1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/fcntl.h> 40 #include <linux/interrupt.h> 41 #include <linux/ptrace.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <net/ip.h> 45 #include <linux/ip.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/init.h> 51 #include <linux/timer.h> 52 #include <linux/socket.h> 53 #include <linux/ctype.h> 54 #include <linux/inet.h> 55 #include <linux/bitops.h> 56 #include <linux/io.h> 57 #include <asm/dma.h> 58 #include <linux/uaccess.h> 59 #include <linux/errno.h> 60 #include <linux/netdevice.h> 61 #include <linux/inetdevice.h> 62 #include <linux/igmp.h> 63 #include <linux/etherdevice.h> 64 #include <linux/skbuff.h> 65 #include <net/sock.h> 66 #include <linux/rtnetlink.h> 67 #include <linux/smp.h> 68 #include <linux/if_ether.h> 69 #include <net/arp.h> 70 #include <linux/mii.h> 71 #include <linux/ethtool.h> 72 #include <linux/if_vlan.h> 73 #include <linux/if_bonding.h> 74 #include <linux/jiffies.h> 75 #include <linux/preempt.h> 76 #include <net/route.h> 77 #include <net/net_namespace.h> 78 #include <net/netns/generic.h> 79 #include <net/pkt_sched.h> 80 #include "bonding.h" 81 #include "bond_3ad.h" 82 #include "bond_alb.h" 83 84 /*---------------------------- Module parameters ----------------------------*/ 85 86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 87 #define BOND_LINK_MON_INTERV 0 88 #define BOND_LINK_ARP_INTERV 0 89 90 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 91 static int tx_queues = BOND_DEFAULT_TX_QUEUES; 92 static int num_peer_notif = 1; 93 static int miimon = BOND_LINK_MON_INTERV; 94 static int updelay; 95 static int downdelay; 96 static int use_carrier = 1; 97 static char *mode; 98 static char *primary; 99 static char *primary_reselect; 100 static char *lacp_rate; 101 static int min_links; 102 static char *ad_select; 103 static char *xmit_hash_policy; 104 static int arp_interval = BOND_LINK_ARP_INTERV; 105 static char *arp_ip_target[BOND_MAX_ARP_TARGETS]; 106 static char *arp_validate; 107 static char *fail_over_mac; 108 static int all_slaves_active = 0; 109 static struct bond_params bonding_defaults; 110 static int resend_igmp = BOND_DEFAULT_RESEND_IGMP; 111 112 module_param(max_bonds, int, 0); 113 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 114 module_param(tx_queues, int, 0); 115 MODULE_PARM_DESC(tx_queues, "Max number of transmit queues (default = 16)"); 116 module_param_named(num_grat_arp, num_peer_notif, int, 0644); 117 MODULE_PARM_DESC(num_grat_arp, "Number of peer notifications to send on " 118 "failover event (alias of num_unsol_na)"); 119 module_param_named(num_unsol_na, num_peer_notif, int, 0644); 120 MODULE_PARM_DESC(num_unsol_na, "Number of peer notifications to send on " 121 "failover event (alias of num_grat_arp)"); 122 module_param(miimon, int, 0); 123 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 124 module_param(updelay, int, 0); 125 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 126 module_param(downdelay, int, 0); 127 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 128 "in milliseconds"); 129 module_param(use_carrier, int, 0); 130 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 131 "0 for off, 1 for on (default)"); 132 module_param(mode, charp, 0); 133 MODULE_PARM_DESC(mode, "Mode of operation; 0 for balance-rr, " 134 "1 for active-backup, 2 for balance-xor, " 135 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 136 "6 for balance-alb"); 137 module_param(primary, charp, 0); 138 MODULE_PARM_DESC(primary, "Primary network device to use"); 139 module_param(primary_reselect, charp, 0); 140 MODULE_PARM_DESC(primary_reselect, "Reselect primary slave " 141 "once it comes up; " 142 "0 for always (default), " 143 "1 for only if speed of primary is " 144 "better, " 145 "2 for only on active slave " 146 "failure"); 147 module_param(lacp_rate, charp, 0); 148 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner; " 149 "0 for slow, 1 for fast"); 150 module_param(ad_select, charp, 0); 151 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic; " 152 "0 for stable (default), 1 for bandwidth, " 153 "2 for count"); 154 module_param(min_links, int, 0); 155 MODULE_PARM_DESC(min_links, "Minimum number of available links before turning on carrier"); 156 157 module_param(xmit_hash_policy, charp, 0); 158 MODULE_PARM_DESC(xmit_hash_policy, "balance-xor and 802.3ad hashing method; " 159 "0 for layer 2 (default), 1 for layer 3+4, " 160 "2 for layer 2+3"); 161 module_param(arp_interval, int, 0); 162 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 163 module_param_array(arp_ip_target, charp, NULL, 0); 164 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 165 module_param(arp_validate, charp, 0); 166 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes; " 167 "0 for none (default), 1 for active, " 168 "2 for backup, 3 for all"); 169 module_param(fail_over_mac, charp, 0); 170 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to " 171 "the same MAC; 0 for none (default), " 172 "1 for active, 2 for follow"); 173 module_param(all_slaves_active, int, 0); 174 MODULE_PARM_DESC(all_slaves_active, "Keep all frames received on an interface" 175 "by setting active flag for all slaves; " 176 "0 for never (default), 1 for always."); 177 module_param(resend_igmp, int, 0); 178 MODULE_PARM_DESC(resend_igmp, "Number of IGMP membership reports to send on " 179 "link failure"); 180 181 /*----------------------------- Global variables ----------------------------*/ 182 183 #ifdef CONFIG_NET_POLL_CONTROLLER 184 atomic_t netpoll_block_tx = ATOMIC_INIT(0); 185 #endif 186 187 int bond_net_id __read_mostly; 188 189 static __be32 arp_target[BOND_MAX_ARP_TARGETS]; 190 static int arp_ip_count; 191 static int bond_mode = BOND_MODE_ROUNDROBIN; 192 static int xmit_hashtype = BOND_XMIT_POLICY_LAYER2; 193 static int lacp_fast; 194 195 const struct bond_parm_tbl bond_lacp_tbl[] = { 196 { "slow", AD_LACP_SLOW}, 197 { "fast", AD_LACP_FAST}, 198 { NULL, -1}, 199 }; 200 201 const struct bond_parm_tbl bond_mode_tbl[] = { 202 { "balance-rr", BOND_MODE_ROUNDROBIN}, 203 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 204 { "balance-xor", BOND_MODE_XOR}, 205 { "broadcast", BOND_MODE_BROADCAST}, 206 { "802.3ad", BOND_MODE_8023AD}, 207 { "balance-tlb", BOND_MODE_TLB}, 208 { "balance-alb", BOND_MODE_ALB}, 209 { NULL, -1}, 210 }; 211 212 const struct bond_parm_tbl xmit_hashtype_tbl[] = { 213 { "layer2", BOND_XMIT_POLICY_LAYER2}, 214 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 215 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 216 { NULL, -1}, 217 }; 218 219 const struct bond_parm_tbl arp_validate_tbl[] = { 220 { "none", BOND_ARP_VALIDATE_NONE}, 221 { "active", BOND_ARP_VALIDATE_ACTIVE}, 222 { "backup", BOND_ARP_VALIDATE_BACKUP}, 223 { "all", BOND_ARP_VALIDATE_ALL}, 224 { NULL, -1}, 225 }; 226 227 const struct bond_parm_tbl fail_over_mac_tbl[] = { 228 { "none", BOND_FOM_NONE}, 229 { "active", BOND_FOM_ACTIVE}, 230 { "follow", BOND_FOM_FOLLOW}, 231 { NULL, -1}, 232 }; 233 234 const struct bond_parm_tbl pri_reselect_tbl[] = { 235 { "always", BOND_PRI_RESELECT_ALWAYS}, 236 { "better", BOND_PRI_RESELECT_BETTER}, 237 { "failure", BOND_PRI_RESELECT_FAILURE}, 238 { NULL, -1}, 239 }; 240 241 struct bond_parm_tbl ad_select_tbl[] = { 242 { "stable", BOND_AD_STABLE}, 243 { "bandwidth", BOND_AD_BANDWIDTH}, 244 { "count", BOND_AD_COUNT}, 245 { NULL, -1}, 246 }; 247 248 /*-------------------------- Forward declarations ---------------------------*/ 249 250 static int bond_init(struct net_device *bond_dev); 251 static void bond_uninit(struct net_device *bond_dev); 252 253 /*---------------------------- General routines -----------------------------*/ 254 255 const char *bond_mode_name(int mode) 256 { 257 static const char *names[] = { 258 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)", 259 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)", 260 [BOND_MODE_XOR] = "load balancing (xor)", 261 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)", 262 [BOND_MODE_8023AD] = "IEEE 802.3ad Dynamic link aggregation", 263 [BOND_MODE_TLB] = "transmit load balancing", 264 [BOND_MODE_ALB] = "adaptive load balancing", 265 }; 266 267 if (mode < 0 || mode > BOND_MODE_ALB) 268 return "unknown"; 269 270 return names[mode]; 271 } 272 273 /*---------------------------------- VLAN -----------------------------------*/ 274 275 /** 276 * bond_add_vlan - add a new vlan id on bond 277 * @bond: bond that got the notification 278 * @vlan_id: the vlan id to add 279 * 280 * Returns -ENOMEM if allocation failed. 281 */ 282 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 283 { 284 struct vlan_entry *vlan; 285 286 pr_debug("bond: %s, vlan id %d\n", 287 (bond ? bond->dev->name : "None"), vlan_id); 288 289 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL); 290 if (!vlan) 291 return -ENOMEM; 292 293 INIT_LIST_HEAD(&vlan->vlan_list); 294 vlan->vlan_id = vlan_id; 295 296 write_lock_bh(&bond->lock); 297 298 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 299 300 write_unlock_bh(&bond->lock); 301 302 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 303 304 return 0; 305 } 306 307 /** 308 * bond_del_vlan - delete a vlan id from bond 309 * @bond: bond that got the notification 310 * @vlan_id: the vlan id to delete 311 * 312 * returns -ENODEV if @vlan_id was not found in @bond. 313 */ 314 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 315 { 316 struct vlan_entry *vlan; 317 int res = -ENODEV; 318 319 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 320 321 block_netpoll_tx(); 322 write_lock_bh(&bond->lock); 323 324 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 325 if (vlan->vlan_id == vlan_id) { 326 list_del(&vlan->vlan_list); 327 328 if (bond_is_lb(bond)) 329 bond_alb_clear_vlan(bond, vlan_id); 330 331 pr_debug("removed VLAN ID %d from bond %s\n", 332 vlan_id, bond->dev->name); 333 334 kfree(vlan); 335 336 res = 0; 337 goto out; 338 } 339 } 340 341 pr_debug("couldn't find VLAN ID %d in bond %s\n", 342 vlan_id, bond->dev->name); 343 344 out: 345 write_unlock_bh(&bond->lock); 346 unblock_netpoll_tx(); 347 return res; 348 } 349 350 /** 351 * bond_next_vlan - safely skip to the next item in the vlans list. 352 * @bond: the bond we're working on 353 * @curr: item we're advancing from 354 * 355 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 356 * or @curr->next otherwise (even if it is @curr itself again). 357 * 358 * Caller must hold bond->lock 359 */ 360 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 361 { 362 struct vlan_entry *next, *last; 363 364 if (list_empty(&bond->vlan_list)) 365 return NULL; 366 367 if (!curr) { 368 next = list_entry(bond->vlan_list.next, 369 struct vlan_entry, vlan_list); 370 } else { 371 last = list_entry(bond->vlan_list.prev, 372 struct vlan_entry, vlan_list); 373 if (last == curr) { 374 next = list_entry(bond->vlan_list.next, 375 struct vlan_entry, vlan_list); 376 } else { 377 next = list_entry(curr->vlan_list.next, 378 struct vlan_entry, vlan_list); 379 } 380 } 381 382 return next; 383 } 384 385 /** 386 * bond_dev_queue_xmit - Prepare skb for xmit. 387 * 388 * @bond: bond device that got this skb for tx. 389 * @skb: hw accel VLAN tagged skb to transmit 390 * @slave_dev: slave that is supposed to xmit this skbuff 391 */ 392 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, 393 struct net_device *slave_dev) 394 { 395 skb->dev = slave_dev; 396 397 BUILD_BUG_ON(sizeof(skb->queue_mapping) != 398 sizeof(qdisc_skb_cb(skb)->slave_dev_queue_mapping)); 399 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 400 401 if (unlikely(netpoll_tx_running(bond->dev))) 402 bond_netpoll_send_skb(bond_get_slave_by_dev(bond, slave_dev), skb); 403 else 404 dev_queue_xmit(skb); 405 406 return 0; 407 } 408 409 /* 410 * In the following 2 functions, bond_vlan_rx_add_vid and bond_vlan_rx_kill_vid, 411 * We don't protect the slave list iteration with a lock because: 412 * a. This operation is performed in IOCTL context, 413 * b. The operation is protected by the RTNL semaphore in the 8021q code, 414 * c. Holding a lock with BH disabled while directly calling a base driver 415 * entry point is generally a BAD idea. 416 * 417 * The design of synchronization/protection for this operation in the 8021q 418 * module is good for one or more VLAN devices over a single physical device 419 * and cannot be extended for a teaming solution like bonding, so there is a 420 * potential race condition here where a net device from the vlan group might 421 * be referenced (either by a base driver or the 8021q code) while it is being 422 * removed from the system. However, it turns out we're not making matters 423 * worse, and if it works for regular VLAN usage it will work here too. 424 */ 425 426 /** 427 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 428 * @bond_dev: bonding net device that got called 429 * @vid: vlan id being added 430 */ 431 static int bond_vlan_rx_add_vid(struct net_device *bond_dev, 432 __be16 proto, u16 vid) 433 { 434 struct bonding *bond = netdev_priv(bond_dev); 435 struct slave *slave, *stop_at; 436 int i, res; 437 438 bond_for_each_slave(bond, slave, i) { 439 res = vlan_vid_add(slave->dev, proto, vid); 440 if (res) 441 goto unwind; 442 } 443 444 res = bond_add_vlan(bond, vid); 445 if (res) { 446 pr_err("%s: Error: Failed to add vlan id %d\n", 447 bond_dev->name, vid); 448 return res; 449 } 450 451 return 0; 452 453 unwind: 454 /* unwind from head to the slave that failed */ 455 stop_at = slave; 456 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) 457 vlan_vid_del(slave->dev, proto, vid); 458 459 return res; 460 } 461 462 /** 463 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 464 * @bond_dev: bonding net device that got called 465 * @vid: vlan id being removed 466 */ 467 static int bond_vlan_rx_kill_vid(struct net_device *bond_dev, 468 __be16 proto, u16 vid) 469 { 470 struct bonding *bond = netdev_priv(bond_dev); 471 struct slave *slave; 472 int i, res; 473 474 bond_for_each_slave(bond, slave, i) 475 vlan_vid_del(slave->dev, proto, vid); 476 477 res = bond_del_vlan(bond, vid); 478 if (res) { 479 pr_err("%s: Error: Failed to remove vlan id %d\n", 480 bond_dev->name, vid); 481 return res; 482 } 483 484 return 0; 485 } 486 487 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 488 { 489 struct vlan_entry *vlan; 490 int res; 491 492 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 493 res = vlan_vid_add(slave_dev, htons(ETH_P_8021Q), 494 vlan->vlan_id); 495 if (res) 496 pr_warning("%s: Failed to add vlan id %d to device %s\n", 497 bond->dev->name, vlan->vlan_id, 498 slave_dev->name); 499 } 500 } 501 502 static void bond_del_vlans_from_slave(struct bonding *bond, 503 struct net_device *slave_dev) 504 { 505 struct vlan_entry *vlan; 506 507 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 508 if (!vlan->vlan_id) 509 continue; 510 vlan_vid_del(slave_dev, htons(ETH_P_8021Q), vlan->vlan_id); 511 } 512 } 513 514 /*------------------------------- Link status -------------------------------*/ 515 516 /* 517 * Set the carrier state for the master according to the state of its 518 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 519 * do special 802.3ad magic. 520 * 521 * Returns zero if carrier state does not change, nonzero if it does. 522 */ 523 static int bond_set_carrier(struct bonding *bond) 524 { 525 struct slave *slave; 526 int i; 527 528 if (bond->slave_cnt == 0) 529 goto down; 530 531 if (bond->params.mode == BOND_MODE_8023AD) 532 return bond_3ad_set_carrier(bond); 533 534 bond_for_each_slave(bond, slave, i) { 535 if (slave->link == BOND_LINK_UP) { 536 if (!netif_carrier_ok(bond->dev)) { 537 netif_carrier_on(bond->dev); 538 return 1; 539 } 540 return 0; 541 } 542 } 543 544 down: 545 if (netif_carrier_ok(bond->dev)) { 546 netif_carrier_off(bond->dev); 547 return 1; 548 } 549 return 0; 550 } 551 552 /* 553 * Get link speed and duplex from the slave's base driver 554 * using ethtool. If for some reason the call fails or the 555 * values are invalid, set speed and duplex to -1, 556 * and return. 557 */ 558 static void bond_update_speed_duplex(struct slave *slave) 559 { 560 struct net_device *slave_dev = slave->dev; 561 struct ethtool_cmd ecmd; 562 u32 slave_speed; 563 int res; 564 565 slave->speed = SPEED_UNKNOWN; 566 slave->duplex = DUPLEX_UNKNOWN; 567 568 res = __ethtool_get_settings(slave_dev, &ecmd); 569 if (res < 0) 570 return; 571 572 slave_speed = ethtool_cmd_speed(&ecmd); 573 if (slave_speed == 0 || slave_speed == ((__u32) -1)) 574 return; 575 576 switch (ecmd.duplex) { 577 case DUPLEX_FULL: 578 case DUPLEX_HALF: 579 break; 580 default: 581 return; 582 } 583 584 slave->speed = slave_speed; 585 slave->duplex = ecmd.duplex; 586 587 return; 588 } 589 590 /* 591 * if <dev> supports MII link status reporting, check its link status. 592 * 593 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 594 * depending upon the setting of the use_carrier parameter. 595 * 596 * Return either BMSR_LSTATUS, meaning that the link is up (or we 597 * can't tell and just pretend it is), or 0, meaning that the link is 598 * down. 599 * 600 * If reporting is non-zero, instead of faking link up, return -1 if 601 * both ETHTOOL and MII ioctls fail (meaning the device does not 602 * support them). If use_carrier is set, return whatever it says. 603 * It'd be nice if there was a good way to tell if a driver supports 604 * netif_carrier, but there really isn't. 605 */ 606 static int bond_check_dev_link(struct bonding *bond, 607 struct net_device *slave_dev, int reporting) 608 { 609 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 610 int (*ioctl)(struct net_device *, struct ifreq *, int); 611 struct ifreq ifr; 612 struct mii_ioctl_data *mii; 613 614 if (!reporting && !netif_running(slave_dev)) 615 return 0; 616 617 if (bond->params.use_carrier) 618 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 619 620 /* Try to get link status using Ethtool first. */ 621 if (slave_dev->ethtool_ops->get_link) 622 return slave_dev->ethtool_ops->get_link(slave_dev) ? 