555 .ndo_stop = bond_close, 4556 .ndo_start_xmit = bond_start_xmit, 4557 .ndo_get_stats = bond_get_stats, 4558 .ndo_do_ioctl = bond_do_ioctl, 4559 .ndo_set_multicast_list = bond_set_multicast_list, 4560 .ndo_change_mtu = bond_change_mtu, 4561 .ndo_set_mac_address = bond_set_mac_address, 4562 .ndo_neigh_setup = bond_neigh_setup, 4563 .ndo_vlan_rx_register = bond_vlan_rx_register, 4564 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid, 4565 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid, 4566 }; 4567 4568 /* 4569 * Does not allocate but creates a /proc entry. 4570 * Allowed to fail. 4571 */ 4572 static int bond_init(struct net_device *bond_dev, struct bond_params *params) 4573 { 4574 struct bonding *bond = netdev_priv(bond_dev); 4575 4576 pr_debug("Begin bond_init for %s\n", bond_dev->name); 4577 4578 /* initialize rwlocks */ 4579 rwlock_init(&bond->lock); 4580 rwlock_init(&bond->curr_slave_lock); 4581 4582 bond->params = *params; /* copy params struct */ 4583 4584 bond->wq = create_singlethread_workqueue(bond_dev->name); 4585 if (!bond->wq) 4586 return -ENOMEM; 4587 4588 /* Initialize pointers */ 4589 bond->first_slave = NULL; 4590 bond->curr_active_slave = NULL; 4591 bond->current_arp_slave = NULL; 4592 bond->primary_slave = NULL; 4593 bond->dev = bond_dev; 4594 bond->send_grat_arp = 0; 4595 bond->send_unsol_na = 0; 4596 bond->setup_by_slave = 0; 4597 INIT_LIST_HEAD(&bond->vlan_list); 4598 4599 /* Initialize the device entry points */ 4600 bond_dev->netdev_ops = &bond_netdev_ops; 4601 bond_dev->ethtool_ops = &bond_ethtool_ops; 4602 bond_set_mode_ops(bond, bond->params.mode); 4603 4604 bond_dev->destructor = bond_destructor; 4605 4606 /* Initialize the device options */ 4607 bond_dev->tx_queue_len = 0; 4608 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4609 bond_dev->priv_flags |= IFF_BONDING; 4610 if (bond->params.arp_interval) 4611 bond_dev->priv_flags |= IFF_MASTER_ARPMON; 4612 4613 /* At first, we block adding VLANs. That's the only way to 4614 * prevent problems that occur when adding VLANs over an 4615 * empty bond. The block will be removed once non-challenged 4616 * slaves are enslaved. 4617 */ 4618 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4619 4620 /* don't acquire bond device's netif_tx_lock when 4621 * transmitting */ 4622 bond_dev->features |= NETIF_F_LLTX; 4623 4624 /* By default, we declare the bond to be fully 4625 * VLAN hardware accelerated capable. Special 4626 * care is taken in the various xmit functions 4627 * when there are slaves that are not hw accel 4628 * capable 4629 */ 4630 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4631 NETIF_F_HW_VLAN_RX | 4632 NETIF_F_HW_VLAN_FILTER); 4633 4634 #ifdef CONFIG_PROC_FS 4635 bond_create_proc_entry(bond); 4636 #endif 4637 list_add_tail(&bond->bond_list, &bond_dev_list); 4638 4639 return 0; 4640 } 4641 4642 static void bond_work_cancel_all(struct bonding *bond) 4643 { 4644 write_lock_bh(&bond->lock); 4645 bond->kill_timers = 1; 4646 write_unlock_bh(&bond->lock); 4647 4648 if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) 4649 cancel_delayed_work(&bond->mii_work); 4650 4651 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) 4652 cancel_delayed_work(&bond->arp_work); 4653 4654 if (bond->params.mode == BOND_MODE_ALB && 4655 delayed_work_pending(&bond->alb_work)) 4656 