1 /* 2 * originally based on the dummy device. 3 * 4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov. 5 * Licensed under the GPL. Based on dummy.c, and eql.c devices. 6 * 7 * bonding.c: an Ethernet Bonding driver 8 * 9 * This is useful to talk to a Cisco EtherChannel compatible equipment: 10 * Cisco 5500 11 * Sun Trunking (Solaris) 12 * Alteon AceDirector Trunks 13 * Linux Bonding 14 * and probably many L2 switches ... 15 * 16 * How it works: 17 * ifconfig bond0 ipaddress netmask up 18 * will setup a network device, with an ip address. No mac address 19 * will be assigned at this time. The hw mac address will come from 20 * the first slave bonded to the channel. All slaves will then use 21 * this hw mac address. 22 * 23 * ifconfig bond0 down 24 * will release all slaves, marking them as down. 25 * 26 * ifenslave bond0 eth0 27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either 28 * a: be used as initial mac address 29 * b: if a hw mac address already is there, eth0's hw mac address 30 * will then be set from bond0. 31 * 32 */ 33 34 //#define BONDING_DEBUG 1 35 36 #include <linux/kernel.h> 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/fcntl.h> 40 #include <linux/interrupt.h> 41 #include <linux/ptrace.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <net/ip.h> 45 #include <linux/ip.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/slab.h> 49 #include <linux/string.h> 50 #include <linux/init.h> 51 #include <linux/timer.h> 52 #include <linux/socket.h> 53 #include <linux/ctype.h> 54 #include <linux/inet.h> 55 #include <linux/bitops.h> 56 #include <asm/system.h> 57 #include <asm/io.h> 58 #include <asm/dma.h> 59 #include <asm/uaccess.h> 60 #include <linux/errno.h> 61 #include <linux/netdevice.h> 62 #include <linux/inetdevice.h> 63 #include <linux/igmp.h> 64 #include <linux/etherdevice.h> 65 #include <linux/skbuff.h> 66 #include <net/sock.h> 67 #include <linux/rtnetlink.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/smp.h> 71 #include <linux/if_ether.h> 72 #include <net/arp.h> 73 #include <linux/mii.h> 74 #include <linux/ethtool.h> 75 #include <linux/if_vlan.h> 76 #include <linux/if_bonding.h> 77 #include <linux/jiffies.h> 78 #include <net/route.h> 79 #include <net/net_namespace.h> 80 #include "bonding.h" 81 #include "bond_3ad.h" 82 #include "bond_alb.h" 83 84 /*---------------------------- Module parameters ----------------------------*/ 85 86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */ 87 #define BOND_LINK_MON_INTERV 0 88 #define BOND_LINK_ARP_INTERV 0 89 90 static int max_bonds = BOND_DEFAULT_MAX_BONDS; 91 static int num_grat_arp = 1; 92 static int miimon = BOND_LINK_MON_INTERV; 93 static int updelay = 0; 94 static int downdelay = 0; 95 static int use_carrier = 1; 96 static char *mode = NULL; 97 static char *primary = NULL; 98 static char *lacp_rate = NULL; 99 static char *xmit_hash_policy = NULL; 100 static int arp_interval = BOND_LINK_ARP_INTERV; 101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; 102 static char *arp_validate = NULL; 103 static char *fail_over_mac = NULL; 104 struct bond_params bonding_defaults; 105 106 module_param(max_bonds, int, 0); 107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); 108 module_param(num_grat_arp, int, 0644); 109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event"); 110 module_param(miimon, int, 0); 111 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); 112 module_param(updelay, int, 0); 113 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); 114 module_param(downdelay, int, 0); 115 MODULE_PARM_DESC(downdelay, "Delay before considering link down, " 116 "in milliseconds"); 117 module_param(use_carrier, int, 0); 118 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " 119 "0 for off, 1 for on (default)"); 120 module_param(mode, charp, 0); 121 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " 122 "1 for active-backup, 2 for balance-xor, " 123 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " 124 "6 for balance-alb"); 125 module_param(primary, charp, 0); 126 MODULE_PARM_DESC(primary, "Primary network device to use"); 127 module_param(lacp_rate, charp, 0); 128 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " 129 "(slow/fast)"); 130 module_param(xmit_hash_policy, charp, 0); 131 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" 132 ", 1 for layer 3+4"); 133 module_param(arp_interval, int, 0); 134 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); 135 module_param_array(arp_ip_target, charp, NULL, 0); 136 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); 137 module_param(arp_validate, charp, 0); 138 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); 139 module_param(fail_over_mac, charp, 0); 140 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow"); 141 142 /*----------------------------- Global variables ----------------------------*/ 143 144 static const char * const version = 145 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; 146 147 LIST_HEAD(bond_dev_list); 148 149 #ifdef CONFIG_PROC_FS 150 static struct proc_dir_entry *bond_proc_dir = NULL; 151 #endif 152 153 extern struct rw_semaphore bonding_rwsem; 154 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; 155 static int arp_ip_count = 0; 156 static int bond_mode = BOND_MODE_ROUNDROBIN; 157 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; 158 static int lacp_fast = 0; 159 160 161 struct bond_parm_tbl bond_lacp_tbl[] = { 162 { "slow", AD_LACP_SLOW}, 163 { "fast", AD_LACP_FAST}, 164 { NULL, -1}, 165 }; 166 167 struct bond_parm_tbl bond_mode_tbl[] = { 168 { "balance-rr", BOND_MODE_ROUNDROBIN}, 169 { "active-backup", BOND_MODE_ACTIVEBACKUP}, 170 { "balance-xor", BOND_MODE_XOR}, 171 { "broadcast", BOND_MODE_BROADCAST}, 172 { "802.3ad", BOND_MODE_8023AD}, 173 { "balance-tlb", BOND_MODE_TLB}, 174 { "balance-alb", BOND_MODE_ALB}, 175 { NULL, -1}, 176 }; 177 178 struct bond_parm_tbl xmit_hashtype_tbl[] = { 179 { "layer2", BOND_XMIT_POLICY_LAYER2}, 180 { "layer3+4", BOND_XMIT_POLICY_LAYER34}, 181 { "layer2+3", BOND_XMIT_POLICY_LAYER23}, 182 { NULL, -1}, 183 }; 184 185 struct bond_parm_tbl arp_validate_tbl[] = { 186 { "none", BOND_ARP_VALIDATE_NONE}, 187 { "active", BOND_ARP_VALIDATE_ACTIVE}, 188 { "backup", BOND_ARP_VALIDATE_BACKUP}, 189 { "all", BOND_ARP_VALIDATE_ALL}, 190 { NULL, -1}, 191 }; 192 193 struct bond_parm_tbl fail_over_mac_tbl[] = { 194 { "none", BOND_FOM_NONE}, 195 { "active", BOND_FOM_ACTIVE}, 196 { "follow", BOND_FOM_FOLLOW}, 197 { NULL, -1}, 198 }; 199 200 /*-------------------------- Forward declarations ---------------------------*/ 201 202 static void bond_send_gratuitous_arp(struct bonding *bond); 203 static void bond_deinit(struct net_device *bond_dev); 204 205 /*---------------------------- General routines -----------------------------*/ 206 207 static const char *bond_mode_name(int mode) 208 { 209 switch (mode) { 210 case BOND_MODE_ROUNDROBIN : 211 return "load balancing (round-robin)"; 212 case BOND_MODE_ACTIVEBACKUP : 213 return "fault-tolerance (active-backup)"; 214 case BOND_MODE_XOR : 215 return "load balancing (xor)"; 216 case BOND_MODE_BROADCAST : 217 return "fault-tolerance (broadcast)"; 218 case BOND_MODE_8023AD: 219 return "IEEE 802.3ad Dynamic link aggregation"; 220 case BOND_MODE_TLB: 221 return "transmit load balancing"; 222 case BOND_MODE_ALB: 223 return "adaptive load balancing"; 224 default: 225 return "unknown"; 226 } 227 } 228 229 /*---------------------------------- VLAN -----------------------------------*/ 230 231 /** 232 * bond_add_vlan - add a new vlan id on bond 233 * @bond: bond that got the notification 234 * @vlan_id: the vlan id to add 235 * 236 * Returns -ENOMEM if allocation failed. 237 */ 238 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) 239 { 240 struct vlan_entry *vlan; 241 242 dprintk("bond: %s, vlan id %d\n", 243 (bond ? bond->dev->name: "None"), vlan_id); 244 245 vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL); 246 if (!vlan) { 247 return -ENOMEM; 248 } 249 250 INIT_LIST_HEAD(&vlan->vlan_list); 251 vlan->vlan_id = vlan_id; 252 vlan->vlan_ip = 0; 253 254 write_lock_bh(&bond->lock); 255 256 list_add_tail(&vlan->vlan_list, &bond->vlan_list); 257 258 write_unlock_bh(&bond->lock); 259 260 dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); 261 262 return 0; 263 } 264 265 /** 266 * bond_del_vlan - delete a vlan id from bond 267 * @bond: bond that got the notification 268 * @vlan_id: the vlan id to delete 269 * 270 * returns -ENODEV if @vlan_id was not found in @bond. 271 */ 272 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) 273 { 274 struct vlan_entry *vlan; 275 int res = -ENODEV; 276 277 dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); 278 279 write_lock_bh(&bond->lock); 280 281 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 282 if (vlan->vlan_id == vlan_id) { 283 list_del(&vlan->vlan_list); 284 285 if ((bond->params.mode == BOND_MODE_TLB) || 286 (bond->params.mode == BOND_MODE_ALB)) { 287 bond_alb_clear_vlan(bond, vlan_id); 288 } 289 290 dprintk("removed VLAN ID %d from bond %s\n", vlan_id, 291 bond->dev->name); 292 293 kfree(vlan); 294 295 if (list_empty(&bond->vlan_list) && 296 (bond->slave_cnt == 0)) { 297 /* Last VLAN removed and no slaves, so 298 * restore block on adding VLANs. This will 299 * be removed once new slaves that are not 300 * VLAN challenged will be added. 301 */ 302 bond->dev->features |= NETIF_F_VLAN_CHALLENGED; 303 } 304 305 res = 0; 306 goto out; 307 } 308 } 309 310 dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id, 311 bond->dev->name); 312 313 out: 314 write_unlock_bh(&bond->lock); 315 return res; 316 } 317 318 /** 319 * bond_has_challenged_slaves 320 * @bond: the bond we're working on 321 * 322 * Searches the slave list. Returns 1 if a vlan challenged slave 323 * was found, 0 otherwise. 324 * 325 * Assumes bond->lock is held. 326 */ 327 static int bond_has_challenged_slaves(struct bonding *bond) 328 { 329 struct slave *slave; 330 int i; 331 332 bond_for_each_slave(bond, slave, i) { 333 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { 334 dprintk("found VLAN challenged slave - %s\n", 335 slave->dev->name); 336 return 1; 337 } 338 } 339 340 dprintk("no VLAN challenged slaves found\n"); 341 return 0; 342 } 343 344 /** 345 * bond_next_vlan - safely skip to the next item in the vlans list. 346 * @bond: the bond we're working on 347 * @curr: item we're advancing from 348 * 349 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, 350 * or @curr->next otherwise (even if it is @curr itself again). 351 * 352 * Caller must hold bond->lock 353 */ 354 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) 355 { 356 struct vlan_entry *next, *last; 357 358 if (list_empty(&bond->vlan_list)) { 359 return NULL; 360 } 361 362 if (!curr) { 363 next = list_entry(bond->vlan_list.next, 364 struct vlan_entry, vlan_list); 365 } else { 366 last = list_entry(bond->vlan_list.prev, 367 struct vlan_entry, vlan_list); 368 if (last == curr) { 369 next = list_entry(bond->vlan_list.next, 370 struct vlan_entry, vlan_list); 371 } else { 372 next = list_entry(curr->vlan_list.next, 373 struct vlan_entry, vlan_list); 374 } 375 } 376 377 return next; 378 } 379 380 /** 381 * bond_dev_queue_xmit - Prepare skb for xmit. 382 * 383 * @bond: bond device that got this skb for tx. 384 * @skb: hw accel VLAN tagged skb to transmit 385 * @slave_dev: slave that is supposed to xmit this skbuff 386 * 387 * When the bond gets an skb to transmit that is 388 * already hardware accelerated VLAN tagged, and it 389 * needs to relay this skb to a slave that is not 390 * hw accel capable, the skb needs to be "unaccelerated", 391 * i.e. strip the hwaccel tag and re-insert it as part 392 * of the payload. 393 */ 394 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) 395 { 396 unsigned short uninitialized_var(vlan_id); 397 398 if (!list_empty(&bond->vlan_list) && 399 !(slave_dev->features & NETIF_F_HW_VLAN_TX) && 400 vlan_get_tag(skb, &vlan_id) == 0) { 401 skb->dev = slave_dev; 402 skb = vlan_put_tag(skb, vlan_id); 403 if (!skb) { 404 /* vlan_put_tag() frees the skb in case of error, 405 * so return success here so the calling functions 406 * won't attempt to free is again. 407 */ 408 return 0; 409 } 410 } else { 411 skb->dev = slave_dev; 412 } 413 414 skb->priority = 1; 415 dev_queue_xmit(skb); 416 417 return 0; 418 } 419 420 /* 421 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid 422 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a 423 * lock because: 424 * a. This operation is performed in IOCTL context, 425 * b. The operation is protected by the RTNL semaphore in the 8021q code, 426 * c. Holding a lock with BH disabled while directly calling a base driver 427 * entry point is generally a BAD idea. 428 * 429 * The design of synchronization/protection for this operation in the 8021q 430 * module is good for one or more VLAN devices over a single physical device 431 * and cannot be extended for a teaming solution like bonding, so there is a 432 * potential race condition here where a net device from the vlan group might 433 * be referenced (either by a base driver or the 8021q code) while it is being 434 * removed from the system. However, it turns out we're not making matters 435 * worse, and if it works for regular VLAN usage it will work here too. 436 */ 437 438 /** 439 * bond_vlan_rx_register - Propagates registration to slaves 440 * @bond_dev: bonding net device that got called 441 * @grp: vlan group being registered 442 */ 443 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) 444 { 445 struct bonding *bond = bond_dev->priv; 446 struct slave *slave; 447 int i; 448 449 bond->vlgrp = grp; 450 451 bond_for_each_slave(bond, slave, i) { 452 struct net_device *slave_dev = slave->dev; 453 454 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 455 slave_dev->vlan_rx_register) { 456 slave_dev->vlan_rx_register(slave_dev, grp); 457 } 458 } 459 } 460 461 /** 462 * bond_vlan_rx_add_vid - Propagates adding an id to slaves 463 * @bond_dev: bonding net device that got called 464 * @vid: vlan id being added 465 */ 466 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) 467 { 468 struct bonding *bond = bond_dev->priv; 469 struct slave *slave; 470 int i, res; 471 472 bond_for_each_slave(bond, slave, i) { 473 struct net_device *slave_dev = slave->dev; 474 475 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 476 slave_dev->vlan_rx_add_vid) { 477 slave_dev->vlan_rx_add_vid(slave_dev, vid); 478 } 479 } 480 481 res = bond_add_vlan(bond, vid); 482 if (res) { 483 printk(KERN_ERR DRV_NAME 484 ": %s: Error: Failed to add vlan id %d\n", 485 bond_dev->name, vid); 486 } 487 } 488 489 /** 490 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves 491 * @bond_dev: bonding net device that got called 492 * @vid: vlan id being removed 493 */ 494 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) 495 { 496 struct bonding *bond = bond_dev->priv; 497 struct slave *slave; 498 struct net_device *vlan_dev; 499 int i, res; 500 501 bond_for_each_slave(bond, slave, i) { 502 struct net_device *slave_dev = slave->dev; 503 504 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && 505 slave_dev->vlan_rx_kill_vid) { 506 /* Save and then restore vlan_dev in the grp array, 507 * since the slave's driver might clear it. 508 */ 509 vlan_dev = vlan_group_get_device(bond->vlgrp, vid); 510 slave_dev->vlan_rx_kill_vid(slave_dev, vid); 511 vlan_group_set_device(bond->vlgrp, vid, vlan_dev); 512 } 513 } 514 515 res = bond_del_vlan(bond, vid); 516 if (res) { 517 printk(KERN_ERR DRV_NAME 518 ": %s: Error: Failed to remove vlan id %d\n", 519 bond_dev->name, vid); 520 } 521 } 522 523 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) 524 { 525 struct vlan_entry *vlan; 526 527 write_lock_bh(&bond->lock); 528 529 if (list_empty(&bond->vlan_list)) { 530 goto out; 531 } 532 533 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 534 slave_dev->vlan_rx_register) { 535 slave_dev->vlan_rx_register(slave_dev, bond->vlgrp); 536 } 537 538 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 539 !(slave_dev->vlan_rx_add_vid)) { 540 goto out; 541 } 542 543 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 544 slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id); 545 } 546 547 out: 548 write_unlock_bh(&bond->lock); 549 } 550 551 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) 552 { 553 struct vlan_entry *vlan; 554 struct net_device *vlan_dev; 555 556 write_lock_bh(&bond->lock); 557 558 if (list_empty(&bond->vlan_list)) { 559 goto out; 560 } 561 562 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || 563 !(slave_dev->vlan_rx_kill_vid)) { 564 goto unreg; 565 } 566 567 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 568 /* Save and then restore vlan_dev in the grp array, 569 * since the slave's driver might clear it. 570 */ 571 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 572 slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id); 573 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); 574 } 575 576 unreg: 577 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && 578 slave_dev->vlan_rx_register) { 579 slave_dev->vlan_rx_register(slave_dev, NULL); 580 } 581 582 out: 583 write_unlock_bh(&bond->lock); 584 } 585 586 /*------------------------------- Link status -------------------------------*/ 587 588 /* 589 * Set the carrier state for the master according to the state of its 590 * slaves. If any slaves are up, the master is up. In 802.3ad mode, 591 * do special 802.3ad magic. 592 * 593 * Returns zero if carrier state does not change, nonzero if it does. 594 */ 595 static int bond_set_carrier(struct bonding *bond) 596 { 597 struct slave *slave; 598 int i; 599 600 if (bond->slave_cnt == 0) 601 goto down; 602 603 if (bond->params.mode == BOND_MODE_8023AD) 604 return bond_3ad_set_carrier(bond); 605 606 bond_for_each_slave(bond, slave, i) { 607 if (slave->link == BOND_LINK_UP) { 608 if (!netif_carrier_ok(bond->dev)) { 609 netif_carrier_on(bond->dev); 610 return 1; 611 } 612 return 0; 613 } 614 } 615 616 down: 617 if (netif_carrier_ok(bond->dev)) { 618 netif_carrier_off(bond->dev); 619 return 1; 620 } 621 return 0; 622 } 623 624 /* 625 * Get link speed and duplex from the slave's base driver 626 * using ethtool. If for some reason the call fails or the 627 * values are invalid, fake speed and duplex to 100/Full 628 * and return error. 