623 BMSR_LSTATUS : 0; 624 625 /* Ethtool can't be used, fallback to MII ioctls. */ 626 ioctl = slave_ops->ndo_do_ioctl; 627 if (ioctl) { 628 /* TODO: set pointer to correct ioctl on a per team member */ 629 /* bases to make this more efficient. that is, once */ 630 /* we determine the correct ioctl, we will always */ 631 /* call it and not the others for that team */ 632 /* member. */ 633 634 /* 635 * We cannot assume that SIOCGMIIPHY will also read a 636 * register; not all network drivers (e.g., e100) 637 * support that. 638 */ 639 640 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 641 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 642 mii = if_mii(&ifr); 643 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 644 mii->reg_num = MII_BMSR; 645 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) 646 return mii->val_out & BMSR_LSTATUS; 647 } 648 } 649 650 /* 651 * If reporting, report that either there's no dev->do_ioctl, 652 * or both SIOCGMIIREG and get_link failed (meaning that we 653 * cannot report link status). If not reporting, pretend 654 * we're ok. 655 */ 656 return reporting ? -1 : BMSR_LSTATUS; 657 } 658 659 /*----------------------------- Multicast list ------------------------------*/ 660 661 /* 662 * Push the promiscuity flag down to appropriate slaves 663 */ 664 static int bond_set_promiscuity(struct bonding *bond, int inc) 665 { 666 int err = 0; 667 if (USES_PRIMARY(bond->params.mode)) { 668 /* write lock already acquired */ 669 if (bond->curr_active_slave) { 670 err = dev_set_promiscuity(bond->curr_active_slave->dev, 671 inc); 672 } 673 } else { 674 struct slave *slave; 675 int i; 676 bond_for_each_slave(bond, slave, i) { 677 err = dev_set_promiscuity(slave->dev, inc); 678 if (err) 679 return err; 680 } 681 } 682 return err; 683 } 684 685 /* 686 * Push the allmulti flag down to all slaves 687 */ 688 static int bond_set_allmulti(struct bonding *bond, int inc) 689 { 690 int err = 0; 691 if (USES_PRIMARY(bond->params.mode)) { 692 /* write lock already acquired */ 693 if (bond->curr_active_slave) { 694 err = dev_set_allmulti(bond->curr_active_slave->dev, 695 inc); 696 } 697 } else { 698 struct slave *slave; 699 int i; 700 bond_for_each_slave(bond, slave, i) { 701 err = dev_set_allmulti(slave->dev, inc); 702 if (err) 703 return err; 704 } 705 } 706 return err; 707 } 708 709 /* 710 * Add a Multicast address to slaves 711 * according to mode 712 */ 713 static void bond_mc_add(struct bonding *bond, void *addr) 714 { 715 if (USES_PRIMARY(bond->params.mode)) { 716 /* write lock already acquired */ 717 if (bond->curr_active_slave) 718 dev_mc_add(bond->curr_active_slave->dev, addr); 719 } else { 720 struct slave *slave; 721 int i; 722 723 bond_for_each_slave(bond, slave, i) 724 dev_mc_add(slave->dev, addr); 725 } 726 } 727 728 /* 729 * Remove a multicast address from slave 730 * according to mode 731 */ 732 static void bond_mc_del(struct bonding *bond, void *addr) 733 { 734 if (USES_PRIMARY(bond->params.mode)) { 735 /* write lock already acquired */ 736 if (bond->curr_active_slave) 737 dev_mc_del(bond->curr_active_slave->dev, addr); 738 } else { 739 struct slave *slave; 740 int i; 741 bond_for_each_slave(bond, slave, i) { 742 dev_mc_del(slave->dev, addr); 743 } 744 } 745 } 746 747 748 static void __bond_resend_igmp_join_requests(struct net_device *dev) 749 { 750 struct in_device *in_dev; 751 752 in_dev = __in_dev_get_rcu(dev); 753 if (in_dev) 754 ip_mc_rejoin_groups(in_dev); 755 } 756 757 /* 758 * Retrieve the list of registered multicast addresses for the bonding 759 * device and retransmit an IGMP JOIN request to the current active 760 * slave. 761 */ 762 static void bond_resend_igmp_join_requests(struct bonding *bond) 763 { 764 struct net_device *bond_dev, *vlan_dev, *upper_dev; 765 struct vlan_entry *vlan; 766 767 rcu_read_lock(); 768 read_lock(&bond->lock); 769 770 bond_dev = bond->dev; 771 772 /* rejoin all groups on bond device */ 773 __bond_resend_igmp_join_requests(bond_dev); 774 775 /* 776 * if bond is enslaved to a bridge, 777 * then rejoin all groups on its master 778 */ 779 upper_dev = netdev_master_upper_dev_get_rcu(bond_dev); 780 if (upper_dev && upper_dev->priv_flags & IFF_EBRIDGE) 781 __bond_resend_igmp_join_requests(upper_dev); 782 783 /* rejoin all groups on vlan devices */ 784 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 785 vlan_dev = __vlan_find_dev_deep(bond_dev, htons(ETH_P_8021Q), 786 vlan->vlan_id); 787 if (vlan_dev) 788 __bond_resend_igmp_join_requests(vlan_dev); 789 } 790 791 if (--bond->igmp_retrans > 0) 792 queue_delayed_work(bond->wq, &bond->mcast_work, HZ/5); 793 794 read_unlock(&bond->lock); 795 rcu_read_unlock(); 796 } 797 798 static void bond_resend_igmp_join_requests_delayed(struct work_struct *work) 799 { 800 struct bonding *bond = container_of(work, struct bonding, 801 mcast_work.work); 802 803 bond_resend_igmp_join_requests(bond); 804 } 805 806 /* 807 * flush all members of flush->mc_list from device dev->mc_list 808 */ 809 static void bond_mc_list_flush(struct net_device *bond_dev, 810 struct net_device *slave_dev) 811 { 812 struct bonding *bond = netdev_priv(bond_dev); 813 struct netdev_hw_addr *ha; 814 815 netdev_for_each_mc_addr(ha, bond_dev) 816 dev_mc_del(slave_dev, ha->addr); 817 818 if (bond->params.mode == BOND_MODE_8023AD) { 819 /* del lacpdu mc addr from mc list */ 820 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 821 822 dev_mc_del(slave_dev, lacpdu_multicast); 823 } 824 } 825 826 /*--------------------------- Active slave change ---------------------------*/ 827 828 /* 829 * Update the mc list and multicast-related flags for the new and 830 * old active slaves (if any) according to the multicast mode, and 831 * promiscuous flags unconditionally. 832 */ 833 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, 834 struct slave *old_active) 835 { 836 struct netdev_hw_addr *ha; 837 838 if (!USES_PRIMARY(bond->params.mode)) 839 /* nothing to do - mc list is already up-to-date on 840 * all slaves 841 */ 842 return; 843 844 if (old_active) { 845 if (bond->dev->flags & IFF_PROMISC) 846 dev_set_promiscuity(old_active->dev, -1); 847 848 if (bond->dev->flags & IFF_ALLMULTI) 849 dev_set_allmulti(old_active->dev, -1); 850 851 netif_addr_lock_bh(bond->dev); 852 netdev_for_each_mc_addr(ha, bond->dev) 853 dev_mc_del(old_active->dev, ha->addr); 854 netif_addr_unlock_bh(bond->dev); 855 } 856 857 if (new_active) { 858 /* FIXME: Signal errors upstream. */ 859 if (bond->dev->flags & IFF_PROMISC) 860 dev_set_promiscuity(new_active->dev, 1); 861 862 if (bond->dev->flags & IFF_ALLMULTI) 863 dev_set_allmulti(new_active->dev, 1); 864 865 netif_addr_lock_bh(bond->dev); 866 netdev_for_each_mc_addr(ha, bond->dev) 867 dev_mc_add(new_active->dev, ha->addr); 868 netif_addr_unlock_bh(bond->dev); 869 } 870 } 871 872 /* 873 * bond_do_fail_over_mac 874 * 875 * Perform special MAC address swapping for fail_over_mac settings 876 * 877 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 878 */ 879 static void bond_do_fail_over_mac(struct bonding *bond, 880 struct slave *new_active, 881 struct slave *old_active) 882 __releases(&bond->curr_slave_lock) 883 __releases(&bond->lock) 884 __acquires(&bond->lock) 885 __acquires(&bond->curr_slave_lock) 886 { 887 u8 tmp_mac[ETH_ALEN]; 888 struct sockaddr saddr; 889 int rv; 890 891 switch (bond->params.fail_over_mac) { 892 case BOND_FOM_ACTIVE: 893 if (new_active) { 894 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 895 new_active->dev->addr_len); 896 write_unlock_bh(&bond->curr_slave_lock); 897 read_unlock(&bond->lock); 898 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond->dev); 899 read_lock(&bond->lock); 900 write_lock_bh(&bond->curr_slave_lock); 901 } 902 break; 903 case BOND_FOM_FOLLOW: 904 /* 905 * if new_active && old_active, swap them 906 * if just old_active, do nothing (going to no active slave) 907 * if just new_active, set new_active to bond's MAC 908 */ 909 if (!new_active) 910 return; 911 912 write_unlock_bh(&bond->curr_slave_lock); 913 read_unlock(&bond->lock); 914 915 if (old_active) { 916 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 917 memcpy(saddr.sa_data, old_active->dev->dev_addr, 918 ETH_ALEN); 919 saddr.sa_family = new_active->dev->type; 920 } else { 921 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 922 saddr.sa_family = bond->dev->type; 923 } 924 925 rv = dev_set_mac_address(new_active->dev, &saddr); 926 if (rv) { 927 pr_err("%s: Error %d setting MAC of slave %s\n", 928 bond->dev->name, -rv, new_active->dev->name); 929 goto out; 930 } 931 932 if (!old_active) 933 goto out; 934 935 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 936 saddr.sa_family = old_active->dev->type; 937 938 rv = dev_set_mac_address(old_active->dev, &saddr); 939 if (rv) 940 pr_err("%s: Error %d setting MAC of slave %s\n", 941 bond->dev->name, -rv, new_active->dev->name); 942 out: 943 read_lock(&bond->lock); 944 write_lock_bh(&bond->curr_slave_lock); 945 break; 946 default: 947 pr_err("%s: bond_do_fail_over_mac impossible: bad policy %d\n", 948 bond->dev->name, bond->params.fail_over_mac); 949 break; 950 } 951 952 } 953 954 static bool bond_should_change_active(struct bonding *bond) 955 { 956 struct slave *prim = bond->primary_slave; 957 struct slave *curr = bond->curr_active_slave; 958 959 if (!prim || !curr || curr->link != BOND_LINK_UP) 960 return true; 961 if (bond->force_primary) { 962 bond->force_primary = false; 963 return true; 964 } 965 if (bond->params.primary_reselect == BOND_PRI_RESELECT_BETTER && 966 (prim->speed < curr->speed || 967 (prim->speed == curr->speed && prim->duplex <= curr->duplex))) 968 return false; 969 if (bond->params.primary_reselect == BOND_PRI_RESELECT_FAILURE) 970 return false; 971 return true; 972 } 973 974 /** 975 * find_best_interface - select the best available slave to be the active one 976 * @bond: our bonding struct 977 * 978 * Warning: Caller must hold curr_slave_lock for writing. 979 */ 980 static struct slave *bond_find_best_slave(struct bonding *bond) 981 { 982 struct slave *new_active, *old_active; 983 struct slave *bestslave = NULL; 984 int mintime = bond->params.updelay; 985 int i; 986 987 new_active = bond->curr_active_slave; 988 989 if (!new_active) { /* there were no active slaves left */ 990 if (bond->slave_cnt > 0) /* found one slave */ 991 new_active = bond->first_slave; 992 else 993 return NULL; /* still no slave, return NULL */ 994 } 995 996 if ((bond->primary_slave) && 997 bond->primary_slave->link == BOND_LINK_UP && 998 bond_should_change_active(bond)) { 999 new_active = bond->primary_slave; 1000 } 1001 1002 /* remember where to stop iterating over the slaves */ 1003 old_active = new_active; 1004 1005 bond_for_each_slave_from(bond, new_active, i, old_active) { 1006 if (new_active->link == BOND_LINK_UP) { 1007 return new_active; 1008 } else if (new_active->link == BOND_LINK_BACK && 1009 IS_UP(new_active->dev)) { 1010 /* link up, but waiting for stabilization */ 1011 if (new_active->delay < mintime) { 1012 mintime = new_active->delay; 1013 bestslave = new_active; 1014 } 1015 } 1016 } 1017 1018 return bestslave; 1019 } 1020 1021 static bool bond_should_notify_peers(struct bonding *bond) 1022 { 1023 struct slave *slave = bond->curr_active_slave; 1024 1025 pr_debug("bond_should_notify_peers: bond %s slave %s\n", 1026 bond->dev->name, slave ? slave->dev->name : "NULL"); 1027 1028 if (!slave || !bond->send_peer_notif || 1029 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 1030 return false; 1031 1032 bond->send_peer_notif--; 1033 return true; 1034 } 1035 1036 /** 1037 * change_active_interface - change the active slave into the specified one 1038 * @bond: our bonding struct 1039 * @new: the new slave to make the active one 1040 * 1041 * Set the new slave to the bond's settings and unset them on the old 1042 * curr_active_slave. 1043 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1044 * 1045 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1046 * because it is apparently the best available slave we have, even though its 1047 * updelay hasn't timed out yet. 1048 * 1049 * If new_active is not NULL, caller must hold bond->lock for read and 1050 * curr_slave_lock for write_bh. 1051 */ 1052 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1053 { 1054 struct slave *old_active = bond->curr_active_slave; 1055 1056 if (old_active == new_active) 1057 return; 1058 1059 if (new_active) { 1060 new_active->jiffies = jiffies; 1061 1062 if (new_active->link == BOND_LINK_BACK) { 1063 if (USES_PRIMARY(bond->params.mode)) { 1064 pr_info("%s: making interface %s the new active one %d ms earlier.\n", 1065 bond->dev->name, new_active->dev->name, 1066 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1067 } 1068 1069 new_active->delay = 0; 1070 new_active->link = BOND_LINK_UP; 1071 1072 if (bond->params.mode == BOND_MODE_8023AD) 1073 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1074 1075 if (bond_is_lb(bond)) 1076 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1077 } else { 1078 if (USES_PRIMARY(bond->params.mode)) { 1079 pr_info("%s: making interface %s the new active one.\n", 1080 bond->dev->name, new_active->dev->name); 1081 } 1082 } 1083 } 1084 1085 if (USES_PRIMARY(bond->params.mode)) 1086 bond_mc_swap(bond, new_active, old_active); 1087 1088 if (bond_is_lb(bond)) { 1089 bond_alb_handle_active_change(bond, new_active); 1090 if (old_active) 1091 bond_set_slave_inactive_flags(old_active); 1092 if (new_active) 1093 bond_set_slave_active_flags(new_active); 1094 } else { 1095 bond->curr_active_slave = new_active; 1096 } 1097 1098 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1099 if (old_active) 1100 bond_set_slave_inactive_flags(old_active); 1101 1102 if (new_active) { 1103 bool should_notify_peers = false; 1104 1105 bond_set_slave_active_flags(new_active); 1106 1107 if (bond->params.fail_over_mac) 1108 bond_do_fail_over_mac(bond, new_active, 1109 old_active); 1110 1111 if (netif_running(bond->dev)) { 1112 bond->send_peer_notif = 1113 bond->params.num_peer_notif; 1114 should_notify_peers = 1115 bond_should_notify_peers(bond); 1116 } 1117 1118 write_unlock_bh(&bond->curr_slave_lock); 1119 read_unlock(&bond->lock); 1120 1121 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, bond->dev); 1122 if (should_notify_peers) 1123 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, 1124 bond->dev); 1125 1126 read_lock(&bond->lock); 1127 write_lock_bh(&bond->curr_slave_lock); 1128 } 1129 } 1130 1131 /* resend IGMP joins since active slave has changed or 1132 * all were sent on curr_active_slave. 1133 * resend only if bond is brought up with the affected 1134 * bonding modes and the retransmission is enabled */ 1135 if (netif_running(bond->dev) && (bond->params.resend_igmp > 0) && 1136 ((USES_PRIMARY(bond->params.mode) && new_active) || 1137 bond->params.mode == BOND_MODE_ROUNDROBIN)) { 1138 bond->igmp_retrans = bond->params.resend_igmp; 1139 queue_delayed_work(bond->wq, &bond->mcast_work, 0); 1140 } 1141 } 1142 1143 /** 1144 * bond_select_active_slave - select a new active slave, if needed 1145 * @bond: our bonding struct 1146 * 1147 * This functions should be called when one of the following occurs: 1148 * - The old curr_active_slave has been released or lost its link. 1149 * - The primary_slave has got its link back. 1150 * - A slave has got its link back and there's no old curr_active_slave. 1151 * 1152 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1153 */ 1154 void bond_select_active_slave(struct bonding *bond) 1155 { 1156 struct slave *best_slave; 1157 int rv; 1158 1159 best_slave = bond_find_best_slave(bond); 1160 if (best_slave != bond->curr_active_slave) { 1161 bond_change_active_slave(bond, best_slave); 1162 rv = bond_set_carrier(bond); 1163 if (!rv) 1164 return; 1165 1166 if (netif_carrier_ok(bond->dev)) { 1167 pr_info("%s: first active interface up!\n", 1168 bond->dev->name); 1169 } else { 1170 pr_info("%s: now running without any active interface !\n", 1171 bond->dev->name); 1172 } 1173 } 1174 } 1175 1176 /*--------------------------- slave list handling ---------------------------*/ 1177 1178 /* 1179 * This function attaches the slave to the end of list. 1180 * 1181 * bond->lock held for writing by caller. 1182 */ 1183 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1184 { 1185 if (bond->first_slave == NULL) { /* attaching the first slave */ 1186 new_slave->next = new_slave; 1187 new_slave->prev = new_slave; 1188 bond->first_slave = new_slave; 1189 } else { 1190 new_slave->next = bond->first_slave; 1191 new_slave->prev = bond->first_slave->prev; 1192 new_slave->next->prev = new_slave; 1193 new_slave->prev->next = new_slave; 1194 } 1195 1196 bond->slave_cnt++; 1197 } 1198 1199 /* 1200 * This function detaches the slave from the list. 1201 * WARNING: no check is made to verify if the slave effectively 1202 * belongs to <bond>. 1203 * Nothing is freed on return, structures are just unchained. 1204 * If any slave pointer in bond was pointing to <slave>, 1205 * it should be changed by the calling function. 1206 * 1207 * bond->lock held for writing by caller. 