cancel_delayed_work(&bond->alb_work); 4657 4658 if (bond->params.mode == BOND_MODE_8023AD && 4659 delayed_work_pending(&bond->ad_work)) 4660 cancel_delayed_work(&bond->ad_work); 4661 } 4662 4663 /* De-initialize device specific data. 4664 * Caller must hold rtnl_lock. 4665 */ 4666 static void bond_deinit(struct net_device *bond_dev) 4667 { 4668 struct bonding *bond = netdev_priv(bond_dev); 4669 4670 list_del(&bond->bond_list); 4671 4672 bond_work_cancel_all(bond); 4673 4674 #ifdef CONFIG_PROC_FS 4675 bond_remove_proc_entry(bond); 4676 #endif 4677 } 4678 4679 /* Unregister and free all bond devices. 4680 * Caller must hold rtnl_lock. 4681 */ 4682 static void bond_free_all(void) 4683 { 4684 struct bonding *bond, *nxt; 4685 4686 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { 4687 struct net_device *bond_dev = bond->dev; 4688 4689 bond_work_cancel_all(bond); 4690 /* Release the bonded slaves */ 4691 bond_release_all(bond_dev); 4692 bond_destroy(bond); 4693 } 4694 4695 #ifdef CONFIG_PROC_FS 4696 bond_destroy_proc_dir(); 4697 #endif 4698 } 4699 4700 /*------------------------- Module initialization ---------------------------*/ 4701 4702 /* 4703 * Convert string input module parms. Accept either the 4704 * number of the mode or its string name. A bit complicated because 4705 * some mode names are substrings of other names, and calls from sysfs 4706 * may have whitespace in the name (trailing newlines, for example). 4707 */ 4708 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl) 4709 { 4710 int modeint = -1, i, rv; 4711 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4712 4713 for (p = (char *)buf; *p; p++) 4714 if (!(isdigit(*p) || isspace(*p))) 4715 break; 4716 4717 if (*p) 4718 rv = sscanf(buf, "%20s", modestr); 4719 else 4720 rv = sscanf(buf, "%d", &modeint); 4721 4722 if (!rv) 4723 return -1; 4724 4725 for (i = 0; tbl[i].modename; i++) { 4726 if (modeint == tbl[i].mode) 4727 return tbl[i].mode; 4728 if (strcmp(modestr, tbl[i].modename) == 0) 4729 return tbl[i].mode; 4730 } 4731 4732 return -1; 4733 } 4734 4735 static int bond_check_params(struct bond_params *params) 4736 { 4737 int arp_validate_value, fail_over_mac_value; 4738 4739 /* 4740 * Convert string parameters. 4741 */ 4742 if (mode) { 4743 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4744 if (bond_mode == -1) { 4745 printk(KERN_ERR DRV_NAME 4746 ": Error: Invalid bonding mode \"%s\"\n", 4747 mode == NULL ? "NULL" : mode); 4748 return -EINVAL; 4749 } 4750 } 4751 4752 if (xmit_hash_policy) { 4753 if ((bond_mode != BOND_MODE_XOR) && 4754 (bond_mode != BOND_MODE_8023AD)) { 4755 printk(KERN_INFO DRV_NAME 4756 ": xor_mode param is irrelevant in mode %s\n", 4757 bond_mode_name(bond_mode)); 4758 } else { 4759 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4760 xmit_hashtype_tbl); 4761 if (xmit_hashtype == -1) { 4762 printk(KERN_ERR DRV_NAME 4763 ": Error: Invalid xmit_hash_policy \"%s\"\n", 4764 xmit_hash_policy == NULL ? "NULL" : 4765 xmit_hash_policy); 4766 return -EINVAL; 4767 } 4768 } 4769 } 4770 4771 if (lacp_rate) { 4772 if (bond_mode != BOND_MODE_8023AD) { 4773 printk(KERN_INFO DRV_NAME 4774 ": lacp_rate param is irrelevant in mode %s\n", 4775 bond_mode_name(bond_mode)); 4776 } else { 4777 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4778 if (lacp_fast == -1) { 4779 printk(KERN_ERR DRV_NAME 4780 ": Error: Invalid lacp rate \"%s\"\n", 4781 lacp_rate == NULL ? "NULL" : lacp_rate); 4782 return -EINVAL; 4783 } 4784 } 4785 } 4786 4787 if (ad_select) { 4788 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl); 4789 if (params->ad_select == -1) { 4790 printk(KERN_ERR DRV_NAME 4791 ": Error: Invalid ad_select \"%s\"\n", 4792 ad_select == NULL ? "NULL" : ad_select); 4793 return -EINVAL; 4794 } 4795 4796 if (bond_mode != BOND_MODE_8023AD) { 4797 printk(KERN_WARNING DRV_NAME 4798 ": ad_select param only affects 802.3ad mode\n"); 4799 } 4800 } else { 4801 params->ad_select = BOND_AD_STABLE; 4802 } 4803 4804 if (max_bonds < 0 || max_bonds > INT_MAX) { 4805 printk(KERN_WARNING DRV_NAME 4806 ": Warning: max_bonds (%d) not in range %d-%d, so it " 4807 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4808 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4809 max_bonds = BOND_DEFAULT_MAX_BONDS; 4810 } 4811 4812 if (miimon < 0) { 4813 printk(KERN_WARNING DRV_NAME 4814 ": Warning: miimon module parameter (%d), " 4815 "not in range 0-%d, so it was reset to %d\n", 4816 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4817 miimon = BOND_LINK_MON_INTERV; 4818 } 4819 4820 if (updelay < 0) { 4821 printk(KERN_WARNING DRV_NAME 4822 ": Warning: updelay module parameter (%d), " 4823 "not in range 0-%d, so it was reset to 0\n", 4824 updelay, INT_MAX); 4825 updelay = 0; 4826 } 4827 4828 if (downdelay < 0) { 4829 printk(KERN_WARNING DRV_NAME 4830 ": Warning: downdelay module parameter (%d), " 4831 "not in range 0-%d, so it was reset to 0\n", 4832 downdelay, INT_MAX); 4833 downdelay = 0; 4834 } 4835 4836 if ((use_carrier != 0) && (use_carrier != 1)) { 4837 printk(KERN_WARNING DRV_NAME 4838 ": Warning: use_carrier module parameter (%d), " 4839 "not of valid value (0/1), so it was set to 1\n", 4840 use_carrier); 4841 use_carrier = 1; 4842 } 4843 4844 if (num_grat_arp < 0 || num_grat_arp > 255) { 4845 printk(KERN_WARNING DRV_NAME 4846 ": Warning: num_grat_arp (%d) not in range 0-255 so it " 4847 "was reset to 1 \n", num_grat_arp); 4848 num_grat_arp = 1; 4849 } 4850 4851 if (num_unsol_na < 0 || num_unsol_na > 255) { 4852 printk(KERN_WARNING DRV_NAME 4853 ": Warning: num_unsol_na (%d) not in range 0-255 so it " 4854 "was reset to 1 \n", num_unsol_na); 4855 num_unsol_na = 1; 4856 } 4857 4858 /* reset values for 802.3ad */ 4859 if (bond_mode == BOND_MODE_8023AD) { 4860 if (!miimon) { 4861 printk(KERN_WARNING DRV_NAME 4862 ": Warning: miimon must be specified, " 4863 "otherwise bonding will not detect link " 4864 "failure, speed and duplex which are " 4865 "essential for 802.3ad operation\n"); 4866 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4867 miimon = 100; 4868 } 4869 } 4870 4871 /* reset values for TLB/ALB */ 4872 if ((bond_mode == BOND_MODE_TLB) || 4873 (bond_mode == BOND_MODE_ALB)) { 4874 if (!miimon) { 4875 printk(KERN_WARNING DRV_NAME 4876 ": Warning: miimon must be specified, " 4877 "otherwise bonding will not detect link " 4878 "failure and link speed which are essential " 4879 "for TLB/ALB load balancing\n"); 4880 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4881 miimon = 100; 4882 } 4883 } 4884 4885 if (bond_mode == BOND_MODE_ALB) { 4886 printk(KERN_NOTICE DRV_NAME 4887 ": In ALB mode you might experience client " 4888 "disconnections upon reconnection of a link if the " 4889 "bonding module