xref: /openbmc/linux/drivers/net/bonding/bond_main.c (revision 87c2ce3b)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 //#define BONDING_DEBUG 1
35 
36 #include <linux/config.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/sched.h>
40 #include <linux/types.h>
41 #include <linux/fcntl.h>
42 #include <linux/interrupt.h>
43 #include <linux/ptrace.h>
44 #include <linux/ioport.h>
45 #include <linux/in.h>
46 #include <net/ip.h>
47 #include <linux/ip.h>
48 #include <linux/tcp.h>
49 #include <linux/udp.h>
50 #include <linux/slab.h>
51 #include <linux/string.h>
52 #include <linux/init.h>
53 #include <linux/timer.h>
54 #include <linux/socket.h>
55 #include <linux/ctype.h>
56 #include <linux/inet.h>
57 #include <linux/bitops.h>
58 #include <asm/system.h>
59 #include <asm/io.h>
60 #include <asm/dma.h>
61 #include <asm/uaccess.h>
62 #include <linux/errno.h>
63 #include <linux/netdevice.h>
64 #include <linux/inetdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <net/sock.h>
68 #include <linux/rtnetlink.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/smp.h>
72 #include <linux/if_ether.h>
73 #include <net/arp.h>
74 #include <linux/mii.h>
75 #include <linux/ethtool.h>
76 #include <linux/if_vlan.h>
77 #include <linux/if_bonding.h>
78 #include <net/route.h>
79 #include "bonding.h"
80 #include "bond_3ad.h"
81 #include "bond_alb.h"
82 
83 /*---------------------------- Module parameters ----------------------------*/
84 
85 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
86 #define BOND_LINK_MON_INTERV	0
87 #define BOND_LINK_ARP_INTERV	0
88 
89 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
90 static int miimon	= BOND_LINK_MON_INTERV;
91 static int updelay	= 0;
92 static int downdelay	= 0;
93 static int use_carrier	= 1;
94 static char *mode	= NULL;
95 static char *primary	= NULL;
96 static char *lacp_rate	= NULL;
97 static char *xmit_hash_policy = NULL;
98 static int arp_interval = BOND_LINK_ARP_INTERV;
99 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
100 struct bond_params bonding_defaults;
101 
102 module_param(max_bonds, int, 0);
103 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
104 module_param(miimon, int, 0);
105 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
106 module_param(updelay, int, 0);
107 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
108 module_param(downdelay, int, 0);
109 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
110 			    "in milliseconds");
111 module_param(use_carrier, int, 0);
112 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
113 			      "0 for off, 1 for on (default)");
114 module_param(mode, charp, 0);
115 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
116 		       "1 for active-backup, 2 for balance-xor, "
117 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
118 		       "6 for balance-alb");
119 module_param(primary, charp, 0);
120 MODULE_PARM_DESC(primary, "Primary network device to use");
121 module_param(lacp_rate, charp, 0);
122 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
123 			    "(slow/fast)");
124 module_param(xmit_hash_policy, charp, 0);
125 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
126 				   ", 1 for layer 3+4");
127 module_param(arp_interval, int, 0);
128 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
129 module_param_array(arp_ip_target, charp, NULL, 0);
130 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
131 
132 /*----------------------------- Global variables ----------------------------*/
133 
134 static const char *version =
135 	DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
136 
137 LIST_HEAD(bond_dev_list);
138 
139 #ifdef CONFIG_PROC_FS
140 static struct proc_dir_entry *bond_proc_dir = NULL;
141 #endif
142 
143 extern struct rw_semaphore bonding_rwsem;
144 static u32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
145 static int arp_ip_count	= 0;
146 static int bond_mode	= BOND_MODE_ROUNDROBIN;
147 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
148 static int lacp_fast	= 0;
149 
150 
151 struct bond_parm_tbl bond_lacp_tbl[] = {
152 {	"slow",		AD_LACP_SLOW},
153 {	"fast",		AD_LACP_FAST},
154 {	NULL,		-1},
155 };
156 
157 struct bond_parm_tbl bond_mode_tbl[] = {
158 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
159 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
160 {	"balance-xor",		BOND_MODE_XOR},
161 {	"broadcast",		BOND_MODE_BROADCAST},
162 {	"802.3ad",		BOND_MODE_8023AD},
163 {	"balance-tlb",		BOND_MODE_TLB},
164 {	"balance-alb",		BOND_MODE_ALB},
165 {	NULL,			-1},
166 };
167 
168 struct bond_parm_tbl xmit_hashtype_tbl[] = {
169 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
170 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
171 {	NULL,			-1},
172 };
173 
174 /*-------------------------- Forward declarations ---------------------------*/
175 
176 static void bond_send_gratuitous_arp(struct bonding *bond);
177 
178 /*---------------------------- General routines -----------------------------*/
179 
180 const char *bond_mode_name(int mode)
181 {
182 	switch (mode) {
183 	case BOND_MODE_ROUNDROBIN :
184 		return "load balancing (round-robin)";
185 	case BOND_MODE_ACTIVEBACKUP :
186 		return "fault-tolerance (active-backup)";
187 	case BOND_MODE_XOR :
188 		return "load balancing (xor)";
189 	case BOND_MODE_BROADCAST :
190 		return "fault-tolerance (broadcast)";
191 	case BOND_MODE_8023AD:
192 		return "IEEE 802.3ad Dynamic link aggregation";
193 	case BOND_MODE_TLB:
194 		return "transmit load balancing";
195 	case BOND_MODE_ALB:
196 		return "adaptive load balancing";
197 	default:
198 		return "unknown";
199 	}
200 }
201 
202 /*---------------------------------- VLAN -----------------------------------*/
203 
204 /**
205  * bond_add_vlan - add a new vlan id on bond
206  * @bond: bond that got the notification
207  * @vlan_id: the vlan id to add
208  *
209  * Returns -ENOMEM if allocation failed.
210  */
211 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
212 {
213 	struct vlan_entry *vlan;
214 
215 	dprintk("bond: %s, vlan id %d\n",
216 		(bond ? bond->dev->name: "None"), vlan_id);
217 
218 	vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
219 	if (!vlan) {
220 		return -ENOMEM;
221 	}
222 
223 	INIT_LIST_HEAD(&vlan->vlan_list);
224 	vlan->vlan_id = vlan_id;
225 	vlan->vlan_ip = 0;
226 
227 	write_lock_bh(&bond->lock);
228 
229 	list_add_tail(&vlan->vlan_list, &bond->vlan_list);
230 
231 	write_unlock_bh(&bond->lock);
232 
233 	dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
234 
235 	return 0;
236 }
237 
238 /**
239  * bond_del_vlan - delete a vlan id from bond
240  * @bond: bond that got the notification
241  * @vlan_id: the vlan id to delete
242  *
243  * returns -ENODEV if @vlan_id was not found in @bond.
244  */
245 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
246 {
247 	struct vlan_entry *vlan, *next;
248 	int res = -ENODEV;
249 
250 	dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
251 
252 	write_lock_bh(&bond->lock);
253 
254 	list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) {
255 		if (vlan->vlan_id == vlan_id) {
256 			list_del(&vlan->vlan_list);
257 
258 			if ((bond->params.mode == BOND_MODE_TLB) ||
259 			    (bond->params.mode == BOND_MODE_ALB)) {
260 				bond_alb_clear_vlan(bond, vlan_id);
261 			}
262 
263 			dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
264 				bond->dev->name);
265 
266 			kfree(vlan);
267 
268 			if (list_empty(&bond->vlan_list) &&
269 			    (bond->slave_cnt == 0)) {
270 				/* Last VLAN removed and no slaves, so
271 				 * restore block on adding VLANs. This will
272 				 * be removed once new slaves that are not
273 				 * VLAN challenged will be added.
274 				 */
275 				bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
276 			}
277 
278 			res = 0;
279 			goto out;
280 		}
281 	}
282 
283 	dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
284 		bond->dev->name);
285 
286 out:
287 	write_unlock_bh(&bond->lock);
288 	return res;
289 }
290 
291 /**
292  * bond_has_challenged_slaves
293  * @bond: the bond we're working on
294  *
295  * Searches the slave list. Returns 1 if a vlan challenged slave
296  * was found, 0 otherwise.
297  *
298  * Assumes bond->lock is held.
299  */
300 static int bond_has_challenged_slaves(struct bonding *bond)
301 {
302 	struct slave *slave;
303 	int i;
304 
305 	bond_for_each_slave(bond, slave, i) {
306 		if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
307 			dprintk("found VLAN challenged slave - %s\n",
308 				slave->dev->name);
309 			return 1;
310 		}
311 	}
312 
313 	dprintk("no VLAN challenged slaves found\n");
314 	return 0;
315 }
316 
317 /**
318  * bond_next_vlan - safely skip to the next item in the vlans list.
319  * @bond: the bond we're working on
320  * @curr: item we're advancing from
321  *
322  * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
323  * or @curr->next otherwise (even if it is @curr itself again).
324  *
325  * Caller must hold bond->lock
326  */
327 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
328 {
329 	struct vlan_entry *next, *last;
330 
331 	if (list_empty(&bond->vlan_list)) {
332 		return NULL;
333 	}
334 
335 	if (!curr) {
336 		next = list_entry(bond->vlan_list.next,
337 				  struct vlan_entry, vlan_list);
338 	} else {
339 		last = list_entry(bond->vlan_list.prev,
340 				  struct vlan_entry, vlan_list);
341 		if (last == curr) {
342 			next = list_entry(bond->vlan_list.next,
343 					  struct vlan_entry, vlan_list);
344 		} else {
345 			next = list_entry(curr->vlan_list.next,
346 					  struct vlan_entry, vlan_list);
347 		}
348 	}
349 
350 	return next;
351 }
352 
353 /**
354  * bond_dev_queue_xmit - Prepare skb for xmit.
355  *
356  * @bond: bond device that got this skb for tx.
357  * @skb: hw accel VLAN tagged skb to transmit
358  * @slave_dev: slave that is supposed to xmit this skbuff
359  *
360  * When the bond gets an skb to transmit that is
361  * already hardware accelerated VLAN tagged, and it
362  * needs to relay this skb to a slave that is not
363  * hw accel capable, the skb needs to be "unaccelerated",
364  * i.e. strip the hwaccel tag and re-insert it as part
365  * of the payload.
366  */
367 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
368 {
369 	unsigned short vlan_id;
370 
371 	if (!list_empty(&bond->vlan_list) &&
372 	    !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
373 	    vlan_get_tag(skb, &vlan_id) == 0) {
374 		skb->dev = slave_dev;
375 		skb = vlan_put_tag(skb, vlan_id);
376 		if (!skb) {
377 			/* vlan_put_tag() frees the skb in case of error,
378 			 * so return success here so the calling functions
379 			 * won't attempt to free is again.
380 			 */
381 			return 0;
382 		}
383 	} else {
384 		skb->dev = slave_dev;
385 	}
386 
387 	skb->priority = 1;
388 	dev_queue_xmit(skb);
389 
390 	return 0;
391 }
392 
393 /*
394  * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
395  * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
396  * lock because:
397  * a. This operation is performed in IOCTL context,
398  * b. The operation is protected by the RTNL semaphore in the 8021q code,
399  * c. Holding a lock with BH disabled while directly calling a base driver
400  *    entry point is generally a BAD idea.
401  *
402  * The design of synchronization/protection for this operation in the 8021q
403  * module is good for one or more VLAN devices over a single physical device
404  * and cannot be extended for a teaming solution like bonding, so there is a
405  * potential race condition here where a net device from the vlan group might
406  * be referenced (either by a base driver or the 8021q code) while it is being
407  * removed from the system. However, it turns out we're not making matters
408  * worse, and if it works for regular VLAN usage it will work here too.
409 */
410 
411 /**
412  * bond_vlan_rx_register - Propagates registration to slaves
413  * @bond_dev: bonding net device that got called
414  * @grp: vlan group being registered
415  */
416 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
417 {
418 	struct bonding *bond = bond_dev->priv;
419 	struct slave *slave;
420 	int i;
421 
422 	bond->vlgrp = grp;
423 
424 	bond_for_each_slave(bond, slave, i) {
425 		struct net_device *slave_dev = slave->dev;
426 
427 		if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
428 		    slave_dev->vlan_rx_register) {
429 			slave_dev->vlan_rx_register(slave_dev, grp);
430 		}
431 	}
432 }
433 
434 /**
435  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
436  * @bond_dev: bonding net device that got called
437  * @vid: vlan id being added
438  */
439 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
440 {
441 	struct bonding *bond = bond_dev->priv;
442 	struct slave *slave;
443 	int i, res;
444 
445 	bond_for_each_slave(bond, slave, i) {
446 		struct net_device *slave_dev = slave->dev;
447 
448 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
449 		    slave_dev->vlan_rx_add_vid) {
450 			slave_dev->vlan_rx_add_vid(slave_dev, vid);
451 		}
452 	}
453 
454 	res = bond_add_vlan(bond, vid);
455 	if (res) {
456 		printk(KERN_ERR DRV_NAME
457 		       ": %s: Error: Failed to add vlan id %d\n",
458 		       bond_dev->name, vid);
459 	}
460 }
461 
462 /**
463  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
464  * @bond_dev: bonding net device that got called
465  * @vid: vlan id being removed
466  */
467 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
468 {
469 	struct bonding *bond = bond_dev->priv;
470 	struct slave *slave;
471 	struct net_device *vlan_dev;
472 	int i, res;
473 
474 	bond_for_each_slave(bond, slave, i) {
475 		struct net_device *slave_dev = slave->dev;
476 
477 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
478 		    slave_dev->vlan_rx_kill_vid) {
479 			/* Save and then restore vlan_dev in the grp array,
480 			 * since the slave's driver might clear it.
481 			 */
482 			vlan_dev = bond->vlgrp->vlan_devices[vid];
483 			slave_dev->vlan_rx_kill_vid(slave_dev, vid);
484 			bond->vlgrp->vlan_devices[vid] = vlan_dev;
485 		}
486 	}
487 
488 	res = bond_del_vlan(bond, vid);
489 	if (res) {
490 		printk(KERN_ERR DRV_NAME
491 		       ": %s: Error: Failed to remove vlan id %d\n",
492 		       bond_dev->name, vid);
493 	}
494 }
495 
496 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
497 {
498 	struct vlan_entry *vlan;
499 
500 	write_lock_bh(&bond->lock);
501 
502 	if (list_empty(&bond->vlan_list)) {
503 		goto out;
504 	}
505 
506 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
507 	    slave_dev->vlan_rx_register) {
508 		slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
509 	}
510 
511 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
512 	    !(slave_dev->vlan_rx_add_vid)) {
513 		goto out;
514 	}
515 
516 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
517 		slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
518 	}
519 
520 out:
521 	write_unlock_bh(&bond->lock);
522 }
523 
524 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
525 {
526 	struct vlan_entry *vlan;
527 	struct net_device *vlan_dev;
528 
529 	write_lock_bh(&bond->lock);
530 
531 	if (list_empty(&bond->vlan_list)) {
532 		goto out;
533 	}
534 
535 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
536 	    !(slave_dev->vlan_rx_kill_vid)) {
537 		goto unreg;
538 	}
539 
540 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
541 		/* Save and then restore vlan_dev in the grp array,
542 		 * since the slave's driver might clear it.
543 		 */
544 		vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id];
545 		slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
546 		bond->vlgrp->vlan_devices[vlan->vlan_id] = vlan_dev;
547 	}
548 
549 unreg:
550 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
551 	    slave_dev->vlan_rx_register) {
552 		slave_dev->vlan_rx_register(slave_dev, NULL);
553 	}
554 
555 out:
556 	write_unlock_bh(&bond->lock);
557 }
558 
559 /*------------------------------- Link status -------------------------------*/
560 
561 /*
562  * Get link speed and duplex from the slave's base driver
563  * using ethtool. If for some reason the call fails or the
564  * values are invalid, fake speed and duplex to 100/Full
565  * and return error.
566  */
567 static int bond_update_speed_duplex(struct slave *slave)
568 {
569 	struct net_device *slave_dev = slave->dev;
570 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
571 	struct ifreq ifr;
572 	struct ethtool_cmd etool;
573 
574 	/* Fake speed and duplex */
575 	slave->speed = SPEED_100;
576 	slave->duplex = DUPLEX_FULL;
577 
578 	if (slave_dev->ethtool_ops) {
579 		u32 res;
580 
581 		if (!slave_dev->ethtool_ops->get_settings) {
582 			return -1;
583 		}
584 
585 		res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
586 		if (res < 0) {
587 			return -1;
588 		}
589 
590 		goto verify;
591 	}
592 
593 	ioctl = slave_dev->do_ioctl;
594 	strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
595 	etool.cmd = ETHTOOL_GSET;
596 	ifr.ifr_data = (char*)&etool;
597 	if (!ioctl || (IOCTL(slave_dev, &ifr, SIOCETHTOOL) < 0)) {
598 		return -1;
599 	}
600 
601 verify:
602 	switch (etool.speed) {
603 	case SPEED_10:
604 	case SPEED_100:
605 	case SPEED_1000:
606 		break;
607 	default:
608 		return -1;
609 	}
610 
611 	switch (etool.duplex) {
612 	case DUPLEX_FULL:
613 	case DUPLEX_HALF:
614 		break;
615 	default:
616 		return -1;
617 	}
618 
619 	slave->speed = etool.speed;
620 	slave->duplex = etool.duplex;
621 
622 	return 0;
623 }
624 
625 /*
626  * if <dev> supports MII link status reporting, check its link status.
627  *
628  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
629  * depening upon the setting of the use_carrier parameter.
630  *
631  * Return either BMSR_LSTATUS, meaning that the link is up (or we
632  * can't tell and just pretend it is), or 0, meaning that the link is
633  * down.
634  *
635  * If reporting is non-zero, instead of faking link up, return -1 if
636  * both ETHTOOL and MII ioctls fail (meaning the device does not
637  * support them).  If use_carrier is set, return whatever it says.
638  * It'd be nice if there was a good way to tell if a driver supports
639  * netif_carrier, but there really isn't.
640  */
641 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
642 {
643 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
644 	struct ifreq ifr;
645 	struct mii_ioctl_data *mii;
646 	struct ethtool_value etool;
647 
648 	if (bond->params.use_carrier) {
649 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
650 	}
651 
652 	ioctl = slave_dev->do_ioctl;
653 	if (ioctl) {
654 		/* TODO: set pointer to correct ioctl on a per team member */
655 		/*       bases to make this more efficient. that is, once  */
656 		/*       we determine the correct ioctl, we will always    */
657 		/*       call it and not the others for that team          */
658 		/*       member.                                           */
659 
660 		/*
661 		 * We cannot assume that SIOCGMIIPHY will also read a
662 		 * register; not all network drivers (e.g., e100)
663 		 * support that.