1208 */ 1209 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1210 { 1211 if (slave->next) 1212 slave->next->prev = slave->prev; 1213 1214 if (slave->prev) 1215 slave->prev->next = slave->next; 1216 1217 if (bond->first_slave == slave) { /* slave is the first slave */ 1218 if (bond->slave_cnt > 1) { /* there are more slave */ 1219 bond->first_slave = slave->next; 1220 } else { 1221 bond->first_slave = NULL; /* slave was the last one */ 1222 } 1223 } 1224 1225 slave->next = NULL; 1226 slave->prev = NULL; 1227 bond->slave_cnt--; 1228 } 1229 1230 #ifdef CONFIG_NET_POLL_CONTROLLER 1231 static inline int slave_enable_netpoll(struct slave *slave) 1232 { 1233 struct netpoll *np; 1234 int err = 0; 1235 1236 np = kzalloc(sizeof(*np), GFP_ATOMIC); 1237 err = -ENOMEM; 1238 if (!np) 1239 goto out; 1240 1241 err = __netpoll_setup(np, slave->dev, GFP_ATOMIC); 1242 if (err) { 1243 kfree(np); 1244 goto out; 1245 } 1246 slave->np = np; 1247 out: 1248 return err; 1249 } 1250 static inline void slave_disable_netpoll(struct slave *slave) 1251 { 1252 struct netpoll *np = slave->np; 1253 1254 if (!np) 1255 return; 1256 1257 slave->np = NULL; 1258 __netpoll_free_async(np); 1259 } 1260 static inline bool slave_dev_support_netpoll(struct net_device *slave_dev) 1261 { 1262 if (slave_dev->priv_flags & IFF_DISABLE_NETPOLL) 1263 return false; 1264 if (!slave_dev->netdev_ops->ndo_poll_controller) 1265 return false; 1266 return true; 1267 } 1268 1269 static void bond_poll_controller(struct net_device *bond_dev) 1270 { 1271 } 1272 1273 static void __bond_netpoll_cleanup(struct bonding *bond) 1274 { 1275 struct slave *slave; 1276 int i; 1277 1278 bond_for_each_slave(bond, slave, i) 1279 if (IS_UP(slave->dev)) 1280 slave_disable_netpoll(slave); 1281 } 1282 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1283 { 1284 struct bonding *bond = netdev_priv(bond_dev); 1285 1286 read_lock(&bond->lock); 1287 __bond_netpoll_cleanup(bond); 1288 read_unlock(&bond->lock); 1289 } 1290 1291 static int bond_netpoll_setup(struct net_device *dev, struct netpoll_info *ni, gfp_t gfp) 1292 { 1293 struct bonding *bond = netdev_priv(dev); 1294 struct slave *slave; 1295 int i, err = 0; 1296 1297 read_lock(&bond->lock); 1298 bond_for_each_slave(bond, slave, i) { 1299 err = slave_enable_netpoll(slave); 1300 if (err) { 1301 __bond_netpoll_cleanup(bond); 1302 break; 1303 } 1304 } 1305 read_unlock(&bond->lock); 1306 return err; 1307 } 1308 1309 static struct netpoll_info *bond_netpoll_info(struct bonding *bond) 1310 { 1311 return bond->dev->npinfo; 1312 } 1313 1314 #else 1315 static inline int slave_enable_netpoll(struct slave *slave) 1316 { 1317 return 0; 1318 } 1319 static inline void slave_disable_netpoll(struct slave *slave) 1320 { 1321 } 1322 static void bond_netpoll_cleanup(struct net_device *bond_dev) 1323 { 1324 } 1325 #endif 1326 1327 /*---------------------------------- IOCTL ----------------------------------*/ 1328 1329 static void bond_set_dev_addr(struct net_device *bond_dev, 1330 struct net_device *slave_dev) 1331 { 1332 pr_debug("bond_dev=%p\n", bond_dev); 1333 pr_debug("slave_dev=%p\n", slave_dev); 1334 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1335 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1336 bond_dev->addr_assign_type = NET_ADDR_SET; 1337 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond_dev); 1338 } 1339 1340 static netdev_features_t bond_fix_features(struct net_device *dev, 1341 netdev_features_t features) 1342 { 1343 struct slave *slave; 1344 struct bonding *bond = netdev_priv(dev); 1345 netdev_features_t mask; 1346 int i; 1347 1348 read_lock(&bond->lock); 1349 1350 if (!bond->first_slave) { 1351 /* Disable adding VLANs to empty bond. But why? --mq */ 1352 features |= NETIF_F_VLAN_CHALLENGED; 1353 goto out; 1354 } 1355 1356 mask = features; 1357 features &= ~NETIF_F_ONE_FOR_ALL; 1358 features |= NETIF_F_ALL_FOR_ALL; 1359 1360 bond_for_each_slave(bond, slave, i) { 1361 features = netdev_increment_features(features, 1362 slave->dev->features, 1363 mask); 1364 } 1365 features = netdev_add_tso_features(features, mask); 1366 1367 out: 1368 read_unlock(&bond->lock); 1369 return features; 1370 } 1371 1372 #define BOND_VLAN_FEATURES (NETIF_F_ALL_CSUM | NETIF_F_SG | \ 1373 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \ 1374 NETIF_F_HIGHDMA | NETIF_F_LRO) 1375 1376 static void bond_compute_features(struct bonding *bond) 1377 { 1378 struct slave *slave; 1379 struct net_device *bond_dev = bond->dev; 1380 netdev_features_t vlan_features = BOND_VLAN_FEATURES; 1381 unsigned short max_hard_header_len = ETH_HLEN; 1382 unsigned int gso_max_size = GSO_MAX_SIZE; 1383 u16 gso_max_segs = GSO_MAX_SEGS; 1384 int i; 1385 unsigned int flags, dst_release_flag = IFF_XMIT_DST_RELEASE; 1386 1387 read_lock(&bond->lock); 1388 1389 if (!bond->first_slave) 1390 goto done; 1391 1392 bond_for_each_slave(bond, slave, i) { 1393 vlan_features = netdev_increment_features(vlan_features, 1394 slave->dev->vlan_features, BOND_VLAN_FEATURES); 1395 1396 dst_release_flag &= slave->dev->priv_flags; 1397 if (slave->dev->hard_header_len > max_hard_header_len) 1398 max_hard_header_len = slave->dev->hard_header_len; 1399 1400 gso_max_size = min(gso_max_size, slave->dev->gso_max_size); 1401 gso_max_segs = min(gso_max_segs, slave->dev->gso_max_segs); 1402 } 1403 1404 done: 1405 bond_dev->vlan_features = vlan_features; 1406 bond_dev->hard_header_len = max_hard_header_len; 1407 bond_dev->gso_max_segs = gso_max_segs; 1408 netif_set_gso_max_size(bond_dev, gso_max_size); 1409 1410 flags = bond_dev->priv_flags & ~IFF_XMIT_DST_RELEASE; 1411 bond_dev->priv_flags = flags | dst_release_flag; 1412 1413 read_unlock(&bond->lock); 1414 1415 netdev_change_features(bond_dev); 1416 } 1417 1418 static void bond_setup_by_slave(struct net_device *bond_dev, 1419 struct net_device *slave_dev) 1420 { 1421 struct bonding *bond = netdev_priv(bond_dev); 1422 1423 bond_dev->header_ops = slave_dev->header_ops; 1424 1425 bond_dev->type = slave_dev->type; 1426 bond_dev->hard_header_len = slave_dev->hard_header_len; 1427 bond_dev->addr_len = slave_dev->addr_len; 1428 1429 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1430 slave_dev->addr_len); 1431 bond->setup_by_slave = 1; 1432 } 1433 1434 /* On bonding slaves other than the currently active slave, suppress 1435 * duplicates except for alb non-mcast/bcast. 1436 */ 1437 static bool bond_should_deliver_exact_match(struct sk_buff *skb, 1438 struct slave *slave, 1439 struct bonding *bond) 1440 { 1441 if (bond_is_slave_inactive(slave)) { 1442 if (bond->params.mode == BOND_MODE_ALB && 1443 skb->pkt_type != PACKET_BROADCAST && 1444 skb->pkt_type != PACKET_MULTICAST) 1445 return false; 1446 return true; 1447 } 1448 return false; 1449 } 1450 1451 static rx_handler_result_t bond_handle_frame(struct sk_buff **pskb) 1452 { 1453 struct sk_buff *skb = *pskb; 1454 struct slave *slave; 1455 struct bonding *bond; 1456 int (*recv_probe)(const struct sk_buff *, struct bonding *, 1457 struct slave *); 1458 int ret = RX_HANDLER_ANOTHER; 1459 1460 skb = skb_share_check(skb, GFP_ATOMIC); 1461 if (unlikely(!skb)) 1462 return RX_HANDLER_CONSUMED; 1463 1464 *pskb = skb; 1465 1466 slave = bond_slave_get_rcu(skb->dev); 1467 bond = slave->bond; 1468 1469 if (bond->params.arp_interval) 1470 slave->dev->last_rx = jiffies; 1471 1472 recv_probe = ACCESS_ONCE(bond->recv_probe); 1473 if (recv_probe) { 1474 ret = recv_probe(skb, bond, slave); 1475 if (ret == RX_HANDLER_CONSUMED) { 1476 consume_skb(skb); 1477 return ret; 1478 } 1479 } 1480 1481 if (bond_should_deliver_exact_match(skb, slave, bond)) { 1482 return RX_HANDLER_EXACT; 1483 } 1484 1485 skb->dev = bond->dev; 1486 1487 if (bond->params.mode == BOND_MODE_ALB && 1488 bond->dev->priv_flags & IFF_BRIDGE_PORT && 1489 skb->pkt_type == PACKET_HOST) { 1490 1491 if (unlikely(skb_cow_head(skb, 1492 skb->data - skb_mac_header(skb)))) { 1493 kfree_skb(skb); 1494 return RX_HANDLER_CONSUMED; 1495 } 1496 memcpy(eth_hdr(skb)->h_dest, bond->dev->dev_addr, ETH_ALEN); 1497 } 1498 1499 return ret; 1500 } 1501 1502 static int bond_master_upper_dev_link(struct net_device *bond_dev, 1503 struct net_device *slave_dev) 1504 { 1505 int err; 1506 1507 err = netdev_master_upper_dev_link(slave_dev, bond_dev); 1508 if (err) 1509 return err; 1510 slave_dev->flags |= IFF_SLAVE; 1511 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE); 1512 return 0; 1513 } 1514 1515 static void bond_upper_dev_unlink(struct net_device *bond_dev, 1516 struct net_device *slave_dev) 1517 { 1518 netdev_upper_dev_unlink(slave_dev, bond_dev); 1519 slave_dev->flags &= ~IFF_SLAVE; 1520 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE); 1521 } 1522 1523 /* enslave device <slave> to bond device <master> */ 1524 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1525 { 1526 struct bonding *bond = netdev_priv(bond_dev); 1527 const struct net_device_ops *slave_ops = slave_dev->netdev_ops; 1528 struct slave *new_slave = NULL; 1529 struct netdev_hw_addr *ha; 1530 struct sockaddr addr; 1531 int link_reporting; 1532 int res = 0; 1533 1534 if (!bond->params.use_carrier && 1535 slave_dev->ethtool_ops->get_link == NULL && 1536 slave_ops->ndo_do_ioctl == NULL) { 1537 pr_warning("%s: Warning: no link monitoring support for %s\n", 1538 bond_dev->name, slave_dev->name); 1539 } 1540 1541 /* already enslaved */ 1542 if (slave_dev->flags & IFF_SLAVE) { 1543 pr_debug("Error, Device was already enslaved\n"); 1544 return -EBUSY; 1545 } 1546 1547 /* vlan challenged mutual exclusion */ 1548 /* no need to lock since we're protected by rtnl_lock */ 1549 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1550 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1551 if (vlan_uses_dev(bond_dev)) { 1552 pr_err("%s: Error: cannot enslave VLAN challenged slave %s on VLAN enabled bond %s\n", 1553 bond_dev->name, slave_dev->name, bond_dev->name); 1554 return -EPERM; 1555 } else { 1556 pr_warning("%s: Warning: enslaved VLAN challenged slave %s. Adding VLANs will be blocked as long as %s is part of bond %s\n", 1557 bond_dev->name, slave_dev->name, 1558 slave_dev->name, bond_dev->name); 1559 } 1560 } else { 1561 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1562 } 1563 1564 /* 1565 * Old ifenslave binaries are no longer supported. These can 1566 * be identified with moderate accuracy by the state of the slave: 1567 * the current ifenslave will set the interface down prior to 1568 * enslaving it; the old ifenslave will not. 1569 */ 1570 if ((slave_dev->flags & IFF_UP)) { 1571 pr_err("%s is up. This may be due to an out of date ifenslave.\n", 1572 slave_dev->name); 1573 res = -EPERM; 1574 goto err_undo_flags; 1575 } 1576 1577 /* set bonding device ether type by slave - bonding netdevices are 1578 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1579 * there is a need to override some of the type dependent attribs/funcs. 1580 * 1581 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1582 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1583 */ 1584 if (bond->slave_cnt == 0) { 1585 if (bond_dev->type != slave_dev->type) { 1586 pr_debug("%s: change device type from %d to %d\n", 1587 bond_dev->name, 1588 bond_dev->type, slave_dev->type); 1589 1590 res = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE, 1591 bond_dev); 1592 res = notifier_to_errno(res); 1593 if (res) { 1594 pr_err("%s: refused to change device type\n", 1595 bond_dev->name); 1596 res = -EBUSY; 1597 goto err_undo_flags; 1598 } 1599 1600 /* Flush unicast and multicast addresses */ 1601 dev_uc_flush(bond_dev); 1602 dev_mc_flush(bond_dev); 1603 1604 if (slave_dev->type != ARPHRD_ETHER) 1605 bond_setup_by_slave(bond_dev, slave_dev); 1606 else { 1607 ether_setup(bond_dev); 1608 bond_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 1609 } 1610 1611 call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, 1612 bond_dev); 1613 } 1614 } else if (bond_dev->type != slave_dev->type) { 1615 pr_err("%s ether type (%d) is different from other slaves (%d), can not enslave it.\n", 1616 slave_dev->name, 1617 slave_dev->type, bond_dev->type); 1618 res = -EINVAL; 1619 goto err_undo_flags; 1620 } 1621 1622 if (slave_ops->ndo_set_mac_address == NULL) { 1623 if (bond->slave_cnt == 0) { 1624 pr_warning("%s: Warning: The first slave device specified does not support setting the MAC address. Setting fail_over_mac to active.", 1625 bond_dev->name); 1626 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1627 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1628 pr_err("%s: Error: The slave device specified does not support setting the MAC address, but fail_over_mac is not set to active.\n", 1629 bond_dev->name); 1630 res = -EOPNOTSUPP; 1631 goto err_undo_flags; 1632 } 1633 } 1634 1635 call_netdevice_notifiers(NETDEV_JOIN, slave_dev); 1636 1637 /* If this is the first slave, then we need to set the master's hardware 1638 * address to be the same as the slave's. */ 1639 if (bond->slave_cnt == 0 && bond->dev_addr_from_first) 1640 bond_set_dev_addr(bond->dev, slave_dev); 1641 1642 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1643 if (!new_slave) { 1644 res = -ENOMEM; 1645 goto err_undo_flags; 1646 } 1647 1648 /* 1649 * Set the new_slave's queue_id to be zero. Queue ID mapping 1650 * is set via sysfs or module option if desired. 1651 */ 1652 new_slave->queue_id = 0; 1653 1654 /* Save slave's original mtu and then set it to match the bond */ 1655 new_slave->original_mtu = slave_dev->mtu; 1656 res = dev_set_mtu(slave_dev, bond->dev->mtu); 1657 if (res) { 1658 pr_debug("Error %d calling dev_set_mtu\n", res); 1659 goto err_free; 1660 } 1661 1662 /* 1663 * Save slave's original ("permanent") mac address for modes 1664 * that need it, and for restoring it upon release, and then 1665 * set it to the master's address 1666 */ 1667 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1668 1669 if (!bond->params.fail_over_mac) { 1670 /* 1671 * Set slave to master's mac address. The application already 1672 * set the master's mac address to that of the first slave 1673 */ 1674 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1675 addr.sa_family = slave_dev->type; 1676 res = dev_set_mac_address(slave_dev, &addr); 1677 if (res) { 1678 pr_debug("Error %d calling set_mac_address\n", res); 1679 goto err_restore_mtu; 1680 } 1681 } 1682 1683 res = bond_master_upper_dev_link(bond_dev, slave_dev); 1684 if (res) { 1685 pr_debug("Error %d calling bond_master_upper_dev_link\n", res); 1686 goto err_restore_mac; 1687 } 1688 1689 /* open the slave since the application closed it */ 1690 res = dev_open(slave_dev); 1691 if (res) { 1692 pr_debug("Opening slave %s failed\n", slave_dev->name); 1693 goto err_unset_master; 1694 } 1695 1696 new_slave->bond = bond; 1697 new_slave->dev = slave_dev; 1698 slave_dev->priv_flags |= IFF_BONDING; 1699 1700 if (bond_is_lb(bond)) { 1701 /* bond_alb_init_slave() must be called before all other stages since 1702 * it might fail and we do not want to have to undo everything 1703 */ 1704 res = bond_alb_init_slave(bond, new_slave); 1705 if (res) 1706 goto err_close; 1707 } 1708 1709 /* If the mode USES_PRIMARY, then the new slave gets the 1710 * master's promisc (and mc) settings only if it becomes the 1711 * curr_active_slave, and that is taken care of later when calling 1712 * bond_change_active() 1713 */ 1714 if (!USES_PRIMARY(bond->params.mode)) { 1715 /* set promiscuity level to new slave */ 1716 if (bond_dev->flags & IFF_PROMISC) { 1717 res = dev_set_promiscuity(slave_dev, 1); 1718 if (res) 1719 goto err_close; 1720 } 1721 1722 /* set allmulti level to new slave */ 1723 if (bond_dev->flags & IFF_ALLMULTI) { 1724 res = dev_set_allmulti(slave_dev, 1); 1725 if (res) 1726 goto err_close; 1727 } 1728 1729 netif_addr_lock_bh(bond_dev); 1730 /* upload master's mc_list to new slave */ 1731 netdev_for_each_mc_addr(ha, bond_dev) 1732 dev_mc_add(slave_dev, ha->addr); 1733 netif_addr_unlock_bh(bond_dev); 1734 } 1735 1736 if (bond->params.mode == BOND_MODE_8023AD) { 1737 /* add lacpdu mc addr to mc list */ 1738 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1739 1740 dev_mc_add(slave_dev, lacpdu_multicast); 1741 } 1742 1743 bond_add_vlans_on_slave(bond, slave_dev); 1744 1745 write_lock_bh(&bond->lock); 1746 1747 bond_attach_slave(bond, new_slave); 1748 1749 new_slave->delay = 0; 1750 new_slave->link_failure_count = 0; 1751 1752 write_unlock_bh(&bond->lock); 1753 1754 bond_compute_features(bond); 1755 1756 bond_update_speed_duplex(new_slave); 1757 1758 read_lock(&bond->lock); 1759 1760 new_slave->last_arp_rx = jiffies - 1761 (msecs_to_jiffies(bond->params.arp_interval) + 1); 1762 1763 if (bond->params.miimon && !bond->params.use_carrier) { 1764 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1765 1766 if ((link_reporting == -1) && !bond->params.arp_interval) { 1767 /* 1768 * miimon is set but a bonded network driver 1769 * does not support ETHTOOL/MII and 1770 * arp_interval is not set. Note: if 1771 * use_carrier is enabled, we will never go 1772 * here (because netif_carrier is always 1773 * supported); thus, we don't need to change 1774 * the messages for netif_carrier. 1775 */ 1776 pr_warning("%s: Warning: MII and ETHTOOL support not available for interface %s, and arp_interval/arp_ip_target module parameters not specified, thus bonding will not detect link failures! see bonding.txt for details.\n", 1777 bond_dev->name, slave_dev->name); 1778 } else if (link_reporting == -1) { 1779 /* unable get link status using mii/ethtool */ 1780 pr_warning("%s: Warning: can't get link status from interface %s; the network driver associated with this interface does not support MII or ETHTOOL link status reporting, thus miimon has no effect on this interface.\n", 1781 bond_dev->name, slave_dev->name); 1782 } 1783 } 1784 1785 /* check for initial state */ 1786 if (bond->params.miimon) { 1787 if (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS) { 1788 if (bond->params.updelay) { 1789 new_slave->link = BOND_LINK_BACK; 1790 new_slave->delay = bond->params.updelay; 1791 } else { 1792 new_slave->link = BOND_LINK_UP; 1793 } 1794 } else { 1795 new_slave->link = BOND_LINK_DOWN; 1796 } 1797 } else if (bond->params.arp_interval) { 1798 new_slave->link = (netif_carrier_ok(slave_dev) ? 1799 BOND_LINK_UP : BOND_LINK_DOWN); 1800 } else { 1801 new_slave->link = BOND_LINK_UP; 1802 } 1803 1804 if (new_slave->link != BOND_LINK_DOWN) 1805 new_slave->jiffies = jiffies; 1806 pr_debug("Initial state of slave_dev is BOND_LINK_%s\n", 1807 new_slave->link == BOND_LINK_DOWN ? "DOWN" : 1808 (new_slave->link == BOND_LINK_UP ? "UP" : "BACK")); 1809 1810 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1811 /* if there is a primary slave, remember it */ 1812 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1813 bond->primary_slave = new_slave; 1814 bond->force_primary = true; 1815 } 1816 } 1817 1818 write_lock_bh(&bond->curr_slave_lock); 1819 1820 switch (bond->params.mode) { 1821 case BOND_MODE_ACTIVEBACKUP: 1822 bond_set_slave_inactive_flags(new_slave); 1823 bond_select_active_slave(bond); 1824 break; 1825 case BOND_MODE_8023AD: 1826 /* in 802.3ad mode, the internal mechanism 1827 * will activate the slaves in the selected 1828 * aggregator 1829 */ 1830 bond_set_slave_inactive_flags(new_slave); 1831 /* if this is the first slave */ 1832 if (bond->slave_cnt == 1) { 1833 SLAVE_AD_INFO(new_slave).id = 1; 1834 /* Initialize AD with the number of times that the AD timer is called in 1 second 1835 * can be called only after the mac address of the bond is set 1836 */ 1837 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL); 1838 } else { 1839 SLAVE_AD_INFO(new_slave).id = 1840 SLAVE_AD_INFO(new_slave->prev).id + 1; 1841 } 1842 1843 bond_3ad_bind_slave(new_slave); 1844 break; 1845 case BOND_MODE_TLB: 1846 case BOND_MODE_ALB: 1847 bond_set_active_slave(new_slave); 1848 bond_set_slave_inactive_flags(new_slave); 1849 bond_select_active_slave(bond); 1850 break; 1851 default: 1852 pr_debug("This slave is always active in trunk mode\n"); 1853 1854 /* always active in trunk mode */ 1855 bond_set_active_slave(new_slave); 1856 1857 /* In trunking mode there is little meaning to curr_active_slave 1858 * anyway (it holds no special properties of the bond device), 1859 * so we can change it without calling change_active_interface() 1860 */ 1861 if (!bond->curr_active_slave && new_slave->link == BOND_LINK_UP) 1862 bond->curr_active_slave = new_slave; 1863 1864 break; 1865 } /* switch(bond_mode) */ 1866 1867 write_unlock_bh(&bond->curr_slave_lock); 1868 1869 bond_set_carrier(bond); 1870 1871 #ifdef CONFIG_NET_POLL_CONTROLLER 1872 slave_dev->npinfo = bond_netpoll_info(bond); 1873 if (slave_dev->npinfo) { 1874 if (slave_enable_netpoll(new_slave)) { 1875 read_unlock(&bond->lock); 1876 pr_info("Error, %s: master_dev is using netpoll, " 1877 "but new slave device does not support netpoll.