updelay parameter (%d msec) is " 4890 "incompatible with the forwarding delay time of the " 4891 "switch\n", 4892 updelay); 4893 } 4894 4895 if (!miimon) { 4896 if (updelay || downdelay) { 4897 /* just warn the user the up/down delay will have 4898 * no effect since miimon is zero... 4899 */ 4900 printk(KERN_WARNING DRV_NAME 4901 ": Warning: miimon module parameter not set " 4902 "and updelay (%d) or downdelay (%d) module " 4903 "parameter is set; updelay and downdelay have " 4904 "no effect unless miimon is set\n", 4905 updelay, downdelay); 4906 } 4907 } else { 4908 /* don't allow arp monitoring */ 4909 if (arp_interval) { 4910 printk(KERN_WARNING DRV_NAME 4911 ": Warning: miimon (%d) and arp_interval (%d) " 4912 "can't be used simultaneously, disabling ARP " 4913 "monitoring\n", 4914 miimon, arp_interval); 4915 arp_interval = 0; 4916 } 4917 4918 if ((updelay % miimon) != 0) { 4919 printk(KERN_WARNING DRV_NAME 4920 ": Warning: updelay (%d) is not a multiple " 4921 "of miimon (%d), updelay rounded to %d ms\n", 4922 updelay, miimon, (updelay / miimon) * miimon); 4923 } 4924 4925 updelay /= miimon; 4926 4927 if ((downdelay % miimon) != 0) { 4928 printk(KERN_WARNING DRV_NAME 4929 ": Warning: downdelay (%d) is not a multiple " 4930 "of miimon (%d), downdelay rounded to %d ms\n", 4931 downdelay, miimon, 4932 (downdelay / miimon) * miimon); 4933 } 4934 4935 downdelay /= miimon; 4936 } 4937 4938 if (arp_interval < 0) { 4939 printk(KERN_WARNING DRV_NAME 4940 ": Warning: arp_interval module parameter (%d) " 4941 ", not in range 0-%d, so it was reset to %d\n", 4942 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4943 arp_interval = BOND_LINK_ARP_INTERV; 4944 } 4945 4946 for (arp_ip_count = 0; 4947 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4948 arp_ip_count++) { 4949 /* not complete check, but should be good enough to 4950 catch mistakes */ 4951 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4952 printk(KERN_WARNING DRV_NAME 4953 ": Warning: bad arp_ip_target module parameter " 4954 "(%s), ARP monitoring will not be performed\n", 4955 arp_ip_target[arp_ip_count]); 4956 arp_interval = 0; 4957 } else { 4958 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4959 arp_target[arp_ip_count] = ip; 4960 } 4961 } 4962 4963 if (arp_interval && !arp_ip_count) { 4964 /* don't allow arping if no arp_ip_target given... */ 4965 printk(KERN_WARNING DRV_NAME 4966 ": Warning: arp_interval module parameter (%d) " 4967 "specified without providing an arp_ip_target " 4968 "parameter, arp_interval was reset to 0\n", 4969 arp_interval); 4970 arp_interval = 0; 4971 } 4972 4973 if (arp_validate) { 4974 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4975 printk(KERN_ERR DRV_NAME 4976 ": arp_validate only supported in active-backup mode\n"); 4977 return -EINVAL; 4978 } 4979 if (!arp_interval) { 4980 printk(KERN_ERR DRV_NAME 4981 ": arp_validate requires arp_interval\n"); 4982 return -EINVAL; 4983 } 4984 4985 arp_validate_value = bond_parse_parm(arp_validate, 4986 arp_validate_tbl); 4987 if (arp_validate_value == -1) { 4988 printk(KERN_ERR DRV_NAME 4989 ": Error: invalid arp_validate \"%s\"\n", 4990 arp_validate == NULL ? "NULL" : arp_validate); 4991 return -EINVAL; 4992 } 4993 } else 4994 arp_validate_value = 0; 4995 4996 if (miimon) { 4997 printk(KERN_INFO DRV_NAME 4998 ": MII link monitoring set