xref: /openbmc/linux/drivers/net/bonding/bond_main.c (revision 643d1f7f)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 //#define BONDING_DEBUG 1
35 
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <linux/jiffies.h>
78 #include <net/route.h>
79 #include <net/net_namespace.h>
80 #include "bonding.h"
81 #include "bond_3ad.h"
82 #include "bond_alb.h"
83 
84 /*---------------------------- Module parameters ----------------------------*/
85 
86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
87 #define BOND_LINK_MON_INTERV	0
88 #define BOND_LINK_ARP_INTERV	0
89 
90 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
91 static int miimon	= BOND_LINK_MON_INTERV;
92 static int updelay	= 0;
93 static int downdelay	= 0;
94 static int use_carrier	= 1;
95 static char *mode	= NULL;
96 static char *primary	= NULL;
97 static char *lacp_rate	= NULL;
98 static char *xmit_hash_policy = NULL;
99 static int arp_interval = BOND_LINK_ARP_INTERV;
100 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
101 static char *arp_validate = NULL;
102 static int fail_over_mac = 0;
103 struct bond_params bonding_defaults;
104 
105 module_param(max_bonds, int, 0);
106 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
107 module_param(miimon, int, 0);
108 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
109 module_param(updelay, int, 0);
110 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
111 module_param(downdelay, int, 0);
112 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
113 			    "in milliseconds");
114 module_param(use_carrier, int, 0);
115 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
116 			      "0 for off, 1 for on (default)");
117 module_param(mode, charp, 0);
118 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
119 		       "1 for active-backup, 2 for balance-xor, "
120 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
121 		       "6 for balance-alb");
122 module_param(primary, charp, 0);
123 MODULE_PARM_DESC(primary, "Primary network device to use");
124 module_param(lacp_rate, charp, 0);
125 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
126 			    "(slow/fast)");
127 module_param(xmit_hash_policy, charp, 0);
128 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
129 				   ", 1 for layer 3+4");
130 module_param(arp_interval, int, 0);
131 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
132 module_param_array(arp_ip_target, charp, NULL, 0);
133 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
134 module_param(arp_validate, charp, 0);
135 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
136 module_param(fail_over_mac, int, 0);
137 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC.  0 of off (default), 1 for on.");
138 
139 /*----------------------------- Global variables ----------------------------*/
140 
141 static const char * const version =
142 	DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
143 
144 LIST_HEAD(bond_dev_list);
145 
146 #ifdef CONFIG_PROC_FS
147 static struct proc_dir_entry *bond_proc_dir = NULL;
148 #endif
149 
150 extern struct rw_semaphore bonding_rwsem;
151 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
152 static int arp_ip_count	= 0;
153 static int bond_mode	= BOND_MODE_ROUNDROBIN;
154 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
155 static int lacp_fast	= 0;
156 
157 
158 struct bond_parm_tbl bond_lacp_tbl[] = {
159 {	"slow",		AD_LACP_SLOW},
160 {	"fast",		AD_LACP_FAST},
161 {	NULL,		-1},
162 };
163 
164 struct bond_parm_tbl bond_mode_tbl[] = {
165 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
166 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
167 {	"balance-xor",		BOND_MODE_XOR},
168 {	"broadcast",		BOND_MODE_BROADCAST},
169 {	"802.3ad",		BOND_MODE_8023AD},
170 {	"balance-tlb",		BOND_MODE_TLB},
171 {	"balance-alb",		BOND_MODE_ALB},
172 {	NULL,			-1},
173 };
174 
175 struct bond_parm_tbl xmit_hashtype_tbl[] = {
176 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
177 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
178 {	"layer2+3",		BOND_XMIT_POLICY_LAYER23},
179 {	NULL,			-1},
180 };
181 
182 struct bond_parm_tbl arp_validate_tbl[] = {
183 {	"none",			BOND_ARP_VALIDATE_NONE},
184 {	"active",		BOND_ARP_VALIDATE_ACTIVE},
185 {	"backup",		BOND_ARP_VALIDATE_BACKUP},
186 {	"all",			BOND_ARP_VALIDATE_ALL},
187 {	NULL,			-1},
188 };
189 
190 /*-------------------------- Forward declarations ---------------------------*/
191 
192 static void bond_send_gratuitous_arp(struct bonding *bond);
193 static void bond_deinit(struct net_device *bond_dev);
194 
195 /*---------------------------- General routines -----------------------------*/
196 
197 static const char *bond_mode_name(int mode)
198 {
199 	switch (mode) {
200 	case BOND_MODE_ROUNDROBIN :
201 		return "load balancing (round-robin)";
202 	case BOND_MODE_ACTIVEBACKUP :
203 		return "fault-tolerance (active-backup)";
204 	case BOND_MODE_XOR :
205 		return "load balancing (xor)";
206 	case BOND_MODE_BROADCAST :
207 		return "fault-tolerance (broadcast)";
208 	case BOND_MODE_8023AD:
209 		return "IEEE 802.3ad Dynamic link aggregation";
210 	case BOND_MODE_TLB:
211 		return "transmit load balancing";
212 	case BOND_MODE_ALB:
213 		return "adaptive load balancing";
214 	default:
215 		return "unknown";
216 	}
217 }
218 
219 /*---------------------------------- VLAN -----------------------------------*/
220 
221 /**
222  * bond_add_vlan - add a new vlan id on bond
223  * @bond: bond that got the notification
224  * @vlan_id: the vlan id to add
225  *
226  * Returns -ENOMEM if allocation failed.
227  */
228 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
229 {
230 	struct vlan_entry *vlan;
231 
232 	dprintk("bond: %s, vlan id %d\n",
233 		(bond ? bond->dev->name: "None"), vlan_id);
234 
235 	vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
236 	if (!vlan) {
237 		return -ENOMEM;
238 	}
239 
240 	INIT_LIST_HEAD(&vlan->vlan_list);
241 	vlan->vlan_id = vlan_id;
242 	vlan->vlan_ip = 0;
243 
244 	write_lock_bh(&bond->lock);
245 
246 	list_add_tail(&vlan->vlan_list, &bond->vlan_list);
247 
248 	write_unlock_bh(&bond->lock);
249 
250 	dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
251 
252 	return 0;
253 }
254 
255 /**
256  * bond_del_vlan - delete a vlan id from bond
257  * @bond: bond that got the notification
258  * @vlan_id: the vlan id to delete
259  *
260  * returns -ENODEV if @vlan_id was not found in @bond.
261  */
262 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
263 {
264 	struct vlan_entry *vlan, *next;
265 	int res = -ENODEV;
266 
267 	dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
268 
269 	write_lock_bh(&bond->lock);
270 
271 	list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) {
272 		if (vlan->vlan_id == vlan_id) {
273 			list_del(&vlan->vlan_list);
274 
275 			if ((bond->params.mode == BOND_MODE_TLB) ||
276 			    (bond->params.mode == BOND_MODE_ALB)) {
277 				bond_alb_clear_vlan(bond, vlan_id);
278 			}
279 
280 			dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
281 				bond->dev->name);
282 
283 			kfree(vlan);
284 
285 			if (list_empty(&bond->vlan_list) &&
286 			    (bond->slave_cnt == 0)) {
287 				/* Last VLAN removed and no slaves, so
288 				 * restore block on adding VLANs. This will
289 				 * be removed once new slaves that are not
290 				 * VLAN challenged will be added.
291 				 */
292 				bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
293 			}
294 
295 			res = 0;
296 			goto out;
297 		}
298 	}
299 
300 	dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
301 		bond->dev->name);
302 
303 out:
304 	write_unlock_bh(&bond->lock);
305 	return res;
306 }
307 
308 /**
309  * bond_has_challenged_slaves
310  * @bond: the bond we're working on
311  *
312  * Searches the slave list. Returns 1 if a vlan challenged slave
313  * was found, 0 otherwise.
314  *
315  * Assumes bond->lock is held.
316  */
317 static int bond_has_challenged_slaves(struct bonding *bond)
318 {
319 	struct slave *slave;
320 	int i;
321 
322 	bond_for_each_slave(bond, slave, i) {
323 		if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
324 			dprintk("found VLAN challenged slave - %s\n",
325 				slave->dev->name);
326 			return 1;
327 		}
328 	}
329 
330 	dprintk("no VLAN challenged slaves found\n");
331 	return 0;
332 }
333 
334 /**
335  * bond_next_vlan - safely skip to the next item in the vlans list.
336  * @bond: the bond we're working on
337  * @curr: item we're advancing from
338  *
339  * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
340  * or @curr->next otherwise (even if it is @curr itself again).
341  *
342  * Caller must hold bond->lock
343  */
344 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
345 {
346 	struct vlan_entry *next, *last;
347 
348 	if (list_empty(&bond->vlan_list)) {
349 		return NULL;
350 	}
351 
352 	if (!curr) {
353 		next = list_entry(bond->vlan_list.next,
354 				  struct vlan_entry, vlan_list);
355 	} else {
356 		last = list_entry(bond->vlan_list.prev,
357 				  struct vlan_entry, vlan_list);
358 		if (last == curr) {
359 			next = list_entry(bond->vlan_list.next,
360 					  struct vlan_entry, vlan_list);
361 		} else {
362 			next = list_entry(curr->vlan_list.next,
363 					  struct vlan_entry, vlan_list);
364 		}
365 	}
366 
367 	return next;
368 }
369 
370 /**
371  * bond_dev_queue_xmit - Prepare skb for xmit.
372  *
373  * @bond: bond device that got this skb for tx.
374  * @skb: hw accel VLAN tagged skb to transmit
375  * @slave_dev: slave that is supposed to xmit this skbuff
376  *
377  * When the bond gets an skb to transmit that is
378  * already hardware accelerated VLAN tagged, and it
379  * needs to relay this skb to a slave that is not
380  * hw accel capable, the skb needs to be "unaccelerated",
381  * i.e. strip the hwaccel tag and re-insert it as part
382  * of the payload.
383  */
384 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
385 {
386 	unsigned short vlan_id;
387 
388 	if (!list_empty(&bond->vlan_list) &&
389 	    !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
390 	    vlan_get_tag(skb, &vlan_id) == 0) {
391 		skb->dev = slave_dev;
392 		skb = vlan_put_tag(skb, vlan_id);
393 		if (!skb) {
394 			/* vlan_put_tag() frees the skb in case of error,
395 			 * so return success here so the calling functions
396 			 * won't attempt to free is again.
397 			 */
398 			return 0;
399 		}
400 	} else {
401 		skb->dev = slave_dev;
402 	}
403 
404 	skb->priority = 1;
405 	dev_queue_xmit(skb);
406 
407 	return 0;
408 }
409 
410 /*
411  * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
412  * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
413  * lock because:
414  * a. This operation is performed in IOCTL context,
415  * b. The operation is protected by the RTNL semaphore in the 8021q code,
416  * c. Holding a lock with BH disabled while directly calling a base driver
417  *    entry point is generally a BAD idea.
418  *
419  * The design of synchronization/protection for this operation in the 8021q
420  * module is good for one or more VLAN devices over a single physical device
421  * and cannot be extended for a teaming solution like bonding, so there is a
422  * potential race condition here where a net device from the vlan group might
423  * be referenced (either by a base driver or the 8021q code) while it is being
424  * removed from the system. However, it turns out we're not making matters
425  * worse, and if it works for regular VLAN usage it will work here too.
426 */
427 
428 /**
429  * bond_vlan_rx_register - Propagates registration to slaves
430  * @bond_dev: bonding net device that got called
431  * @grp: vlan group being registered
432  */
433 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
434 {
435 	struct bonding *bond = bond_dev->priv;
436 	struct slave *slave;
437 	int i;
438 
439 	bond->vlgrp = grp;
440 
441 	bond_for_each_slave(bond, slave, i) {
442 		struct net_device *slave_dev = slave->dev;
443 
444 		if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
445 		    slave_dev->vlan_rx_register) {
446 			slave_dev->vlan_rx_register(slave_dev, grp);
447 		}
448 	}
449 }
450 
451 /**
452  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
453  * @bond_dev: bonding net device that got called
454  * @vid: vlan id being added
455  */
456 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
457 {
458 	struct bonding *bond = bond_dev->priv;
459 	struct slave *slave;
460 	int i, res;
461 
462 	bond_for_each_slave(bond, slave, i) {
463 		struct net_device *slave_dev = slave->dev;
464 
465 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
466 		    slave_dev->vlan_rx_add_vid) {
467 			slave_dev->vlan_rx_add_vid(slave_dev, vid);
468 		}
469 	}
470 
471 	res = bond_add_vlan(bond, vid);
472 	if (res) {
473 		printk(KERN_ERR DRV_NAME
474 		       ": %s: Error: Failed to add vlan id %d\n",
475 		       bond_dev->name, vid);
476 	}
477 }
478 
479 /**
480  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
481  * @bond_dev: bonding net device that got called
482  * @vid: vlan id being removed
483  */
484 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
485 {
486 	struct bonding *bond = bond_dev->priv;
487 	struct slave *slave;
488 	struct net_device *vlan_dev;
489 	int i, res;
490 
491 	bond_for_each_slave(bond, slave, i) {
492 		struct net_device *slave_dev = slave->dev;
493 
494 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
495 		    slave_dev->vlan_rx_kill_vid) {
496 			/* Save and then restore vlan_dev in the grp array,
497 			 * since the slave's driver might clear it.
498 			 */
499 			vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
500 			slave_dev->vlan_rx_kill_vid(slave_dev, vid);
501 			vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
502 		}
503 	}
504 
505 	res = bond_del_vlan(bond, vid);
506 	if (res) {
507 		printk(KERN_ERR DRV_NAME
508 		       ": %s: Error: Failed to remove vlan id %d\n",
509 		       bond_dev->name, vid);
510 	}
511 }
512 
513 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
514 {
515 	struct vlan_entry *vlan;
516 
517 	write_lock_bh(&bond->lock);
518 
519 	if (list_empty(&bond->vlan_list)) {
520 		goto out;
521 	}
522 
523 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
524 	    slave_dev->vlan_rx_register) {
525 		slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
526 	}
527 
528 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
529 	    !(slave_dev->vlan_rx_add_vid)) {
530 		goto out;
531 	}
532 
533 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
534 		slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
535 	}
536 
537 out:
538 	write_unlock_bh(&bond->lock);
539 }
540 
541 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
542 {
543 	struct vlan_entry *vlan;
544 	struct net_device *vlan_dev;
545 
546 	write_lock_bh(&bond->lock);
547 
548 	if (list_empty(&bond->vlan_list)) {
549 		goto out;
550 	}
551 
552 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
553 	    !(slave_dev->vlan_rx_kill_vid)) {
554 		goto unreg;
555 	}
556 
557 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
558 		/* Save and then restore vlan_dev in the grp array,
559 		 * since the slave's driver might clear it.
560 		 */
561 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
562 		slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
563 		vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
564 	}
565 
566 unreg:
567 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
568 	    slave_dev->vlan_rx_register) {
569 		slave_dev->vlan_rx_register(slave_dev, NULL);
570 	}
571 
572 out:
573 	write_unlock_bh(&bond->lock);
574 }
575 
576 /*------------------------------- Link status -------------------------------*/
577 
578 /*
579  * Set the carrier state for the master according to the state of its
580  * slaves.  If any slaves are up, the master is up.  In 802.3ad mode,
581  * do special 802.3ad magic.
582  *
583  * Returns zero if carrier state does not change, nonzero if it does.
584  */
585 static int bond_set_carrier(struct bonding *bond)
586 {
587 	struct slave *slave;
588 	int i;
589 
590 	if (bond->slave_cnt == 0)
591 		goto down;
592 
593 	if (bond->params.mode == BOND_MODE_8023AD)
594 		return bond_3ad_set_carrier(bond);
595 
596 	bond_for_each_slave(bond, slave, i) {
597 		if (slave->link == BOND_LINK_UP) {
598 			if (!netif_carrier_ok(bond->dev)) {
599 				netif_carrier_on(bond->dev);
600 				return 1;
601 			}
602 			return 0;
603 		}
604 	}
605 
606 down:
607 	if (netif_carrier_ok(bond->dev)) {
608 		netif_carrier_off(bond->dev);
609 		return 1;
610 	}
611 	return 0;
612 }
613 
614 /*
615  * Get link speed and duplex from the slave's base driver
616  * using ethtool. If for some reason the call fails or the
617  * values are invalid, fake speed and duplex to 100/Full
618  * and return error.
619  */
620 static int bond_update_speed_duplex(struct slave *slave)
621 {
622 	struct net_device *slave_dev = slave->dev;
623 	struct ethtool_cmd etool;
624 	int res;
625 
626 	/* Fake speed and duplex */
627 	slave->speed = SPEED_100;
628 	slave->duplex = DUPLEX_FULL;
629 
630 	if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
631 		return -1;
632 
633 	res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
634 	if (res < 0)
635 		return -1;
636 
637 	switch (etool.speed) {
638 	case SPEED_10:
639 	case SPEED_100:
640 	case SPEED_1000:
641 	case SPEED_10000:
642 		break;
643 	default:
644 		return -1;
645 	}
646 
647 	switch (etool.duplex) {
648 	case DUPLEX_FULL:
649 	case DUPLEX_HALF:
650 		break;
651 	default:
652 		return -1;
653 	}
654 
655 	slave->speed = etool.speed;
656 	slave->duplex = etool.duplex;
657 
658 	return 0;
659 }
660 
661 /*
662  * if <dev> supports MII link status reporting, check its link status.
663  *
664  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
665  * depening upon the setting of the use_carrier parameter.
666  *
667  * Return either BMSR_LSTATUS, meaning that the link is up (or we
668  * can't tell and just pretend it is), or 0, meaning that the link is
669  * down.
670  *
671  * If reporting is non-zero, instead of faking link up, return -1 if
672  * both ETHTOOL and MII ioctls fail (meaning the device does not
673  * support them).  If use_carrier is set, return whatever it says.
674  * It'd be nice if there was a good way to tell if a driver supports
675  * netif_carrier, but there really isn't.
676  */
677 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
678 {
679 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
680 	struct ifreq ifr;
681 	struct mii_ioctl_data *mii;
682 
683 	if (bond->params.use_carrier) {
684 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
685 	}
686 
687 	ioctl = slave_dev->do_ioctl;
688 	if (ioctl) {
689 		/* TODO: set pointer to correct ioctl on a per team member */
690 		/*       bases to make this more efficient. that is, once  */
691 		/*       we determine the correct ioctl, we will always    */
692 		/*       call it and not the others for that team          */
693 		/*       member.                                           */
694 
695 		/*
696 		 * We cannot assume that SIOCGMIIPHY will also read a
697 		 * register; not all network drivers (e.g., e100)
698 		 * support that.
699 		 */
700 
701 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
702 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
703 		mii = if_mii(&ifr);
704 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
705 			mii->reg_num = MII_BMSR;
706 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
707 				return (mii->val_out & BMSR_LSTATUS);
708 			}
709 		}
710 	}
711 
712 	/*
713 	 * Some drivers cache ETHTOOL_GLINK for a period of time so we only
714 	 * attempt to get link status from it if the above MII ioctls fail.
715 	 */
716 	if (slave_dev->ethtool_ops) {
717 		if (slave_dev->ethtool_ops->get_link) {
718 			u32 link;
719 
720 			link = slave_dev->ethtool_ops->get_link(slave_dev);
721 
722 			return link ? BMSR_LSTATUS : 0;
723 		}
724 	}
725 
726 	/*
727 	 * If reporting, report that either there's no dev->do_ioctl,
728 	 * or both SIOCGMIIREG and get_link failed (meaning that we
729 	 * cannot report link status).  If not reporting, pretend
730 	 * we're ok.