\n", 1878 bond_dev->name); 1879 res = -EBUSY; 1880 goto err_detach; 1881 } 1882 } 1883 #endif 1884 1885 read_unlock(&bond->lock); 1886 1887 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1888 if (res) 1889 goto err_detach; 1890 1891 res = netdev_rx_handler_register(slave_dev, bond_handle_frame, 1892 new_slave); 1893 if (res) { 1894 pr_debug("Error %d calling netdev_rx_handler_register\n", res); 1895 goto err_dest_symlinks; 1896 } 1897 1898 pr_info("%s: enslaving %s as a%s interface with a%s link.\n", 1899 bond_dev->name, slave_dev->name, 1900 bond_is_active_slave(new_slave) ? "n active" : " backup", 1901 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1902 1903 /* enslave is successful */ 1904 return 0; 1905 1906 /* Undo stages on error */ 1907 err_dest_symlinks: 1908 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1909 1910 err_detach: 1911 if (!USES_PRIMARY(bond->params.mode)) { 1912 netif_addr_lock_bh(bond_dev); 1913 bond_mc_list_flush(bond_dev, slave_dev); 1914 netif_addr_unlock_bh(bond_dev); 1915 } 1916 bond_del_vlans_from_slave(bond, slave_dev); 1917 write_lock_bh(&bond->lock); 1918 bond_detach_slave(bond, new_slave); 1919 if (bond->primary_slave == new_slave) 1920 bond->primary_slave = NULL; 1921 if (bond->curr_active_slave == new_slave) { 1922 bond_change_active_slave(bond, NULL); 1923 write_unlock_bh(&bond->lock); 1924 read_lock(&bond->lock); 1925 write_lock_bh(&bond->curr_slave_lock); 1926 bond_select_active_slave(bond); 1927 write_unlock_bh(&bond->curr_slave_lock); 1928 read_unlock(&bond->lock); 1929 } else { 1930 write_unlock_bh(&bond->lock); 1931 } 1932 slave_disable_netpoll(new_slave); 1933 1934 err_close: 1935 slave_dev->priv_flags &= ~IFF_BONDING; 1936 dev_close(slave_dev); 1937 1938 err_unset_master: 1939 bond_upper_dev_unlink(bond_dev, slave_dev); 1940 1941 err_restore_mac: 1942 if (!bond->params.fail_over_mac) { 1943 /* XXX TODO - fom follow mode needs to change master's 1944 * MAC if this slave's MAC is in use by the bond, or at 1945 * least print a warning. 1946 */ 1947 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1948 addr.sa_family = slave_dev->type; 1949 dev_set_mac_address(slave_dev, &addr); 1950 } 1951 1952 err_restore_mtu: 1953 dev_set_mtu(slave_dev, new_slave->original_mtu); 1954 1955 err_free: 1956 kfree(new_slave); 1957 1958 err_undo_flags: 1959 bond_compute_features(bond); 1960 1961 return res; 1962 } 1963 1964 /* 1965 * Try to release the slave device <slave> from the bond device <master> 1966 * It is legal to access curr_active_slave without a lock because all the function 1967 * is write-locked. If "all" is true it means that the function is being called 1968 * while destroying a bond interface and all slaves are being released. 1969 * 1970 * The rules for slave state should be: 1971 * for Active/Backup: 1972 * Active stays on all backups go down 1973 * for Bonded connections: 1974 * The first up interface should be left on and all others downed. 1975 */ 1976 static int __bond_release_one(struct net_device *bond_dev, 1977 struct net_device *slave_dev, 1978 bool all) 1979 { 1980 struct bonding *bond = netdev_priv(bond_dev); 1981 struct slave *slave, *oldcurrent; 1982 struct sockaddr addr; 1983 netdev_features_t old_features = bond_dev->features; 1984 1985 /* slave is not a slave or master is not master of this slave */ 1986 if (!(slave_dev->flags & IFF_SLAVE) || 1987 !netdev_has_upper_dev(slave_dev, bond_dev)) { 1988 pr_err("%s: Error: cannot release %s.\n", 1989 bond_dev->name, slave_dev->name); 1990 return -EINVAL; 1991 } 1992 1993 block_netpoll_tx(); 1994 write_lock_bh(&bond->lock); 1995 1996 slave = bond_get_slave_by_dev(bond, slave_dev); 1997 if (!slave) { 1998 /* not a slave of this bond */ 1999 pr_info("%s: %s not enslaved\n", 2000 bond_dev->name, slave_dev->name); 2001 write_unlock_bh(&bond->lock); 2002 unblock_netpoll_tx(); 2003 return -EINVAL; 2004 } 2005 2006 write_unlock_bh(&bond->lock); 2007 /* unregister rx_handler early so bond_handle_frame wouldn't be called 2008 * for this slave anymore. 2009 */ 2010 netdev_rx_handler_unregister(slave_dev); 2011 write_lock_bh(&bond->lock); 2012 2013 if (!all && !bond->params.fail_over_mac) { 2014 if (ether_addr_equal(bond_dev->dev_addr, slave->perm_hwaddr) && 2015 bond->slave_cnt > 1) 2016 pr_warning("%s: Warning: the permanent HWaddr of %s - %pM - is still in use by %s. Set the HWaddr of %s to a different address to avoid conflicts.\n", 2017 bond_dev->name, slave_dev->name, 2018 slave->perm_hwaddr, 2019 bond_dev->name, slave_dev->name); 2020 } 2021 2022 /* Inform AD package of unbinding of slave. */ 2023 if (bond->params.mode == BOND_MODE_8023AD) { 2024 /* must be called before the slave is 2025 * detached from the list 2026 */ 2027 bond_3ad_unbind_slave(slave); 2028 } 2029 2030 pr_info("%s: releasing %s interface %s\n", 2031 bond_dev->name, 2032 bond_is_active_slave(slave) ? "active" : "backup", 2033 slave_dev->name); 2034 2035 oldcurrent = bond->curr_active_slave; 2036 2037 bond->current_arp_slave = NULL; 2038 2039 /* release the slave from its bond */ 2040 bond_detach_slave(bond, slave); 2041 2042 if (bond->primary_slave == slave) 2043 bond->primary_slave = NULL; 2044 2045 if (oldcurrent == slave) 2046 bond_change_active_slave(bond, NULL); 2047 2048 if (bond_is_lb(bond)) { 2049 /* Must be called only after the slave has been 2050 * detached from the list and the curr_active_slave 2051 * has been cleared (if our_slave == old_current), 2052 * but before a new active slave is selected. 2053 */ 2054 write_unlock_bh(&bond->lock); 2055 bond_alb_deinit_slave(bond, slave); 2056 write_lock_bh(&bond->lock); 2057 } 2058 2059 if (all) { 2060 bond->curr_active_slave = NULL; 2061 } else if (oldcurrent == slave) { 2062 /* 2063 * Note that we hold RTNL over this sequence, so there 2064 * is no concern that another slave add/remove event 2065 * will interfere. 2066 */ 2067 write_unlock_bh(&bond->lock); 2068 read_lock(&bond->lock); 2069 write_lock_bh(&bond->curr_slave_lock); 2070 2071 bond_select_active_slave(bond); 2072 2073 write_unlock_bh(&bond->curr_slave_lock); 2074 read_unlock(&bond->lock); 2075 write_lock_bh(&bond->lock); 2076 } 2077 2078 if (bond->slave_cnt == 0) { 2079 bond_set_carrier(bond); 2080 eth_hw_addr_random(bond_dev); 2081 bond->dev_addr_from_first = true; 2082 2083 if (bond_vlan_used(bond)) { 2084 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n", 2085 bond_dev->name, bond_dev->name); 2086 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n", 2087 bond_dev->name); 2088 } 2089 } 2090 2091 write_unlock_bh(&bond->lock); 2092 unblock_netpoll_tx(); 2093 2094 if (bond->slave_cnt == 0) { 2095 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond->dev); 2096 call_netdevice_notifiers(NETDEV_RELEASE, bond->dev); 2097 } 2098 2099 bond_compute_features(bond); 2100 if (!(bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 2101 (old_features & NETIF_F_VLAN_CHALLENGED)) 2102 pr_info("%s: last VLAN challenged slave %s left bond %s. VLAN blocking is removed\n", 2103 bond_dev->name, slave_dev->name, bond_dev->name); 2104 2105 /* must do this from outside any spinlocks */ 2106 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2107 2108 bond_del_vlans_from_slave(bond, slave_dev); 2109 2110 /* If the mode USES_PRIMARY, then we should only remove its 2111 * promisc and mc settings if it was the curr_active_slave, but that was 2112 * already taken care of above when we detached the slave 2113 */ 2114 if (!USES_PRIMARY(bond->params.mode)) { 2115 /* unset promiscuity level from slave */ 2116 if (bond_dev->flags & IFF_PROMISC) 2117 dev_set_promiscuity(slave_dev, -1); 2118 2119 /* unset allmulti level from slave */ 2120 if (bond_dev->flags & IFF_ALLMULTI) 2121 dev_set_allmulti(slave_dev, -1); 2122 2123 /* flush master's mc_list from slave */ 2124 netif_addr_lock_bh(bond_dev); 2125 bond_mc_list_flush(bond_dev, slave_dev); 2126 netif_addr_unlock_bh(bond_dev); 2127 } 2128 2129 bond_upper_dev_unlink(bond_dev, slave_dev); 2130 2131 slave_disable_netpoll(slave); 2132 2133 /* close slave before restoring its mac address */ 2134 dev_close(slave_dev); 2135 2136 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 2137 /* restore original ("permanent") mac address */ 2138 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2139 addr.sa_family = slave_dev->type; 2140 dev_set_mac_address(slave_dev, &addr); 2141 } 2142 2143 dev_set_mtu(slave_dev, slave->original_mtu); 2144 2145 slave_dev->priv_flags &= ~IFF_BONDING; 2146 2147 kfree(slave); 2148 2149 return 0; /* deletion OK */ 2150 } 2151 2152 /* A wrapper used because of ndo_del_link */ 2153 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 2154 { 2155 return __bond_release_one(bond_dev, slave_dev, false); 2156 } 2157 2158 /* 2159 * First release a slave and then destroy the bond if no more slaves are left. 2160 * Must be under rtnl_lock when this function is called. 2161 */ 2162 static int bond_release_and_destroy(struct net_device *bond_dev, 2163 struct net_device *slave_dev) 2164 { 2165 struct bonding *bond = netdev_priv(bond_dev); 2166 int ret; 2167 2168 ret = bond_release(bond_dev, slave_dev); 2169 if ((ret == 0) && (bond->slave_cnt == 0)) { 2170 bond_dev->priv_flags |= IFF_DISABLE_NETPOLL; 2171 pr_info("%s: destroying bond %s.\n", 2172 bond_dev->name, bond_dev->name); 2173 unregister_netdevice(bond_dev); 2174 } 2175 return ret; 2176 } 2177 2178 /* 2179 * This function changes the active slave to slave <slave_dev>. 2180 * It returns -EINVAL in the following cases. 2181 * - <slave_dev> is not found in the list. 2182 * - There is not active slave now. 2183 * - <slave_dev> is already active. 2184 * - The link state of <slave_dev> is not BOND_LINK_UP. 2185 * - <slave_dev> is not running. 2186 * In these cases, this function does nothing. 2187 * In the other cases, current_slave pointer is changed and 0 is returned. 2188 */ 2189 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2190 { 2191 struct bonding *bond = netdev_priv(bond_dev); 2192 struct slave *old_active = NULL; 2193 struct slave *new_active = NULL; 2194 int res = 0; 2195 2196 if (!USES_PRIMARY(bond->params.mode)) 2197 return -EINVAL; 2198 2199 /* Verify that bond_dev is indeed the master of slave_dev */ 2200 if (!(slave_dev->flags & IFF_SLAVE) || 2201 !netdev_has_upper_dev(slave_dev, bond_dev)) 2202 return -EINVAL; 2203 2204 read_lock(&bond->lock); 2205 2206 read_lock(&bond->curr_slave_lock); 2207 old_active = bond->curr_active_slave; 2208 read_unlock(&bond->curr_slave_lock); 2209 2210 new_active = bond_get_slave_by_dev(bond, slave_dev); 2211 2212 /* 2213 * Changing to the current active: do nothing; return success. 2214 */ 2215 if (new_active && (new_active == old_active)) { 2216 read_unlock(&bond->lock); 2217 return 0; 2218 } 2219 2220 if ((new_active) && 2221 (old_active) && 2222 (new_active->link == BOND_LINK_UP) && 2223 IS_UP(new_active->dev)) { 2224 block_netpoll_tx(); 2225 write_lock_bh(&bond->curr_slave_lock); 2226 bond_change_active_slave(bond, new_active); 2227 write_unlock_bh(&bond->curr_slave_lock); 2228 unblock_netpoll_tx(); 2229 } else 2230 res = -EINVAL; 2231 2232 read_unlock(&bond->lock); 2233 2234 return res; 2235 } 2236 2237 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2238 { 2239 struct bonding *bond = netdev_priv(bond_dev); 2240 2241 info->bond_mode = bond->params.mode; 2242 info->miimon = bond->params.miimon; 2243 2244 read_lock(&bond->lock); 2245 info->num_slaves = bond->slave_cnt; 2246 read_unlock(&bond->lock); 2247 2248 return 0; 2249 } 2250 2251 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2252 { 2253 struct bonding *bond = netdev_priv(bond_dev); 2254 struct slave *slave; 2255 int i, res = -ENODEV; 2256 2257 read_lock(&bond->lock); 2258 2259 bond_for_each_slave(bond, slave, i) { 2260 if (i == (int)info->slave_id) { 2261 res = 0; 2262 strcpy(info->slave_name, slave->dev->name); 2263 info->link = slave->link; 2264 info->state = bond_slave_state(slave); 2265 info->link_failure_count = slave->link_failure_count; 2266 break; 2267 } 2268 } 2269 2270 read_unlock(&bond->lock); 2271 2272 return res; 2273 } 2274 2275 /*-------------------------------- Monitoring -------------------------------*/ 2276 2277 2278 static int bond_miimon_inspect(struct bonding *bond) 2279 { 2280 struct slave *slave; 2281 int i, link_state, commit = 0; 2282 bool ignore_updelay; 2283 2284 ignore_updelay = !bond->curr_active_slave ? true : false; 2285 2286 bond_for_each_slave(bond, slave, i) { 2287 slave->new_link = BOND_LINK_NOCHANGE; 2288 2289 link_state = bond_check_dev_link(bond, slave->dev, 0); 2290 2291 switch (slave->link) { 2292 case BOND_LINK_UP: 2293 if (link_state) 2294 continue; 2295 2296 slave->link = BOND_LINK_FAIL; 2297 slave->delay = bond->params.downdelay; 2298 if (slave->delay) { 2299 pr_info("%s: link status down for %sinterface %s, disabling it in %d ms.\n", 2300 bond->dev->name, 2301 (bond->params.mode == 2302 BOND_MODE_ACTIVEBACKUP) ? 2303 (bond_is_active_slave(slave) ? 2304 "active " : "backup ") : "", 2305 slave->dev->name, 2306 bond->params.downdelay * bond->params.miimon); 2307 } 2308 /*FALLTHRU*/ 2309 case BOND_LINK_FAIL: 2310 if (link_state) { 2311 /* 2312 * recovered before downdelay expired 2313 */ 2314 slave->link = BOND_LINK_UP; 2315 slave->jiffies = jiffies; 2316 pr_info("%s: link status up again after %d ms for interface %s.\n", 2317 bond->dev->name, 2318 (bond->params.downdelay - slave->delay) * 2319 bond->params.miimon, 2320 slave->dev->name); 2321 continue; 2322 } 2323 2324 if (slave->delay <= 0) { 2325 slave->new_link = BOND_LINK_DOWN; 2326 commit++; 2327 continue; 2328 } 2329 2330 slave->delay--; 2331 break; 2332 2333 case BOND_LINK_DOWN: 2334 if (!link_state) 2335 continue; 2336 2337 slave->link = BOND_LINK_BACK; 2338 slave->delay = bond->params.updelay; 2339 2340 if (slave->delay) { 2341 pr_info("%s: link status up for interface %s, enabling it in %d ms.\n", 2342 bond->dev->name, slave->dev->name, 2343 ignore_updelay ? 0 : 2344 bond->params.updelay * 2345 bond->params.miimon); 2346 } 2347 /*FALLTHRU*/ 2348 case BOND_LINK_BACK: 2349 if (!link_state) { 2350 slave->link = BOND_LINK_DOWN; 2351 pr_info("%s: link status down again after %d ms for interface %s.\n", 2352 bond->dev->name, 2353 (bond->params.updelay - slave->delay) * 2354 bond->params.miimon, 2355 slave->dev->name); 2356 2357 continue; 2358 } 2359 2360 if (ignore_updelay) 2361 slave->delay = 0; 2362 2363 if (slave->delay <= 0) { 2364 slave->new_link = BOND_LINK_UP; 2365 commit++; 2366 ignore_updelay = false; 2367 continue; 2368 } 2369 2370 slave->delay--; 2371 break; 2372 } 2373 } 2374 2375 return commit; 2376 } 2377 2378 static void bond_miimon_commit(struct bonding *bond) 2379 { 2380 struct slave *slave; 2381 int i; 2382 2383 bond_for_each_slave(bond, slave, i) { 2384 switch (slave->new_link) { 2385 case BOND_LINK_NOCHANGE: 2386 continue; 2387 2388 case BOND_LINK_UP: 2389 slave->link = BOND_LINK_UP; 2390 slave->jiffies = jiffies; 2391 2392 if (bond->params.mode == BOND_MODE_8023AD) { 2393 /* prevent it from being the active one */ 2394 bond_set_backup_slave(slave); 2395 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2396 /* make it immediately active */ 2397 bond_set_active_slave(slave); 2398 } else if (slave != bond->primary_slave) { 2399 /* prevent it from being the active one */ 2400 bond_set_backup_slave(slave); 2401 } 2402 2403 pr_info("%s: link status definitely up for interface %s, %u Mbps %s duplex.\n", 2404 bond->dev->name, slave->dev->name, 2405 slave->speed, slave->duplex ? "full" : "half"); 2406 2407 /* notify ad that the link status has changed */ 2408 if (bond->params.mode == BOND_MODE_8023AD) 2409 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2410 2411 if (bond_is_lb(bond)) 2412 bond_alb_handle_link_change(bond, slave, 2413 BOND_LINK_UP); 2414 2415 if (!bond->curr_active_slave || 2416 (slave == bond->primary_slave)) 2417 goto do_failover; 2418 2419 continue; 2420 2421 case BOND_LINK_DOWN: 2422 if (slave->link_failure_count < UINT_MAX) 2423 slave->link_failure_count++; 2424 2425 slave->link = BOND_LINK_DOWN; 2426 2427 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2428 bond->params.mode == BOND_MODE_8023AD) 2429 bond_set_slave_inactive_flags(slave); 2430 2431 pr_info("%s: link status definitely down for interface %s, disabling it\n", 2432 bond->dev->name, slave->dev->name); 2433 2434 if (bond->params.mode == BOND_MODE_8023AD) 2435 bond_3ad_handle_link_change(slave, 2436 BOND_LINK_DOWN); 2437 2438 if (bond_is_lb(bond)) 2439 bond_alb_handle_link_change(bond, slave, 2440 BOND_LINK_DOWN); 2441 2442 if (slave == bond->curr_active_slave) 2443 goto do_failover; 2444 2445 continue; 2446 2447 default: 2448 pr_err("%s: invalid new link %d on slave %s\n", 2449 bond->dev->name, slave->new_link, 2450 slave->dev->name); 2451 slave->new_link = BOND_LINK_NOCHANGE; 2452 2453 continue; 2454 } 2455 2456 do_failover: 2457 ASSERT_RTNL(); 2458 block_netpoll_tx(); 2459 write_lock_bh(&bond->curr_slave_lock); 2460 bond_select_active_slave(bond); 2461 write_unlock_bh(&bond->curr_slave_lock); 2462 unblock_netpoll_tx(); 2463 } 2464 2465 bond_set_carrier(bond); 2466 } 2467 2468 /* 2469 * bond_mii_monitor 2470 * 2471 * Really a wrapper that splits the mii monitor into two phases: an 2472 * inspection, then (if inspection indicates something needs to be done) 2473 * an acquisition of appropriate locks followed by a commit phase to 2474 * implement whatever link state changes are indicated. 