to %d ms\n", 4999 miimon); 5000 } else if (arp_interval) { 5001 int i; 5002 5003 printk(KERN_INFO DRV_NAME 5004 ": ARP monitoring set to %d ms, validate %s, with %d target(s):", 5005 arp_interval, 5006 arp_validate_tbl[arp_validate_value].modename, 5007 arp_ip_count); 5008 5009 for (i = 0; i < arp_ip_count; i++) 5010 printk (" %s", arp_ip_target[i]); 5011 5012 printk("\n"); 5013 5014 } else if (max_bonds) { 5015 /* miimon and arp_interval not set, we need one so things 5016 * work as expected, see bonding.txt for details 5017 */ 5018 printk(KERN_WARNING DRV_NAME 5019 ": Warning: either miimon or arp_interval and " 5020 "arp_ip_target module parameters must be specified, " 5021 "otherwise bonding will not detect link failures! see " 5022 "bonding.txt for details.\n"); 5023 } 5024 5025 if (primary && !USES_PRIMARY(bond_mode)) { 5026 /* currently, using a primary only makes sense 5027 * in active backup, TLB or ALB modes 5028 */ 5029 printk(KERN_WARNING DRV_NAME 5030 ": Warning: %s primary device specified but has no " 5031 "effect in %s mode\n", 5032 primary, bond_mode_name(bond_mode)); 5033 primary = NULL; 5034 } 5035 5036 if (fail_over_mac) { 5037 fail_over_mac_value = bond_parse_parm(fail_over_mac, 5038 fail_over_mac_tbl); 5039 if (fail_over_mac_value == -1) { 5040 printk(KERN_ERR DRV_NAME 5041 ": Error: invalid fail_over_mac \"%s\"\n", 5042 arp_validate == NULL ? "NULL" : arp_validate); 5043 return -EINVAL; 5044 } 5045 5046 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 5047 printk(KERN_WARNING DRV_NAME 5048 ": Warning: fail_over_mac only affects " 5049 "active-backup mode.\n"); 5050 } else { 5051 fail_over_mac_value = BOND_FOM_NONE; 5052 } 5053 5054 /* fill params struct with the proper values */ 5055 params->mode = bond_mode; 5056 params->xmit_policy = xmit_hashtype; 5057 params->miimon = miimon; 5058 params->num_grat_arp = num_grat_arp; 5059 params->num_unsol_na = num_unsol_na; 5060 params->arp_interval = arp_interval; 5061 params->arp_validate = arp_validate_value; 5062 params->updelay = updelay; 5063 params->downdelay = downdelay; 5064 params->use_carrier = use_carrier; 5065 params->lacp_fast = lacp_fast; 5066 params->primary[0] = 0; 5067 params->fail_over_mac = fail_over_mac_value; 5068 5069 if (primary) { 5070 strncpy(params->primary, primary, IFNAMSIZ); 5071 params->primary[IFNAMSIZ - 1] = 0; 5072 } 5073 5074 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 5075 5076 return 0; 5077 } 5078 5079 static struct lock_class_key bonding_netdev_xmit_lock_key; 5080 static struct lock_class_key bonding_netdev_addr_lock_key; 5081 5082 static void bond_set_lockdep_class_one(struct net_device *dev, 5083 struct netdev_queue *txq, 5084 void *_unused) 5085 { 5086 lockdep_set_class(&txq->_xmit_lock, 5087 &bonding_netdev_xmit_lock_key); 5088 } 5089 5090 static void bond_set_lockdep_class(struct net_device *dev) 5091 { 5092 lockdep_set_class(&dev->addr_list_lock, 5093 &bonding_netdev_addr_lock_key); 5094 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 5095 } 5096 5097 /* Create a new bond based on the specified name and bonding parameters. 5098 * If name is NULL, obtain a suitable "bond%d" name for us. 5099 * Caller must NOT hold rtnl_lock; we need to release it here before we 5100 * set up our sysfs entries. 