664 		 */
665 
666 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
667 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
668 		mii = if_mii(&ifr);
669 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
670 			mii->reg_num = MII_BMSR;
671 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
672 				return (mii->val_out & BMSR_LSTATUS);
673 			}
674 		}
675 	}
676 
677 	/* try SIOCETHTOOL ioctl, some drivers cache ETHTOOL_GLINK */
678 	/* for a period of time so we attempt to get link status   */
679 	/* from it last if the above MII ioctls fail...            */
680 	if (slave_dev->ethtool_ops) {
681 		if (slave_dev->ethtool_ops->get_link) {
682 			u32 link;
683 
684 			link = slave_dev->ethtool_ops->get_link(slave_dev);
685 
686 			return link ? BMSR_LSTATUS : 0;
687 		}
688 	}
689 
690 	if (ioctl) {
691 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
692 		etool.cmd = ETHTOOL_GLINK;
693 		ifr.ifr_data = (char*)&etool;
694 		if (IOCTL(slave_dev, &ifr, SIOCETHTOOL) == 0) {
695 			if (etool.data == 1) {
696 				return BMSR_LSTATUS;
697 			} else {
698 				dprintk("SIOCETHTOOL shows link down\n");
699 				return 0;
700 			}
701 		}
702 	}
703 
704 	/*
705 	 * If reporting, report that either there's no dev->do_ioctl,
706 	 * or both SIOCGMIIREG and SIOCETHTOOL failed (meaning that we
707 	 * cannot report link status).  If not reporting, pretend
708 	 * we're ok.
709 	 */
710 	return (reporting ? -1 : BMSR_LSTATUS);
711 }
712 
713 /*----------------------------- Multicast list ------------------------------*/
714 
715 /*
716  * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
717  */
718 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
719 {
720 	return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
721 			dmi1->dmi_addrlen == dmi2->dmi_addrlen;
722 }
723 
724 /*
725  * returns dmi entry if found, NULL otherwise
726  */
727 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
728 {
729 	struct dev_mc_list *idmi;
730 
731 	for (idmi = mc_list; idmi; idmi = idmi->next) {
732 		if (bond_is_dmi_same(dmi, idmi)) {
733 			return idmi;
734 		}
735 	}
736 
737 	return NULL;
738 }
739 
740 /*
741  * Push the promiscuity flag down to appropriate slaves
742  */
743 static void bond_set_promiscuity(struct bonding *bond, int inc)
744 {
745 	if (USES_PRIMARY(bond->params.mode)) {
746 		/* write lock already acquired */
747 		if (bond->curr_active_slave) {
748 			dev_set_promiscuity(bond->curr_active_slave->dev, inc);
749 		}
750 	} else {
751 		struct slave *slave;
752 		int i;
753 		bond_for_each_slave(bond, slave, i) {
754 			dev_set_promiscuity(slave->dev, inc);
755 		}
756 	}
757 }
758 
759 /*
760  * Push the allmulti flag down to all slaves
761  */
762 static void bond_set_allmulti(struct bonding *bond, int inc)
763 {
764 	if (USES_PRIMARY(bond->params.mode)) {
765 		/* write lock already acquired */
766 		if (bond->curr_active_slave) {
767 			dev_set_allmulti(bond->curr_active_slave->dev, inc);
768 		}
769 	} else {
770 		struct slave *slave;
771 		int i;
772 		bond_for_each_slave(bond, slave, i) {
773 			dev_set_allmulti(slave->dev, inc);
774 		}
775 	}
776 }
777 
778 /*
779  * Add a Multicast address to slaves
780  * according to mode
781  */
782 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
783 {
784 	if (USES_PRIMARY(bond->params.mode)) {
785 		/* write lock already acquired */
786 		if (bond->curr_active_slave) {
787 			dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
788 		}
789 	} else {
790 		struct slave *slave;
791 		int i;
792 		bond_for_each_slave(bond, slave, i) {
793 			dev_mc_add(slave->dev, addr, alen, 0);
794 		}
795 	}
796 }
797 
798 /*
799  * Remove a multicast address from slave
800  * according to mode
801  */
802 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
803 {
804 	if (USES_PRIMARY(bond->params.mode)) {
805 		/* write lock already acquired */
806 		if (bond->curr_active_slave) {
807 			dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
808 		}
809 	} else {
810 		struct slave *slave;
811 		int i;
812 		bond_for_each_slave(bond, slave, i) {
813 			dev_mc_delete(slave->dev, addr, alen, 0);
814 		}
815 	}
816 }
817 
818 /*
819  * Totally destroys the mc_list in bond
820  */
821 static void bond_mc_list_destroy(struct bonding *bond)
822 {
823 	struct dev_mc_list *dmi;
824 
825 	dmi = bond->mc_list;
826 	while (dmi) {
827 		bond->mc_list = dmi->next;
828 		kfree(dmi);
829 		dmi = bond->mc_list;
830 	}
831 }
832 
833 /*
834  * Copy all the Multicast addresses from src to the bonding device dst
835  */
836 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
837 			     gfp_t gfp_flag)
838 {
839 	struct dev_mc_list *dmi, *new_dmi;
840 
841 	for (dmi = mc_list; dmi; dmi = dmi->next) {
842 		new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
843 
844 		if (!new_dmi) {
845 			/* FIXME: Potential memory leak !!! */
846 			return -ENOMEM;
847 		}
848 
849 		new_dmi->next = bond->mc_list;
850 		bond->mc_list = new_dmi;
851 		new_dmi->dmi_addrlen = dmi->dmi_addrlen;
852 		memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
853 		new_dmi->dmi_users = dmi->dmi_users;
854 		new_dmi->dmi_gusers = dmi->dmi_gusers;
855 	}
856 
857 	return 0;
858 }
859 
860 /*
861  * flush all members of flush->mc_list from device dev->mc_list
862  */
863 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
864 {
865 	struct bonding *bond = bond_dev->priv;
866 	struct dev_mc_list *dmi;
867 
868 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
869 		dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
870 	}
871 
872 	if (bond->params.mode == BOND_MODE_8023AD) {
873 		/* del lacpdu mc addr from mc list */
874 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
875 
876 		dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
877 	}
878 }
879 
880 /*--------------------------- Active slave change ---------------------------*/
881 
882 /*
883  * Update the mc list and multicast-related flags for the new and
884  * old active slaves (if any) according to the multicast mode, and
885  * promiscuous flags unconditionally.
886  */
887 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
888 {
889 	struct dev_mc_list *dmi;
890 
891 	if (!USES_PRIMARY(bond->params.mode)) {
892 		/* nothing to do -  mc list is already up-to-date on
893 		 * all slaves
894 		 */
895 		return;
896 	}
897 
898 	if (old_active) {
899 		if (bond->dev->flags & IFF_PROMISC) {
900 			dev_set_promiscuity(old_active->dev, -1);
901 		}
902 
903 		if (bond->dev->flags & IFF_ALLMULTI) {
904 			dev_set_allmulti(old_active->dev, -1);
905 		}
906 
907 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
908 			dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
909 		}
910 	}
911 
912 	if (new_active) {
913 		if (bond->dev->flags & IFF_PROMISC) {
914 			dev_set_promiscuity(new_active->dev, 1);
915 		}
916 
917 		if (bond->dev->flags & IFF_ALLMULTI) {
918 			dev_set_allmulti(new_active->dev, 1);
919 		}
920 
921 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
922 			dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
923 		}
924 	}
925 }
926 
927 /**
928  * find_best_interface - select the best available slave to be the active one
929  * @bond: our bonding struct
930  *
931  * Warning: Caller must hold curr_slave_lock for writing.
932  */
933 static struct slave *bond_find_best_slave(struct bonding *bond)
934 {
935 	struct slave *new_active, *old_active;
936 	struct slave *bestslave = NULL;
937 	int mintime = bond->params.updelay;
938 	int i;
939 
940 	new_active = old_active = bond->curr_active_slave;
941 
942 	if (!new_active) { /* there were no active slaves left */
943 		if (bond->slave_cnt > 0) {  /* found one slave */
944 			new_active = bond->first_slave;
945 		} else {
946 			return NULL; /* still no slave, return NULL */
947 		}
948 	}
949 
950 	/* first try the primary link; if arping, a link must tx/rx traffic
951 	 * before it can be considered the curr_active_slave - also, we would skip
952 	 * slaves between the curr_active_slave and primary_slave that may be up
953 	 * and able to arp
954 	 */
955 	if ((bond->primary_slave) &&
956 	    (!bond->params.arp_interval) &&
957 	    (IS_UP(bond->primary_slave->dev))) {
958 		new_active = bond->primary_slave;
959 	}
960 
961 	/* remember where to stop iterating over the slaves */
962 	old_active = new_active;
963 
964 	bond_for_each_slave_from(bond, new_active, i, old_active) {
965 		if (IS_UP(new_active->dev)) {
966 			if (new_active->link == BOND_LINK_UP) {
967 				return new_active;
968 			} else if (new_active->link == BOND_LINK_BACK) {
969 				/* link up, but waiting for stabilization */
970 				if (new_active->delay < mintime) {
971 					mintime = new_active->delay;
972 					bestslave = new_active;
973 				}
974 			}
975 		}
976 	}
977 
978 	return bestslave;
979 }
980 
981 /**
982  * change_active_interface - change the active slave into the specified one
983  * @bond: our bonding struct
984  * @new: the new slave to make the active one
985  *
986  * Set the new slave to the bond's settings and unset them on the old
987  * curr_active_slave.
988  * Setting include flags, mc-list, promiscuity, allmulti, etc.
989  *
990  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
991  * because it is apparently the best available slave we have, even though its
992  * updelay hasn't timed out yet.
993  *
994  * Warning: Caller must hold curr_slave_lock for writing.
995  */
996 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
997 {
998 	struct slave *old_active = bond->curr_active_slave;
999 
1000 	if (old_active == new_active) {
1001 		return;
1002 	}
1003 
1004 	if (new_active) {
1005 		if (new_active->link == BOND_LINK_BACK) {
1006 			if (USES_PRIMARY(bond->params.mode)) {
1007 				printk(KERN_INFO DRV_NAME
1008 				       ": %s: making interface %s the new "
1009 				       "active one %d ms earlier.\n",
1010 				       bond->dev->name, new_active->dev->name,
1011 				       (bond->params.updelay - new_active->delay) * bond->params.miimon);
1012 			}
1013 
1014 			new_active->delay = 0;
1015 			new_active->link = BOND_LINK_UP;
1016 			new_active->jiffies = jiffies;
1017 
1018 			if (bond->params.mode == BOND_MODE_8023AD) {
1019 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1020 			}
1021 
1022 			if ((bond->params.mode == BOND_MODE_TLB) ||
1023 			    (bond->params.mode == BOND_MODE_ALB)) {
1024 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1025 			}
1026 		} else {
1027 			if (USES_PRIMARY(bond->params.mode)) {
1028 				printk(KERN_INFO DRV_NAME
1029 				       ": %s: making interface %s the new "
1030 				       "active one.\n",
1031 				       bond->dev->name, new_active->dev->name);
1032 			}
1033 		}
1034 	}
1035 
1036 	if (USES_PRIMARY(bond->params.mode)) {
1037 		bond_mc_swap(bond, new_active, old_active);
1038 	}
1039 
1040 	if ((bond->params.mode == BOND_MODE_TLB) ||
1041 	    (bond->params.mode == BOND_MODE_ALB)) {
1042 		bond_alb_handle_active_change(bond, new_active);
1043 	} else {
1044 		bond->curr_active_slave = new_active;
1045 	}
1046 
1047 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1048 		if (old_active) {
1049 			bond_set_slave_inactive_flags(old_active);
1050 		}
1051 
1052 		if (new_active) {
1053 			bond_set_slave_active_flags(new_active);
1054 		}
1055 		bond_send_gratuitous_arp(bond);
1056 	}
1057 }
1058 
1059 /**
1060  * bond_select_active_slave - select a new active slave, if needed
1061  * @bond: our bonding struct
1062  *
1063  * This functions shoud be called when one of the following occurs:
1064  * - The old curr_active_slave has been released or lost its link.
1065  * - The primary_slave has got its link back.
1066  * - A slave has got its link back and there's no old curr_active_slave.
1067  *
1068  * Warning: Caller must hold curr_slave_lock for writing.
1069  */
1070 void bond_select_active_slave(struct bonding *bond)
1071 {
1072 	struct slave *best_slave;
1073 
1074 	best_slave = bond_find_best_slave(bond);
1075 	if (best_slave != bond->curr_active_slave) {
1076 		bond_change_active_slave(bond, best_slave);
1077 	}
1078 }
1079 
1080 /*--------------------------- slave list handling ---------------------------*/
1081 
1082 /*
1083  * This function attaches the slave to the end of list.
1084  *
1085  * bond->lock held for writing by caller.
1086  */
1087 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1088 {
1089 	if (bond->first_slave == NULL) { /* attaching the first slave */
1090 		new_slave->next = new_slave;
1091 		new_slave->prev = new_slave;
1092 		bond->first_slave = new_slave;
1093 	} else {
1094 		new_slave->next = bond->first_slave;
1095 		new_slave->prev = bond->first_slave->prev;
1096 		new_slave->next->prev = new_slave;
1097 		new_slave->prev->next = new_slave;
1098 	}
1099 
1100 	bond->slave_cnt++;
1101 }
1102 
1103 /*
1104  * This function detaches the slave from the list.
1105  * WARNING: no check is made to verify if the slave effectively
1106  * belongs to <bond>.
1107  * Nothing is freed on return, structures are just unchained.
1108  * If any slave pointer in bond was pointing to <slave>,
1109  * it should be changed by the calling function.
1110  *
1111  * bond->lock held for writing by caller.
1112  */
1113 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1114 {
1115 	if (slave->next) {
1116 		slave->next->prev = slave->prev;
1117 	}
1118 
1119 	if (slave->prev) {
1120 		slave->prev->next = slave->next;
1121 	}
1122 
1123 	if (bond->first_slave == slave) { /* slave is the first slave */
1124 		if (bond->slave_cnt > 1) { /* there are more slave */
1125 			bond->first_slave = slave->next;
1126 		} else {
1127 			bond->first_slave = NULL; /* slave was the last one */
1128 		}
1129 	}
1130 
1131 	slave->next = NULL;
1132 	slave->prev = NULL;
1133 	bond->slave_cnt--;
1134 }
1135 
1136 /*---------------------------------- IOCTL ----------------------------------*/
1137 
1138 int bond_sethwaddr(struct net_device *bond_dev, struct net_device *slave_dev)
1139 {
1140 	dprintk("bond_dev=%p\n", bond_dev);
1141 	dprintk("slave_dev=%p\n", slave_dev);
1142 	dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1143 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1144 	return 0;
1145 }
1146 
1147 #define BOND_INTERSECT_FEATURES \
1148 	(NETIF_F_SG|NETIF_F_IP_CSUM|NETIF_F_NO_CSUM|NETIF_F_HW_CSUM)
1149 
1150 /*
1151  * Compute the common dev->feature set available to all slaves.  Some
1152  * feature bits are managed elsewhere, so preserve feature bits set on
1153  * master device that are not part of the examined set.
1154  */
1155 static int bond_compute_features(struct bonding *bond)
1156 {
1157 	unsigned long features = BOND_INTERSECT_FEATURES;
1158 	struct slave *slave;
1159 	struct net_device *bond_dev = bond->dev;
1160 	int i;
1161 
1162 	bond_for_each_slave(bond, slave, i)
1163 		features &= (slave->dev->features & BOND_INTERSECT_FEATURES);
1164 
1165 	if ((features & NETIF_F_SG) &&
1166 	    !(features & (NETIF_F_IP_CSUM |
1167 			  NETIF_F_NO_CSUM |
1168 			  NETIF_F_HW_CSUM)))
1169 		features &= ~NETIF_F_SG;
1170 
1171 	features |= (bond_dev->features & ~BOND_INTERSECT_FEATURES);
1172 	bond_dev->features = features;
1173 
1174 	return 0;
1175 }
1176 
1177 /* enslave device <slave> to bond device <master> */
1178 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1179 {
1180 	struct bonding *bond = bond_dev->priv;
1181 	struct slave *new_slave = NULL;
1182 	struct dev_mc_list *dmi;
1183 	struct sockaddr addr;
1184 	int link_reporting;
1185 	int old_features = bond_dev->features;
1186 	int res = 0;
1187 
1188 	if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1189 		slave_dev->do_ioctl == NULL) {
1190 		printk(KERN_WARNING DRV_NAME
1191 		       ": %s: Warning: no link monitoring support for %s\n",
1192 		       bond_dev->name, slave_dev->name);
1193 	}
1194 
1195 	/* bond must be initialized by bond_open() before enslaving */
1196 	if (!(bond_dev->flags & IFF_UP)) {
1197 		dprintk("Error, master_dev is not up\n");
1198 		return -EPERM;
1199 	}
1200 
1201 	/* already enslaved */
1202 	if (slave_dev->flags & IFF_SLAVE) {
1203 		dprintk("Error, Device was already enslaved\n");
1204 		return -EBUSY;
1205 	}
1206 
1207 	/* vlan challenged mutual exclusion */
1208 	/* no need to lock since we're protected by rtnl_lock */
1209 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1210 		dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1211 		if (!list_empty(&bond->vlan_list)) {
1212 			printk(KERN_ERR DRV_NAME
1213 			       ": %s: Error: cannot enslave VLAN "
1214 			       "challenged slave %s on VLAN enabled "
1215 			       "bond %s\n", bond_dev->name, slave_dev->name,
1216 			       bond_dev->name);
1217 			return -EPERM;
1218 		} else {
1219 			printk(KERN_WARNING DRV_NAME
1220 			       ": %s: Warning: enslaved VLAN challenged "
1221 			       "slave %s. Adding VLANs will be blocked as "
1222 			       "long as %s is part of bond %s\n",
1223 			       bond_dev->name, slave_dev->name, slave_dev->name,
1224 			       bond_dev->name);
1225 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1226 		}
1227 	} else {
1228 		dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1229 		if (bond->slave_cnt == 0) {
1230 			/* First slave, and it is not VLAN challenged,
1231 			 * so remove the block of adding VLANs over the bond.
1232 			 */
1233 			bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1234 		}
1235 	}
1236 
1237 	/*
1238 	 * Old ifenslave binaries are no longer supported.  These can
1239 	 * be identified with moderate accurary by the state of the slave:
1240 	 * the current ifenslave will set the interface down prior to
1241 	 * enslaving it; the old ifenslave will not.
