1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 //#define BONDING_DEBUG 1 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/fcntl.h> 40 #include <linux/interrupt.h> 41 #include <linux/ptrace.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <net/ip.h> 45 #include <linux/ip.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/init.h> 51 #include <linux/timer.h> 52 #include <linux/socket.h> 53 #include <linux/ctype.h> 54 #include <linux/inet.h> 55 #include <linux/bitops.h> 56 #include <asm/system.h> 57 #include <asm/io.h> 58 #include <asm/dma.h> 59 #include <asm/uaccess.h> 60 #include <linux/errno.h> 61 #include <linux/netdevice.h> 62 #include <linux/inetdevice.h> 63 #include <linux/igmp.h> 64 #include <linux/etherdevice.h> 65 #include <linux/skbuff.h> 66 #include <net/sock.h> 67 #include <linux/rtnetlink.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/smp.h> 71 #include <linux/if_ether.h> 72 #include <net/arp.h> 73 #include <linux/mii.h> 74 #include <linux/ethtool.h> 75 #include <linux/if_vlan.h> 76 #include <linux/if_bonding.h> 77 #include <linux/jiffies.h> 78 #include <net/route.h> 79 #include <net/net_namespace.h> 80 #include "bonding.h" 81 #include "bond_3ad.h" 82 #include "bond_alb.h" 83 84 /*---------------------------- Module parameters ----------------------------*/ 85 86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 87 #define BOND_LINK_MON_INTERV 0 88 #define BOND_LINK_ARP_INTERV 0 89 90 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 91 static int num_grat_arp = 1; 92 static int miimon = BOND_LINK_MON_INTERV; 93 static int updelay = 0; 94 static int downdelay = 0; 95 static int use_carrier = 1; 96 static char *mode = NULL; 97 static char *primary = NULL; 98 static char *lacp_rate = NULL; 99 static char *xmit_hash_policy = NULL; 100 static int arp_interval = BOND_LINK_ARP_INTERV; 101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; 102 static char *arp_validate = NULL; 103 static char *fail_over_mac = NULL; 104 struct bond_params bonding_defaults; 105 106 module_param(max_bonds, int, 0); 107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 108 module_param(num_grat_arp, int, 0644); 109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event"); 110 module_param(miimon, int, 0); 111 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 112 module_param(updelay, int, 0); 113 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 114 module_param(downdelay, int, 0); 115 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 116 "in milliseconds"); 117 module_param(use_carrier, int, 0); 118 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 119 "0 for off, 1 for on (default)"); 120 module_param(mode, charp, 0); 121 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 122 "1 for active-backup, 2 for balance-xor, " 123 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 124 "6 for balance-alb"); 125 module_param(primary, charp, 0); 126 MODULE_PARM_DESC(primary, "Primary network device to use"); 127 module_param(lacp_rate, charp, 0); 128 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 129 "(slow/fast)"); 130 module_param(xmit_hash_policy, charp, 0); 131 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 132 ", 1 for layer 3+4"); 133 module_param(arp_interval, int, 0); 134 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 135 module_param_array(arp_ip_target, charp, NULL, 0); 136 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 137 module_param(arp_validate, charp, 0); 138 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 139 module_param(fail_over_mac, charp, 0); 140 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow"); 141 142 /*----------------------------- Global variables ----------------------------*/ 143 144 static const char * const version = 145 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 146 147 LIST_HEAD(bond_dev_list); 148 149 #ifdef CONFIG_PROC_FS 150 static struct proc_dir_entry *bond_proc_dir = NULL; 151 #endif 152 153 extern struct rw_semaphore bonding_rwsem; 154 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; 155 static int arp_ip_count = 0; 156 static int bond_mode = BOND_MODE_ROUNDROBIN; 157 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; 158 static int lacp_fast = 0; 159 160 161 struct bond_parm_tbl bond_lacp_tbl[] = { 162 { "slow", AD_LACP_SLOW}, 163 { "fast", AD_LACP_FAST}, 164 { NULL, -1}, 165 }; 166 167 struct bond_parm_tbl bond_mode_tbl[] = { 168 { "balance-rr", BOND_MODE_ROUNDROBIN}, 169 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 170 { "balance-xor", BOND_MODE_XOR}, 171 { "broadcast", BOND_MODE_BROADCAST}, 172 { "802.3ad", BOND_MODE_8023AD}, 173 { "balance-tlb", BOND_MODE_TLB}, 174 { "balance-alb", BOND_MODE_ALB}, 175 { NULL, -1}, 176 }; 177 178 struct bond_parm_tbl xmit_hashtype_tbl[] = { 179 { "layer2", BOND_XMIT_POLICY_LAYER2}, 180 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 181 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 182 { NULL, -1}, 183 }; 184 185 struct bond_parm_tbl arp_validate_tbl[] = { 186 { "none", BOND_ARP_VALIDATE_NONE}, 187 { "active", BOND_ARP_VALIDATE_ACTIVE}, 188 { "backup", BOND_ARP_VALIDATE_BACKUP}, 189 { "all", BOND_ARP_VALIDATE_ALL}, 190 { NULL, -1}, 191 }; 192 193 struct bond_parm_tbl fail_over_mac_tbl[] = { 194 { "none", BOND_FOM_NONE}, 195 { "active", BOND_FOM_ACTIVE}, 196 { "follow", BOND_FOM_FOLLOW}, 197 { NULL, -1}, 198 }; 199 200 /*-------------------------- Forward declarations ---------------------------*/ 201 202 static void bond_send_gratuitous_arp(struct bonding *bond); 203 static void bond_deinit(struct net_device *bond_dev); 204 205 /*---------------------------- General routines -----------------------------*/ 206 207 static const char *bond_mode_name(int mode) 208 { 209 switch (mode) { 210 case BOND_MODE_ROUNDROBIN : 211 return "load balancing (round-robin)"; 212 case BOND_MODE_ACTIVEBACKUP : 213 return "fault-tolerance (active-backup)"; 214 case BOND_MODE_XOR : 215 return "load balancing (xor)"; 216 case BOND_MODE_BROADCAST : 217 return "fault-tolerance (broadcast)"; 218 case BOND_MODE_8023AD: 219 return "IEEE 802.3ad Dynamic link aggregation"; 220 case BOND_MODE_TLB: 221 return "transmit load balancing"; 222 case BOND_MODE_ALB: 223 return "adaptive load balancing"; 224 default: 225 return "unknown"; 226 } 227 } 228 229 /*---------------------------------- VLAN -----------------------------------*/ 230 231 /** 232 * bond_add_vlan - add a new vlan id on bond 233 * @bond: bond that got the notification 234 * @vlan_id: the vlan id to add 235 * 236 * Returns -ENOMEM if allocation failed. 237 */ 238 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 239 { 240 struct vlan_entry *vlan; 241 242 dprintk("bond: %s, vlan id %d\n", 243 (bond ? bond->dev->name: "None"), vlan_id); 244 245 vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL); 246 if (!vlan) { 247 return -ENOMEM; 248 } 249 250 INIT_LIST_HEAD(&vlan->vlan_list); 251 vlan->vlan_id = vlan_id; 252 vlan->vlan_ip = 0; 253 254 write_lock_bh(&bond->lock); 255 256 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 257 258 write_unlock_bh(&bond->lock); 259 260 dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 261 262 return 0; 263 } 264 265 /** 266 * bond_del_vlan - delete a vlan id from bond 267 * @bond: bond that got the notification 268 * @vlan_id: the vlan id to delete 269 * 270 * returns -ENODEV if @vlan_id was not found in @bond. 271 */ 272 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 273 { 274 struct vlan_entry *vlan; 275 int res = -ENODEV; 276 277 dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 278 279 write_lock_bh(&bond->lock); 280 281 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 282 if (vlan->vlan_id == vlan_id) { 283 list_del(&vlan->vlan_list); 284 285 if ((bond->params.mode == BOND_MODE_TLB) || 286 (bond->params.mode == BOND_MODE_ALB)) { 287 bond_alb_clear_vlan(bond, vlan_id); 288 } 289 290 dprintk("removed VLAN ID %d from bond %s\n", vlan_id, 291 bond->dev->name); 292 293 kfree(vlan); 294 295 if (list_empty(&bond->vlan_list) && 296 (bond->slave_cnt == 0)) { 297 /* Last VLAN removed and no slaves, so 298 * restore block on adding VLANs. This will 299 * be removed once new slaves that are not 300 * VLAN challenged will be added. 301 */ 302 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 303 } 304 305 res = 0; 306 goto out; 307 } 308 } 309 310 dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id, 311 bond->dev->name); 312 313 out: 314 write_unlock_bh(&bond->lock); 315 return res; 316 } 317 318 /** 319 * bond_has_challenged_slaves 320 * @bond: the bond we're working on 321 * 322 * Searches the slave list. Returns 1 if a vlan challenged slave 323 * was found, 0 otherwise. 324 * 325 * Assumes bond->lock is held. 326 */ 327 static int bond_has_challenged_slaves(struct bonding *bond) 328 { 329 struct slave *slave; 330 int i; 331 332 bond_for_each_slave(bond, slave, i) { 333 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 334 dprintk("found VLAN challenged slave - %s\n", 335 slave->dev->name); 336 return 1; 337 } 338 } 339 340 dprintk("no VLAN challenged slaves found\n"); 341 return 0; 342 } 343 344 /** 345 * bond_next_vlan - safely skip to the next item in the vlans list. 346 * @bond: the bond we're working on 347 * @curr: item we're advancing from 348 * 349 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 350 * or @curr->next otherwise (even if it is @curr itself again). 351 * 352 * Caller must hold bond->lock 353 */ 354 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 355 { 356 struct vlan_entry *next, *last; 357 358 if (list_empty(&bond->vlan_list)) { 359 return NULL; 360 } 361 362 if (!curr) { 363 next = list_entry(bond->vlan_list.next, 364 struct vlan_entry, vlan_list); 365 } else { 366 last = list_entry(bond->vlan_list.prev, 367 struct vlan_entry, vlan_list); 368 if (last == curr) { 369 next = list_entry(bond->vlan_list.next, 370 struct vlan_entry, vlan_list); 371 } else { 372 next = list_entry(curr->vlan_list.next, 373 struct vlan_entry, vlan_list); 374 } 375 } 376 377 return next; 378 } 379 380 /** 381 * bond_dev_queue_xmit - Prepare skb for xmit. 382 * 383 * @bond: bond device that got this skb for tx. 384 * @skb: hw accel VLAN tagged skb to transmit 385 * @slave_dev: slave that is supposed to xmit this skbuff 386 * 387 * When the bond gets an skb to transmit that is 388 * already hardware accelerated VLAN tagged, and it 389 * needs to relay this skb to a slave that is not 390 * hw accel capable, the skb needs to be "unaccelerated", 391 * i.e. strip the hwaccel tag and re-insert it as part 392 * of the payload. 393 */ 394 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) 395 { 396 unsigned short uninitialized_var(vlan_id); 397 398 if (!list_empty(&bond->vlan_list) && 399 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 400 vlan_get_tag(skb, &vlan_id) == 0) { 401 skb->dev = slave_dev; 402 skb = vlan_put_tag(skb, vlan_id); 403 if (!skb) { 404 /* vlan_put_tag() frees the skb in case of error, 405 * so return success here so the calling functions 406 * won't attempt to free is again. 407 */ 408 return 0; 409 } 410 } else { 411 skb->dev = slave_dev; 412 } 413 414 skb->priority = 1; 415 dev_queue_xmit(skb); 416 417 return 0; 418 } 419 420 /* 421 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 422 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 423 * lock because: 424 * a. This operation is performed in IOCTL context, 425 * b. The operation is protected by the RTNL semaphore in the 8021q code, 426 * c. Holding a lock with BH disabled while directly calling a base driver 427 * entry point is generally a BAD idea. 428 * 429 * The design of synchronization/protection for this operation in the 8021q 430 * module is good for one or more VLAN devices over a single physical device 431 * and cannot be extended for a teaming solution like bonding, so there is a 432 * potential race condition here where a net device from the vlan group might 433 * be referenced (either by a base driver or the 8021q code) while it is being 434 * removed from the system. However, it turns out we're not making matters 435 * worse, and if it works for regular VLAN usage it will work here too. 436 */ 437 438 /** 439 * bond_vlan_rx_register - Propagates registration to slaves 440 * @bond_dev: bonding net device that got called 441 * @grp: vlan group being registered 442 */ 443 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) 444 { 445 struct bonding *bond = bond_dev->priv; 446 struct slave *slave; 447 int i; 448 449 bond->vlgrp = grp; 450 451 bond_for_each_slave(bond, slave, i) { 452 struct net_device *slave_dev = slave->dev; 453 454 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 455 slave_dev->vlan_rx_register) { 456 slave_dev->vlan_rx_register(slave_dev, grp); 457 } 458 } 459 } 460 461 /** 462 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 463 * @bond_dev: bonding net device that got called 464 * @vid: vlan id being added 465 */ 466 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 467 { 468 struct bonding *bond = bond_dev->priv; 469 struct slave *slave; 470 int i, res; 471 472 bond_for_each_slave(bond, slave, i) { 473 struct net_device *slave_dev = slave->dev; 474 475 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 476 slave_dev->vlan_rx_add_vid) { 477 slave_dev->vlan_rx_add_vid(slave_dev, vid); 478 } 479 } 480 481 res = bond_add_vlan(bond, vid); 482 if (res) { 483 printk(KERN_ERR DRV_NAME 484 ": %s: Error: Failed to add vlan id %d\n", 485 bond_dev->name, vid); 486 } 487 } 488 489 /** 490 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 491 * @bond_dev: bonding net device that got called 492 * @vid: vlan id being removed 493 */ 494 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 495 { 496 struct bonding *bond = bond_dev->priv; 497 struct slave *slave; 498 struct net_device *vlan_dev; 499 int i, res; 500 501 bond_for_each_slave(bond, slave, i) { 502 struct net_device *slave_dev = slave->dev; 503 504 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 505 slave_dev->vlan_rx_kill_vid) { 506 /* Save and then restore vlan_dev in the grp array, 507 * since the slave's driver might clear it. 508 */ 509 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 510 slave_dev->vlan_rx_kill_vid(slave_dev, vid); 511 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 512 } 513 } 514 515 res = bond_del_vlan(bond, vid); 516 if (res) { 517 printk(KERN_ERR DRV_NAME 518 ": %s: Error: Failed to remove vlan id %d\n", 519 bond_dev->name, vid); 520 } 521 } 522 523 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 524 { 525 struct vlan_entry *vlan; 526 527 write_lock_bh(&bond->lock); 528 529 if (list_empty(&bond->vlan_list)) { 530 goto out; 531 } 532 533 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 534 slave_dev->vlan_rx_register) { 535 slave_dev->vlan_rx_register(slave_dev, bond->vlgrp); 536 } 537 538 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 539 !(slave_dev->vlan_rx_add_vid)) { 540 goto out; 541 } 542 543 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 544 slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id); 545 } 546 547 out: 548 write_unlock_bh(&bond->lock); 549 } 550 551 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) 552 { 553 struct vlan_entry *vlan; 554 struct net_device *vlan_dev; 555 556 write_lock_bh(&bond->lock); 557 558 if (list_empty(&bond->vlan_list)) { 559 goto out; 560 } 561 562 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 563 !(slave_dev->vlan_rx_kill_vid)) { 564 goto unreg; 565 } 566 567 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 568 /* Save and then restore vlan_dev in the grp array, 569 * since the slave's driver might clear it. 570 */ 571 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 572 slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 573 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 574 } 575 576 unreg: 577 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 578 slave_dev->vlan_rx_register) { 579 slave_dev->vlan_rx_register(slave_dev, NULL); 580 } 581 582 out: 583 write_unlock_bh(&bond->lock); 584 } 585 586 /*------------------------------- Link status -------------------------------*/ 587 588 /* 589 * Set the carrier state for the master according to the state of its 590 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 591 * do special 802.3ad magic. 592 * 593 * Returns zero if carrier state does not change, nonzero if it does. 594 */ 595 static int bond_set_carrier(struct bonding *bond) 596 { 597 struct slave *slave; 598 int i; 599 600 if (bond->slave_cnt == 0) 601 goto down; 602 603 if (bond->params.mode == BOND_MODE_8023AD) 604 return bond_3ad_set_carrier(bond); 605 606 bond_for_each_slave(bond, slave, i) { 607 if (slave->link == BOND_LINK_UP) { 608 if (!netif_carrier_ok(bond->dev)) { 609 netif_carrier_on(bond->dev); 610 return 1; 611 } 612 return 0; 613 } 614 } 615 616 down: 617 if (netif_carrier_ok(bond->dev)) { 618 netif_carrier_off(bond->dev); 619 return 1; 620 } 621 return 0; 622 } 623 624 /* 625 * Get link speed and duplex from the slave's base driver 626 * using ethtool. If for some reason the call fails or the 627 * values are invalid, fake speed and duplex to 100/Full 628 * and return error. 629 */ 630 static int bond_update_speed_duplex(struct slave *slave) 631 { 632 struct net_device *slave_dev = slave->dev; 633 struct ethtool_cmd etool; 634 int res; 635 636 /* Fake speed and duplex */ 637 slave->speed = SPEED_100; 638 slave->duplex = DUPLEX_FULL; 639 640 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) 641 return -1; 642 643 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 644 if (res < 0) 645 return -1; 646 647 switch (etool.speed) { 648 case SPEED_10: 649 case SPEED_100: 650 case SPEED_1000: 651 case SPEED_10000: 652 break; 653 default: 654 return -1; 655 } 656 657 switch (etool.duplex) { 658 case DUPLEX_FULL: 659 case DUPLEX_HALF: 660 break; 661 default: 662 return -1; 663 } 664 665 slave->speed = etool.speed; 666 slave->duplex = etool.duplex; 667 668 return 0; 669 } 670 671 /* 672 * if <dev> supports MII link status reporting, check its link status. 673 * 674 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 675 * depening upon the setting of the use_carrier parameter. 