1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/fcntl.h> 40 #include <linux/interrupt.h> 41 #include <linux/ptrace.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <net/ip.h> 45 #include <linux/ip.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/init.h> 51 #include <linux/timer.h> 52 #include <linux/socket.h> 53 #include <linux/ctype.h> 54 #include <linux/inet.h> 55 #include <linux/bitops.h> 56 #include <linux/io.h> 57 #include <asm/system.h> 58 #include <asm/dma.h> 59 #include <linux/uaccess.h> 60 #include <linux/errno.h> 61 #include <linux/netdevice.h> 62 #include <linux/inetdevice.h> 63 #include <linux/igmp.h> 64 #include <linux/etherdevice.h> 65 #include <linux/skbuff.h> 66 #include <net/sock.h> 67 #include <linux/rtnetlink.h> 68 #include <linux/smp.h> 69 #include <linux/if_ether.h> 70 #include <net/arp.h> 71 #include <linux/mii.h> 72 #include <linux/ethtool.h> 73 #include <linux/if_vlan.h> 74 #include <linux/if_bonding.h> 75 #include <linux/jiffies.h> 76 #include <linux/preempt.h> 77 #include <net/route.h> 78 #include <net/net_namespace.h> 79 #include <net/netns/generic.h> 80 #include "bonding.h" 81 #include "bond_3ad.h" 82 #include "bond_alb.h" 83 84 /*---------------------------- Module parameters ----------------------------*/ 85 86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 87 #define BOND_LINK_MON_INTERV 0 88 #define BOND_LINK_ARP_INTERV 0 89 90 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 91 static int tx_queues = BOND_DEFAULT_TX_QUEUES; 92 static int num_grat_arp = 1; 93 static int num_unsol_na = 1; 94 static int miimon = BOND_LINK_MON_INTERV; 95 static int updelay; 96 static int downdelay; 97 static int use_carrier = 1; 98 static char *mode; 99 static char *primary; 100 static char *primary_reselect; 101 static char *lacp_rate; 102 static char *ad_select; 103 static char *xmit_hash_policy; 104 static int arp_interval = BOND_LINK_ARP_INTERV; 105 static char *arp_ip_target[BOND_MAX_ARP_TARGETS]; 106 static char *arp_validate; 107 static char *fail_over_mac; 108 static int all_slaves_active = 0; 109 static struct bond_params bonding_defaults; 110 static int resend_igmp = BOND_DEFAULT_RESEND_IGMP; 111 112 module_param(max_bonds, int, 0); 113 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 114 module_param(tx_queues, int, 0); 115 MODULE_PARM_DESC(tx_queues, "Max number of transmit queues (default = 16)"); 116 module_param(num_grat_arp, int, 0644); 117 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event"); 118 module_param(num_unsol_na, int, 0644); 119 MODULE_PARM_DESC(num_unsol_na, "Number of unsolicited IPv6 Neighbor Advertisements packets to send on failover event"); 120 module_param(miimon, int, 0); 121 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 122 module_param(updelay, int, 0); 123 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 124 module_param(downdelay, int, 0); 125 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 126 "in milliseconds"); 127 module_param(use_carrier, int, 0); 128 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 129 "0 for off, 1 for on (default)"); 130 module_param(mode, charp, 0); 131 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 132 "1 for active-backup, 2 for balance-xor, " 133 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 134 "6 for balance-alb"); 135 module_param(primary, charp, 0); 136 MODULE_PARM_DESC(primary, "Primary network device to use"); 137 module_param(primary_reselect, charp, 0); 138 MODULE_PARM_DESC(primary_reselect, "Reselect primary slave " 139 "once it comes up; " 140 "0 for always (default), " 141 "1 for only if speed of primary is " 142 "better, " 143 "2 for only on active slave " 144 "failure"); 145 module_param(lacp_rate, charp, 0); 146 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 147 "(slow/fast)"); 148 module_param(ad_select, charp, 0); 149 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic: stable (0, default), bandwidth (1), count (2)"); 150 module_param(xmit_hash_policy, charp, 0); 151 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 152 ", 1 for layer 3+4"); 153 module_param(arp_interval, int, 0); 154 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 155 module_param_array(arp_ip_target, charp, NULL, 0); 156 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 157 module_param(arp_validate, charp, 0); 158 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 159 module_param(fail_over_mac, charp, 0); 160 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow"); 161 module_param(all_slaves_active, int, 0); 162 MODULE_PARM_DESC(all_slaves_active, "Keep all frames received on an interface" 163 "by setting active flag for all slaves. " 164 "0 for never (default), 1 for always."); 165 module_param(resend_igmp, int, 0); 166 MODULE_PARM_DESC(resend_igmp, "Number of IGMP membership reports to send on link failure"); 167 168 /*----------------------------- Global variables ----------------------------*/ 169 170 #ifdef CONFIG_NET_POLL_CONTROLLER 171 atomic_t netpoll_block_tx = ATOMIC_INIT(0); 172 #endif 173 174 int bond_net_id __read_mostly; 175 176 static __be32 arp_target[BOND_MAX_ARP_TARGETS]; 177 static int arp_ip_count; 178 static int bond_mode = BOND_MODE_ROUNDROBIN; 179 static int xmit_hashtype = BOND_XMIT_POLICY_LAYER2; 180 static int lacp_fast; 181 182 const struct bond_parm_tbl bond_lacp_tbl[] = { 183 { "slow", AD_LACP_SLOW}, 184 { "fast", AD_LACP_FAST}, 185 { NULL, -1}, 186 }; 187 188 const struct bond_parm_tbl bond_mode_tbl[] = { 189 { "balance-rr", BOND_MODE_ROUNDROBIN}, 190 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 191 { "balance-xor", BOND_MODE_XOR}, 192 { "broadcast", BOND_MODE_BROADCAST}, 193 { "802.3ad", BOND_MODE_8023AD}, 194 { "balance-tlb", BOND_MODE_TLB}, 195 { "balance-alb", BOND_MODE_ALB}, 196 { NULL, -1}, 197 }; 198 199 const struct bond_parm_tbl xmit_hashtype_tbl[] = { 200 { "layer2", BOND_XMIT_POLICY_LAYER2}, 201 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 202 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 203 { NULL, -1}, 204 }; 205 206 const struct bond_parm_tbl arp_validate_tbl[] = { 207 { "none", BOND_ARP_VALIDATE_NONE}, 208 { "active", BOND_ARP_VALIDATE_ACTIVE}, 209 { "backup", BOND_ARP_VALIDATE_BACKUP}, 210 { "all", BOND_ARP_VALIDATE_ALL}, 211 { NULL, -1}, 212 }; 213 214 const struct bond_parm_tbl fail_over_mac_tbl[] = { 215 { "none", BOND_FOM_NONE}, 216 { "active", BOND_FOM_ACTIVE}, 217 { "follow", BOND_FOM_FOLLOW}, 218 { NULL, -1}, 219 }; 220 221 const struct bond_parm_tbl pri_reselect_tbl[] = { 222 { "always", BOND_PRI_RESELECT_ALWAYS}, 223 { "better", BOND_PRI_RESELECT_BETTER}, 224 { "failure", BOND_PRI_RESELECT_FAILURE}, 225 { NULL, -1}, 226 }; 227 228 struct bond_parm_tbl ad_select_tbl[] = { 229 { "stable", BOND_AD_STABLE}, 230 { "bandwidth", BOND_AD_BANDWIDTH}, 231 { "count", BOND_AD_COUNT}, 232 { NULL, -1}, 233 }; 234 235 /*-------------------------- Forward declarations ---------------------------*/ 236 237 static void bond_send_gratuitous_arp(struct bonding *bond); 238 static int bond_init(struct net_device *bond_dev); 239 static void bond_uninit(struct net_device *bond_dev); 240 241 /*---------------------------- General routines -----------------------------*/ 242 243 const char *bond_mode_name(int mode) 244 { 245 static const char *names[] = { 246 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)", 247 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)", 248 [BOND_MODE_XOR] = "load balancing (xor)", 249 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)", 250 [BOND_MODE_8023AD] = "IEEE 802.3ad Dynamic link aggregation", 251 [BOND_MODE_TLB] = "transmit load balancing", 252 [BOND_MODE_ALB] = "adaptive load balancing", 253 }; 254 255 if (mode < 0 || mode > BOND_MODE_ALB) 256 return "unknown"; 257 258 return names[mode]; 259 } 260 261 /*---------------------------------- VLAN -----------------------------------*/ 262 263 /** 264 * bond_add_vlan - add a new vlan id on bond 265 * @bond: bond that got the notification 266 * @vlan_id: the vlan id to add 267 * 268 * Returns -ENOMEM if allocation failed. 269 */ 270 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 271 { 272 struct vlan_entry *vlan; 273 274 pr_debug("bond: %s, vlan id %d\n", 275 (bond ? bond->dev->name : "None"), vlan_id); 276 277 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL); 278 if (!vlan) 279 return -ENOMEM; 280 281 INIT_LIST_HEAD(&vlan->vlan_list); 282 vlan->vlan_id = vlan_id; 283 284 write_lock_bh(&bond->lock); 285 286 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 287 288 write_unlock_bh(&bond->lock); 289 290 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 291 292 return 0; 293 } 294 295 /** 296 * bond_del_vlan - delete a vlan id from bond 297 * @bond: bond that got the notification 298 * @vlan_id: the vlan id to delete 299 * 300 * returns -ENODEV if @vlan_id was not found in @bond. 301 */ 302 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 303 { 304 struct vlan_entry *vlan; 305 int res = -ENODEV; 306 307 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 308 309 block_netpoll_tx(); 310 write_lock_bh(&bond->lock); 311 312 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 313 if (vlan->vlan_id == vlan_id) { 314 list_del(&vlan->vlan_list); 315 316 if (bond_is_lb(bond)) 317 bond_alb_clear_vlan(bond, vlan_id); 318 319 pr_debug("removed VLAN ID %d from bond %s\n", 320 vlan_id, bond->dev->name); 321 322 kfree(vlan); 323 324 if (list_empty(&bond->vlan_list) && 325 (bond->slave_cnt == 0)) { 326 /* Last VLAN removed and no slaves, so 327 * restore block on adding VLANs. This will 328 * be removed once new slaves that are not 329 * VLAN challenged will be added. 330 */ 331 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 332 } 333 334 res = 0; 335 goto out; 336 } 337 } 338 339 pr_debug("couldn't find VLAN ID %d in bond %s\n", 340 vlan_id, bond->dev->name); 341 342 out: 343 write_unlock_bh(&bond->lock); 344 unblock_netpoll_tx(); 345 return res; 346 } 347 348 /** 349 * bond_has_challenged_slaves 350 * @bond: the bond we're working on 351 * 352 * Searches the slave list. Returns 1 if a vlan challenged slave 353 * was found, 0 otherwise. 354 * 355 * Assumes bond->lock is held. 356 */ 357 static int bond_has_challenged_slaves(struct bonding *bond) 358 { 359 struct slave *slave; 360 int i; 361 362 bond_for_each_slave(bond, slave, i) { 363 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 364 pr_debug("found VLAN challenged slave - %s\n", 365 slave->dev->name); 366 return 1; 367 } 368 } 369 370 pr_debug("no VLAN challenged slaves found\n"); 371 return 0; 372 } 373 374 /** 375 * bond_next_vlan - safely skip to the next item in the vlans list. 376 * @bond: the bond we're working on 377 * @curr: item we're advancing from 378 * 379 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 380 * or @curr->next otherwise (even if it is @curr itself again). 381 * 382 * Caller must hold bond->lock 383 */ 384 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 385 { 386 struct vlan_entry *next, *last; 387 388 if (list_empty(&bond->vlan_list)) 389 return NULL; 390 391 if (!curr) { 392 next = list_entry(bond->vlan_list.next, 393 struct vlan_entry, vlan_list); 394 } else { 395 last = list_entry(bond->vlan_list.prev, 396 struct vlan_entry, vlan_list); 397 if (last == curr) { 398 next = list_entry(bond->vlan_list.next, 399 struct vlan_entry, vlan_list); 400 } else { 401 next = list_entry(curr->vlan_list.next, 402 struct vlan_entry, vlan_list); 403 } 404 } 405 406 return next; 407 } 408 409 /** 410 * bond_dev_queue_xmit - Prepare skb for xmit. 411 * 412 * @bond: bond device that got this skb for tx. 413 * @skb: hw accel VLAN tagged skb to transmit 414 * @slave_dev: slave that is supposed to xmit this skbuff 415 */ 416 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, 417 struct net_device *slave_dev) 418 { 419 skb->dev = slave_dev; 420 skb->priority = 1; 421 if (unlikely(netpoll_tx_running(slave_dev))) 422 bond_netpoll_send_skb(bond_get_slave_by_dev(bond, slave_dev), skb); 423 else 424 dev_queue_xmit(skb); 425 426 return 0; 427 } 428 429 /* 430 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 431 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 432 * lock because: 433 * a. This operation is performed in IOCTL context, 434 * b. The operation is protected by the RTNL semaphore in the 8021q code, 435 * c. Holding a lock with BH disabled while directly calling a base driver 436 * entry point is generally a BAD idea. 437 * 438 * The design of synchronization/protection for this operation in the 8021q 439 * module is good for one or more VLAN devices over a single physical device 440 * and cannot be extended for a teaming solution like bonding, so there is a 441 * potential race condition here where a net device from the vlan group might 442 * be referenced (either by a base driver or the 8021q code) while it is being 443 * removed from the system. However, it turns out we're not making matters 444 * worse, and if it works for regular VLAN usage it will work here too. 445 */ 446 447 /** 448 * bond_vlan_rx_register - Propagates registration to slaves 449 * @bond_dev: bonding net device that got called 450 * @grp: vlan group being registered 451 */ 452 static void bond_vlan_rx_register(struct net_device *bond_dev, 453 struct vlan_group *grp) 454 { 455 struct bonding *bond = netdev_priv(bond_dev); 456 struct slave *slave; 457 int i; 458 459 write_lock_bh(&bond->lock); 460 bond->vlgrp = grp; 461 write_unlock_bh(&bond->lock); 462 463 bond_for_each_slave(bond, slave, i) { 464 struct net_device *slave_dev = slave->dev; 465 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 466 467 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 468 slave_ops->ndo_vlan_rx_register) { 469 slave_ops->ndo_vlan_rx_register(slave_dev, grp); 470 } 471 } 472 } 473 474 /** 475 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 476 * @bond_dev: bonding net device that got called 477 * @vid: vlan id being added 478 */ 479 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 480 { 481 struct bonding *bond = netdev_priv(bond_dev); 482 struct slave *slave; 483 int i, res; 484 485 bond_for_each_slave(bond, slave, i) { 486 struct net_device *slave_dev = slave->dev; 487 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 488 489 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 490 slave_ops->ndo_vlan_rx_add_vid) { 491 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vid); 492 } 493 } 494 495 res = bond_add_vlan(bond, vid); 496 if (res) { 497 pr_err("%s: Error: Failed to add vlan id %d\n", 498 bond_dev->name, vid); 499 } 500 } 501 502 /** 503 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 504 * @bond_dev: bonding net device that got called 505 * @vid: vlan id being removed 506 */ 507 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 508 { 509 struct bonding *bond = netdev_priv(bond_dev); 510 struct slave *slave; 511 struct net_device *vlan_dev; 512 int i, res; 513 514 bond_for_each_slave(bond, slave, i) { 515 struct net_device *slave_dev = slave->dev; 516 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 517 518 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 519 slave_ops->ndo_vlan_rx_kill_vid) { 520 /* Save and then restore vlan_dev in the grp array, 521 * since the slave's driver might clear it. 522 */ 523 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 524 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vid); 525 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 526 } 527 } 528 529 res = bond_del_vlan(bond, vid); 530 if (res) { 531 pr_err("%s: Error: Failed to remove vlan id %d\n", 532 bond_dev->name, vid); 533 } 534 } 535 536 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 537 { 538 struct vlan_entry *vlan; 539 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 540 541 if (!bond->vlgrp) 542 return; 543 544 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 545 slave_ops->ndo_vlan_rx_register) 546 slave_ops->ndo_vlan_rx_register(slave_dev, bond->vlgrp); 547 548 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 549 !(slave_ops->ndo_vlan_rx_add_vid)) 550 return; 551 552 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) 553 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vlan->vlan_id); 554 } 555 556 static void bond_del_vlans_from_slave(struct bonding *bond, 557 struct net_device *slave_dev) 558 { 559 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 560 struct vlan_entry *vlan; 561 struct net_device *vlan_dev; 562 563 if (!bond->vlgrp) 564 return; 565 566 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 567 !(slave_ops->ndo_vlan_rx_kill_vid)) 568 goto unreg; 569 570 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 571 if (!vlan->vlan_id) 572 continue; 573 /* Save and then restore vlan_dev in the grp array, 574 * since the slave's driver might clear it. 575 */ 576 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 577 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 578 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 579 } 580 581 unreg: 582 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 583 slave_ops->ndo_vlan_rx_register) 584 slave_ops->ndo_vlan_rx_register(slave_dev, NULL); 585 } 586 587 /*------------------------------- Link status -------------------------------*/ 588 589 /* 590 * Set the carrier state for the master according to the state of its 591 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 592 * do special 802.3ad magic. 593 * 594 * Returns zero if carrier state does not change, nonzero if it does. 595 */ 596 static int bond_set_carrier(struct bonding *bond) 597 { 598 struct slave *slave; 599 int i; 600 601 if (bond->slave_cnt == 0) 602 goto down; 603 604 if (bond->params.mode == BOND_MODE_8023AD) 605 return bond_3ad_set_carrier(bond); 606 607 bond_for_each_slave(bond, slave, i) { 608 if (slave->link == BOND_LINK_UP) { 609 if (!netif_carrier_ok(bond->dev)) { 610 netif_carrier_on(bond->dev); 611 return 1; 612 } 613 return 0; 614 } 615 } 616 617 down: 618 if (netif_carrier_ok(bond->dev)) { 619 netif_carrier_off(bond->dev); 620 return 1; 621 } 622 return 0; 623 } 624 625 /* 626 * Get link speed and duplex from the slave's base driver 627 * using ethtool. If for some reason the call fails or the 628 * values are invalid, fake speed and duplex to 100/Full 629 * and return error. 