2475 */ 2476 void bond_mii_monitor(struct work_struct *work) 2477 { 2478 struct bonding *bond = container_of(work, struct bonding, 2479 mii_work.work); 2480 bool should_notify_peers = false; 2481 unsigned long delay; 2482 2483 read_lock(&bond->lock); 2484 2485 delay = msecs_to_jiffies(bond->params.miimon); 2486 2487 if (bond->slave_cnt == 0) 2488 goto re_arm; 2489 2490 should_notify_peers = bond_should_notify_peers(bond); 2491 2492 if (bond_miimon_inspect(bond)) { 2493 read_unlock(&bond->lock); 2494 2495 /* Race avoidance with bond_close cancel of workqueue */ 2496 if (!rtnl_trylock()) { 2497 read_lock(&bond->lock); 2498 delay = 1; 2499 should_notify_peers = false; 2500 goto re_arm; 2501 } 2502 2503 read_lock(&bond->lock); 2504 2505 bond_miimon_commit(bond); 2506 2507 read_unlock(&bond->lock); 2508 rtnl_unlock(); /* might sleep, hold no other locks */ 2509 read_lock(&bond->lock); 2510 } 2511 2512 re_arm: 2513 if (bond->params.miimon) 2514 queue_delayed_work(bond->wq, &bond->mii_work, delay); 2515 2516 read_unlock(&bond->lock); 2517 2518 if (should_notify_peers) { 2519 if (!rtnl_trylock()) { 2520 read_lock(&bond->lock); 2521 bond->send_peer_notif++; 2522 read_unlock(&bond->lock); 2523 return; 2524 } 2525 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev); 2526 rtnl_unlock(); 2527 } 2528 } 2529 2530 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2531 { 2532 struct vlan_entry *vlan; 2533 struct net_device *vlan_dev; 2534 2535 if (ip == bond_confirm_addr(bond->dev, 0, ip)) 2536 return 1; 2537 2538 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2539 rcu_read_lock(); 2540 vlan_dev = __vlan_find_dev_deep(bond->dev, htons(ETH_P_8021Q), 2541 vlan->vlan_id); 2542 rcu_read_unlock(); 2543 if (vlan_dev && ip == bond_confirm_addr(vlan_dev, 0, ip)) 2544 return 1; 2545 } 2546 2547 return 0; 2548 } 2549 2550 /* 2551 * We go to the (large) trouble of VLAN tagging ARP frames because 2552 * switches in VLAN mode (especially if ports are configured as 2553 * "native" to a VLAN) might not pass non-tagged frames. 2554 */ 2555 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2556 { 2557 struct sk_buff *skb; 2558 2559 pr_debug("arp %d on slave %s: dst %pI4 src %pI4 vid %d\n", arp_op, 2560 slave_dev->name, &dest_ip, &src_ip, vlan_id); 2561 2562 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2563 NULL, slave_dev->dev_addr, NULL); 2564 2565 if (!skb) { 2566 pr_err("ARP packet allocation failed\n"); 2567 return; 2568 } 2569 if (vlan_id) { 2570 skb = vlan_put_tag(skb, htons(ETH_P_8021Q), vlan_id); 2571 if (!skb) { 2572 pr_err("failed to insert VLAN tag\n"); 2573 return; 2574 } 2575 } 2576 arp_xmit(skb); 2577 } 2578 2579 2580 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2581 { 2582 int i, vlan_id; 2583 __be32 *targets = bond->params.arp_targets; 2584 struct vlan_entry *vlan; 2585 struct net_device *vlan_dev = NULL; 2586 struct rtable *rt; 2587 2588 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2589 __be32 addr; 2590 if (!targets[i]) 2591 break; 2592 pr_debug("basa: target %pI4\n", &targets[i]); 2593 if (!bond_vlan_used(bond)) { 2594 pr_debug("basa: empty vlan: arp_send\n"); 2595 addr = bond_confirm_addr(bond->dev, targets[i], 0); 2596 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2597 addr, 0); 2598 continue; 2599 } 2600 2601 /* 2602 * If VLANs are configured, we do a route lookup to 2603 * determine which VLAN interface would be used, so we 2604 * can tag the ARP with the proper VLAN tag. 2605 */ 2606 rt = ip_route_output(dev_net(bond->dev), targets[i], 0, 2607 RTO_ONLINK, 0); 2608 if (IS_ERR(rt)) { 2609 if (net_ratelimit()) { 2610 pr_warning("%s: no route to arp_ip_target %pI4\n", 2611 bond->dev->name, &targets[i]); 2612 } 2613 continue; 2614 } 2615 2616 /* 2617 * This target is not on a VLAN 2618 */ 2619 if (rt->dst.dev == bond->dev) { 2620 ip_rt_put(rt); 2621 pr_debug("basa: rtdev == bond->dev: arp_send\n"); 2622 addr = bond_confirm_addr(bond->dev, targets[i], 0); 2623 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2624 addr, 0); 2625 continue; 2626 } 2627 2628 vlan_id = 0; 2629 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2630 rcu_read_lock(); 2631 vlan_dev = __vlan_find_dev_deep(bond->dev, 2632 htons(ETH_P_8021Q), 2633 vlan->vlan_id); 2634 rcu_read_unlock(); 2635 if (vlan_dev == rt->dst.dev) { 2636 vlan_id = vlan->vlan_id; 2637 pr_debug("basa: vlan match on %s %d\n", 2638 vlan_dev->name, vlan_id); 2639 break; 2640 } 2641 } 2642 2643 if (vlan_id && vlan_dev) { 2644 ip_rt_put(rt); 2645 addr = bond_confirm_addr(vlan_dev, targets[i], 0); 2646 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2647 addr, vlan_id); 2648 continue; 2649 } 2650 2651 if (net_ratelimit()) { 2652 pr_warning("%s: no path to arp_ip_target %pI4 via rt.dev %s\n", 2653 bond->dev->name, &targets[i], 2654 rt->dst.dev ? rt->dst.dev->name : "NULL"); 2655 } 2656 ip_rt_put(rt); 2657 } 2658 } 2659 2660 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2661 { 2662 int i; 2663 __be32 *targets = bond->params.arp_targets; 2664 2665 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2666 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n", 2667 &sip, &tip, i, &targets[i], 2668 bond_has_this_ip(bond, tip)); 2669 if (sip == targets[i]) { 2670 if (bond_has_this_ip(bond, tip)) 2671 slave->last_arp_rx = jiffies; 2672 return; 2673 } 2674 } 2675 } 2676 2677 static int bond_arp_rcv(const struct sk_buff *skb, struct bonding *bond, 2678 struct slave *slave) 2679 { 2680 struct arphdr *arp = (struct arphdr *)skb->data; 2681 unsigned char *arp_ptr; 2682 __be32 sip, tip; 2683 int alen; 2684 2685 if (skb->protocol != __cpu_to_be16(ETH_P_ARP)) 2686 return RX_HANDLER_ANOTHER; 2687 2688 read_lock(&bond->lock); 2689 alen = arp_hdr_len(bond->dev); 2690 2691 pr_debug("bond_arp_rcv: bond %s skb->dev %s\n", 2692 bond->dev->name, skb->dev->name); 2693 2694 if (alen > skb_headlen(skb)) { 2695 arp = kmalloc(alen, GFP_ATOMIC); 2696 if (!arp) 2697 goto out_unlock; 2698 if (skb_copy_bits(skb, 0, arp, alen) < 0) 2699 goto out_unlock; 2700 } 2701 2702 if (arp->ar_hln != bond->dev->addr_len || 2703 skb->pkt_type == PACKET_OTHERHOST || 2704 skb->pkt_type == PACKET_LOOPBACK || 2705 arp->ar_hrd != htons(ARPHRD_ETHER) || 2706 arp->ar_pro != htons(ETH_P_IP) || 2707 arp->ar_pln != 4) 2708 goto out_unlock; 2709 2710 arp_ptr = (unsigned char *)(arp + 1); 2711 arp_ptr += bond->dev->addr_len; 2712 memcpy(&sip, arp_ptr, 4); 2713 arp_ptr += 4 + bond->dev->addr_len; 2714 memcpy(&tip, arp_ptr, 4); 2715 2716 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n", 2717 bond->dev->name, slave->dev->name, bond_slave_state(slave), 2718 bond->params.arp_validate, slave_do_arp_validate(bond, slave), 2719 &sip, &tip); 2720 2721 /* 2722 * Backup slaves won't see the ARP reply, but do come through 2723 * here for each ARP probe (so we swap the sip/tip to validate 2724 * the probe). In a "redundant switch, common router" type of 2725 * configuration, the ARP probe will (hopefully) travel from 2726 * the active, through one switch, the router, then the other 2727 * switch before reaching the backup. 2728 */ 2729 if (bond_is_active_slave(slave)) 2730 bond_validate_arp(bond, slave, sip, tip); 2731 else 2732 bond_validate_arp(bond, slave, tip, sip); 2733 2734 out_unlock: 2735 read_unlock(&bond->lock); 2736 if (arp != (struct arphdr *)skb->data) 2737 kfree(arp); 2738 return RX_HANDLER_ANOTHER; 2739 } 2740 2741 /* 2742 * this function is called regularly to monitor each slave's link 2743 * ensuring that traffic is being sent and received when arp monitoring 2744 * is used in load-balancing mode. if the adapter has been dormant, then an 2745 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2746 * arp monitoring in active backup mode. 2747 */ 2748 void bond_loadbalance_arp_mon(struct work_struct *work) 2749 { 2750 struct bonding *bond = container_of(work, struct bonding, 2751 arp_work.work); 2752 struct slave *slave, *oldcurrent; 2753 int do_failover = 0; 2754 int delta_in_ticks, extra_ticks; 2755 int i; 2756 2757 read_lock(&bond->lock); 2758 2759 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2760 extra_ticks = delta_in_ticks / 2; 2761 2762 if (bond->slave_cnt == 0) 2763 goto re_arm; 2764 2765 read_lock(&bond->curr_slave_lock); 2766 oldcurrent = bond->curr_active_slave; 2767 read_unlock(&bond->curr_slave_lock); 2768 2769 /* see if any of the previous devices are up now (i.e. they have 2770 * xmt and rcv traffic). the curr_active_slave does not come into 2771 * the picture unless it is null. also, slave->jiffies is not needed 2772 * here because we send an arp on each slave and give a slave as 2773 * long as it needs to get the tx/rx within the delta. 2774 * TODO: what about up/down delay in arp mode? it wasn't here before 2775 * so it can wait 2776 */ 2777 bond_for_each_slave(bond, slave, i) { 2778 unsigned long trans_start = dev_trans_start(slave->dev); 2779 2780 if (slave->link != BOND_LINK_UP) { 2781 if (time_in_range(jiffies, 2782 trans_start - delta_in_ticks, 2783 trans_start + delta_in_ticks + extra_ticks) && 2784 time_in_range(jiffies, 2785 slave->dev->last_rx - delta_in_ticks, 2786 slave->dev->last_rx + delta_in_ticks + extra_ticks)) { 2787 2788 slave->link = BOND_LINK_UP; 2789 bond_set_active_slave(slave); 2790 2791 /* primary_slave has no meaning in round-robin 2792 * mode. the window of a slave being up and 2793 * curr_active_slave being null after enslaving 2794 * is closed. 2795 */ 2796 if (!oldcurrent) { 2797 pr_info("%s: link status definitely up for interface %s, ", 2798 bond->dev->name, 2799 slave->dev->name); 2800 do_failover = 1; 2801 } else { 2802 pr_info("%s: interface %s is now up\n", 2803 bond->dev->name, 2804 slave->dev->name); 2805 } 2806 } 2807 } else { 2808 /* slave->link == BOND_LINK_UP */ 2809 2810 /* not all switches will respond to an arp request 2811 * when the source ip is 0, so don't take the link down 2812 * if we don't know our ip yet 2813 */ 2814 if (!time_in_range(jiffies, 2815 trans_start - delta_in_ticks, 2816 trans_start + 2 * delta_in_ticks + extra_ticks) || 2817 !time_in_range(jiffies, 2818 slave->dev->last_rx - delta_in_ticks, 2819 slave->dev->last_rx + 2 * delta_in_ticks + extra_ticks)) { 2820 2821 slave->link = BOND_LINK_DOWN; 2822 bond_set_backup_slave(slave); 2823 2824 if (slave->link_failure_count < UINT_MAX) 2825 slave->link_failure_count++; 2826 2827 pr_info("%s: interface %s is now down.\n", 2828 bond->dev->name, 2829 slave->dev->name); 2830 2831 if (slave == oldcurrent) 2832 do_failover = 1; 2833 } 2834 } 2835 2836 /* note: if switch is in round-robin mode, all links 2837 * must tx arp to ensure all links rx an arp - otherwise 2838 * links may oscillate or not come up at all; if switch is 2839 * in something like xor mode, there is nothing we can 2840 * do - all replies will be rx'ed on same link causing slaves 2841 * to be unstable during low/no traffic periods 2842 */ 2843 if (IS_UP(slave->dev)) 2844 bond_arp_send_all(bond, slave); 2845 } 2846 2847 if (do_failover) { 2848 block_netpoll_tx(); 2849 write_lock_bh(&bond->curr_slave_lock); 2850 2851 bond_select_active_slave(bond); 2852 2853 write_unlock_bh(&bond->curr_slave_lock); 2854 unblock_netpoll_tx(); 2855 } 2856 2857 re_arm: 2858 if (bond->params.arp_interval) 2859 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2860 2861 read_unlock(&bond->lock); 2862 } 2863 2864 /* 2865 * Called to inspect slaves for active-backup mode ARP monitor link state 2866 * changes. Sets new_link in slaves to specify what action should take 2867 * place for the slave. Returns 0 if no changes are found, >0 if changes 2868 * to link states must be committed. 2869 * 2870 * Called with bond->lock held for read. 2871 */ 2872 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2873 { 2874 struct slave *slave; 2875 int i, commit = 0; 2876 unsigned long trans_start; 2877 int extra_ticks; 2878 2879 /* All the time comparisons below need some extra time. Otherwise, on 2880 * fast networks the ARP probe/reply may arrive within the same jiffy 2881 * as it was sent. Then, the next time the ARP monitor is run, one 2882 * arp_interval will already have passed in the comparisons. 2883 */ 2884 extra_ticks = delta_in_ticks / 2; 2885 2886 bond_for_each_slave(bond, slave, i) { 2887 slave->new_link = BOND_LINK_NOCHANGE; 2888 2889 if (slave->link != BOND_LINK_UP) { 2890 if (time_in_range(jiffies, 2891 slave_last_rx(bond, slave) - delta_in_ticks, 2892 slave_last_rx(bond, slave) + delta_in_ticks + extra_ticks)) { 2893 2894 slave->new_link = BOND_LINK_UP; 2895 commit++; 2896 } 2897 2898 continue; 2899 } 2900 2901 /* 2902 * Give slaves 2*delta after being enslaved or made 2903 * active. This avoids bouncing, as the last receive 2904 * times need a full ARP monitor cycle to be updated. 2905 */ 2906 if (time_in_range(jiffies, 2907 slave->jiffies - delta_in_ticks, 2908 slave->jiffies + 2 * delta_in_ticks + extra_ticks)) 2909 continue; 2910 2911 /* 2912 * Backup slave is down if: 2913 * - No current_arp_slave AND 2914 * - more than 3*delta since last receive AND 2915 * - the bond has an IP address 2916 * 2917 * Note: a non-null current_arp_slave indicates 2918 * the curr_active_slave went down and we are 2919 * searching for a new one; under this condition 2920 * we only take the curr_active_slave down - this 2921 * gives each slave a chance to tx/rx traffic 2922 * before being taken out 2923 */ 2924 if (!bond_is_active_slave(slave) && 2925 !bond->current_arp_slave && 2926 !time_in_range(jiffies, 2927 slave_last_rx(bond, slave) - delta_in_ticks, 2928 slave_last_rx(bond, slave) + 3 * delta_in_ticks + extra_ticks)) { 2929 2930 slave->new_link = BOND_LINK_DOWN; 2931 commit++; 2932 } 2933 2934 /* 2935 * Active slave is down if: 2936 * - more than 2*delta since transmitting OR 2937 * - (more than 2*delta since receive AND 2938 * the bond has an IP address) 2939 */ 2940 trans_start = dev_trans_start(slave->dev); 2941 if (bond_is_active_slave(slave) && 2942 (!time_in_range(jiffies, 2943 trans_start - delta_in_ticks, 2944 trans_start + 2 * delta_in_ticks + extra_ticks) || 2945 !time_in_range(jiffies, 2946 slave_last_rx(bond, slave) - delta_in_ticks, 2947 slave_last_rx(bond, slave) + 2 * delta_in_ticks + extra_ticks))) { 2948 2949 slave->new_link = BOND_LINK_DOWN; 2950 commit++; 2951 } 2952 } 2953 2954 return commit; 2955 } 2956 2957 /* 2958 * Called to commit link state changes noted by inspection step of 2959 * active-backup mode ARP monitor. 2960 * 2961 * Called with RTNL and bond->lock for read. 2962 */ 2963 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2964 { 2965 struct slave *slave; 2966 int i; 2967 unsigned long trans_start; 2968 2969 bond_for_each_slave(bond, slave, i) { 2970 switch (slave->new_link) { 2971 case BOND_LINK_NOCHANGE: 2972 continue; 2973 2974 case BOND_LINK_UP: 2975 trans_start = dev_trans_start(slave->dev); 2976 if ((!bond->curr_active_slave && 2977 time_in_range(jiffies, 2978 trans_start - delta_in_ticks, 2979 trans_start + delta_in_ticks + delta_in_ticks / 2)) || 2980 bond->curr_active_slave != slave) { 2981 slave->link = BOND_LINK_UP; 2982 if (bond->current_arp_slave) { 2983 bond_set_slave_inactive_flags( 2984 bond->current_arp_slave); 2985 bond->current_arp_slave = NULL; 2986 } 2987 2988 pr_info("%s: link status definitely up for interface %s.\n", 2989 bond->dev->name, slave->dev->name); 2990 2991 if (!bond->curr_active_slave || 2992 (slave == bond->primary_slave)) 2993 goto do_failover; 2994 2995 } 2996 2997 continue; 2998 2999 case BOND_LINK_DOWN: 3000 if (slave->link_failure_count < UINT_MAX) 3001 slave->link_failure_count++; 3002 3003 slave->link = BOND_LINK_DOWN; 3004 bond_set_slave_inactive_flags(slave); 3005 3006 pr_info("%s: link status definitely down for interface %s, disabling it\n", 3007 bond->dev->name, slave->dev->name); 3008 3009 if (slave == bond->curr_active_slave) { 3010 bond->current_arp_slave = NULL; 3011 goto do_failover; 3012 } 3013 3014 continue; 3015 3016 default: 3017 pr_err("%s: impossible: new_link %d on slave %s\n", 3018 bond->dev->name, slave->new_link, 3019 slave->dev->name); 3020 continue; 3021 } 3022 3023 do_failover: 3024 ASSERT_RTNL(); 3025 block_netpoll_tx(); 3026 write_lock_bh(&bond->curr_slave_lock); 3027 bond_select_active_slave(bond); 3028 write_unlock_bh(&bond->curr_slave_lock); 3029 unblock_netpoll_tx(); 3030 } 3031 3032 bond_set_carrier(bond); 3033 } 3034 3035 /* 3036 * Send ARP probes for active-backup mode ARP monitor. 3037 * 3038 * Called with bond->lock held for read. 3039 */ 3040 static void bond_ab_arp_probe(struct bonding *bond) 3041 { 3042 struct slave *slave; 3043 int i; 3044 3045 read_lock(&bond->curr_slave_lock); 3046 3047 if (bond->current_arp_slave && bond->curr_active_slave) 3048 pr_info("PROBE: c_arp %s && cas %s BAD\n", 3049 bond->current_arp_slave->dev->name, 3050 bond->curr_active_slave->dev->name); 3051 3052 if (bond->curr_active_slave) { 3053 bond_arp_send_all(bond, bond->curr_active_slave); 3054 read_unlock(&bond->curr_slave_lock); 3055 return; 3056 } 3057 3058 read_unlock(&bond->curr_slave_lock); 3059 3060 /* if we don't have a curr_active_slave, search for the next available 3061 * backup slave from the current_arp_slave and make it the candidate 3062 * for becoming the curr_active_slave 3063 */ 3064 3065 if (!bond->current_arp_slave) { 3066 bond->current_arp_slave = bond->first_slave; 3067 if (!bond->current_arp_slave) 3068 return; 3069 } 3070 3071 bond_set_slave_inactive_flags(bond->current_arp_slave); 3072 3073 /* search for next candidate */ 3074 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3075 if (IS_UP(slave->dev)) { 3076 slave->link = BOND_LINK_BACK; 3077 bond_set_slave_active_flags(slave); 3078 bond_arp_send_all(bond, slave); 3079 slave->jiffies = jiffies; 3080 bond->current_arp_slave = slave; 3081 break; 3082 } 3083 3084 /* if the link state is up at this point, we 3085 * mark it down - this can happen if we have 3086 * simultaneous link failures and 3087 * reselect_active_interface doesn't make this 3088 * one the current slave so it is still marked 3089 * up when it is actually down 3090 */ 3091 if (slave->link == BOND_LINK_UP) { 3092 slave->link = BOND_LINK_DOWN; 3093 if (slave->link_failure_count < UINT_MAX) 3094 slave->link_failure_count++; 3095 3096 bond_set_slave_inactive_flags(slave); 3097 3098 pr_info("%s: backup interface %s is now down.