731 	 */
732 	return (reporting ? -1 : BMSR_LSTATUS);
733 }
734 
735 /*----------------------------- Multicast list ------------------------------*/
736 
737 /*
738  * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
739  */
740 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
741 {
742 	return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
743 			dmi1->dmi_addrlen == dmi2->dmi_addrlen;
744 }
745 
746 /*
747  * returns dmi entry if found, NULL otherwise
748  */
749 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
750 {
751 	struct dev_mc_list *idmi;
752 
753 	for (idmi = mc_list; idmi; idmi = idmi->next) {
754 		if (bond_is_dmi_same(dmi, idmi)) {
755 			return idmi;
756 		}
757 	}
758 
759 	return NULL;
760 }
761 
762 /*
763  * Push the promiscuity flag down to appropriate slaves
764  */
765 static void bond_set_promiscuity(struct bonding *bond, int inc)
766 {
767 	if (USES_PRIMARY(bond->params.mode)) {
768 		/* write lock already acquired */
769 		if (bond->curr_active_slave) {
770 			dev_set_promiscuity(bond->curr_active_slave->dev, inc);
771 		}
772 	} else {
773 		struct slave *slave;
774 		int i;
775 		bond_for_each_slave(bond, slave, i) {
776 			dev_set_promiscuity(slave->dev, inc);
777 		}
778 	}
779 }
780 
781 /*
782  * Push the allmulti flag down to all slaves
783  */
784 static void bond_set_allmulti(struct bonding *bond, int inc)
785 {
786 	if (USES_PRIMARY(bond->params.mode)) {
787 		/* write lock already acquired */
788 		if (bond->curr_active_slave) {
789 			dev_set_allmulti(bond->curr_active_slave->dev, inc);
790 		}
791 	} else {
792 		struct slave *slave;
793 		int i;
794 		bond_for_each_slave(bond, slave, i) {
795 			dev_set_allmulti(slave->dev, inc);
796 		}
797 	}
798 }
799 
800 /*
801  * Add a Multicast address to slaves
802  * according to mode
803  */
804 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
805 {
806 	if (USES_PRIMARY(bond->params.mode)) {
807 		/* write lock already acquired */
808 		if (bond->curr_active_slave) {
809 			dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
810 		}
811 	} else {
812 		struct slave *slave;
813 		int i;
814 		bond_for_each_slave(bond, slave, i) {
815 			dev_mc_add(slave->dev, addr, alen, 0);
816 		}
817 	}
818 }
819 
820 /*
821  * Remove a multicast address from slave
822  * according to mode
823  */
824 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
825 {
826 	if (USES_PRIMARY(bond->params.mode)) {
827 		/* write lock already acquired */
828 		if (bond->curr_active_slave) {
829 			dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
830 		}
831 	} else {
832 		struct slave *slave;
833 		int i;
834 		bond_for_each_slave(bond, slave, i) {
835 			dev_mc_delete(slave->dev, addr, alen, 0);
836 		}
837 	}
838 }
839 
840 
841 /*
842  * Retrieve the list of registered multicast addresses for the bonding
843  * device and retransmit an IGMP JOIN request to the current active
844  * slave.
845  */
846 static void bond_resend_igmp_join_requests(struct bonding *bond)
847 {
848 	struct in_device *in_dev;
849 	struct ip_mc_list *im;
850 
851 	rcu_read_lock();
852 	in_dev = __in_dev_get_rcu(bond->dev);
853 	if (in_dev) {
854 		for (im = in_dev->mc_list; im; im = im->next) {
855 			ip_mc_rejoin_group(im);
856 		}
857 	}
858 
859 	rcu_read_unlock();
860 }
861 
862 /*
863  * Totally destroys the mc_list in bond
864  */
865 static void bond_mc_list_destroy(struct bonding *bond)
866 {
867 	struct dev_mc_list *dmi;
868 
869 	dmi = bond->mc_list;
870 	while (dmi) {
871 		bond->mc_list = dmi->next;
872 		kfree(dmi);
873 		dmi = bond->mc_list;
874 	}
875         bond->mc_list = NULL;
876 }
877 
878 /*
879  * Copy all the Multicast addresses from src to the bonding device dst
880  */
881 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
882 			     gfp_t gfp_flag)
883 {
884 	struct dev_mc_list *dmi, *new_dmi;
885 
886 	for (dmi = mc_list; dmi; dmi = dmi->next) {
887 		new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
888 
889 		if (!new_dmi) {
890 			/* FIXME: Potential memory leak !!! */
891 			return -ENOMEM;
892 		}
893 
894 		new_dmi->next = bond->mc_list;
895 		bond->mc_list = new_dmi;
896 		new_dmi->dmi_addrlen = dmi->dmi_addrlen;
897 		memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
898 		new_dmi->dmi_users = dmi->dmi_users;
899 		new_dmi->dmi_gusers = dmi->dmi_gusers;
900 	}
901 
902 	return 0;
903 }
904 
905 /*
906  * flush all members of flush->mc_list from device dev->mc_list
907  */
908 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
909 {
910 	struct bonding *bond = bond_dev->priv;
911 	struct dev_mc_list *dmi;
912 
913 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
914 		dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
915 	}
916 
917 	if (bond->params.mode == BOND_MODE_8023AD) {
918 		/* del lacpdu mc addr from mc list */
919 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
920 
921 		dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
922 	}
923 }
924 
925 /*--------------------------- Active slave change ---------------------------*/
926 
927 /*
928  * Update the mc list and multicast-related flags for the new and
929  * old active slaves (if any) according to the multicast mode, and
930  * promiscuous flags unconditionally.
931  */
932 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
933 {
934 	struct dev_mc_list *dmi;
935 
936 	if (!USES_PRIMARY(bond->params.mode)) {
937 		/* nothing to do -  mc list is already up-to-date on
938 		 * all slaves
939 		 */
940 		return;
941 	}
942 
943 	if (old_active) {
944 		if (bond->dev->flags & IFF_PROMISC) {
945 			dev_set_promiscuity(old_active->dev, -1);
946 		}
947 
948 		if (bond->dev->flags & IFF_ALLMULTI) {
949 			dev_set_allmulti(old_active->dev, -1);
950 		}
951 
952 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
953 			dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
954 		}
955 	}
956 
957 	if (new_active) {
958 		if (bond->dev->flags & IFF_PROMISC) {
959 			dev_set_promiscuity(new_active->dev, 1);
960 		}
961 
962 		if (bond->dev->flags & IFF_ALLMULTI) {
963 			dev_set_allmulti(new_active->dev, 1);
964 		}
965 
966 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
967 			dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
968 		}
969 		bond_resend_igmp_join_requests(bond);
970 	}
971 }
972 
973 /**
974  * find_best_interface - select the best available slave to be the active one
975  * @bond: our bonding struct
976  *
977  * Warning: Caller must hold curr_slave_lock for writing.
978  */
979 static struct slave *bond_find_best_slave(struct bonding *bond)
980 {
981 	struct slave *new_active, *old_active;
982 	struct slave *bestslave = NULL;
983 	int mintime = bond->params.updelay;
984 	int i;
985 
986 	new_active = old_active = bond->curr_active_slave;
987 
988 	if (!new_active) { /* there were no active slaves left */
989 		if (bond->slave_cnt > 0) {  /* found one slave */
990 			new_active = bond->first_slave;
991 		} else {
992 			return NULL; /* still no slave, return NULL */
993 		}
994 	}
995 
996 	/* first try the primary link; if arping, a link must tx/rx traffic
997 	 * before it can be considered the curr_active_slave - also, we would skip
998 	 * slaves between the curr_active_slave and primary_slave that may be up
999 	 * and able to arp
1000 	 */
1001 	if ((bond->primary_slave) &&
1002 	    (!bond->params.arp_interval) &&
1003 	    (IS_UP(bond->primary_slave->dev))) {
1004 		new_active = bond->primary_slave;
1005 	}
1006 
1007 	/* remember where to stop iterating over the slaves */
1008 	old_active = new_active;
1009 
1010 	bond_for_each_slave_from(bond, new_active, i, old_active) {
1011 		if (IS_UP(new_active->dev)) {
1012 			if (new_active->link == BOND_LINK_UP) {
1013 				return new_active;
1014 			} else if (new_active->link == BOND_LINK_BACK) {
1015 				/* link up, but waiting for stabilization */
1016 				if (new_active->delay < mintime) {
1017 					mintime = new_active->delay;
1018 					bestslave = new_active;
1019 				}
1020 			}
1021 		}
1022 	}
1023 
1024 	return bestslave;
1025 }
1026 
1027 /**
1028  * change_active_interface - change the active slave into the specified one
1029  * @bond: our bonding struct
1030  * @new: the new slave to make the active one
1031  *
1032  * Set the new slave to the bond's settings and unset them on the old
1033  * curr_active_slave.
1034  * Setting include flags, mc-list, promiscuity, allmulti, etc.
1035  *
1036  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1037  * because it is apparently the best available slave we have, even though its
1038  * updelay hasn't timed out yet.
1039  *
1040  * Warning: Caller must hold curr_slave_lock for writing.
1041  */
1042 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1043 {
1044 	struct slave *old_active = bond->curr_active_slave;
1045 
1046 	if (old_active == new_active) {
1047 		return;
1048 	}
1049 
1050 	if (new_active) {
1051 		if (new_active->link == BOND_LINK_BACK) {
1052 			if (USES_PRIMARY(bond->params.mode)) {
1053 				printk(KERN_INFO DRV_NAME
1054 				       ": %s: making interface %s the new "
1055 				       "active one %d ms earlier.\n",
1056 				       bond->dev->name, new_active->dev->name,
1057 				       (bond->params.updelay - new_active->delay) * bond->params.miimon);
1058 			}
1059 
1060 			new_active->delay = 0;
1061 			new_active->link = BOND_LINK_UP;
1062 			new_active->jiffies = jiffies;
1063 
1064 			if (bond->params.mode == BOND_MODE_8023AD) {
1065 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1066 			}
1067 
1068 			if ((bond->params.mode == BOND_MODE_TLB) ||
1069 			    (bond->params.mode == BOND_MODE_ALB)) {
1070 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1071 			}
1072 		} else {
1073 			if (USES_PRIMARY(bond->params.mode)) {
1074 				printk(KERN_INFO DRV_NAME
1075 				       ": %s: making interface %s the new "
1076 				       "active one.\n",
1077 				       bond->dev->name, new_active->dev->name);
1078 			}
1079 		}
1080 	}
1081 
1082 	if (USES_PRIMARY(bond->params.mode)) {
1083 		bond_mc_swap(bond, new_active, old_active);
1084 	}
1085 
1086 	if ((bond->params.mode == BOND_MODE_TLB) ||
1087 	    (bond->params.mode == BOND_MODE_ALB)) {
1088 		bond_alb_handle_active_change(bond, new_active);
1089 		if (old_active)
1090 			bond_set_slave_inactive_flags(old_active);
1091 		if (new_active)
1092 			bond_set_slave_active_flags(new_active);
1093 	} else {
1094 		bond->curr_active_slave = new_active;
1095 	}
1096 
1097 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1098 		if (old_active) {
1099 			bond_set_slave_inactive_flags(old_active);
1100 		}
1101 
1102 		if (new_active) {
1103 			bond_set_slave_active_flags(new_active);
1104 		}
1105 
1106 		/* when bonding does not set the slave MAC address, the bond MAC
1107 		 * address is the one of the active slave.
1108 		 */
1109 		if (new_active && bond->params.fail_over_mac)
1110 			memcpy(bond->dev->dev_addr,  new_active->dev->dev_addr,
1111 				new_active->dev->addr_len);
1112 		if (bond->curr_active_slave &&
1113 			test_bit(__LINK_STATE_LINKWATCH_PENDING,
1114 					&bond->curr_active_slave->dev->state)) {
1115 			dprintk("delaying gratuitous arp on %s\n",
1116 				bond->curr_active_slave->dev->name);
1117 			bond->send_grat_arp = 1;
1118 		} else
1119 			bond_send_gratuitous_arp(bond);
1120 	}
1121 }
1122 
1123 /**
1124  * bond_select_active_slave - select a new active slave, if needed
1125  * @bond: our bonding struct
1126  *
1127  * This functions shoud be called when one of the following occurs:
1128  * - The old curr_active_slave has been released or lost its link.
1129  * - The primary_slave has got its link back.
1130  * - A slave has got its link back and there's no old curr_active_slave.
1131  *
1132  * Warning: Caller must hold curr_slave_lock for writing.
1133  */
1134 void bond_select_active_slave(struct bonding *bond)
1135 {
1136 	struct slave *best_slave;
1137 	int rv;
1138 
1139 	best_slave = bond_find_best_slave(bond);
1140 	if (best_slave != bond->curr_active_slave) {
1141 		bond_change_active_slave(bond, best_slave);
1142 		rv = bond_set_carrier(bond);
1143 		if (!rv)
1144 			return;
1145 
1146 		if (netif_carrier_ok(bond->dev)) {
1147 			printk(KERN_INFO DRV_NAME
1148 			       ": %s: first active interface up!\n",
1149 			       bond->dev->name);
1150 		} else {
1151 			printk(KERN_INFO DRV_NAME ": %s: "
1152 			       "now running without any active interface !\n",
1153 			       bond->dev->name);
1154 		}
1155 	}
1156 }
1157 
1158 /*--------------------------- slave list handling ---------------------------*/
1159 
1160 /*
1161  * This function attaches the slave to the end of list.
1162  *
1163  * bond->lock held for writing by caller.
1164  */
1165 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1166 {
1167 	if (bond->first_slave == NULL) { /* attaching the first slave */
1168 		new_slave->next = new_slave;
1169 		new_slave->prev = new_slave;
1170 		bond->first_slave = new_slave;
1171 	} else {
1172 		new_slave->next = bond->first_slave;
1173 		new_slave->prev = bond->first_slave->prev;
1174 		new_slave->next->prev = new_slave;
1175 		new_slave->prev->next = new_slave;
1176 	}
1177 
1178 	bond->slave_cnt++;
1179 }
1180 
1181 /*
1182  * This function detaches the slave from the list.
1183  * WARNING: no check is made to verify if the slave effectively
1184  * belongs to <bond>.
1185  * Nothing is freed on return, structures are just unchained.
1186  * If any slave pointer in bond was pointing to <slave>,
1187  * it should be changed by the calling function.
1188  *
1189  * bond->lock held for writing by caller.
1190  */
1191 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1192 {
1193 	if (slave->next) {
1194 		slave->next->prev = slave->prev;
1195 	}
1196 
1197 	if (slave->prev) {
1198 		slave->prev->next = slave->next;
1199 	}
1200 
1201 	if (bond->first_slave == slave) { /* slave is the first slave */
1202 		if (bond->slave_cnt > 1) { /* there are more slave */
1203 			bond->first_slave = slave->next;
1204 		} else {
1205 			bond->first_slave = NULL; /* slave was the last one */
1206 		}
1207 	}
1208 
1209 	slave->next = NULL;
1210 	slave->prev = NULL;
1211 	bond->slave_cnt--;
1212 }
1213 
1214 /*---------------------------------- IOCTL ----------------------------------*/
1215 
1216 static int bond_sethwaddr(struct net_device *bond_dev,
1217 			  struct net_device *slave_dev)
1218 {
1219 	dprintk("bond_dev=%p\n", bond_dev);
1220 	dprintk("slave_dev=%p\n", slave_dev);
1221 	dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1222 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1223 	return 0;
1224 }
1225 
1226 #define BOND_VLAN_FEATURES \
1227 	(NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1228 	 NETIF_F_HW_VLAN_FILTER)
1229 
1230 /*
1231  * Compute the common dev->feature set available to all slaves.  Some
1232  * feature bits are managed elsewhere, so preserve those feature bits
1233  * on the master device.
1234  */
1235 static int bond_compute_features(struct bonding *bond)
1236 {
1237 	struct slave *slave;
1238 	struct net_device *bond_dev = bond->dev;
1239 	unsigned long features = bond_dev->features;
1240 	unsigned short max_hard_header_len = max((u16)ETH_HLEN,
1241 						bond_dev->hard_header_len);
1242 	int i;
1243 
1244 	features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1245 	features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA |
1246 		    NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1247 
1248 	bond_for_each_slave(bond, slave, i) {
1249 		features = netdev_compute_features(features,
1250 						   slave->dev->features);
1251 		if (slave->dev->hard_header_len > max_hard_header_len)
1252 			max_hard_header_len = slave->dev->hard_header_len;
1253 	}
1254 
1255 	features |= (bond_dev->features & BOND_VLAN_FEATURES);
1256 	bond_dev->features = features;
1257 	bond_dev->hard_header_len = max_hard_header_len;
1258 
1259 	return 0;
1260 }
1261 
1262 
1263 static void bond_setup_by_slave(struct net_device *bond_dev,
1264 				struct net_device *slave_dev)
1265 {
1266 	struct bonding *bond = bond_dev->priv;
1267 
1268 	bond_dev->neigh_setup           = slave_dev->neigh_setup;
1269 	bond_dev->header_ops		= slave_dev->header_ops;
1270 
1271 	bond_dev->type		    = slave_dev->type;
1272 	bond_dev->hard_header_len   = slave_dev->hard_header_len;
1273 	bond_dev->addr_len	    = slave_dev->addr_len;
1274 
1275 	memcpy(bond_dev->broadcast, slave_dev->broadcast,
1276 		slave_dev->addr_len);
1277 	bond->setup_by_slave = 1;
1278 }
1279 
1280 /* enslave device <slave> to bond device <master> */
1281 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1282 {
1283 	struct bonding *bond = bond_dev->priv;
1284 	struct slave *new_slave = NULL;
1285 	struct dev_mc_list *dmi;
1286 	struct sockaddr addr;
1287 	int link_reporting;
1288 	int old_features = bond_dev->features;
1289 	int res = 0;
1290 
1291 	if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1292 		slave_dev->do_ioctl == NULL) {
1293 		printk(KERN_WARNING DRV_NAME
1294 		       ": %s: Warning: no link monitoring support for %s\n",
1295 		       bond_dev->name, slave_dev->name);
1296 	}
1297 
1298 	/* bond must be initialized by bond_open() before enslaving */
1299 	if (!(bond_dev->flags & IFF_UP)) {
1300 		printk(KERN_WARNING DRV_NAME
1301 			" %s: master_dev is not up in bond_enslave\n",
1302 			bond_dev->name);
1303 	}
1304 
1305 	/* already enslaved */
1306 	if (slave_dev->flags & IFF_SLAVE) {
1307 		dprintk("Error, Device was already enslaved\n");
1308 		return -EBUSY;
1309 	}
1310 
1311 	/* vlan challenged mutual exclusion */
1312 	/* no need to lock since we're protected by rtnl_lock */
1313 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1314 		dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1315 		if (!list_empty(&bond->vlan_list)) {
1316 			printk(KERN_ERR DRV_NAME
1317 			       ": %s: Error: cannot enslave VLAN "
1318 			       "challenged slave %s on VLAN enabled "
1319 			       "bond %s\n", bond_dev->name, slave_dev->name,
1320 			       bond_dev->name);
1321 			return -EPERM;
1322 		} else {
1323 			printk(KERN_WARNING DRV_NAME
1324 			       ": %s: Warning: enslaved VLAN challenged "
1325 			       "slave %s. Adding VLANs will be blocked as "
1326 			       "long as %s is part of bond %s\n",
1327 			       bond_dev->name, slave_dev->name, slave_dev->name,
1328 			       bond_dev->name);
1329 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1330 		}
1331 	} else {
1332 		dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1333 		if (bond->slave_cnt == 0) {
1334 			/* First slave, and it is not VLAN challenged,
1335 			 * so remove the block of adding VLANs over the bond.
1336 			 */
1337 			bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1338 		}
1339 	}
1340 
1341 	/*
1342 	 * Old ifenslave binaries are no longer supported.  These can
1343 	 * be identified with moderate accurary by the state of the slave:
1344 	 * the current ifenslave will set the interface down prior to
1345 	 * enslaving it; the old ifenslave will not.
1346 	 */
1347 	if ((slave_dev->flags & IFF_UP)) {
1348 		printk(KERN_ERR DRV_NAME ": %s is up. "
1349 		       "This may be due to an out of date ifenslave.\n",
1350 		       slave_dev->name);
1351 		res = -EPERM;
1352 		goto err_undo_flags;
1353 	}
1354 
1355 	/* set bonding device ether type by slave - bonding netdevices are
1356 	 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1357 	 * there is a need to override some of the type dependent attribs/funcs.