630 */ 631 static int bond_update_speed_duplex(struct slave *slave) 632 { 633 struct net_device *slave_dev = slave->dev; 634 struct ethtool_cmd etool; 635 int res; 636 637 /* Fake speed and duplex */ 638 slave->speed = SPEED_100; 639 slave->duplex = DUPLEX_FULL; 640 641 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) 642 return -1; 643 644 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 645 if (res < 0) 646 return -1; 647 648 switch (etool.speed) { 649 case SPEED_10: 650 case SPEED_100: 651 case SPEED_1000: 652 case SPEED_10000: 653 break; 654 default: 655 return -1; 656 } 657 658 switch (etool.duplex) { 659 case DUPLEX_FULL: 660 case DUPLEX_HALF: 661 break; 662 default: 663 return -1; 664 } 665 666 slave->speed = etool.speed; 667 slave->duplex = etool.duplex; 668 669 return 0; 670 } 671 672 /* 673 * if <dev> supports MII link status reporting, check its link status. 674 * 675 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 676 * depending upon the setting of the use_carrier parameter. 677 * 678 * Return either BMSR_LSTATUS, meaning that the link is up (or we 679 * can't tell and just pretend it is), or 0, meaning that the link is 680 * down. 681 * 682 * If reporting is non-zero, instead of faking link up, return -1 if 683 * both ETHTOOL and MII ioctls fail (meaning the device does not 684 * support them). If use_carrier is set, return whatever it says. 685 * It'd be nice if there was a good way to tell if a driver supports 686 * netif_carrier, but there really isn't. 687 */ 688 static int bond_check_dev_link(struct bonding *bond, 689 struct net_device *slave_dev, int reporting) 690 { 691 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 692 int (*ioctl)(struct net_device *, struct ifreq *, int); 693 struct ifreq ifr; 694 struct mii_ioctl_data *mii; 695 696 if (!reporting && !netif_running(slave_dev)) 697 return 0; 698 699 if (bond->params.use_carrier) 700 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 701 702 /* Try to get link status using Ethtool first. */ 703 if (slave_dev->ethtool_ops) { 704 if (slave_dev->ethtool_ops->get_link) { 705 u32 link; 706 707 link = slave_dev->ethtool_ops->get_link(slave_dev); 708 709 return link ? BMSR_LSTATUS : 0; 710 } 711 } 712 713 /* Ethtool can't be used, fallback to MII ioctls. */ 714 ioctl = slave_ops->ndo_do_ioctl; 715 if (ioctl) { 716 /* TODO: set pointer to correct ioctl on a per team member */ 717 /* bases to make this more efficient. that is, once */ 718 /* we determine the correct ioctl, we will always */ 719 /* call it and not the others for that team */ 720 /* member. */ 721 722 /* 723 * We cannot assume that SIOCGMIIPHY will also read a 724 * register; not all network drivers (e.g., e100) 725 * support that. 726 */ 727 728 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 729 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 730 mii = if_mii(&ifr); 731 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 732 mii->reg_num = MII_BMSR; 733 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) 734 return mii->val_out & BMSR_LSTATUS; 735 } 736 } 737 738 /* 739 * If reporting, report that either there's no dev->do_ioctl, 740 * or both SIOCGMIIREG and get_link failed (meaning that we 741 * cannot report link status). If not reporting, pretend 742 * we're ok. 743 */ 744 return reporting ? -1 : BMSR_LSTATUS; 745 } 746 747 /*----------------------------- Multicast list ------------------------------*/ 748 749 /* 750 * Push the promiscuity flag down to appropriate slaves 751 */ 752 static int bond_set_promiscuity(struct bonding *bond, int inc) 753 { 754 int err = 0; 755 if (USES_PRIMARY(bond->params.mode)) { 756 /* write lock already acquired */ 757 if (bond->curr_active_slave) { 758 err = dev_set_promiscuity(bond->curr_active_slave->dev, 759 inc); 760 } 761 } else { 762 struct slave *slave; 763 int i; 764 bond_for_each_slave(bond, slave, i) { 765 err = dev_set_promiscuity(slave->dev, inc); 766 if (err) 767 return err; 768 } 769 } 770 return err; 771 } 772 773 /* 774 * Push the allmulti flag down to all slaves 775 */ 776 static int bond_set_allmulti(struct bonding *bond, int inc) 777 { 778 int err = 0; 779 if (USES_PRIMARY(bond->params.mode)) { 780 /* write lock already acquired */ 781 if (bond->curr_active_slave) { 782 err = dev_set_allmulti(bond->curr_active_slave->dev, 783 inc); 784 } 785 } else { 786 struct slave *slave; 787 int i; 788 bond_for_each_slave(bond, slave, i) { 789 err = dev_set_allmulti(slave->dev, inc); 790 if (err) 791 return err; 792 } 793 } 794 return err; 795 } 796 797 /* 798 * Add a Multicast address to slaves 799 * according to mode 800 */ 801 static void bond_mc_add(struct bonding *bond, void *addr) 802 { 803 if (USES_PRIMARY(bond->params.mode)) { 804 /* write lock already acquired */ 805 if (bond->curr_active_slave) 806 dev_mc_add(bond->curr_active_slave->dev, addr); 807 } else { 808 struct slave *slave; 809 int i; 810 811 bond_for_each_slave(bond, slave, i) 812 dev_mc_add(slave->dev, addr); 813 } 814 } 815 816 /* 817 * Remove a multicast address from slave 818 * according to mode 819 */ 820 static void bond_mc_del(struct bonding *bond, void *addr) 821 { 822 if (USES_PRIMARY(bond->params.mode)) { 823 /* write lock already acquired */ 824 if (bond->curr_active_slave) 825 dev_mc_del(bond->curr_active_slave->dev, addr); 826 } else { 827 struct slave *slave; 828 int i; 829 bond_for_each_slave(bond, slave, i) { 830 dev_mc_del(slave->dev, addr); 831 } 832 } 833 } 834 835 836 static void __bond_resend_igmp_join_requests(struct net_device *dev) 837 { 838 struct in_device *in_dev; 839 840 rcu_read_lock(); 841 in_dev = __in_dev_get_rcu(dev); 842 if (in_dev) 843 ip_mc_rejoin_groups(in_dev); 844 rcu_read_unlock(); 845 } 846 847 /* 848 * Retrieve the list of registered multicast addresses for the bonding 849 * device and retransmit an IGMP JOIN request to the current active 850 * slave. 851 */ 852 static void bond_resend_igmp_join_requests(struct bonding *bond) 853 { 854 struct net_device *vlan_dev; 855 struct vlan_entry *vlan; 856 857 read_lock(&bond->lock); 858 859 /* rejoin all groups on bond device */ 860 __bond_resend_igmp_join_requests(bond->dev); 861 862 /* rejoin all groups on vlan devices */ 863 if (bond->vlgrp) { 864 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 865 vlan_dev = vlan_group_get_device(bond->vlgrp, 866 vlan->vlan_id); 867 if (vlan_dev) 868 __bond_resend_igmp_join_requests(vlan_dev); 869 } 870 } 871 872 if (--bond->igmp_retrans > 0) 873 queue_delayed_work(bond->wq, &bond->mcast_work, HZ/5); 874 875 read_unlock(&bond->lock); 876 } 877 878 static void bond_resend_igmp_join_requests_delayed(struct work_struct *work) 879 { 880 struct bonding *bond = container_of(work, struct bonding, 881 mcast_work.work); 882 bond_resend_igmp_join_requests(bond); 883 } 884 885 /* 886 * flush all members of flush->mc_list from device dev->mc_list 887 */ 888 static void bond_mc_list_flush(struct net_device *bond_dev, 889 struct net_device *slave_dev) 890 { 891 struct bonding *bond = netdev_priv(bond_dev); 892 struct netdev_hw_addr *ha; 893 894 netdev_for_each_mc_addr(ha, bond_dev) 895 dev_mc_del(slave_dev, ha->addr); 896 897 if (bond->params.mode == BOND_MODE_8023AD) { 898 /* del lacpdu mc addr from mc list */ 899 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 900 901 dev_mc_del(slave_dev, lacpdu_multicast); 902 } 903 } 904 905 /*--------------------------- Active slave change ---------------------------*/ 906 907 /* 908 * Update the mc list and multicast-related flags for the new and 909 * old active slaves (if any) according to the multicast mode, and 910 * promiscuous flags unconditionally. 911 */ 912 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, 913 struct slave *old_active) 914 { 915 struct netdev_hw_addr *ha; 916 917 if (!USES_PRIMARY(bond->params.mode)) 918 /* nothing to do - mc list is already up-to-date on 919 * all slaves 920 */ 921 return; 922 923 if (old_active) { 924 if (bond->dev->flags & IFF_PROMISC) 925 dev_set_promiscuity(old_active->dev, -1); 926 927 if (bond->dev->flags & IFF_ALLMULTI) 928 dev_set_allmulti(old_active->dev, -1); 929 930 netdev_for_each_mc_addr(ha, bond->dev) 931 dev_mc_del(old_active->dev, ha->addr); 932 } 933 934 if (new_active) { 935 /* FIXME: Signal errors upstream. */ 936 if (bond->dev->flags & IFF_PROMISC) 937 dev_set_promiscuity(new_active->dev, 1); 938 939 if (bond->dev->flags & IFF_ALLMULTI) 940 dev_set_allmulti(new_active->dev, 1); 941 942 netdev_for_each_mc_addr(ha, bond->dev) 943 dev_mc_add(new_active->dev, ha->addr); 944 } 945 } 946 947 /* 948 * bond_do_fail_over_mac 949 * 950 * Perform special MAC address swapping for fail_over_mac settings 951 * 952 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 953 */ 954 static void bond_do_fail_over_mac(struct bonding *bond, 955 struct slave *new_active, 956 struct slave *old_active) 957 __releases(&bond->curr_slave_lock) 958 __releases(&bond->lock) 959 __acquires(&bond->lock) 960 __acquires(&bond->curr_slave_lock) 961 { 962 u8 tmp_mac[ETH_ALEN]; 963 struct sockaddr saddr; 964 int rv; 965 966 switch (bond->params.fail_over_mac) { 967 case BOND_FOM_ACTIVE: 968 if (new_active) 969 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 970 new_active->dev->addr_len); 971 break; 972 case BOND_FOM_FOLLOW: 973 /* 974 * if new_active && old_active, swap them 975 * if just old_active, do nothing (going to no active slave) 976 * if just new_active, set new_active to bond's MAC 977 */ 978 if (!new_active) 979 return; 980 981 write_unlock_bh(&bond->curr_slave_lock); 982 read_unlock(&bond->lock); 983 984 if (old_active) { 985 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 986 memcpy(saddr.sa_data, old_active->dev->dev_addr, 987 ETH_ALEN); 988 saddr.sa_family = new_active->dev->type; 989 } else { 990 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 991 saddr.sa_family = bond->dev->type; 992 } 993 994 rv = dev_set_mac_address(new_active->dev, &saddr); 995 if (rv) { 996 pr_err("%s: Error %d setting MAC of slave %s\n", 997 bond->dev->name, -rv, new_active->dev->name); 998 goto out; 999 } 1000 1001 if (!old_active) 1002 goto out; 1003 1004 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 1005 saddr.sa_family = old_active->dev->type; 1006 1007 rv = dev_set_mac_address(old_active->dev, &saddr); 1008 if (rv) 1009 pr_err("%s: Error %d setting MAC of slave %s\n", 1010 bond->dev->name, -rv, new_active->dev->name); 1011 out: 1012 read_lock(&bond->lock); 1013 write_lock_bh(&bond->curr_slave_lock); 1014 break; 1015 default: 1016 pr_err("%s: bond_do_fail_over_mac impossible: bad policy %d\n", 1017 bond->dev->name, bond->params.fail_over_mac); 1018 break; 1019 } 1020 1021 } 1022 1023 static bool bond_should_change_active(struct bonding *bond) 1024 { 1025 struct slave *prim = bond->primary_slave; 1026 struct slave *curr = bond->curr_active_slave; 1027 1028 if (!prim || !curr || curr->link != BOND_LINK_UP) 1029 return true; 1030 if (bond->force_primary) { 1031 bond->force_primary = false; 1032 return true; 1033 } 1034 if (bond->params.primary_reselect == BOND_PRI_RESELECT_BETTER && 1035 (prim->speed < curr->speed || 1036 (prim->speed == curr->speed && prim->duplex <= curr->duplex))) 1037 return false; 1038 if (bond->params.primary_reselect == BOND_PRI_RESELECT_FAILURE) 1039 return false; 1040 return true; 1041 } 1042 1043 /** 1044 * find_best_interface - select the best available slave to be the active one 1045 * @bond: our bonding struct 1046 * 1047 * Warning: Caller must hold curr_slave_lock for writing. 1048 */ 1049 static struct slave *bond_find_best_slave(struct bonding *bond) 1050 { 1051 struct slave *new_active, *old_active; 1052 struct slave *bestslave = NULL; 1053 int mintime = bond->params.updelay; 1054 int i; 1055 1056 new_active = bond->curr_active_slave; 1057 1058 if (!new_active) { /* there were no active slaves left */ 1059 if (bond->slave_cnt > 0) /* found one slave */ 1060 new_active = bond->first_slave; 1061 else 1062 return NULL; /* still no slave, return NULL */ 1063 } 1064 1065 if ((bond->primary_slave) && 1066 bond->primary_slave->link == BOND_LINK_UP && 1067 bond_should_change_active(bond)) { 1068 new_active = bond->primary_slave; 1069 } 1070 1071 /* remember where to stop iterating over the slaves */ 1072 old_active = new_active; 1073 1074 bond_for_each_slave_from(bond, new_active, i, old_active) { 1075 if (new_active->link == BOND_LINK_UP) { 1076 return new_active; 1077 } else if (new_active->link == BOND_LINK_BACK && 1078 IS_UP(new_active->dev)) { 1079 /* link up, but waiting for stabilization */ 1080 if (new_active->delay < mintime) { 1081 mintime = new_active->delay; 1082 bestslave = new_active; 1083 } 1084 } 1085 } 1086 1087 return bestslave; 1088 } 1089 1090 /** 1091 * change_active_interface - change the active slave into the specified one 1092 * @bond: our bonding struct 1093 * @new: the new slave to make the active one 1094 * 1095 * Set the new slave to the bond's settings and unset them on the old 1096 * curr_active_slave. 1097 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1098 * 1099 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1100 * because it is apparently the best available slave we have, even though its 1101 * updelay hasn't timed out yet. 1102 * 1103 * If new_active is not NULL, caller must hold bond->lock for read and 1104 * curr_slave_lock for write_bh. 1105 */ 1106 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1107 { 1108 struct slave *old_active = bond->curr_active_slave; 1109 1110 if (old_active == new_active) 1111 return; 1112 1113 if (new_active) { 1114 new_active->jiffies = jiffies; 1115 1116 if (new_active->link == BOND_LINK_BACK) { 1117 if (USES_PRIMARY(bond->params.mode)) { 1118 pr_info("%s: making interface %s the new active one %d ms earlier.\n", 1119 bond->dev->name, new_active->dev->name, 1120 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1121 } 1122 1123 new_active->delay = 0; 1124 new_active->link = BOND_LINK_UP; 1125 1126 if (bond->params.mode == BOND_MODE_8023AD) 1127 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1128 1129 if (bond_is_lb(bond)) 1130 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1131 } else { 1132 if (USES_PRIMARY(bond->params.mode)) { 1133 pr_info("%s: making interface %s the new active one.\n", 1134 bond->dev->name, new_active->dev->name); 1135 } 1136 } 1137 } 1138 1139 if (USES_PRIMARY(bond->params.mode)) 1140 bond_mc_swap(bond, new_active, old_active); 1141 1142 if (bond_is_lb(bond)) { 1143 bond_alb_handle_active_change(bond, new_active); 1144 if (old_active) 1145 bond_set_slave_inactive_flags(old_active); 1146 if (new_active) 1147 bond_set_slave_active_flags(new_active); 1148 } else { 1149 bond->curr_active_slave = new_active; 1150 } 1151 1152 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1153 if (old_active) 1154 bond_set_slave_inactive_flags(old_active); 1155 1156 if (new_active) { 1157 bond_set_slave_active_flags(new_active); 1158 1159 if (bond->params.fail_over_mac) 1160 bond_do_fail_over_mac(bond, new_active, 1161 old_active); 1162 1163 if (netif_running(bond->dev)) { 1164 bond->send_grat_arp = bond->params.num_grat_arp; 1165 bond_send_gratuitous_arp(bond); 1166 1167 bond->send_unsol_na = bond->params.num_unsol_na; 1168 bond_send_unsolicited_na(bond); 1169 } 1170 1171 write_unlock_bh(&bond->curr_slave_lock); 1172 read_unlock(&bond->lock); 1173 1174 netdev_bonding_change(bond->dev, NETDEV_BONDING_FAILOVER); 1175 1176 read_lock(&bond->lock); 1177 write_lock_bh(&bond->curr_slave_lock); 1178 } 1179 } 1180 1181 /* resend IGMP joins since active slave has changed or 1182 * all were sent on curr_active_slave */ 1183 if (((USES_PRIMARY(bond->params.mode) && new_active) || 1184 bond->params.mode == BOND_MODE_ROUNDROBIN) && 1185 netif_running(bond->dev)) { 1186 bond->igmp_retrans = bond->params.resend_igmp; 1187 queue_delayed_work(bond->wq, &bond->mcast_work, 0); 1188 } 1189 } 1190 1191 /** 1192 * bond_select_active_slave - select a new active slave, if needed 1193 * @bond: our bonding struct 1194 * 1195 * This functions should be called when one of the following occurs: 1196 * - The old curr_active_slave has been released or lost its link. 1197 * - The primary_slave has got its link back. 1198 * - A slave has got its link back and there's no old curr_active_slave. 1199 * 1200 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1201 */ 1202 void bond_select_active_slave(struct bonding *bond) 1203 { 1204 struct slave *best_slave; 1205 int rv; 1206 1207 best_slave = bond_find_best_slave(bond); 1208 if (best_slave != bond->curr_active_slave) { 1209 bond_change_active_slave(bond, best_slave); 1210 rv = bond_set_carrier(bond); 1211 if (!rv) 1212 return; 1213 1214 if (netif_carrier_ok(bond->dev)) { 1215 pr_info("%s: first active interface up!\n", 1216 bond->dev->name); 1217 } else { 1218 pr_info("%s: now running without any active interface !\n", 1219 bond->dev->name); 1220 } 1221 } 1222 } 1223 1224 /*--------------------------- slave list handling ---------------------------*/ 1225 1226 /* 1227 * This function attaches the slave to the end of list. 1228 * 1229 * bond->lock held for writing by caller. 1230 */ 1231 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1232 { 1233 if (bond->first_slave == NULL) { /* attaching the first slave */ 1234 new_slave->next = new_slave; 1235 new_slave->prev = new_slave; 1236 bond->first_slave = new_slave; 1237 } else { 1238 new_slave->next = bond->first_slave; 1239 new_slave->prev = bond->first_slave->prev; 1240 new_slave->next->prev = new_slave; 1241 new_slave->prev->next = new_slave; 1242 } 1243 1244 bond->slave_cnt++; 1245 } 1246 1247 /* 1248 * This function detaches the slave from the list. 1249 * WARNING: no check is made to verify if the slave effectively 1250 * belongs to <bond>. 1251 * Nothing is freed on return, structures are just unchained. 1252 * If any slave pointer in bond was pointing to <slave>, 1253 * it should be changed by the calling function. 1254 * 1255 * bond->lock held for writing by caller. 