676 * 677 * Return either BMSR_LSTATUS, meaning that the link is up (or we 678 * can't tell and just pretend it is), or 0, meaning that the link is 679 * down. 680 * 681 * If reporting is non-zero, instead of faking link up, return -1 if 682 * both ETHTOOL and MII ioctls fail (meaning the device does not 683 * support them). If use_carrier is set, return whatever it says. 684 * It'd be nice if there was a good way to tell if a driver supports 685 * netif_carrier, but there really isn't. 686 */ 687 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) 688 { 689 static int (* ioctl)(struct net_device *, struct ifreq *, int); 690 struct ifreq ifr; 691 struct mii_ioctl_data *mii; 692 693 if (bond->params.use_carrier) { 694 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 695 } 696 697 ioctl = slave_dev->do_ioctl; 698 if (ioctl) { 699 /* TODO: set pointer to correct ioctl on a per team member */ 700 /* bases to make this more efficient. that is, once */ 701 /* we determine the correct ioctl, we will always */ 702 /* call it and not the others for that team */ 703 /* member. */ 704 705 /* 706 * We cannot assume that SIOCGMIIPHY will also read a 707 * register; not all network drivers (e.g., e100) 708 * support that. 709 */ 710 711 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 712 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 713 mii = if_mii(&ifr); 714 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 715 mii->reg_num = MII_BMSR; 716 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { 717 return (mii->val_out & BMSR_LSTATUS); 718 } 719 } 720 } 721 722 /* 723 * Some drivers cache ETHTOOL_GLINK for a period of time so we only 724 * attempt to get link status from it if the above MII ioctls fail. 725 */ 726 if (slave_dev->ethtool_ops) { 727 if (slave_dev->ethtool_ops->get_link) { 728 u32 link; 729 730 link = slave_dev->ethtool_ops->get_link(slave_dev); 731 732 return link ? BMSR_LSTATUS : 0; 733 } 734 } 735 736 /* 737 * If reporting, report that either there's no dev->do_ioctl, 738 * or both SIOCGMIIREG and get_link failed (meaning that we 739 * cannot report link status). If not reporting, pretend 740 * we're ok. 741 */ 742 return (reporting ? -1 : BMSR_LSTATUS); 743 } 744 745 /*----------------------------- Multicast list ------------------------------*/ 746 747 /* 748 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise 749 */ 750 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) 751 { 752 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && 753 dmi1->dmi_addrlen == dmi2->dmi_addrlen; 754 } 755 756 /* 757 * returns dmi entry if found, NULL otherwise 758 */ 759 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 760 { 761 struct dev_mc_list *idmi; 762 763 for (idmi = mc_list; idmi; idmi = idmi->next) { 764 if (bond_is_dmi_same(dmi, idmi)) { 765 return idmi; 766 } 767 } 768 769 return NULL; 770 } 771 772 /* 773 * Push the promiscuity flag down to appropriate slaves 774 */ 775 static int bond_set_promiscuity(struct bonding *bond, int inc) 776 { 777 int err = 0; 778 if (USES_PRIMARY(bond->params.mode)) { 779 /* write lock already acquired */ 780 if (bond->curr_active_slave) { 781 err = dev_set_promiscuity(bond->curr_active_slave->dev, 782 inc); 783 } 784 } else { 785 struct slave *slave; 786 int i; 787 bond_for_each_slave(bond, slave, i) { 788 err = dev_set_promiscuity(slave->dev, inc); 789 if (err) 790 return err; 791 } 792 } 793 return err; 794 } 795 796 /* 797 * Push the allmulti flag down to all slaves 798 */ 799 static int bond_set_allmulti(struct bonding *bond, int inc) 800 { 801 int err = 0; 802 if (USES_PRIMARY(bond->params.mode)) { 803 /* write lock already acquired */ 804 if (bond->curr_active_slave) { 805 err = dev_set_allmulti(bond->curr_active_slave->dev, 806 inc); 807 } 808 } else { 809 struct slave *slave; 810 int i; 811 bond_for_each_slave(bond, slave, i) { 812 err = dev_set_allmulti(slave->dev, inc); 813 if (err) 814 return err; 815 } 816 } 817 return err; 818 } 819 820 /* 821 * Add a Multicast address to slaves 822 * according to mode 823 */ 824 static void bond_mc_add(struct bonding *bond, void *addr, int alen) 825 { 826 if (USES_PRIMARY(bond->params.mode)) { 827 /* write lock already acquired */ 828 if (bond->curr_active_slave) { 829 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); 830 } 831 } else { 832 struct slave *slave; 833 int i; 834 bond_for_each_slave(bond, slave, i) { 835 dev_mc_add(slave->dev, addr, alen, 0); 836 } 837 } 838 } 839 840 /* 841 * Remove a multicast address from slave 842 * according to mode 843 */ 844 static void bond_mc_delete(struct bonding *bond, void *addr, int alen) 845 { 846 if (USES_PRIMARY(bond->params.mode)) { 847 /* write lock already acquired */ 848 if (bond->curr_active_slave) { 849 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); 850 } 851 } else { 852 struct slave *slave; 853 int i; 854 bond_for_each_slave(bond, slave, i) { 855 dev_mc_delete(slave->dev, addr, alen, 0); 856 } 857 } 858 } 859 860 861 /* 862 * Retrieve the list of registered multicast addresses for the bonding 863 * device and retransmit an IGMP JOIN request to the current active 864 * slave. 865 */ 866 static void bond_resend_igmp_join_requests(struct bonding *bond) 867 { 868 struct in_device *in_dev; 869 struct ip_mc_list *im; 870 871 rcu_read_lock(); 872 in_dev = __in_dev_get_rcu(bond->dev); 873 if (in_dev) { 874 for (im = in_dev->mc_list; im; im = im->next) { 875 ip_mc_rejoin_group(im); 876 } 877 } 878 879 rcu_read_unlock(); 880 } 881 882 /* 883 * Totally destroys the mc_list in bond 884 */ 885 static void bond_mc_list_destroy(struct bonding *bond) 886 { 887 struct dev_mc_list *dmi; 888 889 dmi = bond->mc_list; 890 while (dmi) { 891 bond->mc_list = dmi->next; 892 kfree(dmi); 893 dmi = bond->mc_list; 894 } 895 bond->mc_list = NULL; 896 } 897 898 /* 899 * Copy all the Multicast addresses from src to the bonding device dst 900 */ 901 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, 902 gfp_t gfp_flag) 903 { 904 struct dev_mc_list *dmi, *new_dmi; 905 906 for (dmi = mc_list; dmi; dmi = dmi->next) { 907 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); 908 909 if (!new_dmi) { 910 /* FIXME: Potential memory leak !!! */ 911 return -ENOMEM; 912 } 913 914 new_dmi->next = bond->mc_list; 915 bond->mc_list = new_dmi; 916 new_dmi->dmi_addrlen = dmi->dmi_addrlen; 917 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); 918 new_dmi->dmi_users = dmi->dmi_users; 919 new_dmi->dmi_gusers = dmi->dmi_gusers; 920 } 921 922 return 0; 923 } 924 925 /* 926 * flush all members of flush->mc_list from device dev->mc_list 927 */ 928 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) 929 { 930 struct bonding *bond = bond_dev->priv; 931 struct dev_mc_list *dmi; 932 933 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 934 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 935 } 936 937 if (bond->params.mode == BOND_MODE_8023AD) { 938 /* del lacpdu mc addr from mc list */ 939 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 940 941 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 942 } 943 } 944 945 /*--------------------------- Active slave change ---------------------------*/ 946 947 /* 948 * Update the mc list and multicast-related flags for the new and 949 * old active slaves (if any) according to the multicast mode, and 950 * promiscuous flags unconditionally. 951 */ 952 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) 953 { 954 struct dev_mc_list *dmi; 955 956 if (!USES_PRIMARY(bond->params.mode)) { 957 /* nothing to do - mc list is already up-to-date on 958 * all slaves 959 */ 960 return; 961 } 962 963 if (old_active) { 964 if (bond->dev->flags & IFF_PROMISC) { 965 dev_set_promiscuity(old_active->dev, -1); 966 } 967 968 if (bond->dev->flags & IFF_ALLMULTI) { 969 dev_set_allmulti(old_active->dev, -1); 970 } 971 972 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 973 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 974 } 975 } 976 977 if (new_active) { 978 /* FIXME: Signal errors upstream. */ 979 if (bond->dev->flags & IFF_PROMISC) { 980 dev_set_promiscuity(new_active->dev, 1); 981 } 982 983 if (bond->dev->flags & IFF_ALLMULTI) { 984 dev_set_allmulti(new_active->dev, 1); 985 } 986 987 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 988 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 989 } 990 bond_resend_igmp_join_requests(bond); 991 } 992 } 993 994 /* 995 * bond_do_fail_over_mac 996 * 997 * Perform special MAC address swapping for fail_over_mac settings 998 * 999 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 1000 */ 1001 static void bond_do_fail_over_mac(struct bonding *bond, 1002 struct slave *new_active, 1003 struct slave *old_active) 1004 { 1005 u8 tmp_mac[ETH_ALEN]; 1006 struct sockaddr saddr; 1007 int rv; 1008 1009 switch (bond->params.fail_over_mac) { 1010 case BOND_FOM_ACTIVE: 1011 if (new_active) 1012 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 1013 new_active->dev->addr_len); 1014 break; 1015 case BOND_FOM_FOLLOW: 1016 /* 1017 * if new_active && old_active, swap them 1018 * if just old_active, do nothing (going to no active slave) 1019 * if just new_active, set new_active to bond's MAC 1020 */ 1021 if (!new_active) 1022 return; 1023 1024 write_unlock_bh(&bond->curr_slave_lock); 1025 read_unlock(&bond->lock); 1026 1027 if (old_active) { 1028 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 1029 memcpy(saddr.sa_data, old_active->dev->dev_addr, 1030 ETH_ALEN); 1031 saddr.sa_family = new_active->dev->type; 1032 } else { 1033 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 1034 saddr.sa_family = bond->dev->type; 1035 } 1036 1037 rv = dev_set_mac_address(new_active->dev, &saddr); 1038 if (rv) { 1039 printk(KERN_ERR DRV_NAME 1040 ": %s: Error %d setting MAC of slave %s\n", 1041 bond->dev->name, -rv, new_active->dev->name); 1042 goto out; 1043 } 1044 1045 if (!old_active) 1046 goto out; 1047 1048 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 1049 saddr.sa_family = old_active->dev->type; 1050 1051 rv = dev_set_mac_address(old_active->dev, &saddr); 1052 if (rv) 1053 printk(KERN_ERR DRV_NAME 1054 ": %s: Error %d setting MAC of slave %s\n", 1055 bond->dev->name, -rv, new_active->dev->name); 1056 out: 1057 read_lock(&bond->lock); 1058 write_lock_bh(&bond->curr_slave_lock); 1059 break; 1060 default: 1061 printk(KERN_ERR DRV_NAME 1062 ": %s: bond_do_fail_over_mac impossible: bad policy %d\n", 1063 bond->dev->name, bond->params.fail_over_mac); 1064 break; 1065 } 1066 1067 } 1068 1069 1070 /** 1071 * find_best_interface - select the best available slave to be the active one 1072 * @bond: our bonding struct 1073 * 1074 * Warning: Caller must hold curr_slave_lock for writing. 1075 */ 1076 static struct slave *bond_find_best_slave(struct bonding *bond) 1077 { 1078 struct slave *new_active, *old_active; 1079 struct slave *bestslave = NULL; 1080 int mintime = bond->params.updelay; 1081 int i; 1082 1083 new_active = old_active = bond->curr_active_slave; 1084 1085 if (!new_active) { /* there were no active slaves left */ 1086 if (bond->slave_cnt > 0) { /* found one slave */ 1087 new_active = bond->first_slave; 1088 } else { 1089 return NULL; /* still no slave, return NULL */ 1090 } 1091 } 1092 1093 /* first try the primary link; if arping, a link must tx/rx traffic 1094 * before it can be considered the curr_active_slave - also, we would skip 1095 * slaves between the curr_active_slave and primary_slave that may be up 1096 * and able to arp 1097 */ 1098 if ((bond->primary_slave) && 1099 (!bond->params.arp_interval) && 1100 (IS_UP(bond->primary_slave->dev))) { 1101 new_active = bond->primary_slave; 1102 } 1103 1104 /* remember where to stop iterating over the slaves */ 1105 old_active = new_active; 1106 1107 bond_for_each_slave_from(bond, new_active, i, old_active) { 1108 if (IS_UP(new_active->dev)) { 1109 if (new_active->link == BOND_LINK_UP) { 1110 return new_active; 1111 } else if (new_active->link == BOND_LINK_BACK) { 1112 /* link up, but waiting for stabilization */ 1113 if (new_active->delay < mintime) { 1114 mintime = new_active->delay; 1115 bestslave = new_active; 1116 } 1117 } 1118 } 1119 } 1120 1121 return bestslave; 1122 } 1123 1124 /** 1125 * change_active_interface - change the active slave into the specified one 1126 * @bond: our bonding struct 1127 * @new: the new slave to make the active one 1128 * 1129 * Set the new slave to the bond's settings and unset them on the old 1130 * curr_active_slave. 1131 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1132 * 1133 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1134 * because it is apparently the best available slave we have, even though its 1135 * updelay hasn't timed out yet. 1136 * 1137 * If new_active is not NULL, caller must hold bond->lock for read and 1138 * curr_slave_lock for write_bh. 1139 */ 1140 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1141 { 1142 struct slave *old_active = bond->curr_active_slave; 1143 1144 if (old_active == new_active) { 1145 return; 1146 } 1147 1148 if (new_active) { 1149 new_active->jiffies = jiffies; 1150 1151 if (new_active->link == BOND_LINK_BACK) { 1152 if (USES_PRIMARY(bond->params.mode)) { 1153 printk(KERN_INFO DRV_NAME 1154 ": %s: making interface %s the new " 1155 "active one %d ms earlier.\n", 1156 bond->dev->name, new_active->dev->name, 1157 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1158 } 1159 1160 new_active->delay = 0; 1161 new_active->link = BOND_LINK_UP; 1162 1163 if (bond->params.mode == BOND_MODE_8023AD) { 1164 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1165 } 1166 1167 if ((bond->params.mode == BOND_MODE_TLB) || 1168 (bond->params.mode == BOND_MODE_ALB)) { 1169 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1170 } 1171 } else { 1172 if (USES_PRIMARY(bond->params.mode)) { 1173 printk(KERN_INFO DRV_NAME 1174 ": %s: making interface %s the new " 1175 "active one.\n", 1176 bond->dev->name, new_active->dev->name); 1177 } 1178 } 1179 } 1180 1181 if (USES_PRIMARY(bond->params.mode)) { 1182 bond_mc_swap(bond, new_active, old_active); 1183 } 1184 1185 if ((bond->params.mode == BOND_MODE_TLB) || 1186 (bond->params.mode == BOND_MODE_ALB)) { 1187 bond_alb_handle_active_change(bond, new_active); 1188 if (old_active) 1189 bond_set_slave_inactive_flags(old_active); 1190 if (new_active) 1191 bond_set_slave_active_flags(new_active); 1192 } else { 1193 bond->curr_active_slave = new_active; 1194 } 1195 1196 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1197 if (old_active) { 1198 bond_set_slave_inactive_flags(old_active); 1199 } 1200 1201 if (new_active) { 1202 bond_set_slave_active_flags(new_active); 1203 1204 if (bond->params.fail_over_mac) 1205 bond_do_fail_over_mac(bond, new_active, 1206 old_active); 1207 1208 bond->send_grat_arp = bond->params.num_grat_arp; 1209 bond_send_gratuitous_arp(bond); 1210 1211 write_unlock_bh(&bond->curr_slave_lock); 1212 read_unlock(&bond->lock); 1213 1214 netdev_bonding_change(bond->dev); 1215 1216 read_lock(&bond->lock); 1217 write_lock_bh(&bond->curr_slave_lock); 1218 } 1219 } 1220 } 1221 1222 /** 1223 * bond_select_active_slave - select a new active slave, if needed 1224 * @bond: our bonding struct 1225 * 1226 * This functions shoud be called when one of the following occurs: 1227 * - The old curr_active_slave has been released or lost its link. 1228 * - The primary_slave has got its link back. 1229 * - A slave has got its link back and there's no old curr_active_slave. 1230 * 1231 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1232 */ 1233 void bond_select_active_slave(struct bonding *bond) 1234 { 1235 struct slave *best_slave; 1236 int rv; 1237 1238 best_slave = bond_find_best_slave(bond); 1239 if (best_slave != bond->curr_active_slave) { 1240 bond_change_active_slave(bond, best_slave); 1241 rv = bond_set_carrier(bond); 1242 if (!rv) 1243 return; 1244 1245 if (netif_carrier_ok(bond->dev)) { 1246 printk(KERN_INFO DRV_NAME 1247 ": %s: first active interface up!\n", 1248 bond->dev->name); 1249 } else { 1250 printk(KERN_INFO DRV_NAME ": %s: " 1251 "now running without any active interface !\n", 1252 bond->dev->name); 1253 } 1254 } 1255 } 1256 1257 /*--------------------------- slave list handling ---------------------------*/ 1258 1259 /* 1260 * This function attaches the slave to the end of list. 1261 * 1262 * bond->lock held for writing by caller. 1263 */ 1264 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1265 { 1266 if (bond->first_slave == NULL) { /* attaching the first slave */ 1267 new_slave->next = new_slave; 1268 new_slave->prev = new_slave; 1269 bond->first_slave = new_slave; 1270 } else { 1271 new_slave->next = bond->first_slave; 1272 new_slave->prev = bond->first_slave->prev; 1273 new_slave->next->prev = new_slave; 1274 new_slave->prev->next = new_slave; 1275 } 1276 1277 bond->slave_cnt++; 1278 } 1279 1280 /* 1281 * This function detaches the slave from the list. 1282 * WARNING: no check is made to verify if the slave effectively 1283 * belongs to <bond>. 1284 * Nothing is freed on return, structures are just unchained. 1285 * If any slave pointer in bond was pointing to <slave>, 1286 * it should be changed by the calling function. 1287 * 1288 * bond->lock held for writing by caller. 1289 */ 1290 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1291 { 1292 if (slave->next) { 1293 slave->next->prev = slave->prev; 1294 } 1295 1296 if (slave->prev) { 1297 slave->prev->next = slave->next; 1298 } 1299 1300 if (bond->first_slave == slave) { /* slave is the first slave */ 1301 if (bond->slave_cnt > 1) { /* there are more slave */ 1302 bond->first_slave = slave->next; 1303 } else { 1304 bond->first_slave = NULL; /* slave was the last one */ 1305 } 1306 } 1307 1308 slave->next = NULL; 1309 slave->prev = NULL; 1310 bond->slave_cnt--; 1311 } 1312 1313 /*---------------------------------- IOCTL ----------------------------------*/ 1314 1315 static int bond_sethwaddr(struct net_device *bond_dev, 1316 struct net_device *slave_dev) 1317 { 1318 dprintk("bond_dev=%p\n", bond_dev); 1319 dprintk("slave_dev=%p\n", slave_dev); 1320 dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1321 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1322 return 0; 1323 } 1324 1325 #define BOND_VLAN_FEATURES \ 1326 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ 1327 NETIF_F_HW_VLAN_FILTER) 1328 1329 /* 1330 * Compute the common dev->feature set available to all slaves. Some 1331 * feature bits are managed elsewhere, so preserve those feature bits 1332 * on the master device. 