1242 	 */
1243 	if ((slave_dev->flags & IFF_UP)) {
1244 		printk(KERN_ERR DRV_NAME ": %s is up. "
1245 		       "This may be due to an out of date ifenslave.\n",
1246 		       slave_dev->name);
1247 		res = -EPERM;
1248 		goto err_undo_flags;
1249 	}
1250 
1251 	if (slave_dev->set_mac_address == NULL) {
1252 		printk(KERN_ERR DRV_NAME
1253 			": %s: Error: The slave device you specified does "
1254 			"not support setting the MAC address. "
1255 			"Your kernel likely does not support slave "
1256 			"devices.\n", bond_dev->name);
1257   		res = -EOPNOTSUPP;
1258 		goto err_undo_flags;
1259 	}
1260 
1261 	new_slave = kmalloc(sizeof(struct slave), GFP_KERNEL);
1262 	if (!new_slave) {
1263 		res = -ENOMEM;
1264 		goto err_undo_flags;
1265 	}
1266 
1267 	memset(new_slave, 0, sizeof(struct slave));
1268 
1269 	/* save slave's original flags before calling
1270 	 * netdev_set_master and dev_open
1271 	 */
1272 	new_slave->original_flags = slave_dev->flags;
1273 
1274 	/*
1275 	 * Save slave's original ("permanent") mac address for modes
1276 	 * that need it, and for restoring it upon release, and then
1277 	 * set it to the master's address
1278 	 */
1279 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1280 
1281 	/*
1282 	 * Set slave to master's mac address.  The application already
1283 	 * set the master's mac address to that of the first slave
1284 	 */
1285 	memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1286 	addr.sa_family = slave_dev->type;
1287 	res = dev_set_mac_address(slave_dev, &addr);
1288 	if (res) {
1289 		dprintk("Error %d calling set_mac_address\n", res);
1290 		goto err_free;
1291 	}
1292 
1293 	/* open the slave since the application closed it */
1294 	res = dev_open(slave_dev);
1295 	if (res) {
1296 		dprintk("Openning slave %s failed\n", slave_dev->name);
1297 		goto err_restore_mac;
1298 	}
1299 
1300 	res = netdev_set_master(slave_dev, bond_dev);
1301 	if (res) {
1302 		dprintk("Error %d calling netdev_set_master\n", res);
1303 		goto err_close;
1304 	}
1305 
1306 	new_slave->dev = slave_dev;
1307 
1308 	if ((bond->params.mode == BOND_MODE_TLB) ||
1309 	    (bond->params.mode == BOND_MODE_ALB)) {
1310 		/* bond_alb_init_slave() must be called before all other stages since
1311 		 * it might fail and we do not want to have to undo everything
1312 		 */
1313 		res = bond_alb_init_slave(bond, new_slave);
1314 		if (res) {
1315 			goto err_unset_master;
1316 		}
1317 	}
1318 
1319 	/* If the mode USES_PRIMARY, then the new slave gets the
1320 	 * master's promisc (and mc) settings only if it becomes the
1321 	 * curr_active_slave, and that is taken care of later when calling
1322 	 * bond_change_active()
1323 	 */
1324 	if (!USES_PRIMARY(bond->params.mode)) {
1325 		/* set promiscuity level to new slave */
1326 		if (bond_dev->flags & IFF_PROMISC) {
1327 			dev_set_promiscuity(slave_dev, 1);
1328 		}
1329 
1330 		/* set allmulti level to new slave */
1331 		if (bond_dev->flags & IFF_ALLMULTI) {
1332 			dev_set_allmulti(slave_dev, 1);
1333 		}
1334 
1335 		/* upload master's mc_list to new slave */
1336 		for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1337 			dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1338 		}
1339 	}
1340 
1341 	if (bond->params.mode == BOND_MODE_8023AD) {
1342 		/* add lacpdu mc addr to mc list */
1343 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1344 
1345 		dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1346 	}
1347 
1348 	bond_add_vlans_on_slave(bond, slave_dev);
1349 
1350 	write_lock_bh(&bond->lock);
1351 
1352 	bond_attach_slave(bond, new_slave);
1353 
1354 	new_slave->delay = 0;
1355 	new_slave->link_failure_count = 0;
1356 
1357 	bond_compute_features(bond);
1358 
1359 	if (bond->params.miimon && !bond->params.use_carrier) {
1360 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1361 
1362 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1363 			/*
1364 			 * miimon is set but a bonded network driver
1365 			 * does not support ETHTOOL/MII and
1366 			 * arp_interval is not set.  Note: if
1367 			 * use_carrier is enabled, we will never go
1368 			 * here (because netif_carrier is always
1369 			 * supported); thus, we don't need to change
1370 			 * the messages for netif_carrier.
1371 			 */
1372 			printk(KERN_WARNING DRV_NAME
1373 			       ": %s: Warning: MII and ETHTOOL support not "
1374 			       "available for interface %s, and "
1375 			       "arp_interval/arp_ip_target module parameters "
1376 			       "not specified, thus bonding will not detect "
1377 			       "link failures! see bonding.txt for details.\n",
1378 			       bond_dev->name, slave_dev->name);
1379 		} else if (link_reporting == -1) {
1380 			/* unable get link status using mii/ethtool */
1381 			printk(KERN_WARNING DRV_NAME
1382 			       ": %s: Warning: can't get link status from "
1383 			       "interface %s; the network driver associated "
1384 			       "with this interface does not support MII or "
1385 			       "ETHTOOL link status reporting, thus miimon "
1386 			       "has no effect on this interface.\n",
1387 			       bond_dev->name, slave_dev->name);
1388 		}
1389 	}
1390 
1391 	/* check for initial state */
1392 	if (!bond->params.miimon ||
1393 	    (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1394 		if (bond->params.updelay) {
1395 			dprintk("Initial state of slave_dev is "
1396 				"BOND_LINK_BACK\n");
1397 			new_slave->link  = BOND_LINK_BACK;
1398 			new_slave->delay = bond->params.updelay;
1399 		} else {
1400 			dprintk("Initial state of slave_dev is "
1401 				"BOND_LINK_UP\n");
1402 			new_slave->link  = BOND_LINK_UP;
1403 		}
1404 		new_slave->jiffies = jiffies;
1405 	} else {
1406 		dprintk("Initial state of slave_dev is "
1407 			"BOND_LINK_DOWN\n");
1408 		new_slave->link  = BOND_LINK_DOWN;
1409 	}
1410 
1411 	if (bond_update_speed_duplex(new_slave) &&
1412 	    (new_slave->link != BOND_LINK_DOWN)) {
1413 		printk(KERN_WARNING DRV_NAME
1414 		       ": %s: Warning: failed to get speed and duplex from %s, "
1415 		       "assumed to be 100Mb/sec and Full.\n",
1416 		       bond_dev->name, new_slave->dev->name);
1417 
1418 		if (bond->params.mode == BOND_MODE_8023AD) {
1419 			printk(KERN_WARNING DRV_NAME
1420 			       ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1421 			       "support in base driver for proper aggregator "
1422 			       "selection.\n", bond_dev->name);
1423 		}
1424 	}
1425 
1426 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1427 		/* if there is a primary slave, remember it */
1428 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1429 			bond->primary_slave = new_slave;
1430 		}
1431 	}
1432 
1433 	switch (bond->params.mode) {
1434 	case BOND_MODE_ACTIVEBACKUP:
1435 		/* if we're in active-backup mode, we need one and only one active
1436 		 * interface. The backup interfaces will have their NOARP flag set
1437 		 * because we need them to be completely deaf and not to respond to
1438 		 * any ARP request on the network to avoid fooling a switch. Thus,
1439 		 * since we guarantee that curr_active_slave always point to the last
1440 		 * usable interface, we just have to verify this interface's flag.
1441 		 */
1442 		if (((!bond->curr_active_slave) ||
1443 		     (bond->curr_active_slave->dev->flags & IFF_NOARP)) &&
1444 		    (new_slave->link != BOND_LINK_DOWN)) {
1445 			dprintk("This is the first active slave\n");
1446 			/* first slave or no active slave yet, and this link
1447 			   is OK, so make this interface the active one */
1448 			bond_change_active_slave(bond, new_slave);
1449 		} else {
1450 			dprintk("This is just a backup slave\n");
1451 			bond_set_slave_inactive_flags(new_slave);
1452 		}
1453 		break;
1454 	case BOND_MODE_8023AD:
1455 		/* in 802.3ad mode, the internal mechanism
1456 		 * will activate the slaves in the selected
1457 		 * aggregator
1458 		 */
1459 		bond_set_slave_inactive_flags(new_slave);
1460 		/* if this is the first slave */
1461 		if (bond->slave_cnt == 1) {
1462 			SLAVE_AD_INFO(new_slave).id = 1;
1463 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1464 			 * can be called only after the mac address of the bond is set
1465 			 */
1466 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1467 					    bond->params.lacp_fast);
1468 		} else {
1469 			SLAVE_AD_INFO(new_slave).id =
1470 				SLAVE_AD_INFO(new_slave->prev).id + 1;
1471 		}
1472 
1473 		bond_3ad_bind_slave(new_slave);
1474 		break;
1475 	case BOND_MODE_TLB:
1476 	case BOND_MODE_ALB:
1477 		new_slave->state = BOND_STATE_ACTIVE;
1478 		if ((!bond->curr_active_slave) &&
1479 		    (new_slave->link != BOND_LINK_DOWN)) {
1480 			/* first slave or no active slave yet, and this link
1481 			 * is OK, so make this interface the active one
1482 			 */
1483 			bond_change_active_slave(bond, new_slave);
1484 		}
1485 		break;
1486 	default:
1487 		dprintk("This slave is always active in trunk mode\n");
1488 
1489 		/* always active in trunk mode */
1490 		new_slave->state = BOND_STATE_ACTIVE;
1491 
1492 		/* In trunking mode there is little meaning to curr_active_slave
1493 		 * anyway (it holds no special properties of the bond device),
1494 		 * so we can change it without calling change_active_interface()
1495 		 */
1496 		if (!bond->curr_active_slave) {
1497 			bond->curr_active_slave = new_slave;
1498 		}
1499 		break;
1500 	} /* switch(bond_mode) */
1501 
1502 	write_unlock_bh(&bond->lock);
1503 
1504 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1505 	if (res)
1506 		goto err_unset_master;
1507 
1508 	printk(KERN_INFO DRV_NAME
1509 	       ": %s: enslaving %s as a%s interface with a%s link.\n",
1510 	       bond_dev->name, slave_dev->name,
1511 	       new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1512 	       new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1513 
1514 	/* enslave is successful */
1515 	return 0;
1516 
1517 /* Undo stages on error */
1518 err_unset_master:
1519 	netdev_set_master(slave_dev, NULL);
1520 
1521 err_close:
1522 	dev_close(slave_dev);
1523 
1524 err_restore_mac:
1525 	memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1526 	addr.sa_family = slave_dev->type;
1527 	dev_set_mac_address(slave_dev, &addr);
1528 
1529 err_free:
1530 	kfree(new_slave);
1531 
1532 err_undo_flags:
1533 	bond_dev->features = old_features;
1534 
1535 	return res;
1536 }
1537 
1538 /*
1539  * Try to release the slave device <slave> from the bond device <master>
1540  * It is legal to access curr_active_slave without a lock because all the function
1541  * is write-locked.
1542  *
1543  * The rules for slave state should be:
1544  *   for Active/Backup:
1545  *     Active stays on all backups go down
1546  *   for Bonded connections:
1547  *     The first up interface should be left on and all others downed.
1548  */
1549 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1550 {
1551 	struct bonding *bond = bond_dev->priv;
1552 	struct slave *slave, *oldcurrent;
1553 	struct sockaddr addr;
1554 	int mac_addr_differ;
1555 
1556 	/* slave is not a slave or master is not master of this slave */
1557 	if (!(slave_dev->flags & IFF_SLAVE) ||
1558 	    (slave_dev->master != bond_dev)) {
1559 		printk(KERN_ERR DRV_NAME
1560 		       ": %s: Error: cannot release %s.\n",
1561 		       bond_dev->name, slave_dev->name);
1562 		return -EINVAL;
1563 	}
1564 
1565 	write_lock_bh(&bond->lock);
1566 
1567 	slave = bond_get_slave_by_dev(bond, slave_dev);
1568 	if (!slave) {
1569 		/* not a slave of this bond */
1570 		printk(KERN_INFO DRV_NAME
1571 		       ": %s: %s not enslaved\n",
1572 		       bond_dev->name, slave_dev->name);
1573 		return -EINVAL;
1574 	}
1575 
1576 	mac_addr_differ = memcmp(bond_dev->dev_addr,
1577 				 slave->perm_hwaddr,
1578 				 ETH_ALEN);
1579 	if (!mac_addr_differ && (bond->slave_cnt > 1)) {
1580 		printk(KERN_WARNING DRV_NAME
1581 		       ": %s: Warning: the permanent HWaddr of %s "
1582 		       "- %02X:%02X:%02X:%02X:%02X:%02X - is "
1583 		       "still in use by %s. Set the HWaddr of "
1584 		       "%s to a different address to avoid "
1585 		       "conflicts.\n",
1586 		       bond_dev->name,
1587 		       slave_dev->name,
1588 		       slave->perm_hwaddr[0],
1589 		       slave->perm_hwaddr[1],
1590 		       slave->perm_hwaddr[2],
1591 		       slave->perm_hwaddr[3],
1592 		       slave->perm_hwaddr[4],
1593 		       slave->perm_hwaddr[5],
1594 		       bond_dev->name,
1595 		       slave_dev->name);
1596 	}
1597 
1598 	/* Inform AD package of unbinding of slave. */
1599 	if (bond->params.mode == BOND_MODE_8023AD) {
1600 		/* must be called before the slave is
1601 		 * detached from the list
1602 		 */
1603 		bond_3ad_unbind_slave(slave);
1604 	}
1605 
1606 	printk(KERN_INFO DRV_NAME
1607 	       ": %s: releasing %s interface %s\n",
1608 	       bond_dev->name,
1609 	       (slave->state == BOND_STATE_ACTIVE)
1610 	       ? "active" : "backup",
1611 	       slave_dev->name);
1612 
1613 	oldcurrent = bond->curr_active_slave;
1614 
1615 	bond->current_arp_slave = NULL;
1616 
1617 	/* release the slave from its bond */
1618 	bond_detach_slave(bond, slave);
1619 
1620 	bond_compute_features(bond);
1621 
1622 	if (bond->primary_slave == slave) {
1623 		bond->primary_slave = NULL;
1624 	}
1625 
1626 	if (oldcurrent == slave) {
1627 		bond_change_active_slave(bond, NULL);
1628 	}
1629 
1630 	if ((bond->params.mode == BOND_MODE_TLB) ||
1631 	    (bond->params.mode == BOND_MODE_ALB)) {
1632 		/* Must be called only after the slave has been
1633 		 * detached from the list and the curr_active_slave
1634 		 * has been cleared (if our_slave == old_current),
1635 		 * but before a new active slave is selected.
1636 		 */
1637 		bond_alb_deinit_slave(bond, slave);
1638 	}
1639 
1640 	if (oldcurrent == slave) {
1641 		bond_select_active_slave(bond);
1642 
1643 		if (!bond->curr_active_slave) {
1644 			printk(KERN_INFO DRV_NAME
1645 			       ": %s: now running without any active "
1646 			       "interface !\n",
1647 			       bond_dev->name);
1648 		}
1649 	}
1650 
1651 	if (bond->slave_cnt == 0) {
1652 		/* if the last slave was removed, zero the mac address
1653 		 * of the master so it will be set by the application
1654 		 * to the mac address of the first slave
1655 		 */
1656 		memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1657 
1658 		if (list_empty(&bond->vlan_list)) {
1659 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1660 		} else {
1661 			printk(KERN_WARNING DRV_NAME
1662 			       ": %s: Warning: clearing HW address of %s while it "
1663 			       "still has VLANs.\n",
1664 			       bond_dev->name, bond_dev->name);
1665 			printk(KERN_WARNING DRV_NAME
1666 			       ": %s: When re-adding slaves, make sure the bond's "
1667 			       "HW address matches its VLANs'.\n",
1668 			       bond_dev->name);
1669 		}
1670 	} else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1671 		   !bond_has_challenged_slaves(bond)) {
1672 		printk(KERN_INFO DRV_NAME
1673 		       ": %s: last VLAN challenged slave %s "
1674 		       "left bond %s. VLAN blocking is removed\n",
1675 		       bond_dev->name, slave_dev->name, bond_dev->name);
1676 		bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1677 	}
1678 
1679 	write_unlock_bh(&bond->lock);
1680 
1681 	/* must do this from outside any spinlocks */
1682 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1683 
1684 	bond_del_vlans_from_slave(bond, slave_dev);
1685 
1686 	/* If the mode USES_PRIMARY, then we should only remove its
1687 	 * promisc and mc settings if it was the curr_active_slave, but that was
1688 	 * already taken care of above when we detached the slave
1689 	 */
1690 	if (!USES_PRIMARY(bond->params.mode)) {
1691 		/* unset promiscuity level from slave */
1692 		if (bond_dev->flags & IFF_PROMISC) {
1693 			dev_set_promiscuity(slave_dev, -1);
1694 		}
1695 
1696 		/* unset allmulti level from slave */
1697 		if (bond_dev->flags & IFF_ALLMULTI) {
1698 			dev_set_allmulti(slave_dev, -1);
1699 		}
1700 
1701 		/* flush master's mc_list from slave */
1702 		bond_mc_list_flush(bond_dev, slave_dev);
1703 	}
1704 
1705 	netdev_set_master(slave_dev, NULL);
1706 
1707 	/* close slave before restoring its mac address */
1708 	dev_close(slave_dev);
1709 
1710 	/* restore original ("permanent") mac address */
1711 	memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1712 	addr.sa_family = slave_dev->type;
1713 	dev_set_mac_address(slave_dev, &addr);
1714 
1715 	/* restore the original state of the
1716 	 * IFF_NOARP flag that might have been
1717 	 * set by bond_set_slave_inactive_flags()
1718 	 */
1719 	if ((slave->original_flags & IFF_NOARP) == 0) {
1720 		slave_dev->flags &= ~IFF_NOARP;
1721 	}
1722 
1723 	kfree(slave);
1724 
1725 	return 0;  /* deletion OK */
1726 }
1727 
1728 /*
1729  * This function releases all slaves.
1730  */
1731 static int bond_release_all(struct net_device *bond_dev)
1732 {
1733 	struct bonding *bond = bond_dev->priv;
1734 	struct slave *slave;
1735 	struct net_device *slave_dev;
1736 	struct sockaddr addr;
1737 
1738 	write_lock_bh(&bond->lock);
1739 
1740 	if (bond->slave_cnt == 0) {
1741 		goto out;
1742 	}
1743 
1744 	bond->current_arp_slave = NULL;
1745 	bond->primary_slave = NULL;
1746 	bond_change_active_slave(bond, NULL);
1747 
1748 	while ((slave = bond->first_slave) != NULL) {
1749 		/* Inform AD package of unbinding of slave
1750 		 * before slave is detached from the list.
1751 		 */
1752 		if (bond->params.mode == BOND_MODE_8023AD) {
1753 			bond_3ad_unbind_slave(slave);
1754 		}
1755 
1756 		slave_dev = slave->dev;
1757 		bond_detach_slave(bond, slave);
1758 
1759 		if ((bond->params.mode == BOND_MODE_TLB) ||
1760 		    (bond->params.mode == BOND_MODE_ALB)) {
1761 			/* must be called only after the slave
1762 			 * has been detached from the list
1763 			 */
1764 			bond_alb_deinit_slave(bond, slave);
1765 		}
1766 
1767 		bond_compute_features(bond);
1768 
1769 		/* now that the slave is detached, unlock and perform
1770 		 * all the undo steps that should not be called from
1771 		 * within a lock.