1256 */ 1257 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1258 { 1259 if (slave->next) 1260 slave->next->prev = slave->prev; 1261 1262 if (slave->prev) 1263 slave->prev->next = slave->next; 1264 1265 if (bond->first_slave == slave) { /* slave is the first slave */ 1266 if (bond->slave_cnt > 1) { /* there are more slave */ 1267 bond->first_slave = slave->next; 1268 } else { 1269 bond->first_slave = NULL; /* slave was the last one */ 1270 } 1271 } 1272 1273 slave->next = NULL; 1274 slave->prev = NULL; 1275 bond->slave_cnt--; 1276 } 1277 1278 #ifdef CONFIG_NET_POLL_CONTROLLER 1279 static inline int slave_enable_netpoll(struct slave *slave) 1280 { 1281 struct netpoll *np; 1282 int err = 0; 1283 1284 np = kzalloc(sizeof(*np), GFP_KERNEL); 1285 err = -ENOMEM; 1286 if (!np) 1287 goto out; 1288 1289 np->dev = slave->dev; 1290 err = __netpoll_setup(np); 1291 if (err) { 1292 kfree(np); 1293 goto out; 1294 } 1295 slave->np = np; 1296 out: 1297 return err; 1298 } 1299 static inline void slave_disable_netpoll(struct slave *slave) 1300 { 1301 struct netpoll *np = slave->np; 1302 1303 if (!np) 1304 return; 1305 1306 slave->np = NULL; 1307 synchronize_rcu_bh(); 1308 __netpoll_cleanup(np); 1309 kfree(np); 1310 } 1311 static inline bool slave_dev_support_netpoll(struct net_device *slave_dev) 1312 { 1313 if (slave_dev->priv_flags & IFF_DISABLE_NETPOLL) 1314 return false; 1315 if (!slave_dev->netdev_ops->ndo_poll_controller) 1316 return false; 1317 return true; 1318 } 1319 1320 static void bond_poll_controller(struct net_device *bond_dev) 1321 { 1322 } 1323 1324 static void __bond_netpoll_cleanup(struct bonding *bond) 1325 { 1326 struct slave *slave; 1327 int i; 1328 1329 bond_for_each_slave(bond, slave, i) 1330 if (IS_UP(slave->dev)) 1331 slave_disable_netpoll(slave); 1332 } 1333 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1334 { 1335 struct bonding *bond = netdev_priv(bond_dev); 1336 1337 read_lock(&bond->lock); 1338 __bond_netpoll_cleanup(bond); 1339 read_unlock(&bond->lock); 1340 } 1341 1342 static int bond_netpoll_setup(struct net_device *dev, struct netpoll_info *ni) 1343 { 1344 struct bonding *bond = netdev_priv(dev); 1345 struct slave *slave; 1346 int i, err = 0; 1347 1348 read_lock(&bond->lock); 1349 bond_for_each_slave(bond, slave, i) { 1350 err = slave_enable_netpoll(slave); 1351 if (err) { 1352 __bond_netpoll_cleanup(bond); 1353 break; 1354 } 1355 } 1356 read_unlock(&bond->lock); 1357 return err; 1358 } 1359 1360 static struct netpoll_info *bond_netpoll_info(struct bonding *bond) 1361 { 1362 return bond->dev->npinfo; 1363 } 1364 1365 #else 1366 static inline int slave_enable_netpoll(struct slave *slave) 1367 { 1368 return 0; 1369 } 1370 static inline void slave_disable_netpoll(struct slave *slave) 1371 { 1372 } 1373 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1374 { 1375 } 1376 #endif 1377 1378 /*---------------------------------- IOCTL ----------------------------------*/ 1379 1380 static int bond_sethwaddr(struct net_device *bond_dev, 1381 struct net_device *slave_dev) 1382 { 1383 pr_debug("bond_dev=%p\n", bond_dev); 1384 pr_debug("slave_dev=%p\n", slave_dev); 1385 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1386 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1387 return 0; 1388 } 1389 1390 #define BOND_VLAN_FEATURES \ 1391 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ 1392 NETIF_F_HW_VLAN_FILTER) 1393 1394 /* 1395 * Compute the common dev->feature set available to all slaves. Some 1396 * feature bits are managed elsewhere, so preserve those feature bits 1397 * on the master device. 1398 */ 1399 static int bond_compute_features(struct bonding *bond) 1400 { 1401 struct slave *slave; 1402 struct net_device *bond_dev = bond->dev; 1403 u32 features = bond_dev->features; 1404 u32 vlan_features = 0; 1405 unsigned short max_hard_header_len = max((u16)ETH_HLEN, 1406 bond_dev->hard_header_len); 1407 int i; 1408 1409 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); 1410 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; 1411 1412 if (!bond->first_slave) 1413 goto done; 1414 1415 features &= ~NETIF_F_ONE_FOR_ALL; 1416 1417 vlan_features = bond->first_slave->dev->vlan_features; 1418 bond_for_each_slave(bond, slave, i) { 1419 features = netdev_increment_features(features, 1420 slave->dev->features, 1421 NETIF_F_ONE_FOR_ALL); 1422 vlan_features = netdev_increment_features(vlan_features, 1423 slave->dev->vlan_features, 1424 NETIF_F_ONE_FOR_ALL); 1425 if (slave->dev->hard_header_len > max_hard_header_len) 1426 max_hard_header_len = slave->dev->hard_header_len; 1427 } 1428 1429 done: 1430 features |= (bond_dev->features & BOND_VLAN_FEATURES); 1431 bond_dev->features = netdev_fix_features(bond_dev, features); 1432 bond_dev->vlan_features = netdev_fix_features(bond_dev, vlan_features); 1433 bond_dev->hard_header_len = max_hard_header_len; 1434 1435 return 0; 1436 } 1437 1438 static void bond_setup_by_slave(struct net_device *bond_dev, 1439 struct net_device *slave_dev) 1440 { 1441 struct bonding *bond = netdev_priv(bond_dev); 1442 1443 bond_dev->header_ops = slave_dev->header_ops; 1444 1445 bond_dev->type = slave_dev->type; 1446 bond_dev->hard_header_len = slave_dev->hard_header_len; 1447 bond_dev->addr_len = slave_dev->addr_len; 1448 1449 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1450 slave_dev->addr_len); 1451 bond->setup_by_slave = 1; 1452 } 1453 1454 /* On bonding slaves other than the currently active slave, suppress 1455 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 1456 * ARP on active-backup slaves with arp_validate enabled. 1457 */ 1458 static bool bond_should_deliver_exact_match(struct sk_buff *skb, 1459 struct slave *slave, 1460 struct bonding *bond) 1461 { 1462 if (bond_is_slave_inactive(slave)) { 1463 if (slave_do_arp_validate(bond, slave) && 1464 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 1465 return false; 1466 1467 if (bond->params.mode == BOND_MODE_ALB && 1468 skb->pkt_type != PACKET_BROADCAST && 1469 skb->pkt_type != PACKET_MULTICAST) 1470 return false; 1471 1472 if (bond->params.mode == BOND_MODE_8023AD && 1473 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 1474 return false; 1475 1476 return true; 1477 } 1478 return false; 1479 } 1480 1481 static rx_handler_result_t bond_handle_frame(struct sk_buff **pskb) 1482 { 1483 struct sk_buff *skb = *pskb; 1484 struct slave *slave; 1485 struct net_device *bond_dev; 1486 struct bonding *bond; 1487 1488 slave = bond_slave_get_rcu(skb->dev); 1489 bond_dev = ACCESS_ONCE(slave->dev->master); 1490 if (unlikely(!bond_dev)) 1491 return RX_HANDLER_PASS; 1492 1493 skb = skb_share_check(skb, GFP_ATOMIC); 1494 if (unlikely(!skb)) 1495 return RX_HANDLER_CONSUMED; 1496 1497 *pskb = skb; 1498 1499 bond = netdev_priv(bond_dev); 1500 1501 if (bond->params.arp_interval) 1502 slave->dev->last_rx = jiffies; 1503 1504 if (bond_should_deliver_exact_match(skb, slave, bond)) { 1505 return RX_HANDLER_EXACT; 1506 } 1507 1508 skb->dev = bond_dev; 1509 1510 if (bond->params.mode == BOND_MODE_ALB && 1511 bond_dev->priv_flags & IFF_BRIDGE_PORT && 1512 skb->pkt_type == PACKET_HOST) { 1513 1514 if (unlikely(skb_cow_head(skb, 1515 skb->data - skb_mac_header(skb)))) { 1516 kfree_skb(skb); 1517 return RX_HANDLER_CONSUMED; 1518 } 1519 memcpy(eth_hdr(skb)->h_dest, bond_dev->dev_addr, ETH_ALEN); 1520 } 1521 1522 return RX_HANDLER_ANOTHER; 1523 } 1524 1525 /* enslave device <slave> to bond device <master> */ 1526 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1527 { 1528 struct bonding *bond = netdev_priv(bond_dev); 1529 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 1530 struct slave *new_slave = NULL; 1531 struct netdev_hw_addr *ha; 1532 struct sockaddr addr; 1533 int link_reporting; 1534 int old_features = bond_dev->features; 1535 int res = 0; 1536 1537 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1538 slave_ops->ndo_do_ioctl == NULL) { 1539 pr_warning("%s: Warning: no link monitoring support for %s\n", 1540 bond_dev->name, slave_dev->name); 1541 } 1542 1543 /* bond must be initialized by bond_open() before enslaving */ 1544 if (!(bond_dev->flags & IFF_UP)) { 1545 pr_warning("%s: master_dev is not up in bond_enslave\n", 1546 bond_dev->name); 1547 } 1548 1549 /* already enslaved */ 1550 if (slave_dev->flags & IFF_SLAVE) { 1551 pr_debug("Error, Device was already enslaved\n"); 1552 return -EBUSY; 1553 } 1554 1555 /* vlan challenged mutual exclusion */ 1556 /* no need to lock since we're protected by rtnl_lock */ 1557 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1558 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1559 if (bond->vlgrp) { 1560 pr_err("%s: Error: cannot enslave VLAN challenged slave %s on VLAN enabled bond %s\n", 1561 bond_dev->name, slave_dev->name, bond_dev->name); 1562 return -EPERM; 1563 } else { 1564 pr_warning("%s: Warning: enslaved VLAN challenged slave %s. Adding VLANs will be blocked as long as %s is part of bond %s\n", 1565 bond_dev->name, slave_dev->name, 1566 slave_dev->name, bond_dev->name); 1567 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1568 } 1569 } else { 1570 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1571 if (bond->slave_cnt == 0) { 1572 /* First slave, and it is not VLAN challenged, 1573 * so remove the block of adding VLANs over the bond. 1574 */ 1575 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1576 } 1577 } 1578 1579 /* 1580 * Old ifenslave binaries are no longer supported. These can 1581 * be identified with moderate accuracy by the state of the slave: 1582 * the current ifenslave will set the interface down prior to 1583 * enslaving it; the old ifenslave will not. 1584 */ 1585 if ((slave_dev->flags & IFF_UP)) { 1586 pr_err("%s is up. This may be due to an out of date ifenslave.\n", 1587 slave_dev->name); 1588 res = -EPERM; 1589 goto err_undo_flags; 1590 } 1591 1592 /* set bonding device ether type by slave - bonding netdevices are 1593 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1594 * there is a need to override some of the type dependent attribs/funcs. 1595 * 1596 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1597 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1598 */ 1599 if (bond->slave_cnt == 0) { 1600 if (bond_dev->type != slave_dev->type) { 1601 pr_debug("%s: change device type from %d to %d\n", 1602 bond_dev->name, 1603 bond_dev->type, slave_dev->type); 1604 1605 res = netdev_bonding_change(bond_dev, 1606 NETDEV_PRE_TYPE_CHANGE); 1607 res = notifier_to_errno(res); 1608 if (res) { 1609 pr_err("%s: refused to change device type\n", 1610 bond_dev->name); 1611 res = -EBUSY; 1612 goto err_undo_flags; 1613 } 1614 1615 /* Flush unicast and multicast addresses */ 1616 dev_uc_flush(bond_dev); 1617 dev_mc_flush(bond_dev); 1618 1619 if (slave_dev->type != ARPHRD_ETHER) 1620 bond_setup_by_slave(bond_dev, slave_dev); 1621 else 1622 ether_setup(bond_dev); 1623 1624 netdev_bonding_change(bond_dev, 1625 NETDEV_POST_TYPE_CHANGE); 1626 } 1627 } else if (bond_dev->type != slave_dev->type) { 1628 pr_err("%s ether type (%d) is different from other slaves (%d), can not enslave it.\n", 1629 slave_dev->name, 1630 slave_dev->type, bond_dev->type); 1631 res = -EINVAL; 1632 goto err_undo_flags; 1633 } 1634 1635 if (slave_ops->ndo_set_mac_address == NULL) { 1636 if (bond->slave_cnt == 0) { 1637 pr_warning("%s: Warning: The first slave device specified does not support setting the MAC address. Setting fail_over_mac to active.", 1638 bond_dev->name); 1639 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1640 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1641 pr_err("%s: Error: The slave device specified does not support setting the MAC address, but fail_over_mac is not set to active.\n", 1642 bond_dev->name); 1643 res = -EOPNOTSUPP; 1644 goto err_undo_flags; 1645 } 1646 } 1647 1648 /* If this is the first slave, then we need to set the master's hardware 1649 * address to be the same as the slave's. */ 1650 if (is_zero_ether_addr(bond->dev->dev_addr)) 1651 memcpy(bond->dev->dev_addr, slave_dev->dev_addr, 1652 slave_dev->addr_len); 1653 1654 1655 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1656 if (!new_slave) { 1657 res = -ENOMEM; 1658 goto err_undo_flags; 1659 } 1660 1661 /* 1662 * Set the new_slave's queue_id to be zero. Queue ID mapping 1663 * is set via sysfs or module option if desired. 1664 */ 1665 new_slave->queue_id = 0; 1666 1667 /* Save slave's original mtu and then set it to match the bond */ 1668 new_slave->original_mtu = slave_dev->mtu; 1669 res = dev_set_mtu(slave_dev, bond->dev->mtu); 1670 if (res) { 1671 pr_debug("Error %d calling dev_set_mtu\n", res); 1672 goto err_free; 1673 } 1674 1675 /* 1676 * Save slave's original ("permanent") mac address for modes 1677 * that need it, and for restoring it upon release, and then 1678 * set it to the master's address 1679 */ 1680 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1681 1682 if (!bond->params.fail_over_mac) { 1683 /* 1684 * Set slave to master's mac address. The application already 1685 * set the master's mac address to that of the first slave 1686 */ 1687 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1688 addr.sa_family = slave_dev->type; 1689 res = dev_set_mac_address(slave_dev, &addr); 1690 if (res) { 1691 pr_debug("Error %d calling set_mac_address\n", res); 1692 goto err_restore_mtu; 1693 } 1694 } 1695 1696 res = netdev_set_bond_master(slave_dev, bond_dev); 1697 if (res) { 1698 pr_debug("Error %d calling netdev_set_bond_master\n", res); 1699 goto err_restore_mac; 1700 } 1701 res = netdev_rx_handler_register(slave_dev, bond_handle_frame, 1702 new_slave); 1703 if (res) { 1704 pr_debug("Error %d calling netdev_rx_handler_register\n", res); 1705 goto err_unset_master; 1706 } 1707 1708 /* open the slave since the application closed it */ 1709 res = dev_open(slave_dev); 1710 if (res) { 1711 pr_debug("Opening slave %s failed\n", slave_dev->name); 1712 goto err_unreg_rxhandler; 1713 } 1714 1715 new_slave->dev = slave_dev; 1716 slave_dev->priv_flags |= IFF_BONDING; 1717 1718 if (bond_is_lb(bond)) { 1719 /* bond_alb_init_slave() must be called before all other stages since 1720 * it might fail and we do not want to have to undo everything 1721 */ 1722 res = bond_alb_init_slave(bond, new_slave); 1723 if (res) 1724 goto err_close; 1725 } 1726 1727 /* If the mode USES_PRIMARY, then the new slave gets the 1728 * master's promisc (and mc) settings only if it becomes the 1729 * curr_active_slave, and that is taken care of later when calling 1730 * bond_change_active() 1731 */ 1732 if (!USES_PRIMARY(bond->params.mode)) { 1733 /* set promiscuity level to new slave */ 1734 if (bond_dev->flags & IFF_PROMISC) { 1735 res = dev_set_promiscuity(slave_dev, 1); 1736 if (res) 1737 goto err_close; 1738 } 1739 1740 /* set allmulti level to new slave */ 1741 if (bond_dev->flags & IFF_ALLMULTI) { 1742 res = dev_set_allmulti(slave_dev, 1); 1743 if (res) 1744 goto err_close; 1745 } 1746 1747 netif_addr_lock_bh(bond_dev); 1748 /* upload master's mc_list to new slave */ 1749 netdev_for_each_mc_addr(ha, bond_dev) 1750 dev_mc_add(slave_dev, ha->addr); 1751 netif_addr_unlock_bh(bond_dev); 1752 } 1753 1754 if (bond->params.mode == BOND_MODE_8023AD) { 1755 /* add lacpdu mc addr to mc list */ 1756 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1757 1758 dev_mc_add(slave_dev, lacpdu_multicast); 1759 } 1760 1761 bond_add_vlans_on_slave(bond, slave_dev); 1762 1763 write_lock_bh(&bond->lock); 1764 1765 bond_attach_slave(bond, new_slave); 1766 1767 new_slave->delay = 0; 1768 new_slave->link_failure_count = 0; 1769 1770 bond_compute_features(bond); 1771 1772 write_unlock_bh(&bond->lock); 1773 1774 read_lock(&bond->lock); 1775 1776 new_slave->last_arp_rx = jiffies; 1777 1778 if (bond->params.miimon && !bond->params.use_carrier) { 1779 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1780 1781 if ((link_reporting == -1) && !bond->params.arp_interval) { 1782 /* 1783 * miimon is set but a bonded network driver 1784 * does not support ETHTOOL/MII and 1785 * arp_interval is not set. Note: if 1786 * use_carrier is enabled, we will never go 1787 * here (because netif_carrier is always 1788 * supported); thus, we don't need to change 1789 * the messages for netif_carrier. 1790 */ 1791 pr_warning("%s: Warning: MII and ETHTOOL support not available for interface %s, and arp_interval/arp_ip_target module parameters not specified, thus bonding will not detect link failures! see bonding.txt for details.\n", 1792 bond_dev->name, slave_dev->name); 1793 } else if (link_reporting == -1) { 1794 /* unable get link status using mii/ethtool */ 1795 pr_warning("%s: Warning: can't get link status from interface %s; the network driver associated with this interface does not support MII or ETHTOOL link status reporting, thus miimon has no effect on this interface.\n", 1796 bond_dev->name, slave_dev->name); 1797 } 1798 } 1799 1800 /* check for initial state */ 1801 if (!bond->params.miimon || 1802 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1803 if (bond->params.updelay) { 1804 pr_debug("Initial state of slave_dev is BOND_LINK_BACK\n"); 1805 new_slave->link = BOND_LINK_BACK; 1806 new_slave->delay = bond->params.updelay; 1807 } else { 1808 pr_debug("Initial state of slave_dev is BOND_LINK_UP\n"); 1809 new_slave->link = BOND_LINK_UP; 1810 } 1811 new_slave->jiffies = jiffies; 1812 } else { 1813 pr_debug("Initial state of slave_dev is BOND_LINK_DOWN\n"); 1814 new_slave->link = BOND_LINK_DOWN; 1815 } 1816 1817 if (bond_update_speed_duplex(new_slave) && 1818 (new_slave->link != BOND_LINK_DOWN)) { 1819 pr_warning("%s: Warning: failed to get speed and duplex from %s, assumed to be 100Mb/sec and Full.\n", 1820 bond_dev->name, new_slave->dev->name); 1821 1822 if (bond->params.mode == BOND_MODE_8023AD) { 1823 pr_warning("%s: Warning: Operation of 802.3ad mode requires ETHTOOL support in base driver for proper aggregator selection.\n", 1824 bond_dev->name); 1825 } 1826 } 1827 1828 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1829 /* if there is a primary slave, remember it */ 1830 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1831 bond->primary_slave = new_slave; 1832 bond->force_primary = true; 1833 } 1834 } 1835 1836 write_lock_bh(&bond->curr_slave_lock); 1837 1838 switch (bond->params.mode) { 1839 case BOND_MODE_ACTIVEBACKUP: 1840 bond_set_slave_inactive_flags(new_slave); 1841 bond_select_active_slave(bond); 1842 break; 1843 case BOND_MODE_8023AD: 1844 /* in 802.3ad mode, the internal mechanism 1845 * will activate the slaves in the selected 1846 * aggregator 1847 */ 1848 bond_set_slave_inactive_flags(new_slave); 1849 /* if this is the first slave */ 1850 if (bond->slave_cnt == 1) { 1851 SLAVE_AD_INFO(new_slave).id = 1; 1852 /* Initialize AD with the number of times that the AD timer is called in 1 second 1853 * can be called only after the mac address of the bond is set 1854 */ 1855 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1856 bond->params.lacp_fast); 1857 } else { 1858 SLAVE_AD_INFO(new_slave).id = 1859 SLAVE_AD_INFO(new_slave->prev).id + 1; 1860 } 1861 1862 bond_3ad_bind_slave(new_slave); 1863 break; 1864 case BOND_MODE_TLB: 1865 case BOND_MODE_ALB: 1866 bond_set_active_slave(new_slave); 1867 bond_set_slave_inactive_flags(new_slave); 1868 bond_select_active_slave(bond); 1869 break; 1870 default: 1871 pr_debug("This slave is always active in trunk mode\n"); 1872 1873 /* always active in trunk mode */ 1874 bond_set_active_slave(new_slave); 1875 1876 /* In trunking mode there is little meaning to curr_active_slave 1877 * anyway (it holds no special properties of the bond device), 1878 * so we can change it without calling change_active_interface() 1879 */ 1880 if (!bond->curr_active_slave) 1881 bond->curr_active_slave = new_slave; 1882 1883 break; 1884 } /* switch(bond_mode) */ 1885 1886 write_unlock_bh(&bond->curr_slave_lock); 1887 1888 bond_set_carrier(bond); 1889 1890 #ifdef CONFIG_NET_POLL_CONTROLLER 1891 slave_dev->npinfo = bond_netpoll_info(bond); 1892 if (slave_dev->npinfo) { 1893 if (slave_enable_netpoll(new_slave)) { 1894 read_unlock(&bond->lock); 1895 pr_info("Error, %s: master_dev is using netpoll, " 1896 "but new slave device does not support netpoll.