1333 */ 1334 static int bond_compute_features(struct bonding *bond) 1335 { 1336 struct slave *slave; 1337 struct net_device *bond_dev = bond->dev; 1338 unsigned long features = bond_dev->features; 1339 unsigned short max_hard_header_len = max((u16)ETH_HLEN, 1340 bond_dev->hard_header_len); 1341 int i; 1342 1343 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); 1344 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; 1345 1346 if (!bond->first_slave) 1347 goto done; 1348 1349 features &= ~NETIF_F_ONE_FOR_ALL; 1350 1351 bond_for_each_slave(bond, slave, i) { 1352 features = netdev_increment_features(features, 1353 slave->dev->features, 1354 NETIF_F_ONE_FOR_ALL); 1355 if (slave->dev->hard_header_len > max_hard_header_len) 1356 max_hard_header_len = slave->dev->hard_header_len; 1357 } 1358 1359 done: 1360 features |= (bond_dev->features & BOND_VLAN_FEATURES); 1361 bond_dev->features = netdev_fix_features(features, NULL); 1362 bond_dev->hard_header_len = max_hard_header_len; 1363 1364 return 0; 1365 } 1366 1367 1368 static void bond_setup_by_slave(struct net_device *bond_dev, 1369 struct net_device *slave_dev) 1370 { 1371 struct bonding *bond = bond_dev->priv; 1372 1373 bond_dev->neigh_setup = slave_dev->neigh_setup; 1374 bond_dev->header_ops = slave_dev->header_ops; 1375 1376 bond_dev->type = slave_dev->type; 1377 bond_dev->hard_header_len = slave_dev->hard_header_len; 1378 bond_dev->addr_len = slave_dev->addr_len; 1379 1380 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1381 slave_dev->addr_len); 1382 bond->setup_by_slave = 1; 1383 } 1384 1385 /* enslave device <slave> to bond device <master> */ 1386 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1387 { 1388 struct bonding *bond = bond_dev->priv; 1389 struct slave *new_slave = NULL; 1390 struct dev_mc_list *dmi; 1391 struct sockaddr addr; 1392 int link_reporting; 1393 int old_features = bond_dev->features; 1394 int res = 0; 1395 1396 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1397 slave_dev->do_ioctl == NULL) { 1398 printk(KERN_WARNING DRV_NAME 1399 ": %s: Warning: no link monitoring support for %s\n", 1400 bond_dev->name, slave_dev->name); 1401 } 1402 1403 /* bond must be initialized by bond_open() before enslaving */ 1404 if (!(bond_dev->flags & IFF_UP)) { 1405 printk(KERN_WARNING DRV_NAME 1406 " %s: master_dev is not up in bond_enslave\n", 1407 bond_dev->name); 1408 } 1409 1410 /* already enslaved */ 1411 if (slave_dev->flags & IFF_SLAVE) { 1412 dprintk("Error, Device was already enslaved\n"); 1413 return -EBUSY; 1414 } 1415 1416 /* vlan challenged mutual exclusion */ 1417 /* no need to lock since we're protected by rtnl_lock */ 1418 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1419 dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1420 if (!list_empty(&bond->vlan_list)) { 1421 printk(KERN_ERR DRV_NAME 1422 ": %s: Error: cannot enslave VLAN " 1423 "challenged slave %s on VLAN enabled " 1424 "bond %s\n", bond_dev->name, slave_dev->name, 1425 bond_dev->name); 1426 return -EPERM; 1427 } else { 1428 printk(KERN_WARNING DRV_NAME 1429 ": %s: Warning: enslaved VLAN challenged " 1430 "slave %s. Adding VLANs will be blocked as " 1431 "long as %s is part of bond %s\n", 1432 bond_dev->name, slave_dev->name, slave_dev->name, 1433 bond_dev->name); 1434 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1435 } 1436 } else { 1437 dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1438 if (bond->slave_cnt == 0) { 1439 /* First slave, and it is not VLAN challenged, 1440 * so remove the block of adding VLANs over the bond. 1441 */ 1442 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1443 } 1444 } 1445 1446 /* 1447 * Old ifenslave binaries are no longer supported. These can 1448 * be identified with moderate accurary by the state of the slave: 1449 * the current ifenslave will set the interface down prior to 1450 * enslaving it; the old ifenslave will not. 1451 */ 1452 if ((slave_dev->flags & IFF_UP)) { 1453 printk(KERN_ERR DRV_NAME ": %s is up. " 1454 "This may be due to an out of date ifenslave.\n", 1455 slave_dev->name); 1456 res = -EPERM; 1457 goto err_undo_flags; 1458 } 1459 1460 /* set bonding device ether type by slave - bonding netdevices are 1461 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1462 * there is a need to override some of the type dependent attribs/funcs. 1463 * 1464 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1465 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1466 */ 1467 if (bond->slave_cnt == 0) { 1468 if (slave_dev->type != ARPHRD_ETHER) 1469 bond_setup_by_slave(bond_dev, slave_dev); 1470 } else if (bond_dev->type != slave_dev->type) { 1471 printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different " 1472 "from other slaves (%d), can not enslave it.\n", 1473 slave_dev->name, 1474 slave_dev->type, bond_dev->type); 1475 res = -EINVAL; 1476 goto err_undo_flags; 1477 } 1478 1479 if (slave_dev->set_mac_address == NULL) { 1480 if (bond->slave_cnt == 0) { 1481 printk(KERN_WARNING DRV_NAME 1482 ": %s: Warning: The first slave device " 1483 "specified does not support setting the MAC " 1484 "address. Setting fail_over_mac to active.", 1485 bond_dev->name); 1486 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1487 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1488 printk(KERN_ERR DRV_NAME 1489 ": %s: Error: The slave device specified " 1490 "does not support setting the MAC address, " 1491 "but fail_over_mac is not set to active.\n" 1492 , bond_dev->name); 1493 res = -EOPNOTSUPP; 1494 goto err_undo_flags; 1495 } 1496 } 1497 1498 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1499 if (!new_slave) { 1500 res = -ENOMEM; 1501 goto err_undo_flags; 1502 } 1503 1504 /* save slave's original flags before calling 1505 * netdev_set_master and dev_open 1506 */ 1507 new_slave->original_flags = slave_dev->flags; 1508 1509 /* 1510 * Save slave's original ("permanent") mac address for modes 1511 * that need it, and for restoring it upon release, and then 1512 * set it to the master's address 1513 */ 1514 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1515 1516 if (!bond->params.fail_over_mac) { 1517 /* 1518 * Set slave to master's mac address. The application already 1519 * set the master's mac address to that of the first slave 1520 */ 1521 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1522 addr.sa_family = slave_dev->type; 1523 res = dev_set_mac_address(slave_dev, &addr); 1524 if (res) { 1525 dprintk("Error %d calling set_mac_address\n", res); 1526 goto err_free; 1527 } 1528 } 1529 1530 res = netdev_set_master(slave_dev, bond_dev); 1531 if (res) { 1532 dprintk("Error %d calling netdev_set_master\n", res); 1533 goto err_restore_mac; 1534 } 1535 /* open the slave since the application closed it */ 1536 res = dev_open(slave_dev); 1537 if (res) { 1538 dprintk("Openning slave %s failed\n", slave_dev->name); 1539 goto err_unset_master; 1540 } 1541 1542 new_slave->dev = slave_dev; 1543 slave_dev->priv_flags |= IFF_BONDING; 1544 1545 if ((bond->params.mode == BOND_MODE_TLB) || 1546 (bond->params.mode == BOND_MODE_ALB)) { 1547 /* bond_alb_init_slave() must be called before all other stages since 1548 * it might fail and we do not want to have to undo everything 1549 */ 1550 res = bond_alb_init_slave(bond, new_slave); 1551 if (res) { 1552 goto err_close; 1553 } 1554 } 1555 1556 /* If the mode USES_PRIMARY, then the new slave gets the 1557 * master's promisc (and mc) settings only if it becomes the 1558 * curr_active_slave, and that is taken care of later when calling 1559 * bond_change_active() 1560 */ 1561 if (!USES_PRIMARY(bond->params.mode)) { 1562 /* set promiscuity level to new slave */ 1563 if (bond_dev->flags & IFF_PROMISC) { 1564 res = dev_set_promiscuity(slave_dev, 1); 1565 if (res) 1566 goto err_close; 1567 } 1568 1569 /* set allmulti level to new slave */ 1570 if (bond_dev->flags & IFF_ALLMULTI) { 1571 res = dev_set_allmulti(slave_dev, 1); 1572 if (res) 1573 goto err_close; 1574 } 1575 1576 netif_addr_lock_bh(bond_dev); 1577 /* upload master's mc_list to new slave */ 1578 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 1579 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 1580 } 1581 netif_addr_unlock_bh(bond_dev); 1582 } 1583 1584 if (bond->params.mode == BOND_MODE_8023AD) { 1585 /* add lacpdu mc addr to mc list */ 1586 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1587 1588 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 1589 } 1590 1591 bond_add_vlans_on_slave(bond, slave_dev); 1592 1593 write_lock_bh(&bond->lock); 1594 1595 bond_attach_slave(bond, new_slave); 1596 1597 new_slave->delay = 0; 1598 new_slave->link_failure_count = 0; 1599 1600 bond_compute_features(bond); 1601 1602 write_unlock_bh(&bond->lock); 1603 1604 read_lock(&bond->lock); 1605 1606 new_slave->last_arp_rx = jiffies; 1607 1608 if (bond->params.miimon && !bond->params.use_carrier) { 1609 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1610 1611 if ((link_reporting == -1) && !bond->params.arp_interval) { 1612 /* 1613 * miimon is set but a bonded network driver 1614 * does not support ETHTOOL/MII and 1615 * arp_interval is not set. Note: if 1616 * use_carrier is enabled, we will never go 1617 * here (because netif_carrier is always 1618 * supported); thus, we don't need to change 1619 * the messages for netif_carrier. 1620 */ 1621 printk(KERN_WARNING DRV_NAME 1622 ": %s: Warning: MII and ETHTOOL support not " 1623 "available for interface %s, and " 1624 "arp_interval/arp_ip_target module parameters " 1625 "not specified, thus bonding will not detect " 1626 "link failures! see bonding.txt for details.\n", 1627 bond_dev->name, slave_dev->name); 1628 } else if (link_reporting == -1) { 1629 /* unable get link status using mii/ethtool */ 1630 printk(KERN_WARNING DRV_NAME 1631 ": %s: Warning: can't get link status from " 1632 "interface %s; the network driver associated " 1633 "with this interface does not support MII or " 1634 "ETHTOOL link status reporting, thus miimon " 1635 "has no effect on this interface.\n", 1636 bond_dev->name, slave_dev->name); 1637 } 1638 } 1639 1640 /* check for initial state */ 1641 if (!bond->params.miimon || 1642 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1643 if (bond->params.updelay) { 1644 dprintk("Initial state of slave_dev is " 1645 "BOND_LINK_BACK\n"); 1646 new_slave->link = BOND_LINK_BACK; 1647 new_slave->delay = bond->params.updelay; 1648 } else { 1649 dprintk("Initial state of slave_dev is " 1650 "BOND_LINK_UP\n"); 1651 new_slave->link = BOND_LINK_UP; 1652 } 1653 new_slave->jiffies = jiffies; 1654 } else { 1655 dprintk("Initial state of slave_dev is " 1656 "BOND_LINK_DOWN\n"); 1657 new_slave->link = BOND_LINK_DOWN; 1658 } 1659 1660 if (bond_update_speed_duplex(new_slave) && 1661 (new_slave->link != BOND_LINK_DOWN)) { 1662 printk(KERN_WARNING DRV_NAME 1663 ": %s: Warning: failed to get speed and duplex from %s, " 1664 "assumed to be 100Mb/sec and Full.\n", 1665 bond_dev->name, new_slave->dev->name); 1666 1667 if (bond->params.mode == BOND_MODE_8023AD) { 1668 printk(KERN_WARNING DRV_NAME 1669 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " 1670 "support in base driver for proper aggregator " 1671 "selection.\n", bond_dev->name); 1672 } 1673 } 1674 1675 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1676 /* if there is a primary slave, remember it */ 1677 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1678 bond->primary_slave = new_slave; 1679 } 1680 } 1681 1682 write_lock_bh(&bond->curr_slave_lock); 1683 1684 switch (bond->params.mode) { 1685 case BOND_MODE_ACTIVEBACKUP: 1686 bond_set_slave_inactive_flags(new_slave); 1687 bond_select_active_slave(bond); 1688 break; 1689 case BOND_MODE_8023AD: 1690 /* in 802.3ad mode, the internal mechanism 1691 * will activate the slaves in the selected 1692 * aggregator 1693 */ 1694 bond_set_slave_inactive_flags(new_slave); 1695 /* if this is the first slave */ 1696 if (bond->slave_cnt == 1) { 1697 SLAVE_AD_INFO(new_slave).id = 1; 1698 /* Initialize AD with the number of times that the AD timer is called in 1 second 1699 * can be called only after the mac address of the bond is set 1700 */ 1701 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1702 bond->params.lacp_fast); 1703 } else { 1704 SLAVE_AD_INFO(new_slave).id = 1705 SLAVE_AD_INFO(new_slave->prev).id + 1; 1706 } 1707 1708 bond_3ad_bind_slave(new_slave); 1709 break; 1710 case BOND_MODE_TLB: 1711 case BOND_MODE_ALB: 1712 new_slave->state = BOND_STATE_ACTIVE; 1713 bond_set_slave_inactive_flags(new_slave); 1714 break; 1715 default: 1716 dprintk("This slave is always active in trunk mode\n"); 1717 1718 /* always active in trunk mode */ 1719 new_slave->state = BOND_STATE_ACTIVE; 1720 1721 /* In trunking mode there is little meaning to curr_active_slave 1722 * anyway (it holds no special properties of the bond device), 1723 * so we can change it without calling change_active_interface() 1724 */ 1725 if (!bond->curr_active_slave) { 1726 bond->curr_active_slave = new_slave; 1727 } 1728 break; 1729 } /* switch(bond_mode) */ 1730 1731 write_unlock_bh(&bond->curr_slave_lock); 1732 1733 bond_set_carrier(bond); 1734 1735 read_unlock(&bond->lock); 1736 1737 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1738 if (res) 1739 goto err_close; 1740 1741 printk(KERN_INFO DRV_NAME 1742 ": %s: enslaving %s as a%s interface with a%s link.\n", 1743 bond_dev->name, slave_dev->name, 1744 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1745 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1746 1747 /* enslave is successful */ 1748 return 0; 1749 1750 /* Undo stages on error */ 1751 err_close: 1752 dev_close(slave_dev); 1753 1754 err_unset_master: 1755 netdev_set_master(slave_dev, NULL); 1756 1757 err_restore_mac: 1758 if (!bond->params.fail_over_mac) { 1759 /* XXX TODO - fom follow mode needs to change master's 1760 * MAC if this slave's MAC is in use by the bond, or at 1761 * least print a warning. 1762 */ 1763 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1764 addr.sa_family = slave_dev->type; 1765 dev_set_mac_address(slave_dev, &addr); 1766 } 1767 1768 err_free: 1769 kfree(new_slave); 1770 1771 err_undo_flags: 1772 bond_dev->features = old_features; 1773 1774 return res; 1775 } 1776 1777 /* 1778 * Try to release the slave device <slave> from the bond device <master> 1779 * It is legal to access curr_active_slave without a lock because all the function 1780 * is write-locked. 1781 * 1782 * The rules for slave state should be: 1783 * for Active/Backup: 1784 * Active stays on all backups go down 1785 * for Bonded connections: 1786 * The first up interface should be left on and all others downed. 1787 */ 1788 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1789 { 1790 struct bonding *bond = bond_dev->priv; 1791 struct slave *slave, *oldcurrent; 1792 struct sockaddr addr; 1793 int mac_addr_differ; 1794 DECLARE_MAC_BUF(mac); 1795 1796 /* slave is not a slave or master is not master of this slave */ 1797 if (!(slave_dev->flags & IFF_SLAVE) || 1798 (slave_dev->master != bond_dev)) { 1799 printk(KERN_ERR DRV_NAME 1800 ": %s: Error: cannot release %s.\n", 1801 bond_dev->name, slave_dev->name); 1802 return -EINVAL; 1803 } 1804 1805 write_lock_bh(&bond->lock); 1806 1807 slave = bond_get_slave_by_dev(bond, slave_dev); 1808 if (!slave) { 1809 /* not a slave of this bond */ 1810 printk(KERN_INFO DRV_NAME 1811 ": %s: %s not enslaved\n", 1812 bond_dev->name, slave_dev->name); 1813 write_unlock_bh(&bond->lock); 1814 return -EINVAL; 1815 } 1816 1817 if (!bond->params.fail_over_mac) { 1818 mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr, 1819 ETH_ALEN); 1820 if (!mac_addr_differ && (bond->slave_cnt > 1)) 1821 printk(KERN_WARNING DRV_NAME 1822 ": %s: Warning: the permanent HWaddr of %s - " 1823 "%s - is still in use by %s. " 1824 "Set the HWaddr of %s to a different address " 1825 "to avoid conflicts.\n", 1826 bond_dev->name, slave_dev->name, 1827 print_mac(mac, slave->perm_hwaddr), 1828 bond_dev->name, slave_dev->name); 1829 } 1830 1831 /* Inform AD package of unbinding of slave. */ 1832 if (bond->params.mode == BOND_MODE_8023AD) { 1833 /* must be called before the slave is 1834 * detached from the list 1835 */ 1836 bond_3ad_unbind_slave(slave); 1837 } 1838 1839 printk(KERN_INFO DRV_NAME 1840 ": %s: releasing %s interface %s\n", 1841 bond_dev->name, 1842 (slave->state == BOND_STATE_ACTIVE) 1843 ? "active" : "backup", 1844 slave_dev->name); 1845 1846 oldcurrent = bond->curr_active_slave; 1847 1848 bond->current_arp_slave = NULL; 1849 1850 /* release the slave from its bond */ 1851 bond_detach_slave(bond, slave); 1852 1853 bond_compute_features(bond); 1854 1855 if (bond->primary_slave == slave) { 1856 bond->primary_slave = NULL; 1857 } 1858 1859 if (oldcurrent == slave) { 1860 bond_change_active_slave(bond, NULL); 1861 } 1862 1863 if ((bond->params.mode == BOND_MODE_TLB) || 1864 (bond->params.mode == BOND_MODE_ALB)) { 1865 /* Must be called only after the slave has been 1866 * detached from the list and the curr_active_slave 1867 * has been cleared (if our_slave == old_current), 1868 * but before a new active slave is selected. 1869 */ 1870 write_unlock_bh(&bond->lock); 1871 bond_alb_deinit_slave(bond, slave); 1872 write_lock_bh(&bond->lock); 1873 } 1874 1875 if (oldcurrent == slave) { 1876 /* 1877 * Note that we hold RTNL over this sequence, so there 1878 * is no concern that another slave add/remove event 1879 * will interfere. 1880 */ 1881 write_unlock_bh(&bond->lock); 1882 read_lock(&bond->lock); 1883 write_lock_bh(&bond->curr_slave_lock); 1884 1885 bond_select_active_slave(bond); 1886 1887 write_unlock_bh(&bond->curr_slave_lock); 1888 read_unlock(&bond->lock); 1889 write_lock_bh(&bond->lock); 1890 } 1891 1892 if (bond->slave_cnt == 0) { 1893 bond_set_carrier(bond); 1894 1895 /* if the last slave was removed, zero the mac address 1896 * of the master so it will be set by the application 1897 * to the mac address of the first slave 1898 */ 1899 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1900 1901 if (list_empty(&bond->vlan_list)) { 1902 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1903 } else { 1904 printk(KERN_WARNING DRV_NAME 1905 ": %s: Warning: clearing HW address of %s while it " 1906 "still has VLANs.