629 */ 630 static int bond_update_speed_duplex(struct slave *slave) 631 { 632 struct net_device *slave_dev = slave->dev; 633 struct ethtool_cmd etool; 634 int res; 635 636 /* Fake speed and duplex */ 637 slave->speed = SPEED_100; 638 slave->duplex = DUPLEX_FULL; 639 640 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) 641 return -1; 642 643 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); 644 if (res < 0) 645 return -1; 646 647 switch (etool.speed) { 648 case SPEED_10: 649 case SPEED_100: 650 case SPEED_1000: 651 case SPEED_10000: 652 break; 653 default: 654 return -1; 655 } 656 657 switch (etool.duplex) { 658 case DUPLEX_FULL: 659 case DUPLEX_HALF: 660 break; 661 default: 662 return -1; 663 } 664 665 slave->speed = etool.speed; 666 slave->duplex = etool.duplex; 667 668 return 0; 669 } 670 671 /* 672 * if <dev> supports MII link status reporting, check its link status. 673 * 674 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), 675 * depening upon the setting of the use_carrier parameter. 676 * 677 * Return either BMSR_LSTATUS, meaning that the link is up (or we 678 * can't tell and just pretend it is), or 0, meaning that the link is 679 * down. 680 * 681 * If reporting is non-zero, instead of faking link up, return -1 if 682 * both ETHTOOL and MII ioctls fail (meaning the device does not 683 * support them). If use_carrier is set, return whatever it says. 684 * It'd be nice if there was a good way to tell if a driver supports 685 * netif_carrier, but there really isn't. 686 */ 687 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) 688 { 689 static int (* ioctl)(struct net_device *, struct ifreq *, int); 690 struct ifreq ifr; 691 struct mii_ioctl_data *mii; 692 693 if (bond->params.use_carrier) { 694 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; 695 } 696 697 ioctl = slave_dev->do_ioctl; 698 if (ioctl) { 699 /* TODO: set pointer to correct ioctl on a per team member */ 700 /* bases to make this more efficient. that is, once */ 701 /* we determine the correct ioctl, we will always */ 702 /* call it and not the others for that team */ 703 /* member. */ 704 705 /* 706 * We cannot assume that SIOCGMIIPHY will also read a 707 * register; not all network drivers (e.g., e100) 708 * support that. 709 */ 710 711 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ 712 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); 713 mii = if_mii(&ifr); 714 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { 715 mii->reg_num = MII_BMSR; 716 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { 717 return (mii->val_out & BMSR_LSTATUS); 718 } 719 } 720 } 721 722 /* 723 * Some drivers cache ETHTOOL_GLINK for a period of time so we only 724 * attempt to get link status from it if the above MII ioctls fail. 725 */ 726 if (slave_dev->ethtool_ops) { 727 if (slave_dev->ethtool_ops->get_link) { 728 u32 link; 729 730 link = slave_dev->ethtool_ops->get_link(slave_dev); 731 732 return link ? BMSR_LSTATUS : 0; 733 } 734 } 735 736 /* 737 * If reporting, report that either there's no dev->do_ioctl, 738 * or both SIOCGMIIREG and get_link failed (meaning that we 739 * cannot report link status). If not reporting, pretend 740 * we're ok. 741 */ 742 return (reporting ? -1 : BMSR_LSTATUS); 743 } 744 745 /*----------------------------- Multicast list ------------------------------*/ 746 747 /* 748 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise 749 */ 750 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) 751 { 752 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && 753 dmi1->dmi_addrlen == dmi2->dmi_addrlen; 754 } 755 756 /* 757 * returns dmi entry if found, NULL otherwise 758 */ 759 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 760 { 761 struct dev_mc_list *idmi; 762 763 for (idmi = mc_list; idmi; idmi = idmi->next) { 764 if (bond_is_dmi_same(dmi, idmi)) { 765 return idmi; 766 } 767 } 768 769 return NULL; 770 } 771 772 /* 773 * Push the promiscuity flag down to appropriate slaves 774 */ 775 static int bond_set_promiscuity(struct bonding *bond, int inc) 776 { 777 int err = 0; 778 if (USES_PRIMARY(bond->params.mode)) { 779 /* write lock already acquired */ 780 if (bond->curr_active_slave) { 781 err = dev_set_promiscuity(bond->curr_active_slave->dev, 782 inc); 783 } 784 } else { 785 struct slave *slave; 786 int i; 787 bond_for_each_slave(bond, slave, i) { 788 err = dev_set_promiscuity(slave->dev, inc); 789 if (err) 790 return err; 791 } 792 } 793 return err; 794 } 795 796 /* 797 * Push the allmulti flag down to all slaves 798 */ 799 static int bond_set_allmulti(struct bonding *bond, int inc) 800 { 801 int err = 0; 802 if (USES_PRIMARY(bond->params.mode)) { 803 /* write lock already acquired */ 804 if (bond->curr_active_slave) { 805 err = dev_set_allmulti(bond->curr_active_slave->dev, 806 inc); 807 } 808 } else { 809 struct slave *slave; 810 int i; 811 bond_for_each_slave(bond, slave, i) { 812 err = dev_set_allmulti(slave->dev, inc); 813 if (err) 814 return err; 815 } 816 } 817 return err; 818 } 819 820 /* 821 * Add a Multicast address to slaves 822 * according to mode 823 */ 824 static void bond_mc_add(struct bonding *bond, void *addr, int alen) 825 { 826 if (USES_PRIMARY(bond->params.mode)) { 827 /* write lock already acquired */ 828 if (bond->curr_active_slave) { 829 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); 830 } 831 } else { 832 struct slave *slave; 833 int i; 834 bond_for_each_slave(bond, slave, i) { 835 dev_mc_add(slave->dev, addr, alen, 0); 836 } 837 } 838 } 839 840 /* 841 * Remove a multicast address from slave 842 * according to mode 843 */ 844 static void bond_mc_delete(struct bonding *bond, void *addr, int alen) 845 { 846 if (USES_PRIMARY(bond->params.mode)) { 847 /* write lock already acquired */ 848 if (bond->curr_active_slave) { 849 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); 850 } 851 } else { 852 struct slave *slave; 853 int i; 854 bond_for_each_slave(bond, slave, i) { 855 dev_mc_delete(slave->dev, addr, alen, 0); 856 } 857 } 858 } 859 860 861 /* 862 * Retrieve the list of registered multicast addresses for the bonding 863 * device and retransmit an IGMP JOIN request to the current active 864 * slave. 865 */ 866 static void bond_resend_igmp_join_requests(struct bonding *bond) 867 { 868 struct in_device *in_dev; 869 struct ip_mc_list *im; 870 871 rcu_read_lock(); 872 in_dev = __in_dev_get_rcu(bond->dev); 873 if (in_dev) { 874 for (im = in_dev->mc_list; im; im = im->next) { 875 ip_mc_rejoin_group(im); 876 } 877 } 878 879 rcu_read_unlock(); 880 } 881 882 /* 883 * Totally destroys the mc_list in bond 884 */ 885 static void bond_mc_list_destroy(struct bonding *bond) 886 { 887 struct dev_mc_list *dmi; 888 889 dmi = bond->mc_list; 890 while (dmi) { 891 bond->mc_list = dmi->next; 892 kfree(dmi); 893 dmi = bond->mc_list; 894 } 895 bond->mc_list = NULL; 896 } 897 898 /* 899 * Copy all the Multicast addresses from src to the bonding device dst 900 */ 901 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, 902 gfp_t gfp_flag) 903 { 904 struct dev_mc_list *dmi, *new_dmi; 905 906 for (dmi = mc_list; dmi; dmi = dmi->next) { 907 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); 908 909 if (!new_dmi) { 910 /* FIXME: Potential memory leak !!! */ 911 return -ENOMEM; 912 } 913 914 new_dmi->next = bond->mc_list; 915 bond->mc_list = new_dmi; 916 new_dmi->dmi_addrlen = dmi->dmi_addrlen; 917 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); 918 new_dmi->dmi_users = dmi->dmi_users; 919 new_dmi->dmi_gusers = dmi->dmi_gusers; 920 } 921 922 return 0; 923 } 924 925 /* 926 * flush all members of flush->mc_list from device dev->mc_list 927 */ 928 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) 929 { 930 struct bonding *bond = bond_dev->priv; 931 struct dev_mc_list *dmi; 932 933 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 934 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 935 } 936 937 if (bond->params.mode == BOND_MODE_8023AD) { 938 /* del lacpdu mc addr from mc list */ 939 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 940 941 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 942 } 943 } 944 945 /*--------------------------- Active slave change ---------------------------*/ 946 947 /* 948 * Update the mc list and multicast-related flags for the new and 949 * old active slaves (if any) according to the multicast mode, and 950 * promiscuous flags unconditionally. 951 */ 952 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) 953 { 954 struct dev_mc_list *dmi; 955 956 if (!USES_PRIMARY(bond->params.mode)) { 957 /* nothing to do - mc list is already up-to-date on 958 * all slaves 959 */ 960 return; 961 } 962 963 if (old_active) { 964 if (bond->dev->flags & IFF_PROMISC) { 965 dev_set_promiscuity(old_active->dev, -1); 966 } 967 968 if (bond->dev->flags & IFF_ALLMULTI) { 969 dev_set_allmulti(old_active->dev, -1); 970 } 971 972 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 973 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 974 } 975 } 976 977 if (new_active) { 978 /* FIXME: Signal errors upstream. */ 979 if (bond->dev->flags & IFF_PROMISC) { 980 dev_set_promiscuity(new_active->dev, 1); 981 } 982 983 if (bond->dev->flags & IFF_ALLMULTI) { 984 dev_set_allmulti(new_active->dev, 1); 985 } 986 987 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { 988 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 989 } 990 bond_resend_igmp_join_requests(bond); 991 } 992 } 993 994 /* 995 * bond_do_fail_over_mac 996 * 997 * Perform special MAC address swapping for fail_over_mac settings 998 * 999 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh. 1000 */ 1001 static void bond_do_fail_over_mac(struct bonding *bond, 1002 struct slave *new_active, 1003 struct slave *old_active) 1004 { 1005 u8 tmp_mac[ETH_ALEN]; 1006 struct sockaddr saddr; 1007 int rv; 1008 1009 switch (bond->params.fail_over_mac) { 1010 case BOND_FOM_ACTIVE: 1011 if (new_active) 1012 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, 1013 new_active->dev->addr_len); 1014 break; 1015 case BOND_FOM_FOLLOW: 1016 /* 1017 * if new_active && old_active, swap them 1018 * if just old_active, do nothing (going to no active slave) 1019 * if just new_active, set new_active to bond's MAC 1020 */ 1021 if (!new_active) 1022 return; 1023 1024 write_unlock_bh(&bond->curr_slave_lock); 1025 read_unlock(&bond->lock); 1026 1027 if (old_active) { 1028 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN); 1029 memcpy(saddr.sa_data, old_active->dev->dev_addr, 1030 ETH_ALEN); 1031 saddr.sa_family = new_active->dev->type; 1032 } else { 1033 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN); 1034 saddr.sa_family = bond->dev->type; 1035 } 1036 1037 rv = dev_set_mac_address(new_active->dev, &saddr); 1038 if (rv) { 1039 printk(KERN_ERR DRV_NAME 1040 ": %s: Error %d setting MAC of slave %s\n", 1041 bond->dev->name, -rv, new_active->dev->name); 1042 goto out; 1043 } 1044 1045 if (!old_active) 1046 goto out; 1047 1048 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN); 1049 saddr.sa_family = old_active->dev->type; 1050 1051 rv = dev_set_mac_address(old_active->dev, &saddr); 1052 if (rv) 1053 printk(KERN_ERR DRV_NAME 1054 ": %s: Error %d setting MAC of slave %s\n", 1055 bond->dev->name, -rv, new_active->dev->name); 1056 out: 1057 read_lock(&bond->lock); 1058 write_lock_bh(&bond->curr_slave_lock); 1059 break; 1060 default: 1061 printk(KERN_ERR DRV_NAME 1062 ": %s: bond_do_fail_over_mac impossible: bad policy %d\n", 1063 bond->dev->name, bond->params.fail_over_mac); 1064 break; 1065 } 1066 1067 } 1068 1069 1070 /** 1071 * find_best_interface - select the best available slave to be the active one 1072 * @bond: our bonding struct 1073 * 1074 * Warning: Caller must hold curr_slave_lock for writing. 1075 */ 1076 static struct slave *bond_find_best_slave(struct bonding *bond) 1077 { 1078 struct slave *new_active, *old_active; 1079 struct slave *bestslave = NULL; 1080 int mintime = bond->params.updelay; 1081 int i; 1082 1083 new_active = old_active = bond->curr_active_slave; 1084 1085 if (!new_active) { /* there were no active slaves left */ 1086 if (bond->slave_cnt > 0) { /* found one slave */ 1087 new_active = bond->first_slave; 1088 } else { 1089 return NULL; /* still no slave, return NULL */ 1090 } 1091 } 1092 1093 /* first try the primary link; if arping, a link must tx/rx traffic 1094 * before it can be considered the curr_active_slave - also, we would skip 1095 * slaves between the curr_active_slave and primary_slave that may be up 1096 * and able to arp 1097 */ 1098 if ((bond->primary_slave) && 1099 (!bond->params.arp_interval) && 1100 (IS_UP(bond->primary_slave->dev))) { 1101 new_active = bond->primary_slave; 1102 } 1103 1104 /* remember where to stop iterating over the slaves */ 1105 old_active = new_active; 1106 1107 bond_for_each_slave_from(bond, new_active, i, old_active) { 1108 if (IS_UP(new_active->dev)) { 1109 if (new_active->link == BOND_LINK_UP) { 1110 return new_active; 1111 } else if (new_active->link == BOND_LINK_BACK) { 1112 /* link up, but waiting for stabilization */ 1113 if (new_active->delay < mintime) { 1114 mintime = new_active->delay; 1115 bestslave = new_active; 1116 } 1117 } 1118 } 1119 } 1120 1121 return bestslave; 1122 } 1123 1124 /** 1125 * change_active_interface - change the active slave into the specified one 1126 * @bond: our bonding struct 1127 * @new: the new slave to make the active one 1128 * 1129 * Set the new slave to the bond's settings and unset them on the old 1130 * curr_active_slave. 1131 * Setting include flags, mc-list, promiscuity, allmulti, etc. 1132 * 1133 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, 1134 * because it is apparently the best available slave we have, even though its 1135 * updelay hasn't timed out yet. 1136 * 1137 * If new_active is not NULL, caller must hold bond->lock for read and 1138 * curr_slave_lock for write_bh. 1139 */ 1140 void bond_change_active_slave(struct bonding *bond, struct slave *new_active) 1141 { 1142 struct slave *old_active = bond->curr_active_slave; 1143 1144 if (old_active == new_active) { 1145 return; 1146 } 1147 1148 if (new_active) { 1149 new_active->jiffies = jiffies; 1150 1151 if (new_active->link == BOND_LINK_BACK) { 1152 if (USES_PRIMARY(bond->params.mode)) { 1153 printk(KERN_INFO DRV_NAME 1154 ": %s: making interface %s the new " 1155 "active one %d ms earlier.\n", 1156 bond->dev->name, new_active->dev->name, 1157 (bond->params.updelay - new_active->delay) * bond->params.miimon); 1158 } 1159 1160 new_active->delay = 0; 1161 new_active->link = BOND_LINK_UP; 1162 1163 if (bond->params.mode == BOND_MODE_8023AD) { 1164 bond_3ad_handle_link_change(new_active, BOND_LINK_UP); 1165 } 1166 1167 if ((bond->params.mode == BOND_MODE_TLB) || 1168 (bond->params.mode == BOND_MODE_ALB)) { 1169 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); 1170 } 1171 } else { 1172 if (USES_PRIMARY(bond->params.mode)) { 1173 printk(KERN_INFO DRV_NAME 1174 ": %s: making interface %s the new " 1175 "active one.\n", 1176 bond->dev->name, new_active->dev->name); 1177 } 1178 } 1179 } 1180 1181 if (USES_PRIMARY(bond->params.mode)) { 1182 bond_mc_swap(bond, new_active, old_active); 1183 } 1184 1185 if ((bond->params.mode == BOND_MODE_TLB) || 1186 (bond->params.mode == BOND_MODE_ALB)) { 1187 bond_alb_handle_active_change(bond, new_active); 1188 if (old_active) 1189 bond_set_slave_inactive_flags(old_active); 1190 if (new_active) 1191 bond_set_slave_active_flags(new_active); 1192 } else { 1193 bond->curr_active_slave = new_active; 1194 } 1195 1196 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { 1197 if (old_active) { 1198 bond_set_slave_inactive_flags(old_active); 1199 } 1200 1201 if (new_active) { 1202 bond_set_slave_active_flags(new_active); 1203 1204 if (bond->params.fail_over_mac) 1205 bond_do_fail_over_mac(bond, new_active, 1206 old_active); 1207 1208 bond->send_grat_arp = bond->params.num_grat_arp; 1209 bond_send_gratuitous_arp(bond); 1210 1211 write_unlock_bh(&bond->curr_slave_lock); 1212 read_unlock(&bond->lock); 1213 1214 netdev_bonding_change(bond->dev); 1215 1216 read_lock(&bond->lock); 1217 write_lock_bh(&bond->curr_slave_lock); 1218 } 1219 } 1220 } 1221 1222 /** 1223 * bond_select_active_slave - select a new active slave, if needed 1224 * @bond: our bonding struct 1225 * 1226 * This functions shoud be called when one of the following occurs: 1227 * - The old curr_active_slave has been released or lost its link. 1228 * - The primary_slave has got its link back. 1229 * - A slave has got its link back and there's no old curr_active_slave. 1230 * 1231 * Caller must hold bond->lock for read and curr_slave_lock for write_bh. 1232 */ 1233 void bond_select_active_slave(struct bonding *bond) 1234 { 1235 struct slave *best_slave; 1236 int rv; 1237 1238 best_slave = bond_find_best_slave(bond); 1239 if (best_slave != bond->curr_active_slave) { 1240 bond_change_active_slave(bond, best_slave); 1241 rv = bond_set_carrier(bond); 1242 if (!rv) 1243 return; 1244 1245 if (netif_carrier_ok(bond->dev)) { 1246 printk(KERN_INFO DRV_NAME 1247 ": %s: first active interface up!\n", 1248 bond->dev->name); 1249 } else { 1250 printk(KERN_INFO DRV_NAME ": %s: " 1251 "now running without any active interface !\n", 1252 bond->dev->name); 1253 } 1254 } 1255 } 1256 1257 /*--------------------------- slave list handling ---------------------------*/ 1258 1259 /* 1260 * This function attaches the slave to the end of list. 1261 * 1262 * bond->lock held for writing by caller. 1263 */ 1264 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) 1265 { 1266 if (bond->first_slave == NULL) { /* attaching the first slave */ 1267 new_slave->next = new_slave; 1268 new_slave->prev = new_slave; 1269 bond->first_slave = new_slave; 1270 } else { 1271 new_slave->next = bond->first_slave; 1272 new_slave->prev = bond->first_slave->prev; 1273 new_slave->next->prev = new_slave; 1274 new_slave->prev->next = new_slave; 1275 } 1276 1277 bond->slave_cnt++; 1278 } 1279 1280 /* 1281 * This function detaches the slave from the list. 1282 * WARNING: no check is made to verify if the slave effectively 1283 * belongs to <bond>. 1284 * Nothing is freed on return, structures are just unchained. 