\n", 1897 bond_dev->name); 1898 res = -EBUSY; 1899 goto err_close; 1900 } 1901 } 1902 #endif 1903 1904 read_unlock(&bond->lock); 1905 1906 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1907 if (res) 1908 goto err_close; 1909 1910 pr_info("%s: enslaving %s as a%s interface with a%s link.\n", 1911 bond_dev->name, slave_dev->name, 1912 bond_is_active_slave(new_slave) ? "n active" : " backup", 1913 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1914 1915 /* enslave is successful */ 1916 return 0; 1917 1918 /* Undo stages on error */ 1919 err_close: 1920 dev_close(slave_dev); 1921 1922 err_unreg_rxhandler: 1923 netdev_rx_handler_unregister(slave_dev); 1924 synchronize_net(); 1925 1926 err_unset_master: 1927 netdev_set_bond_master(slave_dev, NULL); 1928 1929 err_restore_mac: 1930 if (!bond->params.fail_over_mac) { 1931 /* XXX TODO - fom follow mode needs to change master's 1932 * MAC if this slave's MAC is in use by the bond, or at 1933 * least print a warning. 1934 */ 1935 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1936 addr.sa_family = slave_dev->type; 1937 dev_set_mac_address(slave_dev, &addr); 1938 } 1939 1940 err_restore_mtu: 1941 dev_set_mtu(slave_dev, new_slave->original_mtu); 1942 1943 err_free: 1944 kfree(new_slave); 1945 1946 err_undo_flags: 1947 bond_dev->features = old_features; 1948 1949 return res; 1950 } 1951 1952 /* 1953 * Try to release the slave device <slave> from the bond device <master> 1954 * It is legal to access curr_active_slave without a lock because all the function 1955 * is write-locked. 1956 * 1957 * The rules for slave state should be: 1958 * for Active/Backup: 1959 * Active stays on all backups go down 1960 * for Bonded connections: 1961 * The first up interface should be left on and all others downed. 1962 */ 1963 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1964 { 1965 struct bonding *bond = netdev_priv(bond_dev); 1966 struct slave *slave, *oldcurrent; 1967 struct sockaddr addr; 1968 1969 /* slave is not a slave or master is not master of this slave */ 1970 if (!(slave_dev->flags & IFF_SLAVE) || 1971 (slave_dev->master != bond_dev)) { 1972 pr_err("%s: Error: cannot release %s.\n", 1973 bond_dev->name, slave_dev->name); 1974 return -EINVAL; 1975 } 1976 1977 block_netpoll_tx(); 1978 netdev_bonding_change(bond_dev, NETDEV_BONDING_DESLAVE); 1979 write_lock_bh(&bond->lock); 1980 1981 slave = bond_get_slave_by_dev(bond, slave_dev); 1982 if (!slave) { 1983 /* not a slave of this bond */ 1984 pr_info("%s: %s not enslaved\n", 1985 bond_dev->name, slave_dev->name); 1986 write_unlock_bh(&bond->lock); 1987 unblock_netpoll_tx(); 1988 return -EINVAL; 1989 } 1990 1991 if (!bond->params.fail_over_mac) { 1992 if (!compare_ether_addr(bond_dev->dev_addr, slave->perm_hwaddr) && 1993 bond->slave_cnt > 1) 1994 pr_warning("%s: Warning: the permanent HWaddr of %s - %pM - is still in use by %s. Set the HWaddr of %s to a different address to avoid conflicts.\n", 1995 bond_dev->name, slave_dev->name, 1996 slave->perm_hwaddr, 1997 bond_dev->name, slave_dev->name); 1998 } 1999 2000 /* Inform AD package of unbinding of slave. */ 2001 if (bond->params.mode == BOND_MODE_8023AD) { 2002 /* must be called before the slave is 2003 * detached from the list 2004 */ 2005 bond_3ad_unbind_slave(slave); 2006 } 2007 2008 pr_info("%s: releasing %s interface %s\n", 2009 bond_dev->name, 2010 bond_is_active_slave(slave) ? "active" : "backup", 2011 slave_dev->name); 2012 2013 oldcurrent = bond->curr_active_slave; 2014 2015 bond->current_arp_slave = NULL; 2016 2017 /* release the slave from its bond */ 2018 bond_detach_slave(bond, slave); 2019 2020 bond_compute_features(bond); 2021 2022 if (bond->primary_slave == slave) 2023 bond->primary_slave = NULL; 2024 2025 if (oldcurrent == slave) 2026 bond_change_active_slave(bond, NULL); 2027 2028 if (bond_is_lb(bond)) { 2029 /* Must be called only after the slave has been 2030 * detached from the list and the curr_active_slave 2031 * has been cleared (if our_slave == old_current), 2032 * but before a new active slave is selected. 2033 */ 2034 write_unlock_bh(&bond->lock); 2035 bond_alb_deinit_slave(bond, slave); 2036 write_lock_bh(&bond->lock); 2037 } 2038 2039 if (oldcurrent == slave) { 2040 /* 2041 * Note that we hold RTNL over this sequence, so there 2042 * is no concern that another slave add/remove event 2043 * will interfere. 2044 */ 2045 write_unlock_bh(&bond->lock); 2046 read_lock(&bond->lock); 2047 write_lock_bh(&bond->curr_slave_lock); 2048 2049 bond_select_active_slave(bond); 2050 2051 write_unlock_bh(&bond->curr_slave_lock); 2052 read_unlock(&bond->lock); 2053 write_lock_bh(&bond->lock); 2054 } 2055 2056 if (bond->slave_cnt == 0) { 2057 bond_set_carrier(bond); 2058 2059 /* if the last slave was removed, zero the mac address 2060 * of the master so it will be set by the application 2061 * to the mac address of the first slave 2062 */ 2063 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2064 2065 if (!bond->vlgrp) { 2066 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2067 } else { 2068 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n", 2069 bond_dev->name, bond_dev->name); 2070 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n", 2071 bond_dev->name); 2072 } 2073 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 2074 !bond_has_challenged_slaves(bond)) { 2075 pr_info("%s: last VLAN challenged slave %s left bond %s. VLAN blocking is removed\n", 2076 bond_dev->name, slave_dev->name, bond_dev->name); 2077 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 2078 } 2079 2080 write_unlock_bh(&bond->lock); 2081 unblock_netpoll_tx(); 2082 2083 /* must do this from outside any spinlocks */ 2084 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2085 2086 bond_del_vlans_from_slave(bond, slave_dev); 2087 2088 /* If the mode USES_PRIMARY, then we should only remove its 2089 * promisc and mc settings if it was the curr_active_slave, but that was 2090 * already taken care of above when we detached the slave 2091 */ 2092 if (!USES_PRIMARY(bond->params.mode)) { 2093 /* unset promiscuity level from slave */ 2094 if (bond_dev->flags & IFF_PROMISC) 2095 dev_set_promiscuity(slave_dev, -1); 2096 2097 /* unset allmulti level from slave */ 2098 if (bond_dev->flags & IFF_ALLMULTI) 2099 dev_set_allmulti(slave_dev, -1); 2100 2101 /* flush master's mc_list from slave */ 2102 netif_addr_lock_bh(bond_dev); 2103 bond_mc_list_flush(bond_dev, slave_dev); 2104 netif_addr_unlock_bh(bond_dev); 2105 } 2106 2107 netdev_rx_handler_unregister(slave_dev); 2108 synchronize_net(); 2109 netdev_set_bond_master(slave_dev, NULL); 2110 2111 slave_disable_netpoll(slave); 2112 2113 /* close slave before restoring its mac address */ 2114 dev_close(slave_dev); 2115 2116 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 2117 /* restore original ("permanent") mac address */ 2118 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2119 addr.sa_family = slave_dev->type; 2120 dev_set_mac_address(slave_dev, &addr); 2121 } 2122 2123 dev_set_mtu(slave_dev, slave->original_mtu); 2124 2125 slave_dev->priv_flags &= ~IFF_BONDING; 2126 2127 kfree(slave); 2128 2129 return 0; /* deletion OK */ 2130 } 2131 2132 /* 2133 * First release a slave and then destroy the bond if no more slaves are left. 2134 * Must be under rtnl_lock when this function is called. 2135 */ 2136 static int bond_release_and_destroy(struct net_device *bond_dev, 2137 struct net_device *slave_dev) 2138 { 2139 struct bonding *bond = netdev_priv(bond_dev); 2140 int ret; 2141 2142 ret = bond_release(bond_dev, slave_dev); 2143 if ((ret == 0) && (bond->slave_cnt == 0)) { 2144 bond_dev->priv_flags |= IFF_DISABLE_NETPOLL; 2145 pr_info("%s: destroying bond %s.\n", 2146 bond_dev->name, bond_dev->name); 2147 unregister_netdevice(bond_dev); 2148 } 2149 return ret; 2150 } 2151 2152 /* 2153 * This function releases all slaves. 2154 */ 2155 static int bond_release_all(struct net_device *bond_dev) 2156 { 2157 struct bonding *bond = netdev_priv(bond_dev); 2158 struct slave *slave; 2159 struct net_device *slave_dev; 2160 struct sockaddr addr; 2161 2162 write_lock_bh(&bond->lock); 2163 2164 netif_carrier_off(bond_dev); 2165 2166 if (bond->slave_cnt == 0) 2167 goto out; 2168 2169 bond->current_arp_slave = NULL; 2170 bond->primary_slave = NULL; 2171 bond_change_active_slave(bond, NULL); 2172 2173 while ((slave = bond->first_slave) != NULL) { 2174 /* Inform AD package of unbinding of slave 2175 * before slave is detached from the list. 2176 */ 2177 if (bond->params.mode == BOND_MODE_8023AD) 2178 bond_3ad_unbind_slave(slave); 2179 2180 slave_dev = slave->dev; 2181 bond_detach_slave(bond, slave); 2182 2183 /* now that the slave is detached, unlock and perform 2184 * all the undo steps that should not be called from 2185 * within a lock. 2186 */ 2187 write_unlock_bh(&bond->lock); 2188 2189 if (bond_is_lb(bond)) { 2190 /* must be called only after the slave 2191 * has been detached from the list 2192 */ 2193 bond_alb_deinit_slave(bond, slave); 2194 } 2195 2196 bond_compute_features(bond); 2197 2198 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2199 bond_del_vlans_from_slave(bond, slave_dev); 2200 2201 /* If the mode USES_PRIMARY, then we should only remove its 2202 * promisc and mc settings if it was the curr_active_slave, but that was 2203 * already taken care of above when we detached the slave 2204 */ 2205 if (!USES_PRIMARY(bond->params.mode)) { 2206 /* unset promiscuity level from slave */ 2207 if (bond_dev->flags & IFF_PROMISC) 2208 dev_set_promiscuity(slave_dev, -1); 2209 2210 /* unset allmulti level from slave */ 2211 if (bond_dev->flags & IFF_ALLMULTI) 2212 dev_set_allmulti(slave_dev, -1); 2213 2214 /* flush master's mc_list from slave */ 2215 netif_addr_lock_bh(bond_dev); 2216 bond_mc_list_flush(bond_dev, slave_dev); 2217 netif_addr_unlock_bh(bond_dev); 2218 } 2219 2220 netdev_rx_handler_unregister(slave_dev); 2221 synchronize_net(); 2222 netdev_set_bond_master(slave_dev, NULL); 2223 2224 slave_disable_netpoll(slave); 2225 2226 /* close slave before restoring its mac address */ 2227 dev_close(slave_dev); 2228 2229 if (!bond->params.fail_over_mac) { 2230 /* restore original ("permanent") mac address*/ 2231 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2232 addr.sa_family = slave_dev->type; 2233 dev_set_mac_address(slave_dev, &addr); 2234 } 2235 2236 kfree(slave); 2237 2238 /* re-acquire the lock before getting the next slave */ 2239 write_lock_bh(&bond->lock); 2240 } 2241 2242 /* zero the mac address of the master so it will be 2243 * set by the application to the mac address of the 2244 * first slave 2245 */ 2246 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2247 2248 if (!bond->vlgrp) { 2249 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2250 } else { 2251 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n", 2252 bond_dev->name, bond_dev->name); 2253 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n", 2254 bond_dev->name); 2255 } 2256 2257 pr_info("%s: released all slaves\n", bond_dev->name); 2258 2259 out: 2260 write_unlock_bh(&bond->lock); 2261 return 0; 2262 } 2263 2264 /* 2265 * This function changes the active slave to slave <slave_dev>. 2266 * It returns -EINVAL in the following cases. 2267 * - <slave_dev> is not found in the list. 2268 * - There is not active slave now. 2269 * - <slave_dev> is already active. 2270 * - The link state of <slave_dev> is not BOND_LINK_UP. 2271 * - <slave_dev> is not running. 2272 * In these cases, this function does nothing. 2273 * In the other cases, current_slave pointer is changed and 0 is returned. 2274 */ 2275 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2276 { 2277 struct bonding *bond = netdev_priv(bond_dev); 2278 struct slave *old_active = NULL; 2279 struct slave *new_active = NULL; 2280 int res = 0; 2281 2282 if (!USES_PRIMARY(bond->params.mode)) 2283 return -EINVAL; 2284 2285 /* Verify that master_dev is indeed the master of slave_dev */ 2286 if (!(slave_dev->flags & IFF_SLAVE) || (slave_dev->master != bond_dev)) 2287 return -EINVAL; 2288 2289 read_lock(&bond->lock); 2290 2291 read_lock(&bond->curr_slave_lock); 2292 old_active = bond->curr_active_slave; 2293 read_unlock(&bond->curr_slave_lock); 2294 2295 new_active = bond_get_slave_by_dev(bond, slave_dev); 2296 2297 /* 2298 * Changing to the current active: do nothing; return success. 2299 */ 2300 if (new_active && (new_active == old_active)) { 2301 read_unlock(&bond->lock); 2302 return 0; 2303 } 2304 2305 if ((new_active) && 2306 (old_active) && 2307 (new_active->link == BOND_LINK_UP) && 2308 IS_UP(new_active->dev)) { 2309 block_netpoll_tx(); 2310 write_lock_bh(&bond->curr_slave_lock); 2311 bond_change_active_slave(bond, new_active); 2312 write_unlock_bh(&bond->curr_slave_lock); 2313 unblock_netpoll_tx(); 2314 } else 2315 res = -EINVAL; 2316 2317 read_unlock(&bond->lock); 2318 2319 return res; 2320 } 2321 2322 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2323 { 2324 struct bonding *bond = netdev_priv(bond_dev); 2325 2326 info->bond_mode = bond->params.mode; 2327 info->miimon = bond->params.miimon; 2328 2329 read_lock(&bond->lock); 2330 info->num_slaves = bond->slave_cnt; 2331 read_unlock(&bond->lock); 2332 2333 return 0; 2334 } 2335 2336 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2337 { 2338 struct bonding *bond = netdev_priv(bond_dev); 2339 struct slave *slave; 2340 int i, res = -ENODEV; 2341 2342 read_lock(&bond->lock); 2343 2344 bond_for_each_slave(bond, slave, i) { 2345 if (i == (int)info->slave_id) { 2346 res = 0; 2347 strcpy(info->slave_name, slave->dev->name); 2348 info->link = slave->link; 2349 info->state = bond_slave_state(slave); 2350 info->link_failure_count = slave->link_failure_count; 2351 break; 2352 } 2353 } 2354 2355 read_unlock(&bond->lock); 2356 2357 return res; 2358 } 2359 2360 /*-------------------------------- Monitoring -------------------------------*/ 2361 2362 2363 static int bond_miimon_inspect(struct bonding *bond) 2364 { 2365 struct slave *slave; 2366 int i, link_state, commit = 0; 2367 bool ignore_updelay; 2368 2369 ignore_updelay = !bond->curr_active_slave ? true : false; 2370 2371 bond_for_each_slave(bond, slave, i) { 2372 slave->new_link = BOND_LINK_NOCHANGE; 2373 2374 link_state = bond_check_dev_link(bond, slave->dev, 0); 2375 2376 switch (slave->link) { 2377 case BOND_LINK_UP: 2378 if (link_state) 2379 continue; 2380 2381 slave->link = BOND_LINK_FAIL; 2382 slave->delay = bond->params.downdelay; 2383 if (slave->delay) { 2384 pr_info("%s: link status down for %sinterface %s, disabling it in %d ms.\n", 2385 bond->dev->name, 2386 (bond->params.mode == 2387 BOND_MODE_ACTIVEBACKUP) ? 2388 (bond_is_active_slave(slave) ? 2389 "active " : "backup ") : "", 2390 slave->dev->name, 2391 bond->params.downdelay * bond->params.miimon); 2392 } 2393 /*FALLTHRU*/ 2394 case BOND_LINK_FAIL: 2395 if (link_state) { 2396 /* 2397 * recovered before downdelay expired 2398 */ 2399 slave->link = BOND_LINK_UP; 2400 slave->jiffies = jiffies; 2401 pr_info("%s: link status up again after %d ms for interface %s.\n", 2402 bond->dev->name, 2403 (bond->params.downdelay - slave->delay) * 2404 bond->params.miimon, 2405 slave->dev->name); 2406 continue; 2407 } 2408 2409 if (slave->delay <= 0) { 2410 slave->new_link = BOND_LINK_DOWN; 2411 commit++; 2412 continue; 2413 } 2414 2415 slave->delay--; 2416 break; 2417 2418 case BOND_LINK_DOWN: 2419 if (!link_state) 2420 continue; 2421 2422 slave->link = BOND_LINK_BACK; 2423 slave->delay = bond->params.updelay; 2424 2425 if (slave->delay) { 2426 pr_info("%s: link status up for interface %s, enabling it in %d ms.\n", 2427 bond->dev->name, slave->dev->name, 2428 ignore_updelay ? 0 : 2429 bond->params.updelay * 2430 bond->params.miimon); 2431 } 2432 /*FALLTHRU*/ 2433 case BOND_LINK_BACK: 2434 if (!link_state) { 2435 slave->link = BOND_LINK_DOWN; 2436 pr_info("%s: link status down again after %d ms for interface %s.\n", 2437 bond->dev->name, 2438 (bond->params.updelay - slave->delay) * 2439 bond->params.miimon, 2440 slave->dev->name); 2441 2442 continue; 2443 } 2444 2445 if (ignore_updelay) 2446 slave->delay = 0; 2447 2448 if (slave->delay <= 0) { 2449 slave->new_link = BOND_LINK_UP; 2450 commit++; 2451 ignore_updelay = false; 2452 continue; 2453 } 2454 2455 slave->delay--; 2456 break; 2457 } 2458 } 2459 2460 return commit; 2461 } 2462 2463 static void bond_miimon_commit(struct bonding *bond) 2464 { 2465 struct slave *slave; 2466 int i; 2467 2468 bond_for_each_slave(bond, slave, i) { 2469 switch (slave->new_link) { 2470 case BOND_LINK_NOCHANGE: 2471 continue; 2472 2473 case BOND_LINK_UP: 2474 slave->link = BOND_LINK_UP; 2475 slave->jiffies = jiffies; 2476 2477 if (bond->params.mode == BOND_MODE_8023AD) { 2478 /* prevent it from being the active one */ 2479 bond_set_backup_slave(slave); 2480 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2481 /* make it immediately active */ 2482 bond_set_active_slave(slave); 2483 } else if (slave != bond->primary_slave) { 2484 /* prevent it from being the active one */ 2485 bond_set_backup_slave(slave); 2486 } 2487 2488 bond_update_speed_duplex(slave); 2489 2490 pr_info("%s: link status definitely up for interface %s, %d Mbps %s duplex.\n", 2491 bond->dev->name, slave->dev->name, 2492 slave->speed, slave->duplex ? "full" : "half"); 2493 2494 /* notify ad that the link status has changed */ 2495 if (bond->params.mode == BOND_MODE_8023AD) 2496 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2497 2498 if (bond_is_lb(bond)) 2499 bond_alb_handle_link_change(bond, slave, 2500 BOND_LINK_UP); 2501 2502 if (!bond->curr_active_slave || 2503 (slave == bond->primary_slave)) 2504 goto do_failover; 2505 2506 continue; 2507 2508 case BOND_LINK_DOWN: 2509 if (slave->link_failure_count < UINT_MAX) 2510 slave->link_failure_count++; 2511 2512 slave->link = BOND_LINK_DOWN; 2513 2514 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2515 bond->params.mode == BOND_MODE_8023AD) 2516 bond_set_slave_inactive_flags(slave); 2517 2518 pr_info("%s: link status definitely down for interface %s, disabling it\n", 2519 bond->dev->name, slave->dev->name); 2520 2521 if (bond->params.mode == BOND_MODE_8023AD) 2522 bond_3ad_handle_link_change(slave, 2523 BOND_LINK_DOWN); 2524 2525 if (bond_is_lb(bond)) 2526 bond_alb_handle_link_change(bond, slave, 2527 BOND_LINK_DOWN); 2528 2529 if (slave == bond->curr_active_slave) 2530 goto do_failover; 2531 2532 continue; 2533 2534 default: 2535 pr_err("%s: invalid new link %d on slave %s\n", 2536 bond->dev->name, slave->new_link, 2537 slave->dev->name); 2538 slave->new_link = BOND_LINK_NOCHANGE; 2539 2540 continue; 2541 } 2542 2543 do_failover: 2544 ASSERT_RTNL(); 2545 block_netpoll_tx(); 2546 write_lock_bh(&bond->curr_slave_lock); 2547 bond_select_active_slave(bond); 2548 write_unlock_bh(&bond->curr_slave_lock); 2549 unblock_netpoll_tx(); 2550 } 2551 2552 bond_set_carrier(bond); 2553 } 2554 2555 /* 2556 * bond_mii_monitor 2557 * 2558 * Really a wrapper that splits the mii monitor into two phases: an 2559 * inspection, then (if inspection indicates something needs to be done) 2560 * an acquisition of appropriate locks followed by a commit phase to 2561 * implement whatever link state changes are indicated. 