\n", 3099 bond->dev->name, slave->dev->name); 3100 } 3101 } 3102 } 3103 3104 void bond_activebackup_arp_mon(struct work_struct *work) 3105 { 3106 struct bonding *bond = container_of(work, struct bonding, 3107 arp_work.work); 3108 bool should_notify_peers = false; 3109 int delta_in_ticks; 3110 3111 read_lock(&bond->lock); 3112 3113 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3114 3115 if (bond->slave_cnt == 0) 3116 goto re_arm; 3117 3118 should_notify_peers = bond_should_notify_peers(bond); 3119 3120 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3121 read_unlock(&bond->lock); 3122 3123 /* Race avoidance with bond_close flush of workqueue */ 3124 if (!rtnl_trylock()) { 3125 read_lock(&bond->lock); 3126 delta_in_ticks = 1; 3127 should_notify_peers = false; 3128 goto re_arm; 3129 } 3130 3131 read_lock(&bond->lock); 3132 3133 bond_ab_arp_commit(bond, delta_in_ticks); 3134 3135 read_unlock(&bond->lock); 3136 rtnl_unlock(); 3137 read_lock(&bond->lock); 3138 } 3139 3140 bond_ab_arp_probe(bond); 3141 3142 re_arm: 3143 if (bond->params.arp_interval) 3144 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3145 3146 read_unlock(&bond->lock); 3147 3148 if (should_notify_peers) { 3149 if (!rtnl_trylock()) { 3150 read_lock(&bond->lock); 3151 bond->send_peer_notif++; 3152 read_unlock(&bond->lock); 3153 return; 3154 } 3155 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev); 3156 rtnl_unlock(); 3157 } 3158 } 3159 3160 /*-------------------------- netdev event handling --------------------------*/ 3161 3162 /* 3163 * Change device name 3164 */ 3165 static int bond_event_changename(struct bonding *bond) 3166 { 3167 bond_remove_proc_entry(bond); 3168 bond_create_proc_entry(bond); 3169 3170 bond_debug_reregister(bond); 3171 3172 return NOTIFY_DONE; 3173 } 3174 3175 static int bond_master_netdev_event(unsigned long event, 3176 struct net_device *bond_dev) 3177 { 3178 struct bonding *event_bond = netdev_priv(bond_dev); 3179 3180 switch (event) { 3181 case NETDEV_CHANGENAME: 3182 return bond_event_changename(event_bond); 3183 case NETDEV_UNREGISTER: 3184 bond_remove_proc_entry(event_bond); 3185 break; 3186 case NETDEV_REGISTER: 3187 bond_create_proc_entry(event_bond); 3188 break; 3189 default: 3190 break; 3191 } 3192 3193 return NOTIFY_DONE; 3194 } 3195 3196 static int bond_slave_netdev_event(unsigned long event, 3197 struct net_device *slave_dev) 3198 { 3199 struct slave *slave = bond_slave_get_rtnl(slave_dev); 3200 struct bonding *bond; 3201 struct net_device *bond_dev; 3202 u32 old_speed; 3203 u8 old_duplex; 3204 3205 /* A netdev event can be generated while enslaving a device 3206 * before netdev_rx_handler_register is called in which case 3207 * slave will be NULL 3208 */ 3209 if (!slave) 3210 return NOTIFY_DONE; 3211 bond_dev = slave->bond->dev; 3212 bond = slave->bond; 3213 3214 switch (event) { 3215 case NETDEV_UNREGISTER: 3216 if (bond->setup_by_slave) 3217 bond_release_and_destroy(bond_dev, slave_dev); 3218 else 3219 bond_release(bond_dev, slave_dev); 3220 break; 3221 case NETDEV_UP: 3222 case NETDEV_CHANGE: 3223 old_speed = slave->speed; 3224 old_duplex = slave->duplex; 3225 3226 bond_update_speed_duplex(slave); 3227 3228 if (bond->params.mode == BOND_MODE_8023AD) { 3229 if (old_speed != slave->speed) 3230 bond_3ad_adapter_speed_changed(slave); 3231 if (old_duplex != slave->duplex) 3232 bond_3ad_adapter_duplex_changed(slave); 3233 } 3234 break; 3235 case NETDEV_DOWN: 3236 /* 3237 * ... Or is it this? 3238 */ 3239 break; 3240 case NETDEV_CHANGEMTU: 3241 /* 3242 * TODO: Should slaves be allowed to 3243 * independently alter their MTU? For 3244 * an active-backup bond, slaves need 3245 * not be the same type of device, so 3246 * MTUs may vary. For other modes, 3247 * slaves arguably should have the 3248 * same MTUs. To do this, we'd need to 3249 * take over the slave's change_mtu 3250 * function for the duration of their 3251 * servitude. 3252 */ 3253 break; 3254 case NETDEV_CHANGENAME: 3255 /* 3256 * TODO: handle changing the primary's name 3257 */ 3258 break; 3259 case NETDEV_FEAT_CHANGE: 3260 bond_compute_features(bond); 3261 break; 3262 default: 3263 break; 3264 } 3265 3266 return NOTIFY_DONE; 3267 } 3268 3269 /* 3270 * bond_netdev_event: handle netdev notifier chain events. 3271 * 3272 * This function receives events for the netdev chain. The caller (an 3273 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3274 * locks for us to safely manipulate the slave devices (RTNL lock, 3275 * dev_probe_lock). 3276 */ 3277 static int bond_netdev_event(struct notifier_block *this, 3278 unsigned long event, void *ptr) 3279 { 3280 struct net_device *event_dev = (struct net_device *)ptr; 3281 3282 pr_debug("event_dev: %s, event: %lx\n", 3283 event_dev ? event_dev->name : "None", 3284 event); 3285 3286 if (!(event_dev->priv_flags & IFF_BONDING)) 3287 return NOTIFY_DONE; 3288 3289 if (event_dev->flags & IFF_MASTER) { 3290 pr_debug("IFF_MASTER\n"); 3291 return bond_master_netdev_event(event, event_dev); 3292 } 3293 3294 if (event_dev->flags & IFF_SLAVE) { 3295 pr_debug("IFF_SLAVE\n"); 3296 return bond_slave_netdev_event(event, event_dev); 3297 } 3298 3299 return NOTIFY_DONE; 3300 } 3301 3302 static struct notifier_block bond_netdev_notifier = { 3303 .notifier_call = bond_netdev_event, 3304 }; 3305 3306 /*---------------------------- Hashing Policies -----------------------------*/ 3307 3308 /* 3309 * Hash for the output device based upon layer 2 data 3310 */ 3311 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count) 3312 { 3313 struct ethhdr *data = (struct ethhdr *)skb->data; 3314 3315 if (skb_headlen(skb) >= offsetof(struct ethhdr, h_proto)) 3316 return (data->h_dest[5] ^ data->h_source[5]) % count; 3317 3318 return 0; 3319 } 3320 3321 /* 3322 * Hash for the output device based upon layer 2 and layer 3 data. If 3323 * the packet is not IP, fall back on bond_xmit_hash_policy_l2() 3324 */ 3325 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count) 3326 { 3327 const struct ethhdr *data; 3328 const struct iphdr *iph; 3329 const struct ipv6hdr *ipv6h; 3330 u32 v6hash; 3331 const __be32 *s, *d; 3332 3333 if (skb->protocol == htons(ETH_P_IP) && 3334 pskb_network_may_pull(skb, sizeof(*iph))) { 3335 iph = ip_hdr(skb); 3336 data = (struct ethhdr *)skb->data; 3337 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3338 (data->h_dest[5] ^ data->h_source[5])) % count; 3339 } else if (skb->protocol == htons(ETH_P_IPV6) && 3340 pskb_network_may_pull(skb, sizeof(*ipv6h))) { 3341 ipv6h = ipv6_hdr(skb); 3342 data = (struct ethhdr *)skb->data; 3343 s = &ipv6h->saddr.s6_addr32[0]; 3344 d = &ipv6h->daddr.s6_addr32[0]; 3345 v6hash = (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]); 3346 v6hash ^= (v6hash >> 24) ^ (v6hash >> 16) ^ (v6hash >> 8); 3347 return (v6hash ^ data->h_dest[5] ^ data->h_source[5]) % count; 3348 } 3349 3350 return bond_xmit_hash_policy_l2(skb, count); 3351 } 3352 3353 /* 3354 * Hash for the output device based upon layer 3 and layer 4 data. If 3355 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3356 * altogether not IP, fall back on bond_xmit_hash_policy_l2() 3357 */ 3358 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count) 3359 { 3360 u32 layer4_xor = 0; 3361 const struct iphdr *iph; 3362 const struct ipv6hdr *ipv6h; 3363 const __be32 *s, *d; 3364 const __be16 *l4 = NULL; 3365 __be16 _l4[2]; 3366 int noff = skb_network_offset(skb); 3367 int poff; 3368 3369 if (skb->protocol == htons(ETH_P_IP) && 3370 pskb_may_pull(skb, noff + sizeof(*iph))) { 3371 iph = ip_hdr(skb); 3372 poff = proto_ports_offset(iph->protocol); 3373 3374 if (!ip_is_fragment(iph) && poff >= 0) { 3375 l4 = skb_header_pointer(skb, noff + (iph->ihl << 2) + poff, 3376 sizeof(_l4), &_l4); 3377 if (l4) 3378 layer4_xor = ntohs(l4[0] ^ l4[1]); 3379 } 3380 return (layer4_xor ^ 3381 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3382 } else if (skb->protocol == htons(ETH_P_IPV6) && 3383 pskb_may_pull(skb, noff + sizeof(*ipv6h))) { 3384 ipv6h = ipv6_hdr(skb); 3385 poff = proto_ports_offset(ipv6h->nexthdr); 3386 if (poff >= 0) { 3387 l4 = skb_header_pointer(skb, noff + sizeof(*ipv6h) + poff, 3388 sizeof(_l4), &_l4); 3389 if (l4) 3390 layer4_xor = ntohs(l4[0] ^ l4[1]); 3391 } 3392 s = &ipv6h->saddr.s6_addr32[0]; 3393 d = &ipv6h->daddr.s6_addr32[0]; 3394 layer4_xor ^= (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]); 3395 layer4_xor ^= (layer4_xor >> 24) ^ (layer4_xor >> 16) ^ 3396 (layer4_xor >> 8); 3397 return layer4_xor % count; 3398 } 3399 3400 return bond_xmit_hash_policy_l2(skb, count); 3401 } 3402 3403 /*-------------------------- Device entry points ----------------------------*/ 3404 3405 static void bond_work_init_all(struct bonding *bond) 3406 { 3407 INIT_DELAYED_WORK(&bond->mcast_work, 3408 bond_resend_igmp_join_requests_delayed); 3409 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3410 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3411 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3412 INIT_DELAYED_WORK(&bond->arp_work, bond_activebackup_arp_mon); 3413 else 3414 INIT_DELAYED_WORK(&bond->arp_work, bond_loadbalance_arp_mon); 3415 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3416 } 3417 3418 static void bond_work_cancel_all(struct bonding *bond) 3419 { 3420 cancel_delayed_work_sync(&bond->mii_work); 3421 cancel_delayed_work_sync(&bond->arp_work); 3422 cancel_delayed_work_sync(&bond->alb_work); 3423 cancel_delayed_work_sync(&bond->ad_work); 3424 cancel_delayed_work_sync(&bond->mcast_work); 3425 } 3426 3427 static int bond_open(struct net_device *bond_dev) 3428 { 3429 struct bonding *bond = netdev_priv(bond_dev); 3430 struct slave *slave; 3431 int i; 3432 3433 /* reset slave->backup and slave->inactive */ 3434 read_lock(&bond->lock); 3435 if (bond->slave_cnt > 0) { 3436 read_lock(&bond->curr_slave_lock); 3437 bond_for_each_slave(bond, slave, i) { 3438 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3439 && (slave != bond->curr_active_slave)) { 3440 bond_set_slave_inactive_flags(slave); 3441 } else { 3442 bond_set_slave_active_flags(slave); 3443 } 3444 } 3445 read_unlock(&bond->curr_slave_lock); 3446 } 3447 read_unlock(&bond->lock); 3448 3449 bond_work_init_all(bond); 3450 3451 if (bond_is_lb(bond)) { 3452 /* bond_alb_initialize must be called before the timer 3453 * is started. 3454 */ 3455 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) 3456 return -ENOMEM; 3457 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3458 } 3459 3460 if (bond->params.miimon) /* link check interval, in milliseconds. */ 3461 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3462 3463 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3464 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3465 if (bond->params.arp_validate) 3466 bond->recv_probe = bond_arp_rcv; 3467 } 3468 3469 if (bond->params.mode == BOND_MODE_8023AD) { 3470 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3471 /* register to receive LACPDUs */ 3472 bond->recv_probe = bond_3ad_lacpdu_recv; 3473 bond_3ad_initiate_agg_selection(bond, 1); 3474 } 3475 3476 return 0; 3477 } 3478 3479 static int bond_close(struct net_device *bond_dev) 3480 { 3481 struct bonding *bond = netdev_priv(bond_dev); 3482 3483 write_lock_bh(&bond->lock); 3484 bond->send_peer_notif = 0; 3485 write_unlock_bh(&bond->lock); 3486 3487 bond_work_cancel_all(bond); 3488 if (bond_is_lb(bond)) { 3489 /* Must be called only after all 3490 * slaves have been released 3491 */ 3492 bond_alb_deinitialize(bond); 3493 } 3494 bond->recv_probe = NULL; 3495 3496 return 0; 3497 } 3498 3499 static struct rtnl_link_stats64 *bond_get_stats(struct net_device *bond_dev, 3500 struct rtnl_link_stats64 *stats) 3501 { 3502 struct bonding *bond = netdev_priv(bond_dev); 3503 struct rtnl_link_stats64 temp; 3504 struct slave *slave; 3505 int i; 3506 3507 memset(stats, 0, sizeof(*stats)); 3508 3509 read_lock_bh(&bond->lock); 3510 3511 bond_for_each_slave(bond, slave, i) { 3512 const struct rtnl_link_stats64 *sstats = 3513 dev_get_stats(slave->dev, &temp); 3514 3515 stats->rx_packets += sstats->rx_packets; 3516 stats->rx_bytes += sstats->rx_bytes; 3517 stats->rx_errors += sstats->rx_errors; 3518 stats->rx_dropped += sstats->rx_dropped; 3519 3520 stats->tx_packets += sstats->tx_packets; 3521 stats->tx_bytes += sstats->tx_bytes; 3522 stats->tx_errors += sstats->tx_errors; 3523 stats->tx_dropped += sstats->tx_dropped; 3524 3525 stats->multicast += sstats->multicast; 3526 stats->collisions += sstats->collisions; 3527 3528 stats->rx_length_errors += sstats->rx_length_errors; 3529 stats->rx_over_errors += sstats->rx_over_errors; 3530 stats->rx_crc_errors += sstats->rx_crc_errors; 3531 stats->rx_frame_errors += sstats->rx_frame_errors; 3532 stats->rx_fifo_errors += sstats->rx_fifo_errors; 3533 stats->rx_missed_errors += sstats->rx_missed_errors; 3534 3535 stats->tx_aborted_errors += sstats->tx_aborted_errors; 3536 stats->tx_carrier_errors += sstats->tx_carrier_errors; 3537 stats->tx_fifo_errors += sstats->tx_fifo_errors; 3538 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3539 stats->tx_window_errors += sstats->tx_window_errors; 3540 } 3541 3542 read_unlock_bh(&bond->lock); 3543 3544 return stats; 3545 } 3546 3547 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3548 { 3549 struct net_device *slave_dev = NULL; 3550 struct ifbond k_binfo; 3551 struct ifbond __user *u_binfo = NULL; 3552 struct ifslave k_sinfo; 3553 struct ifslave __user *u_sinfo = NULL; 3554 struct mii_ioctl_data *mii = NULL; 3555 struct net *net; 3556 int res = 0; 3557 3558 pr_debug("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd); 3559 3560 switch (cmd) { 3561 case SIOCGMIIPHY: 3562 mii = if_mii(ifr); 3563 if (!mii) 3564 return -EINVAL; 3565 3566 mii->phy_id = 0; 3567 /* Fall Through */ 3568 case SIOCGMIIREG: 3569 /* 3570 * We do this again just in case we were called by SIOCGMIIREG 3571 * instead of SIOCGMIIPHY. 3572 */ 3573 mii = if_mii(ifr); 3574 if (!mii) 3575 return -EINVAL; 3576 3577 3578 if (mii->reg_num == 1) { 3579 struct bonding *bond = netdev_priv(bond_dev); 3580 mii->val_out = 0; 3581 read_lock(&bond->lock); 3582 read_lock(&bond->curr_slave_lock); 3583 if (netif_carrier_ok(bond->dev)) 3584 mii->val_out = BMSR_LSTATUS; 3585 3586 read_unlock(&bond->curr_slave_lock); 3587 read_unlock(&bond->lock); 3588 } 3589 3590 return 0; 3591 case BOND_INFO_QUERY_OLD: 3592 case SIOCBONDINFOQUERY: 3593 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3594 3595 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) 3596 return -EFAULT; 3597 3598 res = bond_info_query(bond_dev, &k_binfo); 3599 if (res == 0 && 3600 copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) 3601 return -EFAULT; 3602 3603 return res; 3604 case BOND_SLAVE_INFO_QUERY_OLD: 3605 case SIOCBONDSLAVEINFOQUERY: 3606 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3607 3608 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) 3609 return -EFAULT; 3610 3611 res = bond_slave_info_query(bond_dev, &k_sinfo); 3612 if (res == 0 && 3613 copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) 3614 return -EFAULT; 3615 3616 return res; 3617 default: 3618 /* Go on */ 3619 break; 3620 } 3621 3622 net = dev_net(bond_dev); 3623 3624 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 3625 return -EPERM; 3626 3627 slave_dev = dev_get_by_name(net, ifr->ifr_slave); 3628 3629 pr_debug("slave_dev=%p:\n", slave_dev); 3630 3631 if (!slave_dev) 3632 res = -ENODEV; 3633 else { 3634 pr_debug("slave_dev->name=%s:\n", slave_dev->name); 3635 switch (cmd) { 3636 case BOND_ENSLAVE_OLD: 3637 case SIOCBONDENSLAVE: 3638 res = bond_enslave(bond_dev, slave_dev); 3639 break; 3640 case BOND_RELEASE_OLD: 3641 case SIOCBONDRELEASE: 3642 res = bond_release(bond_dev, slave_dev); 3643 break; 3644 case BOND_SETHWADDR_OLD: 3645 case SIOCBONDSETHWADDR: 3646 bond_set_dev_addr(bond_dev, slave_dev); 3647 res = 0; 3648 break; 3649 case BOND_CHANGE_ACTIVE_OLD: 3650 case SIOCBONDCHANGEACTIVE: 3651 res = bond_ioctl_change_active(bond_dev, slave_dev); 3652 break; 3653 default: 3654 res = -EOPNOTSUPP; 3655 } 3656 3657 dev_put(slave_dev); 3658 } 3659 3660 return res; 3661 } 3662 3663 static bool bond_addr_in_mc_list(unsigned char *addr, 3664 struct netdev_hw_addr_list *list, 3665 int addrlen) 3666 { 3667 struct netdev_hw_addr *ha; 3668 3669 netdev_hw_addr_list_for_each(ha, list) 3670 if (!memcmp(ha->addr, addr, addrlen)) 3671 return true; 3672 3673 return false; 3674 } 3675 3676 static void bond_change_rx_flags(struct net_device *bond_dev, int change) 3677 { 3678 struct bonding *bond = netdev_priv(bond_dev); 3679 3680 if (change & IFF_PROMISC) 3681 bond_set_promiscuity(bond, 3682 bond_dev->flags & IFF_PROMISC ? 1 : -1); 3683 3684 if (change & IFF_ALLMULTI) 3685 bond_set_allmulti(bond, 3686 bond_dev->flags & IFF_ALLMULTI ? 1 : -1); 3687 } 3688 3689 static void bond_set_multicast_list(struct net_device *bond_dev) 3690 { 3691 struct bonding *bond = netdev_priv(bond_dev); 3692 struct netdev_hw_addr *ha; 3693 bool found; 3694 3695 read_lock(&bond->lock); 3696 3697 /* looking for addresses to add to slaves' mc list */ 3698 netdev_for_each_mc_addr(ha, bond_dev) { 3699 found = bond_addr_in_mc_list(ha->addr, &bond->mc_list, 3700 bond_dev->addr_len); 3701 if (!found) 3702 bond_mc_add(bond, ha->addr); 3703 } 3704 3705 /* looking for addresses to delete from slaves' list */ 3706 netdev_hw_addr_list_for_each(ha, &bond->mc_list) { 3707 found = bond_addr_in_mc_list(ha->addr, &bond_dev->mc, 3708 bond_dev->addr_len); 3709 if (!found) 3710 bond_mc_del(bond, ha->addr); 3711 } 3712 3713 /* save master's multicast list */ 3714 __hw_addr_flush(&bond->mc_list); 3715 __hw_addr_add_multiple(&bond->mc_list, &bond_dev->mc, 3716 bond_dev->addr_len, NETDEV_HW_ADDR_T_MULTICAST); 3717 3718 read_unlock(&bond->lock); 3719 } 3720 3721 static int bond_neigh_init(struct neighbour *n) 3722 { 3723 struct bonding *bond = netdev_priv(n->dev); 3724 struct slave *slave = bond->first_slave; 3725 const struct net_device_ops *slave_ops; 3726 struct neigh_parms parms; 3727 int ret; 3728 3729 if (!slave) 3730 return 0; 3731 3732 slave_ops = slave->dev->netdev_ops; 3733 3734 if (!slave_ops->ndo_neigh_setup) 3735 return 0; 3736 3737 parms.neigh_setup = NULL; 3738 parms.neigh_cleanup = NULL; 3739 ret = slave_ops->ndo_neigh_setup(slave->dev, &parms); 3740 if (ret) 3741 return ret; 3742 3743 /* 3744 * Assign slave's neigh_cleanup to neighbour in case cleanup is called 3745 * after the last slave has been detached. Assumes that all slaves 3746 * utilize the same neigh_cleanup (true at this writing as only user 3747 * is ipoib). 3748 */ 3749 n->parms->neigh_cleanup = parms.neigh_cleanup; 3750 3751 if (!parms.neigh_setup) 3752 return 0; 3753 3754 return parms.neigh_setup(n); 3755 } 3756 3757 /* 3758 * The bonding ndo_neigh_setup is called at init time beofre any 3759 * slave exists. So we must declare proxy setup function which will 3760 * be used at run time to resolve the actual slave neigh param setup. 