\n", 1907 bond_dev->name, bond_dev->name); 1908 printk(KERN_WARNING DRV_NAME 1909 ": %s: When re-adding slaves, make sure the bond's " 1910 "HW address matches its VLANs'.\n", 1911 bond_dev->name); 1912 } 1913 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1914 !bond_has_challenged_slaves(bond)) { 1915 printk(KERN_INFO DRV_NAME 1916 ": %s: last VLAN challenged slave %s " 1917 "left bond %s. VLAN blocking is removed\n", 1918 bond_dev->name, slave_dev->name, bond_dev->name); 1919 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1920 } 1921 1922 write_unlock_bh(&bond->lock); 1923 1924 /* must do this from outside any spinlocks */ 1925 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1926 1927 bond_del_vlans_from_slave(bond, slave_dev); 1928 1929 /* If the mode USES_PRIMARY, then we should only remove its 1930 * promisc and mc settings if it was the curr_active_slave, but that was 1931 * already taken care of above when we detached the slave 1932 */ 1933 if (!USES_PRIMARY(bond->params.mode)) { 1934 /* unset promiscuity level from slave */ 1935 if (bond_dev->flags & IFF_PROMISC) { 1936 dev_set_promiscuity(slave_dev, -1); 1937 } 1938 1939 /* unset allmulti level from slave */ 1940 if (bond_dev->flags & IFF_ALLMULTI) { 1941 dev_set_allmulti(slave_dev, -1); 1942 } 1943 1944 /* flush master's mc_list from slave */ 1945 netif_addr_lock_bh(bond_dev); 1946 bond_mc_list_flush(bond_dev, slave_dev); 1947 netif_addr_unlock_bh(bond_dev); 1948 } 1949 1950 netdev_set_master(slave_dev, NULL); 1951 1952 /* close slave before restoring its mac address */ 1953 dev_close(slave_dev); 1954 1955 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1956 /* restore original ("permanent") mac address */ 1957 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1958 addr.sa_family = slave_dev->type; 1959 dev_set_mac_address(slave_dev, &addr); 1960 } 1961 1962 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1963 IFF_SLAVE_INACTIVE | IFF_BONDING | 1964 IFF_SLAVE_NEEDARP); 1965 1966 kfree(slave); 1967 1968 return 0; /* deletion OK */ 1969 } 1970 1971 /* 1972 * Destroy a bonding device. 1973 * Must be under rtnl_lock when this function is called. 1974 */ 1975 void bond_destroy(struct bonding *bond) 1976 { 1977 bond_deinit(bond->dev); 1978 bond_destroy_sysfs_entry(bond); 1979 unregister_netdevice(bond->dev); 1980 } 1981 1982 static void bond_destructor(struct net_device *bond_dev) 1983 { 1984 struct bonding *bond = bond_dev->priv; 1985 1986 if (bond->wq) 1987 destroy_workqueue(bond->wq); 1988 1989 netif_addr_lock_bh(bond_dev); 1990 bond_mc_list_destroy(bond); 1991 netif_addr_unlock_bh(bond_dev); 1992 1993 free_netdev(bond_dev); 1994 } 1995 1996 /* 1997 * First release a slave and than destroy the bond if no more slaves iare left. 1998 * Must be under rtnl_lock when this function is called. 1999 */ 2000 int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev) 2001 { 2002 struct bonding *bond = bond_dev->priv; 2003 int ret; 2004 2005 ret = bond_release(bond_dev, slave_dev); 2006 if ((ret == 0) && (bond->slave_cnt == 0)) { 2007 printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n", 2008 bond_dev->name, bond_dev->name); 2009 bond_destroy(bond); 2010 } 2011 return ret; 2012 } 2013 2014 /* 2015 * This function releases all slaves. 2016 */ 2017 static int bond_release_all(struct net_device *bond_dev) 2018 { 2019 struct bonding *bond = bond_dev->priv; 2020 struct slave *slave; 2021 struct net_device *slave_dev; 2022 struct sockaddr addr; 2023 2024 write_lock_bh(&bond->lock); 2025 2026 netif_carrier_off(bond_dev); 2027 2028 if (bond->slave_cnt == 0) { 2029 goto out; 2030 } 2031 2032 bond->current_arp_slave = NULL; 2033 bond->primary_slave = NULL; 2034 bond_change_active_slave(bond, NULL); 2035 2036 while ((slave = bond->first_slave) != NULL) { 2037 /* Inform AD package of unbinding of slave 2038 * before slave is detached from the list. 2039 */ 2040 if (bond->params.mode == BOND_MODE_8023AD) { 2041 bond_3ad_unbind_slave(slave); 2042 } 2043 2044 slave_dev = slave->dev; 2045 bond_detach_slave(bond, slave); 2046 2047 /* now that the slave is detached, unlock and perform 2048 * all the undo steps that should not be called from 2049 * within a lock. 2050 */ 2051 write_unlock_bh(&bond->lock); 2052 2053 if ((bond->params.mode == BOND_MODE_TLB) || 2054 (bond->params.mode == BOND_MODE_ALB)) { 2055 /* must be called only after the slave 2056 * has been detached from the list 2057 */ 2058 bond_alb_deinit_slave(bond, slave); 2059 } 2060 2061 bond_compute_features(bond); 2062 2063 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2064 bond_del_vlans_from_slave(bond, slave_dev); 2065 2066 /* If the mode USES_PRIMARY, then we should only remove its 2067 * promisc and mc settings if it was the curr_active_slave, but that was 2068 * already taken care of above when we detached the slave 2069 */ 2070 if (!USES_PRIMARY(bond->params.mode)) { 2071 /* unset promiscuity level from slave */ 2072 if (bond_dev->flags & IFF_PROMISC) { 2073 dev_set_promiscuity(slave_dev, -1); 2074 } 2075 2076 /* unset allmulti level from slave */ 2077 if (bond_dev->flags & IFF_ALLMULTI) { 2078 dev_set_allmulti(slave_dev, -1); 2079 } 2080 2081 /* flush master's mc_list from slave */ 2082 netif_addr_lock_bh(bond_dev); 2083 bond_mc_list_flush(bond_dev, slave_dev); 2084 netif_addr_unlock_bh(bond_dev); 2085 } 2086 2087 netdev_set_master(slave_dev, NULL); 2088 2089 /* close slave before restoring its mac address */ 2090 dev_close(slave_dev); 2091 2092 if (!bond->params.fail_over_mac) { 2093 /* restore original ("permanent") mac address*/ 2094 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2095 addr.sa_family = slave_dev->type; 2096 dev_set_mac_address(slave_dev, &addr); 2097 } 2098 2099 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 2100 IFF_SLAVE_INACTIVE); 2101 2102 kfree(slave); 2103 2104 /* re-acquire the lock before getting the next slave */ 2105 write_lock_bh(&bond->lock); 2106 } 2107 2108 /* zero the mac address of the master so it will be 2109 * set by the application to the mac address of the 2110 * first slave 2111 */ 2112 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2113 2114 if (list_empty(&bond->vlan_list)) { 2115 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2116 } else { 2117 printk(KERN_WARNING DRV_NAME 2118 ": %s: Warning: clearing HW address of %s while it " 2119 "still has VLANs.\n", 2120 bond_dev->name, bond_dev->name); 2121 printk(KERN_WARNING DRV_NAME 2122 ": %s: When re-adding slaves, make sure the bond's " 2123 "HW address matches its VLANs'.\n", 2124 bond_dev->name); 2125 } 2126 2127 printk(KERN_INFO DRV_NAME 2128 ": %s: released all slaves\n", 2129 bond_dev->name); 2130 2131 out: 2132 write_unlock_bh(&bond->lock); 2133 2134 return 0; 2135 } 2136 2137 /* 2138 * This function changes the active slave to slave <slave_dev>. 2139 * It returns -EINVAL in the following cases. 2140 * - <slave_dev> is not found in the list. 2141 * - There is not active slave now. 2142 * - <slave_dev> is already active. 2143 * - The link state of <slave_dev> is not BOND_LINK_UP. 2144 * - <slave_dev> is not running. 2145 * In these cases, this fuction does nothing. 2146 * In the other cases, currnt_slave pointer is changed and 0 is returned. 2147 */ 2148 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2149 { 2150 struct bonding *bond = bond_dev->priv; 2151 struct slave *old_active = NULL; 2152 struct slave *new_active = NULL; 2153 int res = 0; 2154 2155 if (!USES_PRIMARY(bond->params.mode)) { 2156 return -EINVAL; 2157 } 2158 2159 /* Verify that master_dev is indeed the master of slave_dev */ 2160 if (!(slave_dev->flags & IFF_SLAVE) || 2161 (slave_dev->master != bond_dev)) { 2162 return -EINVAL; 2163 } 2164 2165 read_lock(&bond->lock); 2166 2167 read_lock(&bond->curr_slave_lock); 2168 old_active = bond->curr_active_slave; 2169 read_unlock(&bond->curr_slave_lock); 2170 2171 new_active = bond_get_slave_by_dev(bond, slave_dev); 2172 2173 /* 2174 * Changing to the current active: do nothing; return success. 2175 */ 2176 if (new_active && (new_active == old_active)) { 2177 read_unlock(&bond->lock); 2178 return 0; 2179 } 2180 2181 if ((new_active) && 2182 (old_active) && 2183 (new_active->link == BOND_LINK_UP) && 2184 IS_UP(new_active->dev)) { 2185 write_lock_bh(&bond->curr_slave_lock); 2186 bond_change_active_slave(bond, new_active); 2187 write_unlock_bh(&bond->curr_slave_lock); 2188 } else { 2189 res = -EINVAL; 2190 } 2191 2192 read_unlock(&bond->lock); 2193 2194 return res; 2195 } 2196 2197 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2198 { 2199 struct bonding *bond = bond_dev->priv; 2200 2201 info->bond_mode = bond->params.mode; 2202 info->miimon = bond->params.miimon; 2203 2204 read_lock(&bond->lock); 2205 info->num_slaves = bond->slave_cnt; 2206 read_unlock(&bond->lock); 2207 2208 return 0; 2209 } 2210 2211 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2212 { 2213 struct bonding *bond = bond_dev->priv; 2214 struct slave *slave; 2215 int i, found = 0; 2216 2217 if (info->slave_id < 0) { 2218 return -ENODEV; 2219 } 2220 2221 read_lock(&bond->lock); 2222 2223 bond_for_each_slave(bond, slave, i) { 2224 if (i == (int)info->slave_id) { 2225 found = 1; 2226 break; 2227 } 2228 } 2229 2230 read_unlock(&bond->lock); 2231 2232 if (found) { 2233 strcpy(info->slave_name, slave->dev->name); 2234 info->link = slave->link; 2235 info->state = slave->state; 2236 info->link_failure_count = slave->link_failure_count; 2237 } else { 2238 return -ENODEV; 2239 } 2240 2241 return 0; 2242 } 2243 2244 /*-------------------------------- Monitoring -------------------------------*/ 2245 2246 2247 static int bond_miimon_inspect(struct bonding *bond) 2248 { 2249 struct slave *slave; 2250 int i, link_state, commit = 0; 2251 2252 bond_for_each_slave(bond, slave, i) { 2253 slave->new_link = BOND_LINK_NOCHANGE; 2254 2255 link_state = bond_check_dev_link(bond, slave->dev, 0); 2256 2257 switch (slave->link) { 2258 case BOND_LINK_UP: 2259 if (link_state) 2260 continue; 2261 2262 slave->link = BOND_LINK_FAIL; 2263 slave->delay = bond->params.downdelay; 2264 if (slave->delay) { 2265 printk(KERN_INFO DRV_NAME 2266 ": %s: link status down for %s" 2267 "interface %s, disabling it in %d ms.\n", 2268 bond->dev->name, 2269 (bond->params.mode == 2270 BOND_MODE_ACTIVEBACKUP) ? 2271 ((slave->state == BOND_STATE_ACTIVE) ? 2272 "active " : "backup ") : "", 2273 slave->dev->name, 2274 bond->params.downdelay * bond->params.miimon); 2275 } 2276 /*FALLTHRU*/ 2277 case BOND_LINK_FAIL: 2278 if (link_state) { 2279 /* 2280 * recovered before downdelay expired 2281 */ 2282 slave->link = BOND_LINK_UP; 2283 slave->jiffies = jiffies; 2284 printk(KERN_INFO DRV_NAME 2285 ": %s: link status up again after %d " 2286 "ms for interface %s.\n", 2287 bond->dev->name, 2288 (bond->params.downdelay - slave->delay) * 2289 bond->params.miimon, 2290 slave->dev->name); 2291 continue; 2292 } 2293 2294 if (slave->delay <= 0) { 2295 slave->new_link = BOND_LINK_DOWN; 2296 commit++; 2297 continue; 2298 } 2299 2300 slave->delay--; 2301 break; 2302 2303 case BOND_LINK_DOWN: 2304 if (!link_state) 2305 continue; 2306 2307 slave->link = BOND_LINK_BACK; 2308 slave->delay = bond->params.updelay; 2309 2310 if (slave->delay) { 2311 printk(KERN_INFO DRV_NAME 2312 ": %s: link status up for " 2313 "interface %s, enabling it in %d ms.\n", 2314 bond->dev->name, slave->dev->name, 2315 bond->params.updelay * 2316 bond->params.miimon); 2317 } 2318 /*FALLTHRU*/ 2319 case BOND_LINK_BACK: 2320 if (!link_state) { 2321 slave->link = BOND_LINK_DOWN; 2322 printk(KERN_INFO DRV_NAME 2323 ": %s: link status down again after %d " 2324 "ms for interface %s.\n", 2325 bond->dev->name, 2326 (bond->params.updelay - slave->delay) * 2327 bond->params.miimon, 2328 slave->dev->name); 2329 2330 continue; 2331 } 2332 2333 if (slave->delay <= 0) { 2334 slave->new_link = BOND_LINK_UP; 2335 commit++; 2336 continue; 2337 } 2338 2339 slave->delay--; 2340 break; 2341 } 2342 } 2343 2344 return commit; 2345 } 2346 2347 static void bond_miimon_commit(struct bonding *bond) 2348 { 2349 struct slave *slave; 2350 int i; 2351 2352 bond_for_each_slave(bond, slave, i) { 2353 switch (slave->new_link) { 2354 case BOND_LINK_NOCHANGE: 2355 continue; 2356 2357 case BOND_LINK_UP: 2358 slave->link = BOND_LINK_UP; 2359 slave->jiffies = jiffies; 2360 2361 if (bond->params.mode == BOND_MODE_8023AD) { 2362 /* prevent it from being the active one */ 2363 slave->state = BOND_STATE_BACKUP; 2364 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2365 /* make it immediately active */ 2366 slave->state = BOND_STATE_ACTIVE; 2367 } else if (slave != bond->primary_slave) { 2368 /* prevent it from being the active one */ 2369 slave->state = BOND_STATE_BACKUP; 2370 } 2371 2372 printk(KERN_INFO DRV_NAME 2373 ": %s: link status definitely " 2374 "up for interface %s.\n", 2375 bond->dev->name, slave->dev->name); 2376 2377 /* notify ad that the link status has changed */ 2378 if (bond->params.mode == BOND_MODE_8023AD) 2379 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2380 2381 if ((bond->params.mode == BOND_MODE_TLB) || 2382 (bond->params.mode == BOND_MODE_ALB)) 2383 bond_alb_handle_link_change(bond, slave, 2384 BOND_LINK_UP); 2385 2386 if (!bond->curr_active_slave || 2387 (slave == bond->primary_slave)) 2388 goto do_failover; 2389 2390 continue; 2391 2392 case BOND_LINK_DOWN: 2393 if (slave->link_failure_count < UINT_MAX) 2394 slave->link_failure_count++; 2395 2396 slave->link = BOND_LINK_DOWN; 2397 2398 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2399 bond->params.mode == BOND_MODE_8023AD) 2400 bond_set_slave_inactive_flags(slave); 2401 2402 printk(KERN_INFO DRV_NAME 2403 ": %s: link status definitely down for " 2404 "interface %s, disabling it\n", 2405 bond->dev->name, slave->dev->name); 2406 2407 if (bond->params.mode == BOND_MODE_8023AD) 2408 bond_3ad_handle_link_change(slave, 2409 BOND_LINK_DOWN); 2410 2411 if (bond->params.mode == BOND_MODE_TLB || 2412 bond->params.mode == BOND_MODE_ALB) 2413 bond_alb_handle_link_change(bond, slave, 2414 BOND_LINK_DOWN); 2415 2416 if (slave == bond->curr_active_slave) 2417 goto do_failover; 2418 2419 continue; 2420 2421 default: 2422 printk(KERN_ERR DRV_NAME 2423 ": %s: invalid new link %d on slave %s\n", 2424 bond->dev->name, slave->new_link, 2425 slave->dev->name); 2426 slave->new_link = BOND_LINK_NOCHANGE; 2427 2428 continue; 2429 } 2430 2431 do_failover: 2432 ASSERT_RTNL(); 2433 write_lock_bh(&bond->curr_slave_lock); 2434 bond_select_active_slave(bond); 2435 write_unlock_bh(&bond->curr_slave_lock); 2436 } 2437 2438 bond_set_carrier(bond); 2439 } 2440 2441 /* 2442 * bond_mii_monitor 2443 * 2444 * Really a wrapper that splits the mii monitor into two phases: an 2445 * inspection, then (if inspection indicates something needs to be done) 2446 * an acquisition of appropriate locks followed by a commit phase to 2447 * implement whatever link state changes are indicated. 2448 */ 2449 void bond_mii_monitor(struct work_struct *work) 2450 { 2451 struct bonding *bond = container_of(work, struct bonding, 2452 mii_work.work); 2453 2454 read_lock(&bond->lock); 2455 if (bond->kill_timers) 2456 goto out; 2457 2458 if (bond->slave_cnt == 0) 2459 goto re_arm; 2460 2461 if (bond->send_grat_arp) { 2462 read_lock(&bond->curr_slave_lock); 2463 bond_send_gratuitous_arp(bond); 2464 read_unlock(&bond->curr_slave_lock); 2465 } 2466 2467 if (bond_miimon_inspect(bond)) { 2468 read_unlock(&bond->lock); 2469 rtnl_lock(); 2470 read_lock(&bond->lock); 2471 2472 bond_miimon_commit(bond); 2473 2474 read_unlock(&bond->lock); 2475 rtnl_unlock(); /* might sleep, hold no other locks */ 2476 read_lock(&bond->lock); 2477 } 2478 2479 re_arm: 2480 if (bond->params.miimon) 2481 queue_delayed_work(bond->wq, &bond->mii_work, 2482 msecs_to_jiffies(bond->params.miimon)); 2483 out: 2484 read_unlock(&bond->lock); 2485 } 2486 2487 static __be32 bond_glean_dev_ip(struct net_device *dev) 2488 { 2489 struct in_device *idev; 2490 struct in_ifaddr *ifa; 2491 __be32 addr = 0; 2492 2493 if (!dev) 2494 return 0; 2495 2496 rcu_read_lock(); 2497 idev = __in_dev_get_rcu(dev); 2498 if (!idev) 2499 goto out; 2500 2501 ifa = idev->ifa_list; 2502 if (!ifa) 2503 goto out; 2504 2505 addr = ifa->ifa_local; 2506 out: 2507 rcu_read_unlock(); 2508 return addr; 2509 } 2510 2511 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2512 { 2513 struct vlan_entry *vlan; 2514 2515 if (ip == bond->master_ip) 2516 return 1; 2517 2518 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2519 if (ip == vlan->vlan_ip) 2520 return 1; 2521 } 2522 2523 return 0; 2524 } 2525 2526 /* 2527 * We go to the (large) trouble of VLAN tagging ARP frames because 2528 * switches in VLAN mode (especially if ports are configured as 2529 * "native" to a VLAN) might not pass non-tagged frames. 2530 */ 2531 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2532 { 2533 struct sk_buff *skb; 2534 2535 dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2536 slave_dev->name, dest_ip, src_ip, vlan_id); 2537 2538 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2539 NULL, slave_dev->dev_addr, NULL); 2540 2541 if (!skb) { 2542 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); 2543 return; 2544 } 2545 if (vlan_id) { 2546 skb = vlan_put_tag(skb, vlan_id); 2547 if (!skb) { 2548 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); 2549 return; 2550 } 2551 } 2552 arp_xmit(skb); 2553 } 2554 2555 2556 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2557 { 2558 int i, vlan_id, rv; 2559 __be32 *targets = bond->params.arp_targets; 2560 struct vlan_entry *vlan; 2561 struct net_device *vlan_dev; 2562 struct flowi fl; 2563 struct rtable *rt; 2564 2565 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2566 if (!targets[i]) 2567 continue; 2568 dprintk("basa: target %x\n", targets[i]); 2569 if (list_empty(&bond->vlan_list)) { 2570 dprintk("basa: empty vlan: arp_send\n"); 2571 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2572 bond->master_ip, 0); 2573 continue; 2574 } 2575 2576 /* 2577 * If VLANs are configured, we do a route lookup to 2578 * determine which VLAN interface would be used, so we 2579 * can tag the ARP with the proper VLAN tag. 2580 */ 2581 memset(&fl, 0, sizeof(fl)); 2582 fl.fl4_dst = targets[i]; 2583 fl.fl4_tos = RTO_ONLINK; 2584 2585 rv = ip_route_output_key(&init_net, &rt, &fl); 2586 if (rv) { 2587 if (net_ratelimit()) { 2588 printk(KERN_WARNING DRV_NAME 2589 ": %s: no route to arp_ip_target %u.