2562 */ 2563 void bond_mii_monitor(struct work_struct *work) 2564 { 2565 struct bonding *bond = container_of(work, struct bonding, 2566 mii_work.work); 2567 2568 read_lock(&bond->lock); 2569 if (bond->kill_timers) 2570 goto out; 2571 2572 if (bond->slave_cnt == 0) 2573 goto re_arm; 2574 2575 if (bond->send_grat_arp) { 2576 read_lock(&bond->curr_slave_lock); 2577 bond_send_gratuitous_arp(bond); 2578 read_unlock(&bond->curr_slave_lock); 2579 } 2580 2581 if (bond->send_unsol_na) { 2582 read_lock(&bond->curr_slave_lock); 2583 bond_send_unsolicited_na(bond); 2584 read_unlock(&bond->curr_slave_lock); 2585 } 2586 2587 if (bond_miimon_inspect(bond)) { 2588 read_unlock(&bond->lock); 2589 rtnl_lock(); 2590 read_lock(&bond->lock); 2591 2592 bond_miimon_commit(bond); 2593 2594 read_unlock(&bond->lock); 2595 rtnl_unlock(); /* might sleep, hold no other locks */ 2596 read_lock(&bond->lock); 2597 } 2598 2599 re_arm: 2600 if (bond->params.miimon) 2601 queue_delayed_work(bond->wq, &bond->mii_work, 2602 msecs_to_jiffies(bond->params.miimon)); 2603 out: 2604 read_unlock(&bond->lock); 2605 } 2606 2607 static __be32 bond_glean_dev_ip(struct net_device *dev) 2608 { 2609 struct in_device *idev; 2610 struct in_ifaddr *ifa; 2611 __be32 addr = 0; 2612 2613 if (!dev) 2614 return 0; 2615 2616 rcu_read_lock(); 2617 idev = __in_dev_get_rcu(dev); 2618 if (!idev) 2619 goto out; 2620 2621 ifa = idev->ifa_list; 2622 if (!ifa) 2623 goto out; 2624 2625 addr = ifa->ifa_local; 2626 out: 2627 rcu_read_unlock(); 2628 return addr; 2629 } 2630 2631 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2632 { 2633 struct vlan_entry *vlan; 2634 2635 if (ip == bond->master_ip) 2636 return 1; 2637 2638 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2639 if (ip == vlan->vlan_ip) 2640 return 1; 2641 } 2642 2643 return 0; 2644 } 2645 2646 /* 2647 * We go to the (large) trouble of VLAN tagging ARP frames because 2648 * switches in VLAN mode (especially if ports are configured as 2649 * "native" to a VLAN) might not pass non-tagged frames. 2650 */ 2651 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2652 { 2653 struct sk_buff *skb; 2654 2655 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2656 slave_dev->name, dest_ip, src_ip, vlan_id); 2657 2658 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2659 NULL, slave_dev->dev_addr, NULL); 2660 2661 if (!skb) { 2662 pr_err("ARP packet allocation failed\n"); 2663 return; 2664 } 2665 if (vlan_id) { 2666 skb = vlan_put_tag(skb, vlan_id); 2667 if (!skb) { 2668 pr_err("failed to insert VLAN tag\n"); 2669 return; 2670 } 2671 } 2672 arp_xmit(skb); 2673 } 2674 2675 2676 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2677 { 2678 int i, vlan_id; 2679 __be32 *targets = bond->params.arp_targets; 2680 struct vlan_entry *vlan; 2681 struct net_device *vlan_dev; 2682 struct rtable *rt; 2683 2684 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2685 if (!targets[i]) 2686 break; 2687 pr_debug("basa: target %x\n", targets[i]); 2688 if (!bond->vlgrp) { 2689 pr_debug("basa: empty vlan: arp_send\n"); 2690 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2691 bond->master_ip, 0); 2692 continue; 2693 } 2694 2695 /* 2696 * If VLANs are configured, we do a route lookup to 2697 * determine which VLAN interface would be used, so we 2698 * can tag the ARP with the proper VLAN tag. 2699 */ 2700 rt = ip_route_output(dev_net(bond->dev), targets[i], 0, 2701 RTO_ONLINK, 0); 2702 if (IS_ERR(rt)) { 2703 if (net_ratelimit()) { 2704 pr_warning("%s: no route to arp_ip_target %pI4\n", 2705 bond->dev->name, &targets[i]); 2706 } 2707 continue; 2708 } 2709 2710 /* 2711 * This target is not on a VLAN 2712 */ 2713 if (rt->dst.dev == bond->dev) { 2714 ip_rt_put(rt); 2715 pr_debug("basa: rtdev == bond->dev: arp_send\n"); 2716 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2717 bond->master_ip, 0); 2718 continue; 2719 } 2720 2721 vlan_id = 0; 2722 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2723 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2724 if (vlan_dev == rt->dst.dev) { 2725 vlan_id = vlan->vlan_id; 2726 pr_debug("basa: vlan match on %s %d\n", 2727 vlan_dev->name, vlan_id); 2728 break; 2729 } 2730 } 2731 2732 if (vlan_id) { 2733 ip_rt_put(rt); 2734 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2735 vlan->vlan_ip, vlan_id); 2736 continue; 2737 } 2738 2739 if (net_ratelimit()) { 2740 pr_warning("%s: no path to arp_ip_target %pI4 via rt.dev %s\n", 2741 bond->dev->name, &targets[i], 2742 rt->dst.dev ? rt->dst.dev->name : "NULL"); 2743 } 2744 ip_rt_put(rt); 2745 } 2746 } 2747 2748 /* 2749 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2750 * for each VLAN above us. 2751 * 2752 * Caller must hold curr_slave_lock for read or better 2753 */ 2754 static void bond_send_gratuitous_arp(struct bonding *bond) 2755 { 2756 struct slave *slave = bond->curr_active_slave; 2757 struct vlan_entry *vlan; 2758 struct net_device *vlan_dev; 2759 2760 pr_debug("bond_send_grat_arp: bond %s slave %s\n", 2761 bond->dev->name, slave ? slave->dev->name : "NULL"); 2762 2763 if (!slave || !bond->send_grat_arp || 2764 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 2765 return; 2766 2767 bond->send_grat_arp--; 2768 2769 if (bond->master_ip) { 2770 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2771 bond->master_ip, 0); 2772 } 2773 2774 if (!bond->vlgrp) 2775 return; 2776 2777 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2778 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2779 if (vlan->vlan_ip) { 2780 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2781 vlan->vlan_ip, vlan->vlan_id); 2782 } 2783 } 2784 } 2785 2786 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2787 { 2788 int i; 2789 __be32 *targets = bond->params.arp_targets; 2790 2791 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2792 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n", 2793 &sip, &tip, i, &targets[i], 2794 bond_has_this_ip(bond, tip)); 2795 if (sip == targets[i]) { 2796 if (bond_has_this_ip(bond, tip)) 2797 slave->last_arp_rx = jiffies; 2798 return; 2799 } 2800 } 2801 } 2802 2803 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2804 { 2805 struct arphdr *arp; 2806 struct slave *slave; 2807 struct bonding *bond; 2808 unsigned char *arp_ptr; 2809 __be32 sip, tip; 2810 2811 if (dev->priv_flags & IFF_802_1Q_VLAN) { 2812 /* 2813 * When using VLANS and bonding, dev and oriv_dev may be 2814 * incorrect if the physical interface supports VLAN 2815 * acceleration. With this change ARP validation now 2816 * works for hosts only reachable on the VLAN interface. 2817 */ 2818 dev = vlan_dev_real_dev(dev); 2819 orig_dev = dev_get_by_index_rcu(dev_net(skb->dev),skb->skb_iif); 2820 } 2821 2822 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2823 goto out; 2824 2825 bond = netdev_priv(dev); 2826 read_lock(&bond->lock); 2827 2828 pr_debug("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2829 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2830 orig_dev ? orig_dev->name : "NULL"); 2831 2832 slave = bond_get_slave_by_dev(bond, orig_dev); 2833 if (!slave || !slave_do_arp_validate(bond, slave)) 2834 goto out_unlock; 2835 2836 skb = skb_share_check(skb, GFP_ATOMIC); 2837 if (!skb) 2838 goto out_unlock; 2839 2840 if (!pskb_may_pull(skb, arp_hdr_len(dev))) 2841 goto out_unlock; 2842 2843 arp = arp_hdr(skb); 2844 if (arp->ar_hln != dev->addr_len || 2845 skb->pkt_type == PACKET_OTHERHOST || 2846 skb->pkt_type == PACKET_LOOPBACK || 2847 arp->ar_hrd != htons(ARPHRD_ETHER) || 2848 arp->ar_pro != htons(ETH_P_IP) || 2849 arp->ar_pln != 4) 2850 goto out_unlock; 2851 2852 arp_ptr = (unsigned char *)(arp + 1); 2853 arp_ptr += dev->addr_len; 2854 memcpy(&sip, arp_ptr, 4); 2855 arp_ptr += 4 + dev->addr_len; 2856 memcpy(&tip, arp_ptr, 4); 2857 2858 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n", 2859 bond->dev->name, slave->dev->name, bond_slave_state(slave), 2860 bond->params.arp_validate, slave_do_arp_validate(bond, slave), 2861 &sip, &tip); 2862 2863 /* 2864 * Backup slaves won't see the ARP reply, but do come through 2865 * here for each ARP probe (so we swap the sip/tip to validate 2866 * the probe). In a "redundant switch, common router" type of 2867 * configuration, the ARP probe will (hopefully) travel from 2868 * the active, through one switch, the router, then the other 2869 * switch before reaching the backup. 2870 */ 2871 if (bond_is_active_slave(slave)) 2872 bond_validate_arp(bond, slave, sip, tip); 2873 else 2874 bond_validate_arp(bond, slave, tip, sip); 2875 2876 out_unlock: 2877 read_unlock(&bond->lock); 2878 out: 2879 dev_kfree_skb(skb); 2880 return NET_RX_SUCCESS; 2881 } 2882 2883 /* 2884 * this function is called regularly to monitor each slave's link 2885 * ensuring that traffic is being sent and received when arp monitoring 2886 * is used in load-balancing mode. if the adapter has been dormant, then an 2887 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2888 * arp monitoring in active backup mode. 2889 */ 2890 void bond_loadbalance_arp_mon(struct work_struct *work) 2891 { 2892 struct bonding *bond = container_of(work, struct bonding, 2893 arp_work.work); 2894 struct slave *slave, *oldcurrent; 2895 int do_failover = 0; 2896 int delta_in_ticks; 2897 int i; 2898 2899 read_lock(&bond->lock); 2900 2901 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2902 2903 if (bond->kill_timers) 2904 goto out; 2905 2906 if (bond->slave_cnt == 0) 2907 goto re_arm; 2908 2909 read_lock(&bond->curr_slave_lock); 2910 oldcurrent = bond->curr_active_slave; 2911 read_unlock(&bond->curr_slave_lock); 2912 2913 /* see if any of the previous devices are up now (i.e. they have 2914 * xmt and rcv traffic). the curr_active_slave does not come into 2915 * the picture unless it is null. also, slave->jiffies is not needed 2916 * here because we send an arp on each slave and give a slave as 2917 * long as it needs to get the tx/rx within the delta. 2918 * TODO: what about up/down delay in arp mode? it wasn't here before 2919 * so it can wait 2920 */ 2921 bond_for_each_slave(bond, slave, i) { 2922 unsigned long trans_start = dev_trans_start(slave->dev); 2923 2924 if (slave->link != BOND_LINK_UP) { 2925 if (time_in_range(jiffies, 2926 trans_start - delta_in_ticks, 2927 trans_start + delta_in_ticks) && 2928 time_in_range(jiffies, 2929 slave->dev->last_rx - delta_in_ticks, 2930 slave->dev->last_rx + delta_in_ticks)) { 2931 2932 slave->link = BOND_LINK_UP; 2933 bond_set_active_slave(slave); 2934 2935 /* primary_slave has no meaning in round-robin 2936 * mode. the window of a slave being up and 2937 * curr_active_slave being null after enslaving 2938 * is closed. 2939 */ 2940 if (!oldcurrent) { 2941 pr_info("%s: link status definitely up for interface %s, ", 2942 bond->dev->name, 2943 slave->dev->name); 2944 do_failover = 1; 2945 } else { 2946 pr_info("%s: interface %s is now up\n", 2947 bond->dev->name, 2948 slave->dev->name); 2949 } 2950 } 2951 } else { 2952 /* slave->link == BOND_LINK_UP */ 2953 2954 /* not all switches will respond to an arp request 2955 * when the source ip is 0, so don't take the link down 2956 * if we don't know our ip yet 2957 */ 2958 if (!time_in_range(jiffies, 2959 trans_start - delta_in_ticks, 2960 trans_start + 2 * delta_in_ticks) || 2961 !time_in_range(jiffies, 2962 slave->dev->last_rx - delta_in_ticks, 2963 slave->dev->last_rx + 2 * delta_in_ticks)) { 2964 2965 slave->link = BOND_LINK_DOWN; 2966 bond_set_backup_slave(slave); 2967 2968 if (slave->link_failure_count < UINT_MAX) 2969 slave->link_failure_count++; 2970 2971 pr_info("%s: interface %s is now down.\n", 2972 bond->dev->name, 2973 slave->dev->name); 2974 2975 if (slave == oldcurrent) 2976 do_failover = 1; 2977 } 2978 } 2979 2980 /* note: if switch is in round-robin mode, all links 2981 * must tx arp to ensure all links rx an arp - otherwise 2982 * links may oscillate or not come up at all; if switch is 2983 * in something like xor mode, there is nothing we can 2984 * do - all replies will be rx'ed on same link causing slaves 2985 * to be unstable during low/no traffic periods 2986 */ 2987 if (IS_UP(slave->dev)) 2988 bond_arp_send_all(bond, slave); 2989 } 2990 2991 if (do_failover) { 2992 block_netpoll_tx(); 2993 write_lock_bh(&bond->curr_slave_lock); 2994 2995 bond_select_active_slave(bond); 2996 2997 write_unlock_bh(&bond->curr_slave_lock); 2998 unblock_netpoll_tx(); 2999 } 3000 3001 re_arm: 3002 if (bond->params.arp_interval) 3003 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3004 out: 3005 read_unlock(&bond->lock); 3006 } 3007 3008 /* 3009 * Called to inspect slaves for active-backup mode ARP monitor link state 3010 * changes. Sets new_link in slaves to specify what action should take 3011 * place for the slave. Returns 0 if no changes are found, >0 if changes 3012 * to link states must be committed. 3013 * 3014 * Called with bond->lock held for read. 3015 */ 3016 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 3017 { 3018 struct slave *slave; 3019 int i, commit = 0; 3020 unsigned long trans_start; 3021 3022 bond_for_each_slave(bond, slave, i) { 3023 slave->new_link = BOND_LINK_NOCHANGE; 3024 3025 if (slave->link != BOND_LINK_UP) { 3026 if (time_in_range(jiffies, 3027 slave_last_rx(bond, slave) - delta_in_ticks, 3028 slave_last_rx(bond, slave) + delta_in_ticks)) { 3029 3030 slave->new_link = BOND_LINK_UP; 3031 commit++; 3032 } 3033 3034 continue; 3035 } 3036 3037 /* 3038 * Give slaves 2*delta after being enslaved or made 3039 * active. This avoids bouncing, as the last receive 3040 * times need a full ARP monitor cycle to be updated. 3041 */ 3042 if (time_in_range(jiffies, 3043 slave->jiffies - delta_in_ticks, 3044 slave->jiffies + 2 * delta_in_ticks)) 3045 continue; 3046 3047 /* 3048 * Backup slave is down if: 3049 * - No current_arp_slave AND 3050 * - more than 3*delta since last receive AND 3051 * - the bond has an IP address 3052 * 3053 * Note: a non-null current_arp_slave indicates 3054 * the curr_active_slave went down and we are 3055 * searching for a new one; under this condition 3056 * we only take the curr_active_slave down - this 3057 * gives each slave a chance to tx/rx traffic 3058 * before being taken out 3059 */ 3060 if (!bond_is_active_slave(slave) && 3061 !bond->current_arp_slave && 3062 !time_in_range(jiffies, 3063 slave_last_rx(bond, slave) - delta_in_ticks, 3064 slave_last_rx(bond, slave) + 3 * delta_in_ticks)) { 3065 3066 slave->new_link = BOND_LINK_DOWN; 3067 commit++; 3068 } 3069 3070 /* 3071 * Active slave is down if: 3072 * - more than 2*delta since transmitting OR 3073 * - (more than 2*delta since receive AND 3074 * the bond has an IP address) 3075 */ 3076 trans_start = dev_trans_start(slave->dev); 3077 if (bond_is_active_slave(slave) && 3078 (!time_in_range(jiffies, 3079 trans_start - delta_in_ticks, 3080 trans_start + 2 * delta_in_ticks) || 3081 !time_in_range(jiffies, 3082 slave_last_rx(bond, slave) - delta_in_ticks, 3083 slave_last_rx(bond, slave) + 2 * delta_in_ticks))) { 3084 3085 slave->new_link = BOND_LINK_DOWN; 3086 commit++; 3087 } 3088 } 3089 3090 return commit; 3091 } 3092 3093 /* 3094 * Called to commit link state changes noted by inspection step of 3095 * active-backup mode ARP monitor. 3096 * 3097 * Called with RTNL and bond->lock for read. 3098 */ 3099 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 3100 { 3101 struct slave *slave; 3102 int i; 3103 unsigned long trans_start; 3104 3105 bond_for_each_slave(bond, slave, i) { 3106 switch (slave->new_link) { 3107 case BOND_LINK_NOCHANGE: 3108 continue; 3109 3110 case BOND_LINK_UP: 3111 trans_start = dev_trans_start(slave->dev); 3112 if ((!bond->curr_active_slave && 3113 time_in_range(jiffies, 3114 trans_start - delta_in_ticks, 3115 trans_start + delta_in_ticks)) || 3116 bond->curr_active_slave != slave) { 3117 slave->link = BOND_LINK_UP; 3118 bond->current_arp_slave = NULL; 3119 3120 pr_info("%s: link status definitely up for interface %s.\n", 3121 bond->dev->name, slave->dev->name); 3122 3123 if (!bond->curr_active_slave || 3124 (slave == bond->primary_slave)) 3125 goto do_failover; 3126 3127 } 3128 3129 continue; 3130 3131 case BOND_LINK_DOWN: 3132 if (slave->link_failure_count < UINT_MAX) 3133 slave->link_failure_count++; 3134 3135 slave->link = BOND_LINK_DOWN; 3136 bond_set_slave_inactive_flags(slave); 3137 3138 pr_info("%s: link status definitely down for interface %s, disabling it\n", 3139 bond->dev->name, slave->dev->name); 3140 3141 if (slave == bond->curr_active_slave) { 3142 bond->current_arp_slave = NULL; 3143 goto do_failover; 3144 } 3145 3146 continue; 3147 3148 default: 3149 pr_err("%s: impossible: new_link %d on slave %s\n", 3150 bond->dev->name, slave->new_link, 3151 slave->dev->name); 3152 continue; 3153 } 3154 3155 do_failover: 3156 ASSERT_RTNL(); 3157 block_netpoll_tx(); 3158 write_lock_bh(&bond->curr_slave_lock); 3159 bond_select_active_slave(bond); 3160 write_unlock_bh(&bond->curr_slave_lock); 3161 unblock_netpoll_tx(); 3162 } 3163 3164 bond_set_carrier(bond); 3165 } 3166 3167 /* 3168 * Send ARP probes for active-backup mode ARP monitor. 