1285 * If any slave pointer in bond was pointing to <slave>, 1286 * it should be changed by the calling function. 1287 * 1288 * bond->lock held for writing by caller. 1289 */ 1290 static void bond_detach_slave(struct bonding *bond, struct slave *slave) 1291 { 1292 if (slave->next) { 1293 slave->next->prev = slave->prev; 1294 } 1295 1296 if (slave->prev) { 1297 slave->prev->next = slave->next; 1298 } 1299 1300 if (bond->first_slave == slave) { /* slave is the first slave */ 1301 if (bond->slave_cnt > 1) { /* there are more slave */ 1302 bond->first_slave = slave->next; 1303 } else { 1304 bond->first_slave = NULL; /* slave was the last one */ 1305 } 1306 } 1307 1308 slave->next = NULL; 1309 slave->prev = NULL; 1310 bond->slave_cnt--; 1311 } 1312 1313 /*---------------------------------- IOCTL ----------------------------------*/ 1314 1315 static int bond_sethwaddr(struct net_device *bond_dev, 1316 struct net_device *slave_dev) 1317 { 1318 dprintk("bond_dev=%p\n", bond_dev); 1319 dprintk("slave_dev=%p\n", slave_dev); 1320 dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len); 1321 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); 1322 return 0; 1323 } 1324 1325 #define BOND_VLAN_FEATURES \ 1326 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ 1327 NETIF_F_HW_VLAN_FILTER) 1328 1329 /* 1330 * Compute the common dev->feature set available to all slaves. Some 1331 * feature bits are managed elsewhere, so preserve those feature bits 1332 * on the master device. 1333 */ 1334 static int bond_compute_features(struct bonding *bond) 1335 { 1336 struct slave *slave; 1337 struct net_device *bond_dev = bond->dev; 1338 unsigned long features = bond_dev->features; 1339 unsigned short max_hard_header_len = max((u16)ETH_HLEN, 1340 bond_dev->hard_header_len); 1341 int i; 1342 1343 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); 1344 features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA | 1345 NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; 1346 1347 bond_for_each_slave(bond, slave, i) { 1348 features = netdev_compute_features(features, 1349 slave->dev->features); 1350 if (slave->dev->hard_header_len > max_hard_header_len) 1351 max_hard_header_len = slave->dev->hard_header_len; 1352 } 1353 1354 features |= (bond_dev->features & BOND_VLAN_FEATURES); 1355 bond_dev->features = features; 1356 bond_dev->hard_header_len = max_hard_header_len; 1357 1358 return 0; 1359 } 1360 1361 1362 static void bond_setup_by_slave(struct net_device *bond_dev, 1363 struct net_device *slave_dev) 1364 { 1365 struct bonding *bond = bond_dev->priv; 1366 1367 bond_dev->neigh_setup = slave_dev->neigh_setup; 1368 bond_dev->header_ops = slave_dev->header_ops; 1369 1370 bond_dev->type = slave_dev->type; 1371 bond_dev->hard_header_len = slave_dev->hard_header_len; 1372 bond_dev->addr_len = slave_dev->addr_len; 1373 1374 memcpy(bond_dev->broadcast, slave_dev->broadcast, 1375 slave_dev->addr_len); 1376 bond->setup_by_slave = 1; 1377 } 1378 1379 /* enslave device <slave> to bond device <master> */ 1380 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) 1381 { 1382 struct bonding *bond = bond_dev->priv; 1383 struct slave *new_slave = NULL; 1384 struct dev_mc_list *dmi; 1385 struct sockaddr addr; 1386 int link_reporting; 1387 int old_features = bond_dev->features; 1388 int res = 0; 1389 1390 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && 1391 slave_dev->do_ioctl == NULL) { 1392 printk(KERN_WARNING DRV_NAME 1393 ": %s: Warning: no link monitoring support for %s\n", 1394 bond_dev->name, slave_dev->name); 1395 } 1396 1397 /* bond must be initialized by bond_open() before enslaving */ 1398 if (!(bond_dev->flags & IFF_UP)) { 1399 printk(KERN_WARNING DRV_NAME 1400 " %s: master_dev is not up in bond_enslave\n", 1401 bond_dev->name); 1402 } 1403 1404 /* already enslaved */ 1405 if (slave_dev->flags & IFF_SLAVE) { 1406 dprintk("Error, Device was already enslaved\n"); 1407 return -EBUSY; 1408 } 1409 1410 /* vlan challenged mutual exclusion */ 1411 /* no need to lock since we're protected by rtnl_lock */ 1412 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { 1413 dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1414 if (!list_empty(&bond->vlan_list)) { 1415 printk(KERN_ERR DRV_NAME 1416 ": %s: Error: cannot enslave VLAN " 1417 "challenged slave %s on VLAN enabled " 1418 "bond %s\n", bond_dev->name, slave_dev->name, 1419 bond_dev->name); 1420 return -EPERM; 1421 } else { 1422 printk(KERN_WARNING DRV_NAME 1423 ": %s: Warning: enslaved VLAN challenged " 1424 "slave %s. Adding VLANs will be blocked as " 1425 "long as %s is part of bond %s\n", 1426 bond_dev->name, slave_dev->name, slave_dev->name, 1427 bond_dev->name); 1428 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1429 } 1430 } else { 1431 dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); 1432 if (bond->slave_cnt == 0) { 1433 /* First slave, and it is not VLAN challenged, 1434 * so remove the block of adding VLANs over the bond. 1435 */ 1436 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1437 } 1438 } 1439 1440 /* 1441 * Old ifenslave binaries are no longer supported. These can 1442 * be identified with moderate accurary by the state of the slave: 1443 * the current ifenslave will set the interface down prior to 1444 * enslaving it; the old ifenslave will not. 1445 */ 1446 if ((slave_dev->flags & IFF_UP)) { 1447 printk(KERN_ERR DRV_NAME ": %s is up. " 1448 "This may be due to an out of date ifenslave.\n", 1449 slave_dev->name); 1450 res = -EPERM; 1451 goto err_undo_flags; 1452 } 1453 1454 /* set bonding device ether type by slave - bonding netdevices are 1455 * created with ether_setup, so when the slave type is not ARPHRD_ETHER 1456 * there is a need to override some of the type dependent attribs/funcs. 1457 * 1458 * bond ether type mutual exclusion - don't allow slaves of dissimilar 1459 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond 1460 */ 1461 if (bond->slave_cnt == 0) { 1462 if (slave_dev->type != ARPHRD_ETHER) 1463 bond_setup_by_slave(bond_dev, slave_dev); 1464 } else if (bond_dev->type != slave_dev->type) { 1465 printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different " 1466 "from other slaves (%d), can not enslave it.\n", 1467 slave_dev->name, 1468 slave_dev->type, bond_dev->type); 1469 res = -EINVAL; 1470 goto err_undo_flags; 1471 } 1472 1473 if (slave_dev->set_mac_address == NULL) { 1474 if (bond->slave_cnt == 0) { 1475 printk(KERN_WARNING DRV_NAME 1476 ": %s: Warning: The first slave device " 1477 "specified does not support setting the MAC " 1478 "address. Setting fail_over_mac to active.", 1479 bond_dev->name); 1480 bond->params.fail_over_mac = BOND_FOM_ACTIVE; 1481 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1482 printk(KERN_ERR DRV_NAME 1483 ": %s: Error: The slave device specified " 1484 "does not support setting the MAC address, " 1485 "but fail_over_mac is not set to active.\n" 1486 , bond_dev->name); 1487 res = -EOPNOTSUPP; 1488 goto err_undo_flags; 1489 } 1490 } 1491 1492 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); 1493 if (!new_slave) { 1494 res = -ENOMEM; 1495 goto err_undo_flags; 1496 } 1497 1498 /* save slave's original flags before calling 1499 * netdev_set_master and dev_open 1500 */ 1501 new_slave->original_flags = slave_dev->flags; 1502 1503 /* 1504 * Save slave's original ("permanent") mac address for modes 1505 * that need it, and for restoring it upon release, and then 1506 * set it to the master's address 1507 */ 1508 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); 1509 1510 if (!bond->params.fail_over_mac) { 1511 /* 1512 * Set slave to master's mac address. The application already 1513 * set the master's mac address to that of the first slave 1514 */ 1515 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 1516 addr.sa_family = slave_dev->type; 1517 res = dev_set_mac_address(slave_dev, &addr); 1518 if (res) { 1519 dprintk("Error %d calling set_mac_address\n", res); 1520 goto err_free; 1521 } 1522 } 1523 1524 res = netdev_set_master(slave_dev, bond_dev); 1525 if (res) { 1526 dprintk("Error %d calling netdev_set_master\n", res); 1527 goto err_restore_mac; 1528 } 1529 /* open the slave since the application closed it */ 1530 res = dev_open(slave_dev); 1531 if (res) { 1532 dprintk("Openning slave %s failed\n", slave_dev->name); 1533 goto err_unset_master; 1534 } 1535 1536 new_slave->dev = slave_dev; 1537 slave_dev->priv_flags |= IFF_BONDING; 1538 1539 if ((bond->params.mode == BOND_MODE_TLB) || 1540 (bond->params.mode == BOND_MODE_ALB)) { 1541 /* bond_alb_init_slave() must be called before all other stages since 1542 * it might fail and we do not want to have to undo everything 1543 */ 1544 res = bond_alb_init_slave(bond, new_slave); 1545 if (res) { 1546 goto err_close; 1547 } 1548 } 1549 1550 /* If the mode USES_PRIMARY, then the new slave gets the 1551 * master's promisc (and mc) settings only if it becomes the 1552 * curr_active_slave, and that is taken care of later when calling 1553 * bond_change_active() 1554 */ 1555 if (!USES_PRIMARY(bond->params.mode)) { 1556 /* set promiscuity level to new slave */ 1557 if (bond_dev->flags & IFF_PROMISC) { 1558 res = dev_set_promiscuity(slave_dev, 1); 1559 if (res) 1560 goto err_close; 1561 } 1562 1563 /* set allmulti level to new slave */ 1564 if (bond_dev->flags & IFF_ALLMULTI) { 1565 res = dev_set_allmulti(slave_dev, 1); 1566 if (res) 1567 goto err_close; 1568 } 1569 1570 netif_addr_lock_bh(bond_dev); 1571 /* upload master's mc_list to new slave */ 1572 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 1573 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 1574 } 1575 netif_addr_unlock_bh(bond_dev); 1576 } 1577 1578 if (bond->params.mode == BOND_MODE_8023AD) { 1579 /* add lacpdu mc addr to mc list */ 1580 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; 1581 1582 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); 1583 } 1584 1585 bond_add_vlans_on_slave(bond, slave_dev); 1586 1587 write_lock_bh(&bond->lock); 1588 1589 bond_attach_slave(bond, new_slave); 1590 1591 new_slave->delay = 0; 1592 new_slave->link_failure_count = 0; 1593 1594 bond_compute_features(bond); 1595 1596 write_unlock_bh(&bond->lock); 1597 1598 read_lock(&bond->lock); 1599 1600 new_slave->last_arp_rx = jiffies; 1601 1602 if (bond->params.miimon && !bond->params.use_carrier) { 1603 link_reporting = bond_check_dev_link(bond, slave_dev, 1); 1604 1605 if ((link_reporting == -1) && !bond->params.arp_interval) { 1606 /* 1607 * miimon is set but a bonded network driver 1608 * does not support ETHTOOL/MII and 1609 * arp_interval is not set. Note: if 1610 * use_carrier is enabled, we will never go 1611 * here (because netif_carrier is always 1612 * supported); thus, we don't need to change 1613 * the messages for netif_carrier. 1614 */ 1615 printk(KERN_WARNING DRV_NAME 1616 ": %s: Warning: MII and ETHTOOL support not " 1617 "available for interface %s, and " 1618 "arp_interval/arp_ip_target module parameters " 1619 "not specified, thus bonding will not detect " 1620 "link failures! see bonding.txt for details.\n", 1621 bond_dev->name, slave_dev->name); 1622 } else if (link_reporting == -1) { 1623 /* unable get link status using mii/ethtool */ 1624 printk(KERN_WARNING DRV_NAME 1625 ": %s: Warning: can't get link status from " 1626 "interface %s; the network driver associated " 1627 "with this interface does not support MII or " 1628 "ETHTOOL link status reporting, thus miimon " 1629 "has no effect on this interface.\n", 1630 bond_dev->name, slave_dev->name); 1631 } 1632 } 1633 1634 /* check for initial state */ 1635 if (!bond->params.miimon || 1636 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { 1637 if (bond->params.updelay) { 1638 dprintk("Initial state of slave_dev is " 1639 "BOND_LINK_BACK\n"); 1640 new_slave->link = BOND_LINK_BACK; 1641 new_slave->delay = bond->params.updelay; 1642 } else { 1643 dprintk("Initial state of slave_dev is " 1644 "BOND_LINK_UP\n"); 1645 new_slave->link = BOND_LINK_UP; 1646 } 1647 new_slave->jiffies = jiffies; 1648 } else { 1649 dprintk("Initial state of slave_dev is " 1650 "BOND_LINK_DOWN\n"); 1651 new_slave->link = BOND_LINK_DOWN; 1652 } 1653 1654 if (bond_update_speed_duplex(new_slave) && 1655 (new_slave->link != BOND_LINK_DOWN)) { 1656 printk(KERN_WARNING DRV_NAME 1657 ": %s: Warning: failed to get speed and duplex from %s, " 1658 "assumed to be 100Mb/sec and Full.\n", 1659 bond_dev->name, new_slave->dev->name); 1660 1661 if (bond->params.mode == BOND_MODE_8023AD) { 1662 printk(KERN_WARNING DRV_NAME 1663 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " 1664 "support in base driver for proper aggregator " 1665 "selection.\n", bond_dev->name); 1666 } 1667 } 1668 1669 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { 1670 /* if there is a primary slave, remember it */ 1671 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { 1672 bond->primary_slave = new_slave; 1673 } 1674 } 1675 1676 write_lock_bh(&bond->curr_slave_lock); 1677 1678 switch (bond->params.mode) { 1679 case BOND_MODE_ACTIVEBACKUP: 1680 bond_set_slave_inactive_flags(new_slave); 1681 bond_select_active_slave(bond); 1682 break; 1683 case BOND_MODE_8023AD: 1684 /* in 802.3ad mode, the internal mechanism 1685 * will activate the slaves in the selected 1686 * aggregator 1687 */ 1688 bond_set_slave_inactive_flags(new_slave); 1689 /* if this is the first slave */ 1690 if (bond->slave_cnt == 1) { 1691 SLAVE_AD_INFO(new_slave).id = 1; 1692 /* Initialize AD with the number of times that the AD timer is called in 1 second 1693 * can be called only after the mac address of the bond is set 1694 */ 1695 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, 1696 bond->params.lacp_fast); 1697 } else { 1698 SLAVE_AD_INFO(new_slave).id = 1699 SLAVE_AD_INFO(new_slave->prev).id + 1; 1700 } 1701 1702 bond_3ad_bind_slave(new_slave); 1703 break; 1704 case BOND_MODE_TLB: 1705 case BOND_MODE_ALB: 1706 new_slave->state = BOND_STATE_ACTIVE; 1707 bond_set_slave_inactive_flags(new_slave); 1708 break; 1709 default: 1710 dprintk("This slave is always active in trunk mode\n"); 1711 1712 /* always active in trunk mode */ 1713 new_slave->state = BOND_STATE_ACTIVE; 1714 1715 /* In trunking mode there is little meaning to curr_active_slave 1716 * anyway (it holds no special properties of the bond device), 1717 * so we can change it without calling change_active_interface() 1718 */ 1719 if (!bond->curr_active_slave) { 1720 bond->curr_active_slave = new_slave; 1721 } 1722 break; 1723 } /* switch(bond_mode) */ 1724 1725 write_unlock_bh(&bond->curr_slave_lock); 1726 1727 bond_set_carrier(bond); 1728 1729 read_unlock(&bond->lock); 1730 1731 res = bond_create_slave_symlinks(bond_dev, slave_dev); 1732 if (res) 1733 goto err_close; 1734 1735 printk(KERN_INFO DRV_NAME 1736 ": %s: enslaving %s as a%s interface with a%s link.\n", 1737 bond_dev->name, slave_dev->name, 1738 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", 1739 new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); 1740 1741 /* enslave is successful */ 1742 return 0; 1743 1744 /* Undo stages on error */ 1745 err_close: 1746 dev_close(slave_dev); 1747 1748 err_unset_master: 1749 netdev_set_master(slave_dev, NULL); 1750 1751 err_restore_mac: 1752 if (!bond->params.fail_over_mac) { 1753 /* XXX TODO - fom follow mode needs to change master's 1754 * MAC if this slave's MAC is in use by the bond, or at 1755 * least print a warning. 1756 */ 1757 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); 1758 addr.sa_family = slave_dev->type; 1759 dev_set_mac_address(slave_dev, &addr); 1760 } 1761 1762 err_free: 1763 kfree(new_slave); 1764 1765 err_undo_flags: 1766 bond_dev->features = old_features; 1767 1768 return res; 1769 } 1770 1771 /* 1772 * Try to release the slave device <slave> from the bond device <master> 1773 * It is legal to access curr_active_slave without a lock because all the function 1774 * is write-locked. 1775 * 1776 * The rules for slave state should be: 1777 * for Active/Backup: 1778 * Active stays on all backups go down 1779 * for Bonded connections: 1780 * The first up interface should be left on and all others downed. 1781 */ 1782 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) 1783 { 1784 struct bonding *bond = bond_dev->priv; 1785 struct slave *slave, *oldcurrent; 1786 struct sockaddr addr; 1787 int mac_addr_differ; 1788 DECLARE_MAC_BUF(mac); 1789 1790 /* slave is not a slave or master is not master of this slave */ 1791 if (!(slave_dev->flags & IFF_SLAVE) || 1792 (slave_dev->master != bond_dev)) { 1793 printk(KERN_ERR DRV_NAME 1794 ": %s: Error: cannot release %s.\n", 1795 bond_dev->name, slave_dev->name); 1796 return -EINVAL; 1797 } 1798 1799 write_lock_bh(&bond->lock); 1800 1801 slave = bond_get_slave_by_dev(bond, slave_dev); 1802 if (!slave) { 1803 /* not a slave of this bond */ 1804 printk(KERN_INFO DRV_NAME 1805 ": %s: %s not enslaved\n", 1806 bond_dev->name, slave_dev->name); 1807 write_unlock_bh(&bond->lock); 1808 return -EINVAL; 1809 } 1810 1811 if (!bond->params.fail_over_mac) { 1812 mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr, 1813 ETH_ALEN); 1814 if (!mac_addr_differ && (bond->slave_cnt > 1)) 1815 printk(KERN_WARNING DRV_NAME 1816 ": %s: Warning: the permanent HWaddr of %s - " 1817 "%s - is still in use by %s. " 1818 "Set the HWaddr of %s to a different address " 1819 "to avoid conflicts.\n", 1820 bond_dev->name, slave_dev->name, 1821 print_mac(mac, slave->perm_hwaddr), 1822 bond_dev->name, slave_dev->name); 1823 } 1824 1825 /* Inform AD package of unbinding of slave. */ 1826 if (bond->params.mode == BOND_MODE_8023AD) { 1827 /* must be called before the slave is 1828 * detached from the list 1829 */ 1830 bond_3ad_unbind_slave(slave); 1831 } 1832 1833 printk(KERN_INFO DRV_NAME 1834 ": %s: releasing %s interface %s\n", 1835 bond_dev->name, 1836 (slave->state == BOND_STATE_ACTIVE) 1837 ? "active" : "backup", 1838 slave_dev->name); 1839 1840 oldcurrent = bond->curr_active_slave; 1841 1842 bond->current_arp_slave = NULL; 1843 1844 /* release the slave from its bond */ 1845 bond_detach_slave(bond, slave); 1846 1847 bond_compute_features(bond); 1848 1849 if (bond->primary_slave == slave) { 1850 bond->primary_slave = NULL; 1851 } 1852 1853 if (oldcurrent == slave) { 1854 bond_change_active_slave(bond, NULL); 1855 } 1856 1857 if ((bond->params.mode == BOND_MODE_TLB) || 1858 (bond->params.mode == BOND_MODE_ALB)) { 1859 /* Must be called only after the slave has been 1860 * detached from the list and the curr_active_slave 1861 * has been cleared (if our_slave == old_current), 1862 * but before a new active slave is selected. 