5101 */ 5102 int bond_create(char *name, struct bond_params *params) 5103 { 5104 struct net_device *bond_dev; 5105 struct bonding *bond; 5106 int res; 5107 5108 rtnl_lock(); 5109 down_write(&bonding_rwsem); 5110 5111 /* Check to see if the bond already exists. */ 5112 if (name) { 5113 list_for_each_entry(bond, &bond_dev_list, bond_list) 5114 if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) { 5115 printk(KERN_ERR DRV_NAME 5116 ": cannot add bond %s; it already exists\n", 5117 name); 5118 res = -EPERM; 5119 goto out_rtnl; 5120 } 5121 } 5122 5123 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", 5124 ether_setup); 5125 if (!bond_dev) { 5126 printk(KERN_ERR DRV_NAME 5127 ": %s: eek! can't alloc netdev!\n", 5128 name); 5129 res = -ENOMEM; 5130 goto out_rtnl; 5131 } 5132 5133 if (!name) { 5134 res = dev_alloc_name(bond_dev, "bond%d"); 5135 if (res < 0) 5136 goto out_netdev; 5137 } 5138 5139 /* bond_init() must be called after dev_alloc_name() (for the 5140 * /proc files), but before register_netdevice(), because we 5141 * need to set function pointers. 5142 */ 5143 5144 res = bond_init(bond_dev, params); 5145 if (res < 0) { 5146 goto out_netdev; 5147 } 5148 5149 res = register_netdevice(bond_dev); 5150 if (res < 0) { 5151 goto out_bond; 5152 } 5153 5154 bond_set_lockdep_class(bond_dev); 5155 5156 netif_carrier_off(bond_dev); 5157 5158 up_write(&bonding_rwsem); 5159 rtnl_unlock(); /* allows sysfs registration of net device */ 5160 res = bond_create_sysfs_entry(netdev_priv(bond_dev)); 5161 if (res < 0) 5162 goto out_unreg; 5163 5164 return 0; 5165 5166 out_unreg: 5167 rtnl_lock(); 5168 down_write(&bonding_rwsem); 5169 unregister_netdevice(bond_dev); 5170 out_bond: 5171 bond_deinit(bond_dev); 5172 out_netdev: 5173 free_netdev(bond_dev); 5174 out_rtnl: 5175 up_write(&bonding_rwsem); 5176 rtnl_unlock(); 5177 return res; 5178 } 5179 5180 static int __init bonding_init(void) 5181 { 5182 int i; 5183 int res; 5184 5185 printk(KERN_INFO "%s", version); 5186 5187 res = bond_check_params(&bonding_defaults); 5188 if (res) { 5189 goto out; 5190 } 5191 5192 #ifdef CONFIG_PROC_FS 5193 bond_create_proc_dir(); 5194 #endif 5195 5196 init_rwsem(&bonding_rwsem); 5197 5198 for (i = 0; i < max_bonds; i++) { 5199 res = bond_create(NULL, &bonding_defaults); 5200 if (res) 5201 goto err; 5202 } 5203 5204 res = bond_create_sysfs(); 5205 if (res) 5206 goto err; 5207 5208 register_netdevice_notifier(&bond_netdev_notifier); 5209 register_inetaddr_notifier(&bond_inetaddr_notifier); 5210 bond_register_ipv6_notifier(); 5211 5212 goto out; 5213 err: 5214 rtnl_lock(); 5215 bond_free_all(); 5216 rtnl_unlock(); 5217 out: 5218 return res; 5219 5220 } 5221 5222 static void __exit bonding_exit(void) 5223 { 5224 unregister_netdevice_notifier(&bond_netdev_notifier); 5225 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 5226 bond_unregister_ipv6_notifier(); 5227 5228 bond_destroy_sysfs(); 5229 5230 rtnl_lock(); 5231 bond_free_all(); 5232 rtnl_unlock(); 5233 } 5234 5235 module_init(bonding_init); 5236 module_exit(bonding_exit); 5237 MODULE_LICENSE("GPL"); 5238 MODULE_VERSION(DRV_VERSION); 5239 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5240 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5241 MODULE_SUPPORTED_DEVICE("most ethernet devices"); 5242 5243 /* 5244 * Local variables: 5245 * c-indent-level: 8 5246 * c-basic-offset: 8 5247 * tab-width: 8 5248 * End: 5249 */ 5250 5251