3169 * 3170 * Called with bond->lock held for read. 3171 */ 3172 static void bond_ab_arp_probe(struct bonding *bond) 3173 { 3174 struct slave *slave; 3175 int i; 3176 3177 read_lock(&bond->curr_slave_lock); 3178 3179 if (bond->current_arp_slave && bond->curr_active_slave) 3180 pr_info("PROBE: c_arp %s && cas %s BAD\n", 3181 bond->current_arp_slave->dev->name, 3182 bond->curr_active_slave->dev->name); 3183 3184 if (bond->curr_active_slave) { 3185 bond_arp_send_all(bond, bond->curr_active_slave); 3186 read_unlock(&bond->curr_slave_lock); 3187 return; 3188 } 3189 3190 read_unlock(&bond->curr_slave_lock); 3191 3192 /* if we don't have a curr_active_slave, search for the next available 3193 * backup slave from the current_arp_slave and make it the candidate 3194 * for becoming the curr_active_slave 3195 */ 3196 3197 if (!bond->current_arp_slave) { 3198 bond->current_arp_slave = bond->first_slave; 3199 if (!bond->current_arp_slave) 3200 return; 3201 } 3202 3203 bond_set_slave_inactive_flags(bond->current_arp_slave); 3204 3205 /* search for next candidate */ 3206 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3207 if (IS_UP(slave->dev)) { 3208 slave->link = BOND_LINK_BACK; 3209 bond_set_slave_active_flags(slave); 3210 bond_arp_send_all(bond, slave); 3211 slave->jiffies = jiffies; 3212 bond->current_arp_slave = slave; 3213 break; 3214 } 3215 3216 /* if the link state is up at this point, we 3217 * mark it down - this can happen if we have 3218 * simultaneous link failures and 3219 * reselect_active_interface doesn't make this 3220 * one the current slave so it is still marked 3221 * up when it is actually down 3222 */ 3223 if (slave->link == BOND_LINK_UP) { 3224 slave->link = BOND_LINK_DOWN; 3225 if (slave->link_failure_count < UINT_MAX) 3226 slave->link_failure_count++; 3227 3228 bond_set_slave_inactive_flags(slave); 3229 3230 pr_info("%s: backup interface %s is now down.\n", 3231 bond->dev->name, slave->dev->name); 3232 } 3233 } 3234 } 3235 3236 void bond_activebackup_arp_mon(struct work_struct *work) 3237 { 3238 struct bonding *bond = container_of(work, struct bonding, 3239 arp_work.work); 3240 int delta_in_ticks; 3241 3242 read_lock(&bond->lock); 3243 3244 if (bond->kill_timers) 3245 goto out; 3246 3247 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3248 3249 if (bond->slave_cnt == 0) 3250 goto re_arm; 3251 3252 if (bond->send_grat_arp) { 3253 read_lock(&bond->curr_slave_lock); 3254 bond_send_gratuitous_arp(bond); 3255 read_unlock(&bond->curr_slave_lock); 3256 } 3257 3258 if (bond->send_unsol_na) { 3259 read_lock(&bond->curr_slave_lock); 3260 bond_send_unsolicited_na(bond); 3261 read_unlock(&bond->curr_slave_lock); 3262 } 3263 3264 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3265 read_unlock(&bond->lock); 3266 rtnl_lock(); 3267 read_lock(&bond->lock); 3268 3269 bond_ab_arp_commit(bond, delta_in_ticks); 3270 3271 read_unlock(&bond->lock); 3272 rtnl_unlock(); 3273 read_lock(&bond->lock); 3274 } 3275 3276 bond_ab_arp_probe(bond); 3277 3278 re_arm: 3279 if (bond->params.arp_interval) 3280 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3281 out: 3282 read_unlock(&bond->lock); 3283 } 3284 3285 /*-------------------------- netdev event handling --------------------------*/ 3286 3287 /* 3288 * Change device name 3289 */ 3290 static int bond_event_changename(struct bonding *bond) 3291 { 3292 bond_remove_proc_entry(bond); 3293 bond_create_proc_entry(bond); 3294 3295 bond_debug_reregister(bond); 3296 3297 return NOTIFY_DONE; 3298 } 3299 3300 static int bond_master_netdev_event(unsigned long event, 3301 struct net_device *bond_dev) 3302 { 3303 struct bonding *event_bond = netdev_priv(bond_dev); 3304 3305 switch (event) { 3306 case NETDEV_CHANGENAME: 3307 return bond_event_changename(event_bond); 3308 default: 3309 break; 3310 } 3311 3312 return NOTIFY_DONE; 3313 } 3314 3315 static int bond_slave_netdev_event(unsigned long event, 3316 struct net_device *slave_dev) 3317 { 3318 struct net_device *bond_dev = slave_dev->master; 3319 struct bonding *bond = netdev_priv(bond_dev); 3320 3321 switch (event) { 3322 case NETDEV_UNREGISTER: 3323 if (bond_dev) { 3324 if (bond->setup_by_slave) 3325 bond_release_and_destroy(bond_dev, slave_dev); 3326 else 3327 bond_release(bond_dev, slave_dev); 3328 } 3329 break; 3330 case NETDEV_CHANGE: 3331 if (bond->params.mode == BOND_MODE_8023AD || bond_is_lb(bond)) { 3332 struct slave *slave; 3333 3334 slave = bond_get_slave_by_dev(bond, slave_dev); 3335 if (slave) { 3336 u16 old_speed = slave->speed; 3337 u16 old_duplex = slave->duplex; 3338 3339 bond_update_speed_duplex(slave); 3340 3341 if (bond_is_lb(bond)) 3342 break; 3343 3344 if (old_speed != slave->speed) 3345 bond_3ad_adapter_speed_changed(slave); 3346 if (old_duplex != slave->duplex) 3347 bond_3ad_adapter_duplex_changed(slave); 3348 } 3349 } 3350 3351 break; 3352 case NETDEV_DOWN: 3353 /* 3354 * ... Or is it this? 3355 */ 3356 break; 3357 case NETDEV_CHANGEMTU: 3358 /* 3359 * TODO: Should slaves be allowed to 3360 * independently alter their MTU? For 3361 * an active-backup bond, slaves need 3362 * not be the same type of device, so 3363 * MTUs may vary. For other modes, 3364 * slaves arguably should have the 3365 * same MTUs. To do this, we'd need to 3366 * take over the slave's change_mtu 3367 * function for the duration of their 3368 * servitude. 3369 */ 3370 break; 3371 case NETDEV_CHANGENAME: 3372 /* 3373 * TODO: handle changing the primary's name 3374 */ 3375 break; 3376 case NETDEV_FEAT_CHANGE: 3377 bond_compute_features(bond); 3378 break; 3379 default: 3380 break; 3381 } 3382 3383 return NOTIFY_DONE; 3384 } 3385 3386 /* 3387 * bond_netdev_event: handle netdev notifier chain events. 3388 * 3389 * This function receives events for the netdev chain. The caller (an 3390 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3391 * locks for us to safely manipulate the slave devices (RTNL lock, 3392 * dev_probe_lock). 3393 */ 3394 static int bond_netdev_event(struct notifier_block *this, 3395 unsigned long event, void *ptr) 3396 { 3397 struct net_device *event_dev = (struct net_device *)ptr; 3398 3399 pr_debug("event_dev: %s, event: %lx\n", 3400 event_dev ? event_dev->name : "None", 3401 event); 3402 3403 if (!(event_dev->priv_flags & IFF_BONDING)) 3404 return NOTIFY_DONE; 3405 3406 if (event_dev->flags & IFF_MASTER) { 3407 pr_debug("IFF_MASTER\n"); 3408 return bond_master_netdev_event(event, event_dev); 3409 } 3410 3411 if (event_dev->flags & IFF_SLAVE) { 3412 pr_debug("IFF_SLAVE\n"); 3413 return bond_slave_netdev_event(event, event_dev); 3414 } 3415 3416 return NOTIFY_DONE; 3417 } 3418 3419 /* 3420 * bond_inetaddr_event: handle inetaddr notifier chain events. 3421 * 3422 * We keep track of device IPs primarily to use as source addresses in 3423 * ARP monitor probes (rather than spewing out broadcasts all the time). 3424 * 3425 * We track one IP for the main device (if it has one), plus one per VLAN. 3426 */ 3427 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3428 { 3429 struct in_ifaddr *ifa = ptr; 3430 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3431 struct bond_net *bn = net_generic(dev_net(event_dev), bond_net_id); 3432 struct bonding *bond; 3433 struct vlan_entry *vlan; 3434 3435 list_for_each_entry(bond, &bn->dev_list, bond_list) { 3436 if (bond->dev == event_dev) { 3437 switch (event) { 3438 case NETDEV_UP: 3439 bond->master_ip = ifa->ifa_local; 3440 return NOTIFY_OK; 3441 case NETDEV_DOWN: 3442 bond->master_ip = bond_glean_dev_ip(bond->dev); 3443 return NOTIFY_OK; 3444 default: 3445 return NOTIFY_DONE; 3446 } 3447 } 3448 3449 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 3450 if (!bond->vlgrp) 3451 continue; 3452 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3453 if (vlan_dev == event_dev) { 3454 switch (event) { 3455 case NETDEV_UP: 3456 vlan->vlan_ip = ifa->ifa_local; 3457 return NOTIFY_OK; 3458 case NETDEV_DOWN: 3459 vlan->vlan_ip = 3460 bond_glean_dev_ip(vlan_dev); 3461 return NOTIFY_OK; 3462 default: 3463 return NOTIFY_DONE; 3464 } 3465 } 3466 } 3467 } 3468 return NOTIFY_DONE; 3469 } 3470 3471 static struct notifier_block bond_netdev_notifier = { 3472 .notifier_call = bond_netdev_event, 3473 }; 3474 3475 static struct notifier_block bond_inetaddr_notifier = { 3476 .notifier_call = bond_inetaddr_event, 3477 }; 3478 3479 /*-------------------------- Packet type handling ---------------------------*/ 3480 3481 /* register to receive lacpdus on a bond */ 3482 static void bond_register_lacpdu(struct bonding *bond) 3483 { 3484 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3485 3486 /* initialize packet type */ 3487 pk_type->type = PKT_TYPE_LACPDU; 3488 pk_type->dev = bond->dev; 3489 pk_type->func = bond_3ad_lacpdu_recv; 3490 3491 dev_add_pack(pk_type); 3492 } 3493 3494 /* unregister to receive lacpdus on a bond */ 3495 static void bond_unregister_lacpdu(struct bonding *bond) 3496 { 3497 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3498 } 3499 3500 void bond_register_arp(struct bonding *bond) 3501 { 3502 struct packet_type *pt = &bond->arp_mon_pt; 3503 3504 if (pt->type) 3505 return; 3506 3507 pt->type = htons(ETH_P_ARP); 3508 pt->dev = bond->dev; 3509 pt->func = bond_arp_rcv; 3510 dev_add_pack(pt); 3511 } 3512 3513 void bond_unregister_arp(struct bonding *bond) 3514 { 3515 struct packet_type *pt = &bond->arp_mon_pt; 3516 3517 dev_remove_pack(pt); 3518 pt->type = 0; 3519 } 3520 3521 /*---------------------------- Hashing Policies -----------------------------*/ 3522 3523 /* 3524 * Hash for the output device based upon layer 2 and layer 3 data. If 3525 * the packet is not IP mimic bond_xmit_hash_policy_l2() 3526 */ 3527 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count) 3528 { 3529 struct ethhdr *data = (struct ethhdr *)skb->data; 3530 struct iphdr *iph = ip_hdr(skb); 3531 3532 if (skb->protocol == htons(ETH_P_IP)) { 3533 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3534 (data->h_dest[5] ^ data->h_source[5])) % count; 3535 } 3536 3537 return (data->h_dest[5] ^ data->h_source[5]) % count; 3538 } 3539 3540 /* 3541 * Hash for the output device based upon layer 3 and layer 4 data. If 3542 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3543 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3544 */ 3545 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count) 3546 { 3547 struct ethhdr *data = (struct ethhdr *)skb->data; 3548 struct iphdr *iph = ip_hdr(skb); 3549 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); 3550 int layer4_xor = 0; 3551 3552 if (skb->protocol == htons(ETH_P_IP)) { 3553 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) && 3554 (iph->protocol == IPPROTO_TCP || 3555 iph->protocol == IPPROTO_UDP)) { 3556 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); 3557 } 3558 return (layer4_xor ^ 3559 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3560 3561 } 3562 3563 return (data->h_dest[5] ^ data->h_source[5]) % count; 3564 } 3565 3566 /* 3567 * Hash for the output device based upon layer 2 data 3568 */ 3569 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count) 3570 { 3571 struct ethhdr *data = (struct ethhdr *)skb->data; 3572 3573 return (data->h_dest[5] ^ data->h_source[5]) % count; 3574 } 3575 3576 /*-------------------------- Device entry points ----------------------------*/ 3577 3578 static int bond_open(struct net_device *bond_dev) 3579 { 3580 struct bonding *bond = netdev_priv(bond_dev); 3581 3582 bond->kill_timers = 0; 3583 3584 INIT_DELAYED_WORK(&bond->mcast_work, bond_resend_igmp_join_requests_delayed); 3585 3586 if (bond_is_lb(bond)) { 3587 /* bond_alb_initialize must be called before the timer 3588 * is started. 3589 */ 3590 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3591 /* something went wrong - fail the open operation */ 3592 return -ENOMEM; 3593 } 3594 3595 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3596 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3597 } 3598 3599 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3600 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3601 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3602 } 3603 3604 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3605 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3606 INIT_DELAYED_WORK(&bond->arp_work, 3607 bond_activebackup_arp_mon); 3608 else 3609 INIT_DELAYED_WORK(&bond->arp_work, 3610 bond_loadbalance_arp_mon); 3611 3612 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3613 if (bond->params.arp_validate) 3614 bond_register_arp(bond); 3615 } 3616 3617 if (bond->params.mode == BOND_MODE_8023AD) { 3618 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3619 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3620 /* register to receive LACPDUs */ 3621 bond_register_lacpdu(bond); 3622 bond_3ad_initiate_agg_selection(bond, 1); 3623 } 3624 3625 return 0; 3626 } 3627 3628 static int bond_close(struct net_device *bond_dev) 3629 { 3630 struct bonding *bond = netdev_priv(bond_dev); 3631 3632 if (bond->params.mode == BOND_MODE_8023AD) { 3633 /* Unregister the receive of LACPDUs */ 3634 bond_unregister_lacpdu(bond); 3635 } 3636 3637 if (bond->params.arp_validate) 3638 bond_unregister_arp(bond); 3639 3640 write_lock_bh(&bond->lock); 3641 3642 bond->send_grat_arp = 0; 3643 bond->send_unsol_na = 0; 3644 3645 /* signal timers not to re-arm */ 3646 bond->kill_timers = 1; 3647 3648 write_unlock_bh(&bond->lock); 3649 3650 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3651 cancel_delayed_work(&bond->mii_work); 3652 } 3653 3654 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3655 cancel_delayed_work(&bond->arp_work); 3656 } 3657 3658 switch (bond->params.mode) { 3659 case BOND_MODE_8023AD: 3660 cancel_delayed_work(&bond->ad_work); 3661 break; 3662 case BOND_MODE_TLB: 3663 case BOND_MODE_ALB: 3664 cancel_delayed_work(&bond->alb_work); 3665 break; 3666 default: 3667 break; 3668 } 3669 3670 if (delayed_work_pending(&bond->mcast_work)) 3671 cancel_delayed_work(&bond->mcast_work); 3672 3673 if (bond_is_lb(bond)) { 3674 /* Must be called only after all 3675 * slaves have been released 3676 */ 3677 bond_alb_deinitialize(bond); 3678 } 3679 3680 return 0; 3681 } 3682 3683 static struct rtnl_link_stats64 *bond_get_stats(struct net_device *bond_dev, 3684 struct rtnl_link_stats64 *stats) 3685 { 3686 struct bonding *bond = netdev_priv(bond_dev); 3687 struct rtnl_link_stats64 temp; 3688 struct slave *slave; 3689 int i; 3690 3691 memset(stats, 0, sizeof(*stats)); 3692 3693 read_lock_bh(&bond->lock); 3694 3695 bond_for_each_slave(bond, slave, i) { 3696 const struct rtnl_link_stats64 *sstats = 3697 dev_get_stats(slave->dev, &temp); 3698 3699 stats->rx_packets += sstats->rx_packets; 3700 stats->rx_bytes += sstats->rx_bytes; 3701 stats->rx_errors += sstats->rx_errors; 3702 stats->rx_dropped += sstats->rx_dropped; 3703 3704 stats->tx_packets += sstats->tx_packets; 3705 stats->tx_bytes += sstats->tx_bytes; 3706 stats->tx_errors += sstats->tx_errors; 3707 stats->tx_dropped += sstats->tx_dropped; 3708 3709 stats->multicast += sstats->multicast; 3710 stats->collisions += sstats->collisions; 3711 3712 stats->rx_length_errors += sstats->rx_length_errors; 3713 stats->rx_over_errors += sstats->rx_over_errors; 3714 stats->rx_crc_errors += sstats->rx_crc_errors; 3715 stats->rx_frame_errors += sstats->rx_frame_errors; 3716 stats->rx_fifo_errors += sstats->rx_fifo_errors; 3717 stats->rx_missed_errors += sstats->rx_missed_errors; 3718 3719 stats->tx_aborted_errors += sstats->tx_aborted_errors; 3720 stats->tx_carrier_errors += sstats->tx_carrier_errors; 3721 stats->tx_fifo_errors += sstats->tx_fifo_errors; 3722 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3723 stats->tx_window_errors += sstats->tx_window_errors; 3724 } 3725 3726 read_unlock_bh(&bond->lock); 3727 3728 return stats; 3729 } 3730 3731 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3732 { 3733 struct net_device *slave_dev = NULL; 3734 struct ifbond k_binfo; 3735 struct ifbond __user *u_binfo = NULL; 3736 struct ifslave k_sinfo; 3737 struct ifslave __user *u_sinfo = NULL; 3738 struct mii_ioctl_data *mii = NULL; 3739 int res = 0; 3740 3741 pr_debug("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd); 3742 3743 switch (cmd) { 3744 case SIOCGMIIPHY: 3745 mii = if_mii(ifr); 3746 if (!mii) 3747 return -EINVAL; 3748 3749 mii->phy_id = 0; 3750 /* Fall Through */ 3751 case SIOCGMIIREG: 3752 /* 3753 * We do this again just in case we were called by SIOCGMIIREG 3754 * instead of SIOCGMIIPHY. 3755 */ 3756 mii = if_mii(ifr); 3757 if (!mii) 3758 return -EINVAL; 3759 3760 3761 if (mii->reg_num == 1) { 3762 struct bonding *bond = netdev_priv(bond_dev); 3763 mii->val_out = 0; 3764 read_lock(&bond->lock); 3765 read_lock(&bond->curr_slave_lock); 3766 if (netif_carrier_ok(bond->dev)) 3767 mii->val_out = BMSR_LSTATUS; 3768 3769 read_unlock(&bond->curr_slave_lock); 3770 read_unlock(&bond->lock); 3771 } 3772 3773 return 0; 3774 case BOND_INFO_QUERY_OLD: 3775 case SIOCBONDINFOQUERY: 3776 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3777 3778 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) 3779 return -EFAULT; 3780 3781 res = bond_info_query(bond_dev, &k_binfo); 3782 if (res == 0 && 3783 copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) 3784 return -EFAULT; 3785 3786 return res; 3787 case BOND_SLAVE_INFO_QUERY_OLD: 3788 case SIOCBONDSLAVEINFOQUERY: 3789 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3790 3791 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) 3792 return -EFAULT; 3793 3794 res = bond_slave_info_query(bond_dev, &k_sinfo); 3795 if (res == 0 && 3796 copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) 3797 return -EFAULT; 3798 3799 return res; 3800 default: 3801 /* Go on */ 3802 break; 3803 } 3804 3805 if (!capable(CAP_NET_ADMIN)) 3806 return -EPERM; 3807 3808 slave_dev = dev_get_by_name(dev_net(bond_dev), ifr->ifr_slave); 3809 3810 pr_debug("slave_dev=%p:\n", slave_dev); 3811 3812 if (!slave_dev) 3813 res = -ENODEV; 3814 else { 3815 pr_debug("slave_dev->name=%s:\n", slave_dev->name); 3816 switch (cmd) { 3817 case BOND_ENSLAVE_OLD: 3818 case SIOCBONDENSLAVE: 3819 res = bond_enslave(bond_dev, slave_dev); 3820 break; 3821 case BOND_RELEASE_OLD: 3822 case SIOCBONDRELEASE: 3823 res = bond_release(bond_dev, slave_dev); 3824 break; 3825 case BOND_SETHWADDR_OLD: 3826 case SIOCBONDSETHWADDR: 3827 res = bond_sethwaddr(bond_dev, slave_dev); 3828 break; 3829 case BOND_CHANGE_ACTIVE_OLD: 3830 case SIOCBONDCHANGEACTIVE: 3831 res = bond_ioctl_change_active(bond_dev, slave_dev); 3832 break; 3833 default: 3834 res = -EOPNOTSUPP; 3835 } 3836 3837 dev_put(slave_dev); 3838 } 3839 3840 return res; 3841 } 3842 3843 static bool bond_addr_in_mc_list(unsigned char *addr, 3844 struct netdev_hw_addr_list *list, 3845 int addrlen) 3846 { 3847 struct netdev_hw_addr *ha; 3848 3849 netdev_hw_addr_list_for_each(ha, list) 3850 if (!memcmp(ha->addr, addr, addrlen)) 3851 return true; 3852 3853 return false; 3854 } 3855 3856 static void bond_set_multicast_list(struct net_device *bond_dev) 3857 { 3858 struct bonding *bond = netdev_priv(bond_dev); 3859 struct netdev_hw_addr *ha; 3860 bool found; 3861 3862 /* 3863 * Do promisc before checking multicast_mode 3864 */ 3865 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) 3866 /* 3867 * FIXME: Need to handle the error when one of the multi-slaves 3868 * encounters error. 3869 */ 3870 bond_set_promiscuity(bond, 1); 3871 3872 3873 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) 3874 bond_set_promiscuity(bond, -1); 3875 3876 3877 /* set allmulti flag to slaves */ 3878 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) 3879 /* 3880 * FIXME: Need to handle the error when one of the multi-slaves 3881 * encounters error. 