1863 */ 1864 write_unlock_bh(&bond->lock); 1865 bond_alb_deinit_slave(bond, slave); 1866 write_lock_bh(&bond->lock); 1867 } 1868 1869 if (oldcurrent == slave) { 1870 /* 1871 * Note that we hold RTNL over this sequence, so there 1872 * is no concern that another slave add/remove event 1873 * will interfere. 1874 */ 1875 write_unlock_bh(&bond->lock); 1876 read_lock(&bond->lock); 1877 write_lock_bh(&bond->curr_slave_lock); 1878 1879 bond_select_active_slave(bond); 1880 1881 write_unlock_bh(&bond->curr_slave_lock); 1882 read_unlock(&bond->lock); 1883 write_lock_bh(&bond->lock); 1884 } 1885 1886 if (bond->slave_cnt == 0) { 1887 bond_set_carrier(bond); 1888 1889 /* if the last slave was removed, zero the mac address 1890 * of the master so it will be set by the application 1891 * to the mac address of the first slave 1892 */ 1893 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 1894 1895 if (list_empty(&bond->vlan_list)) { 1896 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 1897 } else { 1898 printk(KERN_WARNING DRV_NAME 1899 ": %s: Warning: clearing HW address of %s while it " 1900 "still has VLANs.\n", 1901 bond_dev->name, bond_dev->name); 1902 printk(KERN_WARNING DRV_NAME 1903 ": %s: When re-adding slaves, make sure the bond's " 1904 "HW address matches its VLANs'.\n", 1905 bond_dev->name); 1906 } 1907 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && 1908 !bond_has_challenged_slaves(bond)) { 1909 printk(KERN_INFO DRV_NAME 1910 ": %s: last VLAN challenged slave %s " 1911 "left bond %s. VLAN blocking is removed\n", 1912 bond_dev->name, slave_dev->name, bond_dev->name); 1913 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; 1914 } 1915 1916 write_unlock_bh(&bond->lock); 1917 1918 /* must do this from outside any spinlocks */ 1919 bond_destroy_slave_symlinks(bond_dev, slave_dev); 1920 1921 bond_del_vlans_from_slave(bond, slave_dev); 1922 1923 /* If the mode USES_PRIMARY, then we should only remove its 1924 * promisc and mc settings if it was the curr_active_slave, but that was 1925 * already taken care of above when we detached the slave 1926 */ 1927 if (!USES_PRIMARY(bond->params.mode)) { 1928 /* unset promiscuity level from slave */ 1929 if (bond_dev->flags & IFF_PROMISC) { 1930 dev_set_promiscuity(slave_dev, -1); 1931 } 1932 1933 /* unset allmulti level from slave */ 1934 if (bond_dev->flags & IFF_ALLMULTI) { 1935 dev_set_allmulti(slave_dev, -1); 1936 } 1937 1938 /* flush master's mc_list from slave */ 1939 netif_addr_lock_bh(bond_dev); 1940 bond_mc_list_flush(bond_dev, slave_dev); 1941 netif_addr_unlock_bh(bond_dev); 1942 } 1943 1944 netdev_set_master(slave_dev, NULL); 1945 1946 /* close slave before restoring its mac address */ 1947 dev_close(slave_dev); 1948 1949 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) { 1950 /* restore original ("permanent") mac address */ 1951 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 1952 addr.sa_family = slave_dev->type; 1953 dev_set_mac_address(slave_dev, &addr); 1954 } 1955 1956 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 1957 IFF_SLAVE_INACTIVE | IFF_BONDING | 1958 IFF_SLAVE_NEEDARP); 1959 1960 kfree(slave); 1961 1962 return 0; /* deletion OK */ 1963 } 1964 1965 /* 1966 * Destroy a bonding device. 1967 * Must be under rtnl_lock when this function is called. 1968 */ 1969 void bond_destroy(struct bonding *bond) 1970 { 1971 bond_deinit(bond->dev); 1972 bond_destroy_sysfs_entry(bond); 1973 unregister_netdevice(bond->dev); 1974 } 1975 1976 /* 1977 * First release a slave and than destroy the bond if no more slaves iare left. 1978 * Must be under rtnl_lock when this function is called. 1979 */ 1980 int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev) 1981 { 1982 struct bonding *bond = bond_dev->priv; 1983 int ret; 1984 1985 ret = bond_release(bond_dev, slave_dev); 1986 if ((ret == 0) && (bond->slave_cnt == 0)) { 1987 printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n", 1988 bond_dev->name, bond_dev->name); 1989 bond_destroy(bond); 1990 } 1991 return ret; 1992 } 1993 1994 /* 1995 * This function releases all slaves. 1996 */ 1997 static int bond_release_all(struct net_device *bond_dev) 1998 { 1999 struct bonding *bond = bond_dev->priv; 2000 struct slave *slave; 2001 struct net_device *slave_dev; 2002 struct sockaddr addr; 2003 2004 write_lock_bh(&bond->lock); 2005 2006 netif_carrier_off(bond_dev); 2007 2008 if (bond->slave_cnt == 0) { 2009 goto out; 2010 } 2011 2012 bond->current_arp_slave = NULL; 2013 bond->primary_slave = NULL; 2014 bond_change_active_slave(bond, NULL); 2015 2016 while ((slave = bond->first_slave) != NULL) { 2017 /* Inform AD package of unbinding of slave 2018 * before slave is detached from the list. 2019 */ 2020 if (bond->params.mode == BOND_MODE_8023AD) { 2021 bond_3ad_unbind_slave(slave); 2022 } 2023 2024 slave_dev = slave->dev; 2025 bond_detach_slave(bond, slave); 2026 2027 /* now that the slave is detached, unlock and perform 2028 * all the undo steps that should not be called from 2029 * within a lock. 2030 */ 2031 write_unlock_bh(&bond->lock); 2032 2033 if ((bond->params.mode == BOND_MODE_TLB) || 2034 (bond->params.mode == BOND_MODE_ALB)) { 2035 /* must be called only after the slave 2036 * has been detached from the list 2037 */ 2038 bond_alb_deinit_slave(bond, slave); 2039 } 2040 2041 bond_compute_features(bond); 2042 2043 bond_destroy_slave_symlinks(bond_dev, slave_dev); 2044 bond_del_vlans_from_slave(bond, slave_dev); 2045 2046 /* If the mode USES_PRIMARY, then we should only remove its 2047 * promisc and mc settings if it was the curr_active_slave, but that was 2048 * already taken care of above when we detached the slave 2049 */ 2050 if (!USES_PRIMARY(bond->params.mode)) { 2051 /* unset promiscuity level from slave */ 2052 if (bond_dev->flags & IFF_PROMISC) { 2053 dev_set_promiscuity(slave_dev, -1); 2054 } 2055 2056 /* unset allmulti level from slave */ 2057 if (bond_dev->flags & IFF_ALLMULTI) { 2058 dev_set_allmulti(slave_dev, -1); 2059 } 2060 2061 /* flush master's mc_list from slave */ 2062 netif_addr_lock_bh(bond_dev); 2063 bond_mc_list_flush(bond_dev, slave_dev); 2064 netif_addr_unlock_bh(bond_dev); 2065 } 2066 2067 netdev_set_master(slave_dev, NULL); 2068 2069 /* close slave before restoring its mac address */ 2070 dev_close(slave_dev); 2071 2072 if (!bond->params.fail_over_mac) { 2073 /* restore original ("permanent") mac address*/ 2074 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); 2075 addr.sa_family = slave_dev->type; 2076 dev_set_mac_address(slave_dev, &addr); 2077 } 2078 2079 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | 2080 IFF_SLAVE_INACTIVE); 2081 2082 kfree(slave); 2083 2084 /* re-acquire the lock before getting the next slave */ 2085 write_lock_bh(&bond->lock); 2086 } 2087 2088 /* zero the mac address of the master so it will be 2089 * set by the application to the mac address of the 2090 * first slave 2091 */ 2092 memset(bond_dev->dev_addr, 0, bond_dev->addr_len); 2093 2094 if (list_empty(&bond->vlan_list)) { 2095 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 2096 } else { 2097 printk(KERN_WARNING DRV_NAME 2098 ": %s: Warning: clearing HW address of %s while it " 2099 "still has VLANs.\n", 2100 bond_dev->name, bond_dev->name); 2101 printk(KERN_WARNING DRV_NAME 2102 ": %s: When re-adding slaves, make sure the bond's " 2103 "HW address matches its VLANs'.\n", 2104 bond_dev->name); 2105 } 2106 2107 printk(KERN_INFO DRV_NAME 2108 ": %s: released all slaves\n", 2109 bond_dev->name); 2110 2111 out: 2112 write_unlock_bh(&bond->lock); 2113 2114 return 0; 2115 } 2116 2117 /* 2118 * This function changes the active slave to slave <slave_dev>. 2119 * It returns -EINVAL in the following cases. 2120 * - <slave_dev> is not found in the list. 2121 * - There is not active slave now. 2122 * - <slave_dev> is already active. 2123 * - The link state of <slave_dev> is not BOND_LINK_UP. 2124 * - <slave_dev> is not running. 2125 * In these cases, this fuction does nothing. 2126 * In the other cases, currnt_slave pointer is changed and 0 is returned. 2127 */ 2128 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) 2129 { 2130 struct bonding *bond = bond_dev->priv; 2131 struct slave *old_active = NULL; 2132 struct slave *new_active = NULL; 2133 int res = 0; 2134 2135 if (!USES_PRIMARY(bond->params.mode)) { 2136 return -EINVAL; 2137 } 2138 2139 /* Verify that master_dev is indeed the master of slave_dev */ 2140 if (!(slave_dev->flags & IFF_SLAVE) || 2141 (slave_dev->master != bond_dev)) { 2142 return -EINVAL; 2143 } 2144 2145 read_lock(&bond->lock); 2146 2147 read_lock(&bond->curr_slave_lock); 2148 old_active = bond->curr_active_slave; 2149 read_unlock(&bond->curr_slave_lock); 2150 2151 new_active = bond_get_slave_by_dev(bond, slave_dev); 2152 2153 /* 2154 * Changing to the current active: do nothing; return success. 2155 */ 2156 if (new_active && (new_active == old_active)) { 2157 read_unlock(&bond->lock); 2158 return 0; 2159 } 2160 2161 if ((new_active) && 2162 (old_active) && 2163 (new_active->link == BOND_LINK_UP) && 2164 IS_UP(new_active->dev)) { 2165 write_lock_bh(&bond->curr_slave_lock); 2166 bond_change_active_slave(bond, new_active); 2167 write_unlock_bh(&bond->curr_slave_lock); 2168 } else { 2169 res = -EINVAL; 2170 } 2171 2172 read_unlock(&bond->lock); 2173 2174 return res; 2175 } 2176 2177 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) 2178 { 2179 struct bonding *bond = bond_dev->priv; 2180 2181 info->bond_mode = bond->params.mode; 2182 info->miimon = bond->params.miimon; 2183 2184 read_lock(&bond->lock); 2185 info->num_slaves = bond->slave_cnt; 2186 read_unlock(&bond->lock); 2187 2188 return 0; 2189 } 2190 2191 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) 2192 { 2193 struct bonding *bond = bond_dev->priv; 2194 struct slave *slave; 2195 int i, found = 0; 2196 2197 if (info->slave_id < 0) { 2198 return -ENODEV; 2199 } 2200 2201 read_lock(&bond->lock); 2202 2203 bond_for_each_slave(bond, slave, i) { 2204 if (i == (int)info->slave_id) { 2205 found = 1; 2206 break; 2207 } 2208 } 2209 2210 read_unlock(&bond->lock); 2211 2212 if (found) { 2213 strcpy(info->slave_name, slave->dev->name); 2214 info->link = slave->link; 2215 info->state = slave->state; 2216 info->link_failure_count = slave->link_failure_count; 2217 } else { 2218 return -ENODEV; 2219 } 2220 2221 return 0; 2222 } 2223 2224 /*-------------------------------- Monitoring -------------------------------*/ 2225 2226 2227 static int bond_miimon_inspect(struct bonding *bond) 2228 { 2229 struct slave *slave; 2230 int i, link_state, commit = 0; 2231 2232 bond_for_each_slave(bond, slave, i) { 2233 slave->new_link = BOND_LINK_NOCHANGE; 2234 2235 link_state = bond_check_dev_link(bond, slave->dev, 0); 2236 2237 switch (slave->link) { 2238 case BOND_LINK_UP: 2239 if (link_state) 2240 continue; 2241 2242 slave->link = BOND_LINK_FAIL; 2243 slave->delay = bond->params.downdelay; 2244 if (slave->delay) { 2245 printk(KERN_INFO DRV_NAME 2246 ": %s: link status down for %s" 2247 "interface %s, disabling it in %d ms.\n", 2248 bond->dev->name, 2249 (bond->params.mode == 2250 BOND_MODE_ACTIVEBACKUP) ? 2251 ((slave->state == BOND_STATE_ACTIVE) ? 2252 "active " : "backup ") : "", 2253 slave->dev->name, 2254 bond->params.downdelay * bond->params.miimon); 2255 } 2256 /*FALLTHRU*/ 2257 case BOND_LINK_FAIL: 2258 if (link_state) { 2259 /* 2260 * recovered before downdelay expired 2261 */ 2262 slave->link = BOND_LINK_UP; 2263 slave->jiffies = jiffies; 2264 printk(KERN_INFO DRV_NAME 2265 ": %s: link status up again after %d " 2266 "ms for interface %s.\n", 2267 bond->dev->name, 2268 (bond->params.downdelay - slave->delay) * 2269 bond->params.miimon, 2270 slave->dev->name); 2271 continue; 2272 } 2273 2274 if (slave->delay <= 0) { 2275 slave->new_link = BOND_LINK_DOWN; 2276 commit++; 2277 continue; 2278 } 2279 2280 slave->delay--; 2281 break; 2282 2283 case BOND_LINK_DOWN: 2284 if (!link_state) 2285 continue; 2286 2287 slave->link = BOND_LINK_BACK; 2288 slave->delay = bond->params.updelay; 2289 2290 if (slave->delay) { 2291 printk(KERN_INFO DRV_NAME 2292 ": %s: link status up for " 2293 "interface %s, enabling it in %d ms.\n", 2294 bond->dev->name, slave->dev->name, 2295 bond->params.updelay * 2296 bond->params.miimon); 2297 } 2298 /*FALLTHRU*/ 2299 case BOND_LINK_BACK: 2300 if (!link_state) { 2301 slave->link = BOND_LINK_DOWN; 2302 printk(KERN_INFO DRV_NAME 2303 ": %s: link status down again after %d " 2304 "ms for interface %s.\n", 2305 bond->dev->name, 2306 (bond->params.updelay - slave->delay) * 2307 bond->params.miimon, 2308 slave->dev->name); 2309 2310 continue; 2311 } 2312 2313 if (slave->delay <= 0) { 2314 slave->new_link = BOND_LINK_UP; 2315 commit++; 2316 continue; 2317 } 2318 2319 slave->delay--; 2320 break; 2321 } 2322 } 2323 2324 return commit; 2325 } 2326 2327 static void bond_miimon_commit(struct bonding *bond) 2328 { 2329 struct slave *slave; 2330 int i; 2331 2332 bond_for_each_slave(bond, slave, i) { 2333 switch (slave->new_link) { 2334 case BOND_LINK_NOCHANGE: 2335 continue; 2336 2337 case BOND_LINK_UP: 2338 slave->link = BOND_LINK_UP; 2339 slave->jiffies = jiffies; 2340 2341 if (bond->params.mode == BOND_MODE_8023AD) { 2342 /* prevent it from being the active one */ 2343 slave->state = BOND_STATE_BACKUP; 2344 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { 2345 /* make it immediately active */ 2346 slave->state = BOND_STATE_ACTIVE; 2347 } else if (slave != bond->primary_slave) { 2348 /* prevent it from being the active one */ 2349 slave->state = BOND_STATE_BACKUP; 2350 } 2351 2352 printk(KERN_INFO DRV_NAME 2353 ": %s: link status definitely " 2354 "up for interface %s.\n", 2355 bond->dev->name, slave->dev->name); 2356 2357 /* notify ad that the link status has changed */ 2358 if (bond->params.mode == BOND_MODE_8023AD) 2359 bond_3ad_handle_link_change(slave, BOND_LINK_UP); 2360 2361 if ((bond->params.mode == BOND_MODE_TLB) || 2362 (bond->params.mode == BOND_MODE_ALB)) 2363 bond_alb_handle_link_change(bond, slave, 2364 BOND_LINK_UP); 2365 2366 if (!bond->curr_active_slave || 2367 (slave == bond->primary_slave)) 2368 goto do_failover; 2369 2370 continue; 2371 2372 case BOND_LINK_DOWN: 2373 slave->link = BOND_LINK_DOWN; 2374 2375 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP || 2376 bond->params.mode == BOND_MODE_8023AD) 2377 bond_set_slave_inactive_flags(slave); 2378 2379 printk(KERN_INFO DRV_NAME 2380 ": %s: link status definitely down for " 2381 "interface %s, disabling it\n", 2382 bond->dev->name, slave->dev->name); 2383 2384 if (bond->params.mode == BOND_MODE_8023AD) 2385 bond_3ad_handle_link_change(slave, 2386 BOND_LINK_DOWN); 2387 2388 if (bond->params.mode == BOND_MODE_TLB || 2389 bond->params.mode == BOND_MODE_ALB) 2390 bond_alb_handle_link_change(bond, slave, 2391 BOND_LINK_DOWN); 2392 2393 if (slave == bond->curr_active_slave) 2394 goto do_failover; 2395 2396 continue; 2397 2398 default: 2399 printk(KERN_ERR DRV_NAME 2400 ": %s: invalid new link %d on slave %s\n", 2401 bond->dev->name, slave->new_link, 2402 slave->dev->name); 2403 slave->new_link = BOND_LINK_NOCHANGE; 2404 2405 continue; 2406 } 2407 2408 do_failover: 2409 ASSERT_RTNL(); 2410 write_lock_bh(&bond->curr_slave_lock); 2411 bond_select_active_slave(bond); 2412 write_unlock_bh(&bond->curr_slave_lock); 2413 } 2414 2415 bond_set_carrier(bond); 2416 } 2417 2418 /* 2419 * bond_mii_monitor 2420 * 2421 * Really a wrapper that splits the mii monitor into two phases: an 2422 * inspection, then (if inspection indicates something needs to be done) 2423 * an acquisition of appropriate locks followed by a commit phase to 2424 * implement whatever link state changes are indicated. 2425 */ 2426 void bond_mii_monitor(struct work_struct *work) 2427 { 2428 struct bonding *bond = container_of(work, struct bonding, 2429 mii_work.work); 2430 2431 read_lock(&bond->lock); 2432 if (bond->kill_timers) 2433 goto out; 2434 2435 if (bond->slave_cnt == 0) 2436 goto re_arm; 2437 2438 if (bond->send_grat_arp) { 2439 read_lock(&bond->curr_slave_lock); 2440 bond_send_gratuitous_arp(bond); 2441 read_unlock(&bond->curr_slave_lock); 2442 } 2443 2444 if (bond_miimon_inspect(bond)) { 2445 read_unlock(&bond->lock); 2446 rtnl_lock(); 2447 read_lock(&bond->lock); 2448 2449 bond_miimon_commit(bond); 2450 2451 read_unlock(&bond->lock); 2452 rtnl_unlock(); /* might sleep, hold no other locks */ 2453 read_lock(&bond->lock); 2454 } 2455 2456 re_arm: 2457 if (bond->params.miimon) 2458 queue_delayed_work(bond->wq, &bond->mii_work, 2459 msecs_to_jiffies(bond->params.miimon)); 2460 out: 2461 read_unlock(&bond->lock); 2462 } 2463 2464 static __be32 bond_glean_dev_ip(struct net_device *dev) 2465 { 2466 struct in_device *idev; 2467 struct in_ifaddr *ifa; 2468 __be32 addr = 0; 2469 2470 if (!dev) 2471 return 0; 2472 2473 rcu_read_lock(); 2474 idev = __in_dev_get_rcu(dev); 2475 if (!idev) 2476 goto out; 2477 2478 ifa = idev->ifa_list; 2479 if (!ifa) 2480 goto out; 2481 2482 addr = ifa->ifa_local; 2483 out: 2484 rcu_read_unlock(); 2485 return addr; 2486 } 2487 2488 static int bond_has_this_ip(struct bonding *bond, __be32 ip) 2489 { 2490 struct vlan_entry *vlan; 2491 2492 if (ip == bond->master_ip) 2493 return 1; 2494 2495 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2496 if (ip == vlan->vlan_ip) 2497 return 1; 2498 } 2499 2500 return 0; 2501 } 2502 2503 /* 2504 * We go to the (large) trouble of VLAN tagging ARP frames because 2505 * switches in VLAN mode (especially if ports are configured as 2506 * "native" to a VLAN) might not pass non-tagged frames. 