%u.%u.%u\n", 2590 bond->dev->name, NIPQUAD(fl.fl4_dst)); 2591 } 2592 continue; 2593 } 2594 2595 /* 2596 * This target is not on a VLAN 2597 */ 2598 if (rt->u.dst.dev == bond->dev) { 2599 ip_rt_put(rt); 2600 dprintk("basa: rtdev == bond->dev: arp_send\n"); 2601 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2602 bond->master_ip, 0); 2603 continue; 2604 } 2605 2606 vlan_id = 0; 2607 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2608 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2609 if (vlan_dev == rt->u.dst.dev) { 2610 vlan_id = vlan->vlan_id; 2611 dprintk("basa: vlan match on %s %d\n", 2612 vlan_dev->name, vlan_id); 2613 break; 2614 } 2615 } 2616 2617 if (vlan_id) { 2618 ip_rt_put(rt); 2619 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2620 vlan->vlan_ip, vlan_id); 2621 continue; 2622 } 2623 2624 if (net_ratelimit()) { 2625 printk(KERN_WARNING DRV_NAME 2626 ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n", 2627 bond->dev->name, NIPQUAD(fl.fl4_dst), 2628 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); 2629 } 2630 ip_rt_put(rt); 2631 } 2632 } 2633 2634 /* 2635 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2636 * for each VLAN above us. 2637 * 2638 * Caller must hold curr_slave_lock for read or better 2639 */ 2640 static void bond_send_gratuitous_arp(struct bonding *bond) 2641 { 2642 struct slave *slave = bond->curr_active_slave; 2643 struct vlan_entry *vlan; 2644 struct net_device *vlan_dev; 2645 2646 dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, 2647 slave ? slave->dev->name : "NULL"); 2648 2649 if (!slave || !bond->send_grat_arp || 2650 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 2651 return; 2652 2653 bond->send_grat_arp--; 2654 2655 if (bond->master_ip) { 2656 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2657 bond->master_ip, 0); 2658 } 2659 2660 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2661 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2662 if (vlan->vlan_ip) { 2663 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2664 vlan->vlan_ip, vlan->vlan_id); 2665 } 2666 } 2667 } 2668 2669 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2670 { 2671 int i; 2672 __be32 *targets = bond->params.arp_targets; 2673 2674 targets = bond->params.arp_targets; 2675 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2676 dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] " 2677 "%u.%u.%u.%u bhti(tip) %d\n", 2678 NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]), 2679 bond_has_this_ip(bond, tip)); 2680 if (sip == targets[i]) { 2681 if (bond_has_this_ip(bond, tip)) 2682 slave->last_arp_rx = jiffies; 2683 return; 2684 } 2685 } 2686 } 2687 2688 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2689 { 2690 struct arphdr *arp; 2691 struct slave *slave; 2692 struct bonding *bond; 2693 unsigned char *arp_ptr; 2694 __be32 sip, tip; 2695 2696 if (dev_net(dev) != &init_net) 2697 goto out; 2698 2699 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2700 goto out; 2701 2702 bond = dev->priv; 2703 read_lock(&bond->lock); 2704 2705 dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2706 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2707 orig_dev ? orig_dev->name : "NULL"); 2708 2709 slave = bond_get_slave_by_dev(bond, orig_dev); 2710 if (!slave || !slave_do_arp_validate(bond, slave)) 2711 goto out_unlock; 2712 2713 if (!pskb_may_pull(skb, arp_hdr_len(dev))) 2714 goto out_unlock; 2715 2716 arp = arp_hdr(skb); 2717 if (arp->ar_hln != dev->addr_len || 2718 skb->pkt_type == PACKET_OTHERHOST || 2719 skb->pkt_type == PACKET_LOOPBACK || 2720 arp->ar_hrd != htons(ARPHRD_ETHER) || 2721 arp->ar_pro != htons(ETH_P_IP) || 2722 arp->ar_pln != 4) 2723 goto out_unlock; 2724 2725 arp_ptr = (unsigned char *)(arp + 1); 2726 arp_ptr += dev->addr_len; 2727 memcpy(&sip, arp_ptr, 4); 2728 arp_ptr += 4 + dev->addr_len; 2729 memcpy(&tip, arp_ptr, 4); 2730 2731 dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u" 2732 " tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name, 2733 slave->state, bond->params.arp_validate, 2734 slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip)); 2735 2736 /* 2737 * Backup slaves won't see the ARP reply, but do come through 2738 * here for each ARP probe (so we swap the sip/tip to validate 2739 * the probe). In a "redundant switch, common router" type of 2740 * configuration, the ARP probe will (hopefully) travel from 2741 * the active, through one switch, the router, then the other 2742 * switch before reaching the backup. 2743 */ 2744 if (slave->state == BOND_STATE_ACTIVE) 2745 bond_validate_arp(bond, slave, sip, tip); 2746 else 2747 bond_validate_arp(bond, slave, tip, sip); 2748 2749 out_unlock: 2750 read_unlock(&bond->lock); 2751 out: 2752 dev_kfree_skb(skb); 2753 return NET_RX_SUCCESS; 2754 } 2755 2756 /* 2757 * this function is called regularly to monitor each slave's link 2758 * ensuring that traffic is being sent and received when arp monitoring 2759 * is used in load-balancing mode. if the adapter has been dormant, then an 2760 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2761 * arp monitoring in active backup mode. 2762 */ 2763 void bond_loadbalance_arp_mon(struct work_struct *work) 2764 { 2765 struct bonding *bond = container_of(work, struct bonding, 2766 arp_work.work); 2767 struct slave *slave, *oldcurrent; 2768 int do_failover = 0; 2769 int delta_in_ticks; 2770 int i; 2771 2772 read_lock(&bond->lock); 2773 2774 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2775 2776 if (bond->kill_timers) { 2777 goto out; 2778 } 2779 2780 if (bond->slave_cnt == 0) { 2781 goto re_arm; 2782 } 2783 2784 read_lock(&bond->curr_slave_lock); 2785 oldcurrent = bond->curr_active_slave; 2786 read_unlock(&bond->curr_slave_lock); 2787 2788 /* see if any of the previous devices are up now (i.e. they have 2789 * xmt and rcv traffic). the curr_active_slave does not come into 2790 * the picture unless it is null. also, slave->jiffies is not needed 2791 * here because we send an arp on each slave and give a slave as 2792 * long as it needs to get the tx/rx within the delta. 2793 * TODO: what about up/down delay in arp mode? it wasn't here before 2794 * so it can wait 2795 */ 2796 bond_for_each_slave(bond, slave, i) { 2797 if (slave->link != BOND_LINK_UP) { 2798 if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) && 2799 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) { 2800 2801 slave->link = BOND_LINK_UP; 2802 slave->state = BOND_STATE_ACTIVE; 2803 2804 /* primary_slave has no meaning in round-robin 2805 * mode. the window of a slave being up and 2806 * curr_active_slave being null after enslaving 2807 * is closed. 2808 */ 2809 if (!oldcurrent) { 2810 printk(KERN_INFO DRV_NAME 2811 ": %s: link status definitely " 2812 "up for interface %s, ", 2813 bond->dev->name, 2814 slave->dev->name); 2815 do_failover = 1; 2816 } else { 2817 printk(KERN_INFO DRV_NAME 2818 ": %s: interface %s is now up\n", 2819 bond->dev->name, 2820 slave->dev->name); 2821 } 2822 } 2823 } else { 2824 /* slave->link == BOND_LINK_UP */ 2825 2826 /* not all switches will respond to an arp request 2827 * when the source ip is 0, so don't take the link down 2828 * if we don't know our ip yet 2829 */ 2830 if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) || 2831 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) { 2832 2833 slave->link = BOND_LINK_DOWN; 2834 slave->state = BOND_STATE_BACKUP; 2835 2836 if (slave->link_failure_count < UINT_MAX) { 2837 slave->link_failure_count++; 2838 } 2839 2840 printk(KERN_INFO DRV_NAME 2841 ": %s: interface %s is now down.\n", 2842 bond->dev->name, 2843 slave->dev->name); 2844 2845 if (slave == oldcurrent) { 2846 do_failover = 1; 2847 } 2848 } 2849 } 2850 2851 /* note: if switch is in round-robin mode, all links 2852 * must tx arp to ensure all links rx an arp - otherwise 2853 * links may oscillate or not come up at all; if switch is 2854 * in something like xor mode, there is nothing we can 2855 * do - all replies will be rx'ed on same link causing slaves 2856 * to be unstable during low/no traffic periods 2857 */ 2858 if (IS_UP(slave->dev)) { 2859 bond_arp_send_all(bond, slave); 2860 } 2861 } 2862 2863 if (do_failover) { 2864 write_lock_bh(&bond->curr_slave_lock); 2865 2866 bond_select_active_slave(bond); 2867 2868 write_unlock_bh(&bond->curr_slave_lock); 2869 } 2870 2871 re_arm: 2872 if (bond->params.arp_interval) 2873 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2874 out: 2875 read_unlock(&bond->lock); 2876 } 2877 2878 /* 2879 * Called to inspect slaves for active-backup mode ARP monitor link state 2880 * changes. Sets new_link in slaves to specify what action should take 2881 * place for the slave. Returns 0 if no changes are found, >0 if changes 2882 * to link states must be committed. 2883 * 2884 * Called with bond->lock held for read. 2885 */ 2886 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2887 { 2888 struct slave *slave; 2889 int i, commit = 0; 2890 2891 bond_for_each_slave(bond, slave, i) { 2892 slave->new_link = BOND_LINK_NOCHANGE; 2893 2894 if (slave->link != BOND_LINK_UP) { 2895 if (time_before_eq(jiffies, slave_last_rx(bond, slave) + 2896 delta_in_ticks)) { 2897 slave->new_link = BOND_LINK_UP; 2898 commit++; 2899 } 2900 2901 continue; 2902 } 2903 2904 /* 2905 * Give slaves 2*delta after being enslaved or made 2906 * active. This avoids bouncing, as the last receive 2907 * times need a full ARP monitor cycle to be updated. 2908 */ 2909 if (!time_after_eq(jiffies, slave->jiffies + 2910 2 * delta_in_ticks)) 2911 continue; 2912 2913 /* 2914 * Backup slave is down if: 2915 * - No current_arp_slave AND 2916 * - more than 3*delta since last receive AND 2917 * - the bond has an IP address 2918 * 2919 * Note: a non-null current_arp_slave indicates 2920 * the curr_active_slave went down and we are 2921 * searching for a new one; under this condition 2922 * we only take the curr_active_slave down - this 2923 * gives each slave a chance to tx/rx traffic 2924 * before being taken out 2925 */ 2926 if (slave->state == BOND_STATE_BACKUP && 2927 !bond->current_arp_slave && 2928 time_after(jiffies, slave_last_rx(bond, slave) + 2929 3 * delta_in_ticks)) { 2930 slave->new_link = BOND_LINK_DOWN; 2931 commit++; 2932 } 2933 2934 /* 2935 * Active slave is down if: 2936 * - more than 2*delta since transmitting OR 2937 * - (more than 2*delta since receive AND 2938 * the bond has an IP address) 2939 */ 2940 if ((slave->state == BOND_STATE_ACTIVE) && 2941 (time_after_eq(jiffies, slave->dev->trans_start + 2942 2 * delta_in_ticks) || 2943 (time_after_eq(jiffies, slave_last_rx(bond, slave) 2944 + 2 * delta_in_ticks)))) { 2945 slave->new_link = BOND_LINK_DOWN; 2946 commit++; 2947 } 2948 } 2949 2950 read_lock(&bond->curr_slave_lock); 2951 2952 /* 2953 * Trigger a commit if the primary option setting has changed. 2954 */ 2955 if (bond->primary_slave && 2956 (bond->primary_slave != bond->curr_active_slave) && 2957 (bond->primary_slave->link == BOND_LINK_UP)) 2958 commit++; 2959 2960 read_unlock(&bond->curr_slave_lock); 2961 2962 return commit; 2963 } 2964 2965 /* 2966 * Called to commit link state changes noted by inspection step of 2967 * active-backup mode ARP monitor. 2968 * 2969 * Called with RTNL and bond->lock for read. 2970 */ 2971 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2972 { 2973 struct slave *slave; 2974 int i; 2975 2976 bond_for_each_slave(bond, slave, i) { 2977 switch (slave->new_link) { 2978 case BOND_LINK_NOCHANGE: 2979 continue; 2980 2981 case BOND_LINK_UP: 2982 write_lock_bh(&bond->curr_slave_lock); 2983 2984 if (!bond->curr_active_slave && 2985 time_before_eq(jiffies, slave->dev->trans_start + 2986 delta_in_ticks)) { 2987 slave->link = BOND_LINK_UP; 2988 bond_change_active_slave(bond, slave); 2989 bond->current_arp_slave = NULL; 2990 2991 printk(KERN_INFO DRV_NAME 2992 ": %s: %s is up and now the " 2993 "active interface\n", 2994 bond->dev->name, slave->dev->name); 2995 2996 } else if (bond->curr_active_slave != slave) { 2997 /* this slave has just come up but we 2998 * already have a current slave; this can 2999 * also happen if bond_enslave adds a new 3000 * slave that is up while we are searching 3001 * for a new slave 3002 */ 3003 slave->link = BOND_LINK_UP; 3004 bond_set_slave_inactive_flags(slave); 3005 bond->current_arp_slave = NULL; 3006 3007 printk(KERN_INFO DRV_NAME 3008 ": %s: backup interface %s is now up\n", 3009 bond->dev->name, slave->dev->name); 3010 } 3011 3012 write_unlock_bh(&bond->curr_slave_lock); 3013 3014 break; 3015 3016 case BOND_LINK_DOWN: 3017 if (slave->link_failure_count < UINT_MAX) 3018 slave->link_failure_count++; 3019 3020 slave->link = BOND_LINK_DOWN; 3021 3022 if (slave == bond->curr_active_slave) { 3023 printk(KERN_INFO DRV_NAME 3024 ": %s: link status down for active " 3025 "interface %s, disabling it\n", 3026 bond->dev->name, slave->dev->name); 3027 3028 bond_set_slave_inactive_flags(slave); 3029 3030 write_lock_bh(&bond->curr_slave_lock); 3031 3032 bond_select_active_slave(bond); 3033 if (bond->curr_active_slave) 3034 bond->curr_active_slave->jiffies = 3035 jiffies; 3036 3037 write_unlock_bh(&bond->curr_slave_lock); 3038 3039 bond->current_arp_slave = NULL; 3040 3041 } else if (slave->state == BOND_STATE_BACKUP) { 3042 printk(KERN_INFO DRV_NAME 3043 ": %s: backup interface %s is now down\n", 3044 bond->dev->name, slave->dev->name); 3045 3046 bond_set_slave_inactive_flags(slave); 3047 } 3048 break; 3049 3050 default: 3051 printk(KERN_ERR DRV_NAME 3052 ": %s: impossible: new_link %d on slave %s\n", 3053 bond->dev->name, slave->new_link, 3054 slave->dev->name); 3055 } 3056 } 3057 3058 /* 3059 * No race with changes to primary via sysfs, as we hold rtnl. 3060 */ 3061 if (bond->primary_slave && 3062 (bond->primary_slave != bond->curr_active_slave) && 3063 (bond->primary_slave->link == BOND_LINK_UP)) { 3064 write_lock_bh(&bond->curr_slave_lock); 3065 bond_change_active_slave(bond, bond->primary_slave); 3066 write_unlock_bh(&bond->curr_slave_lock); 3067 } 3068 3069 bond_set_carrier(bond); 3070 } 3071 3072 /* 3073 * Send ARP probes for active-backup mode ARP monitor. 3074 * 3075 * Called with bond->lock held for read. 3076 */ 3077 static void bond_ab_arp_probe(struct bonding *bond) 3078 { 3079 struct slave *slave; 3080 int i; 3081 3082 read_lock(&bond->curr_slave_lock); 3083 3084 if (bond->current_arp_slave && bond->curr_active_slave) 3085 printk("PROBE: c_arp %s && cas %s BAD\n", 3086 bond->current_arp_slave->dev->name, 3087 bond->curr_active_slave->dev->name); 3088 3089 if (bond->curr_active_slave) { 3090 bond_arp_send_all(bond, bond->curr_active_slave); 3091 read_unlock(&bond->curr_slave_lock); 3092 return; 3093 } 3094 3095 read_unlock(&bond->curr_slave_lock); 3096 3097 /* if we don't have a curr_active_slave, search for the next available 3098 * backup slave from the current_arp_slave and make it the candidate 3099 * for becoming the curr_active_slave 3100 */ 3101 3102 if (!bond->current_arp_slave) { 3103 bond->current_arp_slave = bond->first_slave; 3104 if (!bond->current_arp_slave) 3105 return; 3106 } 3107 3108 bond_set_slave_inactive_flags(bond->current_arp_slave); 3109 3110 /* search for next candidate */ 3111 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3112 if (IS_UP(slave->dev)) { 3113 slave->link = BOND_LINK_BACK; 3114 bond_set_slave_active_flags(slave); 3115 bond_arp_send_all(bond, slave); 3116 slave->jiffies = jiffies; 3117 bond->current_arp_slave = slave; 3118 break; 3119 } 3120 3121 /* if the link state is up at this point, we 3122 * mark it down - this can happen if we have 3123 * simultaneous link failures and 3124 * reselect_active_interface doesn't make this 3125 * one the current slave so it is still marked 3126 * up when it is actually down 3127 */ 3128 if (slave->link == BOND_LINK_UP) { 3129 slave->link = BOND_LINK_DOWN; 3130 if (slave->link_failure_count < UINT_MAX) 3131 slave->link_failure_count++; 3132 3133 bond_set_slave_inactive_flags(slave); 3134 3135 printk(KERN_INFO DRV_NAME 3136 ": %s: backup interface %s is now down.\n", 3137 bond->dev->name, slave->dev->name); 3138 } 3139 } 3140 } 3141 3142 void bond_activebackup_arp_mon(struct work_struct *work) 3143 { 3144 struct bonding *bond = container_of(work, struct bonding, 3145 arp_work.work); 3146 int delta_in_ticks; 3147 3148 read_lock(&bond->lock); 3149 3150 if (bond->kill_timers) 3151 goto out; 3152 3153 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3154 3155 if (bond->slave_cnt == 0) 3156 goto re_arm; 3157 3158 if (bond->send_grat_arp) { 3159 read_lock(&bond->curr_slave_lock); 3160 bond_send_gratuitous_arp(bond); 3161 read_unlock(&bond->curr_slave_lock); 3162 } 3163 3164 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3165 read_unlock(&bond->lock); 3166 rtnl_lock(); 3167 read_lock(&bond->lock); 3168 3169 bond_ab_arp_commit(bond, delta_in_ticks); 3170 3171 read_unlock(&bond->lock); 3172 rtnl_unlock(); 3173 read_lock(&bond->lock); 3174 } 3175 3176 bond_ab_arp_probe(bond); 3177 3178 re_arm: 3179 if (bond->params.arp_interval) { 3180 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3181 } 3182 out: 3183 read_unlock(&bond->lock); 3184 } 3185 3186 /*------------------------------ proc/seq_file-------------------------------*/ 3187 3188 #ifdef CONFIG_PROC_FS 3189 3190 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 3191 { 3192 struct bonding *bond = seq->private; 3193 loff_t off = 0; 3194 struct slave *slave; 3195 int i; 3196 3197 /* make sure the bond won't be taken away */ 3198 read_lock(&dev_base_lock); 3199 read_lock(&bond->lock); 3200 3201 if (*pos == 0) { 3202 return SEQ_START_TOKEN; 3203 } 3204 3205 bond_for_each_slave(bond, slave, i) { 3206 if (++off == *pos) { 3207 return slave; 3208 } 3209 } 3210 3211 return NULL; 3212 } 3213 3214 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3215 { 3216 struct bonding *bond = seq->private; 3217 struct slave *slave = v; 3218 3219 ++*pos; 3220 if (v == SEQ_START_TOKEN) { 3221 return bond->first_slave; 3222 } 3223 3224 slave = slave->next; 3225 3226 return (slave == bond->first_slave) ? NULL : slave; 3227 } 3228 3229 static void bond_info_seq_stop(struct seq_file *seq, void *v) 3230 { 3231 struct bonding *bond = seq->private; 3232 3233 read_unlock(&bond->lock); 3234 read_unlock(&dev_base_lock); 3235 } 3236 3237 static void bond_info_show_master(struct seq_file *seq) 3238 { 3239 struct bonding *bond = seq->private; 3240 struct slave *curr; 3241 int i; 3242 u32 target; 3243 3244 read_lock(&bond->curr_slave_lock); 3245 curr = bond->curr_active_slave; 3246 read_unlock(&bond->curr_slave_lock); 3247 3248 seq_printf(seq, "Bonding Mode: %s", 3249 bond_mode_name(bond->params.mode)); 3250 3251 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP && 3252 bond->params.fail_over_mac) 3253 seq_printf(seq, " (fail_over_mac %s)", 3254 fail_over_mac_tbl[bond->params.fail_over_mac].modename); 3255 3256 seq_printf(seq, "\n"); 3257 3258 if (bond->params.mode == BOND_MODE_XOR || 3259 bond->params.mode == BOND_MODE_8023AD) { 3260 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 3261 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 3262 bond->params.xmit_policy); 3263 } 3264 3265 if (USES_PRIMARY(bond->params.mode)) { 3266 seq_printf(seq, "Primary Slave: %s\n", 3267 (bond->primary_slave) ? 