3761 */ 3762 static int bond_neigh_setup(struct net_device *dev, 3763 struct neigh_parms *parms) 3764 { 3765 parms->neigh_setup = bond_neigh_init; 3766 3767 return 0; 3768 } 3769 3770 /* 3771 * Change the MTU of all of a master's slaves to match the master 3772 */ 3773 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 3774 { 3775 struct bonding *bond = netdev_priv(bond_dev); 3776 struct slave *slave, *stop_at; 3777 int res = 0; 3778 int i; 3779 3780 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond, 3781 (bond_dev ? bond_dev->name : "None"), new_mtu); 3782 3783 /* Can't hold bond->lock with bh disabled here since 3784 * some base drivers panic. On the other hand we can't 3785 * hold bond->lock without bh disabled because we'll 3786 * deadlock. The only solution is to rely on the fact 3787 * that we're under rtnl_lock here, and the slaves 3788 * list won't change. This doesn't solve the problem 3789 * of setting the slave's MTU while it is 3790 * transmitting, but the assumption is that the base 3791 * driver can handle that. 3792 * 3793 * TODO: figure out a way to safely iterate the slaves 3794 * list, but without holding a lock around the actual 3795 * call to the base driver. 3796 */ 3797 3798 bond_for_each_slave(bond, slave, i) { 3799 pr_debug("s %p s->p %p c_m %p\n", 3800 slave, 3801 slave->prev, 3802 slave->dev->netdev_ops->ndo_change_mtu); 3803 3804 res = dev_set_mtu(slave->dev, new_mtu); 3805 3806 if (res) { 3807 /* If we failed to set the slave's mtu to the new value 3808 * we must abort the operation even in ACTIVE_BACKUP 3809 * mode, because if we allow the backup slaves to have 3810 * different mtu values than the active slave we'll 3811 * need to change their mtu when doing a failover. That 3812 * means changing their mtu from timer context, which 3813 * is probably not a good idea. 3814 */ 3815 pr_debug("err %d %s\n", res, slave->dev->name); 3816 goto unwind; 3817 } 3818 } 3819 3820 bond_dev->mtu = new_mtu; 3821 3822 return 0; 3823 3824 unwind: 3825 /* unwind from head to the slave that failed */ 3826 stop_at = slave; 3827 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 3828 int tmp_res; 3829 3830 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 3831 if (tmp_res) { 3832 pr_debug("unwind err %d dev %s\n", 3833 tmp_res, slave->dev->name); 3834 } 3835 } 3836 3837 return res; 3838 } 3839 3840 /* 3841 * Change HW address 3842 * 3843 * Note that many devices must be down to change the HW address, and 3844 * downing the master releases all slaves. We can make bonds full of 3845 * bonding devices to test this, however. 3846 */ 3847 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 3848 { 3849 struct bonding *bond = netdev_priv(bond_dev); 3850 struct sockaddr *sa = addr, tmp_sa; 3851 struct slave *slave, *stop_at; 3852 int res = 0; 3853 int i; 3854 3855 if (bond->params.mode == BOND_MODE_ALB) 3856 return bond_alb_set_mac_address(bond_dev, addr); 3857 3858 3859 pr_debug("bond=%p, name=%s\n", 3860 bond, bond_dev ? bond_dev->name : "None"); 3861 3862 /* 3863 * If fail_over_mac is set to active, do nothing and return 3864 * success. Returning an error causes ifenslave to fail. 3865 */ 3866 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 3867 return 0; 3868 3869 if (!is_valid_ether_addr(sa->sa_data)) 3870 return -EADDRNOTAVAIL; 3871 3872 /* Can't hold bond->lock with bh disabled here since 3873 * some base drivers panic. On the other hand we can't 3874 * hold bond->lock without bh disabled because we'll 3875 * deadlock. The only solution is to rely on the fact 3876 * that we're under rtnl_lock here, and the slaves 3877 * list won't change. This doesn't solve the problem 3878 * of setting the slave's hw address while it is 3879 * transmitting, but the assumption is that the base 3880 * driver can handle that. 3881 * 3882 * TODO: figure out a way to safely iterate the slaves 3883 * list, but without holding a lock around the actual 3884 * call to the base driver. 3885 */ 3886 3887 bond_for_each_slave(bond, slave, i) { 3888 const struct net_device_ops *slave_ops = slave->dev->netdev_ops; 3889 pr_debug("slave %p %s\n", slave, slave->dev->name); 3890 3891 if (slave_ops->ndo_set_mac_address == NULL) { 3892 res = -EOPNOTSUPP; 3893 pr_debug("EOPNOTSUPP %s\n", slave->dev->name); 3894 goto unwind; 3895 } 3896 3897 res = dev_set_mac_address(slave->dev, addr); 3898 if (res) { 3899 /* TODO: consider downing the slave 3900 * and retry ? 3901 * User should expect communications 3902 * breakage anyway until ARP finish 3903 * updating, so... 3904 */ 3905 pr_debug("err %d %s\n", res, slave->dev->name); 3906 goto unwind; 3907 } 3908 } 3909 3910 /* success */ 3911 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 3912 return 0; 3913 3914 unwind: 3915 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 3916 tmp_sa.sa_family = bond_dev->type; 3917 3918 /* unwind from head to the slave that failed */ 3919 stop_at = slave; 3920 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 3921 int tmp_res; 3922 3923 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 3924 if (tmp_res) { 3925 pr_debug("unwind err %d dev %s\n", 3926 tmp_res, slave->dev->name); 3927 } 3928 } 3929 3930 return res; 3931 } 3932 3933 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 3934 { 3935 struct bonding *bond = netdev_priv(bond_dev); 3936 struct slave *slave, *start_at; 3937 int i, slave_no, res = 1; 3938 struct iphdr *iph = ip_hdr(skb); 3939 3940 /* 3941 * Start with the curr_active_slave that joined the bond as the 3942 * default for sending IGMP traffic. For failover purposes one 3943 * needs to maintain some consistency for the interface that will 3944 * send the join/membership reports. The curr_active_slave found 3945 * will send all of this type of traffic. 3946 */ 3947 if ((iph->protocol == IPPROTO_IGMP) && 3948 (skb->protocol == htons(ETH_P_IP))) { 3949 3950 read_lock(&bond->curr_slave_lock); 3951 slave = bond->curr_active_slave; 3952 read_unlock(&bond->curr_slave_lock); 3953 3954 if (!slave) 3955 goto out; 3956 } else { 3957 /* 3958 * Concurrent TX may collide on rr_tx_counter; we accept 3959 * that as being rare enough not to justify using an 3960 * atomic op here. 3961 */ 3962 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 3963 3964 bond_for_each_slave(bond, slave, i) { 3965 slave_no--; 3966 if (slave_no < 0) 3967 break; 3968 } 3969 } 3970 3971 start_at = slave; 3972 bond_for_each_slave_from(bond, slave, i, start_at) { 3973 if (IS_UP(slave->dev) && 3974 (slave->link == BOND_LINK_UP) && 3975 bond_is_active_slave(slave)) { 3976 res = bond_dev_queue_xmit(bond, skb, slave->dev); 3977 break; 3978 } 3979 } 3980 3981 out: 3982 if (res) { 3983 /* no suitable interface, frame not sent */ 3984 kfree_skb(skb); 3985 } 3986 3987 return NETDEV_TX_OK; 3988 } 3989 3990 3991 /* 3992 * in active-backup mode, we know that bond->curr_active_slave is always valid if 3993 * the bond has a usable interface. 3994 */ 3995 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 3996 { 3997 struct bonding *bond = netdev_priv(bond_dev); 3998 int res = 1; 3999 4000 read_lock(&bond->curr_slave_lock); 4001 4002 if (bond->curr_active_slave) 4003 res = bond_dev_queue_xmit(bond, skb, 4004 bond->curr_active_slave->dev); 4005 4006 read_unlock(&bond->curr_slave_lock); 4007 4008 if (res) 4009 /* no suitable interface, frame not sent */ 4010 kfree_skb(skb); 4011 4012 return NETDEV_TX_OK; 4013 } 4014 4015 /* 4016 * In bond_xmit_xor() , we determine the output device by using a pre- 4017 * determined xmit_hash_policy(), If the selected device is not enabled, 4018 * find the next active slave. 4019 */ 4020 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4021 { 4022 struct bonding *bond = netdev_priv(bond_dev); 4023 struct slave *slave, *start_at; 4024 int slave_no; 4025 int i; 4026 int res = 1; 4027 4028 slave_no = bond->xmit_hash_policy(skb, bond->slave_cnt); 4029 4030 bond_for_each_slave(bond, slave, i) { 4031 slave_no--; 4032 if (slave_no < 0) 4033 break; 4034 } 4035 4036 start_at = slave; 4037 4038 bond_for_each_slave_from(bond, slave, i, start_at) { 4039 if (IS_UP(slave->dev) && 4040 (slave->link == BOND_LINK_UP) && 4041 bond_is_active_slave(slave)) { 4042 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4043 break; 4044 } 4045 } 4046 4047 if (res) { 4048 /* no suitable interface, frame not sent */ 4049 kfree_skb(skb); 4050 } 4051 4052 return NETDEV_TX_OK; 4053 } 4054 4055 /* 4056 * in broadcast mode, we send everything to all usable interfaces. 4057 */ 4058 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4059 { 4060 struct bonding *bond = netdev_priv(bond_dev); 4061 struct slave *slave, *start_at; 4062 struct net_device *tx_dev = NULL; 4063 int i; 4064 int res = 1; 4065 4066 read_lock(&bond->curr_slave_lock); 4067 start_at = bond->curr_active_slave; 4068 read_unlock(&bond->curr_slave_lock); 4069 4070 if (!start_at) 4071 goto out; 4072 4073 bond_for_each_slave_from(bond, slave, i, start_at) { 4074 if (IS_UP(slave->dev) && 4075 (slave->link == BOND_LINK_UP) && 4076 bond_is_active_slave(slave)) { 4077 if (tx_dev) { 4078 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4079 if (!skb2) { 4080 pr_err("%s: Error: bond_xmit_broadcast(): skb_clone() failed\n", 4081 bond_dev->name); 4082 continue; 4083 } 4084 4085 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4086 if (res) { 4087 kfree_skb(skb2); 4088 continue; 4089 } 4090 } 4091 tx_dev = slave->dev; 4092 } 4093 } 4094 4095 if (tx_dev) 4096 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4097 4098 out: 4099 if (res) 4100 /* no suitable interface, frame not sent */ 4101 kfree_skb(skb); 4102 4103 /* frame sent to all suitable interfaces */ 4104 return NETDEV_TX_OK; 4105 } 4106 4107 /*------------------------- Device initialization ---------------------------*/ 4108 4109 static void bond_set_xmit_hash_policy(struct bonding *bond) 4110 { 4111 switch (bond->params.xmit_policy) { 4112 case BOND_XMIT_POLICY_LAYER23: 4113 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4114 break; 4115 case BOND_XMIT_POLICY_LAYER34: 4116 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4117 break; 4118 case BOND_XMIT_POLICY_LAYER2: 4119 default: 4120 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4121 break; 4122 } 4123 } 4124 4125 /* 4126 * Lookup the slave that corresponds to a qid 4127 */ 4128 static inline int bond_slave_override(struct bonding *bond, 4129 struct sk_buff *skb) 4130 { 4131 int i, res = 1; 4132 struct slave *slave = NULL; 4133 struct slave *check_slave; 4134 4135 if (!skb->queue_mapping) 4136 return 1; 4137 4138 /* Find out if any slaves have the same mapping as this skb. */ 4139 bond_for_each_slave(bond, check_slave, i) { 4140 if (check_slave->queue_id == skb->queue_mapping) { 4141 slave = check_slave; 4142 break; 4143 } 4144 } 4145 4146 /* If the slave isn't UP, use default transmit policy. */ 4147 if (slave && slave->queue_id && IS_UP(slave->dev) && 4148 (slave->link == BOND_LINK_UP)) { 4149 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4150 } 4151 4152 return res; 4153 } 4154 4155 4156 static u16 bond_select_queue(struct net_device *dev, struct sk_buff *skb) 4157 { 4158 /* 4159 * This helper function exists to help dev_pick_tx get the correct 4160 * destination queue. Using a helper function skips a call to 4161 * skb_tx_hash and will put the skbs in the queue we expect on their 4162 * way down to the bonding driver. 4163 */ 4164 u16 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0; 4165 4166 /* 4167 * Save the original txq to restore before passing to the driver 4168 */ 4169 qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping; 4170 4171 if (unlikely(txq >= dev->real_num_tx_queues)) { 4172 do { 4173 txq -= dev->real_num_tx_queues; 4174 } while (txq >= dev->real_num_tx_queues); 4175 } 4176 return txq; 4177 } 4178 4179 static netdev_tx_t __bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4180 { 4181 struct bonding *bond = netdev_priv(dev); 4182 4183 if (TX_QUEUE_OVERRIDE(bond->params.mode)) { 4184 if (!bond_slave_override(bond, skb)) 4185 return NETDEV_TX_OK; 4186 } 4187 4188 switch (bond->params.mode) { 4189 case BOND_MODE_ROUNDROBIN: 4190 return bond_xmit_roundrobin(skb, dev); 4191 case BOND_MODE_ACTIVEBACKUP: 4192 return bond_xmit_activebackup(skb, dev); 4193 case BOND_MODE_XOR: 4194 return bond_xmit_xor(skb, dev); 4195 case BOND_MODE_BROADCAST: 4196 return bond_xmit_broadcast(skb, dev); 4197 case BOND_MODE_8023AD: 4198 return bond_3ad_xmit_xor(skb, dev); 4199 case BOND_MODE_ALB: 4200 case BOND_MODE_TLB: 4201 return bond_alb_xmit(skb, dev); 4202 default: 4203 /* Should never happen, mode already checked */ 4204 pr_err("%s: Error: Unknown bonding mode %d\n", 4205 dev->name, bond->params.mode); 4206 WARN_ON_ONCE(1); 4207 kfree_skb(skb); 4208 return NETDEV_TX_OK; 4209 } 4210 } 4211 4212 static netdev_tx_t bond_start_xmit(struct sk_buff *skb, struct net_device *dev) 4213 { 4214 struct bonding *bond = netdev_priv(dev); 4215 netdev_tx_t ret = NETDEV_TX_OK; 4216 4217 /* 4218 * If we risk deadlock from transmitting this in the 4219 * netpoll path, tell netpoll to queue the frame for later tx 4220 */ 4221 if (is_netpoll_tx_blocked(dev)) 4222 return NETDEV_TX_BUSY; 4223 4224 read_lock(&bond->lock); 4225 4226 if (bond->slave_cnt) 4227 ret = __bond_start_xmit(skb, dev); 4228 else 4229 kfree_skb(skb); 4230 4231 read_unlock(&bond->lock); 4232 4233 return ret; 4234 } 4235 4236 /* 4237 * set bond mode specific net device operations 4238 */ 4239 void bond_set_mode_ops(struct bonding *bond, int mode) 4240 { 4241 struct net_device *bond_dev = bond->dev; 4242 4243 switch (mode) { 4244 case BOND_MODE_ROUNDROBIN: 4245 break; 4246 case BOND_MODE_ACTIVEBACKUP: 4247 break; 4248 case BOND_MODE_XOR: 4249 bond_set_xmit_hash_policy(bond); 4250 break; 4251 case BOND_MODE_BROADCAST: 4252 break; 4253 case BOND_MODE_8023AD: 4254 bond_set_xmit_hash_policy(bond); 4255 break; 4256 case BOND_MODE_ALB: 4257 /* FALLTHRU */ 4258 case BOND_MODE_TLB: 4259 break; 4260 default: 4261 /* Should never happen, mode already checked */ 4262 pr_err("%s: Error: Unknown bonding mode %d\n", 4263 bond_dev->name, mode); 4264 break; 4265 } 4266 } 4267 4268 static int bond_ethtool_get_settings(struct net_device *bond_dev, 4269 struct ethtool_cmd *ecmd) 4270 { 4271 struct bonding *bond = netdev_priv(bond_dev); 4272 struct slave *slave; 4273 int i; 4274 unsigned long speed = 0; 4275 4276 ecmd->duplex = DUPLEX_UNKNOWN; 4277 ecmd->port = PORT_OTHER; 4278 4279 /* Since SLAVE_IS_OK returns false for all inactive or down slaves, we 4280 * do not need to check mode. Though link speed might not represent 4281 * the true receive or transmit bandwidth (not all modes are symmetric) 4282 * this is an accurate maximum. 4283 */ 4284 read_lock(&bond->lock); 4285 bond_for_each_slave(bond, slave, i) { 4286 if (SLAVE_IS_OK(slave)) { 4287 if (slave->speed != SPEED_UNKNOWN) 4288 speed += slave->speed; 4289 if (ecmd->duplex == DUPLEX_UNKNOWN && 4290 slave->duplex != DUPLEX_UNKNOWN) 4291 ecmd->duplex = slave->duplex; 4292 } 4293 } 4294 ethtool_cmd_speed_set(ecmd, speed ? : SPEED_UNKNOWN); 4295 read_unlock(&bond->lock); 4296 return 0; 4297 } 4298 4299 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4300 struct ethtool_drvinfo *drvinfo) 4301 { 4302 strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver)); 4303 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); 4304 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), "%d", 4305 BOND_ABI_VERSION); 4306 } 4307 4308 static const struct ethtool_ops bond_ethtool_ops = { 4309 .get_drvinfo = bond_ethtool_get_drvinfo, 4310 .get_settings = bond_ethtool_get_settings, 4311 .get_link = ethtool_op_get_link, 4312 }; 4313 4314 static const struct net_device_ops bond_netdev_ops = { 4315 .ndo_init = bond_init, 4316 .ndo_uninit = bond_uninit, 4317 .ndo_open = bond_open, 4318 .ndo_stop = bond_close, 4319 .ndo_start_xmit = bond_start_xmit, 4320 .ndo_select_queue = bond_select_queue, 4321 .ndo_get_stats64 = bond_get_stats, 4322 .ndo_do_ioctl = bond_do_ioctl, 4323 .ndo_change_rx_flags = bond_change_rx_flags, 4324 .ndo_set_rx_mode = bond_set_multicast_list, 4325 .ndo_change_mtu = bond_change_mtu, 4326 .ndo_set_mac_address = bond_set_mac_address, 4327 .ndo_neigh_setup = bond_neigh_setup, 4328 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid, 4329 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid, 4330 #ifdef CONFIG_NET_POLL_CONTROLLER 4331 .ndo_netpoll_setup = bond_netpoll_setup, 4332 .ndo_netpoll_cleanup = bond_netpoll_cleanup, 4333 .ndo_poll_controller = bond_poll_controller, 4334 #endif 4335 .ndo_add_slave = bond_enslave, 4336 .ndo_del_slave = bond_release, 4337 .ndo_fix_features = bond_fix_features, 4338 }; 4339 4340 static const struct device_type bond_type = { 4341 .name = "bond", 4342 }; 4343 4344 static void bond_destructor(struct net_device *bond_dev) 4345 { 4346 struct bonding *bond = netdev_priv(bond_dev); 4347 if (bond->wq) 4348 destroy_workqueue(bond->wq); 4349 free_netdev(bond_dev); 4350 } 4351 4352 static void bond_setup(struct net_device *bond_dev) 4353 { 4354 struct bonding *bond = netdev_priv(bond_dev); 4355 4356 /* initialize rwlocks */ 4357 rwlock_init(&bond->lock); 4358 rwlock_init(&bond->curr_slave_lock); 4359 4360 bond->params = bonding_defaults; 4361 4362 /* Initialize pointers */ 4363 bond->dev = bond_dev; 4364 INIT_LIST_HEAD(&bond->vlan_list); 4365 4366 /* Initialize the device entry points */ 4367 ether_setup(bond_dev); 4368 bond_dev->netdev_ops = &bond_netdev_ops; 4369 bond_dev->ethtool_ops = &bond_ethtool_ops; 4370 bond_set_mode_ops(bond, bond->params.mode); 4371 4372 bond_dev->destructor = bond_destructor; 4373 4374 SET_NETDEV_DEVTYPE(bond_dev, &bond_type); 4375 4376 /* Initialize the device options */ 4377 bond_dev->tx_queue_len = 0; 4378 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4379 bond_dev->priv_flags |= IFF_BONDING; 4380 bond_dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING); 4381 4382 /* At first, we block adding VLANs. That's the only way to 4383 * prevent problems that occur when adding VLANs over an 4384 * empty bond. The block will be removed once non-challenged 4385 * slaves are enslaved. 4386 */ 4387 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4388 4389 /* don't acquire bond device's netif_tx_lock when 4390 * transmitting */ 4391 bond_dev->features |= NETIF_F_LLTX; 4392 4393 /* By default, we declare the bond to be fully 4394 * VLAN hardware accelerated capable. Special 4395 * care is taken in the various xmit functions 4396 * when there are slaves that are not hw accel 4397 * capable 4398 */ 4399 4400 bond_dev->hw_features = BOND_VLAN_FEATURES | 4401 NETIF_F_HW_VLAN_CTAG_TX | 4402 NETIF_F_HW_VLAN_CTAG_RX | 4403 NETIF_F_HW_VLAN_CTAG_FILTER; 4404 4405 bond_dev->hw_features &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_HW_CSUM); 4406 bond_dev->features |= bond_dev->hw_features; 4407 } 4408 4409 /* 4410 * Destroy a bonding device. 