2507 */ 2508 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) 2509 { 2510 struct sk_buff *skb; 2511 2512 dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, 2513 slave_dev->name, dest_ip, src_ip, vlan_id); 2514 2515 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, 2516 NULL, slave_dev->dev_addr, NULL); 2517 2518 if (!skb) { 2519 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); 2520 return; 2521 } 2522 if (vlan_id) { 2523 skb = vlan_put_tag(skb, vlan_id); 2524 if (!skb) { 2525 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); 2526 return; 2527 } 2528 } 2529 arp_xmit(skb); 2530 } 2531 2532 2533 static void bond_arp_send_all(struct bonding *bond, struct slave *slave) 2534 { 2535 int i, vlan_id, rv; 2536 __be32 *targets = bond->params.arp_targets; 2537 struct vlan_entry *vlan; 2538 struct net_device *vlan_dev; 2539 struct flowi fl; 2540 struct rtable *rt; 2541 2542 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { 2543 if (!targets[i]) 2544 continue; 2545 dprintk("basa: target %x\n", targets[i]); 2546 if (list_empty(&bond->vlan_list)) { 2547 dprintk("basa: empty vlan: arp_send\n"); 2548 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2549 bond->master_ip, 0); 2550 continue; 2551 } 2552 2553 /* 2554 * If VLANs are configured, we do a route lookup to 2555 * determine which VLAN interface would be used, so we 2556 * can tag the ARP with the proper VLAN tag. 2557 */ 2558 memset(&fl, 0, sizeof(fl)); 2559 fl.fl4_dst = targets[i]; 2560 fl.fl4_tos = RTO_ONLINK; 2561 2562 rv = ip_route_output_key(&init_net, &rt, &fl); 2563 if (rv) { 2564 if (net_ratelimit()) { 2565 printk(KERN_WARNING DRV_NAME 2566 ": %s: no route to arp_ip_target %u.%u.%u.%u\n", 2567 bond->dev->name, NIPQUAD(fl.fl4_dst)); 2568 } 2569 continue; 2570 } 2571 2572 /* 2573 * This target is not on a VLAN 2574 */ 2575 if (rt->u.dst.dev == bond->dev) { 2576 ip_rt_put(rt); 2577 dprintk("basa: rtdev == bond->dev: arp_send\n"); 2578 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2579 bond->master_ip, 0); 2580 continue; 2581 } 2582 2583 vlan_id = 0; 2584 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2585 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2586 if (vlan_dev == rt->u.dst.dev) { 2587 vlan_id = vlan->vlan_id; 2588 dprintk("basa: vlan match on %s %d\n", 2589 vlan_dev->name, vlan_id); 2590 break; 2591 } 2592 } 2593 2594 if (vlan_id) { 2595 ip_rt_put(rt); 2596 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], 2597 vlan->vlan_ip, vlan_id); 2598 continue; 2599 } 2600 2601 if (net_ratelimit()) { 2602 printk(KERN_WARNING DRV_NAME 2603 ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n", 2604 bond->dev->name, NIPQUAD(fl.fl4_dst), 2605 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); 2606 } 2607 ip_rt_put(rt); 2608 } 2609 } 2610 2611 /* 2612 * Kick out a gratuitous ARP for an IP on the bonding master plus one 2613 * for each VLAN above us. 2614 * 2615 * Caller must hold curr_slave_lock for read or better 2616 */ 2617 static void bond_send_gratuitous_arp(struct bonding *bond) 2618 { 2619 struct slave *slave = bond->curr_active_slave; 2620 struct vlan_entry *vlan; 2621 struct net_device *vlan_dev; 2622 2623 dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, 2624 slave ? slave->dev->name : "NULL"); 2625 2626 if (!slave || !bond->send_grat_arp || 2627 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state)) 2628 return; 2629 2630 bond->send_grat_arp--; 2631 2632 if (bond->master_ip) { 2633 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, 2634 bond->master_ip, 0); 2635 } 2636 2637 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 2638 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 2639 if (vlan->vlan_ip) { 2640 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, 2641 vlan->vlan_ip, vlan->vlan_id); 2642 } 2643 } 2644 } 2645 2646 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) 2647 { 2648 int i; 2649 __be32 *targets = bond->params.arp_targets; 2650 2651 targets = bond->params.arp_targets; 2652 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { 2653 dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] " 2654 "%u.%u.%u.%u bhti(tip) %d\n", 2655 NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]), 2656 bond_has_this_ip(bond, tip)); 2657 if (sip == targets[i]) { 2658 if (bond_has_this_ip(bond, tip)) 2659 slave->last_arp_rx = jiffies; 2660 return; 2661 } 2662 } 2663 } 2664 2665 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) 2666 { 2667 struct arphdr *arp; 2668 struct slave *slave; 2669 struct bonding *bond; 2670 unsigned char *arp_ptr; 2671 __be32 sip, tip; 2672 2673 if (dev_net(dev) != &init_net) 2674 goto out; 2675 2676 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) 2677 goto out; 2678 2679 bond = dev->priv; 2680 read_lock(&bond->lock); 2681 2682 dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", 2683 bond->dev->name, skb->dev ? skb->dev->name : "NULL", 2684 orig_dev ? orig_dev->name : "NULL"); 2685 2686 slave = bond_get_slave_by_dev(bond, orig_dev); 2687 if (!slave || !slave_do_arp_validate(bond, slave)) 2688 goto out_unlock; 2689 2690 if (!pskb_may_pull(skb, arp_hdr_len(dev))) 2691 goto out_unlock; 2692 2693 arp = arp_hdr(skb); 2694 if (arp->ar_hln != dev->addr_len || 2695 skb->pkt_type == PACKET_OTHERHOST || 2696 skb->pkt_type == PACKET_LOOPBACK || 2697 arp->ar_hrd != htons(ARPHRD_ETHER) || 2698 arp->ar_pro != htons(ETH_P_IP) || 2699 arp->ar_pln != 4) 2700 goto out_unlock; 2701 2702 arp_ptr = (unsigned char *)(arp + 1); 2703 arp_ptr += dev->addr_len; 2704 memcpy(&sip, arp_ptr, 4); 2705 arp_ptr += 4 + dev->addr_len; 2706 memcpy(&tip, arp_ptr, 4); 2707 2708 dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u" 2709 " tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name, 2710 slave->state, bond->params.arp_validate, 2711 slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip)); 2712 2713 /* 2714 * Backup slaves won't see the ARP reply, but do come through 2715 * here for each ARP probe (so we swap the sip/tip to validate 2716 * the probe). In a "redundant switch, common router" type of 2717 * configuration, the ARP probe will (hopefully) travel from 2718 * the active, through one switch, the router, then the other 2719 * switch before reaching the backup. 2720 */ 2721 if (slave->state == BOND_STATE_ACTIVE) 2722 bond_validate_arp(bond, slave, sip, tip); 2723 else 2724 bond_validate_arp(bond, slave, tip, sip); 2725 2726 out_unlock: 2727 read_unlock(&bond->lock); 2728 out: 2729 dev_kfree_skb(skb); 2730 return NET_RX_SUCCESS; 2731 } 2732 2733 /* 2734 * this function is called regularly to monitor each slave's link 2735 * ensuring that traffic is being sent and received when arp monitoring 2736 * is used in load-balancing mode. if the adapter has been dormant, then an 2737 * arp is transmitted to generate traffic. see activebackup_arp_monitor for 2738 * arp monitoring in active backup mode. 2739 */ 2740 void bond_loadbalance_arp_mon(struct work_struct *work) 2741 { 2742 struct bonding *bond = container_of(work, struct bonding, 2743 arp_work.work); 2744 struct slave *slave, *oldcurrent; 2745 int do_failover = 0; 2746 int delta_in_ticks; 2747 int i; 2748 2749 read_lock(&bond->lock); 2750 2751 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 2752 2753 if (bond->kill_timers) { 2754 goto out; 2755 } 2756 2757 if (bond->slave_cnt == 0) { 2758 goto re_arm; 2759 } 2760 2761 read_lock(&bond->curr_slave_lock); 2762 oldcurrent = bond->curr_active_slave; 2763 read_unlock(&bond->curr_slave_lock); 2764 2765 /* see if any of the previous devices are up now (i.e. they have 2766 * xmt and rcv traffic). the curr_active_slave does not come into 2767 * the picture unless it is null. also, slave->jiffies is not needed 2768 * here because we send an arp on each slave and give a slave as 2769 * long as it needs to get the tx/rx within the delta. 2770 * TODO: what about up/down delay in arp mode? it wasn't here before 2771 * so it can wait 2772 */ 2773 bond_for_each_slave(bond, slave, i) { 2774 if (slave->link != BOND_LINK_UP) { 2775 if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) && 2776 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) { 2777 2778 slave->link = BOND_LINK_UP; 2779 slave->state = BOND_STATE_ACTIVE; 2780 2781 /* primary_slave has no meaning in round-robin 2782 * mode. the window of a slave being up and 2783 * curr_active_slave being null after enslaving 2784 * is closed. 2785 */ 2786 if (!oldcurrent) { 2787 printk(KERN_INFO DRV_NAME 2788 ": %s: link status definitely " 2789 "up for interface %s, ", 2790 bond->dev->name, 2791 slave->dev->name); 2792 do_failover = 1; 2793 } else { 2794 printk(KERN_INFO DRV_NAME 2795 ": %s: interface %s is now up\n", 2796 bond->dev->name, 2797 slave->dev->name); 2798 } 2799 } 2800 } else { 2801 /* slave->link == BOND_LINK_UP */ 2802 2803 /* not all switches will respond to an arp request 2804 * when the source ip is 0, so don't take the link down 2805 * if we don't know our ip yet 2806 */ 2807 if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) || 2808 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) { 2809 2810 slave->link = BOND_LINK_DOWN; 2811 slave->state = BOND_STATE_BACKUP; 2812 2813 if (slave->link_failure_count < UINT_MAX) { 2814 slave->link_failure_count++; 2815 } 2816 2817 printk(KERN_INFO DRV_NAME 2818 ": %s: interface %s is now down.\n", 2819 bond->dev->name, 2820 slave->dev->name); 2821 2822 if (slave == oldcurrent) { 2823 do_failover = 1; 2824 } 2825 } 2826 } 2827 2828 /* note: if switch is in round-robin mode, all links 2829 * must tx arp to ensure all links rx an arp - otherwise 2830 * links may oscillate or not come up at all; if switch is 2831 * in something like xor mode, there is nothing we can 2832 * do - all replies will be rx'ed on same link causing slaves 2833 * to be unstable during low/no traffic periods 2834 */ 2835 if (IS_UP(slave->dev)) { 2836 bond_arp_send_all(bond, slave); 2837 } 2838 } 2839 2840 if (do_failover) { 2841 write_lock_bh(&bond->curr_slave_lock); 2842 2843 bond_select_active_slave(bond); 2844 2845 write_unlock_bh(&bond->curr_slave_lock); 2846 } 2847 2848 re_arm: 2849 if (bond->params.arp_interval) 2850 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 2851 out: 2852 read_unlock(&bond->lock); 2853 } 2854 2855 /* 2856 * Called to inspect slaves for active-backup mode ARP monitor link state 2857 * changes. Sets new_link in slaves to specify what action should take 2858 * place for the slave. Returns 0 if no changes are found, >0 if changes 2859 * to link states must be committed. 2860 * 2861 * Called with bond->lock held for read. 2862 */ 2863 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks) 2864 { 2865 struct slave *slave; 2866 int i, commit = 0; 2867 2868 bond_for_each_slave(bond, slave, i) { 2869 slave->new_link = BOND_LINK_NOCHANGE; 2870 2871 if (slave->link != BOND_LINK_UP) { 2872 if (time_before_eq(jiffies, slave_last_rx(bond, slave) + 2873 delta_in_ticks)) { 2874 slave->new_link = BOND_LINK_UP; 2875 commit++; 2876 } 2877 2878 continue; 2879 } 2880 2881 /* 2882 * Give slaves 2*delta after being enslaved or made 2883 * active. This avoids bouncing, as the last receive 2884 * times need a full ARP monitor cycle to be updated. 2885 */ 2886 if (!time_after_eq(jiffies, slave->jiffies + 2887 2 * delta_in_ticks)) 2888 continue; 2889 2890 /* 2891 * Backup slave is down if: 2892 * - No current_arp_slave AND 2893 * - more than 3*delta since last receive AND 2894 * - the bond has an IP address 2895 * 2896 * Note: a non-null current_arp_slave indicates 2897 * the curr_active_slave went down and we are 2898 * searching for a new one; under this condition 2899 * we only take the curr_active_slave down - this 2900 * gives each slave a chance to tx/rx traffic 2901 * before being taken out 2902 */ 2903 if (slave->state == BOND_STATE_BACKUP && 2904 !bond->current_arp_slave && 2905 time_after(jiffies, slave_last_rx(bond, slave) + 2906 3 * delta_in_ticks)) { 2907 slave->new_link = BOND_LINK_DOWN; 2908 commit++; 2909 } 2910 2911 /* 2912 * Active slave is down if: 2913 * - more than 2*delta since transmitting OR 2914 * - (more than 2*delta since receive AND 2915 * the bond has an IP address) 2916 */ 2917 if ((slave->state == BOND_STATE_ACTIVE) && 2918 (time_after_eq(jiffies, slave->dev->trans_start + 2919 2 * delta_in_ticks) || 2920 (time_after_eq(jiffies, slave_last_rx(bond, slave) 2921 + 2 * delta_in_ticks)))) { 2922 slave->new_link = BOND_LINK_DOWN; 2923 commit++; 2924 } 2925 } 2926 2927 read_lock(&bond->curr_slave_lock); 2928 2929 /* 2930 * Trigger a commit if the primary option setting has changed. 2931 */ 2932 if (bond->primary_slave && 2933 (bond->primary_slave != bond->curr_active_slave) && 2934 (bond->primary_slave->link == BOND_LINK_UP)) 2935 commit++; 2936 2937 read_unlock(&bond->curr_slave_lock); 2938 2939 return commit; 2940 } 2941 2942 /* 2943 * Called to commit link state changes noted by inspection step of 2944 * active-backup mode ARP monitor. 2945 * 2946 * Called with RTNL and bond->lock for read. 2947 */ 2948 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks) 2949 { 2950 struct slave *slave; 2951 int i; 2952 2953 bond_for_each_slave(bond, slave, i) { 2954 switch (slave->new_link) { 2955 case BOND_LINK_NOCHANGE: 2956 continue; 2957 2958 case BOND_LINK_UP: 2959 write_lock_bh(&bond->curr_slave_lock); 2960 2961 if (!bond->curr_active_slave && 2962 time_before_eq(jiffies, slave->dev->trans_start + 2963 delta_in_ticks)) { 2964 slave->link = BOND_LINK_UP; 2965 bond_change_active_slave(bond, slave); 2966 bond->current_arp_slave = NULL; 2967 2968 printk(KERN_INFO DRV_NAME 2969 ": %s: %s is up and now the " 2970 "active interface\n", 2971 bond->dev->name, slave->dev->name); 2972 2973 } else if (bond->curr_active_slave != slave) { 2974 /* this slave has just come up but we 2975 * already have a current slave; this can 2976 * also happen if bond_enslave adds a new 2977 * slave that is up while we are searching 2978 * for a new slave 2979 */ 2980 slave->link = BOND_LINK_UP; 2981 bond_set_slave_inactive_flags(slave); 2982 bond->current_arp_slave = NULL; 2983 2984 printk(KERN_INFO DRV_NAME 2985 ": %s: backup interface %s is now up\n", 2986 bond->dev->name, slave->dev->name); 2987 } 2988 2989 write_unlock_bh(&bond->curr_slave_lock); 2990 2991 break; 2992 2993 case BOND_LINK_DOWN: 2994 if (slave->link_failure_count < UINT_MAX) 2995 slave->link_failure_count++; 2996 2997 slave->link = BOND_LINK_DOWN; 2998 2999 if (slave == bond->curr_active_slave) { 3000 printk(KERN_INFO DRV_NAME 3001 ": %s: link status down for active " 3002 "interface %s, disabling it\n", 3003 bond->dev->name, slave->dev->name); 3004 3005 bond_set_slave_inactive_flags(slave); 3006 3007 write_lock_bh(&bond->curr_slave_lock); 3008 3009 bond_select_active_slave(bond); 3010 if (bond->curr_active_slave) 3011 bond->curr_active_slave->jiffies = 3012 jiffies; 3013 3014 write_unlock_bh(&bond->curr_slave_lock); 3015 3016 bond->current_arp_slave = NULL; 3017 3018 } else if (slave->state == BOND_STATE_BACKUP) { 3019 printk(KERN_INFO DRV_NAME 3020 ": %s: backup interface %s is now down\n", 3021 bond->dev->name, slave->dev->name); 3022 3023 bond_set_slave_inactive_flags(slave); 3024 } 3025 break; 3026 3027 default: 3028 printk(KERN_ERR DRV_NAME 3029 ": %s: impossible: new_link %d on slave %s\n", 3030 bond->dev->name, slave->new_link, 3031 slave->dev->name); 3032 } 3033 } 3034 3035 /* 3036 * No race with changes to primary via sysfs, as we hold rtnl. 3037 */ 3038 if (bond->primary_slave && 3039 (bond->primary_slave != bond->curr_active_slave) && 3040 (bond->primary_slave->link == BOND_LINK_UP)) { 3041 write_lock_bh(&bond->curr_slave_lock); 3042 bond_change_active_slave(bond, bond->primary_slave); 3043 write_unlock_bh(&bond->curr_slave_lock); 3044 } 3045 3046 bond_set_carrier(bond); 3047 } 3048 3049 /* 3050 * Send ARP probes for active-backup mode ARP monitor. 3051 * 3052 * Called with bond->lock held for read. 3053 */ 3054 static void bond_ab_arp_probe(struct bonding *bond) 3055 { 3056 struct slave *slave; 3057 int i; 3058 3059 read_lock(&bond->curr_slave_lock); 3060 3061 if (bond->current_arp_slave && bond->curr_active_slave) 3062 printk("PROBE: c_arp %s && cas %s BAD\n", 3063 bond->current_arp_slave->dev->name, 3064 bond->curr_active_slave->dev->name); 3065 3066 if (bond->curr_active_slave) { 3067 bond_arp_send_all(bond, bond->curr_active_slave); 3068 read_unlock(&bond->curr_slave_lock); 3069 return; 3070 } 3071 3072 read_unlock(&bond->curr_slave_lock); 3073 3074 /* if we don't have a curr_active_slave, search for the next available 3075 * backup slave from the current_arp_slave and make it the candidate 3076 * for becoming the curr_active_slave 3077 */ 3078 3079 if (!bond->current_arp_slave) { 3080 bond->current_arp_slave = bond->first_slave; 3081 if (!bond->current_arp_slave) 3082 return; 3083 } 3084 3085 bond_set_slave_inactive_flags(bond->current_arp_slave); 3086 3087 /* search for next candidate */ 3088 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { 3089 if (IS_UP(slave->dev)) { 3090 slave->link = BOND_LINK_BACK; 3091 bond_set_slave_active_flags(slave); 3092 bond_arp_send_all(bond, slave); 3093 slave->jiffies = jiffies; 3094 bond->current_arp_slave = slave; 3095 break; 3096 } 3097 3098 /* if the link state is up at this point, we 3099 * mark it down - this can happen if we have 3100 * simultaneous link failures and 3101 * reselect_active_interface doesn't make this 3102 * one the current slave so it is still marked 3103 * up when it is actually down 3104 */ 3105 if (slave->link == BOND_LINK_UP) { 3106 slave->link = BOND_LINK_DOWN; 3107 if (slave->link_failure_count < UINT_MAX) 3108 slave->link_failure_count++; 3109 3110 bond_set_slave_inactive_flags(slave); 3111 3112 printk(KERN_INFO DRV_NAME 3113 ": %s: backup interface %s is now down.