1358 	 *
1359 	 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1360 	 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1361 	 */
1362 	if (bond->slave_cnt == 0) {
1363 		if (slave_dev->type != ARPHRD_ETHER)
1364 			bond_setup_by_slave(bond_dev, slave_dev);
1365 	} else if (bond_dev->type != slave_dev->type) {
1366 		printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different "
1367 			"from other slaves (%d), can not enslave it.\n",
1368 			slave_dev->name,
1369 			slave_dev->type, bond_dev->type);
1370 			res = -EINVAL;
1371 			goto err_undo_flags;
1372 	}
1373 
1374 	if (slave_dev->set_mac_address == NULL) {
1375 		if (bond->slave_cnt == 0) {
1376 			printk(KERN_WARNING DRV_NAME
1377 			       ": %s: Warning: The first slave device "
1378 			       "specified does not support setting the MAC "
1379 			       "address. Enabling the fail_over_mac option.",
1380 			       bond_dev->name);
1381 			bond->params.fail_over_mac = 1;
1382 		} else if (!bond->params.fail_over_mac) {
1383 			printk(KERN_ERR DRV_NAME
1384 				": %s: Error: The slave device specified "
1385 				"does not support setting the MAC address, "
1386 				"but fail_over_mac is not enabled.\n"
1387 				, bond_dev->name);
1388 			res = -EOPNOTSUPP;
1389 			goto err_undo_flags;
1390 		}
1391 	}
1392 
1393 	new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1394 	if (!new_slave) {
1395 		res = -ENOMEM;
1396 		goto err_undo_flags;
1397 	}
1398 
1399 	/* save slave's original flags before calling
1400 	 * netdev_set_master and dev_open
1401 	 */
1402 	new_slave->original_flags = slave_dev->flags;
1403 
1404 	/*
1405 	 * Save slave's original ("permanent") mac address for modes
1406 	 * that need it, and for restoring it upon release, and then
1407 	 * set it to the master's address
1408 	 */
1409 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1410 
1411 	if (!bond->params.fail_over_mac) {
1412 		/*
1413 		 * Set slave to master's mac address.  The application already
1414 		 * set the master's mac address to that of the first slave
1415 		 */
1416 		memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1417 		addr.sa_family = slave_dev->type;
1418 		res = dev_set_mac_address(slave_dev, &addr);
1419 		if (res) {
1420 			dprintk("Error %d calling set_mac_address\n", res);
1421 			goto err_free;
1422 		}
1423 	}
1424 
1425 	res = netdev_set_master(slave_dev, bond_dev);
1426 	if (res) {
1427 		dprintk("Error %d calling netdev_set_master\n", res);
1428 		goto err_close;
1429 	}
1430 	/* open the slave since the application closed it */
1431 	res = dev_open(slave_dev);
1432 	if (res) {
1433 		dprintk("Openning slave %s failed\n", slave_dev->name);
1434 		goto err_restore_mac;
1435 	}
1436 
1437 	new_slave->dev = slave_dev;
1438 	slave_dev->priv_flags |= IFF_BONDING;
1439 
1440 	if ((bond->params.mode == BOND_MODE_TLB) ||
1441 	    (bond->params.mode == BOND_MODE_ALB)) {
1442 		/* bond_alb_init_slave() must be called before all other stages since
1443 		 * it might fail and we do not want to have to undo everything
1444 		 */
1445 		res = bond_alb_init_slave(bond, new_slave);
1446 		if (res) {
1447 			goto err_unset_master;
1448 		}
1449 	}
1450 
1451 	/* If the mode USES_PRIMARY, then the new slave gets the
1452 	 * master's promisc (and mc) settings only if it becomes the
1453 	 * curr_active_slave, and that is taken care of later when calling
1454 	 * bond_change_active()
1455 	 */
1456 	if (!USES_PRIMARY(bond->params.mode)) {
1457 		/* set promiscuity level to new slave */
1458 		if (bond_dev->flags & IFF_PROMISC) {
1459 			dev_set_promiscuity(slave_dev, 1);
1460 		}
1461 
1462 		/* set allmulti level to new slave */
1463 		if (bond_dev->flags & IFF_ALLMULTI) {
1464 			dev_set_allmulti(slave_dev, 1);
1465 		}
1466 
1467 		/* upload master's mc_list to new slave */
1468 		for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1469 			dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1470 		}
1471 	}
1472 
1473 	if (bond->params.mode == BOND_MODE_8023AD) {
1474 		/* add lacpdu mc addr to mc list */
1475 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1476 
1477 		dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1478 	}
1479 
1480 	bond_add_vlans_on_slave(bond, slave_dev);
1481 
1482 	write_lock_bh(&bond->lock);
1483 
1484 	bond_attach_slave(bond, new_slave);
1485 
1486 	new_slave->delay = 0;
1487 	new_slave->link_failure_count = 0;
1488 
1489 	bond_compute_features(bond);
1490 
1491 	new_slave->last_arp_rx = jiffies;
1492 
1493 	if (bond->params.miimon && !bond->params.use_carrier) {
1494 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1495 
1496 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1497 			/*
1498 			 * miimon is set but a bonded network driver
1499 			 * does not support ETHTOOL/MII and
1500 			 * arp_interval is not set.  Note: if
1501 			 * use_carrier is enabled, we will never go
1502 			 * here (because netif_carrier is always
1503 			 * supported); thus, we don't need to change
1504 			 * the messages for netif_carrier.
1505 			 */
1506 			printk(KERN_WARNING DRV_NAME
1507 			       ": %s: Warning: MII and ETHTOOL support not "
1508 			       "available for interface %s, and "
1509 			       "arp_interval/arp_ip_target module parameters "
1510 			       "not specified, thus bonding will not detect "
1511 			       "link failures! see bonding.txt for details.\n",
1512 			       bond_dev->name, slave_dev->name);
1513 		} else if (link_reporting == -1) {
1514 			/* unable get link status using mii/ethtool */
1515 			printk(KERN_WARNING DRV_NAME
1516 			       ": %s: Warning: can't get link status from "
1517 			       "interface %s; the network driver associated "
1518 			       "with this interface does not support MII or "
1519 			       "ETHTOOL link status reporting, thus miimon "
1520 			       "has no effect on this interface.\n",
1521 			       bond_dev->name, slave_dev->name);
1522 		}
1523 	}
1524 
1525 	/* check for initial state */
1526 	if (!bond->params.miimon ||
1527 	    (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1528 		if (bond->params.updelay) {
1529 			dprintk("Initial state of slave_dev is "
1530 				"BOND_LINK_BACK\n");
1531 			new_slave->link  = BOND_LINK_BACK;
1532 			new_slave->delay = bond->params.updelay;
1533 		} else {
1534 			dprintk("Initial state of slave_dev is "
1535 				"BOND_LINK_UP\n");
1536 			new_slave->link  = BOND_LINK_UP;
1537 		}
1538 		new_slave->jiffies = jiffies;
1539 	} else {
1540 		dprintk("Initial state of slave_dev is "
1541 			"BOND_LINK_DOWN\n");
1542 		new_slave->link  = BOND_LINK_DOWN;
1543 	}
1544 
1545 	if (bond_update_speed_duplex(new_slave) &&
1546 	    (new_slave->link != BOND_LINK_DOWN)) {
1547 		printk(KERN_WARNING DRV_NAME
1548 		       ": %s: Warning: failed to get speed and duplex from %s, "
1549 		       "assumed to be 100Mb/sec and Full.\n",
1550 		       bond_dev->name, new_slave->dev->name);
1551 
1552 		if (bond->params.mode == BOND_MODE_8023AD) {
1553 			printk(KERN_WARNING DRV_NAME
1554 			       ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1555 			       "support in base driver for proper aggregator "
1556 			       "selection.\n", bond_dev->name);
1557 		}
1558 	}
1559 
1560 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1561 		/* if there is a primary slave, remember it */
1562 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1563 			bond->primary_slave = new_slave;
1564 		}
1565 	}
1566 
1567 	switch (bond->params.mode) {
1568 	case BOND_MODE_ACTIVEBACKUP:
1569 		bond_set_slave_inactive_flags(new_slave);
1570 		bond_select_active_slave(bond);
1571 		break;
1572 	case BOND_MODE_8023AD:
1573 		/* in 802.3ad mode, the internal mechanism
1574 		 * will activate the slaves in the selected
1575 		 * aggregator
1576 		 */
1577 		bond_set_slave_inactive_flags(new_slave);
1578 		/* if this is the first slave */
1579 		if (bond->slave_cnt == 1) {
1580 			SLAVE_AD_INFO(new_slave).id = 1;
1581 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1582 			 * can be called only after the mac address of the bond is set
1583 			 */
1584 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1585 					    bond->params.lacp_fast);
1586 		} else {
1587 			SLAVE_AD_INFO(new_slave).id =
1588 				SLAVE_AD_INFO(new_slave->prev).id + 1;
1589 		}
1590 
1591 		bond_3ad_bind_slave(new_slave);
1592 		break;
1593 	case BOND_MODE_TLB:
1594 	case BOND_MODE_ALB:
1595 		new_slave->state = BOND_STATE_ACTIVE;
1596 		bond_set_slave_inactive_flags(new_slave);
1597 		break;
1598 	default:
1599 		dprintk("This slave is always active in trunk mode\n");
1600 
1601 		/* always active in trunk mode */
1602 		new_slave->state = BOND_STATE_ACTIVE;
1603 
1604 		/* In trunking mode there is little meaning to curr_active_slave
1605 		 * anyway (it holds no special properties of the bond device),
1606 		 * so we can change it without calling change_active_interface()
1607 		 */
1608 		if (!bond->curr_active_slave) {
1609 			bond->curr_active_slave = new_slave;
1610 		}
1611 		break;
1612 	} /* switch(bond_mode) */
1613 
1614 	bond_set_carrier(bond);
1615 
1616 	write_unlock_bh(&bond->lock);
1617 
1618 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1619 	if (res)
1620 		goto err_unset_master;
1621 
1622 	printk(KERN_INFO DRV_NAME
1623 	       ": %s: enslaving %s as a%s interface with a%s link.\n",
1624 	       bond_dev->name, slave_dev->name,
1625 	       new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1626 	       new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1627 
1628 	/* enslave is successful */
1629 	return 0;
1630 
1631 /* Undo stages on error */
1632 err_unset_master:
1633 	netdev_set_master(slave_dev, NULL);
1634 
1635 err_close:
1636 	dev_close(slave_dev);
1637 
1638 err_restore_mac:
1639 	if (!bond->params.fail_over_mac) {
1640 		memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1641 		addr.sa_family = slave_dev->type;
1642 		dev_set_mac_address(slave_dev, &addr);
1643 	}
1644 
1645 err_free:
1646 	kfree(new_slave);
1647 
1648 err_undo_flags:
1649 	bond_dev->features = old_features;
1650 
1651 	return res;
1652 }
1653 
1654 /*
1655  * Try to release the slave device <slave> from the bond device <master>
1656  * It is legal to access curr_active_slave without a lock because all the function
1657  * is write-locked.
1658  *
1659  * The rules for slave state should be:
1660  *   for Active/Backup:
1661  *     Active stays on all backups go down
1662  *   for Bonded connections:
1663  *     The first up interface should be left on and all others downed.
1664  */
1665 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1666 {
1667 	struct bonding *bond = bond_dev->priv;
1668 	struct slave *slave, *oldcurrent;
1669 	struct sockaddr addr;
1670 	int mac_addr_differ;
1671 	DECLARE_MAC_BUF(mac);
1672 
1673 	/* slave is not a slave or master is not master of this slave */
1674 	if (!(slave_dev->flags & IFF_SLAVE) ||
1675 	    (slave_dev->master != bond_dev)) {
1676 		printk(KERN_ERR DRV_NAME
1677 		       ": %s: Error: cannot release %s.\n",
1678 		       bond_dev->name, slave_dev->name);
1679 		return -EINVAL;
1680 	}
1681 
1682 	write_lock_bh(&bond->lock);
1683 
1684 	slave = bond_get_slave_by_dev(bond, slave_dev);
1685 	if (!slave) {
1686 		/* not a slave of this bond */
1687 		printk(KERN_INFO DRV_NAME
1688 		       ": %s: %s not enslaved\n",
1689 		       bond_dev->name, slave_dev->name);
1690 		write_unlock_bh(&bond->lock);
1691 		return -EINVAL;
1692 	}
1693 
1694 	mac_addr_differ = memcmp(bond_dev->dev_addr,
1695 				 slave->perm_hwaddr,
1696 				 ETH_ALEN);
1697 	if (!mac_addr_differ && (bond->slave_cnt > 1)) {
1698 		printk(KERN_WARNING DRV_NAME
1699 		       ": %s: Warning: the permanent HWaddr of %s - "
1700 		       "%s - is still in use by %s. "
1701 		       "Set the HWaddr of %s to a different address "
1702 		       "to avoid conflicts.\n",
1703 		       bond_dev->name,
1704 		       slave_dev->name,
1705 		       print_mac(mac, slave->perm_hwaddr),
1706 		       bond_dev->name,
1707 		       slave_dev->name);
1708 	}
1709 
1710 	/* Inform AD package of unbinding of slave. */
1711 	if (bond->params.mode == BOND_MODE_8023AD) {
1712 		/* must be called before the slave is
1713 		 * detached from the list
1714 		 */
1715 		bond_3ad_unbind_slave(slave);
1716 	}
1717 
1718 	printk(KERN_INFO DRV_NAME
1719 	       ": %s: releasing %s interface %s\n",
1720 	       bond_dev->name,
1721 	       (slave->state == BOND_STATE_ACTIVE)
1722 	       ? "active" : "backup",
1723 	       slave_dev->name);
1724 
1725 	oldcurrent = bond->curr_active_slave;
1726 
1727 	bond->current_arp_slave = NULL;
1728 
1729 	/* release the slave from its bond */
1730 	bond_detach_slave(bond, slave);
1731 
1732 	bond_compute_features(bond);
1733 
1734 	if (bond->primary_slave == slave) {
1735 		bond->primary_slave = NULL;
1736 	}
1737 
1738 	if (oldcurrent == slave) {
1739 		bond_change_active_slave(bond, NULL);
1740 	}
1741 
1742 	if ((bond->params.mode == BOND_MODE_TLB) ||
1743 	    (bond->params.mode == BOND_MODE_ALB)) {
1744 		/* Must be called only after the slave has been
1745 		 * detached from the list and the curr_active_slave
1746 		 * has been cleared (if our_slave == old_current),
1747 		 * but before a new active slave is selected.
1748 		 */
1749 		write_unlock_bh(&bond->lock);
1750 		bond_alb_deinit_slave(bond, slave);
1751 		write_lock_bh(&bond->lock);
1752 	}
1753 
1754 	if (oldcurrent == slave) {
1755 		/*
1756 		 * Note that we hold RTNL over this sequence, so there
1757 		 * is no concern that another slave add/remove event
1758 		 * will interfere.
1759 		 */
1760 		write_unlock_bh(&bond->lock);
1761 		read_lock(&bond->lock);
1762 		write_lock_bh(&bond->curr_slave_lock);
1763 
1764 		bond_select_active_slave(bond);
1765 
1766 		write_unlock_bh(&bond->curr_slave_lock);
1767 		read_unlock(&bond->lock);
1768 		write_lock_bh(&bond->lock);
1769 	}
1770 
1771 	if (bond->slave_cnt == 0) {
1772 		bond_set_carrier(bond);
1773 
1774 		/* if the last slave was removed, zero the mac address
1775 		 * of the master so it will be set by the application
1776 		 * to the mac address of the first slave
1777 		 */
1778 		memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1779 
1780 		if (list_empty(&bond->vlan_list)) {
1781 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1782 		} else {
1783 			printk(KERN_WARNING DRV_NAME
1784 			       ": %s: Warning: clearing HW address of %s while it "
1785 			       "still has VLANs.\n",
1786 			       bond_dev->name, bond_dev->name);
1787 			printk(KERN_WARNING DRV_NAME
1788 			       ": %s: When re-adding slaves, make sure the bond's "
1789 			       "HW address matches its VLANs'.\n",
1790 			       bond_dev->name);
1791 		}
1792 	} else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1793 		   !bond_has_challenged_slaves(bond)) {
1794 		printk(KERN_INFO DRV_NAME
1795 		       ": %s: last VLAN challenged slave %s "
1796 		       "left bond %s. VLAN blocking is removed\n",
1797 		       bond_dev->name, slave_dev->name, bond_dev->name);
1798 		bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1799 	}
1800 
1801 	write_unlock_bh(&bond->lock);
1802 
1803 	/* must do this from outside any spinlocks */
1804 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1805 
1806 	bond_del_vlans_from_slave(bond, slave_dev);
1807 
1808 	/* If the mode USES_PRIMARY, then we should only remove its
1809 	 * promisc and mc settings if it was the curr_active_slave, but that was
1810 	 * already taken care of above when we detached the slave
1811 	 */
1812 	if (!USES_PRIMARY(bond->params.mode)) {
1813 		/* unset promiscuity level from slave */
1814 		if (bond_dev->flags & IFF_PROMISC) {
1815 			dev_set_promiscuity(slave_dev, -1);
1816 		}
1817 
1818 		/* unset allmulti level from slave */
1819 		if (bond_dev->flags & IFF_ALLMULTI) {
1820 			dev_set_allmulti(slave_dev, -1);
1821 		}
1822 
1823 		/* flush master's mc_list from slave */
1824 		bond_mc_list_flush(bond_dev, slave_dev);
1825 	}
1826 
1827 	netdev_set_master(slave_dev, NULL);
1828 
1829 	/* close slave before restoring its mac address */
1830 	dev_close(slave_dev);
1831 
1832 	if (!bond->params.fail_over_mac) {
1833 		/* restore original ("permanent") mac address */
1834 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1835 		addr.sa_family = slave_dev->type;
1836 		dev_set_mac_address(slave_dev, &addr);
1837 	}
1838 
1839 	slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1840 				   IFF_SLAVE_INACTIVE | IFF_BONDING |
1841 				   IFF_SLAVE_NEEDARP);
1842 
1843 	kfree(slave);
1844 
1845 	return 0;  /* deletion OK */
1846 }
1847 
1848 /*
1849 * Destroy a bonding device.
1850 * Must be under rtnl_lock when this function is called.
1851 */
1852 void bond_destroy(struct bonding *bond)
1853 {
1854 	bond_deinit(bond->dev);
1855 	bond_destroy_sysfs_entry(bond);
1856 	unregister_netdevice(bond->dev);
1857 }
1858 
1859 /*
1860 * First release a slave and than destroy the bond if no more slaves iare left.
1861 * Must be under rtnl_lock when this function is called.
1862 */
1863 int  bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev)
1864 {
1865 	struct bonding *bond = bond_dev->priv;
1866 	int ret;
1867 
1868 	ret = bond_release(bond_dev, slave_dev);
1869 	if ((ret == 0) && (bond->slave_cnt == 0)) {
1870 		printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n",
1871 		       bond_dev->name, bond_dev->name);
1872 		bond_destroy(bond);
1873 	}
1874 	return ret;
1875 }
1876 
1877 /*
1878  * This function releases all slaves.
1879  */
1880 static int bond_release_all(struct net_device *bond_dev)
1881 {
1882 	struct bonding *bond = bond_dev->priv;
1883 	struct slave *slave;
1884 	struct net_device *slave_dev;
1885 	struct sockaddr addr;
1886 
1887 	write_lock_bh(&bond->lock);
1888 
1889 	netif_carrier_off(bond_dev);
1890 
1891 	if (bond->slave_cnt == 0) {
1892 		goto out;
1893 	}
1894 
1895 	bond->current_arp_slave = NULL;
1896 	bond->primary_slave = NULL;
1897 	bond_change_active_slave(bond, NULL);
1898 
1899 	while ((slave = bond->first_slave) != NULL) {
1900 		/* Inform AD package of unbinding of slave
1901 		 * before slave is detached from the list.
1902 		 */
1903 		if (bond->params.mode == BOND_MODE_8023AD) {
1904 			bond_3ad_unbind_slave(slave);
1905 		}
1906 
1907 		slave_dev = slave->dev;
1908 		bond_detach_slave(bond, slave);
1909 
1910 		/* now that the slave is detached, unlock and perform
1911 		 * all the undo steps that should not be called from
1912 		 * within a lock.
1913 		 */
1914 		write_unlock_bh(&bond->lock);
1915 
1916 		if ((bond->params.mode == BOND_MODE_TLB) ||
1917 		    (bond->params.mode == BOND_MODE_ALB)) {
1918 			/* must be called only after the slave
1919 			 * has been detached from the list
1920 			 */
1921 			bond_alb_deinit_slave(bond, slave);
1922 		}
1923 
1924 		bond_compute_features(bond);
1925 
1926 		bond_destroy_slave_symlinks(bond_dev, slave_dev);
1927 		bond_del_vlans_from_slave(bond, slave_dev);
1928 
1929 		/* If the mode USES_PRIMARY, then we should only remove its
1930 		 * promisc and mc settings if it was the curr_active_slave, but that was
1931 		 * already taken care of above when we detached the slave
1932 		 */
1933 		if (!USES_PRIMARY(bond->params.mode)) {
1934 			/* unset promiscuity level from slave */
1935 			if (bond_dev->flags & IFF_PROMISC) {
1936 				dev_set_promiscuity(slave_dev, -1);
1937 			}
1938 
1939 			/* unset allmulti level from slave */
1940 			if (bond_dev->flags & IFF_ALLMULTI) {
1941 				dev_set_allmulti(slave_dev, -1);
1942 			}
1943 
1944 			/* flush master's mc_list from slave */
1945 			bond_mc_list_flush(bond_dev, slave_dev);
1946 		}
1947 
1948 		netdev_set_master(slave_dev, NULL);
1949 
1950 		/* close slave before restoring its mac address */
1951 		dev_close(slave_dev);
1952 
1953 		if (!bond->params.fail_over_mac) {
1954 			/* restore original ("permanent") mac address*/
1955 			memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1956 			addr.sa_family = slave_dev->type;
1957 			dev_set_mac_address(slave_dev, &addr);
1958 		}
1959 
1960 		slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1961 					   IFF_SLAVE_INACTIVE);
1962 
1963 		kfree(slave);
1964 
1965 		/* re-acquire the lock before getting the next slave */
1966 		write_lock_bh(&bond->lock);
1967 	}
1968 
1969 	/* zero the mac address of the master so it will be
1970 	 * set by the application to the mac address of the
1971 	 * first slave
1972 	 */
1973 	memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1974 
1975 	if (list_empty(&bond->vlan_list)) {
1976 		bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1977 	} else {
1978 		printk(KERN_WARNING DRV_NAME
1979 		       ": %s: Warning: clearing HW address of %s while it "
1980 		       "still has VLANs.\n",
1981 		       bond_dev->name, bond_dev->name);
1982 		printk(KERN_WARNING DRV_NAME
1983 		       ": %s: When re-adding slaves, make sure the bond's "
1984 		       "HW address matches its VLANs'.\n",
1985 		       bond_dev->name);
1986 	}
1987 
1988 	printk(KERN_INFO DRV_NAME
1989 	       ": %s: released all slaves\n",
1990 	       bond_dev->name);
1991 
1992 out:
1993 	write_unlock_bh(&bond->lock);
1994 
1995 	return 0;
1996 }
1997 
1998 /*
1999  * This function changes the active slave to slave <slave_dev>.