3268 bond->primary_slave->dev->name : "None"); 3269 3270 seq_printf(seq, "Currently Active Slave: %s\n", 3271 (curr) ? curr->dev->name : "None"); 3272 } 3273 3274 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3275 "up" : "down"); 3276 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3277 seq_printf(seq, "Up Delay (ms): %d\n", 3278 bond->params.updelay * bond->params.miimon); 3279 seq_printf(seq, "Down Delay (ms): %d\n", 3280 bond->params.downdelay * bond->params.miimon); 3281 3282 3283 /* ARP information */ 3284 if(bond->params.arp_interval > 0) { 3285 int printed=0; 3286 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3287 bond->params.arp_interval); 3288 3289 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3290 3291 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { 3292 if (!bond->params.arp_targets[i]) 3293 continue; 3294 if (printed) 3295 seq_printf(seq, ","); 3296 target = ntohl(bond->params.arp_targets[i]); 3297 seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target)); 3298 printed = 1; 3299 } 3300 seq_printf(seq, "\n"); 3301 } 3302 3303 if (bond->params.mode == BOND_MODE_8023AD) { 3304 struct ad_info ad_info; 3305 DECLARE_MAC_BUF(mac); 3306 3307 seq_puts(seq, "\n802.3ad info\n"); 3308 seq_printf(seq, "LACP rate: %s\n", 3309 (bond->params.lacp_fast) ? "fast" : "slow"); 3310 3311 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3312 seq_printf(seq, "bond %s has no active aggregator\n", 3313 bond->dev->name); 3314 } else { 3315 seq_printf(seq, "Active Aggregator Info:\n"); 3316 3317 seq_printf(seq, "\tAggregator ID: %d\n", 3318 ad_info.aggregator_id); 3319 seq_printf(seq, "\tNumber of ports: %d\n", 3320 ad_info.ports); 3321 seq_printf(seq, "\tActor Key: %d\n", 3322 ad_info.actor_key); 3323 seq_printf(seq, "\tPartner Key: %d\n", 3324 ad_info.partner_key); 3325 seq_printf(seq, "\tPartner Mac Address: %s\n", 3326 print_mac(mac, ad_info.partner_system)); 3327 } 3328 } 3329 } 3330 3331 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) 3332 { 3333 struct bonding *bond = seq->private; 3334 DECLARE_MAC_BUF(mac); 3335 3336 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3337 seq_printf(seq, "MII Status: %s\n", 3338 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3339 seq_printf(seq, "Link Failure Count: %u\n", 3340 slave->link_failure_count); 3341 3342 seq_printf(seq, 3343 "Permanent HW addr: %s\n", 3344 print_mac(mac, slave->perm_hwaddr)); 3345 3346 if (bond->params.mode == BOND_MODE_8023AD) { 3347 const struct aggregator *agg 3348 = SLAVE_AD_INFO(slave).port.aggregator; 3349 3350 if (agg) { 3351 seq_printf(seq, "Aggregator ID: %d\n", 3352 agg->aggregator_identifier); 3353 } else { 3354 seq_puts(seq, "Aggregator ID: N/A\n"); 3355 } 3356 } 3357 } 3358 3359 static int bond_info_seq_show(struct seq_file *seq, void *v) 3360 { 3361 if (v == SEQ_START_TOKEN) { 3362 seq_printf(seq, "%s\n", version); 3363 bond_info_show_master(seq); 3364 } else { 3365 bond_info_show_slave(seq, v); 3366 } 3367 3368 return 0; 3369 } 3370 3371 static struct seq_operations bond_info_seq_ops = { 3372 .start = bond_info_seq_start, 3373 .next = bond_info_seq_next, 3374 .stop = bond_info_seq_stop, 3375 .show = bond_info_seq_show, 3376 }; 3377 3378 static int bond_info_open(struct inode *inode, struct file *file) 3379 { 3380 struct seq_file *seq; 3381 struct proc_dir_entry *proc; 3382 int res; 3383 3384 res = seq_open(file, &bond_info_seq_ops); 3385 if (!res) { 3386 /* recover the pointer buried in proc_dir_entry data */ 3387 seq = file->private_data; 3388 proc = PDE(inode); 3389 seq->private = proc->data; 3390 } 3391 3392 return res; 3393 } 3394 3395 static const struct file_operations bond_info_fops = { 3396 .owner = THIS_MODULE, 3397 .open = bond_info_open, 3398 .read = seq_read, 3399 .llseek = seq_lseek, 3400 .release = seq_release, 3401 }; 3402 3403 static int bond_create_proc_entry(struct bonding *bond) 3404 { 3405 struct net_device *bond_dev = bond->dev; 3406 3407 if (bond_proc_dir) { 3408 bond->proc_entry = proc_create_data(bond_dev->name, 3409 S_IRUGO, bond_proc_dir, 3410 &bond_info_fops, bond); 3411 if (bond->proc_entry == NULL) { 3412 printk(KERN_WARNING DRV_NAME 3413 ": Warning: Cannot create /proc/net/%s/%s\n", 3414 DRV_NAME, bond_dev->name); 3415 } else { 3416 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3417 } 3418 } 3419 3420 return 0; 3421 } 3422 3423 static void bond_remove_proc_entry(struct bonding *bond) 3424 { 3425 if (bond_proc_dir && bond->proc_entry) { 3426 remove_proc_entry(bond->proc_file_name, bond_proc_dir); 3427 memset(bond->proc_file_name, 0, IFNAMSIZ); 3428 bond->proc_entry = NULL; 3429 } 3430 } 3431 3432 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3433 * Caller must hold rtnl_lock. 3434 */ 3435 static void bond_create_proc_dir(void) 3436 { 3437 int len = strlen(DRV_NAME); 3438 3439 for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir; 3440 bond_proc_dir = bond_proc_dir->next) { 3441 if ((bond_proc_dir->namelen == len) && 3442 !memcmp(bond_proc_dir->name, DRV_NAME, len)) { 3443 break; 3444 } 3445 } 3446 3447 if (!bond_proc_dir) { 3448 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net); 3449 if (bond_proc_dir) { 3450 bond_proc_dir->owner = THIS_MODULE; 3451 } else { 3452 printk(KERN_WARNING DRV_NAME 3453 ": Warning: cannot create /proc/net/%s\n", 3454 DRV_NAME); 3455 } 3456 } 3457 } 3458 3459 /* Destroy the bonding directory under /proc/net, if empty. 3460 * Caller must hold rtnl_lock. 3461 */ 3462 static void bond_destroy_proc_dir(void) 3463 { 3464 struct proc_dir_entry *de; 3465 3466 if (!bond_proc_dir) { 3467 return; 3468 } 3469 3470 /* verify that the /proc dir is empty */ 3471 for (de = bond_proc_dir->subdir; de; de = de->next) { 3472 /* ignore . and .. */ 3473 if (*(de->name) != '.') { 3474 break; 3475 } 3476 } 3477 3478 if (de) { 3479 if (bond_proc_dir->owner == THIS_MODULE) { 3480 bond_proc_dir->owner = NULL; 3481 } 3482 } else { 3483 remove_proc_entry(DRV_NAME, init_net.proc_net); 3484 bond_proc_dir = NULL; 3485 } 3486 } 3487 #endif /* CONFIG_PROC_FS */ 3488 3489 /*-------------------------- netdev event handling --------------------------*/ 3490 3491 /* 3492 * Change device name 3493 */ 3494 static int bond_event_changename(struct bonding *bond) 3495 { 3496 #ifdef CONFIG_PROC_FS 3497 bond_remove_proc_entry(bond); 3498 bond_create_proc_entry(bond); 3499 #endif 3500 down_write(&(bonding_rwsem)); 3501 bond_destroy_sysfs_entry(bond); 3502 bond_create_sysfs_entry(bond); 3503 up_write(&(bonding_rwsem)); 3504 return NOTIFY_DONE; 3505 } 3506 3507 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) 3508 { 3509 struct bonding *event_bond = bond_dev->priv; 3510 3511 switch (event) { 3512 case NETDEV_CHANGENAME: 3513 return bond_event_changename(event_bond); 3514 case NETDEV_UNREGISTER: 3515 bond_release_all(event_bond->dev); 3516 break; 3517 default: 3518 break; 3519 } 3520 3521 return NOTIFY_DONE; 3522 } 3523 3524 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) 3525 { 3526 struct net_device *bond_dev = slave_dev->master; 3527 struct bonding *bond = bond_dev->priv; 3528 3529 switch (event) { 3530 case NETDEV_UNREGISTER: 3531 if (bond_dev) { 3532 if (bond->setup_by_slave) 3533 bond_release_and_destroy(bond_dev, slave_dev); 3534 else 3535 bond_release(bond_dev, slave_dev); 3536 } 3537 break; 3538 case NETDEV_CHANGE: 3539 /* 3540 * TODO: is this what we get if somebody 3541 * sets up a hierarchical bond, then rmmod's 3542 * one of the slave bonding devices? 3543 */ 3544 break; 3545 case NETDEV_DOWN: 3546 /* 3547 * ... Or is it this? 3548 */ 3549 break; 3550 case NETDEV_CHANGEMTU: 3551 /* 3552 * TODO: Should slaves be allowed to 3553 * independently alter their MTU? For 3554 * an active-backup bond, slaves need 3555 * not be the same type of device, so 3556 * MTUs may vary. For other modes, 3557 * slaves arguably should have the 3558 * same MTUs. To do this, we'd need to 3559 * take over the slave's change_mtu 3560 * function for the duration of their 3561 * servitude. 3562 */ 3563 break; 3564 case NETDEV_CHANGENAME: 3565 /* 3566 * TODO: handle changing the primary's name 3567 */ 3568 break; 3569 case NETDEV_FEAT_CHANGE: 3570 bond_compute_features(bond); 3571 break; 3572 default: 3573 break; 3574 } 3575 3576 return NOTIFY_DONE; 3577 } 3578 3579 /* 3580 * bond_netdev_event: handle netdev notifier chain events. 3581 * 3582 * This function receives events for the netdev chain. The caller (an 3583 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3584 * locks for us to safely manipulate the slave devices (RTNL lock, 3585 * dev_probe_lock). 3586 */ 3587 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) 3588 { 3589 struct net_device *event_dev = (struct net_device *)ptr; 3590 3591 if (dev_net(event_dev) != &init_net) 3592 return NOTIFY_DONE; 3593 3594 dprintk("event_dev: %s, event: %lx\n", 3595 (event_dev ? event_dev->name : "None"), 3596 event); 3597 3598 if (!(event_dev->priv_flags & IFF_BONDING)) 3599 return NOTIFY_DONE; 3600 3601 if (event_dev->flags & IFF_MASTER) { 3602 dprintk("IFF_MASTER\n"); 3603 return bond_master_netdev_event(event, event_dev); 3604 } 3605 3606 if (event_dev->flags & IFF_SLAVE) { 3607 dprintk("IFF_SLAVE\n"); 3608 return bond_slave_netdev_event(event, event_dev); 3609 } 3610 3611 return NOTIFY_DONE; 3612 } 3613 3614 /* 3615 * bond_inetaddr_event: handle inetaddr notifier chain events. 3616 * 3617 * We keep track of device IPs primarily to use as source addresses in 3618 * ARP monitor probes (rather than spewing out broadcasts all the time). 3619 * 3620 * We track one IP for the main device (if it has one), plus one per VLAN. 3621 */ 3622 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3623 { 3624 struct in_ifaddr *ifa = ptr; 3625 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3626 struct bonding *bond; 3627 struct vlan_entry *vlan; 3628 3629 if (dev_net(ifa->ifa_dev->dev) != &init_net) 3630 return NOTIFY_DONE; 3631 3632 list_for_each_entry(bond, &bond_dev_list, bond_list) { 3633 if (bond->dev == event_dev) { 3634 switch (event) { 3635 case NETDEV_UP: 3636 bond->master_ip = ifa->ifa_local; 3637 return NOTIFY_OK; 3638 case NETDEV_DOWN: 3639 bond->master_ip = bond_glean_dev_ip(bond->dev); 3640 return NOTIFY_OK; 3641 default: 3642 return NOTIFY_DONE; 3643 } 3644 } 3645 3646 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 3647 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3648 if (vlan_dev == event_dev) { 3649 switch (event) { 3650 case NETDEV_UP: 3651 vlan->vlan_ip = ifa->ifa_local; 3652 return NOTIFY_OK; 3653 case NETDEV_DOWN: 3654 vlan->vlan_ip = 3655 bond_glean_dev_ip(vlan_dev); 3656 return NOTIFY_OK; 3657 default: 3658 return NOTIFY_DONE; 3659 } 3660 } 3661 } 3662 } 3663 return NOTIFY_DONE; 3664 } 3665 3666 static struct notifier_block bond_netdev_notifier = { 3667 .notifier_call = bond_netdev_event, 3668 }; 3669 3670 static struct notifier_block bond_inetaddr_notifier = { 3671 .notifier_call = bond_inetaddr_event, 3672 }; 3673 3674 /*-------------------------- Packet type handling ---------------------------*/ 3675 3676 /* register to receive lacpdus on a bond */ 3677 static void bond_register_lacpdu(struct bonding *bond) 3678 { 3679 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3680 3681 /* initialize packet type */ 3682 pk_type->type = PKT_TYPE_LACPDU; 3683 pk_type->dev = bond->dev; 3684 pk_type->func = bond_3ad_lacpdu_recv; 3685 3686 dev_add_pack(pk_type); 3687 } 3688 3689 /* unregister to receive lacpdus on a bond */ 3690 static void bond_unregister_lacpdu(struct bonding *bond) 3691 { 3692 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3693 } 3694 3695 void bond_register_arp(struct bonding *bond) 3696 { 3697 struct packet_type *pt = &bond->arp_mon_pt; 3698 3699 if (pt->type) 3700 return; 3701 3702 pt->type = htons(ETH_P_ARP); 3703 pt->dev = bond->dev; 3704 pt->func = bond_arp_rcv; 3705 dev_add_pack(pt); 3706 } 3707 3708 void bond_unregister_arp(struct bonding *bond) 3709 { 3710 struct packet_type *pt = &bond->arp_mon_pt; 3711 3712 dev_remove_pack(pt); 3713 pt->type = 0; 3714 } 3715 3716 /*---------------------------- Hashing Policies -----------------------------*/ 3717 3718 /* 3719 * Hash for the output device based upon layer 2 and layer 3 data. If 3720 * the packet is not IP mimic bond_xmit_hash_policy_l2() 3721 */ 3722 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, 3723 struct net_device *bond_dev, int count) 3724 { 3725 struct ethhdr *data = (struct ethhdr *)skb->data; 3726 struct iphdr *iph = ip_hdr(skb); 3727 3728 if (skb->protocol == htons(ETH_P_IP)) { 3729 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3730 (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count; 3731 } 3732 3733 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3734 } 3735 3736 /* 3737 * Hash for the output device based upon layer 3 and layer 4 data. If 3738 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3739 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3740 */ 3741 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, 3742 struct net_device *bond_dev, int count) 3743 { 3744 struct ethhdr *data = (struct ethhdr *)skb->data; 3745 struct iphdr *iph = ip_hdr(skb); 3746 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); 3747 int layer4_xor = 0; 3748 3749 if (skb->protocol == htons(ETH_P_IP)) { 3750 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) && 3751 (iph->protocol == IPPROTO_TCP || 3752 iph->protocol == IPPROTO_UDP)) { 3753 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); 3754 } 3755 return (layer4_xor ^ 3756 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3757 3758 } 3759 3760 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3761 } 3762 3763 /* 3764 * Hash for the output device based upon layer 2 data 3765 */ 3766 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, 3767 struct net_device *bond_dev, int count) 3768 { 3769 struct ethhdr *data = (struct ethhdr *)skb->data; 3770 3771 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3772 } 3773 3774 /*-------------------------- Device entry points ----------------------------*/ 3775 3776 static int bond_open(struct net_device *bond_dev) 3777 { 3778 struct bonding *bond = bond_dev->priv; 3779 3780 bond->kill_timers = 0; 3781 3782 if ((bond->params.mode == BOND_MODE_TLB) || 3783 (bond->params.mode == BOND_MODE_ALB)) { 3784 /* bond_alb_initialize must be called before the timer 3785 * is started. 3786 */ 3787 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3788 /* something went wrong - fail the open operation */ 3789 return -1; 3790 } 3791 3792 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3793 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3794 } 3795 3796 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3797 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3798 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3799 } 3800 3801 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3802 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3803 INIT_DELAYED_WORK(&bond->arp_work, 3804 bond_activebackup_arp_mon); 3805 else 3806 INIT_DELAYED_WORK(&bond->arp_work, 3807 bond_loadbalance_arp_mon); 3808 3809 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3810 if (bond->params.arp_validate) 3811 bond_register_arp(bond); 3812 } 3813 3814 if (bond->params.mode == BOND_MODE_8023AD) { 3815 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3816 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3817 /* register to receive LACPDUs */ 3818 bond_register_lacpdu(bond); 3819 } 3820 3821 return 0; 3822 } 3823 3824 static int bond_close(struct net_device *bond_dev) 3825 { 3826 struct bonding *bond = bond_dev->priv; 3827 3828 if (bond->params.mode == BOND_MODE_8023AD) { 3829 /* Unregister the receive of LACPDUs */ 3830 bond_unregister_lacpdu(bond); 3831 } 3832 3833 if (bond->params.arp_validate) 3834 bond_unregister_arp(bond); 3835 3836 write_lock_bh(&bond->lock); 3837 3838 bond->send_grat_arp = 0; 3839 3840 /* signal timers not to re-arm */ 3841 bond->kill_timers = 1; 3842 3843 write_unlock_bh(&bond->lock); 3844 3845 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3846 cancel_delayed_work(&bond->mii_work); 3847 } 3848 3849 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3850 cancel_delayed_work(&bond->arp_work); 3851 } 3852 3853 switch (bond->params.mode) { 3854 case BOND_MODE_8023AD: 3855 cancel_delayed_work(&bond->ad_work); 3856 break; 3857 case BOND_MODE_TLB: 3858 case BOND_MODE_ALB: 3859 cancel_delayed_work(&bond->alb_work); 3860 break; 3861 default: 3862 break; 3863 } 3864 3865 3866 if ((bond->params.mode == BOND_MODE_TLB) || 3867 (bond->params.mode == BOND_MODE_ALB)) { 3868 /* Must be called only after all 3869 * slaves have been released 3870 */ 3871 bond_alb_deinitialize(bond); 3872 } 3873 3874 return 0; 3875 } 3876 3877 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) 3878 { 3879 struct bonding *bond = bond_dev->priv; 3880 struct net_device_stats *stats = &(bond->stats), *sstats; 3881 struct net_device_stats local_stats; 3882 struct slave *slave; 3883 int i; 3884 3885 memset(&local_stats, 0, sizeof(struct net_device_stats)); 3886 3887 read_lock_bh(&bond->lock); 3888 3889 bond_for_each_slave(bond, slave, i) { 3890 sstats = slave->dev->get_stats(slave->dev); 3891 local_stats.rx_packets += sstats->rx_packets; 3892 local_stats.rx_bytes += sstats->rx_bytes; 3893 local_stats.rx_errors += sstats->rx_errors; 3894 local_stats.rx_dropped += sstats->rx_dropped; 3895 3896 local_stats.tx_packets += sstats->tx_packets; 3897 local_stats.tx_bytes += sstats->tx_bytes; 3898 local_stats.tx_errors += sstats->tx_errors; 3899 local_stats.tx_dropped += sstats->tx_dropped; 3900 3901 local_stats.multicast += sstats->multicast; 3902 local_stats.collisions += sstats->collisions; 3903 3904 local_stats.rx_length_errors += sstats->rx_length_errors; 3905 local_stats.rx_over_errors += sstats->rx_over_errors; 3906 local_stats.rx_crc_errors += sstats->rx_crc_errors; 3907 local_stats.rx_frame_errors += sstats->rx_frame_errors; 3908 local_stats.rx_fifo_errors += sstats->rx_fifo_errors; 3909 local_stats.rx_missed_errors += sstats->rx_missed_errors; 3910 3911 local_stats.tx_aborted_errors += sstats->tx_aborted_errors; 3912 local_stats.tx_carrier_errors += sstats->tx_carrier_errors; 3913 local_stats.tx_fifo_errors += sstats->tx_fifo_errors; 3914 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3915 local_stats.tx_window_errors += sstats->tx_window_errors; 3916 } 3917 3918 memcpy(stats, &local_stats, sizeof(struct net_device_stats)); 3919 3920 read_unlock_bh(&bond->lock); 3921 3922 return stats; 3923 } 3924 3925 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3926 { 3927 struct net_device *slave_dev = NULL; 3928 struct ifbond k_binfo; 3929 struct ifbond __user *u_binfo = NULL; 3930 struct ifslave k_sinfo; 3931 struct ifslave __user *u_sinfo = NULL; 3932 struct mii_ioctl_data *mii = NULL; 3933 int res = 0; 3934 3935 dprintk("bond_ioctl: master=%s, cmd=%d\n", 3936 bond_dev->name, cmd); 3937 3938 switch (cmd) { 3939 case SIOCGMIIPHY: 3940 mii = if_mii(ifr); 3941 if (!mii) { 3942 return -EINVAL; 3943 } 3944 mii->phy_id = 0; 3945 /* Fall Through */ 3946 case SIOCGMIIREG: 3947 /* 3948 * We do this again just in case we were called by SIOCGMIIREG 3949 * instead of SIOCGMIIPHY. 