\n", 3114 bond->dev->name, slave->dev->name); 3115 } 3116 } 3117 } 3118 3119 void bond_activebackup_arp_mon(struct work_struct *work) 3120 { 3121 struct bonding *bond = container_of(work, struct bonding, 3122 arp_work.work); 3123 int delta_in_ticks; 3124 3125 read_lock(&bond->lock); 3126 3127 if (bond->kill_timers) 3128 goto out; 3129 3130 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval); 3131 3132 if (bond->slave_cnt == 0) 3133 goto re_arm; 3134 3135 if (bond->send_grat_arp) { 3136 read_lock(&bond->curr_slave_lock); 3137 bond_send_gratuitous_arp(bond); 3138 read_unlock(&bond->curr_slave_lock); 3139 } 3140 3141 if (bond_ab_arp_inspect(bond, delta_in_ticks)) { 3142 read_unlock(&bond->lock); 3143 rtnl_lock(); 3144 read_lock(&bond->lock); 3145 3146 bond_ab_arp_commit(bond, delta_in_ticks); 3147 3148 read_unlock(&bond->lock); 3149 rtnl_unlock(); 3150 read_lock(&bond->lock); 3151 } 3152 3153 bond_ab_arp_probe(bond); 3154 3155 re_arm: 3156 if (bond->params.arp_interval) { 3157 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); 3158 } 3159 out: 3160 read_unlock(&bond->lock); 3161 } 3162 3163 /*------------------------------ proc/seq_file-------------------------------*/ 3164 3165 #ifdef CONFIG_PROC_FS 3166 3167 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) 3168 { 3169 struct bonding *bond = seq->private; 3170 loff_t off = 0; 3171 struct slave *slave; 3172 int i; 3173 3174 /* make sure the bond won't be taken away */ 3175 read_lock(&dev_base_lock); 3176 read_lock(&bond->lock); 3177 3178 if (*pos == 0) { 3179 return SEQ_START_TOKEN; 3180 } 3181 3182 bond_for_each_slave(bond, slave, i) { 3183 if (++off == *pos) { 3184 return slave; 3185 } 3186 } 3187 3188 return NULL; 3189 } 3190 3191 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3192 { 3193 struct bonding *bond = seq->private; 3194 struct slave *slave = v; 3195 3196 ++*pos; 3197 if (v == SEQ_START_TOKEN) { 3198 return bond->first_slave; 3199 } 3200 3201 slave = slave->next; 3202 3203 return (slave == bond->first_slave) ? NULL : slave; 3204 } 3205 3206 static void bond_info_seq_stop(struct seq_file *seq, void *v) 3207 { 3208 struct bonding *bond = seq->private; 3209 3210 read_unlock(&bond->lock); 3211 read_unlock(&dev_base_lock); 3212 } 3213 3214 static void bond_info_show_master(struct seq_file *seq) 3215 { 3216 struct bonding *bond = seq->private; 3217 struct slave *curr; 3218 int i; 3219 u32 target; 3220 3221 read_lock(&bond->curr_slave_lock); 3222 curr = bond->curr_active_slave; 3223 read_unlock(&bond->curr_slave_lock); 3224 3225 seq_printf(seq, "Bonding Mode: %s", 3226 bond_mode_name(bond->params.mode)); 3227 3228 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP && 3229 bond->params.fail_over_mac) 3230 seq_printf(seq, " (fail_over_mac %s)", 3231 fail_over_mac_tbl[bond->params.fail_over_mac].modename); 3232 3233 seq_printf(seq, "\n"); 3234 3235 if (bond->params.mode == BOND_MODE_XOR || 3236 bond->params.mode == BOND_MODE_8023AD) { 3237 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", 3238 xmit_hashtype_tbl[bond->params.xmit_policy].modename, 3239 bond->params.xmit_policy); 3240 } 3241 3242 if (USES_PRIMARY(bond->params.mode)) { 3243 seq_printf(seq, "Primary Slave: %s\n", 3244 (bond->primary_slave) ? 3245 bond->primary_slave->dev->name : "None"); 3246 3247 seq_printf(seq, "Currently Active Slave: %s\n", 3248 (curr) ? curr->dev->name : "None"); 3249 } 3250 3251 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? 3252 "up" : "down"); 3253 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); 3254 seq_printf(seq, "Up Delay (ms): %d\n", 3255 bond->params.updelay * bond->params.miimon); 3256 seq_printf(seq, "Down Delay (ms): %d\n", 3257 bond->params.downdelay * bond->params.miimon); 3258 3259 3260 /* ARP information */ 3261 if(bond->params.arp_interval > 0) { 3262 int printed=0; 3263 seq_printf(seq, "ARP Polling Interval (ms): %d\n", 3264 bond->params.arp_interval); 3265 3266 seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); 3267 3268 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { 3269 if (!bond->params.arp_targets[i]) 3270 continue; 3271 if (printed) 3272 seq_printf(seq, ","); 3273 target = ntohl(bond->params.arp_targets[i]); 3274 seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target)); 3275 printed = 1; 3276 } 3277 seq_printf(seq, "\n"); 3278 } 3279 3280 if (bond->params.mode == BOND_MODE_8023AD) { 3281 struct ad_info ad_info; 3282 DECLARE_MAC_BUF(mac); 3283 3284 seq_puts(seq, "\n802.3ad info\n"); 3285 seq_printf(seq, "LACP rate: %s\n", 3286 (bond->params.lacp_fast) ? "fast" : "slow"); 3287 3288 if (bond_3ad_get_active_agg_info(bond, &ad_info)) { 3289 seq_printf(seq, "bond %s has no active aggregator\n", 3290 bond->dev->name); 3291 } else { 3292 seq_printf(seq, "Active Aggregator Info:\n"); 3293 3294 seq_printf(seq, "\tAggregator ID: %d\n", 3295 ad_info.aggregator_id); 3296 seq_printf(seq, "\tNumber of ports: %d\n", 3297 ad_info.ports); 3298 seq_printf(seq, "\tActor Key: %d\n", 3299 ad_info.actor_key); 3300 seq_printf(seq, "\tPartner Key: %d\n", 3301 ad_info.partner_key); 3302 seq_printf(seq, "\tPartner Mac Address: %s\n", 3303 print_mac(mac, ad_info.partner_system)); 3304 } 3305 } 3306 } 3307 3308 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) 3309 { 3310 struct bonding *bond = seq->private; 3311 DECLARE_MAC_BUF(mac); 3312 3313 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); 3314 seq_printf(seq, "MII Status: %s\n", 3315 (slave->link == BOND_LINK_UP) ? "up" : "down"); 3316 seq_printf(seq, "Link Failure Count: %u\n", 3317 slave->link_failure_count); 3318 3319 seq_printf(seq, 3320 "Permanent HW addr: %s\n", 3321 print_mac(mac, slave->perm_hwaddr)); 3322 3323 if (bond->params.mode == BOND_MODE_8023AD) { 3324 const struct aggregator *agg 3325 = SLAVE_AD_INFO(slave).port.aggregator; 3326 3327 if (agg) { 3328 seq_printf(seq, "Aggregator ID: %d\n", 3329 agg->aggregator_identifier); 3330 } else { 3331 seq_puts(seq, "Aggregator ID: N/A\n"); 3332 } 3333 } 3334 } 3335 3336 static int bond_info_seq_show(struct seq_file *seq, void *v) 3337 { 3338 if (v == SEQ_START_TOKEN) { 3339 seq_printf(seq, "%s\n", version); 3340 bond_info_show_master(seq); 3341 } else { 3342 bond_info_show_slave(seq, v); 3343 } 3344 3345 return 0; 3346 } 3347 3348 static struct seq_operations bond_info_seq_ops = { 3349 .start = bond_info_seq_start, 3350 .next = bond_info_seq_next, 3351 .stop = bond_info_seq_stop, 3352 .show = bond_info_seq_show, 3353 }; 3354 3355 static int bond_info_open(struct inode *inode, struct file *file) 3356 { 3357 struct seq_file *seq; 3358 struct proc_dir_entry *proc; 3359 int res; 3360 3361 res = seq_open(file, &bond_info_seq_ops); 3362 if (!res) { 3363 /* recover the pointer buried in proc_dir_entry data */ 3364 seq = file->private_data; 3365 proc = PDE(inode); 3366 seq->private = proc->data; 3367 } 3368 3369 return res; 3370 } 3371 3372 static const struct file_operations bond_info_fops = { 3373 .owner = THIS_MODULE, 3374 .open = bond_info_open, 3375 .read = seq_read, 3376 .llseek = seq_lseek, 3377 .release = seq_release, 3378 }; 3379 3380 static int bond_create_proc_entry(struct bonding *bond) 3381 { 3382 struct net_device *bond_dev = bond->dev; 3383 3384 if (bond_proc_dir) { 3385 bond->proc_entry = proc_create_data(bond_dev->name, 3386 S_IRUGO, bond_proc_dir, 3387 &bond_info_fops, bond); 3388 if (bond->proc_entry == NULL) { 3389 printk(KERN_WARNING DRV_NAME 3390 ": Warning: Cannot create /proc/net/%s/%s\n", 3391 DRV_NAME, bond_dev->name); 3392 } else { 3393 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); 3394 } 3395 } 3396 3397 return 0; 3398 } 3399 3400 static void bond_remove_proc_entry(struct bonding *bond) 3401 { 3402 if (bond_proc_dir && bond->proc_entry) { 3403 remove_proc_entry(bond->proc_file_name, bond_proc_dir); 3404 memset(bond->proc_file_name, 0, IFNAMSIZ); 3405 bond->proc_entry = NULL; 3406 } 3407 } 3408 3409 /* Create the bonding directory under /proc/net, if doesn't exist yet. 3410 * Caller must hold rtnl_lock. 3411 */ 3412 static void bond_create_proc_dir(void) 3413 { 3414 int len = strlen(DRV_NAME); 3415 3416 for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir; 3417 bond_proc_dir = bond_proc_dir->next) { 3418 if ((bond_proc_dir->namelen == len) && 3419 !memcmp(bond_proc_dir->name, DRV_NAME, len)) { 3420 break; 3421 } 3422 } 3423 3424 if (!bond_proc_dir) { 3425 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net); 3426 if (bond_proc_dir) { 3427 bond_proc_dir->owner = THIS_MODULE; 3428 } else { 3429 printk(KERN_WARNING DRV_NAME 3430 ": Warning: cannot create /proc/net/%s\n", 3431 DRV_NAME); 3432 } 3433 } 3434 } 3435 3436 /* Destroy the bonding directory under /proc/net, if empty. 3437 * Caller must hold rtnl_lock. 3438 */ 3439 static void bond_destroy_proc_dir(void) 3440 { 3441 struct proc_dir_entry *de; 3442 3443 if (!bond_proc_dir) { 3444 return; 3445 } 3446 3447 /* verify that the /proc dir is empty */ 3448 for (de = bond_proc_dir->subdir; de; de = de->next) { 3449 /* ignore . and .. */ 3450 if (*(de->name) != '.') { 3451 break; 3452 } 3453 } 3454 3455 if (de) { 3456 if (bond_proc_dir->owner == THIS_MODULE) { 3457 bond_proc_dir->owner = NULL; 3458 } 3459 } else { 3460 remove_proc_entry(DRV_NAME, init_net.proc_net); 3461 bond_proc_dir = NULL; 3462 } 3463 } 3464 #endif /* CONFIG_PROC_FS */ 3465 3466 /*-------------------------- netdev event handling --------------------------*/ 3467 3468 /* 3469 * Change device name 3470 */ 3471 static int bond_event_changename(struct bonding *bond) 3472 { 3473 #ifdef CONFIG_PROC_FS 3474 bond_remove_proc_entry(bond); 3475 bond_create_proc_entry(bond); 3476 #endif 3477 down_write(&(bonding_rwsem)); 3478 bond_destroy_sysfs_entry(bond); 3479 bond_create_sysfs_entry(bond); 3480 up_write(&(bonding_rwsem)); 3481 return NOTIFY_DONE; 3482 } 3483 3484 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) 3485 { 3486 struct bonding *event_bond = bond_dev->priv; 3487 3488 switch (event) { 3489 case NETDEV_CHANGENAME: 3490 return bond_event_changename(event_bond); 3491 case NETDEV_UNREGISTER: 3492 bond_release_all(event_bond->dev); 3493 break; 3494 default: 3495 break; 3496 } 3497 3498 return NOTIFY_DONE; 3499 } 3500 3501 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) 3502 { 3503 struct net_device *bond_dev = slave_dev->master; 3504 struct bonding *bond = bond_dev->priv; 3505 3506 switch (event) { 3507 case NETDEV_UNREGISTER: 3508 if (bond_dev) { 3509 if (bond->setup_by_slave) 3510 bond_release_and_destroy(bond_dev, slave_dev); 3511 else 3512 bond_release(bond_dev, slave_dev); 3513 } 3514 break; 3515 case NETDEV_CHANGE: 3516 /* 3517 * TODO: is this what we get if somebody 3518 * sets up a hierarchical bond, then rmmod's 3519 * one of the slave bonding devices? 3520 */ 3521 break; 3522 case NETDEV_DOWN: 3523 /* 3524 * ... Or is it this? 3525 */ 3526 break; 3527 case NETDEV_CHANGEMTU: 3528 /* 3529 * TODO: Should slaves be allowed to 3530 * independently alter their MTU? For 3531 * an active-backup bond, slaves need 3532 * not be the same type of device, so 3533 * MTUs may vary. For other modes, 3534 * slaves arguably should have the 3535 * same MTUs. To do this, we'd need to 3536 * take over the slave's change_mtu 3537 * function for the duration of their 3538 * servitude. 3539 */ 3540 break; 3541 case NETDEV_CHANGENAME: 3542 /* 3543 * TODO: handle changing the primary's name 3544 */ 3545 break; 3546 case NETDEV_FEAT_CHANGE: 3547 bond_compute_features(bond); 3548 break; 3549 default: 3550 break; 3551 } 3552 3553 return NOTIFY_DONE; 3554 } 3555 3556 /* 3557 * bond_netdev_event: handle netdev notifier chain events. 3558 * 3559 * This function receives events for the netdev chain. The caller (an 3560 * ioctl handler calling blocking_notifier_call_chain) holds the necessary 3561 * locks for us to safely manipulate the slave devices (RTNL lock, 3562 * dev_probe_lock). 3563 */ 3564 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) 3565 { 3566 struct net_device *event_dev = (struct net_device *)ptr; 3567 3568 if (dev_net(event_dev) != &init_net) 3569 return NOTIFY_DONE; 3570 3571 dprintk("event_dev: %s, event: %lx\n", 3572 (event_dev ? event_dev->name : "None"), 3573 event); 3574 3575 if (!(event_dev->priv_flags & IFF_BONDING)) 3576 return NOTIFY_DONE; 3577 3578 if (event_dev->flags & IFF_MASTER) { 3579 dprintk("IFF_MASTER\n"); 3580 return bond_master_netdev_event(event, event_dev); 3581 } 3582 3583 if (event_dev->flags & IFF_SLAVE) { 3584 dprintk("IFF_SLAVE\n"); 3585 return bond_slave_netdev_event(event, event_dev); 3586 } 3587 3588 return NOTIFY_DONE; 3589 } 3590 3591 /* 3592 * bond_inetaddr_event: handle inetaddr notifier chain events. 3593 * 3594 * We keep track of device IPs primarily to use as source addresses in 3595 * ARP monitor probes (rather than spewing out broadcasts all the time). 3596 * 3597 * We track one IP for the main device (if it has one), plus one per VLAN. 3598 */ 3599 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) 3600 { 3601 struct in_ifaddr *ifa = ptr; 3602 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; 3603 struct bonding *bond; 3604 struct vlan_entry *vlan; 3605 3606 if (dev_net(ifa->ifa_dev->dev) != &init_net) 3607 return NOTIFY_DONE; 3608 3609 list_for_each_entry(bond, &bond_dev_list, bond_list) { 3610 if (bond->dev == event_dev) { 3611 switch (event) { 3612 case NETDEV_UP: 3613 bond->master_ip = ifa->ifa_local; 3614 return NOTIFY_OK; 3615 case NETDEV_DOWN: 3616 bond->master_ip = bond_glean_dev_ip(bond->dev); 3617 return NOTIFY_OK; 3618 default: 3619 return NOTIFY_DONE; 3620 } 3621 } 3622 3623 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { 3624 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); 3625 if (vlan_dev == event_dev) { 3626 switch (event) { 3627 case NETDEV_UP: 3628 vlan->vlan_ip = ifa->ifa_local; 3629 return NOTIFY_OK; 3630 case NETDEV_DOWN: 3631 vlan->vlan_ip = 3632 bond_glean_dev_ip(vlan_dev); 3633 return NOTIFY_OK; 3634 default: 3635 return NOTIFY_DONE; 3636 } 3637 } 3638 } 3639 } 3640 return NOTIFY_DONE; 3641 } 3642 3643 static struct notifier_block bond_netdev_notifier = { 3644 .notifier_call = bond_netdev_event, 3645 }; 3646 3647 static struct notifier_block bond_inetaddr_notifier = { 3648 .notifier_call = bond_inetaddr_event, 3649 }; 3650 3651 /*-------------------------- Packet type handling ---------------------------*/ 3652 3653 /* register to receive lacpdus on a bond */ 3654 static void bond_register_lacpdu(struct bonding *bond) 3655 { 3656 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); 3657 3658 /* initialize packet type */ 3659 pk_type->type = PKT_TYPE_LACPDU; 3660 pk_type->dev = bond->dev; 3661 pk_type->func = bond_3ad_lacpdu_recv; 3662 3663 dev_add_pack(pk_type); 3664 } 3665 3666 /* unregister to receive lacpdus on a bond */ 3667 static void bond_unregister_lacpdu(struct bonding *bond) 3668 { 3669 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); 3670 } 3671 3672 void bond_register_arp(struct bonding *bond) 3673 { 3674 struct packet_type *pt = &bond->arp_mon_pt; 3675 3676 if (pt->type) 3677 return; 3678 3679 pt->type = htons(ETH_P_ARP); 3680 pt->dev = bond->dev; 3681 pt->func = bond_arp_rcv; 3682 dev_add_pack(pt); 3683 } 3684 3685 void bond_unregister_arp(struct bonding *bond) 3686 { 3687 struct packet_type *pt = &bond->arp_mon_pt; 3688 3689 dev_remove_pack(pt); 3690 pt->type = 0; 3691 } 3692 3693 /*---------------------------- Hashing Policies -----------------------------*/ 3694 3695 /* 3696 * Hash for the output device based upon layer 2 and layer 3 data. If 3697 * the packet is not IP mimic bond_xmit_hash_policy_l2() 3698 */ 3699 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, 3700 struct net_device *bond_dev, int count) 3701 { 3702 struct ethhdr *data = (struct ethhdr *)skb->data; 3703 struct iphdr *iph = ip_hdr(skb); 3704 3705 if (skb->protocol == __constant_htons(ETH_P_IP)) { 3706 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ 3707 (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count; 3708 } 3709 3710 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3711 } 3712 3713 /* 3714 * Hash for the output device based upon layer 3 and layer 4 data. If 3715 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is 3716 * altogether not IP, mimic bond_xmit_hash_policy_l2() 3717 */ 3718 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, 3719 struct net_device *bond_dev, int count) 3720 { 3721 struct ethhdr *data = (struct ethhdr *)skb->data; 3722 struct iphdr *iph = ip_hdr(skb); 3723 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); 3724 int layer4_xor = 0; 3725 3726 if (skb->protocol == __constant_htons(ETH_P_IP)) { 3727 if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) && 3728 (iph->protocol == IPPROTO_TCP || 3729 iph->protocol == IPPROTO_UDP)) { 3730 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); 3731 } 3732 return (layer4_xor ^ 3733 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; 3734 3735 } 3736 3737 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3738 } 3739 3740 /* 3741 * Hash for the output device based upon layer 2 data 3742 */ 3743 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, 3744 struct net_device *bond_dev, int count) 3745 { 3746 struct ethhdr *data = (struct ethhdr *)skb->data; 3747 3748 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; 3749 } 3750 3751 /*-------------------------- Device entry points ----------------------------*/ 3752 3753 static int bond_open(struct net_device *bond_dev) 3754 { 3755 struct bonding *bond = bond_dev->priv; 3756 3757 bond->kill_timers = 0; 3758 3759 if ((bond->params.mode == BOND_MODE_TLB) || 3760 (bond->params.mode == BOND_MODE_ALB)) { 3761 /* bond_alb_initialize must be called before the timer 3762 * is started. 