3882 */ 3883 bond_set_allmulti(bond, 1); 3884 3885 3886 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) 3887 bond_set_allmulti(bond, -1); 3888 3889 3890 read_lock(&bond->lock); 3891 3892 bond->flags = bond_dev->flags; 3893 3894 /* looking for addresses to add to slaves' mc list */ 3895 netdev_for_each_mc_addr(ha, bond_dev) { 3896 found = bond_addr_in_mc_list(ha->addr, &bond->mc_list, 3897 bond_dev->addr_len); 3898 if (!found) 3899 bond_mc_add(bond, ha->addr); 3900 } 3901 3902 /* looking for addresses to delete from slaves' list */ 3903 netdev_hw_addr_list_for_each(ha, &bond->mc_list) { 3904 found = bond_addr_in_mc_list(ha->addr, &bond_dev->mc, 3905 bond_dev->addr_len); 3906 if (!found) 3907 bond_mc_del(bond, ha->addr); 3908 } 3909 3910 /* save master's multicast list */ 3911 __hw_addr_flush(&bond->mc_list); 3912 __hw_addr_add_multiple(&bond->mc_list, &bond_dev->mc, 3913 bond_dev->addr_len, NETDEV_HW_ADDR_T_MULTICAST); 3914 3915 read_unlock(&bond->lock); 3916 } 3917 3918 static int bond_neigh_setup(struct net_device *dev, struct neigh_parms *parms) 3919 { 3920 struct bonding *bond = netdev_priv(dev); 3921 struct slave *slave = bond->first_slave; 3922 3923 if (slave) { 3924 const struct net_device_ops *slave_ops 3925 = slave->dev->netdev_ops; 3926 if (slave_ops->ndo_neigh_setup) 3927 return slave_ops->ndo_neigh_setup(slave->dev, parms); 3928 } 3929 return 0; 3930 } 3931 3932 /* 3933 * Change the MTU of all of a master's slaves to match the master 3934 */ 3935 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 3936 { 3937 struct bonding *bond = netdev_priv(bond_dev); 3938 struct slave *slave, *stop_at; 3939 int res = 0; 3940 int i; 3941 3942 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond, 3943 (bond_dev ? bond_dev->name : "None"), new_mtu); 3944 3945 /* Can't hold bond->lock with bh disabled here since 3946 * some base drivers panic. On the other hand we can't 3947 * hold bond->lock without bh disabled because we'll 3948 * deadlock. The only solution is to rely on the fact 3949 * that we're under rtnl_lock here, and the slaves 3950 * list won't change. This doesn't solve the problem 3951 * of setting the slave's MTU while it is 3952 * transmitting, but the assumption is that the base 3953 * driver can handle that. 3954 * 3955 * TODO: figure out a way to safely iterate the slaves 3956 * list, but without holding a lock around the actual 3957 * call to the base driver. 3958 */ 3959 3960 bond_for_each_slave(bond, slave, i) { 3961 pr_debug("s %p s->p %p c_m %p\n", 3962 slave, 3963 slave->prev, 3964 slave->dev->netdev_ops->ndo_change_mtu); 3965 3966 res = dev_set_mtu(slave->dev, new_mtu); 3967 3968 if (res) { 3969 /* If we failed to set the slave's mtu to the new value 3970 * we must abort the operation even in ACTIVE_BACKUP 3971 * mode, because if we allow the backup slaves to have 3972 * different mtu values than the active slave we'll 3973 * need to change their mtu when doing a failover. That 3974 * means changing their mtu from timer context, which 3975 * is probably not a good idea. 3976 */ 3977 pr_debug("err %d %s\n", res, slave->dev->name); 3978 goto unwind; 3979 } 3980 } 3981 3982 bond_dev->mtu = new_mtu; 3983 3984 return 0; 3985 3986 unwind: 3987 /* unwind from head to the slave that failed */ 3988 stop_at = slave; 3989 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 3990 int tmp_res; 3991 3992 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 3993 if (tmp_res) { 3994 pr_debug("unwind err %d dev %s\n", 3995 tmp_res, slave->dev->name); 3996 } 3997 } 3998 3999 return res; 4000 } 4001 4002 /* 4003 * Change HW address 4004 * 4005 * Note that many devices must be down to change the HW address, and 4006 * downing the master releases all slaves. We can make bonds full of 4007 * bonding devices to test this, however. 4008 */ 4009 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 4010 { 4011 struct bonding *bond = netdev_priv(bond_dev); 4012 struct sockaddr *sa = addr, tmp_sa; 4013 struct slave *slave, *stop_at; 4014 int res = 0; 4015 int i; 4016 4017 if (bond->params.mode == BOND_MODE_ALB) 4018 return bond_alb_set_mac_address(bond_dev, addr); 4019 4020 4021 pr_debug("bond=%p, name=%s\n", 4022 bond, bond_dev ? bond_dev->name : "None"); 4023 4024 /* 4025 * If fail_over_mac is set to active, do nothing and return 4026 * success. Returning an error causes ifenslave to fail. 4027 */ 4028 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 4029 return 0; 4030 4031 if (!is_valid_ether_addr(sa->sa_data)) 4032 return -EADDRNOTAVAIL; 4033 4034 /* Can't hold bond->lock with bh disabled here since 4035 * some base drivers panic. On the other hand we can't 4036 * hold bond->lock without bh disabled because we'll 4037 * deadlock. The only solution is to rely on the fact 4038 * that we're under rtnl_lock here, and the slaves 4039 * list won't change. This doesn't solve the problem 4040 * of setting the slave's hw address while it is 4041 * transmitting, but the assumption is that the base 4042 * driver can handle that. 4043 * 4044 * TODO: figure out a way to safely iterate the slaves 4045 * list, but without holding a lock around the actual 4046 * call to the base driver. 4047 */ 4048 4049 bond_for_each_slave(bond, slave, i) { 4050 const struct net_device_ops *slave_ops = slave->dev->netdev_ops; 4051 pr_debug("slave %p %s\n", slave, slave->dev->name); 4052 4053 if (slave_ops->ndo_set_mac_address == NULL) { 4054 res = -EOPNOTSUPP; 4055 pr_debug("EOPNOTSUPP %s\n", slave->dev->name); 4056 goto unwind; 4057 } 4058 4059 res = dev_set_mac_address(slave->dev, addr); 4060 if (res) { 4061 /* TODO: consider downing the slave 4062 * and retry ? 4063 * User should expect communications 4064 * breakage anyway until ARP finish 4065 * updating, so... 4066 */ 4067 pr_debug("err %d %s\n", res, slave->dev->name); 4068 goto unwind; 4069 } 4070 } 4071 4072 /* success */ 4073 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 4074 return 0; 4075 4076 unwind: 4077 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 4078 tmp_sa.sa_family = bond_dev->type; 4079 4080 /* unwind from head to the slave that failed */ 4081 stop_at = slave; 4082 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4083 int tmp_res; 4084 4085 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 4086 if (tmp_res) { 4087 pr_debug("unwind err %d dev %s\n", 4088 tmp_res, slave->dev->name); 4089 } 4090 } 4091 4092 return res; 4093 } 4094 4095 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4096 { 4097 struct bonding *bond = netdev_priv(bond_dev); 4098 struct slave *slave, *start_at; 4099 int i, slave_no, res = 1; 4100 struct iphdr *iph = ip_hdr(skb); 4101 4102 read_lock(&bond->lock); 4103 4104 if (!BOND_IS_OK(bond)) 4105 goto out; 4106 /* 4107 * Start with the curr_active_slave that joined the bond as the 4108 * default for sending IGMP traffic. For failover purposes one 4109 * needs to maintain some consistency for the interface that will 4110 * send the join/membership reports. The curr_active_slave found 4111 * will send all of this type of traffic. 4112 */ 4113 if ((iph->protocol == IPPROTO_IGMP) && 4114 (skb->protocol == htons(ETH_P_IP))) { 4115 4116 read_lock(&bond->curr_slave_lock); 4117 slave = bond->curr_active_slave; 4118 read_unlock(&bond->curr_slave_lock); 4119 4120 if (!slave) 4121 goto out; 4122 } else { 4123 /* 4124 * Concurrent TX may collide on rr_tx_counter; we accept 4125 * that as being rare enough not to justify using an 4126 * atomic op here. 4127 */ 4128 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 4129 4130 bond_for_each_slave(bond, slave, i) { 4131 slave_no--; 4132 if (slave_no < 0) 4133 break; 4134 } 4135 } 4136 4137 start_at = slave; 4138 bond_for_each_slave_from(bond, slave, i, start_at) { 4139 if (IS_UP(slave->dev) && 4140 (slave->link == BOND_LINK_UP) && 4141 bond_is_active_slave(slave)) { 4142 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4143 break; 4144 } 4145 } 4146 4147 out: 4148 if (res) { 4149 /* no suitable interface, frame not sent */ 4150 dev_kfree_skb(skb); 4151 } 4152 read_unlock(&bond->lock); 4153 return NETDEV_TX_OK; 4154 } 4155 4156 4157 /* 4158 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4159 * the bond has a usable interface. 4160 */ 4161 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4162 { 4163 struct bonding *bond = netdev_priv(bond_dev); 4164 int res = 1; 4165 4166 read_lock(&bond->lock); 4167 read_lock(&bond->curr_slave_lock); 4168 4169 if (!BOND_IS_OK(bond)) 4170 goto out; 4171 4172 if (!bond->curr_active_slave) 4173 goto out; 4174 4175 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4176 4177 out: 4178 if (res) 4179 /* no suitable interface, frame not sent */ 4180 dev_kfree_skb(skb); 4181 4182 read_unlock(&bond->curr_slave_lock); 4183 read_unlock(&bond->lock); 4184 return NETDEV_TX_OK; 4185 } 4186 4187 /* 4188 * In bond_xmit_xor() , we determine the output device by using a pre- 4189 * determined xmit_hash_policy(), If the selected device is not enabled, 4190 * find the next active slave. 4191 */ 4192 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4193 { 4194 struct bonding *bond = netdev_priv(bond_dev); 4195 struct slave *slave, *start_at; 4196 int slave_no; 4197 int i; 4198 int res = 1; 4199 4200 read_lock(&bond->lock); 4201 4202 if (!BOND_IS_OK(bond)) 4203 goto out; 4204 4205 slave_no = bond->xmit_hash_policy(skb, bond->slave_cnt); 4206 4207 bond_for_each_slave(bond, slave, i) { 4208 slave_no--; 4209 if (slave_no < 0) 4210 break; 4211 } 4212 4213 start_at = slave; 4214 4215 bond_for_each_slave_from(bond, slave, i, start_at) { 4216 if (IS_UP(slave->dev) && 4217 (slave->link == BOND_LINK_UP) && 4218 bond_is_active_slave(slave)) { 4219 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4220 break; 4221 } 4222 } 4223 4224 out: 4225 if (res) { 4226 /* no suitable interface, frame not sent */ 4227 dev_kfree_skb(skb); 4228 } 4229 read_unlock(&bond->lock); 4230 return NETDEV_TX_OK; 4231 } 4232 4233 /* 4234 * in broadcast mode, we send everything to all usable interfaces. 4235 */ 4236 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4237 { 4238 struct bonding *bond = netdev_priv(bond_dev); 4239 struct slave *slave, *start_at; 4240 struct net_device *tx_dev = NULL; 4241 int i; 4242 int res = 1; 4243 4244 read_lock(&bond->lock); 4245 4246 if (!BOND_IS_OK(bond)) 4247 goto out; 4248 4249 read_lock(&bond->curr_slave_lock); 4250 start_at = bond->curr_active_slave; 4251 read_unlock(&bond->curr_slave_lock); 4252 4253 if (!start_at) 4254 goto out; 4255 4256 bond_for_each_slave_from(bond, slave, i, start_at) { 4257 if (IS_UP(slave->dev) && 4258 (slave->link == BOND_LINK_UP) && 4259 bond_is_active_slave(slave)) { 4260 if (tx_dev) { 4261 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4262 if (!skb2) { 4263 pr_err("%s: Error: bond_xmit_broadcast(): skb_clone() failed\n", 4264 bond_dev->name); 4265 continue; 4266 } 4267 4268 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4269 if (res) { 4270 dev_kfree_skb(skb2); 4271 continue; 4272 } 4273 } 4274 tx_dev = slave->dev; 4275 } 4276 } 4277 4278 if (tx_dev) 4279 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4280 4281 out: 4282 if (res) 4283 /* no suitable interface, frame not sent */ 4284 dev_kfree_skb(skb); 4285 4286 /* frame sent to all suitable interfaces */ 4287 read_unlock(&bond->lock); 4288 return NETDEV_TX_OK; 4289 } 4290 4291 /*------------------------- Device initialization ---------------------------*/ 4292 4293 static void bond_set_xmit_hash_policy(struct bonding *bond) 4294 { 4295 switch (bond->params.xmit_policy) { 4296 case BOND_XMIT_POLICY_LAYER23: 4297 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4298 break; 4299 case BOND_XMIT_POLICY_LAYER34: 4300 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4301 break; 4302 case BOND_XMIT_POLICY_LAYER2: 4303 default: 4304 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4305 break; 4306 } 4307 } 4308 4309 /* 4310 * Lookup the slave that corresponds to a qid 4311 */ 4312 static inline int bond_slave_override(struct bonding *bond, 4313 struct sk_buff *skb) 4314 { 4315 int i, res = 1; 4316 struct slave *slave = NULL; 4317 struct slave *check_slave; 4318 4319 read_lock(&bond->lock); 4320 4321 if (!BOND_IS_OK(bond) || !skb->queue_mapping) 4322 goto out; 4323 4324 /* Find out if any slaves have the same mapping as this skb. */ 4325 bond_for_each_slave(bond, check_slave, i) { 4326 if (check_slave->queue_id == skb->queue_mapping) { 4327 slave = check_slave; 4328 break; 4329 } 4330 } 4331 4332 /* If the slave isn't UP, use default transmit policy. */ 4333 if (slave && slave->queue_id && IS_UP(slave->dev) && 4334 (slave->link == BOND_LINK_UP)) { 4335 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4336 } 4337 4338 out: 4339 read_unlock(&bond->lock); 4340 return res; 4341 } 4342 4343 static u16 bond_select_queue(struct net_device *dev, struct sk_buff *skb) 4344 { 4345 /* 4346 * This helper function exists to help dev_pick_tx get the correct 4347 * destination queue. Using a helper function skips a call to 4348 * skb_tx_hash and will put the skbs in the queue we expect on their 4349 * way down to the bonding driver. 4350 */ 4351 u16 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0; 4352 4353 if (unlikely(txq >= dev->real_num_tx_queues)) { 4354 do 4355 txq -= dev->real_num_tx_queues; 4356 while (txq >= dev->real_num_tx_queues); 4357 } 4358 return txq; 4359 } 4360 4361 static netdev_tx_t bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4362 { 4363 struct bonding *bond = netdev_priv(dev); 4364 4365 /* 4366 * If we risk deadlock from transmitting this in the 4367 * netpoll path, tell netpoll to queue the frame for later tx 4368 */ 4369 if (is_netpoll_tx_blocked(dev)) 4370 return NETDEV_TX_BUSY; 4371 4372 if (TX_QUEUE_OVERRIDE(bond->params.mode)) { 4373 if (!bond_slave_override(bond, skb)) 4374 return NETDEV_TX_OK; 4375 } 4376 4377 switch (bond->params.mode) { 4378 case BOND_MODE_ROUNDROBIN: 4379 return bond_xmit_roundrobin(skb, dev); 4380 case BOND_MODE_ACTIVEBACKUP: 4381 return bond_xmit_activebackup(skb, dev); 4382 case BOND_MODE_XOR: 4383 return bond_xmit_xor(skb, dev); 4384 case BOND_MODE_BROADCAST: 4385 return bond_xmit_broadcast(skb, dev); 4386 case BOND_MODE_8023AD: 4387 return bond_3ad_xmit_xor(skb, dev); 4388 case BOND_MODE_ALB: 4389 case BOND_MODE_TLB: 4390 return bond_alb_xmit(skb, dev); 4391 default: 4392 /* Should never happen, mode already checked */ 4393 pr_err("%s: Error: Unknown bonding mode %d\n", 4394 dev->name, bond->params.mode); 4395 WARN_ON_ONCE(1); 4396 dev_kfree_skb(skb); 4397 return NETDEV_TX_OK; 4398 } 4399 } 4400 4401 4402 /* 4403 * set bond mode specific net device operations 4404 */ 4405 void bond_set_mode_ops(struct bonding *bond, int mode) 4406 { 4407 struct net_device *bond_dev = bond->dev; 4408 4409 switch (mode) { 4410 case BOND_MODE_ROUNDROBIN: 4411 break; 4412 case BOND_MODE_ACTIVEBACKUP: 4413 break; 4414 case BOND_MODE_XOR: 4415 bond_set_xmit_hash_policy(bond); 4416 break; 4417 case BOND_MODE_BROADCAST: 4418 break; 4419 case BOND_MODE_8023AD: 4420 bond_set_xmit_hash_policy(bond); 4421 break; 4422 case BOND_MODE_ALB: 4423 /* FALLTHRU */ 4424 case BOND_MODE_TLB: 4425 break; 4426 default: 4427 /* Should never happen, mode already checked */ 4428 pr_err("%s: Error: Unknown bonding mode %d\n", 4429 bond_dev->name, mode); 4430 break; 4431 } 4432 } 4433 4434 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4435 struct ethtool_drvinfo *drvinfo) 4436 { 4437 strncpy(drvinfo->driver, DRV_NAME, 32); 4438 strncpy(drvinfo->version, DRV_VERSION, 32); 4439 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4440 } 4441 4442 static const struct ethtool_ops bond_ethtool_ops = { 4443 .get_drvinfo = bond_ethtool_get_drvinfo, 4444 .get_link = ethtool_op_get_link, 4445 .get_tx_csum = ethtool_op_get_tx_csum, 4446 .get_sg = ethtool_op_get_sg, 4447 .get_tso = ethtool_op_get_tso, 4448 .get_ufo = ethtool_op_get_ufo, 4449 .get_flags = ethtool_op_get_flags, 4450 }; 4451 4452 static const struct net_device_ops bond_netdev_ops = { 4453 .ndo_init = bond_init, 4454 .ndo_uninit = bond_uninit, 4455 .ndo_open = bond_open, 4456 .ndo_stop = bond_close, 4457 .ndo_start_xmit = bond_start_xmit, 4458 .ndo_select_queue = bond_select_queue, 4459 .ndo_get_stats64 = bond_get_stats, 4460 .ndo_do_ioctl = bond_do_ioctl, 4461 .ndo_set_multicast_list = bond_set_multicast_list, 4462 .ndo_change_mtu = bond_change_mtu, 4463 .ndo_set_mac_address = bond_set_mac_address, 4464 .ndo_neigh_setup = bond_neigh_setup, 4465 .ndo_vlan_rx_register = bond_vlan_rx_register, 4466 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid, 4467 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid, 4468 #ifdef CONFIG_NET_POLL_CONTROLLER 4469 .ndo_netpoll_setup = bond_netpoll_setup, 4470 .ndo_netpoll_cleanup = bond_netpoll_cleanup, 4471 .ndo_poll_controller = bond_poll_controller, 4472 #endif 4473 .ndo_add_slave = bond_enslave, 4474 .ndo_del_slave = bond_release, 4475 }; 4476 4477 static void bond_destructor(struct net_device *bond_dev) 4478 { 4479 struct bonding *bond = netdev_priv(bond_dev); 4480 if (bond->wq) 4481 destroy_workqueue(bond->wq); 4482 free_netdev(bond_dev); 4483 } 4484 4485 static void bond_setup(struct net_device *bond_dev) 4486 { 4487 struct bonding *bond = netdev_priv(bond_dev); 4488 4489 /* initialize rwlocks */ 4490 rwlock_init(&bond->lock); 4491 rwlock_init(&bond->curr_slave_lock); 4492 4493 bond->params = bonding_defaults; 4494 4495 /* Initialize pointers */ 4496 bond->dev = bond_dev; 4497 INIT_LIST_HEAD(&bond->vlan_list); 4498 4499 /* Initialize the device entry points */ 4500 ether_setup(bond_dev); 4501 bond_dev->netdev_ops = &bond_netdev_ops; 4502 bond_dev->ethtool_ops = &bond_ethtool_ops; 4503 bond_set_mode_ops(bond, bond->params.mode); 4504 4505 bond_dev->destructor = bond_destructor; 4506 4507 /* Initialize the device options */ 4508 bond_dev->tx_queue_len = 0; 4509 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4510 bond_dev->priv_flags |= IFF_BONDING; 4511 bond_dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; 4512 4513 /* At first, we block adding VLANs. That's the only way to 4514 * prevent problems that occur when adding VLANs over an 4515 * empty bond. The block will be removed once non-challenged 4516 * slaves are enslaved. 4517 */ 4518 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4519 4520 /* don't acquire bond device's netif_tx_lock when 4521 * transmitting */ 4522 bond_dev->features |= NETIF_F_LLTX; 4523 4524 /* By default, we declare the bond to be fully 4525 * VLAN hardware accelerated capable. Special 4526 * care is taken in the various xmit functions 4527 * when there are slaves that are not hw accel 4528 * capable 4529 */ 4530 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4531 NETIF_F_HW_VLAN_RX | 4532 NETIF_F_HW_VLAN_FILTER); 4533 4534 /* By default, we enable GRO on bonding devices. 