1772 		 */
1773 		write_unlock_bh(&bond->lock);
1774 
1775 		bond_destroy_slave_symlinks(bond_dev, slave_dev);
1776 		bond_del_vlans_from_slave(bond, slave_dev);
1777 
1778 		/* If the mode USES_PRIMARY, then we should only remove its
1779 		 * promisc and mc settings if it was the curr_active_slave, but that was
1780 		 * already taken care of above when we detached the slave
1781 		 */
1782 		if (!USES_PRIMARY(bond->params.mode)) {
1783 			/* unset promiscuity level from slave */
1784 			if (bond_dev->flags & IFF_PROMISC) {
1785 				dev_set_promiscuity(slave_dev, -1);
1786 			}
1787 
1788 			/* unset allmulti level from slave */
1789 			if (bond_dev->flags & IFF_ALLMULTI) {
1790 				dev_set_allmulti(slave_dev, -1);
1791 			}
1792 
1793 			/* flush master's mc_list from slave */
1794 			bond_mc_list_flush(bond_dev, slave_dev);
1795 		}
1796 
1797 		netdev_set_master(slave_dev, NULL);
1798 
1799 		/* close slave before restoring its mac address */
1800 		dev_close(slave_dev);
1801 
1802 		/* restore original ("permanent") mac address*/
1803 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1804 		addr.sa_family = slave_dev->type;
1805 		dev_set_mac_address(slave_dev, &addr);
1806 
1807 		/* restore the original state of the IFF_NOARP flag that might have
1808 		 * been set by bond_set_slave_inactive_flags()
1809 		 */
1810 		if ((slave->original_flags & IFF_NOARP) == 0) {
1811 			slave_dev->flags &= ~IFF_NOARP;
1812 		}
1813 
1814 		kfree(slave);
1815 
1816 		/* re-acquire the lock before getting the next slave */
1817 		write_lock_bh(&bond->lock);
1818 	}
1819 
1820 	/* zero the mac address of the master so it will be
1821 	 * set by the application to the mac address of the
1822 	 * first slave
1823 	 */
1824 	memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1825 
1826 	if (list_empty(&bond->vlan_list)) {
1827 		bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1828 	} else {
1829 		printk(KERN_WARNING DRV_NAME
1830 		       ": %s: Warning: clearing HW address of %s while it "
1831 		       "still has VLANs.\n",
1832 		       bond_dev->name, bond_dev->name);
1833 		printk(KERN_WARNING DRV_NAME
1834 		       ": %s: When re-adding slaves, make sure the bond's "
1835 		       "HW address matches its VLANs'.\n",
1836 		       bond_dev->name);
1837 	}
1838 
1839 	printk(KERN_INFO DRV_NAME
1840 	       ": %s: released all slaves\n",
1841 	       bond_dev->name);
1842 
1843 out:
1844 	write_unlock_bh(&bond->lock);
1845 
1846 	return 0;
1847 }
1848 
1849 /*
1850  * This function changes the active slave to slave <slave_dev>.
1851  * It returns -EINVAL in the following cases.
1852  *  - <slave_dev> is not found in the list.
1853  *  - There is not active slave now.
1854  *  - <slave_dev> is already active.
1855  *  - The link state of <slave_dev> is not BOND_LINK_UP.
1856  *  - <slave_dev> is not running.
1857  * In these cases, this fuction does nothing.
1858  * In the other cases, currnt_slave pointer is changed and 0 is returned.
1859  */
1860 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
1861 {
1862 	struct bonding *bond = bond_dev->priv;
1863 	struct slave *old_active = NULL;
1864 	struct slave *new_active = NULL;
1865 	int res = 0;
1866 
1867 	if (!USES_PRIMARY(bond->params.mode)) {
1868 		return -EINVAL;
1869 	}
1870 
1871 	/* Verify that master_dev is indeed the master of slave_dev */
1872 	if (!(slave_dev->flags & IFF_SLAVE) ||
1873 	    (slave_dev->master != bond_dev)) {
1874 		return -EINVAL;
1875 	}
1876 
1877 	write_lock_bh(&bond->lock);
1878 
1879 	old_active = bond->curr_active_slave;
1880 	new_active = bond_get_slave_by_dev(bond, slave_dev);
1881 
1882 	/*
1883 	 * Changing to the current active: do nothing; return success.
1884 	 */
1885 	if (new_active && (new_active == old_active)) {
1886 		write_unlock_bh(&bond->lock);
1887 		return 0;
1888 	}
1889 
1890 	if ((new_active) &&
1891 	    (old_active) &&
1892 	    (new_active->link == BOND_LINK_UP) &&
1893 	    IS_UP(new_active->dev)) {
1894 		bond_change_active_slave(bond, new_active);
1895 	} else {
1896 		res = -EINVAL;
1897 	}
1898 
1899 	write_unlock_bh(&bond->lock);
1900 
1901 	return res;
1902 }
1903 
1904 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
1905 {
1906 	struct bonding *bond = bond_dev->priv;
1907 
1908 	info->bond_mode = bond->params.mode;
1909 	info->miimon = bond->params.miimon;
1910 
1911 	read_lock_bh(&bond->lock);
1912 	info->num_slaves = bond->slave_cnt;
1913 	read_unlock_bh(&bond->lock);
1914 
1915 	return 0;
1916 }
1917 
1918 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
1919 {
1920 	struct bonding *bond = bond_dev->priv;
1921 	struct slave *slave;
1922 	int i, found = 0;
1923 
1924 	if (info->slave_id < 0) {
1925 		return -ENODEV;
1926 	}
1927 
1928 	read_lock_bh(&bond->lock);
1929 
1930 	bond_for_each_slave(bond, slave, i) {
1931 		if (i == (int)info->slave_id) {
1932 			found = 1;
1933 			break;
1934 		}
1935 	}
1936 
1937 	read_unlock_bh(&bond->lock);
1938 
1939 	if (found) {
1940 		strcpy(info->slave_name, slave->dev->name);
1941 		info->link = slave->link;
1942 		info->state = slave->state;
1943 		info->link_failure_count = slave->link_failure_count;
1944 	} else {
1945 		return -ENODEV;
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 /*-------------------------------- Monitoring -------------------------------*/
1952 
1953 /* this function is called regularly to monitor each slave's link. */
1954 void bond_mii_monitor(struct net_device *bond_dev)
1955 {
1956 	struct bonding *bond = bond_dev->priv;
1957 	struct slave *slave, *oldcurrent;
1958 	int do_failover = 0;
1959 	int delta_in_ticks;
1960 	int i;
1961 
1962 	read_lock(&bond->lock);
1963 
1964 	delta_in_ticks = (bond->params.miimon * HZ) / 1000;
1965 
1966 	if (bond->kill_timers) {
1967 		goto out;
1968 	}
1969 
1970 	if (bond->slave_cnt == 0) {
1971 		goto re_arm;
1972 	}
1973 
1974 	/* we will try to read the link status of each of our slaves, and
1975 	 * set their IFF_RUNNING flag appropriately. For each slave not
1976 	 * supporting MII status, we won't do anything so that a user-space
1977 	 * program could monitor the link itself if needed.
1978 	 */
1979 
1980 	read_lock(&bond->curr_slave_lock);
1981 	oldcurrent = bond->curr_active_slave;
1982 	read_unlock(&bond->curr_slave_lock);
1983 
1984 	bond_for_each_slave(bond, slave, i) {
1985 		struct net_device *slave_dev = slave->dev;
1986 		int link_state;
1987 		u16 old_speed = slave->speed;
1988 		u8 old_duplex = slave->duplex;
1989 
1990 		link_state = bond_check_dev_link(bond, slave_dev, 0);
1991 
1992 		switch (slave->link) {
1993 		case BOND_LINK_UP:	/* the link was up */
1994 			if (link_state == BMSR_LSTATUS) {
1995 				/* link stays up, nothing more to do */
1996 				break;
1997 			} else { /* link going down */
1998 				slave->link  = BOND_LINK_FAIL;
1999 				slave->delay = bond->params.downdelay;
2000 
2001 				if (slave->link_failure_count < UINT_MAX) {
2002 					slave->link_failure_count++;
2003 				}
2004 
2005 				if (bond->params.downdelay) {
2006 					printk(KERN_INFO DRV_NAME
2007 					       ": %s: link status down for %s "
2008 					       "interface %s, disabling it in "
2009 					       "%d ms.\n",
2010 					       bond_dev->name,
2011 					       IS_UP(slave_dev)
2012 					       ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
2013 						  ? ((slave == oldcurrent)
2014 						     ? "active " : "backup ")
2015 						  : "")
2016 					       : "idle ",
2017 					       slave_dev->name,
2018 					       bond->params.downdelay * bond->params.miimon);
2019 				}
2020 			}
2021 			/* no break ! fall through the BOND_LINK_FAIL test to
2022 			   ensure proper action to be taken
2023 			*/
2024 		case BOND_LINK_FAIL:	/* the link has just gone down */
2025 			if (link_state != BMSR_LSTATUS) {
2026 				/* link stays down */
2027 				if (slave->delay <= 0) {
2028 					/* link down for too long time */
2029 					slave->link = BOND_LINK_DOWN;
2030 
2031 					/* in active/backup mode, we must
2032 					 * completely disable this interface
2033 					 */
2034 					if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ||
2035 					    (bond->params.mode == BOND_MODE_8023AD)) {
2036 						bond_set_slave_inactive_flags(slave);
2037 					}
2038 
2039 					printk(KERN_INFO DRV_NAME
2040 					       ": %s: link status definitely "
2041 					       "down for interface %s, "
2042 					       "disabling it\n",
2043 					       bond_dev->name,
2044 					       slave_dev->name);
2045 
2046 					/* notify ad that the link status has changed */
2047 					if (bond->params.mode == BOND_MODE_8023AD) {
2048 						bond_3ad_handle_link_change(slave, BOND_LINK_DOWN);
2049 					}
2050 
2051 					if ((bond->params.mode == BOND_MODE_TLB) ||
2052 					    (bond->params.mode == BOND_MODE_ALB)) {
2053 						bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN);
2054 					}
2055 
2056 					if (slave == oldcurrent) {
2057 						do_failover = 1;
2058 					}
2059 				} else {
2060 					slave->delay--;
2061 				}
2062 			} else {
2063 				/* link up again */
2064 				slave->link  = BOND_LINK_UP;
2065 				slave->jiffies = jiffies;
2066 				printk(KERN_INFO DRV_NAME
2067 				       ": %s: link status up again after %d "
2068 				       "ms for interface %s.\n",
2069 				       bond_dev->name,
2070 				       (bond->params.downdelay - slave->delay) * bond->params.miimon,
2071 				       slave_dev->name);
2072 			}
2073 			break;
2074 		case BOND_LINK_DOWN:	/* the link was down */
2075 			if (link_state != BMSR_LSTATUS) {
2076 				/* the link stays down, nothing more to do */
2077 				break;
2078 			} else {	/* link going up */
2079 				slave->link  = BOND_LINK_BACK;
2080 				slave->delay = bond->params.updelay;
2081 
2082 				if (bond->params.updelay) {
2083 					/* if updelay == 0, no need to
2084 					   advertise about a 0 ms delay */
2085 					printk(KERN_INFO DRV_NAME
2086 					       ": %s: link status up for "
2087 					       "interface %s, enabling it "
2088 					       "in %d ms.\n",
2089 					       bond_dev->name,
2090 					       slave_dev->name,
2091 					       bond->params.updelay * bond->params.miimon);
2092 				}
2093 			}
2094 			/* no break ! fall through the BOND_LINK_BACK state in
2095 			   case there's something to do.
2096 			*/
2097 		case BOND_LINK_BACK:	/* the link has just come back */
2098 			if (link_state != BMSR_LSTATUS) {
2099 				/* link down again */
2100 				slave->link  = BOND_LINK_DOWN;
2101 
2102 				printk(KERN_INFO DRV_NAME
2103 				       ": %s: link status down again after %d "
2104 				       "ms for interface %s.\n",
2105 				       bond_dev->name,
2106 				       (bond->params.updelay - slave->delay) * bond->params.miimon,
2107 				       slave_dev->name);
2108 			} else {
2109 				/* link stays up */
2110 				if (slave->delay == 0) {
2111 					/* now the link has been up for long time enough */
2112 					slave->link = BOND_LINK_UP;
2113 					slave->jiffies = jiffies;
2114 
2115 					if (bond->params.mode == BOND_MODE_8023AD) {
2116 						/* prevent it from being the active one */
2117 						slave->state = BOND_STATE_BACKUP;
2118 					} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2119 						/* make it immediately active */
2120 						slave->state = BOND_STATE_ACTIVE;
2121 					} else if (slave != bond->primary_slave) {
2122 						/* prevent it from being the active one */
2123 						slave->state = BOND_STATE_BACKUP;
2124 					}
2125 
2126 					printk(KERN_INFO DRV_NAME
2127 					       ": %s: link status definitely "
2128 					       "up for interface %s.\n",
2129 					       bond_dev->name,
2130 					       slave_dev->name);
2131 
2132 					/* notify ad that the link status has changed */
2133 					if (bond->params.mode == BOND_MODE_8023AD) {
2134 						bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2135 					}
2136 
2137 					if ((bond->params.mode == BOND_MODE_TLB) ||
2138 					    (bond->params.mode == BOND_MODE_ALB)) {
2139 						bond_alb_handle_link_change(bond, slave, BOND_LINK_UP);
2140 					}
2141 
2142 					if ((!oldcurrent) ||
2143 					    (slave == bond->primary_slave)) {
2144 						do_failover = 1;
2145 					}
2146 				} else {
2147 					slave->delay--;
2148 				}
2149 			}
2150 			break;
2151 		default:
2152 			/* Should not happen */
2153 			printk(KERN_ERR DRV_NAME
2154 			       ": %s: Error: %s Illegal value (link=%d)\n",
2155 			       bond_dev->name,
2156 			       slave->dev->name,
2157 			       slave->link);
2158 			goto out;
2159 		} /* end of switch (slave->link) */
2160 
2161 		bond_update_speed_duplex(slave);
2162 
2163 		if (bond->params.mode == BOND_MODE_8023AD) {
2164 			if (old_speed != slave->speed) {
2165 				bond_3ad_adapter_speed_changed(slave);
2166 			}
2167 
2168 			if (old_duplex != slave->duplex) {
2169 				bond_3ad_adapter_duplex_changed(slave);
2170 			}
2171 		}
2172 
2173 	} /* end of for */
2174 
2175 	if (do_failover) {
2176 		write_lock(&bond->curr_slave_lock);
2177 
2178 		bond_select_active_slave(bond);
2179 
2180 		if (oldcurrent && !bond->curr_active_slave) {
2181 			printk(KERN_INFO DRV_NAME
2182 			       ": %s: now running without any active "
2183 			       "interface !\n",
2184 			       bond_dev->name);
2185 		}
2186 
2187 		write_unlock(&bond->curr_slave_lock);
2188 	}
2189 
2190 re_arm:
2191 	if (bond->params.miimon) {
2192 		mod_timer(&bond->mii_timer, jiffies + delta_in_ticks);
2193 	}
2194 out:
2195 	read_unlock(&bond->lock);
2196 }
2197 
2198 
2199 static u32 bond_glean_dev_ip(struct net_device *dev)
2200 {
2201 	struct in_device *idev;
2202 	struct in_ifaddr *ifa;
2203 	u32 addr = 0;
2204 
2205 	if (!dev)
2206 		return 0;
2207 
2208 	rcu_read_lock();
2209 	idev = __in_dev_get_rcu(dev);
2210 	if (!idev)
2211 		goto out;
2212 
2213 	ifa = idev->ifa_list;
2214 	if (!ifa)
2215 		goto out;
2216 
2217 	addr = ifa->ifa_local;
2218 out:
2219 	rcu_read_unlock();
2220 	return addr;
2221 }
2222 
2223 static int bond_has_ip(struct bonding *bond)
2224 {
2225 	struct vlan_entry *vlan, *vlan_next;
2226 
2227 	if (bond->master_ip)
2228 		return 1;
2229 
2230 	if (list_empty(&bond->vlan_list))
2231 		return 0;
2232 
2233 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2234 				 vlan_list) {
2235 		if (vlan->vlan_ip)
2236 			return 1;
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 /*
2243  * We go to the (large) trouble of VLAN tagging ARP frames because
2244  * switches in VLAN mode (especially if ports are configured as
2245  * "native" to a VLAN) might not pass non-tagged frames.
2246  */
2247 static void bond_arp_send(struct net_device *slave_dev, int arp_op, u32 dest_ip, u32 src_ip, unsigned short vlan_id)
2248 {
2249 	struct sk_buff *skb;
2250 
2251 	dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2252 	       slave_dev->name, dest_ip, src_ip, vlan_id);
2253 
2254 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2255 			 NULL, slave_dev->dev_addr, NULL);
2256 
2257 	if (!skb) {
2258 		printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2259 		return;
2260 	}
2261 	if (vlan_id) {
2262 		skb = vlan_put_tag(skb, vlan_id);
2263 		if (!skb) {
2264 			printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2265 			return;
2266 		}
2267 	}
2268 	arp_xmit(skb);
2269 }
2270 
2271 
2272 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2273 {
2274 	int i, vlan_id, rv;
2275 	u32 *targets = bond->params.arp_targets;
2276 	struct vlan_entry *vlan, *vlan_next;
2277 	struct net_device *vlan_dev;
2278 	struct flowi fl;
2279 	struct rtable *rt;
2280 
2281 	for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2282 		if (!targets[i])
2283 			continue;
2284 		dprintk("basa: target %x\n", targets[i]);
2285 		if (list_empty(&bond->vlan_list)) {
2286 			dprintk("basa: empty vlan: arp_send\n");
2287 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2288 				      bond->master_ip, 0);
2289 			continue;
2290 		}
2291 
2292 		/*
2293 		 * If VLANs are configured, we do a route lookup to
2294 		 * determine which VLAN interface would be used, so we
2295 		 * can tag the ARP with the proper VLAN tag.
2296 		 */
2297 		memset(&fl, 0, sizeof(fl));
2298 		fl.fl4_dst = targets[i];
2299 		fl.fl4_tos = RTO_ONLINK;
2300 
2301 		rv = ip_route_output_key(&rt, &fl);
2302 		if (rv) {
2303 			if (net_ratelimit()) {
2304 				printk(KERN_WARNING DRV_NAME
2305 			     ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2306 				       bond->dev->name, NIPQUAD(fl.fl4_dst));
2307 			}
2308 			continue;
2309 		}
2310 
2311 		/*
2312 		 * This target is not on a VLAN
2313 		 */
2314 		if (rt->u.dst.dev == bond->dev) {
2315 			ip_rt_put(rt);
2316 			dprintk("basa: rtdev == bond->dev: arp_send\n");
2317 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2318 				      bond->master_ip, 0);
2319 			continue;
2320 		}
2321 
2322 		vlan_id = 0;
2323 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2324 					 vlan_list) {
2325 			vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id];
2326 			if (vlan_dev == rt->u.dst.dev) {
2327 				vlan_id = vlan->vlan_id;
2328 				dprintk("basa: vlan match on %s %d\n",
2329 				       vlan_dev->name, vlan_id);
2330 				break;
2331 			}
2332 		}
2333 
2334 		if (vlan_id) {
2335 			ip_rt_put(rt);
2336 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2337 				      vlan->vlan_ip, vlan_id);
2338 			continue;
2339 		}
2340 
2341 		if (net_ratelimit()) {
2342 			printk(KERN_WARNING DRV_NAME
2343 	       ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2344 			       bond->dev->name, NIPQUAD(fl.fl4_dst),
2345 			       rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2346 		}
2347 		ip_rt_put(rt);
2348 	}
2349 }
2350 
2351 /*
2352  * Kick out a gratuitous ARP for an IP on the bonding master plus one
2353  * for each VLAN above us.
2354  */
2355 static void bond_send_gratuitous_arp(struct bonding *bond)
2356 {
2357 	struct slave *slave = bond->curr_active_slave;
2358 	struct vlan_entry *vlan;
2359 	struct net_device *vlan_dev;
2360 
2361 	dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2362 				slave ? slave->dev->name : "NULL");
2363 	if (!slave)
2364 		return;
2365 
2366 	if (bond->master_ip) {
2367 		bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2368 				  bond->master_ip, 0);
2369 	}
2370 
2371 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2372 		vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id];
2373 		if (vlan->vlan_ip) {
2374 			bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2375 				      vlan->vlan_ip, vlan->vlan_id);
2376 		}
2377 	}
2378 }
2379 
2380 /*
2381  * this function is called regularly to monitor each slave's link
2382  * ensuring that traffic is being sent and received when arp monitoring
2383  * is used in load-balancing mode. if the adapter has been dormant, then an
2384  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2385  * arp monitoring in active backup mode.