3763 */ 3764 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { 3765 /* something went wrong - fail the open operation */ 3766 return -1; 3767 } 3768 3769 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); 3770 queue_delayed_work(bond->wq, &bond->alb_work, 0); 3771 } 3772 3773 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3774 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); 3775 queue_delayed_work(bond->wq, &bond->mii_work, 0); 3776 } 3777 3778 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3779 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) 3780 INIT_DELAYED_WORK(&bond->arp_work, 3781 bond_activebackup_arp_mon); 3782 else 3783 INIT_DELAYED_WORK(&bond->arp_work, 3784 bond_loadbalance_arp_mon); 3785 3786 queue_delayed_work(bond->wq, &bond->arp_work, 0); 3787 if (bond->params.arp_validate) 3788 bond_register_arp(bond); 3789 } 3790 3791 if (bond->params.mode == BOND_MODE_8023AD) { 3792 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); 3793 queue_delayed_work(bond->wq, &bond->ad_work, 0); 3794 /* register to receive LACPDUs */ 3795 bond_register_lacpdu(bond); 3796 } 3797 3798 return 0; 3799 } 3800 3801 static int bond_close(struct net_device *bond_dev) 3802 { 3803 struct bonding *bond = bond_dev->priv; 3804 3805 if (bond->params.mode == BOND_MODE_8023AD) { 3806 /* Unregister the receive of LACPDUs */ 3807 bond_unregister_lacpdu(bond); 3808 } 3809 3810 if (bond->params.arp_validate) 3811 bond_unregister_arp(bond); 3812 3813 write_lock_bh(&bond->lock); 3814 3815 bond->send_grat_arp = 0; 3816 3817 /* signal timers not to re-arm */ 3818 bond->kill_timers = 1; 3819 3820 write_unlock_bh(&bond->lock); 3821 3822 if (bond->params.miimon) { /* link check interval, in milliseconds. */ 3823 cancel_delayed_work(&bond->mii_work); 3824 } 3825 3826 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ 3827 cancel_delayed_work(&bond->arp_work); 3828 } 3829 3830 switch (bond->params.mode) { 3831 case BOND_MODE_8023AD: 3832 cancel_delayed_work(&bond->ad_work); 3833 break; 3834 case BOND_MODE_TLB: 3835 case BOND_MODE_ALB: 3836 cancel_delayed_work(&bond->alb_work); 3837 break; 3838 default: 3839 break; 3840 } 3841 3842 3843 if ((bond->params.mode == BOND_MODE_TLB) || 3844 (bond->params.mode == BOND_MODE_ALB)) { 3845 /* Must be called only after all 3846 * slaves have been released 3847 */ 3848 bond_alb_deinitialize(bond); 3849 } 3850 3851 return 0; 3852 } 3853 3854 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) 3855 { 3856 struct bonding *bond = bond_dev->priv; 3857 struct net_device_stats *stats = &(bond->stats), *sstats; 3858 struct net_device_stats local_stats; 3859 struct slave *slave; 3860 int i; 3861 3862 memset(&local_stats, 0, sizeof(struct net_device_stats)); 3863 3864 read_lock_bh(&bond->lock); 3865 3866 bond_for_each_slave(bond, slave, i) { 3867 sstats = slave->dev->get_stats(slave->dev); 3868 local_stats.rx_packets += sstats->rx_packets; 3869 local_stats.rx_bytes += sstats->rx_bytes; 3870 local_stats.rx_errors += sstats->rx_errors; 3871 local_stats.rx_dropped += sstats->rx_dropped; 3872 3873 local_stats.tx_packets += sstats->tx_packets; 3874 local_stats.tx_bytes += sstats->tx_bytes; 3875 local_stats.tx_errors += sstats->tx_errors; 3876 local_stats.tx_dropped += sstats->tx_dropped; 3877 3878 local_stats.multicast += sstats->multicast; 3879 local_stats.collisions += sstats->collisions; 3880 3881 local_stats.rx_length_errors += sstats->rx_length_errors; 3882 local_stats.rx_over_errors += sstats->rx_over_errors; 3883 local_stats.rx_crc_errors += sstats->rx_crc_errors; 3884 local_stats.rx_frame_errors += sstats->rx_frame_errors; 3885 local_stats.rx_fifo_errors += sstats->rx_fifo_errors; 3886 local_stats.rx_missed_errors += sstats->rx_missed_errors; 3887 3888 local_stats.tx_aborted_errors += sstats->tx_aborted_errors; 3889 local_stats.tx_carrier_errors += sstats->tx_carrier_errors; 3890 local_stats.tx_fifo_errors += sstats->tx_fifo_errors; 3891 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors; 3892 local_stats.tx_window_errors += sstats->tx_window_errors; 3893 } 3894 3895 memcpy(stats, &local_stats, sizeof(struct net_device_stats)); 3896 3897 read_unlock_bh(&bond->lock); 3898 3899 return stats; 3900 } 3901 3902 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) 3903 { 3904 struct net_device *slave_dev = NULL; 3905 struct ifbond k_binfo; 3906 struct ifbond __user *u_binfo = NULL; 3907 struct ifslave k_sinfo; 3908 struct ifslave __user *u_sinfo = NULL; 3909 struct mii_ioctl_data *mii = NULL; 3910 int res = 0; 3911 3912 dprintk("bond_ioctl: master=%s, cmd=%d\n", 3913 bond_dev->name, cmd); 3914 3915 switch (cmd) { 3916 case SIOCGMIIPHY: 3917 mii = if_mii(ifr); 3918 if (!mii) { 3919 return -EINVAL; 3920 } 3921 mii->phy_id = 0; 3922 /* Fall Through */ 3923 case SIOCGMIIREG: 3924 /* 3925 * We do this again just in case we were called by SIOCGMIIREG 3926 * instead of SIOCGMIIPHY. 3927 */ 3928 mii = if_mii(ifr); 3929 if (!mii) { 3930 return -EINVAL; 3931 } 3932 3933 if (mii->reg_num == 1) { 3934 struct bonding *bond = bond_dev->priv; 3935 mii->val_out = 0; 3936 read_lock(&bond->lock); 3937 read_lock(&bond->curr_slave_lock); 3938 if (netif_carrier_ok(bond->dev)) { 3939 mii->val_out = BMSR_LSTATUS; 3940 } 3941 read_unlock(&bond->curr_slave_lock); 3942 read_unlock(&bond->lock); 3943 } 3944 3945 return 0; 3946 case BOND_INFO_QUERY_OLD: 3947 case SIOCBONDINFOQUERY: 3948 u_binfo = (struct ifbond __user *)ifr->ifr_data; 3949 3950 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { 3951 return -EFAULT; 3952 } 3953 3954 res = bond_info_query(bond_dev, &k_binfo); 3955 if (res == 0) { 3956 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { 3957 return -EFAULT; 3958 } 3959 } 3960 3961 return res; 3962 case BOND_SLAVE_INFO_QUERY_OLD: 3963 case SIOCBONDSLAVEINFOQUERY: 3964 u_sinfo = (struct ifslave __user *)ifr->ifr_data; 3965 3966 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { 3967 return -EFAULT; 3968 } 3969 3970 res = bond_slave_info_query(bond_dev, &k_sinfo); 3971 if (res == 0) { 3972 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { 3973 return -EFAULT; 3974 } 3975 } 3976 3977 return res; 3978 default: 3979 /* Go on */ 3980 break; 3981 } 3982 3983 if (!capable(CAP_NET_ADMIN)) { 3984 return -EPERM; 3985 } 3986 3987 down_write(&(bonding_rwsem)); 3988 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave); 3989 3990 dprintk("slave_dev=%p: \n", slave_dev); 3991 3992 if (!slave_dev) { 3993 res = -ENODEV; 3994 } else { 3995 dprintk("slave_dev->name=%s: \n", slave_dev->name); 3996 switch (cmd) { 3997 case BOND_ENSLAVE_OLD: 3998 case SIOCBONDENSLAVE: 3999 res = bond_enslave(bond_dev, slave_dev); 4000 break; 4001 case BOND_RELEASE_OLD: 4002 case SIOCBONDRELEASE: 4003 res = bond_release(bond_dev, slave_dev); 4004 break; 4005 case BOND_SETHWADDR_OLD: 4006 case SIOCBONDSETHWADDR: 4007 res = bond_sethwaddr(bond_dev, slave_dev); 4008 break; 4009 case BOND_CHANGE_ACTIVE_OLD: 4010 case SIOCBONDCHANGEACTIVE: 4011 res = bond_ioctl_change_active(bond_dev, slave_dev); 4012 break; 4013 default: 4014 res = -EOPNOTSUPP; 4015 } 4016 4017 dev_put(slave_dev); 4018 } 4019 4020 up_write(&(bonding_rwsem)); 4021 return res; 4022 } 4023 4024 static void bond_set_multicast_list(struct net_device *bond_dev) 4025 { 4026 struct bonding *bond = bond_dev->priv; 4027 struct dev_mc_list *dmi; 4028 4029 /* 4030 * Do promisc before checking multicast_mode 4031 */ 4032 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { 4033 /* 4034 * FIXME: Need to handle the error when one of the multi-slaves 4035 * encounters error. 4036 */ 4037 bond_set_promiscuity(bond, 1); 4038 } 4039 4040 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { 4041 bond_set_promiscuity(bond, -1); 4042 } 4043 4044 /* set allmulti flag to slaves */ 4045 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { 4046 /* 4047 * FIXME: Need to handle the error when one of the multi-slaves 4048 * encounters error. 4049 */ 4050 bond_set_allmulti(bond, 1); 4051 } 4052 4053 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { 4054 bond_set_allmulti(bond, -1); 4055 } 4056 4057 read_lock(&bond->lock); 4058 4059 bond->flags = bond_dev->flags; 4060 4061 /* looking for addresses to add to slaves' mc list */ 4062 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { 4063 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { 4064 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4065 } 4066 } 4067 4068 /* looking for addresses to delete from slaves' list */ 4069 for (dmi = bond->mc_list; dmi; dmi = dmi->next) { 4070 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { 4071 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); 4072 } 4073 } 4074 4075 /* save master's multicast list */ 4076 bond_mc_list_destroy(bond); 4077 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); 4078 4079 read_unlock(&bond->lock); 4080 } 4081 4082 /* 4083 * Change the MTU of all of a master's slaves to match the master 4084 */ 4085 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) 4086 { 4087 struct bonding *bond = bond_dev->priv; 4088 struct slave *slave, *stop_at; 4089 int res = 0; 4090 int i; 4091 4092 dprintk("bond=%p, name=%s, new_mtu=%d\n", bond, 4093 (bond_dev ? bond_dev->name : "None"), new_mtu); 4094 4095 /* Can't hold bond->lock with bh disabled here since 4096 * some base drivers panic. On the other hand we can't 4097 * hold bond->lock without bh disabled because we'll 4098 * deadlock. The only solution is to rely on the fact 4099 * that we're under rtnl_lock here, and the slaves 4100 * list won't change. This doesn't solve the problem 4101 * of setting the slave's MTU while it is 4102 * transmitting, but the assumption is that the base 4103 * driver can handle that. 4104 * 4105 * TODO: figure out a way to safely iterate the slaves 4106 * list, but without holding a lock around the actual 4107 * call to the base driver. 4108 */ 4109 4110 bond_for_each_slave(bond, slave, i) { 4111 dprintk("s %p s->p %p c_m %p\n", slave, 4112 slave->prev, slave->dev->change_mtu); 4113 4114 res = dev_set_mtu(slave->dev, new_mtu); 4115 4116 if (res) { 4117 /* If we failed to set the slave's mtu to the new value 4118 * we must abort the operation even in ACTIVE_BACKUP 4119 * mode, because if we allow the backup slaves to have 4120 * different mtu values than the active slave we'll 4121 * need to change their mtu when doing a failover. That 4122 * means changing their mtu from timer context, which 4123 * is probably not a good idea. 4124 */ 4125 dprintk("err %d %s\n", res, slave->dev->name); 4126 goto unwind; 4127 } 4128 } 4129 4130 bond_dev->mtu = new_mtu; 4131 4132 return 0; 4133 4134 unwind: 4135 /* unwind from head to the slave that failed */ 4136 stop_at = slave; 4137 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4138 int tmp_res; 4139 4140 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); 4141 if (tmp_res) { 4142 dprintk("unwind err %d dev %s\n", tmp_res, 4143 slave->dev->name); 4144 } 4145 } 4146 4147 return res; 4148 } 4149 4150 /* 4151 * Change HW address 4152 * 4153 * Note that many devices must be down to change the HW address, and 4154 * downing the master releases all slaves. We can make bonds full of 4155 * bonding devices to test this, however. 4156 */ 4157 static int bond_set_mac_address(struct net_device *bond_dev, void *addr) 4158 { 4159 struct bonding *bond = bond_dev->priv; 4160 struct sockaddr *sa = addr, tmp_sa; 4161 struct slave *slave, *stop_at; 4162 int res = 0; 4163 int i; 4164 4165 dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); 4166 4167 /* 4168 * If fail_over_mac is set to active, do nothing and return 4169 * success. Returning an error causes ifenslave to fail. 4170 */ 4171 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE) 4172 return 0; 4173 4174 if (!is_valid_ether_addr(sa->sa_data)) { 4175 return -EADDRNOTAVAIL; 4176 } 4177 4178 /* Can't hold bond->lock with bh disabled here since 4179 * some base drivers panic. On the other hand we can't 4180 * hold bond->lock without bh disabled because we'll 4181 * deadlock. The only solution is to rely on the fact 4182 * that we're under rtnl_lock here, and the slaves 4183 * list won't change. This doesn't solve the problem 4184 * of setting the slave's hw address while it is 4185 * transmitting, but the assumption is that the base 4186 * driver can handle that. 4187 * 4188 * TODO: figure out a way to safely iterate the slaves 4189 * list, but without holding a lock around the actual 4190 * call to the base driver. 4191 */ 4192 4193 bond_for_each_slave(bond, slave, i) { 4194 dprintk("slave %p %s\n", slave, slave->dev->name); 4195 4196 if (slave->dev->set_mac_address == NULL) { 4197 res = -EOPNOTSUPP; 4198 dprintk("EOPNOTSUPP %s\n", slave->dev->name); 4199 goto unwind; 4200 } 4201 4202 res = dev_set_mac_address(slave->dev, addr); 4203 if (res) { 4204 /* TODO: consider downing the slave 4205 * and retry ? 4206 * User should expect communications 4207 * breakage anyway until ARP finish 4208 * updating, so... 4209 */ 4210 dprintk("err %d %s\n", res, slave->dev->name); 4211 goto unwind; 4212 } 4213 } 4214 4215 /* success */ 4216 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 4217 return 0; 4218 4219 unwind: 4220 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); 4221 tmp_sa.sa_family = bond_dev->type; 4222 4223 /* unwind from head to the slave that failed */ 4224 stop_at = slave; 4225 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 4226 int tmp_res; 4227 4228 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); 4229 if (tmp_res) { 4230 dprintk("unwind err %d dev %s\n", tmp_res, 4231 slave->dev->name); 4232 } 4233 } 4234 4235 return res; 4236 } 4237 4238 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) 4239 { 4240 struct bonding *bond = bond_dev->priv; 4241 struct slave *slave, *start_at; 4242 int i, slave_no, res = 1; 4243 4244 read_lock(&bond->lock); 4245 4246 if (!BOND_IS_OK(bond)) { 4247 goto out; 4248 } 4249 4250 /* 4251 * Concurrent TX may collide on rr_tx_counter; we accept that 4252 * as being rare enough not to justify using an atomic op here 4253 */ 4254 slave_no = bond->rr_tx_counter++ % bond->slave_cnt; 4255 4256 bond_for_each_slave(bond, slave, i) { 4257 slave_no--; 4258 if (slave_no < 0) { 4259 break; 4260 } 4261 } 4262 4263 start_at = slave; 4264 bond_for_each_slave_from(bond, slave, i, start_at) { 4265 if (IS_UP(slave->dev) && 4266 (slave->link == BOND_LINK_UP) && 4267 (slave->state == BOND_STATE_ACTIVE)) { 4268 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4269 break; 4270 } 4271 } 4272 4273 out: 4274 if (res) { 4275 /* no suitable interface, frame not sent */ 4276 dev_kfree_skb(skb); 4277 } 4278 read_unlock(&bond->lock); 4279 return 0; 4280 } 4281 4282 4283 /* 4284 * in active-backup mode, we know that bond->curr_active_slave is always valid if 4285 * the bond has a usable interface. 4286 */ 4287 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) 4288 { 4289 struct bonding *bond = bond_dev->priv; 4290 int res = 1; 4291 4292 read_lock(&bond->lock); 4293 read_lock(&bond->curr_slave_lock); 4294 4295 if (!BOND_IS_OK(bond)) { 4296 goto out; 4297 } 4298 4299 if (!bond->curr_active_slave) 4300 goto out; 4301 4302 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); 4303 4304 out: 4305 if (res) { 4306 /* no suitable interface, frame not sent */ 4307 dev_kfree_skb(skb); 4308 } 4309 read_unlock(&bond->curr_slave_lock); 4310 read_unlock(&bond->lock); 4311 return 0; 4312 } 4313 4314 /* 4315 * In bond_xmit_xor() , we determine the output device by using a pre- 4316 * determined xmit_hash_policy(), If the selected device is not enabled, 4317 * find the next active slave. 4318 */ 4319 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) 4320 { 4321 struct bonding *bond = bond_dev->priv; 4322 struct slave *slave, *start_at; 4323 int slave_no; 4324 int i; 4325 int res = 1; 4326 4327 read_lock(&bond->lock); 4328 4329 if (!BOND_IS_OK(bond)) { 4330 goto out; 4331 } 4332 4333 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); 4334 4335 bond_for_each_slave(bond, slave, i) { 4336 slave_no--; 4337 if (slave_no < 0) { 4338 break; 4339 } 4340 } 4341 4342 start_at = slave; 4343 4344 bond_for_each_slave_from(bond, slave, i, start_at) { 4345 if (IS_UP(slave->dev) && 4346 (slave->link == BOND_LINK_UP) && 4347 (slave->state == BOND_STATE_ACTIVE)) { 4348 res = bond_dev_queue_xmit(bond, skb, slave->dev); 4349 break; 4350 } 4351 } 4352 4353 out: 4354 if (res) { 4355 /* no suitable interface, frame not sent */ 4356 dev_kfree_skb(skb); 4357 } 4358 read_unlock(&bond->lock); 4359 return 0; 4360 } 4361 4362 /* 4363 * in broadcast mode, we send everything to all usable interfaces. 4364 */ 4365 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) 4366 { 4367 struct bonding *bond = bond_dev->priv; 4368 struct slave *slave, *start_at; 4369 struct net_device *tx_dev = NULL; 4370 int i; 4371 int res = 1; 4372 4373 read_lock(&bond->lock); 4374 4375 if (!BOND_IS_OK(bond)) { 4376 goto out; 4377 } 4378 4379 read_lock(&bond->curr_slave_lock); 4380 start_at = bond->curr_active_slave; 4381 read_unlock(&bond->curr_slave_lock); 4382 4383 if (!start_at) { 4384 goto out; 4385 } 4386 4387 bond_for_each_slave_from(bond, slave, i, start_at) { 4388 if (IS_UP(slave->dev) && 4389 (slave->link == BOND_LINK_UP) && 4390 (slave->state == BOND_STATE_ACTIVE)) { 4391 if (tx_dev) { 4392 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 4393 if (!skb2) { 4394 printk(KERN_ERR DRV_NAME 4395 ": %s: Error: bond_xmit_broadcast(): " 4396 "skb_clone() failed\n", 4397 bond_dev->name); 4398 continue; 4399 } 4400 4401 res = bond_dev_queue_xmit(bond, skb2, tx_dev); 4402 if (res) { 4403 dev_kfree_skb(skb2); 4404 continue; 4405 } 4406 } 4407 tx_dev = slave->dev; 4408 } 4409 } 4410 4411 if (tx_dev) { 4412 res = bond_dev_queue_xmit(bond, skb, tx_dev); 4413 } 4414 4415 out: 4416 if (res) { 4417 /* no suitable interface, frame not sent */ 4418 dev_kfree_skb(skb); 4419 } 4420 /* frame sent to all suitable interfaces */ 4421 read_unlock(&bond->lock); 4422 return 0; 4423 } 4424 4425 /*------------------------- Device initialization ---------------------------*/ 4426 4427 static void bond_set_xmit_hash_policy(struct bonding *bond) 4428 { 4429 switch (bond->params.xmit_policy) { 4430 case BOND_XMIT_POLICY_LAYER23: 4431 bond->xmit_hash_policy = bond_xmit_hash_policy_l23; 4432 break; 4433 case BOND_XMIT_POLICY_LAYER34: 4434 bond->xmit_hash_policy = bond_xmit_hash_policy_l34; 4435 break; 4436 case BOND_XMIT_POLICY_LAYER2: 4437 default: 4438 bond->xmit_hash_policy = bond_xmit_hash_policy_l2; 4439 break; 4440 } 4441 } 4442 4443 /* 4444 * set bond mode specific net device operations 4445 */ 4446 void bond_set_mode_ops(struct bonding *bond, int mode) 4447 { 4448 struct net_device *bond_dev = bond->dev; 4449 4450 switch (mode) { 4451 case BOND_MODE_ROUNDROBIN: 4452 bond_dev->hard_start_xmit = bond_xmit_roundrobin; 4453 break; 4454 case BOND_MODE_ACTIVEBACKUP: 4455 bond_dev->hard_start_xmit = bond_xmit_activebackup; 4456 break; 4457 case BOND_MODE_XOR: 4458 bond_dev->hard_start_xmit = bond_xmit_xor; 4459 bond_set_xmit_hash_policy(bond); 4460 break; 4461 case BOND_MODE_BROADCAST: 4462 bond_dev->hard_start_xmit = bond_xmit_broadcast; 4463 break; 4464 case BOND_MODE_8023AD: 4465 bond_set_master_3ad_flags(bond); 4466 bond_dev->hard_start_xmit = bond_3ad_xmit_xor; 4467 bond_set_xmit_hash_policy(bond); 4468 break; 4469 case BOND_MODE_ALB: 4470 bond_set_master_alb_flags(bond); 4471 /* FALLTHRU */ 4472 case BOND_MODE_TLB: 4473 bond_dev->hard_start_xmit = bond_alb_xmit; 4474 bond_dev->set_mac_address = bond_alb_set_mac_address; 4475 break; 4476 default: 4477 /* Should never happen, mode already checked */ 4478 printk(KERN_ERR DRV_NAME 4479 ": %s: Error: Unknown bonding mode %d\n", 4480 bond_dev->name, 4481 mode); 4482 break; 4483 } 4484 } 4485 4486 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, 4487 struct ethtool_drvinfo *drvinfo) 4488 { 4489 strncpy(drvinfo->driver, DRV_NAME, 32); 4490 strncpy(drvinfo->version, DRV_VERSION, 32); 4491 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); 4492 } 4493 4494 static const struct ethtool_ops bond_ethtool_ops = { 4495 .get_drvinfo = bond_ethtool_get_drvinfo, 4496 }; 4497 4498 /* 4499 * Does not allocate but creates a /proc entry. 