2000  * It returns -EINVAL in the following cases.
2001  *  - <slave_dev> is not found in the list.
2002  *  - There is not active slave now.
2003  *  - <slave_dev> is already active.
2004  *  - The link state of <slave_dev> is not BOND_LINK_UP.
2005  *  - <slave_dev> is not running.
2006  * In these cases, this fuction does nothing.
2007  * In the other cases, currnt_slave pointer is changed and 0 is returned.
2008  */
2009 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2010 {
2011 	struct bonding *bond = bond_dev->priv;
2012 	struct slave *old_active = NULL;
2013 	struct slave *new_active = NULL;
2014 	int res = 0;
2015 
2016 	if (!USES_PRIMARY(bond->params.mode)) {
2017 		return -EINVAL;
2018 	}
2019 
2020 	/* Verify that master_dev is indeed the master of slave_dev */
2021 	if (!(slave_dev->flags & IFF_SLAVE) ||
2022 	    (slave_dev->master != bond_dev)) {
2023 		return -EINVAL;
2024 	}
2025 
2026 	read_lock(&bond->lock);
2027 
2028 	read_lock(&bond->curr_slave_lock);
2029 	old_active = bond->curr_active_slave;
2030 	read_unlock(&bond->curr_slave_lock);
2031 
2032 	new_active = bond_get_slave_by_dev(bond, slave_dev);
2033 
2034 	/*
2035 	 * Changing to the current active: do nothing; return success.
2036 	 */
2037 	if (new_active && (new_active == old_active)) {
2038 		read_unlock(&bond->lock);
2039 		return 0;
2040 	}
2041 
2042 	if ((new_active) &&
2043 	    (old_active) &&
2044 	    (new_active->link == BOND_LINK_UP) &&
2045 	    IS_UP(new_active->dev)) {
2046 		write_lock_bh(&bond->curr_slave_lock);
2047 		bond_change_active_slave(bond, new_active);
2048 		write_unlock_bh(&bond->curr_slave_lock);
2049 	} else {
2050 		res = -EINVAL;
2051 	}
2052 
2053 	read_unlock(&bond->lock);
2054 
2055 	return res;
2056 }
2057 
2058 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2059 {
2060 	struct bonding *bond = bond_dev->priv;
2061 
2062 	info->bond_mode = bond->params.mode;
2063 	info->miimon = bond->params.miimon;
2064 
2065 	read_lock(&bond->lock);
2066 	info->num_slaves = bond->slave_cnt;
2067 	read_unlock(&bond->lock);
2068 
2069 	return 0;
2070 }
2071 
2072 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2073 {
2074 	struct bonding *bond = bond_dev->priv;
2075 	struct slave *slave;
2076 	int i, found = 0;
2077 
2078 	if (info->slave_id < 0) {
2079 		return -ENODEV;
2080 	}
2081 
2082 	read_lock(&bond->lock);
2083 
2084 	bond_for_each_slave(bond, slave, i) {
2085 		if (i == (int)info->slave_id) {
2086 			found = 1;
2087 			break;
2088 		}
2089 	}
2090 
2091 	read_unlock(&bond->lock);
2092 
2093 	if (found) {
2094 		strcpy(info->slave_name, slave->dev->name);
2095 		info->link = slave->link;
2096 		info->state = slave->state;
2097 		info->link_failure_count = slave->link_failure_count;
2098 	} else {
2099 		return -ENODEV;
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 /*-------------------------------- Monitoring -------------------------------*/
2106 
2107 /*
2108  * if !have_locks, return nonzero if a failover is necessary.  if
2109  * have_locks, do whatever failover activities are needed.
2110  *
2111  * This is to separate the inspection and failover steps for locking
2112  * purposes; failover requires rtnl, but acquiring it for every
2113  * inspection is undesirable, so a wrapper first does inspection, and
2114  * the acquires the necessary locks and calls again to perform
2115  * failover if needed.  Since all locks are dropped, a complete
2116  * restart is needed between calls.
2117  */
2118 static int __bond_mii_monitor(struct bonding *bond, int have_locks)
2119 {
2120 	struct slave *slave, *oldcurrent;
2121 	int do_failover = 0;
2122 	int i;
2123 
2124 	if (bond->slave_cnt == 0)
2125 		goto out;
2126 
2127 	/* we will try to read the link status of each of our slaves, and
2128 	 * set their IFF_RUNNING flag appropriately. For each slave not
2129 	 * supporting MII status, we won't do anything so that a user-space
2130 	 * program could monitor the link itself if needed.
2131 	 */
2132 
2133 	if (bond->send_grat_arp) {
2134 		if (bond->curr_active_slave && test_bit(__LINK_STATE_LINKWATCH_PENDING,
2135 				&bond->curr_active_slave->dev->state))
2136 			dprintk("Needs to send gratuitous arp but not yet\n");
2137 		else {
2138 			dprintk("sending delayed gratuitous arp on on %s\n",
2139 				bond->curr_active_slave->dev->name);
2140 			bond_send_gratuitous_arp(bond);
2141 			bond->send_grat_arp = 0;
2142 		}
2143 	}
2144 	read_lock(&bond->curr_slave_lock);
2145 	oldcurrent = bond->curr_active_slave;
2146 	read_unlock(&bond->curr_slave_lock);
2147 
2148 	bond_for_each_slave(bond, slave, i) {
2149 		struct net_device *slave_dev = slave->dev;
2150 		int link_state;
2151 		u16 old_speed = slave->speed;
2152 		u8 old_duplex = slave->duplex;
2153 
2154 		link_state = bond_check_dev_link(bond, slave_dev, 0);
2155 
2156 		switch (slave->link) {
2157 		case BOND_LINK_UP:	/* the link was up */
2158 			if (link_state == BMSR_LSTATUS) {
2159 				if (!oldcurrent) {
2160 					if (!have_locks)
2161 						return 1;
2162 					do_failover = 1;
2163 				}
2164 				break;
2165 			} else { /* link going down */
2166 				slave->link  = BOND_LINK_FAIL;
2167 				slave->delay = bond->params.downdelay;
2168 
2169 				if (slave->link_failure_count < UINT_MAX) {
2170 					slave->link_failure_count++;
2171 				}
2172 
2173 				if (bond->params.downdelay) {
2174 					printk(KERN_INFO DRV_NAME
2175 					       ": %s: link status down for %s "
2176 					       "interface %s, disabling it in "
2177 					       "%d ms.\n",
2178 					       bond->dev->name,
2179 					       IS_UP(slave_dev)
2180 					       ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
2181 						  ? ((slave == oldcurrent)
2182 						     ? "active " : "backup ")
2183 						  : "")
2184 					       : "idle ",
2185 					       slave_dev->name,
2186 					       bond->params.downdelay * bond->params.miimon);
2187 				}
2188 			}
2189 			/* no break ! fall through the BOND_LINK_FAIL test to
2190 			   ensure proper action to be taken
2191 			*/
2192 		case BOND_LINK_FAIL:	/* the link has just gone down */
2193 			if (link_state != BMSR_LSTATUS) {
2194 				/* link stays down */
2195 				if (slave->delay <= 0) {
2196 					if (!have_locks)
2197 						return 1;
2198 
2199 					/* link down for too long time */
2200 					slave->link = BOND_LINK_DOWN;
2201 
2202 					/* in active/backup mode, we must
2203 					 * completely disable this interface
2204 					 */
2205 					if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ||
2206 					    (bond->params.mode == BOND_MODE_8023AD)) {
2207 						bond_set_slave_inactive_flags(slave);
2208 					}
2209 
2210 					printk(KERN_INFO DRV_NAME
2211 					       ": %s: link status definitely "
2212 					       "down for interface %s, "
2213 					       "disabling it\n",
2214 					       bond->dev->name,
2215 					       slave_dev->name);
2216 
2217 					/* notify ad that the link status has changed */
2218 					if (bond->params.mode == BOND_MODE_8023AD) {
2219 						bond_3ad_handle_link_change(slave, BOND_LINK_DOWN);
2220 					}
2221 
2222 					if ((bond->params.mode == BOND_MODE_TLB) ||
2223 					    (bond->params.mode == BOND_MODE_ALB)) {
2224 						bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN);
2225 					}
2226 
2227 					if (slave == oldcurrent) {
2228 						do_failover = 1;
2229 					}
2230 				} else {
2231 					slave->delay--;
2232 				}
2233 			} else {
2234 				/* link up again */
2235 				slave->link  = BOND_LINK_UP;
2236 				slave->jiffies = jiffies;
2237 				printk(KERN_INFO DRV_NAME
2238 				       ": %s: link status up again after %d "
2239 				       "ms for interface %s.\n",
2240 				       bond->dev->name,
2241 				       (bond->params.downdelay - slave->delay) * bond->params.miimon,
2242 				       slave_dev->name);
2243 			}
2244 			break;
2245 		case BOND_LINK_DOWN:	/* the link was down */
2246 			if (link_state != BMSR_LSTATUS) {
2247 				/* the link stays down, nothing more to do */
2248 				break;
2249 			} else {	/* link going up */
2250 				slave->link  = BOND_LINK_BACK;
2251 				slave->delay = bond->params.updelay;
2252 
2253 				if (bond->params.updelay) {
2254 					/* if updelay == 0, no need to
2255 					   advertise about a 0 ms delay */
2256 					printk(KERN_INFO DRV_NAME
2257 					       ": %s: link status up for "
2258 					       "interface %s, enabling it "
2259 					       "in %d ms.\n",
2260 					       bond->dev->name,
2261 					       slave_dev->name,
2262 					       bond->params.updelay * bond->params.miimon);
2263 				}
2264 			}
2265 			/* no break ! fall through the BOND_LINK_BACK state in
2266 			   case there's something to do.
2267 			*/
2268 		case BOND_LINK_BACK:	/* the link has just come back */
2269 			if (link_state != BMSR_LSTATUS) {
2270 				/* link down again */
2271 				slave->link  = BOND_LINK_DOWN;
2272 
2273 				printk(KERN_INFO DRV_NAME
2274 				       ": %s: link status down again after %d "
2275 				       "ms for interface %s.\n",
2276 				       bond->dev->name,
2277 				       (bond->params.updelay - slave->delay) * bond->params.miimon,
2278 				       slave_dev->name);
2279 			} else {
2280 				/* link stays up */
2281 				if (slave->delay == 0) {
2282 					if (!have_locks)
2283 						return 1;
2284 
2285 					/* now the link has been up for long time enough */
2286 					slave->link = BOND_LINK_UP;
2287 					slave->jiffies = jiffies;
2288 
2289 					if (bond->params.mode == BOND_MODE_8023AD) {
2290 						/* prevent it from being the active one */
2291 						slave->state = BOND_STATE_BACKUP;
2292 					} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2293 						/* make it immediately active */
2294 						slave->state = BOND_STATE_ACTIVE;
2295 					} else if (slave != bond->primary_slave) {
2296 						/* prevent it from being the active one */
2297 						slave->state = BOND_STATE_BACKUP;
2298 					}
2299 
2300 					printk(KERN_INFO DRV_NAME
2301 					       ": %s: link status definitely "
2302 					       "up for interface %s.\n",
2303 					       bond->dev->name,
2304 					       slave_dev->name);
2305 
2306 					/* notify ad that the link status has changed */
2307 					if (bond->params.mode == BOND_MODE_8023AD) {
2308 						bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2309 					}
2310 
2311 					if ((bond->params.mode == BOND_MODE_TLB) ||
2312 					    (bond->params.mode == BOND_MODE_ALB)) {
2313 						bond_alb_handle_link_change(bond, slave, BOND_LINK_UP);
2314 					}
2315 
2316 					if ((!oldcurrent) ||
2317 					    (slave == bond->primary_slave)) {
2318 						do_failover = 1;
2319 					}
2320 				} else {
2321 					slave->delay--;
2322 				}
2323 			}
2324 			break;
2325 		default:
2326 			/* Should not happen */
2327 			printk(KERN_ERR DRV_NAME
2328 			       ": %s: Error: %s Illegal value (link=%d)\n",
2329 			       bond->dev->name,
2330 			       slave->dev->name,
2331 			       slave->link);
2332 			goto out;
2333 		} /* end of switch (slave->link) */
2334 
2335 		bond_update_speed_duplex(slave);
2336 
2337 		if (bond->params.mode == BOND_MODE_8023AD) {
2338 			if (old_speed != slave->speed) {
2339 				bond_3ad_adapter_speed_changed(slave);
2340 			}
2341 
2342 			if (old_duplex != slave->duplex) {
2343 				bond_3ad_adapter_duplex_changed(slave);
2344 			}
2345 		}
2346 
2347 	} /* end of for */
2348 
2349 	if (do_failover) {
2350 		ASSERT_RTNL();
2351 
2352 		write_lock_bh(&bond->curr_slave_lock);
2353 
2354 		bond_select_active_slave(bond);
2355 
2356 		write_unlock_bh(&bond->curr_slave_lock);
2357 
2358 	} else
2359 		bond_set_carrier(bond);
2360 
2361 out:
2362 	return 0;
2363 }
2364 
2365 /*
2366  * bond_mii_monitor
2367  *
2368  * Really a wrapper that splits the mii monitor into two phases: an
2369  * inspection, then (if inspection indicates something needs to be
2370  * done) an acquisition of appropriate locks followed by another pass
2371  * to implement whatever link state changes are indicated.
2372  */
2373 void bond_mii_monitor(struct work_struct *work)
2374 {
2375 	struct bonding *bond = container_of(work, struct bonding,
2376 					    mii_work.work);
2377 	unsigned long delay;
2378 
2379 	read_lock(&bond->lock);
2380 	if (bond->kill_timers) {
2381 		read_unlock(&bond->lock);
2382 		return;
2383 	}
2384 	if (__bond_mii_monitor(bond, 0)) {
2385 		read_unlock(&bond->lock);
2386 		rtnl_lock();
2387 		read_lock(&bond->lock);
2388 		__bond_mii_monitor(bond, 1);
2389 		read_unlock(&bond->lock);
2390 		rtnl_unlock();	/* might sleep, hold no other locks */
2391 		read_lock(&bond->lock);
2392 	}
2393 
2394 	delay = ((bond->params.miimon * HZ) / 1000) ? : 1;
2395 	read_unlock(&bond->lock);
2396 	queue_delayed_work(bond->wq, &bond->mii_work, delay);
2397 }
2398 
2399 static __be32 bond_glean_dev_ip(struct net_device *dev)
2400 {
2401 	struct in_device *idev;
2402 	struct in_ifaddr *ifa;
2403 	__be32 addr = 0;
2404 
2405 	if (!dev)
2406 		return 0;
2407 
2408 	rcu_read_lock();
2409 	idev = __in_dev_get_rcu(dev);
2410 	if (!idev)
2411 		goto out;
2412 
2413 	ifa = idev->ifa_list;
2414 	if (!ifa)
2415 		goto out;
2416 
2417 	addr = ifa->ifa_local;
2418 out:
2419 	rcu_read_unlock();
2420 	return addr;
2421 }
2422 
2423 static int bond_has_ip(struct bonding *bond)
2424 {
2425 	struct vlan_entry *vlan, *vlan_next;
2426 
2427 	if (bond->master_ip)
2428 		return 1;
2429 
2430 	if (list_empty(&bond->vlan_list))
2431 		return 0;
2432 
2433 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2434 				 vlan_list) {
2435 		if (vlan->vlan_ip)
2436 			return 1;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2443 {
2444 	struct vlan_entry *vlan, *vlan_next;
2445 
2446 	if (ip == bond->master_ip)
2447 		return 1;
2448 
2449 	if (list_empty(&bond->vlan_list))
2450 		return 0;
2451 
2452 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2453 				 vlan_list) {
2454 		if (ip == vlan->vlan_ip)
2455 			return 1;
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 /*
2462  * We go to the (large) trouble of VLAN tagging ARP frames because
2463  * switches in VLAN mode (especially if ports are configured as
2464  * "native" to a VLAN) might not pass non-tagged frames.
2465  */
2466 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2467 {
2468 	struct sk_buff *skb;
2469 
2470 	dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2471 	       slave_dev->name, dest_ip, src_ip, vlan_id);
2472 
2473 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2474 			 NULL, slave_dev->dev_addr, NULL);
2475 
2476 	if (!skb) {
2477 		printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2478 		return;
2479 	}
2480 	if (vlan_id) {
2481 		skb = vlan_put_tag(skb, vlan_id);
2482 		if (!skb) {
2483 			printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2484 			return;
2485 		}
2486 	}
2487 	arp_xmit(skb);
2488 }
2489 
2490 
2491 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2492 {
2493 	int i, vlan_id, rv;
2494 	__be32 *targets = bond->params.arp_targets;
2495 	struct vlan_entry *vlan, *vlan_next;
2496 	struct net_device *vlan_dev;
2497 	struct flowi fl;
2498 	struct rtable *rt;
2499 
2500 	for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2501 		if (!targets[i])
2502 			continue;
2503 		dprintk("basa: target %x\n", targets[i]);
2504 		if (list_empty(&bond->vlan_list)) {
2505 			dprintk("basa: empty vlan: arp_send\n");
2506 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2507 				      bond->master_ip, 0);
2508 			continue;
2509 		}
2510 
2511 		/*
2512 		 * If VLANs are configured, we do a route lookup to
2513 		 * determine which VLAN interface would be used, so we
2514 		 * can tag the ARP with the proper VLAN tag.
2515 		 */
2516 		memset(&fl, 0, sizeof(fl));
2517 		fl.fl4_dst = targets[i];
2518 		fl.fl4_tos = RTO_ONLINK;
2519 
2520 		rv = ip_route_output_key(&init_net, &rt, &fl);
2521 		if (rv) {
2522 			if (net_ratelimit()) {
2523 				printk(KERN_WARNING DRV_NAME
2524 			     ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2525 				       bond->dev->name, NIPQUAD(fl.fl4_dst));
2526 			}
2527 			continue;
2528 		}
2529 
2530 		/*
2531 		 * This target is not on a VLAN
2532 		 */
2533 		if (rt->u.dst.dev == bond->dev) {
2534 			ip_rt_put(rt);
2535 			dprintk("basa: rtdev == bond->dev: arp_send\n");
2536 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2537 				      bond->master_ip, 0);
2538 			continue;
2539 		}
2540 
2541 		vlan_id = 0;
2542 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2543 					 vlan_list) {
2544 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2545 			if (vlan_dev == rt->u.dst.dev) {
2546 				vlan_id = vlan->vlan_id;
2547 				dprintk("basa: vlan match on %s %d\n",
2548 				       vlan_dev->name, vlan_id);
2549 				break;
2550 			}
2551 		}
2552 
2553 		if (vlan_id) {
2554 			ip_rt_put(rt);
2555 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2556 				      vlan->vlan_ip, vlan_id);
2557 			continue;
2558 		}
2559 
2560 		if (net_ratelimit()) {
2561 			printk(KERN_WARNING DRV_NAME
2562 	       ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2563 			       bond->dev->name, NIPQUAD(fl.fl4_dst),
2564 			       rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2565 		}
2566 		ip_rt_put(rt);
2567 	}
2568 }
2569 
2570 /*
2571  * Kick out a gratuitous ARP for an IP on the bonding master plus one
2572  * for each VLAN above us.