2386  */
2387 void bond_loadbalance_arp_mon(struct net_device *bond_dev)
2388 {
2389 	struct bonding *bond = bond_dev->priv;
2390 	struct slave *slave, *oldcurrent;
2391 	int do_failover = 0;
2392 	int delta_in_ticks;
2393 	int i;
2394 
2395 	read_lock(&bond->lock);
2396 
2397 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2398 
2399 	if (bond->kill_timers) {
2400 		goto out;
2401 	}
2402 
2403 	if (bond->slave_cnt == 0) {
2404 		goto re_arm;
2405 	}
2406 
2407 	read_lock(&bond->curr_slave_lock);
2408 	oldcurrent = bond->curr_active_slave;
2409 	read_unlock(&bond->curr_slave_lock);
2410 
2411 	/* see if any of the previous devices are up now (i.e. they have
2412 	 * xmt and rcv traffic). the curr_active_slave does not come into
2413 	 * the picture unless it is null. also, slave->jiffies is not needed
2414 	 * here because we send an arp on each slave and give a slave as
2415 	 * long as it needs to get the tx/rx within the delta.
2416 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2417 	 *       so it can wait
2418 	 */
2419 	bond_for_each_slave(bond, slave, i) {
2420 		if (slave->link != BOND_LINK_UP) {
2421 			if (((jiffies - slave->dev->trans_start) <= delta_in_ticks) &&
2422 			    ((jiffies - slave->dev->last_rx) <= delta_in_ticks)) {
2423 
2424 				slave->link  = BOND_LINK_UP;
2425 				slave->state = BOND_STATE_ACTIVE;
2426 
2427 				/* primary_slave has no meaning in round-robin
2428 				 * mode. the window of a slave being up and
2429 				 * curr_active_slave being null after enslaving
2430 				 * is closed.
2431 				 */
2432 				if (!oldcurrent) {
2433 					printk(KERN_INFO DRV_NAME
2434 					       ": %s: link status definitely "
2435 					       "up for interface %s, ",
2436 					       bond_dev->name,
2437 					       slave->dev->name);
2438 					do_failover = 1;
2439 				} else {
2440 					printk(KERN_INFO DRV_NAME
2441 					       ": %s: interface %s is now up\n",
2442 					       bond_dev->name,
2443 					       slave->dev->name);
2444 				}
2445 			}
2446 		} else {
2447 			/* slave->link == BOND_LINK_UP */
2448 
2449 			/* not all switches will respond to an arp request
2450 			 * when the source ip is 0, so don't take the link down
2451 			 * if we don't know our ip yet
2452 			 */
2453 			if (((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2454 			    (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) &&
2455 			     bond_has_ip(bond))) {
2456 
2457 				slave->link  = BOND_LINK_DOWN;
2458 				slave->state = BOND_STATE_BACKUP;
2459 
2460 				if (slave->link_failure_count < UINT_MAX) {
2461 					slave->link_failure_count++;
2462 				}
2463 
2464 				printk(KERN_INFO DRV_NAME
2465 				       ": %s: interface %s is now down.\n",
2466 				       bond_dev->name,
2467 				       slave->dev->name);
2468 
2469 				if (slave == oldcurrent) {
2470 					do_failover = 1;
2471 				}
2472 			}
2473 		}
2474 
2475 		/* note: if switch is in round-robin mode, all links
2476 		 * must tx arp to ensure all links rx an arp - otherwise
2477 		 * links may oscillate or not come up at all; if switch is
2478 		 * in something like xor mode, there is nothing we can
2479 		 * do - all replies will be rx'ed on same link causing slaves
2480 		 * to be unstable during low/no traffic periods
2481 		 */
2482 		if (IS_UP(slave->dev)) {
2483 			bond_arp_send_all(bond, slave);
2484 		}
2485 	}
2486 
2487 	if (do_failover) {
2488 		write_lock(&bond->curr_slave_lock);
2489 
2490 		bond_select_active_slave(bond);
2491 
2492 		if (oldcurrent && !bond->curr_active_slave) {
2493 			printk(KERN_INFO DRV_NAME
2494 			       ": %s: now running without any active "
2495 			       "interface !\n",
2496 			       bond_dev->name);
2497 		}
2498 
2499 		write_unlock(&bond->curr_slave_lock);
2500 	}
2501 
2502 re_arm:
2503 	if (bond->params.arp_interval) {
2504 		mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2505 	}
2506 out:
2507 	read_unlock(&bond->lock);
2508 }
2509 
2510 /*
2511  * When using arp monitoring in active-backup mode, this function is
2512  * called to determine if any backup slaves have went down or a new
2513  * current slave needs to be found.
2514  * The backup slaves never generate traffic, they are considered up by merely
2515  * receiving traffic. If the current slave goes down, each backup slave will
2516  * be given the opportunity to tx/rx an arp before being taken down - this
2517  * prevents all slaves from being taken down due to the current slave not
2518  * sending any traffic for the backups to receive. The arps are not necessarily
2519  * necessary, any tx and rx traffic will keep the current slave up. While any
2520  * rx traffic will keep the backup slaves up, the current slave is responsible
2521  * for generating traffic to keep them up regardless of any other traffic they
2522  * may have received.
2523  * see loadbalance_arp_monitor for arp monitoring in load balancing mode
2524  */
2525 void bond_activebackup_arp_mon(struct net_device *bond_dev)
2526 {
2527 	struct bonding *bond = bond_dev->priv;
2528 	struct slave *slave;
2529 	int delta_in_ticks;
2530 	int i;
2531 
2532 	read_lock(&bond->lock);
2533 
2534 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2535 
2536 	if (bond->kill_timers) {
2537 		goto out;
2538 	}
2539 
2540 	if (bond->slave_cnt == 0) {
2541 		goto re_arm;
2542 	}
2543 
2544 	/* determine if any slave has come up or any backup slave has
2545 	 * gone down
2546 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2547 	 *       so it can wait
2548 	 */
2549 	bond_for_each_slave(bond, slave, i) {
2550 		if (slave->link != BOND_LINK_UP) {
2551 			if ((jiffies - slave->dev->last_rx) <= delta_in_ticks) {
2552 
2553 				slave->link = BOND_LINK_UP;
2554 
2555 				write_lock(&bond->curr_slave_lock);
2556 
2557 				if ((!bond->curr_active_slave) &&
2558 				    ((jiffies - slave->dev->trans_start) <= delta_in_ticks)) {
2559 					bond_change_active_slave(bond, slave);
2560 					bond->current_arp_slave = NULL;
2561 				} else if (bond->curr_active_slave != slave) {
2562 					/* this slave has just come up but we
2563 					 * already have a current slave; this
2564 					 * can also happen if bond_enslave adds
2565 					 * a new slave that is up while we are
2566 					 * searching for a new slave
2567 					 */
2568 					bond_set_slave_inactive_flags(slave);
2569 					bond->current_arp_slave = NULL;
2570 				}
2571 
2572 				if (slave == bond->curr_active_slave) {
2573 					printk(KERN_INFO DRV_NAME
2574 					       ": %s: %s is up and now the "
2575 					       "active interface\n",
2576 					       bond_dev->name,
2577 					       slave->dev->name);
2578 				} else {
2579 					printk(KERN_INFO DRV_NAME
2580 					       ": %s: backup interface %s is "
2581 					       "now up\n",
2582 					       bond_dev->name,
2583 					       slave->dev->name);
2584 				}
2585 
2586 				write_unlock(&bond->curr_slave_lock);
2587 			}
2588 		} else {
2589 			read_lock(&bond->curr_slave_lock);
2590 
2591 			if ((slave != bond->curr_active_slave) &&
2592 			    (!bond->current_arp_slave) &&
2593 			    (((jiffies - slave->dev->last_rx) >= 3*delta_in_ticks) &&
2594 			     bond_has_ip(bond))) {
2595 				/* a backup slave has gone down; three times
2596 				 * the delta allows the current slave to be
2597 				 * taken out before the backup slave.
2598 				 * note: a non-null current_arp_slave indicates
2599 				 * the curr_active_slave went down and we are
2600 				 * searching for a new one; under this
2601 				 * condition we only take the curr_active_slave
2602 				 * down - this gives each slave a chance to
2603 				 * tx/rx traffic before being taken out
2604 				 */
2605 
2606 				read_unlock(&bond->curr_slave_lock);
2607 
2608 				slave->link  = BOND_LINK_DOWN;
2609 
2610 				if (slave->link_failure_count < UINT_MAX) {
2611 					slave->link_failure_count++;
2612 				}
2613 
2614 				bond_set_slave_inactive_flags(slave);
2615 
2616 				printk(KERN_INFO DRV_NAME
2617 				       ": %s: backup interface %s is now down\n",
2618 				       bond_dev->name,
2619 				       slave->dev->name);
2620 			} else {
2621 				read_unlock(&bond->curr_slave_lock);
2622 			}
2623 		}
2624 	}
2625 
2626 	read_lock(&bond->curr_slave_lock);
2627 	slave = bond->curr_active_slave;
2628 	read_unlock(&bond->curr_slave_lock);
2629 
2630 	if (slave) {
2631 		/* if we have sent traffic in the past 2*arp_intervals but
2632 		 * haven't xmit and rx traffic in that time interval, select
2633 		 * a different slave. slave->jiffies is only updated when
2634 		 * a slave first becomes the curr_active_slave - not necessarily
2635 		 * after every arp; this ensures the slave has a full 2*delta
2636 		 * before being taken out. if a primary is being used, check
2637 		 * if it is up and needs to take over as the curr_active_slave
2638 		 */
2639 		if ((((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2640 	    (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) &&
2641 	     bond_has_ip(bond))) &&
2642 		    ((jiffies - slave->jiffies) >= 2*delta_in_ticks)) {
2643 
2644 			slave->link  = BOND_LINK_DOWN;
2645 
2646 			if (slave->link_failure_count < UINT_MAX) {
2647 				slave->link_failure_count++;
2648 			}
2649 
2650 			printk(KERN_INFO DRV_NAME
2651 			       ": %s: link status down for active interface "
2652 			       "%s, disabling it\n",
2653 			       bond_dev->name,
2654 			       slave->dev->name);
2655 
2656 			write_lock(&bond->curr_slave_lock);
2657 
2658 			bond_select_active_slave(bond);
2659 			slave = bond->curr_active_slave;
2660 
2661 			write_unlock(&bond->curr_slave_lock);
2662 
2663 			bond->current_arp_slave = slave;
2664 
2665 			if (slave) {
2666 				slave->jiffies = jiffies;
2667 			}
2668 		} else if ((bond->primary_slave) &&
2669 			   (bond->primary_slave != slave) &&
2670 			   (bond->primary_slave->link == BOND_LINK_UP)) {
2671 			/* at this point, slave is the curr_active_slave */
2672 			printk(KERN_INFO DRV_NAME
2673 			       ": %s: changing from interface %s to primary "
2674 			       "interface %s\n",
2675 			       bond_dev->name,
2676 			       slave->dev->name,
2677 			       bond->primary_slave->dev->name);
2678 
2679 			/* primary is up so switch to it */
2680 			write_lock(&bond->curr_slave_lock);
2681 			bond_change_active_slave(bond, bond->primary_slave);
2682 			write_unlock(&bond->curr_slave_lock);
2683 
2684 			slave = bond->primary_slave;
2685 			slave->jiffies = jiffies;
2686 		} else {
2687 			bond->current_arp_slave = NULL;
2688 		}
2689 
2690 		/* the current slave must tx an arp to ensure backup slaves
2691 		 * rx traffic
2692 		 */
2693 		if (slave && bond_has_ip(bond)) {
2694 			bond_arp_send_all(bond, slave);
2695 		}
2696 	}
2697 
2698 	/* if we don't have a curr_active_slave, search for the next available
2699 	 * backup slave from the current_arp_slave and make it the candidate
2700 	 * for becoming the curr_active_slave
2701 	 */
2702 	if (!slave) {
2703 		if (!bond->current_arp_slave) {
2704 			bond->current_arp_slave = bond->first_slave;
2705 		}
2706 
2707 		if (bond->current_arp_slave) {
2708 			bond_set_slave_inactive_flags(bond->current_arp_slave);
2709 
2710 			/* search for next candidate */
2711 			bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
2712 				if (IS_UP(slave->dev)) {
2713 					slave->link = BOND_LINK_BACK;
2714 					bond_set_slave_active_flags(slave);
2715 					bond_arp_send_all(bond, slave);
2716 					slave->jiffies = jiffies;
2717 					bond->current_arp_slave = slave;
2718 					break;
2719 				}
2720 
2721 				/* if the link state is up at this point, we
2722 				 * mark it down - this can happen if we have
2723 				 * simultaneous link failures and
2724 				 * reselect_active_interface doesn't make this
2725 				 * one the current slave so it is still marked
2726 				 * up when it is actually down
2727 				 */
2728 				if (slave->link == BOND_LINK_UP) {
2729 					slave->link  = BOND_LINK_DOWN;
2730 					if (slave->link_failure_count < UINT_MAX) {
2731 						slave->link_failure_count++;
2732 					}
2733 
2734 					bond_set_slave_inactive_flags(slave);
2735 
2736 					printk(KERN_INFO DRV_NAME
2737 					       ": %s: backup interface %s is "
2738 					       "now down.\n",
2739 					       bond_dev->name,
2740 					       slave->dev->name);
2741 				}
2742 			}
2743 		}
2744 	}
2745 
2746 re_arm:
2747 	if (bond->params.arp_interval) {
2748 		mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2749 	}
2750 out:
2751 	read_unlock(&bond->lock);
2752 }
2753 
2754 /*------------------------------ proc/seq_file-------------------------------*/
2755 
2756 #ifdef CONFIG_PROC_FS
2757 
2758 #define SEQ_START_TOKEN ((void *)1)
2759 
2760 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
2761 {
2762 	struct bonding *bond = seq->private;
2763 	loff_t off = 0;
2764 	struct slave *slave;
2765 	int i;
2766 
2767 	/* make sure the bond won't be taken away */
2768 	read_lock(&dev_base_lock);
2769 	read_lock_bh(&bond->lock);
2770 
2771 	if (*pos == 0) {
2772 		return SEQ_START_TOKEN;
2773 	}
2774 
2775 	bond_for_each_slave(bond, slave, i) {
2776 		if (++off == *pos) {
2777 			return slave;
2778 		}
2779 	}
2780 
2781 	return NULL;
2782 }
2783 
2784 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2785 {
2786 	struct bonding *bond = seq->private;
2787 	struct slave *slave = v;
2788 
2789 	++*pos;
2790 	if (v == SEQ_START_TOKEN) {
2791 		return bond->first_slave;
2792 	}
2793 
2794 	slave = slave->next;
2795 
2796 	return (slave == bond->first_slave) ? NULL : slave;
2797 }
2798 
2799 static void bond_info_seq_stop(struct seq_file *seq, void *v)
2800 {
2801 	struct bonding *bond = seq->private;
2802 
2803 	read_unlock_bh(&bond->lock);
2804 	read_unlock(&dev_base_lock);
2805 }
2806 
2807 static void bond_info_show_master(struct seq_file *seq)
2808 {
2809 	struct bonding *bond = seq->private;
2810 	struct slave *curr;
2811 	int i;
2812 	u32 target;
2813 
2814 	read_lock(&bond->curr_slave_lock);
2815 	curr = bond->curr_active_slave;
2816 	read_unlock(&bond->curr_slave_lock);
2817 
2818 	seq_printf(seq, "Bonding Mode: %s\n",
2819 		   bond_mode_name(bond->params.mode));
2820 
2821 	if (bond->params.mode == BOND_MODE_XOR ||
2822 		bond->params.mode == BOND_MODE_8023AD) {
2823 		seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
2824 			xmit_hashtype_tbl[bond->params.xmit_policy].modename,
2825 			bond->params.xmit_policy);
2826 	}
2827 
2828 	if (USES_PRIMARY(bond->params.mode)) {
2829 		seq_printf(seq, "Primary Slave: %s\n",
2830 			   (bond->primary_slave) ?