3950 */ 3951 mii = if_mii(ifr); 3952 if (!mii) { 3953 return -EINVAL; 3954 } 3955 3956 if (mii->reg_num == 1) { 3957 struct bonding *bond = bond_dev->priv; 3958 mii->val_out = 0; 3959 read_lock(&bond->lock); 3960 read_lock(&bond->curr_slave_lock); 3961 if (netif_carrier_ok(bond->dev)) { 3962 mii->val_out = BMSR_LSTATUS; 3963 } 3964 read_unlock(&bond->curr_slave_lock); 3965 read_unlock(&bond->lock); 3966 } 3967 3968 return 0; 3969 case BOND_INFO_QUERY_OLD: 3970 case SIOCBONDINFOQUERY: 3971 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3972 3973 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { 3974 return -EFAULT; 3975 } 3976 3977 res = bond_info_query(bond_dev, &k_binfo); 3978 if (res == 0) { 3979 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { 3980 return -EFAULT; 3981 } 3982 } 3983 3984 return res; 3985 case BOND_SLAVE_INFO_QUERY_OLD: 3986 case SIOCBONDSLAVEINFOQUERY: 3987 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3988 3989 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { 3990 return -EFAULT; 3991 } 3992 3993 res = bond_slave_info_query(bond_dev, &k_sinfo); 3994 if (res == 0) { 3995 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { 3996 return -EFAULT; 3997 } 3998 } 3999 4000 return res; 4001 default: 4002 /* Go on */ 4003 break; 4004 } 4005 4006 if (!capable(CAP_NET_ADMIN)) { 4007 return -EPERM; 4008 } 4009 4010 down_write(&(bonding_rwsem)); 4011 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave); 4012 4013 dprintk("slave_dev=%p: \n", slave_dev); 4014 4015 if (!slave_dev) { 4016 res = -ENODEV; 4017 } else { 4018 dprintk("slave_dev->name=%s: \n", slave_dev->name); 4019 switch (cmd) { 4020 case BOND_ENSLAVE_OLD: 4021 case SIOCBONDENSLAVE: 4022 res = bond_enslave(bond_dev, slave_dev); 4023 break; 4024 case BOND_RELEASE_OLD: 4025 case SIOCBONDRELEASE: 4026 res = bond_release(bond_dev, slave_dev); 4027 break; 4028 case BOND_SETHWADDR_OLD: 4029 case SIOCBONDSETHWADDR: 4030 res = bond_sethwaddr(bond_dev, slave_dev); 4031 break; 4032 case BOND_CHANGE_ACTIVE_OLD: 4033 case SIOCBONDCHANGEACTIVE: 4034 res = bond_ioctl_change_active(bond_dev, slave_dev); 4035 break; 4036 default: 4037 res = -EOPNOTSUPP; 4038 } 4039 4040 dev_put(slave_dev); 4041 } 4042 4043 up_write(&(bonding_rwsem)); 4044 return res; 4045 } 4046 4047 static void bond_set_multicast_list(struct net_device *bond_dev) 4048 { 4049 struct bonding *bond = bond_dev->priv; 4050 struct dev_mc_list *dmi; 4051 4052 /* 4053 * Do promisc before checking multicast_mode 4054 */ 4055 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { 4056 /* 4057 * FIXME: Need to handle the error when one of the multi-slaves 4058 * encounters error. 4059 */ 4060 bond_set_promiscuity(bond, 1); 4061 } 4062 4063 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { 4064 bond_set_promiscuity(bond, -1); 4065 } 4066 4067 /* set allmulti flag to slaves */ 4068 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { 4069 /* 4070 * FIXME: Need to handle the error when one of the multi-slaves 4071 * encounters error. 4072 */ 4073 bond_set_allmulti(bond, 1); 4074 } 4075 4076 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { 4077 bond_set_allmulti(bond, -1); 4078 } 4079 4080 read_lock(&bond->lock); 4081 4082 bond->flags = bond_dev->flags; 4083 4084 /* looking for addresses to add to slaves' mc list */ 4085 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 4086 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { 4087 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4088 } 4089 } 4090 4091 /* looking for addresses to delete from slaves' list */ 4092 for (dmi = bond->mc_list; dmi; dmi = dmi->next) { 4093 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { 4094 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4095 } 4096 } 4097 4098 /* save master's multicast list */ 4099 bond_mc_list_destroy(bond); 4100 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); 4101 4102 read_unlock(&bond->lock); 4103 } 4104 4105 /* 4106 * Change the MTU of all of a master's slaves to match the master 4107 */ 4108 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 4109 { 4110 struct bonding *bond = bond_dev->priv; 4111 struct slave *slave, *stop_at; 4112 int res = 0; 4113 int i; 4114 4115 dprintk("bond=%p, name=%s, new_mtu=%d\n", bond, 4116 (bond_dev ? bond_dev->name : "None"), new_mtu); 4117 4118 /* Can't hold bond->lock with bh disabled here since 4119 * some base drivers panic. On the other hand we can't 4120 * hold bond->lock without bh disabled because we'll 4121 * deadlock. The only solution is to rely on the fact 4122 * that we're under rtnl_lock here, and the slaves 4123 * list won't change. This doesn't solve the problem 4124 * of setting the slave's MTU while it is 4125 * transmitting, but the assumption is that the base 4126 * driver can handle that. 4127 * 4128 * TODO: figure out a way to safely iterate the slaves 4129 * list, but without holding a lock around the actual 4130 * call to the base driver. 4131 */ 4132 4133 bond_for_each_slave(bond, slave, i) { 4134 dprintk("s %p s->p %p c_m %p\n", slave, 4135 slave->prev, slave->dev->change_mtu); 4136 4137 res = dev_set_mtu(slave->dev, new_mtu); 4138 4139 if (res) { 4140 /* If we failed to set the slave's mtu to the new value 4141 * we must abort the operation even in ACTIVE_BACKUP 4142 * mode, because if we allow the backup slaves to have 4143 * different mtu values than the active slave we'll 4144 * need to change their mtu when doing a failover. That 4145 * means changing their mtu from timer context, which 4146 * is probably not a good idea. 4147 */ 4148 dprintk("err %d %s\n", res, slave->dev->name); 4149 goto unwind; 4150 } 4151 } 4152 4153 bond_dev->mtu = new_mtu; 4154 4155 return 0; 4156 4157 unwind: 4158 /* unwind from head to the slave that failed */ 4159 stop_at = slave; 4160 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4161 int tmp_res; 4162 4163 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 4164 if (tmp_res) { 4165 dprintk("unwind err %d dev %s\n", tmp_res, 4166 slave->dev->name); 4167 } 4168 } 4169 4170 return res; 4171 } 4172 4173 /* 4174 * Change HW address 4175 * 4176 * Note that many devices must be down to change the HW address, and 4177 * downing the master releases all slaves. We can make bonds full of 4178 * bonding devices to test this, however. 4179 */ 4180 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 4181 { 4182 struct bonding *bond = bond_dev->priv; 4183 struct sockaddr *sa = addr, tmp_sa; 4184 struct slave *slave, *stop_at; 4185 int res = 0; 4186 int i; 4187 4188 dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); 4189 4190 /* 4191 * If fail_over_mac is set to active, do nothing and return 4192 * success. Returning an error causes ifenslave to fail. 4193 */ 4194 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 4195 return 0; 4196 4197 if (!is_valid_ether_addr(sa->sa_data)) { 4198 return -EADDRNOTAVAIL; 4199 } 4200 4201 /* Can't hold bond->lock with bh disabled here since 4202 * some base drivers panic. On the other hand we can't 4203 * hold bond->lock without bh disabled because we'll 4204 * deadlock. The only solution is to rely on the fact 4205 * that we're under rtnl_lock here, and the slaves 4206 * list won't change. This doesn't solve the problem 4207 * of setting the slave's hw address while it is 4208 * transmitting, but the assumption is that the base 4209 * driver can handle that. 4210 * 4211 * TODO: figure out a way to safely iterate the slaves 4212 * list, but without holding a lock around the actual 4213 * call to the base driver. 4214 */ 4215 4216 bond_for_each_slave(bond, slave, i) { 4217 dprintk("slave %p %s\n", slave, slave->dev->name); 4218 4219 if (slave->dev->set_mac_address == NULL) { 4220 res = -EOPNOTSUPP; 4221 dprintk("EOPNOTSUPP %s\n", slave->dev->name); 4222 goto unwind; 4223 } 4224 4225 res = dev_set_mac_address(slave->dev, addr); 4226 if (res) { 4227 /* TODO: consider downing the slave 4228 * and retry ? 4229 * User should expect communications 4230 * breakage anyway until ARP finish 4231 * updating, so... 4232 */ 4233 dprintk("err %d %s\n", res, slave->dev->name); 4234 goto unwind; 4235 } 4236 } 4237 4238 /* success */ 4239 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 4240 return 0; 4241 4242 unwind: 4243 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 4244 tmp_sa.sa_family = bond_dev->type; 4245 4246 /* unwind from head to the slave that failed */ 4247 stop_at = slave; 4248 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4249 int tmp_res; 4250 4251 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 4252 if (tmp_res) { 4253 dprintk("unwind err %d dev %s\n", tmp_res, 4254 slave->dev->name); 4255 } 4256 } 4257 4258 return res; 4259 } 4260 4261 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4262 { 4263 struct bonding *bond = bond_dev->priv; 4264 struct slave *slave, *start_at; 4265 int i, slave_no, res = 1; 4266 4267 read_lock(&bond->lock); 4268 4269 if (!BOND_IS_OK(bond)) { 4270 goto out; 4271 } 4272 4273 /* 4274 * Concurrent TX may collide on rr_tx_counter; we accept that 4275 * as being rare enough not to justify using an atomic op here 4276 */ 4277 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 4278 4279 bond_for_each_slave(bond, slave, i) { 4280 slave_no--; 4281 if (slave_no < 0) { 4282 break; 4283 } 4284 } 4285 4286 start_at = slave; 4287 bond_for_each_slave_from(bond, slave, i, start_at) { 4288 if (IS_UP(slave->dev) && 4289 (slave->link == BOND_LINK_UP) && 4290 (slave->state == BOND_STATE_ACTIVE)) { 4291 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4292 break; 4293 } 4294 } 4295 4296 out: 4297 if (res) { 4298 /* no suitable interface, frame not sent */ 4299 dev_kfree_skb(skb); 4300 } 4301 read_unlock(&bond->lock); 4302 return 0; 4303 } 4304 4305 4306 /* 4307 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4308 * the bond has a usable interface. 4309 */ 4310 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4311 { 4312 struct bonding *bond = bond_dev->priv; 4313 int res = 1; 4314 4315 read_lock(&bond->lock); 4316 read_lock(&bond->curr_slave_lock); 4317 4318 if (!BOND_IS_OK(bond)) { 4319 goto out; 4320 } 4321 4322 if (!bond->curr_active_slave) 4323 goto out; 4324 4325 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4326 4327 out: 4328 if (res) { 4329 /* no suitable interface, frame not sent */ 4330 dev_kfree_skb(skb); 4331 } 4332 read_unlock(&bond->curr_slave_lock); 4333 read_unlock(&bond->lock); 4334 return 0; 4335 } 4336 4337 /* 4338 * In bond_xmit_xor() , we determine the output device by using a pre- 4339 * determined xmit_hash_policy(), If the selected device is not enabled, 4340 * find the next active slave. 4341 */ 4342 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4343 { 4344 struct bonding *bond = bond_dev->priv; 4345 struct slave *slave, *start_at; 4346 int slave_no; 4347 int i; 4348 int res = 1; 4349 4350 read_lock(&bond->lock); 4351 4352 if (!BOND_IS_OK(bond)) { 4353 goto out; 4354 } 4355 4356 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); 4357 4358 bond_for_each_slave(bond, slave, i) { 4359 slave_no--; 4360 if (slave_no < 0) { 4361 break; 4362 } 4363 } 4364 4365 start_at = slave; 4366 4367 bond_for_each_slave_from(bond, slave, i, start_at) { 4368 if (IS_UP(slave->dev) && 4369 (slave->link == BOND_LINK_UP) && 4370 (slave->state == BOND_STATE_ACTIVE)) { 4371 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4372 break; 4373 } 4374 } 4375 4376 out: 4377 if (res) { 4378 /* no suitable interface, frame not sent */ 4379 dev_kfree_skb(skb); 4380 } 4381 read_unlock(&bond->lock); 4382 return 0; 4383 } 4384 4385 /* 4386 * in broadcast mode, we send everything to all usable interfaces. 4387 */ 4388 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4389 { 4390 struct bonding *bond = bond_dev->priv; 4391 struct slave *slave, *start_at; 4392 struct net_device *tx_dev = NULL; 4393 int i; 4394 int res = 1; 4395 4396 read_lock(&bond->lock); 4397 4398 if (!BOND_IS_OK(bond)) { 4399 goto out; 4400 } 4401 4402 read_lock(&bond->curr_slave_lock); 4403 start_at = bond->curr_active_slave; 4404 read_unlock(&bond->curr_slave_lock); 4405 4406 if (!start_at) { 4407 goto out; 4408 } 4409 4410 bond_for_each_slave_from(bond, slave, i, start_at) { 4411 if (IS_UP(slave->dev) && 4412 (slave->link == BOND_LINK_UP) && 4413 (slave->state == BOND_STATE_ACTIVE)) { 4414 if (tx_dev) { 4415 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4416 if (!skb2) { 4417 printk(KERN_ERR DRV_NAME 4418 ": %s: Error: bond_xmit_broadcast(): " 4419 "skb_clone() failed\n", 4420 bond_dev->name); 4421 continue; 4422 } 4423 4424 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4425 if (res) { 4426 dev_kfree_skb(skb2); 4427 continue; 4428 } 4429 } 4430 tx_dev = slave->dev; 4431 } 4432 } 4433 4434 if (tx_dev) { 4435 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4436 } 4437 4438 out: 4439 if (res) { 4440 /* no suitable interface, frame not sent */ 4441 dev_kfree_skb(skb); 4442 } 4443 /* frame sent to all suitable interfaces */ 4444 read_unlock(&bond->lock); 4445 return 0; 4446 } 4447 4448 /*------------------------- Device initialization ---------------------------*/ 4449 4450 static void bond_set_xmit_hash_policy(struct bonding *bond) 4451 { 4452 switch (bond->params.xmit_policy) { 4453 case BOND_XMIT_POLICY_LAYER23: 4454 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4455 break; 4456 case BOND_XMIT_POLICY_LAYER34: 4457 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4458 break; 4459 case BOND_XMIT_POLICY_LAYER2: 4460 default: 4461 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4462 break; 4463 } 4464 } 4465 4466 /* 4467 * set bond mode specific net device operations 4468 */ 4469 void bond_set_mode_ops(struct bonding *bond, int mode) 4470 { 4471 struct net_device *bond_dev = bond->dev; 4472 4473 switch (mode) { 4474 case BOND_MODE_ROUNDROBIN: 4475 bond_dev->hard_start_xmit = bond_xmit_roundrobin; 4476 break; 4477 case BOND_MODE_ACTIVEBACKUP: 4478 bond_dev->hard_start_xmit = bond_xmit_activebackup; 4479 break; 4480 case BOND_MODE_XOR: 4481 bond_dev->hard_start_xmit = bond_xmit_xor; 4482 bond_set_xmit_hash_policy(bond); 4483 break; 4484 case BOND_MODE_BROADCAST: 4485 bond_dev->hard_start_xmit = bond_xmit_broadcast; 4486 break; 4487 case BOND_MODE_8023AD: 4488 bond_set_master_3ad_flags(bond); 4489 bond_dev->hard_start_xmit = bond_3ad_xmit_xor; 4490 bond_set_xmit_hash_policy(bond); 4491 break; 4492 case BOND_MODE_ALB: 4493 bond_set_master_alb_flags(bond); 4494 /* FALLTHRU */ 4495 case BOND_MODE_TLB: 4496 bond_dev->hard_start_xmit = bond_alb_xmit; 4497 bond_dev->set_mac_address = bond_alb_set_mac_address; 4498 break; 4499 default: 4500 /* Should never happen, mode already checked */ 4501 printk(KERN_ERR DRV_NAME 4502 ": %s: Error: Unknown bonding mode %d\n", 4503 bond_dev->name, 4504 mode); 4505 break; 4506 } 4507 } 4508 4509 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4510 struct ethtool_drvinfo *drvinfo) 4511 { 4512 strncpy(drvinfo->driver, DRV_NAME, 32); 4513 strncpy(drvinfo->version, DRV_VERSION, 32); 4514 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4515 } 4516 4517 static const struct ethtool_ops bond_ethtool_ops = { 4518 .get_drvinfo = bond_ethtool_get_drvinfo, 4519 .get_link = ethtool_op_get_link, 4520 .get_tx_csum = ethtool_op_get_tx_csum, 4521 .get_sg = ethtool_op_get_sg, 4522 .get_tso = ethtool_op_get_tso, 4523 .get_ufo = ethtool_op_get_ufo, 4524 .get_flags = ethtool_op_get_flags, 4525 }; 4526 4527 /* 4528 * Does not allocate but creates a /proc entry. 4529 * Allowed to fail. 4530 */ 4531 static int bond_init(struct net_device *bond_dev, struct bond_params *params) 4532 { 4533 struct bonding *bond = bond_dev->priv; 4534 4535 dprintk("Begin bond_init for %s\n", bond_dev->name); 4536 4537 /* initialize rwlocks */ 4538 rwlock_init(&bond->lock); 4539 rwlock_init(&bond->curr_slave_lock); 4540 4541 bond->params = *params; /* copy params struct */ 4542 4543 bond->wq = create_singlethread_workqueue(bond_dev->name); 4544 if (!bond->wq) 4545 return -ENOMEM; 4546 4547 /* Initialize pointers */ 4548 bond->first_slave = NULL; 4549 bond->curr_active_slave = NULL; 4550 bond->current_arp_slave = NULL; 4551 bond->primary_slave = NULL; 4552 bond->dev = bond_dev; 4553 bond->send_grat_arp = 0; 4554 bond->setup_by_slave = 0; 4555 INIT_LIST_HEAD(&bond->vlan_list); 4556 4557 /* Initialize the device entry points */ 4558 bond_dev->open = bond_open; 4559 bond_dev->stop = bond_close; 4560 bond_dev->get_stats = bond_get_stats; 4561 bond_dev->do_ioctl = bond_do_ioctl; 4562 bond_dev->ethtool_ops = &bond_ethtool_ops; 4563 bond_dev->set_multicast_list = bond_set_multicast_list; 4564 bond_dev->change_mtu = bond_change_mtu; 4565 bond_dev->set_mac_address = bond_set_mac_address; 4566 bond_dev->validate_addr = NULL; 4567 4568 bond_set_mode_ops(bond, bond->params.mode); 4569 4570 bond_dev->destructor = bond_destructor; 4571 4572 /* Initialize the device options */ 4573 bond_dev->tx_queue_len = 0; 4574 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4575 bond_dev->priv_flags |= IFF_BONDING; 4576 4577 /* At first, we block adding VLANs. That's the only way to 4578 * prevent problems that occur when adding VLANs over an 4579 * empty bond. The block will be removed once non-challenged 4580 * slaves are enslaved. 