2573  */
2574 static void bond_send_gratuitous_arp(struct bonding *bond)
2575 {
2576 	struct slave *slave = bond->curr_active_slave;
2577 	struct vlan_entry *vlan;
2578 	struct net_device *vlan_dev;
2579 
2580 	dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2581 				slave ? slave->dev->name : "NULL");
2582 	if (!slave)
2583 		return;
2584 
2585 	if (bond->master_ip) {
2586 		bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2587 				bond->master_ip, 0);
2588 	}
2589 
2590 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2591 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2592 		if (vlan->vlan_ip) {
2593 			bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2594 				      vlan->vlan_ip, vlan->vlan_id);
2595 		}
2596 	}
2597 }
2598 
2599 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2600 {
2601 	int i;
2602 	__be32 *targets = bond->params.arp_targets;
2603 
2604 	targets = bond->params.arp_targets;
2605 	for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2606 		dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2607 			"%u.%u.%u.%u bhti(tip) %d\n",
2608 		       NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2609 		       bond_has_this_ip(bond, tip));
2610 		if (sip == targets[i]) {
2611 			if (bond_has_this_ip(bond, tip))
2612 				slave->last_arp_rx = jiffies;
2613 			return;
2614 		}
2615 	}
2616 }
2617 
2618 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2619 {
2620 	struct arphdr *arp;
2621 	struct slave *slave;
2622 	struct bonding *bond;
2623 	unsigned char *arp_ptr;
2624 	__be32 sip, tip;
2625 
2626 	if (dev->nd_net != &init_net)
2627 		goto out;
2628 
2629 	if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2630 		goto out;
2631 
2632 	bond = dev->priv;
2633 	read_lock(&bond->lock);
2634 
2635 	dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2636 		bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2637 		orig_dev ? orig_dev->name : "NULL");
2638 
2639 	slave = bond_get_slave_by_dev(bond, orig_dev);
2640 	if (!slave || !slave_do_arp_validate(bond, slave))
2641 		goto out_unlock;
2642 
2643 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
2644 	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
2645 				 (2 * dev->addr_len) +
2646 				 (2 * sizeof(u32)))))
2647 		goto out_unlock;
2648 
2649 	arp = arp_hdr(skb);
2650 	if (arp->ar_hln != dev->addr_len ||
2651 	    skb->pkt_type == PACKET_OTHERHOST ||
2652 	    skb->pkt_type == PACKET_LOOPBACK ||
2653 	    arp->ar_hrd != htons(ARPHRD_ETHER) ||
2654 	    arp->ar_pro != htons(ETH_P_IP) ||
2655 	    arp->ar_pln != 4)
2656 		goto out_unlock;
2657 
2658 	arp_ptr = (unsigned char *)(arp + 1);
2659 	arp_ptr += dev->addr_len;
2660 	memcpy(&sip, arp_ptr, 4);
2661 	arp_ptr += 4 + dev->addr_len;
2662 	memcpy(&tip, arp_ptr, 4);
2663 
2664 	dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2665 		" tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2666 		slave->state, bond->params.arp_validate,
2667 		slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2668 
2669 	/*
2670 	 * Backup slaves won't see the ARP reply, but do come through
2671 	 * here for each ARP probe (so we swap the sip/tip to validate
2672 	 * the probe).  In a "redundant switch, common router" type of
2673 	 * configuration, the ARP probe will (hopefully) travel from
2674 	 * the active, through one switch, the router, then the other
2675 	 * switch before reaching the backup.
2676 	 */
2677 	if (slave->state == BOND_STATE_ACTIVE)
2678 		bond_validate_arp(bond, slave, sip, tip);
2679 	else
2680 		bond_validate_arp(bond, slave, tip, sip);
2681 
2682 out_unlock:
2683 	read_unlock(&bond->lock);
2684 out:
2685 	dev_kfree_skb(skb);
2686 	return NET_RX_SUCCESS;
2687 }
2688 
2689 /*
2690  * this function is called regularly to monitor each slave's link
2691  * ensuring that traffic is being sent and received when arp monitoring
2692  * is used in load-balancing mode. if the adapter has been dormant, then an
2693  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2694  * arp monitoring in active backup mode.
2695  */
2696 void bond_loadbalance_arp_mon(struct work_struct *work)
2697 {
2698 	struct bonding *bond = container_of(work, struct bonding,
2699 					    arp_work.work);
2700 	struct slave *slave, *oldcurrent;
2701 	int do_failover = 0;
2702 	int delta_in_ticks;
2703 	int i;
2704 
2705 	read_lock(&bond->lock);
2706 
2707 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2708 
2709 	if (bond->kill_timers) {
2710 		goto out;
2711 	}
2712 
2713 	if (bond->slave_cnt == 0) {
2714 		goto re_arm;
2715 	}
2716 
2717 	read_lock(&bond->curr_slave_lock);
2718 	oldcurrent = bond->curr_active_slave;
2719 	read_unlock(&bond->curr_slave_lock);
2720 
2721 	/* see if any of the previous devices are up now (i.e. they have
2722 	 * xmt and rcv traffic). the curr_active_slave does not come into
2723 	 * the picture unless it is null. also, slave->jiffies is not needed
2724 	 * here because we send an arp on each slave and give a slave as
2725 	 * long as it needs to get the tx/rx within the delta.
2726 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2727 	 *       so it can wait
2728 	 */
2729 	bond_for_each_slave(bond, slave, i) {
2730 		if (slave->link != BOND_LINK_UP) {
2731 			if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) &&
2732 			    time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) {
2733 
2734 				slave->link  = BOND_LINK_UP;
2735 				slave->state = BOND_STATE_ACTIVE;
2736 
2737 				/* primary_slave has no meaning in round-robin
2738 				 * mode. the window of a slave being up and
2739 				 * curr_active_slave being null after enslaving
2740 				 * is closed.
2741 				 */
2742 				if (!oldcurrent) {
2743 					printk(KERN_INFO DRV_NAME
2744 					       ": %s: link status definitely "
2745 					       "up for interface %s, ",
2746 					       bond->dev->name,
2747 					       slave->dev->name);
2748 					do_failover = 1;
2749 				} else {
2750 					printk(KERN_INFO DRV_NAME
2751 					       ": %s: interface %s is now up\n",
2752 					       bond->dev->name,
2753 					       slave->dev->name);
2754 				}
2755 			}
2756 		} else {
2757 			/* slave->link == BOND_LINK_UP */
2758 
2759 			/* not all switches will respond to an arp request
2760 			 * when the source ip is 0, so don't take the link down
2761 			 * if we don't know our ip yet
2762 			 */
2763 			if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) ||
2764 			    (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks) &&
2765 			     bond_has_ip(bond))) {
2766 
2767 				slave->link  = BOND_LINK_DOWN;
2768 				slave->state = BOND_STATE_BACKUP;
2769 
2770 				if (slave->link_failure_count < UINT_MAX) {
2771 					slave->link_failure_count++;
2772 				}
2773 
2774 				printk(KERN_INFO DRV_NAME
2775 				       ": %s: interface %s is now down.\n",
2776 				       bond->dev->name,
2777 				       slave->dev->name);
2778 
2779 				if (slave == oldcurrent) {
2780 					do_failover = 1;
2781 				}
2782 			}
2783 		}
2784 
2785 		/* note: if switch is in round-robin mode, all links
2786 		 * must tx arp to ensure all links rx an arp - otherwise
2787 		 * links may oscillate or not come up at all; if switch is
2788 		 * in something like xor mode, there is nothing we can
2789 		 * do - all replies will be rx'ed on same link causing slaves
2790 		 * to be unstable during low/no traffic periods
2791 		 */
2792 		if (IS_UP(slave->dev)) {
2793 			bond_arp_send_all(bond, slave);
2794 		}
2795 	}
2796 
2797 	if (do_failover) {
2798 		rtnl_lock();
2799 		write_lock_bh(&bond->curr_slave_lock);
2800 
2801 		bond_select_active_slave(bond);
2802 
2803 		write_unlock_bh(&bond->curr_slave_lock);
2804 		rtnl_unlock();
2805 
2806 	}
2807 
2808 re_arm:
2809 	if (bond->params.arp_interval)
2810 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2811 out:
2812 	read_unlock(&bond->lock);
2813 }
2814 
2815 /*
2816  * When using arp monitoring in active-backup mode, this function is
2817  * called to determine if any backup slaves have went down or a new
2818  * current slave needs to be found.
2819  * The backup slaves never generate traffic, they are considered up by merely
2820  * receiving traffic. If the current slave goes down, each backup slave will
2821  * be given the opportunity to tx/rx an arp before being taken down - this
2822  * prevents all slaves from being taken down due to the current slave not
2823  * sending any traffic for the backups to receive. The arps are not necessarily
2824  * necessary, any tx and rx traffic will keep the current slave up. While any
2825  * rx traffic will keep the backup slaves up, the current slave is responsible
2826  * for generating traffic to keep them up regardless of any other traffic they
2827  * may have received.
2828  * see loadbalance_arp_monitor for arp monitoring in load balancing mode
2829  */
2830 void bond_activebackup_arp_mon(struct work_struct *work)
2831 {
2832 	struct bonding *bond = container_of(work, struct bonding,
2833 					    arp_work.work);
2834 	struct slave *slave;
2835 	int delta_in_ticks;
2836 	int i;
2837 
2838 	read_lock(&bond->lock);
2839 
2840 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2841 
2842 	if (bond->kill_timers) {
2843 		goto out;
2844 	}
2845 
2846 	if (bond->slave_cnt == 0) {
2847 		goto re_arm;
2848 	}
2849 
2850 	/* determine if any slave has come up or any backup slave has
2851 	 * gone down
2852 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2853 	 *       so it can wait
2854 	 */
2855 	bond_for_each_slave(bond, slave, i) {
2856 		if (slave->link != BOND_LINK_UP) {
2857 			if (time_before_eq(jiffies,
2858 			    slave_last_rx(bond, slave) + delta_in_ticks)) {
2859 
2860 				slave->link = BOND_LINK_UP;
2861 
2862 				rtnl_lock();
2863 
2864 				write_lock_bh(&bond->curr_slave_lock);
2865 
2866 				if ((!bond->curr_active_slave) &&
2867 				    time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks)) {
2868 					bond_change_active_slave(bond, slave);
2869 					bond->current_arp_slave = NULL;
2870 				} else if (bond->curr_active_slave != slave) {
2871 					/* this slave has just come up but we
2872 					 * already have a current slave; this
2873 					 * can also happen if bond_enslave adds
2874 					 * a new slave that is up while we are
2875 					 * searching for a new slave
2876 					 */
2877 					bond_set_slave_inactive_flags(slave);
2878 					bond->current_arp_slave = NULL;
2879 				}
2880 
2881 				bond_set_carrier(bond);
2882 
2883 				if (slave == bond->curr_active_slave) {
2884 					printk(KERN_INFO DRV_NAME
2885 					       ": %s: %s is up and now the "
2886 					       "active interface\n",
2887 					       bond->dev->name,
2888 					       slave->dev->name);
2889 					netif_carrier_on(bond->dev);
2890 				} else {
2891 					printk(KERN_INFO DRV_NAME
2892 					       ": %s: backup interface %s is "
2893 					       "now up\n",
2894 					       bond->dev->name,
2895 					       slave->dev->name);
2896 				}
2897 
2898 				write_unlock_bh(&bond->curr_slave_lock);
2899 				rtnl_unlock();
2900 			}
2901 		} else {
2902 			read_lock(&bond->curr_slave_lock);
2903 
2904 			if ((slave != bond->curr_active_slave) &&
2905 			    (!bond->current_arp_slave) &&
2906 			    (time_after_eq(jiffies, slave_last_rx(bond, slave) + 3*delta_in_ticks) &&
2907 			     bond_has_ip(bond))) {
2908 				/* a backup slave has gone down; three times
2909 				 * the delta allows the current slave to be
2910 				 * taken out before the backup slave.
2911 				 * note: a non-null current_arp_slave indicates
2912 				 * the curr_active_slave went down and we are
2913 				 * searching for a new one; under this
2914 				 * condition we only take the curr_active_slave
2915 				 * down - this gives each slave a chance to
2916 				 * tx/rx traffic before being taken out
2917 				 */
2918 
2919 				read_unlock(&bond->curr_slave_lock);
2920 
2921 				slave->link  = BOND_LINK_DOWN;
2922 
2923 				if (slave->link_failure_count < UINT_MAX) {
2924 					slave->link_failure_count++;
2925 				}
2926 
2927 				bond_set_slave_inactive_flags(slave);
2928 
2929 				printk(KERN_INFO DRV_NAME
2930 				       ": %s: backup interface %s is now down\n",
2931 				       bond->dev->name,
2932 				       slave->dev->name);
2933 			} else {
2934 				read_unlock(&bond->curr_slave_lock);
2935 			}
2936 		}
2937 	}
2938 
2939 	read_lock(&bond->curr_slave_lock);
2940 	slave = bond->curr_active_slave;
2941 	read_unlock(&bond->curr_slave_lock);
2942 
2943 	if (slave) {
2944 		/* if we have sent traffic in the past 2*arp_intervals but
2945 		 * haven't xmit and rx traffic in that time interval, select
2946 		 * a different slave. slave->jiffies is only updated when
2947 		 * a slave first becomes the curr_active_slave - not necessarily
2948 		 * after every arp; this ensures the slave has a full 2*delta
2949 		 * before being taken out. if a primary is being used, check
2950 		 * if it is up and needs to take over as the curr_active_slave
2951 		 */
2952 		if ((time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) ||
2953 			(time_after_eq(jiffies, slave_last_rx(bond, slave) + 2*delta_in_ticks) &&
2954 			 bond_has_ip(bond))) &&
2955 			time_after_eq(jiffies, slave->jiffies + 2*delta_in_ticks)) {
2956 
2957 			slave->link  = BOND_LINK_DOWN;
2958 
2959 			if (slave->link_failure_count < UINT_MAX) {
2960 				slave->link_failure_count++;
2961 			}
2962 
2963 			printk(KERN_INFO DRV_NAME
2964 			       ": %s: link status down for active interface "
2965 			       "%s, disabling it\n",
2966 			       bond->dev->name,
2967 			       slave->dev->name);
2968 
2969 			rtnl_lock();
2970 			write_lock_bh(&bond->curr_slave_lock);
2971 
2972 			bond_select_active_slave(bond);
2973 			slave = bond->curr_active_slave;
2974 
2975 			write_unlock_bh(&bond->curr_slave_lock);
2976 
2977 			rtnl_unlock();
2978 
2979 			bond->current_arp_slave = slave;
2980 
2981 			if (slave) {
2982 				slave->jiffies = jiffies;
2983 			}
2984 		} else if ((bond->primary_slave) &&
2985 			   (bond->primary_slave != slave) &&
2986 			   (bond->primary_slave->link == BOND_LINK_UP)) {
2987 			/* at this point, slave is the curr_active_slave */
2988 			printk(KERN_INFO DRV_NAME
2989 			       ": %s: changing from interface %s to primary "
2990 			       "interface %s\n",
2991 			       bond->dev->name,
2992 			       slave->dev->name,
2993 			       bond->primary_slave->dev->name);
2994 
2995 			/* primary is up so switch to it */
2996 			rtnl_lock();
2997 			write_lock_bh(&bond->curr_slave_lock);
2998 			bond_change_active_slave(bond, bond->primary_slave);
2999 			write_unlock_bh(&bond->curr_slave_lock);
3000 
3001 			rtnl_unlock();
3002 
3003 			slave = bond->primary_slave;
3004 			slave->jiffies = jiffies;
3005 		} else {
3006 			bond->current_arp_slave = NULL;
3007 		}
3008 
3009 		/* the current slave must tx an arp to ensure backup slaves
3010 		 * rx traffic
3011 		 */
3012 		if (slave && bond_has_ip(bond)) {
3013 			bond_arp_send_all(bond, slave);
3014 		}
3015 	}
3016 
3017 	/* if we don't have a curr_active_slave, search for the next available
3018 	 * backup slave from the current_arp_slave and make it the candidate
3019 	 * for becoming the curr_active_slave
3020 	 */
3021 	if (!slave) {
3022 		if (!bond->current_arp_slave) {
3023 			bond->current_arp_slave = bond->first_slave;
3024 		}
3025 
3026 		if (bond->current_arp_slave) {
3027 			bond_set_slave_inactive_flags(bond->current_arp_slave);
3028 
3029 			/* search for next candidate */
3030 			bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3031 				if (IS_UP(slave->dev)) {
3032 					slave->link = BOND_LINK_BACK;
3033 					bond_set_slave_active_flags(slave);
3034 					bond_arp_send_all(bond, slave);
3035 					slave->jiffies = jiffies;
3036 					bond->current_arp_slave = slave;
3037 					break;
3038 				}
3039 
3040 				/* if the link state is up at this point, we
3041 				 * mark it down - this can happen if we have
3042 				 * simultaneous link failures and
3043 				 * reselect_active_interface doesn't make this
3044 				 * one the current slave so it is still marked
3045 				 * up when it is actually down
3046 				 */
3047 				if (slave->link == BOND_LINK_UP) {
3048 					slave->link  = BOND_LINK_DOWN;
3049 					if (slave->link_failure_count < UINT_MAX) {
3050 						slave->link_failure_count++;
3051 					}
3052 
3053 					bond_set_slave_inactive_flags(slave);
3054 
3055 					printk(KERN_INFO DRV_NAME
3056 					       ": %s: backup interface %s is "
3057 					       "now down.\n",
3058 					       bond->dev->name,
3059 					       slave->dev->name);
3060 				}
3061 			}
3062 		}
3063 	}
3064 
3065 re_arm:
3066 	if (bond->params.arp_interval) {
3067 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3068 	}
3069 out:
3070 	read_unlock(&bond->lock);
3071 }
3072 
3073 /*------------------------------ proc/seq_file-------------------------------*/
3074 
3075 #ifdef CONFIG_PROC_FS
3076 
3077 #define SEQ_START_TOKEN ((void *)1)
3078 
3079 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
3080 {
3081 	struct bonding *bond = seq->private;
3082 	loff_t off = 0;
3083 	struct slave *slave;
3084 	int i;
3085 
3086 	/* make sure the bond won't be taken away */
3087 	read_lock(&dev_base_lock);
3088 	read_lock(&bond->lock);
3089 
3090 	if (*pos == 0) {
3091 		return SEQ_START_TOKEN;
3092 	}
3093 
3094 	bond_for_each_slave(bond, slave, i) {
3095 		if (++off == *pos) {
3096 			return slave;
3097 		}
3098 	}
3099 
3100 	return NULL;
3101 }
3102 
3103 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3104 {
3105 	struct bonding *bond = seq->private;
3106 	struct slave *slave = v;
3107 
3108 	++*pos;
3109 	if (v == SEQ_START_TOKEN) {
3110 		return bond->first_slave;
3111 	}
3112 
3113 	slave = slave->next;
3114 
3115 	return (slave == bond->first_slave) ? NULL : slave;
3116 }
3117 
3118 static void bond_info_seq_stop(struct seq_file *seq, void *v)
3119 {
3120 	struct bonding *bond = seq->private;
3121 
3122 	read_unlock(&bond->lock);
3123 	read_unlock(&dev_base_lock);
3124 }
3125 
3126 static void bond_info_show_master(struct seq_file *seq)
3127 {
3128 	struct bonding *bond = seq->private;
3129 	struct slave *curr;
3130 	int i;
3131 	u32 target;
3132 
3133 	read_lock(&bond->curr_slave_lock);
3134 	curr = bond->curr_active_slave;
3135 	read_unlock(&bond->curr_slave_lock);
3136 
3137 	seq_printf(seq, "Bonding Mode: %s",
3138 		   bond_mode_name(bond->params.mode));
3139 
3140 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP &&
3141 	    bond->params.fail_over_mac)
3142 		seq_printf(seq, " (fail_over_mac)");
3143 
3144 	seq_printf(seq, "\n");
3145 
3146 	if (bond->params.mode == BOND_MODE_XOR ||
3147 		bond->params.mode == BOND_MODE_8023AD) {
3148 		seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3149 			xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3150 			bond->params.xmit_policy);
3151 	}
3152 
3153 	if (USES_PRIMARY(bond->params.mode)) {
3154 		seq_printf(seq, "Primary Slave: %s\n",
3155 			   (bond->primary_slave) ?