2831 			   bond->primary_slave->dev->name : "None");
2832 
2833 		seq_printf(seq, "Currently Active Slave: %s\n",
2834 			   (curr) ? curr->dev->name : "None");
2835 	}
2836 
2837 	seq_printf(seq, "MII Status: %s\n", (curr) ? "up" : "down");
2838 	seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
2839 	seq_printf(seq, "Up Delay (ms): %d\n",
2840 		   bond->params.updelay * bond->params.miimon);
2841 	seq_printf(seq, "Down Delay (ms): %d\n",
2842 		   bond->params.downdelay * bond->params.miimon);
2843 
2844 
2845 	/* ARP information */
2846 	if(bond->params.arp_interval > 0) {
2847 		int printed=0;
2848 		seq_printf(seq, "ARP Polling Interval (ms): %d\n",
2849 				bond->params.arp_interval);
2850 
2851 		seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
2852 
2853 		for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
2854 			if (!bond->params.arp_targets[i])
2855 				continue;
2856 			if (printed)
2857 				seq_printf(seq, ",");
2858 			target = ntohl(bond->params.arp_targets[i]);
2859 			seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
2860 			printed = 1;
2861 		}
2862 		seq_printf(seq, "\n");
2863 	}
2864 
2865 	if (bond->params.mode == BOND_MODE_8023AD) {
2866 		struct ad_info ad_info;
2867 
2868 		seq_puts(seq, "\n802.3ad info\n");
2869 		seq_printf(seq, "LACP rate: %s\n",
2870 			   (bond->params.lacp_fast) ? "fast" : "slow");
2871 
2872 		if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
2873 			seq_printf(seq, "bond %s has no active aggregator\n",
2874 				   bond->dev->name);
2875 		} else {
2876 			seq_printf(seq, "Active Aggregator Info:\n");
2877 
2878 			seq_printf(seq, "\tAggregator ID: %d\n",
2879 				   ad_info.aggregator_id);
2880 			seq_printf(seq, "\tNumber of ports: %d\n",
2881 				   ad_info.ports);
2882 			seq_printf(seq, "\tActor Key: %d\n",
2883 				   ad_info.actor_key);
2884 			seq_printf(seq, "\tPartner Key: %d\n",
2885 				   ad_info.partner_key);
2886 			seq_printf(seq, "\tPartner Mac Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2887 				   ad_info.partner_system[0],
2888 				   ad_info.partner_system[1],
2889 				   ad_info.partner_system[2],
2890 				   ad_info.partner_system[3],
2891 				   ad_info.partner_system[4],
2892 				   ad_info.partner_system[5]);
2893 		}
2894 	}
2895 }
2896 
2897 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
2898 {
2899 	struct bonding *bond = seq->private;
2900 
2901 	seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
2902 	seq_printf(seq, "MII Status: %s\n",
2903 		   (slave->link == BOND_LINK_UP) ?  "up" : "down");
2904 	seq_printf(seq, "Link Failure Count: %d\n",
2905 		   slave->link_failure_count);
2906 
2907 	seq_printf(seq,
2908 		   "Permanent HW addr: %02x:%02x:%02x:%02x:%02x:%02x\n",
2909 		   slave->perm_hwaddr[0], slave->perm_hwaddr[1],
2910 		   slave->perm_hwaddr[2], slave->perm_hwaddr[3],
2911 		   slave->perm_hwaddr[4], slave->perm_hwaddr[5]);
2912 
2913 	if (bond->params.mode == BOND_MODE_8023AD) {
2914 		const struct aggregator *agg
2915 			= SLAVE_AD_INFO(slave).port.aggregator;
2916 
2917 		if (agg) {
2918 			seq_printf(seq, "Aggregator ID: %d\n",
2919 				   agg->aggregator_identifier);
2920 		} else {
2921 			seq_puts(seq, "Aggregator ID: N/A\n");
2922 		}
2923 	}
2924 }
2925 
2926 static int bond_info_seq_show(struct seq_file *seq, void *v)
2927 {
2928 	if (v == SEQ_START_TOKEN) {
2929 		seq_printf(seq, "%s\n", version);
2930 		bond_info_show_master(seq);
2931 	} else {
2932 		bond_info_show_slave(seq, v);
2933 	}
2934 
2935 	return 0;
2936 }
2937 
2938 static struct seq_operations bond_info_seq_ops = {
2939 	.start = bond_info_seq_start,
2940 	.next  = bond_info_seq_next,
2941 	.stop  = bond_info_seq_stop,
2942 	.show  = bond_info_seq_show,
2943 };
2944 
2945 static int bond_info_open(struct inode *inode, struct file *file)
2946 {
2947 	struct seq_file *seq;
2948 	struct proc_dir_entry *proc;
2949 	int res;
2950 
2951 	res = seq_open(file, &bond_info_seq_ops);
2952 	if (!res) {
2953 		/* recover the pointer buried in proc_dir_entry data */
2954 		seq = file->private_data;
2955 		proc = PDE(inode);
2956 		seq->private = proc->data;
2957 	}
2958 
2959 	return res;
2960 }
2961 
2962 static struct file_operations bond_info_fops = {
2963 	.owner   = THIS_MODULE,
2964 	.open    = bond_info_open,
2965 	.read    = seq_read,
2966 	.llseek  = seq_lseek,
2967 	.release = seq_release,
2968 };
2969 
2970 static int bond_create_proc_entry(struct bonding *bond)
2971 {
2972 	struct net_device *bond_dev = bond->dev;
2973 
2974 	if (bond_proc_dir) {
2975 		bond->proc_entry = create_proc_entry(bond_dev->name,
2976 						     S_IRUGO,
2977 						     bond_proc_dir);
2978 		if (bond->proc_entry == NULL) {
2979 			printk(KERN_WARNING DRV_NAME
2980 			       ": Warning: Cannot create /proc/net/%s/%s\n",
2981 			       DRV_NAME, bond_dev->name);
2982 		} else {
2983 			bond->proc_entry->data = bond;
2984 			bond->proc_entry->proc_fops = &bond_info_fops;
2985 			bond->proc_entry->owner = THIS_MODULE;
2986 			memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
2987 		}
2988 	}
2989 
2990 	return 0;
2991 }
2992 
2993 static void bond_remove_proc_entry(struct bonding *bond)
2994 {
2995 	if (bond_proc_dir && bond->proc_entry) {
2996 		remove_proc_entry(bond->proc_file_name, bond_proc_dir);
2997 		memset(bond->proc_file_name, 0, IFNAMSIZ);
2998 		bond->proc_entry = NULL;
2999 	}
3000 }
3001 
3002 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3003  * Caller must hold rtnl_lock.
3004  */
3005 static void bond_create_proc_dir(void)
3006 {
3007 	int len = strlen(DRV_NAME);
3008 
3009 	for (bond_proc_dir = proc_net->subdir; bond_proc_dir;
3010 	     bond_proc_dir = bond_proc_dir->next) {
3011 		if ((bond_proc_dir->namelen == len) &&
3012 		    !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3013 			break;
3014 		}
3015 	}
3016 
3017 	if (!bond_proc_dir) {
3018 		bond_proc_dir = proc_mkdir(DRV_NAME, proc_net);
3019 		if (bond_proc_dir) {
3020 			bond_proc_dir->owner = THIS_MODULE;
3021 		} else {
3022 			printk(KERN_WARNING DRV_NAME
3023 				": Warning: cannot create /proc/net/%s\n",
3024 				DRV_NAME);
3025 		}
3026 	}
3027 }
3028 
3029 /* Destroy the bonding directory under /proc/net, if empty.
3030  * Caller must hold rtnl_lock.
3031  */
3032 static void bond_destroy_proc_dir(void)
3033 {
3034 	struct proc_dir_entry *de;
3035 
3036 	if (!bond_proc_dir) {
3037 		return;
3038 	}
3039 
3040 	/* verify that the /proc dir is empty */
3041 	for (de = bond_proc_dir->subdir; de; de = de->next) {
3042 		/* ignore . and .. */
3043 		if (*(de->name) != '.') {
3044 			break;
3045 		}
3046 	}
3047 
3048 	if (de) {
3049 		if (bond_proc_dir->owner == THIS_MODULE) {
3050 			bond_proc_dir->owner = NULL;
3051 		}
3052 	} else {
3053 		remove_proc_entry(DRV_NAME, proc_net);
3054 		bond_proc_dir = NULL;
3055 	}
3056 }
3057 #endif /* CONFIG_PROC_FS */
3058 
3059 /*-------------------------- netdev event handling --------------------------*/
3060 
3061 /*
3062  * Change device name
3063  */
3064 static int bond_event_changename(struct bonding *bond)
3065 {
3066 #ifdef CONFIG_PROC_FS
3067 	bond_remove_proc_entry(bond);
3068 	bond_create_proc_entry(bond);
3069 #endif
3070 	down_write(&(bonding_rwsem));
3071         bond_destroy_sysfs_entry(bond);
3072         bond_create_sysfs_entry(bond);
3073 	up_write(&(bonding_rwsem));
3074 	return NOTIFY_DONE;
3075 }
3076 
3077 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3078 {
3079 	struct bonding *event_bond = bond_dev->priv;
3080 
3081 	switch (event) {
3082 	case NETDEV_CHANGENAME:
3083 		return bond_event_changename(event_bond);
3084 	case NETDEV_UNREGISTER:
3085 		/*
3086 		 * TODO: remove a bond from the list?
3087 		 */
3088 		break;
3089 	default:
3090 		break;
3091 	}
3092 
3093 	return NOTIFY_DONE;
3094 }
3095 
3096 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3097 {
3098 	struct net_device *bond_dev = slave_dev->master;
3099 	struct bonding *bond = bond_dev->priv;
3100 
3101 	switch (event) {
3102 	case NETDEV_UNREGISTER:
3103 		if (bond_dev) {
3104 			bond_release(bond_dev, slave_dev);
3105 		}
3106 		break;
3107 	case NETDEV_CHANGE:
3108 		/*
3109 		 * TODO: is this what we get if somebody
3110 		 * sets up a hierarchical bond, then rmmod's
3111 		 * one of the slave bonding devices?
3112 		 */
3113 		break;
3114 	case NETDEV_DOWN:
3115 		/*
3116 		 * ... Or is it this?
3117 		 */
3118 		break;
3119 	case NETDEV_CHANGEMTU:
3120 		/*
3121 		 * TODO: Should slaves be allowed to
3122 		 * independently alter their MTU?  For
3123 		 * an active-backup bond, slaves need
3124 		 * not be the same type of device, so
3125 		 * MTUs may vary.  For other modes,
3126 		 * slaves arguably should have the
3127 		 * same MTUs. To do this, we'd need to
3128 		 * take over the slave's change_mtu
3129 		 * function for the duration of their
3130 		 * servitude.
3131 		 */
3132 		break;
3133 	case NETDEV_CHANGENAME:
3134 		/*
3135 		 * TODO: handle changing the primary's name
3136 		 */
3137 		break;
3138 	case NETDEV_FEAT_CHANGE:
3139 		bond_compute_features(bond);
3140 		break;
3141 	default:
3142 		break;
3143 	}
3144 
3145 	return NOTIFY_DONE;
3146 }
3147 
3148 /*
3149  * bond_netdev_event: handle netdev notifier chain events.
3150  *
3151  * This function receives events for the netdev chain.  The caller (an
3152  * ioctl handler calling notifier_call_chain) holds the necessary
3153  * locks for us to safely manipulate the slave devices (RTNL lock,
3154  * dev_probe_lock).
3155  */
3156 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3157 {
3158 	struct net_device *event_dev = (struct net_device *)ptr;
3159 
3160 	dprintk("event_dev: %s, event: %lx\n",
3161 		(event_dev ? event_dev->name : "None"),
3162 		event);
3163 
3164 	if (event_dev->flags & IFF_MASTER) {
3165 		dprintk("IFF_MASTER\n");
3166 		return bond_master_netdev_event(event, event_dev);
3167 	}
3168 
3169 	if (event_dev->flags & IFF_SLAVE) {
3170 		dprintk("IFF_SLAVE\n");
3171 		return bond_slave_netdev_event(event, event_dev);
3172 	}
3173 
3174 	return NOTIFY_DONE;
3175 }
3176 
3177 /*
3178  * bond_inetaddr_event: handle inetaddr notifier chain events.
3179  *
3180  * We keep track of device IPs primarily to use as source addresses in
3181  * ARP monitor probes (rather than spewing out broadcasts all the time).
3182  *
3183  * We track one IP for the main device (if it has one), plus one per VLAN.
3184  */
3185 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3186 {
3187 	struct in_ifaddr *ifa = ptr;
3188 	struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3189 	struct bonding *bond, *bond_next;
3190 	struct vlan_entry *vlan, *vlan_next;
3191 
3192 	list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) {
3193 		if (bond->dev == event_dev) {
3194 			switch (event) {
3195 			case NETDEV_UP:
3196 				bond->master_ip = ifa->ifa_local;
3197 				return NOTIFY_OK;
3198 			case NETDEV_DOWN:
3199 				bond->master_ip = bond_glean_dev_ip(bond->dev);
3200 				return NOTIFY_OK;
3201 			default:
3202 				return NOTIFY_DONE;
3203 			}
3204 		}
3205 
3206 		if (list_empty(&bond->vlan_list))
3207 			continue;
3208 
3209 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
3210 					 vlan_list) {
3211 			vlan_dev = bond->vlgrp->vlan_devices[vlan->vlan_id];
3212 			if (vlan_dev == event_dev) {
3213 				switch (event) {
3214 				case NETDEV_UP:
3215 					vlan->vlan_ip = ifa->ifa_local;
3216 					return NOTIFY_OK;
3217 				case NETDEV_DOWN:
3218 					vlan->vlan_ip =
3219 						bond_glean_dev_ip(vlan_dev);
3220 					return NOTIFY_OK;
3221 				default:
3222 					return NOTIFY_DONE;
3223 				}
3224 			}
3225 		}
3226 	}
3227 	return NOTIFY_DONE;
3228 }
3229 
3230 static struct notifier_block bond_netdev_notifier = {
3231 	.notifier_call = bond_netdev_event,
3232 };
3233 
3234 static struct notifier_block bond_inetaddr_notifier = {
3235 	.notifier_call = bond_inetaddr_event,
3236 };
3237 
3238 /*-------------------------- Packet type handling ---------------------------*/
3239 
3240 /* register to receive lacpdus on a bond */
3241 static void bond_register_lacpdu(struct bonding *bond)
3242 {
3243 	struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3244 
3245 	/* initialize packet type */
3246 	pk_type->type = PKT_TYPE_LACPDU;
3247 	pk_type->dev = bond->dev;
3248 	pk_type->func = bond_3ad_lacpdu_recv;
3249 
3250 	dev_add_pack(pk_type);
3251 }
3252 
3253 /* unregister to receive lacpdus on a bond */
3254 static void bond_unregister_lacpdu(struct bonding *bond)
3255 {
3256 	dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3257 }
3258 
3259 /*---------------------------- Hashing Policies -----------------------------*/
3260 
3261 /*
3262  * Hash for the the output device based upon layer 3 and layer 4 data. If
3263  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3264  * altogether not IP, mimic bond_xmit_hash_policy_l2()
3265  */
3266 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3267 				    struct net_device *bond_dev, int count)
3268 {
3269 	struct ethhdr *data = (struct ethhdr *)skb->data;
3270 	struct iphdr *iph = skb->nh.iph;
3271 	u16 *layer4hdr = (u16 *)((u32 *)iph + iph->ihl);
3272 	int layer4_xor = 0;
3273 
3274 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3275 		if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3276 		    (iph->protocol == IPPROTO_TCP ||
3277 		     iph->protocol == IPPROTO_UDP)) {
3278 			layer4_xor = htons((*layer4hdr ^ *(layer4hdr + 1)));
3279 		}
3280 		return (layer4_xor ^
3281 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3282 
3283 	}
3284 
3285 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3286 }
3287 
3288 /*
3289  * Hash for the output device based upon layer 2 data
3290  */
3291 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3292 				   struct net_device *bond_dev, int count)
3293 {
3294 	struct ethhdr *data = (struct ethhdr *)skb->data;
3295 
3296 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3297 }
3298 
3299 /*-------------------------- Device entry points ----------------------------*/
3300 
3301 static int bond_open(struct net_device *bond_dev)
3302 {
3303 	struct bonding *bond = bond_dev->priv;
3304 	struct timer_list *mii_timer = &bond->mii_timer;
3305 	struct timer_list *arp_timer = &bond->arp_timer;
3306 
3307 	bond->kill_timers = 0;
3308 
3309 	if ((bond->params.mode == BOND_MODE_TLB) ||
3310 	    (bond->params.mode == BOND_MODE_ALB)) {
3311 		struct timer_list *alb_timer = &(BOND_ALB_INFO(bond).alb_timer);
3312 
3313 		/* bond_alb_initialize must be called before the timer
3314 		 * is started.
3315 		 */
3316 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3317 			/* something went wrong - fail the open operation */
3318 			return -1;
3319 		}
3320 
3321 		init_timer(alb_timer);
3322 		alb_timer->expires  = jiffies + 1;
3323 		alb_timer->data     = (unsigned long)bond;
3324 		alb_timer->function = (void *)&bond_alb_monitor;
3325 		add_timer(alb_timer);
3326 	}
3327 
3328 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3329 		init_timer(mii_timer);
3330 		mii_timer->expires  = jiffies + 1;
3331 		mii_timer->data     = (unsigned long)bond_dev;
3332 		mii_timer->function = (void *)&bond_mii_monitor;
3333 		add_timer(mii_timer);
3334 	}
3335 
3336 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3337 		init_timer(arp_timer);
3338 		arp_timer->expires  = jiffies + 1;
3339 		arp_timer->data     = (unsigned long)bond_dev;
3340 		if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
3341 			arp_timer->function = (void *)&bond_activebackup_arp_mon;
3342 		} else {
3343 			arp_timer->function = (void *)&bond_loadbalance_arp_mon;
3344 		}
3345 		add_timer(arp_timer);
3346 	}
3347 
3348 	if (bond->params.mode == BOND_MODE_8023AD) {
3349 		struct timer_list *ad_timer = &(BOND_AD_INFO(bond).ad_timer);
3350 		init_timer(ad_timer);
3351 		ad_timer->expires  = jiffies + 1;
3352 		ad_timer->data     = (unsigned long)bond;
3353 		ad_timer->function = (void *)&bond_3ad_state_machine_handler;
3354 		add_timer(ad_timer);
3355 
3356 		/* register to receive LACPDUs */
3357 		bond_register_lacpdu(bond);
3358 	}
3359 
3360 	return 0;
3361 }
3362 
3363 static int bond_close(struct net_device *bond_dev)
3364 {
3365 	struct bonding *bond = bond_dev->priv;
3366 
3367 	if (bond->params.mode == BOND_MODE_8023AD) {
3368 		/* Unregister the receive of LACPDUs */
3369 		bond_unregister_lacpdu(bond);
3370 	}
3371 
3372 	write_lock_bh(&bond->lock);
3373 
3374 	bond_mc_list_destroy(bond);
3375 
3376 	/* signal timers not to re-arm */
3377 	bond->kill_timers = 1;
3378 
3379 	write_unlock_bh(&bond->lock);
3380 
3381 	/* del_timer_sync must run without holding the bond->lock
3382 	 * because a running timer might be trying to hold it too
3383 	 */
3384 
3385 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3386 		del_timer_sync(&bond->mii_timer);
3387 	}
3388 
3389 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3390 		del_timer_sync(&bond->arp_timer);
3391 	}
3392 
3393 	switch (bond->params.mode) {
3394 	case BOND_MODE_8023AD:
3395 		del_timer_sync(&(BOND_AD_INFO(bond).ad_timer));
3396 		break;
3397 	case BOND_MODE_TLB:
3398 	case BOND_MODE_ALB:
3399 		del_timer_sync(&(BOND_ALB_INFO(bond).alb_timer));
3400 		break;
3401 	default:
3402 		break;
3403 	}
3404 
3405 	/* Release the bonded slaves */
3406 	bond_release_all(bond_dev);
3407 
3408 	if ((bond->params.mode == BOND_MODE_TLB) ||
3409 	    (bond->params.mode == BOND_MODE_ALB)) {
3410 		/* Must be called only after all
3411 		 * slaves have been released
3412 		 */
3413 		bond_alb_deinitialize(bond);
3414 	}
3415 
3416 	return 0;
3417 }
3418 
3419 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3420 {
3421 	struct bonding *bond = bond_dev->priv;
3422 	struct net_device_stats *stats = &(bond->stats), *sstats;
3423 	struct slave *slave;
3424 	int i;
3425 
3426 	memset(stats, 0, sizeof(struct net_device_stats));
3427 
3428 	read_lock_bh(&bond->lock);
3429 
3430 	bond_for_each_slave(bond, slave, i) {
3431 		sstats = slave->dev->get_stats(slave->dev);
3432 
3433 		stats->rx_packets += sstats->rx_packets;
3434 		stats->rx_bytes += sstats->rx_bytes;
3435 		stats->rx_errors += sstats->rx_errors;
3436 		stats->rx_dropped += sstats->rx_dropped;
3437 
3438 		stats->tx_packets += sstats->tx_packets;
3439 		stats->tx_bytes += sstats->tx_bytes;
3440 		stats->tx_errors += sstats->tx_errors;
3441 		stats->tx_dropped += sstats->tx_dropped;
3442 
3443 		stats->multicast += sstats->multicast;
3444 		stats->collisions += sstats->collisions;
3445 
3446 		stats->rx_length_errors += sstats->rx_length_errors;
3447 		stats->rx_over_errors += sstats->rx_over_errors;
3448 		stats->rx_crc_errors += sstats->rx_crc_errors;
3449 		stats->rx_frame_errors += sstats->rx_frame_errors;
3450 		stats->rx_fifo_errors += sstats->rx_fifo_errors;
3451 		stats->rx_missed_errors += sstats->rx_missed_errors;
3452 
3453 		stats->tx_aborted_errors += sstats->tx_aborted_errors;
3454 		stats->tx_carrier_errors += sstats->tx_carrier_errors;
3455 		stats->tx_fifo_errors += sstats->tx_fifo_errors;
3456 		stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3457 		stats->tx_window_errors += sstats->tx_window_errors;
3458 	}
3459 
3460 	read_unlock_bh(&bond->lock);
3461 
3462 	return stats;
3463 }
3464 
3465 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3466 {
3467 	struct net_device *slave_dev = NULL;
3468 	struct ifbond k_binfo;
3469 	struct ifbond __user *u_binfo = NULL;
3470 	struct ifslave k_sinfo;
3471 	struct ifslave __user *u_sinfo = NULL;
3472 	struct mii_ioctl_data *mii = NULL;
3473 	int res = 0;
3474 
3475 	dprintk("bond_ioctl: master=%s, cmd=%d\n",
3476 		bond_dev->name, cmd);
3477 
3478 	switch (cmd) {
3479 	case SIOCGMIIPHY:
3480 		mii = if_mii(ifr);
3481 		if (!mii) {
3482 			return -EINVAL;
3483 		}
3484 		mii->phy_id = 0;
3485 		/* Fall Through */
3486 	case SIOCGMIIREG:
3487 		/*
3488 		 * We do this again just in case we were called by SIOCGMIIREG
3489 		 * instead of SIOCGMIIPHY.