4581 */ 4582 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4583 4584 /* don't acquire bond device's netif_tx_lock when 4585 * transmitting */ 4586 bond_dev->features |= NETIF_F_LLTX; 4587 4588 /* By default, we declare the bond to be fully 4589 * VLAN hardware accelerated capable. Special 4590 * care is taken in the various xmit functions 4591 * when there are slaves that are not hw accel 4592 * capable 4593 */ 4594 bond_dev->vlan_rx_register = bond_vlan_rx_register; 4595 bond_dev->vlan_rx_add_vid = bond_vlan_rx_add_vid; 4596 bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid; 4597 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4598 NETIF_F_HW_VLAN_RX | 4599 NETIF_F_HW_VLAN_FILTER); 4600 4601 #ifdef CONFIG_PROC_FS 4602 bond_create_proc_entry(bond); 4603 #endif 4604 list_add_tail(&bond->bond_list, &bond_dev_list); 4605 4606 return 0; 4607 } 4608 4609 static void bond_work_cancel_all(struct bonding *bond) 4610 { 4611 write_lock_bh(&bond->lock); 4612 bond->kill_timers = 1; 4613 write_unlock_bh(&bond->lock); 4614 4615 if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) 4616 cancel_delayed_work(&bond->mii_work); 4617 4618 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) 4619 cancel_delayed_work(&bond->arp_work); 4620 4621 if (bond->params.mode == BOND_MODE_ALB && 4622 delayed_work_pending(&bond->alb_work)) 4623 cancel_delayed_work(&bond->alb_work); 4624 4625 if (bond->params.mode == BOND_MODE_8023AD && 4626 delayed_work_pending(&bond->ad_work)) 4627 cancel_delayed_work(&bond->ad_work); 4628 } 4629 4630 /* De-initialize device specific data. 4631 * Caller must hold rtnl_lock. 4632 */ 4633 static void bond_deinit(struct net_device *bond_dev) 4634 { 4635 struct bonding *bond = bond_dev->priv; 4636 4637 list_del(&bond->bond_list); 4638 4639 bond_work_cancel_all(bond); 4640 4641 #ifdef CONFIG_PROC_FS 4642 bond_remove_proc_entry(bond); 4643 #endif 4644 } 4645 4646 /* Unregister and free all bond devices. 4647 * Caller must hold rtnl_lock. 4648 */ 4649 static void bond_free_all(void) 4650 { 4651 struct bonding *bond, *nxt; 4652 4653 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { 4654 struct net_device *bond_dev = bond->dev; 4655 4656 bond_work_cancel_all(bond); 4657 /* Release the bonded slaves */ 4658 bond_release_all(bond_dev); 4659 bond_destroy(bond); 4660 } 4661 4662 #ifdef CONFIG_PROC_FS 4663 bond_destroy_proc_dir(); 4664 #endif 4665 } 4666 4667 /*------------------------- Module initialization ---------------------------*/ 4668 4669 /* 4670 * Convert string input module parms. Accept either the 4671 * number of the mode or its string name. A bit complicated because 4672 * some mode names are substrings of other names, and calls from sysfs 4673 * may have whitespace in the name (trailing newlines, for example). 4674 */ 4675 int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl) 4676 { 4677 int mode = -1, i, rv; 4678 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4679 4680 for (p = (char *)buf; *p; p++) 4681 if (!(isdigit(*p) || isspace(*p))) 4682 break; 4683 4684 if (*p) 4685 rv = sscanf(buf, "%20s", modestr); 4686 else 4687 rv = sscanf(buf, "%d", &mode); 4688 4689 if (!rv) 4690 return -1; 4691 4692 for (i = 0; tbl[i].modename; i++) { 4693 if (mode == tbl[i].mode) 4694 return tbl[i].mode; 4695 if (strcmp(modestr, tbl[i].modename) == 0) 4696 return tbl[i].mode; 4697 } 4698 4699 return -1; 4700 } 4701 4702 static int bond_check_params(struct bond_params *params) 4703 { 4704 int arp_validate_value, fail_over_mac_value; 4705 4706 /* 4707 * Convert string parameters. 4708 */ 4709 if (mode) { 4710 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4711 if (bond_mode == -1) { 4712 printk(KERN_ERR DRV_NAME 4713 ": Error: Invalid bonding mode \"%s\"\n", 4714 mode == NULL ? "NULL" : mode); 4715 return -EINVAL; 4716 } 4717 } 4718 4719 if (xmit_hash_policy) { 4720 if ((bond_mode != BOND_MODE_XOR) && 4721 (bond_mode != BOND_MODE_8023AD)) { 4722 printk(KERN_INFO DRV_NAME 4723 ": xor_mode param is irrelevant in mode %s\n", 4724 bond_mode_name(bond_mode)); 4725 } else { 4726 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4727 xmit_hashtype_tbl); 4728 if (xmit_hashtype == -1) { 4729 printk(KERN_ERR DRV_NAME 4730 ": Error: Invalid xmit_hash_policy \"%s\"\n", 4731 xmit_hash_policy == NULL ? "NULL" : 4732 xmit_hash_policy); 4733 return -EINVAL; 4734 } 4735 } 4736 } 4737 4738 if (lacp_rate) { 4739 if (bond_mode != BOND_MODE_8023AD) { 4740 printk(KERN_INFO DRV_NAME 4741 ": lacp_rate param is irrelevant in mode %s\n", 4742 bond_mode_name(bond_mode)); 4743 } else { 4744 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4745 if (lacp_fast == -1) { 4746 printk(KERN_ERR DRV_NAME 4747 ": Error: Invalid lacp rate \"%s\"\n", 4748 lacp_rate == NULL ? "NULL" : lacp_rate); 4749 return -EINVAL; 4750 } 4751 } 4752 } 4753 4754 if (max_bonds < 0 || max_bonds > INT_MAX) { 4755 printk(KERN_WARNING DRV_NAME 4756 ": Warning: max_bonds (%d) not in range %d-%d, so it " 4757 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4758 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4759 max_bonds = BOND_DEFAULT_MAX_BONDS; 4760 } 4761 4762 if (miimon < 0) { 4763 printk(KERN_WARNING DRV_NAME 4764 ": Warning: miimon module parameter (%d), " 4765 "not in range 0-%d, so it was reset to %d\n", 4766 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4767 miimon = BOND_LINK_MON_INTERV; 4768 } 4769 4770 if (updelay < 0) { 4771 printk(KERN_WARNING DRV_NAME 4772 ": Warning: updelay module parameter (%d), " 4773 "not in range 0-%d, so it was reset to 0\n", 4774 updelay, INT_MAX); 4775 updelay = 0; 4776 } 4777 4778 if (downdelay < 0) { 4779 printk(KERN_WARNING DRV_NAME 4780 ": Warning: downdelay module parameter (%d), " 4781 "not in range 0-%d, so it was reset to 0\n", 4782 downdelay, INT_MAX); 4783 downdelay = 0; 4784 } 4785 4786 if ((use_carrier != 0) && (use_carrier != 1)) { 4787 printk(KERN_WARNING DRV_NAME 4788 ": Warning: use_carrier module parameter (%d), " 4789 "not of valid value (0/1), so it was set to 1\n", 4790 use_carrier); 4791 use_carrier = 1; 4792 } 4793 4794 if (num_grat_arp < 0 || num_grat_arp > 255) { 4795 printk(KERN_WARNING DRV_NAME 4796 ": Warning: num_grat_arp (%d) not in range 0-255 so it " 4797 "was reset to 1 \n", num_grat_arp); 4798 num_grat_arp = 1; 4799 } 4800 4801 /* reset values for 802.3ad */ 4802 if (bond_mode == BOND_MODE_8023AD) { 4803 if (!miimon) { 4804 printk(KERN_WARNING DRV_NAME 4805 ": Warning: miimon must be specified, " 4806 "otherwise bonding will not detect link " 4807 "failure, speed and duplex which are " 4808 "essential for 802.3ad operation\n"); 4809 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4810 miimon = 100; 4811 } 4812 } 4813 4814 /* reset values for TLB/ALB */ 4815 if ((bond_mode == BOND_MODE_TLB) || 4816 (bond_mode == BOND_MODE_ALB)) { 4817 if (!miimon) { 4818 printk(KERN_WARNING DRV_NAME 4819 ": Warning: miimon must be specified, " 4820 "otherwise bonding will not detect link " 4821 "failure and link speed which are essential " 4822 "for TLB/ALB load balancing\n"); 4823 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4824 miimon = 100; 4825 } 4826 } 4827 4828 if (bond_mode == BOND_MODE_ALB) { 4829 printk(KERN_NOTICE DRV_NAME 4830 ": In ALB mode you might experience client " 4831 "disconnections upon reconnection of a link if the " 4832 "bonding module updelay parameter (%d msec) is " 4833 "incompatible with the forwarding delay time of the " 4834 "switch\n", 4835 updelay); 4836 } 4837 4838 if (!miimon) { 4839 if (updelay || downdelay) { 4840 /* just warn the user the up/down delay will have 4841 * no effect since miimon is zero... 4842 */ 4843 printk(KERN_WARNING DRV_NAME 4844 ": Warning: miimon module parameter not set " 4845 "and updelay (%d) or downdelay (%d) module " 4846 "parameter is set; updelay and downdelay have " 4847 "no effect unless miimon is set\n", 4848 updelay, downdelay); 4849 } 4850 } else { 4851 /* don't allow arp monitoring */ 4852 if (arp_interval) { 4853 printk(KERN_WARNING DRV_NAME 4854 ": Warning: miimon (%d) and arp_interval (%d) " 4855 "can't be used simultaneously, disabling ARP " 4856 "monitoring\n", 4857 miimon, arp_interval); 4858 arp_interval = 0; 4859 } 4860 4861 if ((updelay % miimon) != 0) { 4862 printk(KERN_WARNING DRV_NAME 4863 ": Warning: updelay (%d) is not a multiple " 4864 "of miimon (%d), updelay rounded to %d ms\n", 4865 updelay, miimon, (updelay / miimon) * miimon); 4866 } 4867 4868 updelay /= miimon; 4869 4870 if ((downdelay % miimon) != 0) { 4871 printk(KERN_WARNING DRV_NAME 4872 ": Warning: downdelay (%d) is not a multiple " 4873 "of miimon (%d), downdelay rounded to %d ms\n", 4874 downdelay, miimon, 4875 (downdelay / miimon) * miimon); 4876 } 4877 4878 downdelay /= miimon; 4879 } 4880 4881 if (arp_interval < 0) { 4882 printk(KERN_WARNING DRV_NAME 4883 ": Warning: arp_interval module parameter (%d) " 4884 ", not in range 0-%d, so it was reset to %d\n", 4885 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4886 arp_interval = BOND_LINK_ARP_INTERV; 4887 } 4888 4889 for (arp_ip_count = 0; 4890 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4891 arp_ip_count++) { 4892 /* not complete check, but should be good enough to 4893 catch mistakes */ 4894 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4895 printk(KERN_WARNING DRV_NAME 4896 ": Warning: bad arp_ip_target module parameter " 4897 "(%s), ARP monitoring will not be performed\n", 4898 arp_ip_target[arp_ip_count]); 4899 arp_interval = 0; 4900 } else { 4901 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4902 arp_target[arp_ip_count] = ip; 4903 } 4904 } 4905 4906 if (arp_interval && !arp_ip_count) { 4907 /* don't allow arping if no arp_ip_target given... */ 4908 printk(KERN_WARNING DRV_NAME 4909 ": Warning: arp_interval module parameter (%d) " 4910 "specified without providing an arp_ip_target " 4911 "parameter, arp_interval was reset to 0\n", 4912 arp_interval); 4913 arp_interval = 0; 4914 } 4915 4916 if (arp_validate) { 4917 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4918 printk(KERN_ERR DRV_NAME 4919 ": arp_validate only supported in active-backup mode\n"); 4920 return -EINVAL; 4921 } 4922 if (!arp_interval) { 4923 printk(KERN_ERR DRV_NAME 4924 ": arp_validate requires arp_interval\n"); 4925 return -EINVAL; 4926 } 4927 4928 arp_validate_value = bond_parse_parm(arp_validate, 4929 arp_validate_tbl); 4930 if (arp_validate_value == -1) { 4931 printk(KERN_ERR DRV_NAME 4932 ": Error: invalid arp_validate \"%s\"\n", 4933 arp_validate == NULL ? "NULL" : arp_validate); 4934 return -EINVAL; 4935 } 4936 } else 4937 arp_validate_value = 0; 4938 4939 if (miimon) { 4940 printk(KERN_INFO DRV_NAME 4941 ": MII link monitoring set to %d ms\n", 4942 miimon); 4943 } else if (arp_interval) { 4944 int i; 4945 4946 printk(KERN_INFO DRV_NAME 4947 ": ARP monitoring set to %d ms, validate %s, with %d target(s):", 4948 arp_interval, 4949 arp_validate_tbl[arp_validate_value].modename, 4950 arp_ip_count); 4951 4952 for (i = 0; i < arp_ip_count; i++) 4953 printk (" %s", arp_ip_target[i]); 4954 4955 printk("\n"); 4956 4957 } else if (max_bonds) { 4958 /* miimon and arp_interval not set, we need one so things 4959 * work as expected, see bonding.txt for details 4960 */ 4961 printk(KERN_WARNING DRV_NAME 4962 ": Warning: either miimon or arp_interval and " 4963 "arp_ip_target module parameters must be specified, " 4964 "otherwise bonding will not detect link failures! see " 4965 "bonding.txt for details.\n"); 4966 } 4967 4968 if (primary && !USES_PRIMARY(bond_mode)) { 4969 /* currently, using a primary only makes sense 4970 * in active backup, TLB or ALB modes 4971 */ 4972 printk(KERN_WARNING DRV_NAME 4973 ": Warning: %s primary device specified but has no " 4974 "effect in %s mode\n", 4975 primary, bond_mode_name(bond_mode)); 4976 primary = NULL; 4977 } 4978 4979 if (fail_over_mac) { 4980 fail_over_mac_value = bond_parse_parm(fail_over_mac, 4981 fail_over_mac_tbl); 4982 if (fail_over_mac_value == -1) { 4983 printk(KERN_ERR DRV_NAME 4984 ": Error: invalid fail_over_mac \"%s\"\n", 4985 arp_validate == NULL ? "NULL" : arp_validate); 4986 return -EINVAL; 4987 } 4988 4989 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 4990 printk(KERN_WARNING DRV_NAME 4991 ": Warning: fail_over_mac only affects " 4992 "active-backup mode.\n"); 4993 } else { 4994 fail_over_mac_value = BOND_FOM_NONE; 4995 } 4996 4997 /* fill params struct with the proper values */ 4998 params->mode = bond_mode; 4999 params->xmit_policy = xmit_hashtype; 5000 params->miimon = miimon; 5001 params->num_grat_arp = num_grat_arp; 5002 params->arp_interval = arp_interval; 5003 params->arp_validate = arp_validate_value; 5004 params->updelay = updelay; 5005 params->downdelay = downdelay; 5006 params->use_carrier = use_carrier; 5007 params->lacp_fast = lacp_fast; 5008 params->primary[0] = 0; 5009 params->fail_over_mac = fail_over_mac_value; 5010 5011 if (primary) { 5012 strncpy(params->primary, primary, IFNAMSIZ); 5013 params->primary[IFNAMSIZ - 1] = 0; 5014 } 5015 5016 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 5017 5018 return 0; 5019 } 5020 5021 static struct lock_class_key bonding_netdev_xmit_lock_key; 5022 static struct lock_class_key bonding_netdev_addr_lock_key; 5023 5024 static void bond_set_lockdep_class_one(struct net_device *dev, 5025 struct netdev_queue *txq, 5026 void *_unused) 5027 { 5028 lockdep_set_class(&txq->_xmit_lock, 5029 &bonding_netdev_xmit_lock_key); 5030 } 5031 5032 static void bond_set_lockdep_class(struct net_device *dev) 5033 { 5034 lockdep_set_class(&dev->addr_list_lock, 5035 &bonding_netdev_addr_lock_key); 5036 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 5037 } 5038 5039 /* Create a new bond based on the specified name and bonding parameters. 5040 * If name is NULL, obtain a suitable "bond%d" name for us. 5041 * Caller must NOT hold rtnl_lock; we need to release it here before we 5042 * set up our sysfs entries. 5043 */ 5044 int bond_create(char *name, struct bond_params *params) 5045 { 5046 struct net_device *bond_dev; 5047 struct bonding *bond; 5048 int res; 5049 5050 rtnl_lock(); 5051 down_write(&bonding_rwsem); 5052 5053 /* Check to see if the bond already exists. */ 5054 if (name) { 5055 list_for_each_entry(bond, &bond_dev_list, bond_list) 5056 if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) { 5057 printk(KERN_ERR DRV_NAME 5058 ": cannot add bond %s; it already exists\n", 5059 name); 5060 res = -EPERM; 5061 goto out_rtnl; 5062 } 5063 } 5064 5065 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", 5066 ether_setup); 5067 if (!bond_dev) { 5068 printk(KERN_ERR DRV_NAME 5069 ": %s: eek! can't alloc netdev!\n", 5070 name); 5071 res = -ENOMEM; 5072 goto out_rtnl; 5073 } 5074 5075 if (!name) { 5076 res = dev_alloc_name(bond_dev, "bond%d"); 5077 if (res < 0) 5078 goto out_netdev; 5079 } 5080 5081 /* bond_init() must be called after dev_alloc_name() (for the 5082 * /proc files), but before register_netdevice(), because we 5083 * need to set function pointers. 5084 */ 5085 5086 res = bond_init(bond_dev, params); 5087 if (res < 0) { 5088 goto out_netdev; 5089 } 5090 5091 res = register_netdevice(bond_dev); 5092 if (res < 0) { 5093 goto out_bond; 5094 } 5095 5096 bond_set_lockdep_class(bond_dev); 5097 5098 netif_carrier_off(bond_dev); 5099 5100 up_write(&bonding_rwsem); 5101 rtnl_unlock(); /* allows sysfs registration of net device */ 5102 res = bond_create_sysfs_entry(bond_dev->priv); 5103 if (res < 0) { 5104 rtnl_lock(); 5105 down_write(&bonding_rwsem); 5106 bond_deinit(bond_dev); 5107 unregister_netdevice(bond_dev); 5108 goto out_rtnl; 5109 } 5110 5111 return 0; 5112 5113 out_bond: 5114 bond_deinit(bond_dev); 5115 out_netdev: 5116 free_netdev(bond_dev); 5117 out_rtnl: 5118 up_write(&bonding_rwsem); 5119 rtnl_unlock(); 5120 return res; 5121 } 5122 5123 static int __init bonding_init(void) 5124 { 5125 int i; 5126 int res; 5127 struct bonding *bond; 5128 5129 printk(KERN_INFO "%s", version); 5130 5131 res = bond_check_params(&bonding_defaults); 5132 if (res) { 5133 goto out; 5134 } 5135 5136 #ifdef CONFIG_PROC_FS 5137 bond_create_proc_dir(); 5138 #endif 5139 5140 init_rwsem(&bonding_rwsem); 5141 5142 for (i = 0; i < max_bonds; i++) { 5143 res = bond_create(NULL, &bonding_defaults); 5144 if (res) 5145 goto err; 5146 } 5147 5148 res = bond_create_sysfs(); 5149 if (res) 5150 goto err; 5151 5152 register_netdevice_notifier(&bond_netdev_notifier); 5153 register_inetaddr_notifier(&bond_inetaddr_notifier); 5154 5155 goto out; 5156 err: 5157 list_for_each_entry(bond, &bond_dev_list, bond_list) { 5158 bond_work_cancel_all(bond); 5159 destroy_workqueue(bond->wq); 5160 } 5161 5162 bond_destroy_sysfs(); 5163 5164 rtnl_lock(); 5165 bond_free_all(); 5166 rtnl_unlock(); 5167 out: 5168 return res; 5169 5170 } 5171 5172 static void __exit bonding_exit(void) 5173 { 5174 unregister_netdevice_notifier(&bond_netdev_notifier); 5175 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 5176 5177 bond_destroy_sysfs(); 5178 5179 rtnl_lock(); 5180 bond_free_all(); 5181 rtnl_unlock(); 5182 } 5183 5184 module_init(bonding_init); 5185 module_exit(bonding_exit); 5186 MODULE_LICENSE("GPL"); 5187 MODULE_VERSION(DRV_VERSION); 5188 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5189 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5190 MODULE_SUPPORTED_DEVICE("most ethernet devices"); 5191 5192 /* 5193 * Local variables: 5194 * c-indent-level: 8 5195 * c-basic-offset: 8 5196 * tab-width: 8 5197 * End: 5198 */ 5199 5200