3156 			   bond->primary_slave->dev->name : "None");
3157 
3158 		seq_printf(seq, "Currently Active Slave: %s\n",
3159 			   (curr) ? curr->dev->name : "None");
3160 	}
3161 
3162 	seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3163 		   "up" : "down");
3164 	seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3165 	seq_printf(seq, "Up Delay (ms): %d\n",
3166 		   bond->params.updelay * bond->params.miimon);
3167 	seq_printf(seq, "Down Delay (ms): %d\n",
3168 		   bond->params.downdelay * bond->params.miimon);
3169 
3170 
3171 	/* ARP information */
3172 	if(bond->params.arp_interval > 0) {
3173 		int printed=0;
3174 		seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3175 				bond->params.arp_interval);
3176 
3177 		seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3178 
3179 		for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3180 			if (!bond->params.arp_targets[i])
3181 				continue;
3182 			if (printed)
3183 				seq_printf(seq, ",");
3184 			target = ntohl(bond->params.arp_targets[i]);
3185 			seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3186 			printed = 1;
3187 		}
3188 		seq_printf(seq, "\n");
3189 	}
3190 
3191 	if (bond->params.mode == BOND_MODE_8023AD) {
3192 		struct ad_info ad_info;
3193 		DECLARE_MAC_BUF(mac);
3194 
3195 		seq_puts(seq, "\n802.3ad info\n");
3196 		seq_printf(seq, "LACP rate: %s\n",
3197 			   (bond->params.lacp_fast) ? "fast" : "slow");
3198 
3199 		if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3200 			seq_printf(seq, "bond %s has no active aggregator\n",
3201 				   bond->dev->name);
3202 		} else {
3203 			seq_printf(seq, "Active Aggregator Info:\n");
3204 
3205 			seq_printf(seq, "\tAggregator ID: %d\n",
3206 				   ad_info.aggregator_id);
3207 			seq_printf(seq, "\tNumber of ports: %d\n",
3208 				   ad_info.ports);
3209 			seq_printf(seq, "\tActor Key: %d\n",
3210 				   ad_info.actor_key);
3211 			seq_printf(seq, "\tPartner Key: %d\n",
3212 				   ad_info.partner_key);
3213 			seq_printf(seq, "\tPartner Mac Address: %s\n",
3214 				   print_mac(mac, ad_info.partner_system));
3215 		}
3216 	}
3217 }
3218 
3219 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3220 {
3221 	struct bonding *bond = seq->private;
3222 	DECLARE_MAC_BUF(mac);
3223 
3224 	seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3225 	seq_printf(seq, "MII Status: %s\n",
3226 		   (slave->link == BOND_LINK_UP) ?  "up" : "down");
3227 	seq_printf(seq, "Link Failure Count: %u\n",
3228 		   slave->link_failure_count);
3229 
3230 	seq_printf(seq,
3231 		   "Permanent HW addr: %s\n",
3232 		   print_mac(mac, slave->perm_hwaddr));
3233 
3234 	if (bond->params.mode == BOND_MODE_8023AD) {
3235 		const struct aggregator *agg
3236 			= SLAVE_AD_INFO(slave).port.aggregator;
3237 
3238 		if (agg) {
3239 			seq_printf(seq, "Aggregator ID: %d\n",
3240 				   agg->aggregator_identifier);
3241 		} else {
3242 			seq_puts(seq, "Aggregator ID: N/A\n");
3243 		}
3244 	}
3245 }
3246 
3247 static int bond_info_seq_show(struct seq_file *seq, void *v)
3248 {
3249 	if (v == SEQ_START_TOKEN) {
3250 		seq_printf(seq, "%s\n", version);
3251 		bond_info_show_master(seq);
3252 	} else {
3253 		bond_info_show_slave(seq, v);
3254 	}
3255 
3256 	return 0;
3257 }
3258 
3259 static struct seq_operations bond_info_seq_ops = {
3260 	.start = bond_info_seq_start,
3261 	.next  = bond_info_seq_next,
3262 	.stop  = bond_info_seq_stop,
3263 	.show  = bond_info_seq_show,
3264 };
3265 
3266 static int bond_info_open(struct inode *inode, struct file *file)
3267 {
3268 	struct seq_file *seq;
3269 	struct proc_dir_entry *proc;
3270 	int res;
3271 
3272 	res = seq_open(file, &bond_info_seq_ops);
3273 	if (!res) {
3274 		/* recover the pointer buried in proc_dir_entry data */
3275 		seq = file->private_data;
3276 		proc = PDE(inode);
3277 		seq->private = proc->data;
3278 	}
3279 
3280 	return res;
3281 }
3282 
3283 static const struct file_operations bond_info_fops = {
3284 	.owner   = THIS_MODULE,
3285 	.open    = bond_info_open,
3286 	.read    = seq_read,
3287 	.llseek  = seq_lseek,
3288 	.release = seq_release,
3289 };
3290 
3291 static int bond_create_proc_entry(struct bonding *bond)
3292 {
3293 	struct net_device *bond_dev = bond->dev;
3294 
3295 	if (bond_proc_dir) {
3296 		bond->proc_entry = create_proc_entry(bond_dev->name,
3297 						     S_IRUGO,
3298 						     bond_proc_dir);
3299 		if (bond->proc_entry == NULL) {
3300 			printk(KERN_WARNING DRV_NAME
3301 			       ": Warning: Cannot create /proc/net/%s/%s\n",
3302 			       DRV_NAME, bond_dev->name);
3303 		} else {
3304 			bond->proc_entry->data = bond;
3305 			bond->proc_entry->proc_fops = &bond_info_fops;
3306 			bond->proc_entry->owner = THIS_MODULE;
3307 			memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3308 		}
3309 	}
3310 
3311 	return 0;
3312 }
3313 
3314 static void bond_remove_proc_entry(struct bonding *bond)
3315 {
3316 	if (bond_proc_dir && bond->proc_entry) {
3317 		remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3318 		memset(bond->proc_file_name, 0, IFNAMSIZ);
3319 		bond->proc_entry = NULL;
3320 	}
3321 }
3322 
3323 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3324  * Caller must hold rtnl_lock.
3325  */
3326 static void bond_create_proc_dir(void)
3327 {
3328 	int len = strlen(DRV_NAME);
3329 
3330 	for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir;
3331 	     bond_proc_dir = bond_proc_dir->next) {
3332 		if ((bond_proc_dir->namelen == len) &&
3333 		    !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3334 			break;
3335 		}
3336 	}
3337 
3338 	if (!bond_proc_dir) {
3339 		bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net);
3340 		if (bond_proc_dir) {
3341 			bond_proc_dir->owner = THIS_MODULE;
3342 		} else {
3343 			printk(KERN_WARNING DRV_NAME
3344 				": Warning: cannot create /proc/net/%s\n",
3345 				DRV_NAME);
3346 		}
3347 	}
3348 }
3349 
3350 /* Destroy the bonding directory under /proc/net, if empty.
3351  * Caller must hold rtnl_lock.
3352  */
3353 static void bond_destroy_proc_dir(void)
3354 {
3355 	struct proc_dir_entry *de;
3356 
3357 	if (!bond_proc_dir) {
3358 		return;
3359 	}
3360 
3361 	/* verify that the /proc dir is empty */
3362 	for (de = bond_proc_dir->subdir; de; de = de->next) {
3363 		/* ignore . and .. */
3364 		if (*(de->name) != '.') {
3365 			break;
3366 		}
3367 	}
3368 
3369 	if (de) {
3370 		if (bond_proc_dir->owner == THIS_MODULE) {
3371 			bond_proc_dir->owner = NULL;
3372 		}
3373 	} else {
3374 		remove_proc_entry(DRV_NAME, init_net.proc_net);
3375 		bond_proc_dir = NULL;
3376 	}
3377 }
3378 #endif /* CONFIG_PROC_FS */
3379 
3380 /*-------------------------- netdev event handling --------------------------*/
3381 
3382 /*
3383  * Change device name
3384  */
3385 static int bond_event_changename(struct bonding *bond)
3386 {
3387 #ifdef CONFIG_PROC_FS
3388 	bond_remove_proc_entry(bond);
3389 	bond_create_proc_entry(bond);
3390 #endif
3391 	down_write(&(bonding_rwsem));
3392         bond_destroy_sysfs_entry(bond);
3393         bond_create_sysfs_entry(bond);
3394 	up_write(&(bonding_rwsem));
3395 	return NOTIFY_DONE;
3396 }
3397 
3398 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3399 {
3400 	struct bonding *event_bond = bond_dev->priv;
3401 
3402 	switch (event) {
3403 	case NETDEV_CHANGENAME:
3404 		return bond_event_changename(event_bond);
3405 	case NETDEV_UNREGISTER:
3406 		bond_release_all(event_bond->dev);
3407 		break;
3408 	default:
3409 		break;
3410 	}
3411 
3412 	return NOTIFY_DONE;
3413 }
3414 
3415 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3416 {
3417 	struct net_device *bond_dev = slave_dev->master;
3418 	struct bonding *bond = bond_dev->priv;
3419 
3420 	switch (event) {
3421 	case NETDEV_UNREGISTER:
3422 		if (bond_dev) {
3423 			if (bond->setup_by_slave)
3424 				bond_release_and_destroy(bond_dev, slave_dev);
3425 			else
3426 				bond_release(bond_dev, slave_dev);
3427 		}
3428 		break;
3429 	case NETDEV_CHANGE:
3430 		/*
3431 		 * TODO: is this what we get if somebody
3432 		 * sets up a hierarchical bond, then rmmod's
3433 		 * one of the slave bonding devices?
3434 		 */
3435 		break;
3436 	case NETDEV_DOWN:
3437 		/*
3438 		 * ... Or is it this?
3439 		 */
3440 		break;
3441 	case NETDEV_CHANGEMTU:
3442 		/*
3443 		 * TODO: Should slaves be allowed to
3444 		 * independently alter their MTU?  For
3445 		 * an active-backup bond, slaves need
3446 		 * not be the same type of device, so
3447 		 * MTUs may vary.  For other modes,
3448 		 * slaves arguably should have the
3449 		 * same MTUs. To do this, we'd need to
3450 		 * take over the slave's change_mtu
3451 		 * function for the duration of their
3452 		 * servitude.
3453 		 */
3454 		break;
3455 	case NETDEV_CHANGENAME:
3456 		/*
3457 		 * TODO: handle changing the primary's name
3458 		 */
3459 		break;
3460 	case NETDEV_FEAT_CHANGE:
3461 		bond_compute_features(bond);
3462 		break;
3463 	default:
3464 		break;
3465 	}
3466 
3467 	return NOTIFY_DONE;
3468 }
3469 
3470 /*
3471  * bond_netdev_event: handle netdev notifier chain events.
3472  *
3473  * This function receives events for the netdev chain.  The caller (an
3474  * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3475  * locks for us to safely manipulate the slave devices (RTNL lock,
3476  * dev_probe_lock).
3477  */
3478 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3479 {
3480 	struct net_device *event_dev = (struct net_device *)ptr;
3481 
3482 	if (event_dev->nd_net != &init_net)
3483 		return NOTIFY_DONE;
3484 
3485 	dprintk("event_dev: %s, event: %lx\n",
3486 		(event_dev ? event_dev->name : "None"),
3487 		event);
3488 
3489 	if (!(event_dev->priv_flags & IFF_BONDING))
3490 		return NOTIFY_DONE;
3491 
3492 	if (event_dev->flags & IFF_MASTER) {
3493 		dprintk("IFF_MASTER\n");
3494 		return bond_master_netdev_event(event, event_dev);
3495 	}
3496 
3497 	if (event_dev->flags & IFF_SLAVE) {
3498 		dprintk("IFF_SLAVE\n");
3499 		return bond_slave_netdev_event(event, event_dev);
3500 	}
3501 
3502 	return NOTIFY_DONE;
3503 }
3504 
3505 /*
3506  * bond_inetaddr_event: handle inetaddr notifier chain events.
3507  *
3508  * We keep track of device IPs primarily to use as source addresses in
3509  * ARP monitor probes (rather than spewing out broadcasts all the time).
3510  *
3511  * We track one IP for the main device (if it has one), plus one per VLAN.
3512  */
3513 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3514 {
3515 	struct in_ifaddr *ifa = ptr;
3516 	struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3517 	struct bonding *bond, *bond_next;
3518 	struct vlan_entry *vlan, *vlan_next;
3519 
3520 	list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) {
3521 		if (bond->dev == event_dev) {
3522 			switch (event) {
3523 			case NETDEV_UP:
3524 				bond->master_ip = ifa->ifa_local;
3525 				return NOTIFY_OK;
3526 			case NETDEV_DOWN:
3527 				bond->master_ip = bond_glean_dev_ip(bond->dev);
3528 				return NOTIFY_OK;
3529 			default:
3530 				return NOTIFY_DONE;
3531 			}
3532 		}
3533 
3534 		if (list_empty(&bond->vlan_list))
3535 			continue;
3536 
3537 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
3538 					 vlan_list) {
3539 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3540 			if (vlan_dev == event_dev) {
3541 				switch (event) {
3542 				case NETDEV_UP:
3543 					vlan->vlan_ip = ifa->ifa_local;
3544 					return NOTIFY_OK;
3545 				case NETDEV_DOWN:
3546 					vlan->vlan_ip =
3547 						bond_glean_dev_ip(vlan_dev);
3548 					return NOTIFY_OK;
3549 				default:
3550 					return NOTIFY_DONE;
3551 				}
3552 			}
3553 		}
3554 	}
3555 	return NOTIFY_DONE;
3556 }
3557 
3558 static struct notifier_block bond_netdev_notifier = {
3559 	.notifier_call = bond_netdev_event,
3560 };
3561 
3562 static struct notifier_block bond_inetaddr_notifier = {
3563 	.notifier_call = bond_inetaddr_event,
3564 };
3565 
3566 /*-------------------------- Packet type handling ---------------------------*/
3567 
3568 /* register to receive lacpdus on a bond */
3569 static void bond_register_lacpdu(struct bonding *bond)
3570 {
3571 	struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3572 
3573 	/* initialize packet type */
3574 	pk_type->type = PKT_TYPE_LACPDU;
3575 	pk_type->dev = bond->dev;
3576 	pk_type->func = bond_3ad_lacpdu_recv;
3577 
3578 	dev_add_pack(pk_type);
3579 }
3580 
3581 /* unregister to receive lacpdus on a bond */
3582 static void bond_unregister_lacpdu(struct bonding *bond)
3583 {
3584 	dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3585 }
3586 
3587 void bond_register_arp(struct bonding *bond)
3588 {
3589 	struct packet_type *pt = &bond->arp_mon_pt;
3590 
3591 	if (pt->type)
3592 		return;
3593 
3594 	pt->type = htons(ETH_P_ARP);
3595 	pt->dev = bond->dev;
3596 	pt->func = bond_arp_rcv;
3597 	dev_add_pack(pt);
3598 }
3599 
3600 void bond_unregister_arp(struct bonding *bond)
3601 {
3602 	struct packet_type *pt = &bond->arp_mon_pt;
3603 
3604 	dev_remove_pack(pt);
3605 	pt->type = 0;
3606 }
3607 
3608 /*---------------------------- Hashing Policies -----------------------------*/
3609 
3610 /*
3611  * Hash for the output device based upon layer 2 and layer 3 data. If
3612  * the packet is not IP mimic bond_xmit_hash_policy_l2()
3613  */
3614 static int bond_xmit_hash_policy_l23(struct sk_buff *skb,
3615 				     struct net_device *bond_dev, int count)
3616 {
3617 	struct ethhdr *data = (struct ethhdr *)skb->data;
3618 	struct iphdr *iph = ip_hdr(skb);
3619 
3620 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3621 		return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3622 			(data->h_dest[5] ^ bond_dev->dev_addr[5])) % count;
3623 	}
3624 
3625 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3626 }
3627 
3628 /*
3629  * Hash for the output device based upon layer 3 and layer 4 data. If
3630  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3631  * altogether not IP, mimic bond_xmit_hash_policy_l2()
3632  */
3633 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3634 				    struct net_device *bond_dev, int count)
3635 {
3636 	struct ethhdr *data = (struct ethhdr *)skb->data;
3637 	struct iphdr *iph = ip_hdr(skb);
3638 	__be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3639 	int layer4_xor = 0;
3640 
3641 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3642 		if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3643 		    (iph->protocol == IPPROTO_TCP ||
3644 		     iph->protocol == IPPROTO_UDP)) {
3645 			layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
3646 		}
3647 		return (layer4_xor ^
3648 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3649 
3650 	}
3651 
3652 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3653 }
3654 
3655 /*
3656  * Hash for the output device based upon layer 2 data
3657  */
3658 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3659 				   struct net_device *bond_dev, int count)
3660 {
3661 	struct ethhdr *data = (struct ethhdr *)skb->data;
3662 
3663 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3664 }
3665 
3666 /*-------------------------- Device entry points ----------------------------*/
3667 
3668 static int bond_open(struct net_device *bond_dev)
3669 {
3670 	struct bonding *bond = bond_dev->priv;
3671 
3672 	bond->kill_timers = 0;
3673 
3674 	if ((bond->params.mode == BOND_MODE_TLB) ||
3675 	    (bond->params.mode == BOND_MODE_ALB)) {
3676 		/* bond_alb_initialize must be called before the timer
3677 		 * is started.
3678 		 */
3679 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3680 			/* something went wrong - fail the open operation */
3681 			return -1;
3682 		}
3683 
3684 		INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3685 		queue_delayed_work(bond->wq, &bond->alb_work, 0);
3686 	}
3687 
3688 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3689 		INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3690 		queue_delayed_work(bond->wq, &bond->mii_work, 0);
3691 	}
3692 
3693 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3694 		if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3695 			INIT_DELAYED_WORK(&bond->arp_work,
3696 					  bond_activebackup_arp_mon);
3697 		else
3698 			INIT_DELAYED_WORK(&bond->arp_work,
3699 					  bond_loadbalance_arp_mon);
3700 
3701 		queue_delayed_work(bond->wq, &bond->arp_work, 0);
3702 		if (bond->params.arp_validate)
3703 			bond_register_arp(bond);
3704 	}
3705 
3706 	if (bond->params.mode == BOND_MODE_8023AD) {
3707 		INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3708 		queue_delayed_work(bond->wq, &bond->ad_work, 0);
3709 		/* register to receive LACPDUs */
3710 		bond_register_lacpdu(bond);
3711 	}
3712 
3713 	return 0;
3714 }
3715 
3716 static int bond_close(struct net_device *bond_dev)
3717 {
3718 	struct bonding *bond = bond_dev->priv;
3719 
3720 	if (bond->params.mode == BOND_MODE_8023AD) {
3721 		/* Unregister the receive of LACPDUs */
3722 		bond_unregister_lacpdu(bond);
3723 	}
3724 
3725 	if (bond->params.arp_validate)
3726 		bond_unregister_arp(bond);
3727 
3728 	write_lock_bh(&bond->lock);
3729 
3730 
3731 	/* signal timers not to re-arm */
3732 	bond->kill_timers = 1;
3733 
3734 	write_unlock_bh(&bond->lock);
3735 
3736 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3737 		cancel_delayed_work(&bond->mii_work);
3738 	}
3739 
3740 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3741 		cancel_delayed_work(&bond->arp_work);
3742 	}
3743 
3744 	switch (bond->params.mode) {
3745 	case BOND_MODE_8023AD:
3746 		cancel_delayed_work(&bond->ad_work);
3747 		break;
3748 	case BOND_MODE_TLB:
3749 	case BOND_MODE_ALB:
3750 		cancel_delayed_work(&bond->alb_work);
3751 		break;
3752 	default:
3753 		break;
3754 	}
3755 
3756 
3757 	if ((bond->params.mode == BOND_MODE_TLB) ||
3758 	    (bond->params.mode == BOND_MODE_ALB)) {
3759 		/* Must be called only after all
3760 		 * slaves have been released
3761 		 */
3762 		bond_alb_deinitialize(bond);
3763 	}
3764 
3765 	return 0;
3766 }
3767 
3768 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3769 {
3770 	struct bonding *bond = bond_dev->priv;
3771 	struct net_device_stats *stats = &(bond->stats), *sstats;
3772 	struct slave *slave;
3773 	int i;
3774 
3775 	memset(stats, 0, sizeof(struct net_device_stats));
3776 
3777 	read_lock_bh(&bond->lock);
3778 
3779 	bond_for_each_slave(bond, slave, i) {
3780 		sstats = slave->dev->get_stats(slave->dev);
3781 		stats->rx_packets += sstats->rx_packets;
3782 		stats->rx_bytes += sstats->rx_bytes;
3783 		stats->rx_errors += sstats->rx_errors;
3784 		stats->rx_dropped += sstats->rx_dropped;
3785 
3786 		stats->tx_packets += sstats->tx_packets;
3787 		stats->tx_bytes += sstats->tx_bytes;
3788 		stats->tx_errors += sstats->tx_errors;
3789 		stats->tx_dropped += sstats->tx_dropped;
3790 
3791 		stats->multicast += sstats->multicast;
3792 		stats->collisions += sstats->collisions;
3793 
3794 		stats->rx_length_errors += sstats->rx_length_errors;
3795 		stats->rx_over_errors += sstats->rx_over_errors;
3796 		stats->rx_crc_errors += sstats->rx_crc_errors;
3797 		stats->rx_frame_errors += sstats->rx_frame_errors;
3798 		stats->rx_fifo_errors += sstats->rx_fifo_errors;
3799 		stats->rx_missed_errors += sstats->rx_missed_errors;
3800 
3801 		stats->tx_aborted_errors += sstats->tx_aborted_errors;
3802 		stats->tx_carrier_errors += sstats->tx_carrier_errors;
3803 		stats->tx_fifo_errors += sstats->tx_fifo_errors;
3804 		stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3805 		stats->tx_window_errors += sstats->tx_window_errors;
3806 	}
3807 
3808 	read_unlock_bh(&bond->lock);
3809 
3810 	return stats;
3811 }
3812 
3813 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3814 {
3815 	struct net_device *slave_dev = NULL;
3816 	struct ifbond k_binfo;
3817 	struct ifbond __user *u_binfo = NULL;
3818 	struct ifslave k_sinfo;
3819 	struct ifslave __user *u_sinfo = NULL;
3820 	struct mii_ioctl_data *mii = NULL;
3821 	int res = 0;
3822 
3823 	dprintk("bond_ioctl: master=%s, cmd=%d\n",
3824 		bond_dev->name, cmd);
3825 
3826 	switch (cmd) {
3827 	case SIOCGMIIPHY:
3828 		mii = if_mii(ifr);
3829 		if (!mii) {
3830 			return -EINVAL;
3831 		}
3832 		mii->phy_id = 0;
3833 		/* Fall Through */
3834 	case SIOCGMIIREG:
3835 		/*
3836 		 * We do this again just in case we were called by SIOCGMIIREG
3837 		 * instead of SIOCGMIIPHY.