3490 		 */
3491 		mii = if_mii(ifr);
3492 		if (!mii) {
3493 			return -EINVAL;
3494 		}
3495 
3496 		if (mii->reg_num == 1) {
3497 			struct bonding *bond = bond_dev->priv;
3498 			mii->val_out = 0;
3499 			read_lock_bh(&bond->lock);
3500 			read_lock(&bond->curr_slave_lock);
3501 			if (bond->curr_active_slave) {
3502 				mii->val_out = BMSR_LSTATUS;
3503 			}
3504 			read_unlock(&bond->curr_slave_lock);
3505 			read_unlock_bh(&bond->lock);
3506 		}
3507 
3508 		return 0;
3509 	case BOND_INFO_QUERY_OLD:
3510 	case SIOCBONDINFOQUERY:
3511 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3512 
3513 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3514 			return -EFAULT;
3515 		}
3516 
3517 		res = bond_info_query(bond_dev, &k_binfo);
3518 		if (res == 0) {
3519 			if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3520 				return -EFAULT;
3521 			}
3522 		}
3523 
3524 		return res;
3525 	case BOND_SLAVE_INFO_QUERY_OLD:
3526 	case SIOCBONDSLAVEINFOQUERY:
3527 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3528 
3529 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3530 			return -EFAULT;
3531 		}
3532 
3533 		res = bond_slave_info_query(bond_dev, &k_sinfo);
3534 		if (res == 0) {
3535 			if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3536 				return -EFAULT;
3537 			}
3538 		}
3539 
3540 		return res;
3541 	default:
3542 		/* Go on */
3543 		break;
3544 	}
3545 
3546 	if (!capable(CAP_NET_ADMIN)) {
3547 		return -EPERM;
3548 	}
3549 
3550 	down_write(&(bonding_rwsem));
3551 	slave_dev = dev_get_by_name(ifr->ifr_slave);
3552 
3553 	dprintk("slave_dev=%p: \n", slave_dev);
3554 
3555 	if (!slave_dev) {
3556 		res = -ENODEV;
3557 	} else {
3558 		dprintk("slave_dev->name=%s: \n", slave_dev->name);
3559 		switch (cmd) {
3560 		case BOND_ENSLAVE_OLD:
3561 		case SIOCBONDENSLAVE:
3562 			res = bond_enslave(bond_dev, slave_dev);
3563 			break;
3564 		case BOND_RELEASE_OLD:
3565 		case SIOCBONDRELEASE:
3566 			res = bond_release(bond_dev, slave_dev);
3567 			break;
3568 		case BOND_SETHWADDR_OLD:
3569 		case SIOCBONDSETHWADDR:
3570 			res = bond_sethwaddr(bond_dev, slave_dev);
3571 			break;
3572 		case BOND_CHANGE_ACTIVE_OLD:
3573 		case SIOCBONDCHANGEACTIVE:
3574 			res = bond_ioctl_change_active(bond_dev, slave_dev);
3575 			break;
3576 		default:
3577 			res = -EOPNOTSUPP;
3578 		}
3579 
3580 		dev_put(slave_dev);
3581 	}
3582 
3583 	up_write(&(bonding_rwsem));
3584 	return res;
3585 }
3586 
3587 static void bond_set_multicast_list(struct net_device *bond_dev)
3588 {
3589 	struct bonding *bond = bond_dev->priv;
3590 	struct dev_mc_list *dmi;
3591 
3592 	write_lock_bh(&bond->lock);
3593 
3594 	/*
3595 	 * Do promisc before checking multicast_mode
3596 	 */
3597 	if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
3598 		bond_set_promiscuity(bond, 1);
3599 	}
3600 
3601 	if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
3602 		bond_set_promiscuity(bond, -1);
3603 	}
3604 
3605 	/* set allmulti flag to slaves */
3606 	if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
3607 		bond_set_allmulti(bond, 1);
3608 	}
3609 
3610 	if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
3611 		bond_set_allmulti(bond, -1);
3612 	}
3613 
3614 	bond->flags = bond_dev->flags;
3615 
3616 	/* looking for addresses to add to slaves' mc list */
3617 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
3618 		if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
3619 			bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3620 		}
3621 	}
3622 
3623 	/* looking for addresses to delete from slaves' list */
3624 	for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
3625 		if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
3626 			bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3627 		}
3628 	}
3629 
3630 	/* save master's multicast list */
3631 	bond_mc_list_destroy(bond);
3632 	bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
3633 
3634 	write_unlock_bh(&bond->lock);
3635 }
3636 
3637 /*
3638  * Change the MTU of all of a master's slaves to match the master
3639  */
3640 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3641 {
3642 	struct bonding *bond = bond_dev->priv;
3643 	struct slave *slave, *stop_at;
3644 	int res = 0;
3645 	int i;
3646 
3647 	dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
3648 		(bond_dev ? bond_dev->name : "None"), new_mtu);
3649 
3650 	/* Can't hold bond->lock with bh disabled here since
3651 	 * some base drivers panic. On the other hand we can't
3652 	 * hold bond->lock without bh disabled because we'll
3653 	 * deadlock. The only solution is to rely on the fact
3654 	 * that we're under rtnl_lock here, and the slaves
3655 	 * list won't change. This doesn't solve the problem
3656 	 * of setting the slave's MTU while it is
3657 	 * transmitting, but the assumption is that the base
3658 	 * driver can handle that.
3659 	 *
3660 	 * TODO: figure out a way to safely iterate the slaves
3661 	 * list, but without holding a lock around the actual
3662 	 * call to the base driver.
3663 	 */
3664 
3665 	bond_for_each_slave(bond, slave, i) {
3666 		dprintk("s %p s->p %p c_m %p\n", slave,
3667 			slave->prev, slave->dev->change_mtu);
3668 
3669 		res = dev_set_mtu(slave->dev, new_mtu);
3670 
3671 		if (res) {
3672 			/* If we failed to set the slave's mtu to the new value
3673 			 * we must abort the operation even in ACTIVE_BACKUP
3674 			 * mode, because if we allow the backup slaves to have
3675 			 * different mtu values than the active slave we'll
3676 			 * need to change their mtu when doing a failover. That
3677 			 * means changing their mtu from timer context, which
3678 			 * is probably not a good idea.
3679 			 */
3680 			dprintk("err %d %s\n", res, slave->dev->name);
3681 			goto unwind;
3682 		}
3683 	}
3684 
3685 	bond_dev->mtu = new_mtu;
3686 
3687 	return 0;
3688 
3689 unwind:
3690 	/* unwind from head to the slave that failed */
3691 	stop_at = slave;
3692 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3693 		int tmp_res;
3694 
3695 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
3696 		if (tmp_res) {
3697 			dprintk("unwind err %d dev %s\n", tmp_res,
3698 				slave->dev->name);
3699 		}
3700 	}
3701 
3702 	return res;
3703 }
3704 
3705 /*
3706  * Change HW address
3707  *
3708  * Note that many devices must be down to change the HW address, and
3709  * downing the master releases all slaves.  We can make bonds full of
3710  * bonding devices to test this, however.
3711  */
3712 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
3713 {
3714 	struct bonding *bond = bond_dev->priv;
3715 	struct sockaddr *sa = addr, tmp_sa;
3716 	struct slave *slave, *stop_at;
3717 	int res = 0;
3718 	int i;
3719 
3720 	dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
3721 
3722 	if (!is_valid_ether_addr(sa->sa_data)) {
3723 		return -EADDRNOTAVAIL;
3724 	}
3725 
3726 	/* Can't hold bond->lock with bh disabled here since
3727 	 * some base drivers panic. On the other hand we can't
3728 	 * hold bond->lock without bh disabled because we'll
3729 	 * deadlock. The only solution is to rely on the fact
3730 	 * that we're under rtnl_lock here, and the slaves
3731 	 * list won't change. This doesn't solve the problem
3732 	 * of setting the slave's hw address while it is
3733 	 * transmitting, but the assumption is that the base
3734 	 * driver can handle that.
3735 	 *
3736 	 * TODO: figure out a way to safely iterate the slaves
3737 	 * list, but without holding a lock around the actual
3738 	 * call to the base driver.
3739 	 */
3740 
3741 	bond_for_each_slave(bond, slave, i) {
3742 		dprintk("slave %p %s\n", slave, slave->dev->name);
3743 
3744 		if (slave->dev->set_mac_address == NULL) {
3745 			res = -EOPNOTSUPP;
3746 			dprintk("EOPNOTSUPP %s\n", slave->dev->name);
3747 			goto unwind;
3748 		}
3749 
3750 		res = dev_set_mac_address(slave->dev, addr);
3751 		if (res) {
3752 			/* TODO: consider downing the slave
3753 			 * and retry ?
3754 			 * User should expect communications
3755 			 * breakage anyway until ARP finish
3756 			 * updating, so...
3757 			 */
3758 			dprintk("err %d %s\n", res, slave->dev->name);
3759 			goto unwind;
3760 		}
3761 	}
3762 
3763 	/* success */
3764 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
3765 	return 0;
3766 
3767 unwind:
3768 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
3769 	tmp_sa.sa_family = bond_dev->type;
3770 
3771 	/* unwind from head to the slave that failed */
3772 	stop_at = slave;
3773 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3774 		int tmp_res;
3775 
3776 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
3777 		if (tmp_res) {
3778 			dprintk("unwind err %d dev %s\n", tmp_res,
3779 				slave->dev->name);
3780 		}
3781 	}
3782 
3783 	return res;
3784 }
3785 
3786 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
3787 {
3788 	struct bonding *bond = bond_dev->priv;
3789 	struct slave *slave, *start_at;
3790 	int i;
3791 	int res = 1;
3792 
3793 	read_lock(&bond->lock);
3794 
3795 	if (!BOND_IS_OK(bond)) {
3796 		goto out;
3797 	}
3798 
3799 	read_lock(&bond->curr_slave_lock);
3800 	slave = start_at = bond->curr_active_slave;
3801 	read_unlock(&bond->curr_slave_lock);
3802 
3803 	if (!slave) {
3804 		goto out;
3805 	}
3806 
3807 	bond_for_each_slave_from(bond, slave, i, start_at) {
3808 		if (IS_UP(slave->dev) &&
3809 		    (slave->link == BOND_LINK_UP) &&
3810 		    (slave->state == BOND_STATE_ACTIVE)) {
3811 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
3812 
3813 			write_lock(&bond->curr_slave_lock);
3814 			bond->curr_active_slave = slave->next;
3815 			write_unlock(&bond->curr_slave_lock);
3816 
3817 			break;
3818 		}
3819 	}
3820 
3821 
3822 out:
3823 	if (res) {
3824 		/* no suitable interface, frame not sent */
3825 		dev_kfree_skb(skb);
3826 	}
3827 	read_unlock(&bond->lock);
3828 	return 0;
3829 }
3830 
3831 static void bond_activebackup_xmit_copy(struct sk_buff *skb,
3832                                         struct bonding *bond,
3833                                         struct slave *slave)
3834 {
3835 	struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC);
3836 	struct ethhdr *eth_data;
3837 	u8 *hwaddr;
3838 	int res;
3839 
3840 	if (!skb2) {
3841 		printk(KERN_ERR DRV_NAME ": Error: "
3842 		       "bond_activebackup_xmit_copy(): skb_copy() failed\n");
3843 		return;
3844 	}
3845 
3846 	skb2->mac.raw = (unsigned char *)skb2->data;
3847 	eth_data = eth_hdr(skb2);
3848 
3849 	/* Pick an appropriate source MAC address
3850 	 *	-- use slave's perm MAC addr, unless used by bond
3851 	 *	-- otherwise, borrow active slave's perm MAC addr
3852 	 *	   since that will not be used
3853 	 */
3854 	hwaddr = slave->perm_hwaddr;
3855 	if (!memcmp(eth_data->h_source, hwaddr, ETH_ALEN))
3856 		hwaddr = bond->curr_active_slave->perm_hwaddr;
3857 
3858 	/* Set source MAC address appropriately */
3859 	memcpy(eth_data->h_source, hwaddr, ETH_ALEN);
3860 
3861 	res = bond_dev_queue_xmit(bond, skb2, slave->dev);
3862 	if (res)
3863 		dev_kfree_skb(skb2);
3864 
3865 	return;
3866 }
3867 
3868 /*
3869  * in active-backup mode, we know that bond->curr_active_slave is always valid if
3870  * the bond has a usable interface.
3871  */
3872 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
3873 {
3874 	struct bonding *bond = bond_dev->priv;
3875 	int res = 1;
3876 
3877 	read_lock(&bond->lock);
3878 	read_lock(&bond->curr_slave_lock);
3879 
3880 	if (!BOND_IS_OK(bond)) {
3881 		goto out;
3882 	}
3883 
3884 	if (!bond->curr_active_slave)
3885 		goto out;
3886 
3887 	/* Xmit IGMP frames on all slaves to ensure rapid fail-over
3888 	   for multicast traffic on snooping switches */
3889 	if (skb->protocol == __constant_htons(ETH_P_IP) &&
3890 	    skb->nh.iph->protocol == IPPROTO_IGMP) {
3891 		struct slave *slave, *active_slave;
3892 		int i;
3893 
3894 		active_slave = bond->curr_active_slave;
3895 		bond_for_each_slave_from_to(bond, slave, i, active_slave->next,
3896 		                            active_slave->prev)
3897 			if (IS_UP(slave->dev) &&
3898 			    (slave->link == BOND_LINK_UP))
3899 				bond_activebackup_xmit_copy(skb, bond, slave);
3900 	}
3901 
3902 	res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
3903 
3904 out:
3905 	if (res) {
3906 		/* no suitable interface, frame not sent */
3907 		dev_kfree_skb(skb);
3908 	}
3909 	read_unlock(&bond->curr_slave_lock);
3910 	read_unlock(&bond->lock);
3911 	return 0;
3912 }
3913 
3914 /*
3915  * In bond_xmit_xor() , we determine the output device by using a pre-
3916  * determined xmit_hash_policy(), If the selected device is not enabled,
3917  * find the next active slave.
3918  */
3919 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
3920 {
3921 	struct bonding *bond = bond_dev->priv;
3922 	struct slave *slave, *start_at;
3923 	int slave_no;
3924 	int i;
3925 	int res = 1;
3926 
3927 	read_lock(&bond->lock);
3928 
3929 	if (!BOND_IS_OK(bond)) {
3930 		goto out;
3931 	}
3932 
3933 	slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
3934 
3935 	bond_for_each_slave(bond, slave, i) {
3936 		slave_no--;
3937 		if (slave_no < 0) {
3938 			break;
3939 		}
3940 	}
3941 
3942 	start_at = slave;
3943 
3944 	bond_for_each_slave_from(bond, slave, i, start_at) {
3945 		if (IS_UP(slave->dev) &&
3946 		    (slave->link == BOND_LINK_UP) &&
3947 		    (slave->state == BOND_STATE_ACTIVE)) {
3948 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
3949 			break;
3950 		}
3951 	}
3952 
3953 out:
3954 	if (res) {
3955 		/* no suitable interface, frame not sent */
3956 		dev_kfree_skb(skb);
3957 	}
3958 	read_unlock(&bond->lock);
3959 	return 0;
3960 }
3961 
3962 /*
3963  * in broadcast mode, we send everything to all usable interfaces.
3964  */
3965 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
3966 {
3967 	struct bonding *bond = bond_dev->priv;
3968 	struct slave *slave, *start_at;
3969 	struct net_device *tx_dev = NULL;
3970 	int i;
3971 	int res = 1;
3972 
3973 	read_lock(&bond->lock);
3974 
3975 	if (!BOND_IS_OK(bond)) {
3976 		goto out;
3977 	}
3978 
3979 	read_lock(&bond->curr_slave_lock);
3980 	start_at = bond->curr_active_slave;
3981 	read_unlock(&bond->curr_slave_lock);
3982 
3983 	if (!start_at) {
3984 		goto out;
3985 	}
3986 
3987 	bond_for_each_slave_from(bond, slave, i, start_at) {
3988 		if (IS_UP(slave->dev) &&
3989 		    (slave->link == BOND_LINK_UP) &&
3990 		    (slave->state == BOND_STATE_ACTIVE)) {
3991 			if (tx_dev) {
3992 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3993 				if (!skb2) {
3994 					printk(KERN_ERR DRV_NAME
3995 					       ": %s: Error: bond_xmit_broadcast(): "
3996 					       "skb_clone() failed\n",
3997 					       bond_dev->name);
3998 					continue;
3999 				}
4000 
4001 				res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4002 				if (res) {
4003 					dev_kfree_skb(skb2);
4004 					continue;
4005 				}
4006 			}
4007 			tx_dev = slave->dev;
4008 		}
4009 	}
4010 
4011 	if (tx_dev) {
4012 		res = bond_dev_queue_xmit(bond, skb, tx_dev);
4013 	}
4014 
4015 out:
4016 	if (res) {
4017 		/* no suitable interface, frame not sent */
4018 		dev_kfree_skb(skb);
4019 	}
4020 	/* frame sent to all suitable interfaces */
4021 	read_unlock(&bond->lock);
4022 	return 0;
4023 }
4024 
4025 /*------------------------- Device initialization ---------------------------*/
4026 
4027 /*
4028  * set bond mode specific net device operations
4029  */
4030 void bond_set_mode_ops(struct bonding *bond, int mode)
4031 {
4032 	struct net_device *bond_dev = bond->dev;
4033 
4034 	switch (mode) {
4035 	case BOND_MODE_ROUNDROBIN:
4036 		bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4037 		break;
4038 	case BOND_MODE_ACTIVEBACKUP:
4039 		bond_dev->hard_start_xmit = bond_xmit_activebackup;
4040 		break;
4041 	case BOND_MODE_XOR:
4042 		bond_dev->hard_start_xmit = bond_xmit_xor;
4043 		if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4044 			bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4045 		else
4046 			bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4047 		break;
4048 	case BOND_MODE_BROADCAST:
4049 		bond_dev->hard_start_xmit = bond_xmit_broadcast;
4050 		break;
4051 	case BOND_MODE_8023AD:
4052 		bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4053 		if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4054 			bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4055 		else
4056 			bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4057 		break;
4058 	case BOND_MODE_TLB:
4059 	case BOND_MODE_ALB:
4060 		bond_dev->hard_start_xmit = bond_alb_xmit;
4061 		bond_dev->set_mac_address = bond_alb_set_mac_address;
4062 		break;
4063 	default:
4064 		/* Should never happen, mode already checked */
4065 		printk(KERN_ERR DRV_NAME
4066 		       ": %s: Error: Unknown bonding mode %d\n",
4067 		       bond_dev->name,
4068 		       mode);
4069 		break;
4070 	}
4071 }
4072 
4073 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4074 				    struct ethtool_drvinfo *drvinfo)
4075 {
4076 	strncpy(drvinfo->driver, DRV_NAME, 32);
4077 	strncpy(drvinfo->version, DRV_VERSION, 32);
4078 	snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4079 }
4080 
4081 static struct ethtool_ops bond_ethtool_ops = {
4082 	.get_tx_csum		= ethtool_op_get_tx_csum,
4083 	.get_sg			= ethtool_op_get_sg,
4084 	.get_drvinfo		= bond_ethtool_get_drvinfo,
4085 };
4086 
4087 /*
4088  * Does not allocate but creates a /proc entry.