4535 * Actual support requires lowlevel drivers are GRO ready. 4536 */ 4537 bond_dev->features |= NETIF_F_GRO; 4538 } 4539 4540 static void bond_work_cancel_all(struct bonding *bond) 4541 { 4542 write_lock_bh(&bond->lock); 4543 bond->kill_timers = 1; 4544 write_unlock_bh(&bond->lock); 4545 4546 if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) 4547 cancel_delayed_work(&bond->mii_work); 4548 4549 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) 4550 cancel_delayed_work(&bond->arp_work); 4551 4552 if (bond->params.mode == BOND_MODE_ALB && 4553 delayed_work_pending(&bond->alb_work)) 4554 cancel_delayed_work(&bond->alb_work); 4555 4556 if (bond->params.mode == BOND_MODE_8023AD && 4557 delayed_work_pending(&bond->ad_work)) 4558 cancel_delayed_work(&bond->ad_work); 4559 4560 if (delayed_work_pending(&bond->mcast_work)) 4561 cancel_delayed_work(&bond->mcast_work); 4562 } 4563 4564 /* 4565 * Destroy a bonding device. 4566 * Must be under rtnl_lock when this function is called. 4567 */ 4568 static void bond_uninit(struct net_device *bond_dev) 4569 { 4570 struct bonding *bond = netdev_priv(bond_dev); 4571 struct vlan_entry *vlan, *tmp; 4572 4573 bond_netpoll_cleanup(bond_dev); 4574 4575 /* Release the bonded slaves */ 4576 bond_release_all(bond_dev); 4577 4578 list_del(&bond->bond_list); 4579 4580 bond_work_cancel_all(bond); 4581 4582 bond_remove_proc_entry(bond); 4583 4584 bond_debug_unregister(bond); 4585 4586 __hw_addr_flush(&bond->mc_list); 4587 4588 list_for_each_entry_safe(vlan, tmp, &bond->vlan_list, vlan_list) { 4589 list_del(&vlan->vlan_list); 4590 kfree(vlan); 4591 } 4592 } 4593 4594 /*------------------------- Module initialization ---------------------------*/ 4595 4596 /* 4597 * Convert string input module parms. Accept either the 4598 * number of the mode or its string name. A bit complicated because 4599 * some mode names are substrings of other names, and calls from sysfs 4600 * may have whitespace in the name (trailing newlines, for example). 4601 */ 4602 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl) 4603 { 4604 int modeint = -1, i, rv; 4605 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4606 4607 for (p = (char *)buf; *p; p++) 4608 if (!(isdigit(*p) || isspace(*p))) 4609 break; 4610 4611 if (*p) 4612 rv = sscanf(buf, "%20s", modestr); 4613 else 4614 rv = sscanf(buf, "%d", &modeint); 4615 4616 if (!rv) 4617 return -1; 4618 4619 for (i = 0; tbl[i].modename; i++) { 4620 if (modeint == tbl[i].mode) 4621 return tbl[i].mode; 4622 if (strcmp(modestr, tbl[i].modename) == 0) 4623 return tbl[i].mode; 4624 } 4625 4626 return -1; 4627 } 4628 4629 static int bond_check_params(struct bond_params *params) 4630 { 4631 int arp_validate_value, fail_over_mac_value, primary_reselect_value; 4632 4633 /* 4634 * Convert string parameters. 4635 */ 4636 if (mode) { 4637 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4638 if (bond_mode == -1) { 4639 pr_err("Error: Invalid bonding mode \"%s\"\n", 4640 mode == NULL ? "NULL" : mode); 4641 return -EINVAL; 4642 } 4643 } 4644 4645 if (xmit_hash_policy) { 4646 if ((bond_mode != BOND_MODE_XOR) && 4647 (bond_mode != BOND_MODE_8023AD)) { 4648 pr_info("xmit_hash_policy param is irrelevant in mode %s\n", 4649 bond_mode_name(bond_mode)); 4650 } else { 4651 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4652 xmit_hashtype_tbl); 4653 if (xmit_hashtype == -1) { 4654 pr_err("Error: Invalid xmit_hash_policy \"%s\"\n", 4655 xmit_hash_policy == NULL ? "NULL" : 4656 xmit_hash_policy); 4657 return -EINVAL; 4658 } 4659 } 4660 } 4661 4662 if (lacp_rate) { 4663 if (bond_mode != BOND_MODE_8023AD) { 4664 pr_info("lacp_rate param is irrelevant in mode %s\n", 4665 bond_mode_name(bond_mode)); 4666 } else { 4667 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4668 if (lacp_fast == -1) { 4669 pr_err("Error: Invalid lacp rate \"%s\"\n", 4670 lacp_rate == NULL ? "NULL" : lacp_rate); 4671 return -EINVAL; 4672 } 4673 } 4674 } 4675 4676 if (ad_select) { 4677 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl); 4678 if (params->ad_select == -1) { 4679 pr_err("Error: Invalid ad_select \"%s\"\n", 4680 ad_select == NULL ? "NULL" : ad_select); 4681 return -EINVAL; 4682 } 4683 4684 if (bond_mode != BOND_MODE_8023AD) { 4685 pr_warning("ad_select param only affects 802.3ad mode\n"); 4686 } 4687 } else { 4688 params->ad_select = BOND_AD_STABLE; 4689 } 4690 4691 if (max_bonds < 0) { 4692 pr_warning("Warning: max_bonds (%d) not in range %d-%d, so it was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4693 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4694 max_bonds = BOND_DEFAULT_MAX_BONDS; 4695 } 4696 4697 if (miimon < 0) { 4698 pr_warning("Warning: miimon module parameter (%d), not in range 0-%d, so it was reset to %d\n", 4699 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4700 miimon = BOND_LINK_MON_INTERV; 4701 } 4702 4703 if (updelay < 0) { 4704 pr_warning("Warning: updelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4705 updelay, INT_MAX); 4706 updelay = 0; 4707 } 4708 4709 if (downdelay < 0) { 4710 pr_warning("Warning: downdelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4711 downdelay, INT_MAX); 4712 downdelay = 0; 4713 } 4714 4715 if ((use_carrier != 0) && (use_carrier != 1)) { 4716 pr_warning("Warning: use_carrier module parameter (%d), not of valid value (0/1), so it was set to 1\n", 4717 use_carrier); 4718 use_carrier = 1; 4719 } 4720 4721 if (num_grat_arp < 0 || num_grat_arp > 255) { 4722 pr_warning("Warning: num_grat_arp (%d) not in range 0-255 so it was reset to 1\n", 4723 num_grat_arp); 4724 num_grat_arp = 1; 4725 } 4726 4727 if (num_unsol_na < 0 || num_unsol_na > 255) { 4728 pr_warning("Warning: num_unsol_na (%d) not in range 0-255 so it was reset to 1\n", 4729 num_unsol_na); 4730 num_unsol_na = 1; 4731 } 4732 4733 /* reset values for 802.3ad */ 4734 if (bond_mode == BOND_MODE_8023AD) { 4735 if (!miimon) { 4736 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure, speed and duplex which are essential for 802.3ad operation\n"); 4737 pr_warning("Forcing miimon to 100msec\n"); 4738 miimon = 100; 4739 } 4740 } 4741 4742 if (tx_queues < 1 || tx_queues > 255) { 4743 pr_warning("Warning: tx_queues (%d) should be between " 4744 "1 and 255, resetting to %d\n", 4745 tx_queues, BOND_DEFAULT_TX_QUEUES); 4746 tx_queues = BOND_DEFAULT_TX_QUEUES; 4747 } 4748 4749 if ((all_slaves_active != 0) && (all_slaves_active != 1)) { 4750 pr_warning("Warning: all_slaves_active module parameter (%d), " 4751 "not of valid value (0/1), so it was set to " 4752 "0\n", all_slaves_active); 4753 all_slaves_active = 0; 4754 } 4755 4756 if (resend_igmp < 0 || resend_igmp > 255) { 4757 pr_warning("Warning: resend_igmp (%d) should be between " 4758 "0 and 255, resetting to %d\n", 4759 resend_igmp, BOND_DEFAULT_RESEND_IGMP); 4760 resend_igmp = BOND_DEFAULT_RESEND_IGMP; 4761 } 4762 4763 /* reset values for TLB/ALB */ 4764 if ((bond_mode == BOND_MODE_TLB) || 4765 (bond_mode == BOND_MODE_ALB)) { 4766 if (!miimon) { 4767 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure and link speed which are essential for TLB/ALB load balancing\n"); 4768 pr_warning("Forcing miimon to 100msec\n"); 4769 miimon = 100; 4770 } 4771 } 4772 4773 if (bond_mode == BOND_MODE_ALB) { 4774 pr_notice("In ALB mode you might experience client disconnections upon reconnection of a link if the bonding module updelay parameter (%d msec) is incompatible with the forwarding delay time of the switch\n", 4775 updelay); 4776 } 4777 4778 if (!miimon) { 4779 if (updelay || downdelay) { 4780 /* just warn the user the up/down delay will have 4781 * no effect since miimon is zero... 4782 */ 4783 pr_warning("Warning: miimon module parameter not set and updelay (%d) or downdelay (%d) module parameter is set; updelay and downdelay have no effect unless miimon is set\n", 4784 updelay, downdelay); 4785 } 4786 } else { 4787 /* don't allow arp monitoring */ 4788 if (arp_interval) { 4789 pr_warning("Warning: miimon (%d) and arp_interval (%d) can't be used simultaneously, disabling ARP monitoring\n", 4790 miimon, arp_interval); 4791 arp_interval = 0; 4792 } 4793 4794 if ((updelay % miimon) != 0) { 4795 pr_warning("Warning: updelay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n", 4796 updelay, miimon, 4797 (updelay / miimon) * miimon); 4798 } 4799 4800 updelay /= miimon; 4801 4802 if ((downdelay % miimon) != 0) { 4803 pr_warning("Warning: downdelay (%d) is not a multiple of miimon (%d), downdelay rounded to %d ms\n", 4804 downdelay, miimon, 4805 (downdelay / miimon) * miimon); 4806 } 4807 4808 downdelay /= miimon; 4809 } 4810 4811 if (arp_interval < 0) { 4812 pr_warning("Warning: arp_interval module parameter (%d) , not in range 0-%d, so it was reset to %d\n", 4813 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4814 arp_interval = BOND_LINK_ARP_INTERV; 4815 } 4816 4817 for (arp_ip_count = 0; 4818 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4819 arp_ip_count++) { 4820 /* not complete check, but should be good enough to 4821 catch mistakes */ 4822 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4823 pr_warning("Warning: bad arp_ip_target module parameter (%s), ARP monitoring will not be performed\n", 4824 arp_ip_target[arp_ip_count]); 4825 arp_interval = 0; 4826 } else { 4827 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4828 arp_target[arp_ip_count] = ip; 4829 } 4830 } 4831 4832 if (arp_interval && !arp_ip_count) { 4833 /* don't allow arping if no arp_ip_target given... */ 4834 pr_warning("Warning: arp_interval module parameter (%d) specified without providing an arp_ip_target parameter, arp_interval was reset to 0\n", 4835 arp_interval); 4836 arp_interval = 0; 4837 } 4838 4839 if (arp_validate) { 4840 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4841 pr_err("arp_validate only supported in active-backup mode\n"); 4842 return -EINVAL; 4843 } 4844 if (!arp_interval) { 4845 pr_err("arp_validate requires arp_interval\n"); 4846 return -EINVAL; 4847 } 4848 4849 arp_validate_value = bond_parse_parm(arp_validate, 4850 arp_validate_tbl); 4851 if (arp_validate_value == -1) { 4852 pr_err("Error: invalid arp_validate \"%s\"\n", 4853 arp_validate == NULL ? "NULL" : arp_validate); 4854 return -EINVAL; 4855 } 4856 } else 4857 arp_validate_value = 0; 4858 4859 if (miimon) { 4860 pr_info("MII link monitoring set to %d ms\n", miimon); 4861 } else if (arp_interval) { 4862 int i; 4863 4864 pr_info("ARP monitoring set to %d ms, validate %s, with %d target(s):", 4865 arp_interval, 4866 arp_validate_tbl[arp_validate_value].modename, 4867 arp_ip_count); 4868 4869 for (i = 0; i < arp_ip_count; i++) 4870 pr_info(" %s", arp_ip_target[i]); 4871 4872 pr_info("\n"); 4873 4874 } else if (max_bonds) { 4875 /* miimon and arp_interval not set, we need one so things 4876 * work as expected, see bonding.txt for details 4877 */ 4878 pr_warning("Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details.\n"); 4879 } 4880 4881 if (primary && !USES_PRIMARY(bond_mode)) { 4882 /* currently, using a primary only makes sense 4883 * in active backup, TLB or ALB modes 4884 */ 4885 pr_warning("Warning: %s primary device specified but has no effect in %s mode\n", 4886 primary, bond_mode_name(bond_mode)); 4887 primary = NULL; 4888 } 4889 4890 if (primary && primary_reselect) { 4891 primary_reselect_value = bond_parse_parm(primary_reselect, 4892 pri_reselect_tbl); 4893 if (primary_reselect_value == -1) { 4894 pr_err("Error: Invalid primary_reselect \"%s\"\n", 4895 primary_reselect == 4896 NULL ? "NULL" : primary_reselect); 4897 return -EINVAL; 4898 } 4899 } else { 4900 primary_reselect_value = BOND_PRI_RESELECT_ALWAYS; 4901 } 4902 4903 if (fail_over_mac) { 4904 fail_over_mac_value = bond_parse_parm(fail_over_mac, 4905 fail_over_mac_tbl); 4906 if (fail_over_mac_value == -1) { 4907 pr_err("Error: invalid fail_over_mac \"%s\"\n", 4908 arp_validate == NULL ? "NULL" : arp_validate); 4909 return -EINVAL; 4910 } 4911 4912 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 4913 pr_warning("Warning: fail_over_mac only affects active-backup mode.\n"); 4914 } else { 4915 fail_over_mac_value = BOND_FOM_NONE; 4916 } 4917 4918 /* fill params struct with the proper values */ 4919 params->mode = bond_mode; 4920 params->xmit_policy = xmit_hashtype; 4921 params->miimon = miimon; 4922 params->num_grat_arp = num_grat_arp; 4923 params->num_unsol_na = num_unsol_na; 4924 params->arp_interval = arp_interval; 4925 params->arp_validate = arp_validate_value; 4926 params->updelay = updelay; 4927 params->downdelay = downdelay; 4928 params->use_carrier = use_carrier; 4929 params->lacp_fast = lacp_fast; 4930 params->primary[0] = 0; 4931 params->primary_reselect = primary_reselect_value; 4932 params->fail_over_mac = fail_over_mac_value; 4933 params->tx_queues = tx_queues; 4934 params->all_slaves_active = all_slaves_active; 4935 params->resend_igmp = resend_igmp; 4936 4937 if (primary) { 4938 strncpy(params->primary, primary, IFNAMSIZ); 4939 params->primary[IFNAMSIZ - 1] = 0; 4940 } 4941 4942 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 4943 4944 return 0; 4945 } 4946 4947 static struct lock_class_key bonding_netdev_xmit_lock_key; 4948 static struct lock_class_key bonding_netdev_addr_lock_key; 4949 4950 static void bond_set_lockdep_class_one(struct net_device *dev, 4951 struct netdev_queue *txq, 4952 void *_unused) 4953 { 4954 lockdep_set_class(&txq->_xmit_lock, 4955 &bonding_netdev_xmit_lock_key); 4956 } 4957 4958 static void bond_set_lockdep_class(struct net_device *dev) 4959 { 4960 lockdep_set_class(&dev->addr_list_lock, 4961 &bonding_netdev_addr_lock_key); 4962 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 4963 } 4964 4965 /* 4966 * Called from registration process 4967 */ 4968 static int bond_init(struct net_device *bond_dev) 4969 { 4970 struct bonding *bond = netdev_priv(bond_dev); 4971 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id); 4972 4973 pr_debug("Begin bond_init for %s\n", bond_dev->name); 4974 4975 bond->wq = create_singlethread_workqueue(bond_dev->name); 4976 if (!bond->wq) 4977 return -ENOMEM; 4978 4979 bond_set_lockdep_class(bond_dev); 4980 4981 bond_create_proc_entry(bond); 4982 list_add_tail(&bond->bond_list, &bn->dev_list); 4983 4984 bond_prepare_sysfs_group(bond); 4985 4986 bond_debug_register(bond); 4987 4988 __hw_addr_init(&bond->mc_list); 4989 return 0; 4990 } 4991 4992 static int bond_validate(struct nlattr *tb[], struct nlattr *data[]) 4993 { 4994 if (tb[IFLA_ADDRESS]) { 4995 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 4996 return -EINVAL; 4997 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 4998 return -EADDRNOTAVAIL; 4999 } 5000 return 0; 5001 } 5002 5003 static struct rtnl_link_ops bond_link_ops __read_mostly = { 5004 .kind = "bond", 5005 .priv_size = sizeof(struct bonding), 5006 .setup = bond_setup, 5007 .validate = bond_validate, 5008 }; 5009 5010 /* Create a new bond based on the specified name and bonding parameters. 5011 * If name is NULL, obtain a suitable "bond%d" name for us. 5012 * Caller must NOT hold rtnl_lock; we need to release it here before we 5013 * set up our sysfs entries. 5014 */ 5015 int bond_create(struct net *net, const char *name) 5016 { 5017 struct net_device *bond_dev; 5018 int res; 5019 5020 rtnl_lock(); 5021 5022 bond_dev = alloc_netdev_mq(sizeof(struct bonding), name ? name : "", 5023 bond_setup, tx_queues); 5024 if (!bond_dev) { 5025 pr_err("%s: eek! can't alloc netdev!\n", name); 5026 rtnl_unlock(); 5027 return -ENOMEM; 5028 } 5029 5030 dev_net_set(bond_dev, net); 5031 bond_dev->rtnl_link_ops = &bond_link_ops; 5032 5033 if (!name) { 5034 res = dev_alloc_name(bond_dev, "bond%d"); 5035 if (res < 0) 5036 goto out; 5037 } else { 5038 /* 5039 * If we're given a name to register 5040 * we need to ensure that its not already 5041 * registered 5042 */ 5043 res = -EEXIST; 5044 if (__dev_get_by_name(net, name) != NULL) 5045 goto out; 5046 } 5047 5048 res = register_netdevice(bond_dev); 5049 5050 netif_carrier_off(bond_dev); 5051 5052 out: 5053 rtnl_unlock(); 5054 if (res < 0) 5055 bond_destructor(bond_dev); 5056 return res; 5057 } 5058 5059 static int __net_init bond_net_init(struct net *net) 5060 { 5061 struct bond_net *bn = net_generic(net, bond_net_id); 5062 5063 bn->net = net; 5064 INIT_LIST_HEAD(&bn->dev_list); 5065 5066 bond_create_proc_dir(bn); 5067 5068 return 0; 5069 } 5070 5071 static void __net_exit bond_net_exit(struct net *net) 5072 { 5073 struct bond_net *bn = net_generic(net, bond_net_id); 5074 5075 bond_destroy_proc_dir(bn); 5076 } 5077 5078 static struct pernet_operations bond_net_ops = { 5079 .init = bond_net_init, 5080 .exit = bond_net_exit, 5081 .id = &bond_net_id, 5082 .size = sizeof(struct bond_net), 5083 }; 5084 5085 static int __init bonding_init(void) 5086 { 5087 int i; 5088 int res; 5089 5090 pr_info("%s", bond_version); 5091 5092 res = bond_check_params(&bonding_defaults); 5093 if (res) 5094 goto out; 5095 5096 res = register_pernet_subsys(&bond_net_ops); 5097 if (res) 5098 goto out; 5099 5100 res = rtnl_link_register(&bond_link_ops); 5101 if (res) 5102 goto err_link; 5103 5104 bond_create_debugfs(); 5105 5106 for (i = 0; i < max_bonds; i++) { 5107 res = bond_create(&init_net, NULL); 5108 if (res) 5109 goto err; 5110 } 5111 5112 res = bond_create_sysfs(); 5113 if (res) 5114 goto err; 5115 5116 register_netdevice_notifier(&bond_netdev_notifier); 5117 register_inetaddr_notifier(&bond_inetaddr_notifier); 5118 bond_register_ipv6_notifier(); 5119 out: 5120 return res; 5121 err: 5122 rtnl_link_unregister(&bond_link_ops); 5123 err_link: 5124 unregister_pernet_subsys(&bond_net_ops); 5125 goto out; 5126 5127 } 5128 5129 static void __exit bonding_exit(void) 5130 { 5131 unregister_netdevice_notifier(&bond_netdev_notifier); 5132 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 5133 bond_unregister_ipv6_notifier(); 5134 5135 bond_destroy_sysfs(); 5136 bond_destroy_debugfs(); 5137 5138 rtnl_link_unregister(&bond_link_ops); 5139 unregister_pernet_subsys(&bond_net_ops); 5140 5141 #ifdef CONFIG_NET_POLL_CONTROLLER 5142 /* 5143 * Make sure we don't have an imbalance on our netpoll blocking 5144 */ 5145 WARN_ON(atomic_read(&netpoll_block_tx)); 5146 #endif 5147 } 5148 5149 module_init(bonding_init); 5150 module_exit(bonding_exit); 5151 MODULE_LICENSE("GPL"); 5152 MODULE_VERSION(DRV_VERSION); 5153 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5154 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5155 MODULE_ALIAS_RTNL_LINK("bond"); 5156