3838 		 */
3839 		mii = if_mii(ifr);
3840 		if (!mii) {
3841 			return -EINVAL;
3842 		}
3843 
3844 		if (mii->reg_num == 1) {
3845 			struct bonding *bond = bond_dev->priv;
3846 			mii->val_out = 0;
3847 			read_lock(&bond->lock);
3848 			read_lock(&bond->curr_slave_lock);
3849 			if (netif_carrier_ok(bond->dev)) {
3850 				mii->val_out = BMSR_LSTATUS;
3851 			}
3852 			read_unlock(&bond->curr_slave_lock);
3853 			read_unlock(&bond->lock);
3854 		}
3855 
3856 		return 0;
3857 	case BOND_INFO_QUERY_OLD:
3858 	case SIOCBONDINFOQUERY:
3859 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3860 
3861 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3862 			return -EFAULT;
3863 		}
3864 
3865 		res = bond_info_query(bond_dev, &k_binfo);
3866 		if (res == 0) {
3867 			if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3868 				return -EFAULT;
3869 			}
3870 		}
3871 
3872 		return res;
3873 	case BOND_SLAVE_INFO_QUERY_OLD:
3874 	case SIOCBONDSLAVEINFOQUERY:
3875 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3876 
3877 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3878 			return -EFAULT;
3879 		}
3880 
3881 		res = bond_slave_info_query(bond_dev, &k_sinfo);
3882 		if (res == 0) {
3883 			if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3884 				return -EFAULT;
3885 			}
3886 		}
3887 
3888 		return res;
3889 	default:
3890 		/* Go on */
3891 		break;
3892 	}
3893 
3894 	if (!capable(CAP_NET_ADMIN)) {
3895 		return -EPERM;
3896 	}
3897 
3898 	down_write(&(bonding_rwsem));
3899 	slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave);
3900 
3901 	dprintk("slave_dev=%p: \n", slave_dev);
3902 
3903 	if (!slave_dev) {
3904 		res = -ENODEV;
3905 	} else {
3906 		dprintk("slave_dev->name=%s: \n", slave_dev->name);
3907 		switch (cmd) {
3908 		case BOND_ENSLAVE_OLD:
3909 		case SIOCBONDENSLAVE:
3910 			res = bond_enslave(bond_dev, slave_dev);
3911 			break;
3912 		case BOND_RELEASE_OLD:
3913 		case SIOCBONDRELEASE:
3914 			res = bond_release(bond_dev, slave_dev);
3915 			break;
3916 		case BOND_SETHWADDR_OLD:
3917 		case SIOCBONDSETHWADDR:
3918 			res = bond_sethwaddr(bond_dev, slave_dev);
3919 			break;
3920 		case BOND_CHANGE_ACTIVE_OLD:
3921 		case SIOCBONDCHANGEACTIVE:
3922 			res = bond_ioctl_change_active(bond_dev, slave_dev);
3923 			break;
3924 		default:
3925 			res = -EOPNOTSUPP;
3926 		}
3927 
3928 		dev_put(slave_dev);
3929 	}
3930 
3931 	up_write(&(bonding_rwsem));
3932 	return res;
3933 }
3934 
3935 static void bond_set_multicast_list(struct net_device *bond_dev)
3936 {
3937 	struct bonding *bond = bond_dev->priv;
3938 	struct dev_mc_list *dmi;
3939 
3940 	write_lock_bh(&bond->lock);
3941 
3942 	/*
3943 	 * Do promisc before checking multicast_mode
3944 	 */
3945 	if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
3946 		bond_set_promiscuity(bond, 1);
3947 	}
3948 
3949 	if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
3950 		bond_set_promiscuity(bond, -1);
3951 	}
3952 
3953 	/* set allmulti flag to slaves */
3954 	if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
3955 		bond_set_allmulti(bond, 1);
3956 	}
3957 
3958 	if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
3959 		bond_set_allmulti(bond, -1);
3960 	}
3961 
3962 	bond->flags = bond_dev->flags;
3963 
3964 	/* looking for addresses to add to slaves' mc list */
3965 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
3966 		if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
3967 			bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3968 		}
3969 	}
3970 
3971 	/* looking for addresses to delete from slaves' list */
3972 	for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
3973 		if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
3974 			bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3975 		}
3976 	}
3977 
3978 	/* save master's multicast list */
3979 	bond_mc_list_destroy(bond);
3980 	bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
3981 
3982 	write_unlock_bh(&bond->lock);
3983 }
3984 
3985 /*
3986  * Change the MTU of all of a master's slaves to match the master
3987  */
3988 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3989 {
3990 	struct bonding *bond = bond_dev->priv;
3991 	struct slave *slave, *stop_at;
3992 	int res = 0;
3993 	int i;
3994 
3995 	dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
3996 		(bond_dev ? bond_dev->name : "None"), new_mtu);
3997 
3998 	/* Can't hold bond->lock with bh disabled here since
3999 	 * some base drivers panic. On the other hand we can't
4000 	 * hold bond->lock without bh disabled because we'll
4001 	 * deadlock. The only solution is to rely on the fact
4002 	 * that we're under rtnl_lock here, and the slaves
4003 	 * list won't change. This doesn't solve the problem
4004 	 * of setting the slave's MTU while it is
4005 	 * transmitting, but the assumption is that the base
4006 	 * driver can handle that.
4007 	 *
4008 	 * TODO: figure out a way to safely iterate the slaves
4009 	 * list, but without holding a lock around the actual
4010 	 * call to the base driver.
4011 	 */
4012 
4013 	bond_for_each_slave(bond, slave, i) {
4014 		dprintk("s %p s->p %p c_m %p\n", slave,
4015 			slave->prev, slave->dev->change_mtu);
4016 
4017 		res = dev_set_mtu(slave->dev, new_mtu);
4018 
4019 		if (res) {
4020 			/* If we failed to set the slave's mtu to the new value
4021 			 * we must abort the operation even in ACTIVE_BACKUP
4022 			 * mode, because if we allow the backup slaves to have
4023 			 * different mtu values than the active slave we'll
4024 			 * need to change their mtu when doing a failover. That
4025 			 * means changing their mtu from timer context, which
4026 			 * is probably not a good idea.
4027 			 */
4028 			dprintk("err %d %s\n", res, slave->dev->name);
4029 			goto unwind;
4030 		}
4031 	}
4032 
4033 	bond_dev->mtu = new_mtu;
4034 
4035 	return 0;
4036 
4037 unwind:
4038 	/* unwind from head to the slave that failed */
4039 	stop_at = slave;
4040 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4041 		int tmp_res;
4042 
4043 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
4044 		if (tmp_res) {
4045 			dprintk("unwind err %d dev %s\n", tmp_res,
4046 				slave->dev->name);
4047 		}
4048 	}
4049 
4050 	return res;
4051 }
4052 
4053 /*
4054  * Change HW address
4055  *
4056  * Note that many devices must be down to change the HW address, and
4057  * downing the master releases all slaves.  We can make bonds full of
4058  * bonding devices to test this, however.
4059  */
4060 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
4061 {
4062 	struct bonding *bond = bond_dev->priv;
4063 	struct sockaddr *sa = addr, tmp_sa;
4064 	struct slave *slave, *stop_at;
4065 	int res = 0;
4066 	int i;
4067 
4068 	dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
4069 
4070 	/*
4071 	 * If fail_over_mac is enabled, do nothing and return success.
4072 	 * Returning an error causes ifenslave to fail.
4073 	 */
4074 	if (bond->params.fail_over_mac)
4075 		return 0;
4076 
4077 	if (!is_valid_ether_addr(sa->sa_data)) {
4078 		return -EADDRNOTAVAIL;
4079 	}
4080 
4081 	/* Can't hold bond->lock with bh disabled here since
4082 	 * some base drivers panic. On the other hand we can't
4083 	 * hold bond->lock without bh disabled because we'll
4084 	 * deadlock. The only solution is to rely on the fact
4085 	 * that we're under rtnl_lock here, and the slaves
4086 	 * list won't change. This doesn't solve the problem
4087 	 * of setting the slave's hw address while it is
4088 	 * transmitting, but the assumption is that the base
4089 	 * driver can handle that.
4090 	 *
4091 	 * TODO: figure out a way to safely iterate the slaves
4092 	 * list, but without holding a lock around the actual
4093 	 * call to the base driver.
4094 	 */
4095 
4096 	bond_for_each_slave(bond, slave, i) {
4097 		dprintk("slave %p %s\n", slave, slave->dev->name);
4098 
4099 		if (slave->dev->set_mac_address == NULL) {
4100 			res = -EOPNOTSUPP;
4101 			dprintk("EOPNOTSUPP %s\n", slave->dev->name);
4102 			goto unwind;
4103 		}
4104 
4105 		res = dev_set_mac_address(slave->dev, addr);
4106 		if (res) {
4107 			/* TODO: consider downing the slave
4108 			 * and retry ?
4109 			 * User should expect communications
4110 			 * breakage anyway until ARP finish
4111 			 * updating, so...
4112 			 */
4113 			dprintk("err %d %s\n", res, slave->dev->name);
4114 			goto unwind;
4115 		}
4116 	}
4117 
4118 	/* success */
4119 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
4120 	return 0;
4121 
4122 unwind:
4123 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
4124 	tmp_sa.sa_family = bond_dev->type;
4125 
4126 	/* unwind from head to the slave that failed */
4127 	stop_at = slave;
4128 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4129 		int tmp_res;
4130 
4131 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
4132 		if (tmp_res) {
4133 			dprintk("unwind err %d dev %s\n", tmp_res,
4134 				slave->dev->name);
4135 		}
4136 	}
4137 
4138 	return res;
4139 }
4140 
4141 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4142 {
4143 	struct bonding *bond = bond_dev->priv;
4144 	struct slave *slave, *start_at;
4145 	int i, slave_no, res = 1;
4146 
4147 	read_lock(&bond->lock);
4148 
4149 	if (!BOND_IS_OK(bond)) {
4150 		goto out;
4151 	}
4152 
4153 	/*
4154 	 * Concurrent TX may collide on rr_tx_counter; we accept that
4155 	 * as being rare enough not to justify using an atomic op here
4156 	 */
4157 	slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
4158 
4159 	bond_for_each_slave(bond, slave, i) {
4160 		slave_no--;
4161 		if (slave_no < 0) {
4162 			break;
4163 		}
4164 	}
4165 
4166 	start_at = slave;
4167 	bond_for_each_slave_from(bond, slave, i, start_at) {
4168 		if (IS_UP(slave->dev) &&
4169 		    (slave->link == BOND_LINK_UP) &&
4170 		    (slave->state == BOND_STATE_ACTIVE)) {
4171 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4172 			break;
4173 		}
4174 	}
4175 
4176 out:
4177 	if (res) {
4178 		/* no suitable interface, frame not sent */
4179 		dev_kfree_skb(skb);
4180 	}
4181 	read_unlock(&bond->lock);
4182 	return 0;
4183 }
4184 
4185 
4186 /*
4187  * in active-backup mode, we know that bond->curr_active_slave is always valid if
4188  * the bond has a usable interface.
4189  */
4190 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4191 {
4192 	struct bonding *bond = bond_dev->priv;
4193 	int res = 1;
4194 
4195 	read_lock(&bond->lock);
4196 	read_lock(&bond->curr_slave_lock);
4197 
4198 	if (!BOND_IS_OK(bond)) {
4199 		goto out;
4200 	}
4201 
4202 	if (!bond->curr_active_slave)
4203 		goto out;
4204 
4205 	res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4206 
4207 out:
4208 	if (res) {
4209 		/* no suitable interface, frame not sent */
4210 		dev_kfree_skb(skb);
4211 	}
4212 	read_unlock(&bond->curr_slave_lock);
4213 	read_unlock(&bond->lock);
4214 	return 0;
4215 }
4216 
4217 /*
4218  * In bond_xmit_xor() , we determine the output device by using a pre-
4219  * determined xmit_hash_policy(), If the selected device is not enabled,
4220  * find the next active slave.
4221  */
4222 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4223 {
4224 	struct bonding *bond = bond_dev->priv;
4225 	struct slave *slave, *start_at;
4226 	int slave_no;
4227 	int i;
4228 	int res = 1;
4229 
4230 	read_lock(&bond->lock);
4231 
4232 	if (!BOND_IS_OK(bond)) {
4233 		goto out;
4234 	}
4235 
4236 	slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4237 
4238 	bond_for_each_slave(bond, slave, i) {
4239 		slave_no--;
4240 		if (slave_no < 0) {
4241 			break;
4242 		}
4243 	}
4244 
4245 	start_at = slave;
4246 
4247 	bond_for_each_slave_from(bond, slave, i, start_at) {
4248 		if (IS_UP(slave->dev) &&
4249 		    (slave->link == BOND_LINK_UP) &&
4250 		    (slave->state == BOND_STATE_ACTIVE)) {
4251 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4252 			break;
4253 		}
4254 	}
4255 
4256 out:
4257 	if (res) {
4258 		/* no suitable interface, frame not sent */
4259 		dev_kfree_skb(skb);
4260 	}
4261 	read_unlock(&bond->lock);
4262 	return 0;
4263 }
4264 
4265 /*
4266  * in broadcast mode, we send everything to all usable interfaces.
4267  */
4268 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4269 {
4270 	struct bonding *bond = bond_dev->priv;
4271 	struct slave *slave, *start_at;
4272 	struct net_device *tx_dev = NULL;
4273 	int i;
4274 	int res = 1;
4275 
4276 	read_lock(&bond->lock);
4277 
4278 	if (!BOND_IS_OK(bond)) {
4279 		goto out;
4280 	}
4281 
4282 	read_lock(&bond->curr_slave_lock);
4283 	start_at = bond->curr_active_slave;
4284 	read_unlock(&bond->curr_slave_lock);
4285 
4286 	if (!start_at) {
4287 		goto out;
4288 	}
4289 
4290 	bond_for_each_slave_from(bond, slave, i, start_at) {
4291 		if (IS_UP(slave->dev) &&
4292 		    (slave->link == BOND_LINK_UP) &&
4293 		    (slave->state == BOND_STATE_ACTIVE)) {
4294 			if (tx_dev) {
4295 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4296 				if (!skb2) {
4297 					printk(KERN_ERR DRV_NAME
4298 					       ": %s: Error: bond_xmit_broadcast(): "
4299 					       "skb_clone() failed\n",
4300 					       bond_dev->name);
4301 					continue;
4302 				}
4303 
4304 				res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4305 				if (res) {
4306 					dev_kfree_skb(skb2);
4307 					continue;
4308 				}
4309 			}
4310 			tx_dev = slave->dev;
4311 		}
4312 	}
4313 
4314 	if (tx_dev) {
4315 		res = bond_dev_queue_xmit(bond, skb, tx_dev);
4316 	}
4317 
4318 out:
4319 	if (res) {
4320 		/* no suitable interface, frame not sent */
4321 		dev_kfree_skb(skb);
4322 	}
4323 	/* frame sent to all suitable interfaces */
4324 	read_unlock(&bond->lock);
4325 	return 0;
4326 }
4327 
4328 /*------------------------- Device initialization ---------------------------*/
4329 
4330 static void bond_set_xmit_hash_policy(struct bonding *bond)
4331 {
4332 	switch (bond->params.xmit_policy) {
4333 	case BOND_XMIT_POLICY_LAYER23:
4334 		bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
4335 		break;
4336 	case BOND_XMIT_POLICY_LAYER34:
4337 		bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4338 		break;
4339 	case BOND_XMIT_POLICY_LAYER2:
4340 	default:
4341 		bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4342 		break;
4343 	}
4344 }
4345 
4346 /*
4347  * set bond mode specific net device operations
4348  */
4349 void bond_set_mode_ops(struct bonding *bond, int mode)
4350 {
4351 	struct net_device *bond_dev = bond->dev;
4352 
4353 	switch (mode) {
4354 	case BOND_MODE_ROUNDROBIN:
4355 		bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4356 		break;
4357 	case BOND_MODE_ACTIVEBACKUP:
4358 		bond_dev->hard_start_xmit = bond_xmit_activebackup;
4359 		break;
4360 	case BOND_MODE_XOR:
4361 		bond_dev->hard_start_xmit = bond_xmit_xor;
4362 		bond_set_xmit_hash_policy(bond);
4363 		break;
4364 	case BOND_MODE_BROADCAST:
4365 		bond_dev->hard_start_xmit = bond_xmit_broadcast;
4366 		break;
4367 	case BOND_MODE_8023AD:
4368 		bond_set_master_3ad_flags(bond);
4369 		bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4370 		bond_set_xmit_hash_policy(bond);
4371 		break;
4372 	case BOND_MODE_ALB:
4373 		bond_set_master_alb_flags(bond);
4374 		/* FALLTHRU */
4375 	case BOND_MODE_TLB:
4376 		bond_dev->hard_start_xmit = bond_alb_xmit;
4377 		bond_dev->set_mac_address = bond_alb_set_mac_address;
4378 		break;
4379 	default:
4380 		/* Should never happen, mode already checked */
4381 		printk(KERN_ERR DRV_NAME
4382 		       ": %s: Error: Unknown bonding mode %d\n",
4383 		       bond_dev->name,
4384 		       mode);
4385 		break;
4386 	}
4387 }
4388 
4389 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4390 				    struct ethtool_drvinfo *drvinfo)
4391 {
4392 	strncpy(drvinfo->driver, DRV_NAME, 32);
4393 	strncpy(drvinfo->version, DRV_VERSION, 32);
4394 	snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4395 }
4396 
4397 static const struct ethtool_ops bond_ethtool_ops = {
4398 	.get_drvinfo		= bond_ethtool_get_drvinfo,
4399 };
4400 
4401 /*
4402  * Does not allocate but creates a /proc entry.
4403  * Allowed to fail.
4404  */
4405 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4406 {
4407 	struct bonding *bond = bond_dev->priv;
4408 
4409 	dprintk("Begin bond_init for %s\n", bond_dev->name);
4410 
4411 	/* initialize rwlocks */
4412 	rwlock_init(&bond->lock);
4413 	rwlock_init(&bond->curr_slave_lock);
4414 
4415 	bond->params = *params; /* copy params struct */
4416 
4417 	bond->wq = create_singlethread_workqueue(bond_dev->name);
4418 	if (!bond->wq)
4419 		return -ENOMEM;
4420 
4421 	/* Initialize pointers */
4422 	bond->first_slave = NULL;
4423 	bond->curr_active_slave = NULL;
4424 	bond->current_arp_slave = NULL;
4425 	bond->primary_slave = NULL;
4426 	bond->dev = bond_dev;
4427 	bond->send_grat_arp = 0;
4428 	bond->setup_by_slave = 0;
4429 	INIT_LIST_HEAD(&bond->vlan_list);
4430 
4431 	/* Initialize the device entry points */
4432 	bond_dev->open = bond_open;
4433 	bond_dev->stop = bond_close;
4434 	bond_dev->get_stats = bond_get_stats;
4435 	bond_dev->do_ioctl = bond_do_ioctl;
4436 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4437 	bond_dev->set_multicast_list = bond_set_multicast_list;
4438 	bond_dev->change_mtu = bond_change_mtu;
4439 	bond_dev->set_mac_address = bond_set_mac_address;
4440 	bond_dev->validate_addr = NULL;
4441 
4442 	bond_set_mode_ops(bond, bond->params.mode);
4443 
4444 	bond_dev->destructor = free_netdev;
4445 
4446 	/* Initialize the device options */
4447 	bond_dev->tx_queue_len = 0;
4448 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4449 	bond_dev->priv_flags |= IFF_BONDING;
4450 
4451 	/* At first, we block adding VLANs. That's the only way to
4452 	 * prevent problems that occur when adding VLANs over an
4453 	 * empty bond. The block will be removed once non-challenged
4454 	 * slaves are enslaved.