4089  * Allowed to fail.
4090  */
4091 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4092 {
4093 	struct bonding *bond = bond_dev->priv;
4094 
4095 	dprintk("Begin bond_init for %s\n", bond_dev->name);
4096 
4097 	/* initialize rwlocks */
4098 	rwlock_init(&bond->lock);
4099 	rwlock_init(&bond->curr_slave_lock);
4100 
4101 	bond->params = *params; /* copy params struct */
4102 
4103 	/* Initialize pointers */
4104 	bond->first_slave = NULL;
4105 	bond->curr_active_slave = NULL;
4106 	bond->current_arp_slave = NULL;
4107 	bond->primary_slave = NULL;
4108 	bond->dev = bond_dev;
4109 	INIT_LIST_HEAD(&bond->vlan_list);
4110 
4111 	/* Initialize the device entry points */
4112 	bond_dev->open = bond_open;
4113 	bond_dev->stop = bond_close;
4114 	bond_dev->get_stats = bond_get_stats;
4115 	bond_dev->do_ioctl = bond_do_ioctl;
4116 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4117 	bond_dev->set_multicast_list = bond_set_multicast_list;
4118 	bond_dev->change_mtu = bond_change_mtu;
4119 	bond_dev->set_mac_address = bond_set_mac_address;
4120 
4121 	bond_set_mode_ops(bond, bond->params.mode);
4122 
4123 	bond_dev->destructor = free_netdev;
4124 
4125 	/* Initialize the device options */
4126 	bond_dev->tx_queue_len = 0;
4127 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4128 
4129 	/* At first, we block adding VLANs. That's the only way to
4130 	 * prevent problems that occur when adding VLANs over an
4131 	 * empty bond. The block will be removed once non-challenged
4132 	 * slaves are enslaved.
4133 	 */
4134 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4135 
4136 	/* don't acquire bond device's xmit_lock when
4137 	 * transmitting */
4138 	bond_dev->features |= NETIF_F_LLTX;
4139 
4140 	/* By default, we declare the bond to be fully
4141 	 * VLAN hardware accelerated capable. Special
4142 	 * care is taken in the various xmit functions
4143 	 * when there are slaves that are not hw accel
4144 	 * capable
4145 	 */
4146 	bond_dev->vlan_rx_register = bond_vlan_rx_register;
4147 	bond_dev->vlan_rx_add_vid  = bond_vlan_rx_add_vid;
4148 	bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4149 	bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4150 			       NETIF_F_HW_VLAN_RX |
4151 			       NETIF_F_HW_VLAN_FILTER);
4152 
4153 #ifdef CONFIG_PROC_FS
4154 	bond_create_proc_entry(bond);
4155 #endif
4156 
4157 	list_add_tail(&bond->bond_list, &bond_dev_list);
4158 
4159 	return 0;
4160 }
4161 
4162 /* De-initialize device specific data.
4163  * Caller must hold rtnl_lock.
4164  */
4165 void bond_deinit(struct net_device *bond_dev)
4166 {
4167 	struct bonding *bond = bond_dev->priv;
4168 
4169 	list_del(&bond->bond_list);
4170 
4171 #ifdef CONFIG_PROC_FS
4172 	bond_remove_proc_entry(bond);
4173 #endif
4174 }
4175 
4176 /* Unregister and free all bond devices.
4177  * Caller must hold rtnl_lock.
4178  */
4179 static void bond_free_all(void)
4180 {
4181 	struct bonding *bond, *nxt;
4182 
4183 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4184 		struct net_device *bond_dev = bond->dev;
4185 
4186 		unregister_netdevice(bond_dev);
4187 		bond_deinit(bond_dev);
4188 	}
4189 
4190 #ifdef CONFIG_PROC_FS
4191 	bond_destroy_proc_dir();
4192 #endif
4193 }
4194 
4195 /*------------------------- Module initialization ---------------------------*/
4196 
4197 /*
4198  * Convert string input module parms.  Accept either the
4199  * number of the mode or its string name.
4200  */
4201 int bond_parse_parm(char *mode_arg, struct bond_parm_tbl *tbl)
4202 {
4203 	int i;
4204 
4205 	for (i = 0; tbl[i].modename; i++) {
4206 		if ((isdigit(*mode_arg) &&
4207 		     tbl[i].mode == simple_strtol(mode_arg, NULL, 0)) ||
4208 		    (strncmp(mode_arg, tbl[i].modename,
4209 			     strlen(tbl[i].modename)) == 0)) {
4210 			return tbl[i].mode;
4211 		}
4212 	}
4213 
4214 	return -1;
4215 }
4216 
4217 static int bond_check_params(struct bond_params *params)
4218 {
4219 	/*
4220 	 * Convert string parameters.
4221 	 */
4222 	if (mode) {
4223 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4224 		if (bond_mode == -1) {
4225 			printk(KERN_ERR DRV_NAME
4226 			       ": Error: Invalid bonding mode \"%s\"\n",
4227 			       mode == NULL ? "NULL" : mode);
4228 			return -EINVAL;
4229 		}
4230 	}
4231 
4232 	if (xmit_hash_policy) {
4233 		if ((bond_mode != BOND_MODE_XOR) &&
4234 		    (bond_mode != BOND_MODE_8023AD)) {
4235 			printk(KERN_INFO DRV_NAME
4236 			       ": xor_mode param is irrelevant in mode %s\n",
4237 			       bond_mode_name(bond_mode));
4238 		} else {
4239 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4240 							xmit_hashtype_tbl);
4241 			if (xmit_hashtype == -1) {
4242 				printk(KERN_ERR DRV_NAME
4243 			       	": Error: Invalid xmit_hash_policy \"%s\"\n",
4244 			       	xmit_hash_policy == NULL ? "NULL" :
4245 				       xmit_hash_policy);
4246 				return -EINVAL;
4247 			}
4248 		}
4249 	}
4250 
4251 	if (lacp_rate) {
4252 		if (bond_mode != BOND_MODE_8023AD) {
4253 			printk(KERN_INFO DRV_NAME
4254 			       ": lacp_rate param is irrelevant in mode %s\n",
4255 			       bond_mode_name(bond_mode));
4256 		} else {
4257 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4258 			if (lacp_fast == -1) {
4259 				printk(KERN_ERR DRV_NAME
4260 				       ": Error: Invalid lacp rate \"%s\"\n",
4261 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4262 				return -EINVAL;
4263 			}
4264 		}
4265 	}
4266 
4267 	if (max_bonds < 1 || max_bonds > INT_MAX) {
4268 		printk(KERN_WARNING DRV_NAME
4269 		       ": Warning: max_bonds (%d) not in range %d-%d, so it "
4270 		       "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4271 		       max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4272 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4273 	}
4274 
4275 	if (miimon < 0) {
4276 		printk(KERN_WARNING DRV_NAME
4277 		       ": Warning: miimon module parameter (%d), "
4278 		       "not in range 0-%d, so it was reset to %d\n",
4279 		       miimon, INT_MAX, BOND_LINK_MON_INTERV);
4280 		miimon = BOND_LINK_MON_INTERV;
4281 	}
4282 
4283 	if (updelay < 0) {
4284 		printk(KERN_WARNING DRV_NAME
4285 		       ": Warning: updelay module parameter (%d), "
4286 		       "not in range 0-%d, so it was reset to 0\n",
4287 		       updelay, INT_MAX);
4288 		updelay = 0;
4289 	}
4290 
4291 	if (downdelay < 0) {
4292 		printk(KERN_WARNING DRV_NAME
4293 		       ": Warning: downdelay module parameter (%d), "
4294 		       "not in range 0-%d, so it was reset to 0\n",
4295 		       downdelay, INT_MAX);
4296 		downdelay = 0;
4297 	}
4298 
4299 	if ((use_carrier != 0) && (use_carrier != 1)) {
4300 		printk(KERN_WARNING DRV_NAME
4301 		       ": Warning: use_carrier module parameter (%d), "
4302 		       "not of valid value (0/1), so it was set to 1\n",
4303 		       use_carrier);
4304 		use_carrier = 1;
4305 	}
4306 
4307 	/* reset values for 802.3ad */
4308 	if (bond_mode == BOND_MODE_8023AD) {
4309 		if (!miimon) {
4310 			printk(KERN_WARNING DRV_NAME
4311 			       ": Warning: miimon must be specified, "
4312 			       "otherwise bonding will not detect link "
4313 			       "failure, speed and duplex which are "
4314 			       "essential for 802.3ad operation\n");
4315 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4316 			miimon = 100;
4317 		}
4318 	}
4319 
4320 	/* reset values for TLB/ALB */
4321 	if ((bond_mode == BOND_MODE_TLB) ||
4322 	    (bond_mode == BOND_MODE_ALB)) {
4323 		if (!miimon) {
4324 			printk(KERN_WARNING DRV_NAME
4325 			       ": Warning: miimon must be specified, "
4326 			       "otherwise bonding will not detect link "
4327 			       "failure and link speed which are essential "
4328 			       "for TLB/ALB load balancing\n");
4329 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4330 			miimon = 100;
4331 		}
4332 	}
4333 
4334 	if (bond_mode == BOND_MODE_ALB) {
4335 		printk(KERN_NOTICE DRV_NAME
4336 		       ": In ALB mode you might experience client "
4337 		       "disconnections upon reconnection of a link if the "
4338 		       "bonding module updelay parameter (%d msec) is "
4339 		       "incompatible with the forwarding delay time of the "
4340 		       "switch\n",
4341 		       updelay);
4342 	}
4343 
4344 	if (!miimon) {
4345 		if (updelay || downdelay) {
4346 			/* just warn the user the up/down delay will have
4347 			 * no effect since miimon is zero...
4348 			 */
4349 			printk(KERN_WARNING DRV_NAME
4350 			       ": Warning: miimon module parameter not set "
4351 			       "and updelay (%d) or downdelay (%d) module "
4352 			       "parameter is set; updelay and downdelay have "
4353 			       "no effect unless miimon is set\n",
4354 			       updelay, downdelay);
4355 		}
4356 	} else {
4357 		/* don't allow arp monitoring */
4358 		if (arp_interval) {
4359 			printk(KERN_WARNING DRV_NAME
4360 			       ": Warning: miimon (%d) and arp_interval (%d) "
4361 			       "can't be used simultaneously, disabling ARP "
4362 			       "monitoring\n",
4363 			       miimon, arp_interval);
4364 			arp_interval = 0;
4365 		}
4366 
4367 		if ((updelay % miimon) != 0) {
4368 			printk(KERN_WARNING DRV_NAME
4369 			       ": Warning: updelay (%d) is not a multiple "
4370 			       "of miimon (%d), updelay rounded to %d ms\n",
4371 			       updelay, miimon, (updelay / miimon) * miimon);
4372 		}
4373 
4374 		updelay /= miimon;
4375 
4376 		if ((downdelay % miimon) != 0) {
4377 			printk(KERN_WARNING DRV_NAME
4378 			       ": Warning: downdelay (%d) is not a multiple "
4379 			       "of miimon (%d), downdelay rounded to %d ms\n",
4380 			       downdelay, miimon,
4381 			       (downdelay / miimon) * miimon);
4382 		}
4383 
4384 		downdelay /= miimon;
4385 	}
4386 
4387 	if (arp_interval < 0) {
4388 		printk(KERN_WARNING DRV_NAME
4389 		       ": Warning: arp_interval module parameter (%d) "
4390 		       ", not in range 0-%d, so it was reset to %d\n",
4391 		       arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4392 		arp_interval = BOND_LINK_ARP_INTERV;
4393 	}
4394 
4395 	for (arp_ip_count = 0;
4396 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4397 	     arp_ip_count++) {
4398 		/* not complete check, but should be good enough to
4399 		   catch mistakes */
4400 		if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4401 			printk(KERN_WARNING DRV_NAME
4402 			       ": Warning: bad arp_ip_target module parameter "
4403 			       "(%s), ARP monitoring will not be performed\n",
4404 			       arp_ip_target[arp_ip_count]);
4405 			arp_interval = 0;
4406 		} else {
4407 			u32 ip = in_aton(arp_ip_target[arp_ip_count]);
4408 			arp_target[arp_ip_count] = ip;
4409 		}
4410 	}
4411 
4412 	if (arp_interval && !arp_ip_count) {
4413 		/* don't allow arping if no arp_ip_target given... */
4414 		printk(KERN_WARNING DRV_NAME
4415 		       ": Warning: arp_interval module parameter (%d) "
4416 		       "specified without providing an arp_ip_target "
4417 		       "parameter, arp_interval was reset to 0\n",
4418 		       arp_interval);
4419 		arp_interval = 0;
4420 	}
4421 
4422 	if (miimon) {
4423 		printk(KERN_INFO DRV_NAME
4424 		       ": MII link monitoring set to %d ms\n",
4425 		       miimon);
4426 	} else if (arp_interval) {
4427 		int i;
4428 
4429 		printk(KERN_INFO DRV_NAME
4430 		       ": ARP monitoring set to %d ms with %d target(s):",
4431 		       arp_interval, arp_ip_count);
4432 
4433 		for (i = 0; i < arp_ip_count; i++)
4434 			printk (" %s", arp_ip_target[i]);
4435 
4436 		printk("\n");
4437 
4438 	} else {
4439 		/* miimon and arp_interval not set, we need one so things
4440 		 * work as expected, see bonding.txt for details
4441 		 */
4442 		printk(KERN_WARNING DRV_NAME
4443 		       ": Warning: either miimon or arp_interval and "
4444 		       "arp_ip_target module parameters must be specified, "
4445 		       "otherwise bonding will not detect link failures! see "
4446 		       "bonding.txt for details.\n");
4447 	}
4448 
4449 	if (primary && !USES_PRIMARY(bond_mode)) {
4450 		/* currently, using a primary only makes sense
4451 		 * in active backup, TLB or ALB modes
4452 		 */
4453 		printk(KERN_WARNING DRV_NAME
4454 		       ": Warning: %s primary device specified but has no "
4455 		       "effect in %s mode\n",
4456 		       primary, bond_mode_name(bond_mode));
4457 		primary = NULL;
4458 	}
4459 
4460 	/* fill params struct with the proper values */
4461 	params->mode = bond_mode;
4462 	params->xmit_policy = xmit_hashtype;
4463 	params->miimon = miimon;
4464 	params->arp_interval = arp_interval;
4465 	params->updelay = updelay;
4466 	params->downdelay = downdelay;
4467 	params->use_carrier = use_carrier;
4468 	params->lacp_fast = lacp_fast;
4469 	params->primary[0] = 0;
4470 
4471 	if (primary) {
4472 		strncpy(params->primary, primary, IFNAMSIZ);
4473 		params->primary[IFNAMSIZ - 1] = 0;
4474 	}
4475 
4476 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4477 
4478 	return 0;
4479 }
4480 
4481 /* Create a new bond based on the specified name and bonding parameters.
4482  * Caller must NOT hold rtnl_lock; we need to release it here before we
4483  * set up our sysfs entries.
4484  */
4485 int bond_create(char *name, struct bond_params *params, struct bonding **newbond)
4486 {
4487 	struct net_device *bond_dev;
4488 	int res;
4489 
4490 	rtnl_lock();
4491 	bond_dev = alloc_netdev(sizeof(struct bonding), name, ether_setup);
4492 	if (!bond_dev) {
4493 		printk(KERN_ERR DRV_NAME
4494 		       ": %s: eek! can't alloc netdev!\n",
4495 		       name);
4496 		res = -ENOMEM;
4497 		goto out_rtnl;
4498 	}
4499 
4500 	/* bond_init() must be called after dev_alloc_name() (for the
4501 	 * /proc files), but before register_netdevice(), because we
4502 	 * need to set function pointers.
4503 	 */
4504 
4505 	res = bond_init(bond_dev, params);
4506 	if (res < 0) {
4507 		goto out_netdev;
4508 	}
4509 
4510 	SET_MODULE_OWNER(bond_dev);
4511 
4512 	res = register_netdevice(bond_dev);
4513 	if (res < 0) {
4514 		goto out_bond;
4515 	}
4516 	if (newbond)
4517 		*newbond = bond_dev->priv;
4518 
4519 	rtnl_unlock(); /* allows sysfs registration of net device */
4520 	res = bond_create_sysfs_entry(bond_dev->priv);
4521 	goto done;
4522 out_bond:
4523 	bond_deinit(bond_dev);
4524 out_netdev:
4525 	free_netdev(bond_dev);
4526 out_rtnl:
4527 	rtnl_unlock();
4528 done:
4529 	return res;
4530 }
4531 
4532 static int __init bonding_init(void)
4533 {
4534 	int i;
4535 	int res;
4536 	char new_bond_name[8];  /* Enough room for 999 bonds at init. */
4537 
4538 	printk(KERN_INFO "%s", version);
4539 
4540 	res = bond_check_params(&bonding_defaults);
4541 	if (res) {
4542 		goto out;
4543 	}
4544 
4545 #ifdef CONFIG_PROC_FS
4546 	bond_create_proc_dir();
4547 #endif
4548 	for (i = 0; i < max_bonds; i++) {
4549 		sprintf(new_bond_name, "bond%d",i);
4550 		res = bond_create(new_bond_name,&bonding_defaults, NULL);
4551 		if (res)
4552 			goto err;
4553 	}
4554 
4555 	res = bond_create_sysfs();
4556 	if (res)
4557 		goto err;
4558 
4559 	register_netdevice_notifier(&bond_netdev_notifier);
4560 	register_inetaddr_notifier(&bond_inetaddr_notifier);
4561 
4562 	goto out;
4563 err:
4564 	rtnl_lock();
4565 	bond_free_all();
4566 	bond_destroy_sysfs();
4567 	rtnl_unlock();
4568 out:
4569 	return res;
4570 
4571 }
4572 
4573 static void __exit bonding_exit(void)
4574 {
4575 	unregister_netdevice_notifier(&bond_netdev_notifier);
4576 	unregister_inetaddr_notifier(&bond_inetaddr_notifier);
4577 
4578 	rtnl_lock();
4579 	bond_free_all();
4580 	bond_destroy_sysfs();
4581 	rtnl_unlock();
4582 }
4583 
4584 module_init(bonding_init);
4585 module_exit(bonding_exit);
4586 MODULE_LICENSE("GPL");
4587 MODULE_VERSION(DRV_VERSION);
4588 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
4589 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
4590 MODULE_SUPPORTED_DEVICE("most ethernet devices");
4591 
4592 /*
4593  * Local variables:
4594  *  c-indent-level: 8
4595  *  c-basic-offset: 8
4596  *  tab-width: 8
4597  * End:
4598  */
4599 
4600