4411 * Must be under rtnl_lock when this function is called. 4412 */ 4413 static void bond_uninit(struct net_device *bond_dev) 4414 { 4415 struct bonding *bond = netdev_priv(bond_dev); 4416 struct vlan_entry *vlan, *tmp; 4417 4418 bond_netpoll_cleanup(bond_dev); 4419 4420 /* Release the bonded slaves */ 4421 while (bond->first_slave != NULL) 4422 __bond_release_one(bond_dev, bond->first_slave->dev, true); 4423 pr_info("%s: released all slaves\n", bond_dev->name); 4424 4425 list_del(&bond->bond_list); 4426 4427 bond_debug_unregister(bond); 4428 4429 __hw_addr_flush(&bond->mc_list); 4430 4431 list_for_each_entry_safe(vlan, tmp, &bond->vlan_list, vlan_list) { 4432 list_del(&vlan->vlan_list); 4433 kfree(vlan); 4434 } 4435 } 4436 4437 /*------------------------- Module initialization ---------------------------*/ 4438 4439 /* 4440 * Convert string input module parms. Accept either the 4441 * number of the mode or its string name. A bit complicated because 4442 * some mode names are substrings of other names, and calls from sysfs 4443 * may have whitespace in the name (trailing newlines, for example). 4444 */ 4445 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl) 4446 { 4447 int modeint = -1, i, rv; 4448 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4449 4450 for (p = (char *)buf; *p; p++) 4451 if (!(isdigit(*p) || isspace(*p))) 4452 break; 4453 4454 if (*p) 4455 rv = sscanf(buf, "%20s", modestr); 4456 else 4457 rv = sscanf(buf, "%d", &modeint); 4458 4459 if (!rv) 4460 return -1; 4461 4462 for (i = 0; tbl[i].modename; i++) { 4463 if (modeint == tbl[i].mode) 4464 return tbl[i].mode; 4465 if (strcmp(modestr, tbl[i].modename) == 0) 4466 return tbl[i].mode; 4467 } 4468 4469 return -1; 4470 } 4471 4472 static int bond_check_params(struct bond_params *params) 4473 { 4474 int arp_validate_value, fail_over_mac_value, primary_reselect_value, i; 4475 4476 /* 4477 * Convert string parameters. 4478 */ 4479 if (mode) { 4480 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4481 if (bond_mode == -1) { 4482 pr_err("Error: Invalid bonding mode \"%s\"\n", 4483 mode == NULL ? "NULL" : mode); 4484 return -EINVAL; 4485 } 4486 } 4487 4488 if (xmit_hash_policy) { 4489 if ((bond_mode != BOND_MODE_XOR) && 4490 (bond_mode != BOND_MODE_8023AD)) { 4491 pr_info("xmit_hash_policy param is irrelevant in mode %s\n", 4492 bond_mode_name(bond_mode)); 4493 } else { 4494 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4495 xmit_hashtype_tbl); 4496 if (xmit_hashtype == -1) { 4497 pr_err("Error: Invalid xmit_hash_policy \"%s\"\n", 4498 xmit_hash_policy == NULL ? "NULL" : 4499 xmit_hash_policy); 4500 return -EINVAL; 4501 } 4502 } 4503 } 4504 4505 if (lacp_rate) { 4506 if (bond_mode != BOND_MODE_8023AD) { 4507 pr_info("lacp_rate param is irrelevant in mode %s\n", 4508 bond_mode_name(bond_mode)); 4509 } else { 4510 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4511 if (lacp_fast == -1) { 4512 pr_err("Error: Invalid lacp rate \"%s\"\n", 4513 lacp_rate == NULL ? "NULL" : lacp_rate); 4514 return -EINVAL; 4515 } 4516 } 4517 } 4518 4519 if (ad_select) { 4520 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl); 4521 if (params->ad_select == -1) { 4522 pr_err("Error: Invalid ad_select \"%s\"\n", 4523 ad_select == NULL ? "NULL" : ad_select); 4524 return -EINVAL; 4525 } 4526 4527 if (bond_mode != BOND_MODE_8023AD) { 4528 pr_warning("ad_select param only affects 802.3ad mode\n"); 4529 } 4530 } else { 4531 params->ad_select = BOND_AD_STABLE; 4532 } 4533 4534 if (max_bonds < 0) { 4535 pr_warning("Warning: max_bonds (%d) not in range %d-%d, so it was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4536 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4537 max_bonds = BOND_DEFAULT_MAX_BONDS; 4538 } 4539 4540 if (miimon < 0) { 4541 pr_warning("Warning: miimon module parameter (%d), not in range 0-%d, so it was reset to %d\n", 4542 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4543 miimon = BOND_LINK_MON_INTERV; 4544 } 4545 4546 if (updelay < 0) { 4547 pr_warning("Warning: updelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4548 updelay, INT_MAX); 4549 updelay = 0; 4550 } 4551 4552 if (downdelay < 0) { 4553 pr_warning("Warning: downdelay module parameter (%d), not in range 0-%d, so it was reset to 0\n", 4554 downdelay, INT_MAX); 4555 downdelay = 0; 4556 } 4557 4558 if ((use_carrier != 0) && (use_carrier != 1)) { 4559 pr_warning("Warning: use_carrier module parameter (%d), not of valid value (0/1), so it was set to 1\n", 4560 use_carrier); 4561 use_carrier = 1; 4562 } 4563 4564 if (num_peer_notif < 0 || num_peer_notif > 255) { 4565 pr_warning("Warning: num_grat_arp/num_unsol_na (%d) not in range 0-255 so it was reset to 1\n", 4566 num_peer_notif); 4567 num_peer_notif = 1; 4568 } 4569 4570 /* reset values for 802.3ad */ 4571 if (bond_mode == BOND_MODE_8023AD) { 4572 if (!miimon) { 4573 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure, speed and duplex which are essential for 802.3ad operation\n"); 4574 pr_warning("Forcing miimon to 100msec\n"); 4575 miimon = 100; 4576 } 4577 } 4578 4579 if (tx_queues < 1 || tx_queues > 255) { 4580 pr_warning("Warning: tx_queues (%d) should be between " 4581 "1 and 255, resetting to %d\n", 4582 tx_queues, BOND_DEFAULT_TX_QUEUES); 4583 tx_queues = BOND_DEFAULT_TX_QUEUES; 4584 } 4585 4586 if ((all_slaves_active != 0) && (all_slaves_active != 1)) { 4587 pr_warning("Warning: all_slaves_active module parameter (%d), " 4588 "not of valid value (0/1), so it was set to " 4589 "0\n", all_slaves_active); 4590 all_slaves_active = 0; 4591 } 4592 4593 if (resend_igmp < 0 || resend_igmp > 255) { 4594 pr_warning("Warning: resend_igmp (%d) should be between " 4595 "0 and 255, resetting to %d\n", 4596 resend_igmp, BOND_DEFAULT_RESEND_IGMP); 4597 resend_igmp = BOND_DEFAULT_RESEND_IGMP; 4598 } 4599 4600 /* reset values for TLB/ALB */ 4601 if ((bond_mode == BOND_MODE_TLB) || 4602 (bond_mode == BOND_MODE_ALB)) { 4603 if (!miimon) { 4604 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure and link speed which are essential for TLB/ALB load balancing\n"); 4605 pr_warning("Forcing miimon to 100msec\n"); 4606 miimon = 100; 4607 } 4608 } 4609 4610 if (bond_mode == BOND_MODE_ALB) { 4611 pr_notice("In ALB mode you might experience client disconnections upon reconnection of a link if the bonding module updelay parameter (%d msec) is incompatible with the forwarding delay time of the switch\n", 4612 updelay); 4613 } 4614 4615 if (!miimon) { 4616 if (updelay || downdelay) { 4617 /* just warn the user the up/down delay will have 4618 * no effect since miimon is zero... 4619 */ 4620 pr_warning("Warning: miimon module parameter not set and updelay (%d) or downdelay (%d) module parameter is set; updelay and downdelay have no effect unless miimon is set\n", 4621 updelay, downdelay); 4622 } 4623 } else { 4624 /* don't allow arp monitoring */ 4625 if (arp_interval) { 4626 pr_warning("Warning: miimon (%d) and arp_interval (%d) can't be used simultaneously, disabling ARP monitoring\n", 4627 miimon, arp_interval); 4628 arp_interval = 0; 4629 } 4630 4631 if ((updelay % miimon) != 0) { 4632 pr_warning("Warning: updelay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n", 4633 updelay, miimon, 4634 (updelay / miimon) * miimon); 4635 } 4636 4637 updelay /= miimon; 4638 4639 if ((downdelay % miimon) != 0) { 4640 pr_warning("Warning: downdelay (%d) is not a multiple of miimon (%d), downdelay rounded to %d ms\n", 4641 downdelay, miimon, 4642 (downdelay / miimon) * miimon); 4643 } 4644 4645 downdelay /= miimon; 4646 } 4647 4648 if (arp_interval < 0) { 4649 pr_warning("Warning: arp_interval module parameter (%d) , not in range 0-%d, so it was reset to %d\n", 4650 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4651 arp_interval = BOND_LINK_ARP_INTERV; 4652 } 4653 4654 for (arp_ip_count = 0, i = 0; 4655 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[i]; i++) { 4656 /* not complete check, but should be good enough to 4657 catch mistakes */ 4658 __be32 ip = in_aton(arp_ip_target[i]); 4659 if (!isdigit(arp_ip_target[i][0]) || ip == 0 || 4660 ip == htonl(INADDR_BROADCAST)) { 4661 pr_warning("Warning: bad arp_ip_target module parameter (%s), ARP monitoring will not be performed\n", 4662 arp_ip_target[i]); 4663 arp_interval = 0; 4664 } else { 4665 arp_target[arp_ip_count++] = ip; 4666 } 4667 } 4668 4669 if (arp_interval && !arp_ip_count) { 4670 /* don't allow arping if no arp_ip_target given... */ 4671 pr_warning("Warning: arp_interval module parameter (%d) specified without providing an arp_ip_target parameter, arp_interval was reset to 0\n", 4672 arp_interval); 4673 arp_interval = 0; 4674 } 4675 4676 if (arp_validate) { 4677 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4678 pr_err("arp_validate only supported in active-backup mode\n"); 4679 return -EINVAL; 4680 } 4681 if (!arp_interval) { 4682 pr_err("arp_validate requires arp_interval\n"); 4683 return -EINVAL; 4684 } 4685 4686 arp_validate_value = bond_parse_parm(arp_validate, 4687 arp_validate_tbl); 4688 if (arp_validate_value == -1) { 4689 pr_err("Error: invalid arp_validate \"%s\"\n", 4690 arp_validate == NULL ? "NULL" : arp_validate); 4691 return -EINVAL; 4692 } 4693 } else 4694 arp_validate_value = 0; 4695 4696 if (miimon) { 4697 pr_info("MII link monitoring set to %d ms\n", miimon); 4698 } else if (arp_interval) { 4699 pr_info("ARP monitoring set to %d ms, validate %s, with %d target(s):", 4700 arp_interval, 4701 arp_validate_tbl[arp_validate_value].modename, 4702 arp_ip_count); 4703 4704 for (i = 0; i < arp_ip_count; i++) 4705 pr_info(" %s", arp_ip_target[i]); 4706 4707 pr_info("\n"); 4708 4709 } else if (max_bonds) { 4710 /* miimon and arp_interval not set, we need one so things 4711 * work as expected, see bonding.txt for details 4712 */ 4713 pr_debug("Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details.\n"); 4714 } 4715 4716 if (primary && !USES_PRIMARY(bond_mode)) { 4717 /* currently, using a primary only makes sense 4718 * in active backup, TLB or ALB modes 4719 */ 4720 pr_warning("Warning: %s primary device specified but has no effect in %s mode\n", 4721 primary, bond_mode_name(bond_mode)); 4722 primary = NULL; 4723 } 4724 4725 if (primary && primary_reselect) { 4726 primary_reselect_value = bond_parse_parm(primary_reselect, 4727 pri_reselect_tbl); 4728 if (primary_reselect_value == -1) { 4729 pr_err("Error: Invalid primary_reselect \"%s\"\n", 4730 primary_reselect == 4731 NULL ? "NULL" : primary_reselect); 4732 return -EINVAL; 4733 } 4734 } else { 4735 primary_reselect_value = BOND_PRI_RESELECT_ALWAYS; 4736 } 4737 4738 if (fail_over_mac) { 4739 fail_over_mac_value = bond_parse_parm(fail_over_mac, 4740 fail_over_mac_tbl); 4741 if (fail_over_mac_value == -1) { 4742 pr_err("Error: invalid fail_over_mac \"%s\"\n", 4743 arp_validate == NULL ? "NULL" : arp_validate); 4744 return -EINVAL; 4745 } 4746 4747 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 4748 pr_warning("Warning: fail_over_mac only affects active-backup mode.\n"); 4749 } else { 4750 fail_over_mac_value = BOND_FOM_NONE; 4751 } 4752 4753 /* fill params struct with the proper values */ 4754 params->mode = bond_mode; 4755 params->xmit_policy = xmit_hashtype; 4756 params->miimon = miimon; 4757 params->num_peer_notif = num_peer_notif; 4758 params->arp_interval = arp_interval; 4759 params->arp_validate = arp_validate_value; 4760 params->updelay = updelay; 4761 params->downdelay = downdelay; 4762 params->use_carrier = use_carrier; 4763 params->lacp_fast = lacp_fast; 4764 params->primary[0] = 0; 4765 params->primary_reselect = primary_reselect_value; 4766 params->fail_over_mac = fail_over_mac_value; 4767 params->tx_queues = tx_queues; 4768 params->all_slaves_active = all_slaves_active; 4769 params->resend_igmp = resend_igmp; 4770 params->min_links = min_links; 4771 4772 if (primary) { 4773 strncpy(params->primary, primary, IFNAMSIZ); 4774 params->primary[IFNAMSIZ - 1] = 0; 4775 } 4776 4777 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 4778 4779 return 0; 4780 } 4781 4782 static struct lock_class_key bonding_netdev_xmit_lock_key; 4783 static struct lock_class_key bonding_netdev_addr_lock_key; 4784 static struct lock_class_key bonding_tx_busylock_key; 4785 4786 static void bond_set_lockdep_class_one(struct net_device *dev, 4787 struct netdev_queue *txq, 4788 void *_unused) 4789 { 4790 lockdep_set_class(&txq->_xmit_lock, 4791 &bonding_netdev_xmit_lock_key); 4792 } 4793 4794 static void bond_set_lockdep_class(struct net_device *dev) 4795 { 4796 lockdep_set_class(&dev->addr_list_lock, 4797 &bonding_netdev_addr_lock_key); 4798 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 4799 dev->qdisc_tx_busylock = &bonding_tx_busylock_key; 4800 } 4801 4802 /* 4803 * Called from registration process 4804 */ 4805 static int bond_init(struct net_device *bond_dev) 4806 { 4807 struct bonding *bond = netdev_priv(bond_dev); 4808 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id); 4809 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 4810 4811 pr_debug("Begin bond_init for %s\n", bond_dev->name); 4812 4813 /* 4814 * Initialize locks that may be required during 4815 * en/deslave operations. All of the bond_open work 4816 * (of which this is part) should really be moved to 4817 * a phase prior to dev_open 4818 */ 4819 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 4820 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 4821 4822 bond->wq = create_singlethread_workqueue(bond_dev->name); 4823 if (!bond->wq) 4824 return -ENOMEM; 4825 4826 bond_set_lockdep_class(bond_dev); 4827 4828 list_add_tail(&bond->bond_list, &bn->dev_list); 4829 4830 bond_prepare_sysfs_group(bond); 4831 4832 bond_debug_register(bond); 4833 4834 /* Ensure valid dev_addr */ 4835 if (is_zero_ether_addr(bond_dev->dev_addr) && 4836 bond_dev->addr_assign_type == NET_ADDR_PERM) { 4837 eth_hw_addr_random(bond_dev); 4838 bond->dev_addr_from_first = true; 4839 } 4840 4841 __hw_addr_init(&bond->mc_list); 4842 return 0; 4843 } 4844 4845 static int bond_validate(struct nlattr *tb[], struct nlattr *data[]) 4846 { 4847 if (tb[IFLA_ADDRESS]) { 4848 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 4849 return -EINVAL; 4850 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 4851 return -EADDRNOTAVAIL; 4852 } 4853 return 0; 4854 } 4855 4856 static unsigned int bond_get_num_tx_queues(void) 4857 { 4858 return tx_queues; 4859 } 4860 4861 static struct rtnl_link_ops bond_link_ops __read_mostly = { 4862 .kind = "bond", 4863 .priv_size = sizeof(struct bonding), 4864 .setup = bond_setup, 4865 .validate = bond_validate, 4866 .get_num_tx_queues = bond_get_num_tx_queues, 4867 .get_num_rx_queues = bond_get_num_tx_queues, /* Use the same number 4868 as for TX queues */ 4869 }; 4870 4871 /* Create a new bond based on the specified name and bonding parameters. 4872 * If name is NULL, obtain a suitable "bond%d" name for us. 4873 * Caller must NOT hold rtnl_lock; we need to release it here before we 4874 * set up our sysfs entries. 4875 */ 4876 int bond_create(struct net *net, const char *name) 4877 { 4878 struct net_device *bond_dev; 4879 int res; 4880 4881 rtnl_lock(); 4882 4883 bond_dev = alloc_netdev_mq(sizeof(struct bonding), 4884 name ? name : "bond%d", 4885 bond_setup, tx_queues); 4886 if (!bond_dev) { 4887 pr_err("%s: eek! can't alloc netdev!\n", name); 4888 rtnl_unlock(); 4889 return -ENOMEM; 4890 } 4891 4892 dev_net_set(bond_dev, net); 4893 bond_dev->rtnl_link_ops = &bond_link_ops; 4894 4895 res = register_netdevice(bond_dev); 4896 4897 netif_carrier_off(bond_dev); 4898 4899 rtnl_unlock(); 4900 if (res < 0) 4901 bond_destructor(bond_dev); 4902 return res; 4903 } 4904 4905 static int __net_init bond_net_init(struct net *net) 4906 { 4907 struct bond_net *bn = net_generic(net, bond_net_id); 4908 4909 bn->net = net; 4910 INIT_LIST_HEAD(&bn->dev_list); 4911 4912 bond_create_proc_dir(bn); 4913 bond_create_sysfs(bn); 4914 4915 return 0; 4916 } 4917 4918 static void __net_exit bond_net_exit(struct net *net) 4919 { 4920 struct bond_net *bn = net_generic(net, bond_net_id); 4921 struct bonding *bond, *tmp_bond; 4922 LIST_HEAD(list); 4923 4924 bond_destroy_sysfs(bn); 4925 bond_destroy_proc_dir(bn); 4926 4927 /* Kill off any bonds created after unregistering bond rtnl ops */ 4928 rtnl_lock(); 4929 list_for_each_entry_safe(bond, tmp_bond, &bn->dev_list, bond_list) 4930 unregister_netdevice_queue(bond->dev, &list); 4931 unregister_netdevice_many(&list); 4932 rtnl_unlock(); 4933 } 4934 4935 static struct pernet_operations bond_net_ops = { 4936 .init = bond_net_init, 4937 .exit = bond_net_exit, 4938 .id = &bond_net_id, 4939 .size = sizeof(struct bond_net), 4940 }; 4941 4942 static int __init bonding_init(void) 4943 { 4944 int i; 4945 int res; 4946 4947 pr_info("%s", bond_version); 4948 4949 res = bond_check_params(&bonding_defaults); 4950 if (res) 4951 goto out; 4952 4953 res = register_pernet_subsys(&bond_net_ops); 4954 if (res) 4955 goto out; 4956 4957 res = rtnl_link_register(&bond_link_ops); 4958 if (res) 4959 goto err_link; 4960 4961 bond_create_debugfs(); 4962 4963 for (i = 0; i < max_bonds; i++) { 4964 res = bond_create(&init_net, NULL); 4965 if (res) 4966 goto err; 4967 } 4968 4969 register_netdevice_notifier(&bond_netdev_notifier); 4970 out: 4971 return res; 4972 err: 4973 rtnl_link_unregister(&bond_link_ops); 4974 err_link: 4975 unregister_pernet_subsys(&bond_net_ops); 4976 goto out; 4977 4978 } 4979 4980 static void __exit bonding_exit(void) 4981 { 4982 unregister_netdevice_notifier(&bond_netdev_notifier); 4983 4984 bond_destroy_debugfs(); 4985 4986 rtnl_link_unregister(&bond_link_ops); 4987 unregister_pernet_subsys(&bond_net_ops); 4988 4989 #ifdef CONFIG_NET_POLL_CONTROLLER 4990 /* 4991 * Make sure we don't have an imbalance on our netpoll blocking 4992 */ 4993 WARN_ON(atomic_read(&netpoll_block_tx)); 4994 #endif 4995 } 4996 4997 module_init(bonding_init); 4998 module_exit(bonding_exit); 4999 MODULE_LICENSE("GPL"); 5000 MODULE_VERSION(DRV_VERSION); 5001 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5002 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5003 MODULE_ALIAS_RTNL_LINK("bond"); 5004