4455 	 */
4456 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4457 
4458 	/* don't acquire bond device's netif_tx_lock when
4459 	 * transmitting */
4460 	bond_dev->features |= NETIF_F_LLTX;
4461 
4462 	/* By default, we declare the bond to be fully
4463 	 * VLAN hardware accelerated capable. Special
4464 	 * care is taken in the various xmit functions
4465 	 * when there are slaves that are not hw accel
4466 	 * capable
4467 	 */
4468 	bond_dev->vlan_rx_register = bond_vlan_rx_register;
4469 	bond_dev->vlan_rx_add_vid  = bond_vlan_rx_add_vid;
4470 	bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4471 	bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4472 			       NETIF_F_HW_VLAN_RX |
4473 			       NETIF_F_HW_VLAN_FILTER);
4474 
4475 #ifdef CONFIG_PROC_FS
4476 	bond_create_proc_entry(bond);
4477 #endif
4478 	list_add_tail(&bond->bond_list, &bond_dev_list);
4479 
4480 	return 0;
4481 }
4482 
4483 /* De-initialize device specific data.
4484  * Caller must hold rtnl_lock.
4485  */
4486 static void bond_deinit(struct net_device *bond_dev)
4487 {
4488 	struct bonding *bond = bond_dev->priv;
4489 
4490 	list_del(&bond->bond_list);
4491 
4492 #ifdef CONFIG_PROC_FS
4493 	bond_remove_proc_entry(bond);
4494 #endif
4495 }
4496 
4497 static void bond_work_cancel_all(struct bonding *bond)
4498 {
4499 	write_lock_bh(&bond->lock);
4500 	bond->kill_timers = 1;
4501 	write_unlock_bh(&bond->lock);
4502 
4503 	if (bond->params.miimon && delayed_work_pending(&bond->mii_work))
4504 		cancel_delayed_work(&bond->mii_work);
4505 
4506 	if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work))
4507 		cancel_delayed_work(&bond->arp_work);
4508 
4509 	if (bond->params.mode == BOND_MODE_ALB &&
4510 	    delayed_work_pending(&bond->alb_work))
4511 		cancel_delayed_work(&bond->alb_work);
4512 
4513 	if (bond->params.mode == BOND_MODE_8023AD &&
4514 	    delayed_work_pending(&bond->ad_work))
4515 		cancel_delayed_work(&bond->ad_work);
4516 }
4517 
4518 /* Unregister and free all bond devices.
4519  * Caller must hold rtnl_lock.
4520  */
4521 static void bond_free_all(void)
4522 {
4523 	struct bonding *bond, *nxt;
4524 
4525 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4526 		struct net_device *bond_dev = bond->dev;
4527 
4528 		bond_work_cancel_all(bond);
4529 		bond_mc_list_destroy(bond);
4530 		/* Release the bonded slaves */
4531 		bond_release_all(bond_dev);
4532 		bond_deinit(bond_dev);
4533 		unregister_netdevice(bond_dev);
4534 	}
4535 
4536 #ifdef CONFIG_PROC_FS
4537 	bond_destroy_proc_dir();
4538 #endif
4539 }
4540 
4541 /*------------------------- Module initialization ---------------------------*/
4542 
4543 /*
4544  * Convert string input module parms.  Accept either the
4545  * number of the mode or its string name.  A bit complicated because
4546  * some mode names are substrings of other names, and calls from sysfs
4547  * may have whitespace in the name (trailing newlines, for example).
4548  */
4549 int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl)
4550 {
4551 	int mode = -1, i, rv;
4552 	char modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4553 
4554 	rv = sscanf(buf, "%d", &mode);
4555 	if (!rv) {
4556 		rv = sscanf(buf, "%20s", modestr);
4557 		if (!rv)
4558 			return -1;
4559 	}
4560 
4561 	for (i = 0; tbl[i].modename; i++) {
4562 		if (mode == tbl[i].mode)
4563 			return tbl[i].mode;
4564 		if (strcmp(modestr, tbl[i].modename) == 0)
4565 			return tbl[i].mode;
4566 	}
4567 
4568 	return -1;
4569 }
4570 
4571 static int bond_check_params(struct bond_params *params)
4572 {
4573 	int arp_validate_value;
4574 
4575 	/*
4576 	 * Convert string parameters.
4577 	 */
4578 	if (mode) {
4579 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4580 		if (bond_mode == -1) {
4581 			printk(KERN_ERR DRV_NAME
4582 			       ": Error: Invalid bonding mode \"%s\"\n",
4583 			       mode == NULL ? "NULL" : mode);
4584 			return -EINVAL;
4585 		}
4586 	}
4587 
4588 	if (xmit_hash_policy) {
4589 		if ((bond_mode != BOND_MODE_XOR) &&
4590 		    (bond_mode != BOND_MODE_8023AD)) {
4591 			printk(KERN_INFO DRV_NAME
4592 			       ": xor_mode param is irrelevant in mode %s\n",
4593 			       bond_mode_name(bond_mode));
4594 		} else {
4595 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4596 							xmit_hashtype_tbl);
4597 			if (xmit_hashtype == -1) {
4598 				printk(KERN_ERR DRV_NAME
4599 			       	": Error: Invalid xmit_hash_policy \"%s\"\n",
4600 			       	xmit_hash_policy == NULL ? "NULL" :
4601 				       xmit_hash_policy);
4602 				return -EINVAL;
4603 			}
4604 		}
4605 	}
4606 
4607 	if (lacp_rate) {
4608 		if (bond_mode != BOND_MODE_8023AD) {
4609 			printk(KERN_INFO DRV_NAME
4610 			       ": lacp_rate param is irrelevant in mode %s\n",
4611 			       bond_mode_name(bond_mode));
4612 		} else {
4613 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4614 			if (lacp_fast == -1) {
4615 				printk(KERN_ERR DRV_NAME
4616 				       ": Error: Invalid lacp rate \"%s\"\n",
4617 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4618 				return -EINVAL;
4619 			}
4620 		}
4621 	}
4622 
4623 	if (max_bonds < 1 || max_bonds > INT_MAX) {
4624 		printk(KERN_WARNING DRV_NAME
4625 		       ": Warning: max_bonds (%d) not in range %d-%d, so it "
4626 		       "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4627 		       max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4628 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4629 	}
4630 
4631 	if (miimon < 0) {
4632 		printk(KERN_WARNING DRV_NAME
4633 		       ": Warning: miimon module parameter (%d), "
4634 		       "not in range 0-%d, so it was reset to %d\n",
4635 		       miimon, INT_MAX, BOND_LINK_MON_INTERV);
4636 		miimon = BOND_LINK_MON_INTERV;
4637 	}
4638 
4639 	if (updelay < 0) {
4640 		printk(KERN_WARNING DRV_NAME
4641 		       ": Warning: updelay module parameter (%d), "
4642 		       "not in range 0-%d, so it was reset to 0\n",
4643 		       updelay, INT_MAX);
4644 		updelay = 0;
4645 	}
4646 
4647 	if (downdelay < 0) {
4648 		printk(KERN_WARNING DRV_NAME
4649 		       ": Warning: downdelay module parameter (%d), "
4650 		       "not in range 0-%d, so it was reset to 0\n",
4651 		       downdelay, INT_MAX);
4652 		downdelay = 0;
4653 	}
4654 
4655 	if ((use_carrier != 0) && (use_carrier != 1)) {
4656 		printk(KERN_WARNING DRV_NAME
4657 		       ": Warning: use_carrier module parameter (%d), "
4658 		       "not of valid value (0/1), so it was set to 1\n",
4659 		       use_carrier);
4660 		use_carrier = 1;
4661 	}
4662 
4663 	/* reset values for 802.3ad */
4664 	if (bond_mode == BOND_MODE_8023AD) {
4665 		if (!miimon) {
4666 			printk(KERN_WARNING DRV_NAME
4667 			       ": Warning: miimon must be specified, "
4668 			       "otherwise bonding will not detect link "
4669 			       "failure, speed and duplex which are "
4670 			       "essential for 802.3ad operation\n");
4671 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4672 			miimon = 100;
4673 		}
4674 	}
4675 
4676 	/* reset values for TLB/ALB */
4677 	if ((bond_mode == BOND_MODE_TLB) ||
4678 	    (bond_mode == BOND_MODE_ALB)) {
4679 		if (!miimon) {
4680 			printk(KERN_WARNING DRV_NAME
4681 			       ": Warning: miimon must be specified, "
4682 			       "otherwise bonding will not detect link "
4683 			       "failure and link speed which are essential "
4684 			       "for TLB/ALB load balancing\n");
4685 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4686 			miimon = 100;
4687 		}
4688 	}
4689 
4690 	if (bond_mode == BOND_MODE_ALB) {
4691 		printk(KERN_NOTICE DRV_NAME
4692 		       ": In ALB mode you might experience client "
4693 		       "disconnections upon reconnection of a link if the "
4694 		       "bonding module updelay parameter (%d msec) is "
4695 		       "incompatible with the forwarding delay time of the "
4696 		       "switch\n",
4697 		       updelay);
4698 	}
4699 
4700 	if (!miimon) {
4701 		if (updelay || downdelay) {
4702 			/* just warn the user the up/down delay will have
4703 			 * no effect since miimon is zero...
4704 			 */
4705 			printk(KERN_WARNING DRV_NAME
4706 			       ": Warning: miimon module parameter not set "
4707 			       "and updelay (%d) or downdelay (%d) module "
4708 			       "parameter is set; updelay and downdelay have "
4709 			       "no effect unless miimon is set\n",
4710 			       updelay, downdelay);
4711 		}
4712 	} else {
4713 		/* don't allow arp monitoring */
4714 		if (arp_interval) {
4715 			printk(KERN_WARNING DRV_NAME
4716 			       ": Warning: miimon (%d) and arp_interval (%d) "
4717 			       "can't be used simultaneously, disabling ARP "
4718 			       "monitoring\n",
4719 			       miimon, arp_interval);
4720 			arp_interval = 0;
4721 		}
4722 
4723 		if ((updelay % miimon) != 0) {
4724 			printk(KERN_WARNING DRV_NAME
4725 			       ": Warning: updelay (%d) is not a multiple "
4726 			       "of miimon (%d), updelay rounded to %d ms\n",
4727 			       updelay, miimon, (updelay / miimon) * miimon);
4728 		}
4729 
4730 		updelay /= miimon;
4731 
4732 		if ((downdelay % miimon) != 0) {
4733 			printk(KERN_WARNING DRV_NAME
4734 			       ": Warning: downdelay (%d) is not a multiple "
4735 			       "of miimon (%d), downdelay rounded to %d ms\n",
4736 			       downdelay, miimon,
4737 			       (downdelay / miimon) * miimon);
4738 		}
4739 
4740 		downdelay /= miimon;
4741 	}
4742 
4743 	if (arp_interval < 0) {
4744 		printk(KERN_WARNING DRV_NAME
4745 		       ": Warning: arp_interval module parameter (%d) "
4746 		       ", not in range 0-%d, so it was reset to %d\n",
4747 		       arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4748 		arp_interval = BOND_LINK_ARP_INTERV;
4749 	}
4750 
4751 	for (arp_ip_count = 0;
4752 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4753 	     arp_ip_count++) {
4754 		/* not complete check, but should be good enough to
4755 		   catch mistakes */
4756 		if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4757 			printk(KERN_WARNING DRV_NAME
4758 			       ": Warning: bad arp_ip_target module parameter "
4759 			       "(%s), ARP monitoring will not be performed\n",
4760 			       arp_ip_target[arp_ip_count]);
4761 			arp_interval = 0;
4762 		} else {
4763 			__be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4764 			arp_target[arp_ip_count] = ip;
4765 		}
4766 	}
4767 
4768 	if (arp_interval && !arp_ip_count) {
4769 		/* don't allow arping if no arp_ip_target given... */
4770 		printk(KERN_WARNING DRV_NAME
4771 		       ": Warning: arp_interval module parameter (%d) "
4772 		       "specified without providing an arp_ip_target "
4773 		       "parameter, arp_interval was reset to 0\n",
4774 		       arp_interval);
4775 		arp_interval = 0;
4776 	}
4777 
4778 	if (arp_validate) {
4779 		if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4780 			printk(KERN_ERR DRV_NAME
4781 	       ": arp_validate only supported in active-backup mode\n");
4782 			return -EINVAL;
4783 		}
4784 		if (!arp_interval) {
4785 			printk(KERN_ERR DRV_NAME
4786 			       ": arp_validate requires arp_interval\n");
4787 			return -EINVAL;
4788 		}
4789 
4790 		arp_validate_value = bond_parse_parm(arp_validate,
4791 						     arp_validate_tbl);
4792 		if (arp_validate_value == -1) {
4793 			printk(KERN_ERR DRV_NAME
4794 			       ": Error: invalid arp_validate \"%s\"\n",
4795 			       arp_validate == NULL ? "NULL" : arp_validate);
4796 			return -EINVAL;
4797 		}
4798 	} else
4799 		arp_validate_value = 0;
4800 
4801 	if (miimon) {
4802 		printk(KERN_INFO DRV_NAME
4803 		       ": MII link monitoring set to %d ms\n",
4804 		       miimon);
4805 	} else if (arp_interval) {
4806 		int i;
4807 
4808 		printk(KERN_INFO DRV_NAME
4809 		       ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4810 		       arp_interval,
4811 		       arp_validate_tbl[arp_validate_value].modename,
4812 		       arp_ip_count);
4813 
4814 		for (i = 0; i < arp_ip_count; i++)
4815 			printk (" %s", arp_ip_target[i]);
4816 
4817 		printk("\n");
4818 
4819 	} else {
4820 		/* miimon and arp_interval not set, we need one so things
4821 		 * work as expected, see bonding.txt for details
4822 		 */
4823 		printk(KERN_WARNING DRV_NAME
4824 		       ": Warning: either miimon or arp_interval and "
4825 		       "arp_ip_target module parameters must be specified, "
4826 		       "otherwise bonding will not detect link failures! see "
4827 		       "bonding.txt for details.\n");
4828 	}
4829 
4830 	if (primary && !USES_PRIMARY(bond_mode)) {
4831 		/* currently, using a primary only makes sense
4832 		 * in active backup, TLB or ALB modes
4833 		 */
4834 		printk(KERN_WARNING DRV_NAME
4835 		       ": Warning: %s primary device specified but has no "
4836 		       "effect in %s mode\n",
4837 		       primary, bond_mode_name(bond_mode));
4838 		primary = NULL;
4839 	}
4840 
4841 	if (fail_over_mac && (bond_mode != BOND_MODE_ACTIVEBACKUP))
4842 		printk(KERN_WARNING DRV_NAME
4843 		       ": Warning: fail_over_mac only affects "
4844 		       "active-backup mode.\n");
4845 
4846 	/* fill params struct with the proper values */
4847 	params->mode = bond_mode;
4848 	params->xmit_policy = xmit_hashtype;
4849 	params->miimon = miimon;
4850 	params->arp_interval = arp_interval;
4851 	params->arp_validate = arp_validate_value;
4852 	params->updelay = updelay;
4853 	params->downdelay = downdelay;
4854 	params->use_carrier = use_carrier;
4855 	params->lacp_fast = lacp_fast;
4856 	params->primary[0] = 0;
4857 	params->fail_over_mac = fail_over_mac;
4858 
4859 	if (primary) {
4860 		strncpy(params->primary, primary, IFNAMSIZ);
4861 		params->primary[IFNAMSIZ - 1] = 0;
4862 	}
4863 
4864 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4865 
4866 	return 0;
4867 }
4868 
4869 static struct lock_class_key bonding_netdev_xmit_lock_key;
4870 
4871 /* Create a new bond based on the specified name and bonding parameters.
4872  * If name is NULL, obtain a suitable "bond%d" name for us.
4873  * Caller must NOT hold rtnl_lock; we need to release it here before we
4874  * set up our sysfs entries.
4875  */
4876 int bond_create(char *name, struct bond_params *params, struct bonding **newbond)
4877 {
4878 	struct net_device *bond_dev;
4879 	struct bonding *bond, *nxt;
4880 	int res;
4881 
4882 	rtnl_lock();
4883 	down_write(&bonding_rwsem);
4884 
4885 	/* Check to see if the bond already exists. */
4886 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list)
4887 		if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) {
4888 			printk(KERN_ERR DRV_NAME
4889 			       ": cannot add bond %s; it already exists\n",
4890 			       name);
4891 			res = -EPERM;
4892 			goto out_rtnl;
4893 		}
4894 
4895 	bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
4896 				ether_setup);
4897 	if (!bond_dev) {
4898 		printk(KERN_ERR DRV_NAME
4899 		       ": %s: eek! can't alloc netdev!\n",
4900 		       name);
4901 		res = -ENOMEM;
4902 		goto out_rtnl;
4903 	}
4904 
4905 	if (!name) {
4906 		res = dev_alloc_name(bond_dev, "bond%d");
4907 		if (res < 0)
4908 			goto out_netdev;
4909 	}
4910 
4911 	/* bond_init() must be called after dev_alloc_name() (for the
4912 	 * /proc files), but before register_netdevice(), because we
4913 	 * need to set function pointers.
4914 	 */
4915 
4916 	res = bond_init(bond_dev, params);
4917 	if (res < 0) {
4918 		goto out_netdev;
4919 	}
4920 
4921 	res = register_netdevice(bond_dev);
4922 	if (res < 0) {
4923 		goto out_bond;
4924 	}
4925 
4926 	lockdep_set_class(&bond_dev->_xmit_lock, &bonding_netdev_xmit_lock_key);
4927 
4928 	if (newbond)
4929 		*newbond = bond_dev->priv;
4930 
4931 	netif_carrier_off(bond_dev);
4932 
4933 	up_write(&bonding_rwsem);
4934 	rtnl_unlock(); /* allows sysfs registration of net device */
4935 	res = bond_create_sysfs_entry(bond_dev->priv);
4936 	if (res < 0) {
4937 		rtnl_lock();
4938 		down_write(&bonding_rwsem);
4939 		goto out_bond;
4940 	}
4941 
4942 	return 0;
4943 
4944 out_bond:
4945 	bond_deinit(bond_dev);
4946 out_netdev:
4947 	free_netdev(bond_dev);
4948 out_rtnl:
4949 	up_write(&bonding_rwsem);
4950 	rtnl_unlock();
4951 	return res;
4952 }
4953 
4954 static int __init bonding_init(void)
4955 {
4956 	int i;
4957 	int res;
4958 	struct bonding *bond, *nxt;
4959 
4960 	printk(KERN_INFO "%s", version);
4961 
4962 	res = bond_check_params(&bonding_defaults);
4963 	if (res) {
4964 		goto out;
4965 	}
4966 
4967 #ifdef CONFIG_PROC_FS
4968 	bond_create_proc_dir();
4969 #endif
4970 
4971 	init_rwsem(&bonding_rwsem);
4972 
4973 	for (i = 0; i < max_bonds; i++) {
4974 		res = bond_create(NULL, &bonding_defaults, NULL);
4975 		if (res)
4976 			goto err;
4977 	}
4978 
4979 	res = bond_create_sysfs();
4980 	if (res)
4981 		goto err;
4982 
4983 	register_netdevice_notifier(&bond_netdev_notifier);
4984 	register_inetaddr_notifier(&bond_inetaddr_notifier);
4985 
4986 	goto out;
4987 err:
4988 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4989 		bond_work_cancel_all(bond);
4990 		destroy_workqueue(bond->wq);
4991 	}
4992 
4993 	rtnl_lock();
4994 	bond_free_all();
4995 	bond_destroy_sysfs();
4996 	rtnl_unlock();
4997 out:
4998 	return res;
4999 
5000 }
5001 
5002 static void __exit bonding_exit(void)
5003 {
5004 	unregister_netdevice_notifier(&bond_netdev_notifier);
5005 	unregister_inetaddr_notifier(&bond_inetaddr_notifier);
5006 
5007 	rtnl_lock();
5008 	bond_free_all();
5009 	bond_destroy_sysfs();
5010 	rtnl_unlock();
5011 }
5012 
5013 module_init(bonding_init);
5014 module_exit(bonding_exit);
5015 MODULE_LICENSE("GPL");
5016 MODULE_VERSION(DRV_VERSION);
5017 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
5018 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
5019 MODULE_SUPPORTED_DEVICE("most ethernet devices");
5020 
5021 /*
5022  * Local variables:
5023  *  c-indent-level: 8
5024  *  c-basic-offset: 8
5025  *  tab-width: 8
5026  * End:
5027  */
5028 
5029