4500 * Allowed to fail. 4501 */ 4502 static int bond_init(struct net_device *bond_dev, struct bond_params *params) 4503 { 4504 struct bonding *bond = bond_dev->priv; 4505 4506 dprintk("Begin bond_init for %s\n", bond_dev->name); 4507 4508 /* initialize rwlocks */ 4509 rwlock_init(&bond->lock); 4510 rwlock_init(&bond->curr_slave_lock); 4511 4512 bond->params = *params; /* copy params struct */ 4513 4514 bond->wq = create_singlethread_workqueue(bond_dev->name); 4515 if (!bond->wq) 4516 return -ENOMEM; 4517 4518 /* Initialize pointers */ 4519 bond->first_slave = NULL; 4520 bond->curr_active_slave = NULL; 4521 bond->current_arp_slave = NULL; 4522 bond->primary_slave = NULL; 4523 bond->dev = bond_dev; 4524 bond->send_grat_arp = 0; 4525 bond->setup_by_slave = 0; 4526 INIT_LIST_HEAD(&bond->vlan_list); 4527 4528 /* Initialize the device entry points */ 4529 bond_dev->open = bond_open; 4530 bond_dev->stop = bond_close; 4531 bond_dev->get_stats = bond_get_stats; 4532 bond_dev->do_ioctl = bond_do_ioctl; 4533 bond_dev->ethtool_ops = &bond_ethtool_ops; 4534 bond_dev->set_multicast_list = bond_set_multicast_list; 4535 bond_dev->change_mtu = bond_change_mtu; 4536 bond_dev->set_mac_address = bond_set_mac_address; 4537 bond_dev->validate_addr = NULL; 4538 4539 bond_set_mode_ops(bond, bond->params.mode); 4540 4541 bond_dev->destructor = free_netdev; 4542 4543 /* Initialize the device options */ 4544 bond_dev->tx_queue_len = 0; 4545 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; 4546 bond_dev->priv_flags |= IFF_BONDING; 4547 4548 /* At first, we block adding VLANs. That's the only way to 4549 * prevent problems that occur when adding VLANs over an 4550 * empty bond. The block will be removed once non-challenged 4551 * slaves are enslaved. 4552 */ 4553 bond_dev->features |= NETIF_F_VLAN_CHALLENGED; 4554 4555 /* don't acquire bond device's netif_tx_lock when 4556 * transmitting */ 4557 bond_dev->features |= NETIF_F_LLTX; 4558 4559 /* By default, we declare the bond to be fully 4560 * VLAN hardware accelerated capable. Special 4561 * care is taken in the various xmit functions 4562 * when there are slaves that are not hw accel 4563 * capable 4564 */ 4565 bond_dev->vlan_rx_register = bond_vlan_rx_register; 4566 bond_dev->vlan_rx_add_vid = bond_vlan_rx_add_vid; 4567 bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid; 4568 bond_dev->features |= (NETIF_F_HW_VLAN_TX | 4569 NETIF_F_HW_VLAN_RX | 4570 NETIF_F_HW_VLAN_FILTER); 4571 4572 #ifdef CONFIG_PROC_FS 4573 bond_create_proc_entry(bond); 4574 #endif 4575 list_add_tail(&bond->bond_list, &bond_dev_list); 4576 4577 return 0; 4578 } 4579 4580 /* De-initialize device specific data. 4581 * Caller must hold rtnl_lock. 4582 */ 4583 static void bond_deinit(struct net_device *bond_dev) 4584 { 4585 struct bonding *bond = bond_dev->priv; 4586 4587 list_del(&bond->bond_list); 4588 4589 #ifdef CONFIG_PROC_FS 4590 bond_remove_proc_entry(bond); 4591 #endif 4592 } 4593 4594 static void bond_work_cancel_all(struct bonding *bond) 4595 { 4596 write_lock_bh(&bond->lock); 4597 bond->kill_timers = 1; 4598 write_unlock_bh(&bond->lock); 4599 4600 if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) 4601 cancel_delayed_work(&bond->mii_work); 4602 4603 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) 4604 cancel_delayed_work(&bond->arp_work); 4605 4606 if (bond->params.mode == BOND_MODE_ALB && 4607 delayed_work_pending(&bond->alb_work)) 4608 cancel_delayed_work(&bond->alb_work); 4609 4610 if (bond->params.mode == BOND_MODE_8023AD && 4611 delayed_work_pending(&bond->ad_work)) 4612 cancel_delayed_work(&bond->ad_work); 4613 } 4614 4615 /* Unregister and free all bond devices. 4616 * Caller must hold rtnl_lock. 4617 */ 4618 static void bond_free_all(void) 4619 { 4620 struct bonding *bond, *nxt; 4621 4622 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { 4623 struct net_device *bond_dev = bond->dev; 4624 4625 bond_work_cancel_all(bond); 4626 netif_addr_lock_bh(bond_dev); 4627 bond_mc_list_destroy(bond); 4628 netif_addr_unlock_bh(bond_dev); 4629 /* Release the bonded slaves */ 4630 bond_release_all(bond_dev); 4631 bond_destroy(bond); 4632 } 4633 4634 #ifdef CONFIG_PROC_FS 4635 bond_destroy_proc_dir(); 4636 #endif 4637 } 4638 4639 /*------------------------- Module initialization ---------------------------*/ 4640 4641 /* 4642 * Convert string input module parms. Accept either the 4643 * number of the mode or its string name. A bit complicated because 4644 * some mode names are substrings of other names, and calls from sysfs 4645 * may have whitespace in the name (trailing newlines, for example). 4646 */ 4647 int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl) 4648 { 4649 int mode = -1, i, rv; 4650 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; 4651 4652 for (p = (char *)buf; *p; p++) 4653 if (!(isdigit(*p) || isspace(*p))) 4654 break; 4655 4656 if (*p) 4657 rv = sscanf(buf, "%20s", modestr); 4658 else 4659 rv = sscanf(buf, "%d", &mode); 4660 4661 if (!rv) 4662 return -1; 4663 4664 for (i = 0; tbl[i].modename; i++) { 4665 if (mode == tbl[i].mode) 4666 return tbl[i].mode; 4667 if (strcmp(modestr, tbl[i].modename) == 0) 4668 return tbl[i].mode; 4669 } 4670 4671 return -1; 4672 } 4673 4674 static int bond_check_params(struct bond_params *params) 4675 { 4676 int arp_validate_value, fail_over_mac_value; 4677 4678 /* 4679 * Convert string parameters. 4680 */ 4681 if (mode) { 4682 bond_mode = bond_parse_parm(mode, bond_mode_tbl); 4683 if (bond_mode == -1) { 4684 printk(KERN_ERR DRV_NAME 4685 ": Error: Invalid bonding mode \"%s\"\n", 4686 mode == NULL ? "NULL" : mode); 4687 return -EINVAL; 4688 } 4689 } 4690 4691 if (xmit_hash_policy) { 4692 if ((bond_mode != BOND_MODE_XOR) && 4693 (bond_mode != BOND_MODE_8023AD)) { 4694 printk(KERN_INFO DRV_NAME 4695 ": xor_mode param is irrelevant in mode %s\n", 4696 bond_mode_name(bond_mode)); 4697 } else { 4698 xmit_hashtype = bond_parse_parm(xmit_hash_policy, 4699 xmit_hashtype_tbl); 4700 if (xmit_hashtype == -1) { 4701 printk(KERN_ERR DRV_NAME 4702 ": Error: Invalid xmit_hash_policy \"%s\"\n", 4703 xmit_hash_policy == NULL ? "NULL" : 4704 xmit_hash_policy); 4705 return -EINVAL; 4706 } 4707 } 4708 } 4709 4710 if (lacp_rate) { 4711 if (bond_mode != BOND_MODE_8023AD) { 4712 printk(KERN_INFO DRV_NAME 4713 ": lacp_rate param is irrelevant in mode %s\n", 4714 bond_mode_name(bond_mode)); 4715 } else { 4716 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); 4717 if (lacp_fast == -1) { 4718 printk(KERN_ERR DRV_NAME 4719 ": Error: Invalid lacp rate \"%s\"\n", 4720 lacp_rate == NULL ? "NULL" : lacp_rate); 4721 return -EINVAL; 4722 } 4723 } 4724 } 4725 4726 if (max_bonds < 0 || max_bonds > INT_MAX) { 4727 printk(KERN_WARNING DRV_NAME 4728 ": Warning: max_bonds (%d) not in range %d-%d, so it " 4729 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", 4730 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS); 4731 max_bonds = BOND_DEFAULT_MAX_BONDS; 4732 } 4733 4734 if (miimon < 0) { 4735 printk(KERN_WARNING DRV_NAME 4736 ": Warning: miimon module parameter (%d), " 4737 "not in range 0-%d, so it was reset to %d\n", 4738 miimon, INT_MAX, BOND_LINK_MON_INTERV); 4739 miimon = BOND_LINK_MON_INTERV; 4740 } 4741 4742 if (updelay < 0) { 4743 printk(KERN_WARNING DRV_NAME 4744 ": Warning: updelay module parameter (%d), " 4745 "not in range 0-%d, so it was reset to 0\n", 4746 updelay, INT_MAX); 4747 updelay = 0; 4748 } 4749 4750 if (downdelay < 0) { 4751 printk(KERN_WARNING DRV_NAME 4752 ": Warning: downdelay module parameter (%d), " 4753 "not in range 0-%d, so it was reset to 0\n", 4754 downdelay, INT_MAX); 4755 downdelay = 0; 4756 } 4757 4758 if ((use_carrier != 0) && (use_carrier != 1)) { 4759 printk(KERN_WARNING DRV_NAME 4760 ": Warning: use_carrier module parameter (%d), " 4761 "not of valid value (0/1), so it was set to 1\n", 4762 use_carrier); 4763 use_carrier = 1; 4764 } 4765 4766 if (num_grat_arp < 0 || num_grat_arp > 255) { 4767 printk(KERN_WARNING DRV_NAME 4768 ": Warning: num_grat_arp (%d) not in range 0-255 so it " 4769 "was reset to 1 \n", num_grat_arp); 4770 num_grat_arp = 1; 4771 } 4772 4773 /* reset values for 802.3ad */ 4774 if (bond_mode == BOND_MODE_8023AD) { 4775 if (!miimon) { 4776 printk(KERN_WARNING DRV_NAME 4777 ": Warning: miimon must be specified, " 4778 "otherwise bonding will not detect link " 4779 "failure, speed and duplex which are " 4780 "essential for 802.3ad operation\n"); 4781 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4782 miimon = 100; 4783 } 4784 } 4785 4786 /* reset values for TLB/ALB */ 4787 if ((bond_mode == BOND_MODE_TLB) || 4788 (bond_mode == BOND_MODE_ALB)) { 4789 if (!miimon) { 4790 printk(KERN_WARNING DRV_NAME 4791 ": Warning: miimon must be specified, " 4792 "otherwise bonding will not detect link " 4793 "failure and link speed which are essential " 4794 "for TLB/ALB load balancing\n"); 4795 printk(KERN_WARNING "Forcing miimon to 100msec\n"); 4796 miimon = 100; 4797 } 4798 } 4799 4800 if (bond_mode == BOND_MODE_ALB) { 4801 printk(KERN_NOTICE DRV_NAME 4802 ": In ALB mode you might experience client " 4803 "disconnections upon reconnection of a link if the " 4804 "bonding module updelay parameter (%d msec) is " 4805 "incompatible with the forwarding delay time of the " 4806 "switch\n", 4807 updelay); 4808 } 4809 4810 if (!miimon) { 4811 if (updelay || downdelay) { 4812 /* just warn the user the up/down delay will have 4813 * no effect since miimon is zero... 4814 */ 4815 printk(KERN_WARNING DRV_NAME 4816 ": Warning: miimon module parameter not set " 4817 "and updelay (%d) or downdelay (%d) module " 4818 "parameter is set; updelay and downdelay have " 4819 "no effect unless miimon is set\n", 4820 updelay, downdelay); 4821 } 4822 } else { 4823 /* don't allow arp monitoring */ 4824 if (arp_interval) { 4825 printk(KERN_WARNING DRV_NAME 4826 ": Warning: miimon (%d) and arp_interval (%d) " 4827 "can't be used simultaneously, disabling ARP " 4828 "monitoring\n", 4829 miimon, arp_interval); 4830 arp_interval = 0; 4831 } 4832 4833 if ((updelay % miimon) != 0) { 4834 printk(KERN_WARNING DRV_NAME 4835 ": Warning: updelay (%d) is not a multiple " 4836 "of miimon (%d), updelay rounded to %d ms\n", 4837 updelay, miimon, (updelay / miimon) * miimon); 4838 } 4839 4840 updelay /= miimon; 4841 4842 if ((downdelay % miimon) != 0) { 4843 printk(KERN_WARNING DRV_NAME 4844 ": Warning: downdelay (%d) is not a multiple " 4845 "of miimon (%d), downdelay rounded to %d ms\n", 4846 downdelay, miimon, 4847 (downdelay / miimon) * miimon); 4848 } 4849 4850 downdelay /= miimon; 4851 } 4852 4853 if (arp_interval < 0) { 4854 printk(KERN_WARNING DRV_NAME 4855 ": Warning: arp_interval module parameter (%d) " 4856 ", not in range 0-%d, so it was reset to %d\n", 4857 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); 4858 arp_interval = BOND_LINK_ARP_INTERV; 4859 } 4860 4861 for (arp_ip_count = 0; 4862 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; 4863 arp_ip_count++) { 4864 /* not complete check, but should be good enough to 4865 catch mistakes */ 4866 if (!isdigit(arp_ip_target[arp_ip_count][0])) { 4867 printk(KERN_WARNING DRV_NAME 4868 ": Warning: bad arp_ip_target module parameter " 4869 "(%s), ARP monitoring will not be performed\n", 4870 arp_ip_target[arp_ip_count]); 4871 arp_interval = 0; 4872 } else { 4873 __be32 ip = in_aton(arp_ip_target[arp_ip_count]); 4874 arp_target[arp_ip_count] = ip; 4875 } 4876 } 4877 4878 if (arp_interval && !arp_ip_count) { 4879 /* don't allow arping if no arp_ip_target given... */ 4880 printk(KERN_WARNING DRV_NAME 4881 ": Warning: arp_interval module parameter (%d) " 4882 "specified without providing an arp_ip_target " 4883 "parameter, arp_interval was reset to 0\n", 4884 arp_interval); 4885 arp_interval = 0; 4886 } 4887 4888 if (arp_validate) { 4889 if (bond_mode != BOND_MODE_ACTIVEBACKUP) { 4890 printk(KERN_ERR DRV_NAME 4891 ": arp_validate only supported in active-backup mode\n"); 4892 return -EINVAL; 4893 } 4894 if (!arp_interval) { 4895 printk(KERN_ERR DRV_NAME 4896 ": arp_validate requires arp_interval\n"); 4897 return -EINVAL; 4898 } 4899 4900 arp_validate_value = bond_parse_parm(arp_validate, 4901 arp_validate_tbl); 4902 if (arp_validate_value == -1) { 4903 printk(KERN_ERR DRV_NAME 4904 ": Error: invalid arp_validate \"%s\"\n", 4905 arp_validate == NULL ? "NULL" : arp_validate); 4906 return -EINVAL; 4907 } 4908 } else 4909 arp_validate_value = 0; 4910 4911 if (miimon) { 4912 printk(KERN_INFO DRV_NAME 4913 ": MII link monitoring set to %d ms\n", 4914 miimon); 4915 } else if (arp_interval) { 4916 int i; 4917 4918 printk(KERN_INFO DRV_NAME 4919 ": ARP monitoring set to %d ms, validate %s, with %d target(s):", 4920 arp_interval, 4921 arp_validate_tbl[arp_validate_value].modename, 4922 arp_ip_count); 4923 4924 for (i = 0; i < arp_ip_count; i++) 4925 printk (" %s", arp_ip_target[i]); 4926 4927 printk("\n"); 4928 4929 } else if (max_bonds) { 4930 /* miimon and arp_interval not set, we need one so things 4931 * work as expected, see bonding.txt for details 4932 */ 4933 printk(KERN_WARNING DRV_NAME 4934 ": Warning: either miimon or arp_interval and " 4935 "arp_ip_target module parameters must be specified, " 4936 "otherwise bonding will not detect link failures! see " 4937 "bonding.txt for details.\n"); 4938 } 4939 4940 if (primary && !USES_PRIMARY(bond_mode)) { 4941 /* currently, using a primary only makes sense 4942 * in active backup, TLB or ALB modes 4943 */ 4944 printk(KERN_WARNING DRV_NAME 4945 ": Warning: %s primary device specified but has no " 4946 "effect in %s mode\n", 4947 primary, bond_mode_name(bond_mode)); 4948 primary = NULL; 4949 } 4950 4951 if (fail_over_mac) { 4952 fail_over_mac_value = bond_parse_parm(fail_over_mac, 4953 fail_over_mac_tbl); 4954 if (fail_over_mac_value == -1) { 4955 printk(KERN_ERR DRV_NAME 4956 ": Error: invalid fail_over_mac \"%s\"\n", 4957 arp_validate == NULL ? "NULL" : arp_validate); 4958 return -EINVAL; 4959 } 4960 4961 if (bond_mode != BOND_MODE_ACTIVEBACKUP) 4962 printk(KERN_WARNING DRV_NAME 4963 ": Warning: fail_over_mac only affects " 4964 "active-backup mode.\n"); 4965 } else { 4966 fail_over_mac_value = BOND_FOM_NONE; 4967 } 4968 4969 /* fill params struct with the proper values */ 4970 params->mode = bond_mode; 4971 params->xmit_policy = xmit_hashtype; 4972 params->miimon = miimon; 4973 params->num_grat_arp = num_grat_arp; 4974 params->arp_interval = arp_interval; 4975 params->arp_validate = arp_validate_value; 4976 params->updelay = updelay; 4977 params->downdelay = downdelay; 4978 params->use_carrier = use_carrier; 4979 params->lacp_fast = lacp_fast; 4980 params->primary[0] = 0; 4981 params->fail_over_mac = fail_over_mac_value; 4982 4983 if (primary) { 4984 strncpy(params->primary, primary, IFNAMSIZ); 4985 params->primary[IFNAMSIZ - 1] = 0; 4986 } 4987 4988 memcpy(params->arp_targets, arp_target, sizeof(arp_target)); 4989 4990 return 0; 4991 } 4992 4993 static struct lock_class_key bonding_netdev_xmit_lock_key; 4994 static struct lock_class_key bonding_netdev_addr_lock_key; 4995 4996 static void bond_set_lockdep_class_one(struct net_device *dev, 4997 struct netdev_queue *txq, 4998 void *_unused) 4999 { 5000 lockdep_set_class(&txq->_xmit_lock, 5001 &bonding_netdev_xmit_lock_key); 5002 } 5003 5004 static void bond_set_lockdep_class(struct net_device *dev) 5005 { 5006 lockdep_set_class(&dev->addr_list_lock, 5007 &bonding_netdev_addr_lock_key); 5008 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL); 5009 } 5010 5011 /* Create a new bond based on the specified name and bonding parameters. 5012 * If name is NULL, obtain a suitable "bond%d" name for us. 5013 * Caller must NOT hold rtnl_lock; we need to release it here before we 5014 * set up our sysfs entries. 5015 */ 5016 int bond_create(char *name, struct bond_params *params) 5017 { 5018 struct net_device *bond_dev; 5019 struct bonding *bond; 5020 int res; 5021 5022 rtnl_lock(); 5023 down_write(&bonding_rwsem); 5024 5025 /* Check to see if the bond already exists. */ 5026 if (name) { 5027 list_for_each_entry(bond, &bond_dev_list, bond_list) 5028 if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) { 5029 printk(KERN_ERR DRV_NAME 5030 ": cannot add bond %s; it already exists\n", 5031 name); 5032 res = -EPERM; 5033 goto out_rtnl; 5034 } 5035 } 5036 5037 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", 5038 ether_setup); 5039 if (!bond_dev) { 5040 printk(KERN_ERR DRV_NAME 5041 ": %s: eek! can't alloc netdev!\n", 5042 name); 5043 res = -ENOMEM; 5044 goto out_rtnl; 5045 } 5046 5047 if (!name) { 5048 res = dev_alloc_name(bond_dev, "bond%d"); 5049 if (res < 0) 5050 goto out_netdev; 5051 } 5052 5053 /* bond_init() must be called after dev_alloc_name() (for the 5054 * /proc files), but before register_netdevice(), because we 5055 * need to set function pointers. 5056 */ 5057 5058 res = bond_init(bond_dev, params); 5059 if (res < 0) { 5060 goto out_netdev; 5061 } 5062 5063 res = register_netdevice(bond_dev); 5064 if (res < 0) { 5065 goto out_bond; 5066 } 5067 5068 bond_set_lockdep_class(bond_dev); 5069 5070 netif_carrier_off(bond_dev); 5071 5072 up_write(&bonding_rwsem); 5073 rtnl_unlock(); /* allows sysfs registration of net device */ 5074 res = bond_create_sysfs_entry(bond_dev->priv); 5075 if (res < 0) { 5076 rtnl_lock(); 5077 down_write(&bonding_rwsem); 5078 bond_deinit(bond_dev); 5079 unregister_netdevice(bond_dev); 5080 goto out_rtnl; 5081 } 5082 5083 return 0; 5084 5085 out_bond: 5086 bond_deinit(bond_dev); 5087 out_netdev: 5088 free_netdev(bond_dev); 5089 out_rtnl: 5090 up_write(&bonding_rwsem); 5091 rtnl_unlock(); 5092 return res; 5093 } 5094 5095 static int __init bonding_init(void) 5096 { 5097 int i; 5098 int res; 5099 struct bonding *bond; 5100 5101 printk(KERN_INFO "%s", version); 5102 5103 res = bond_check_params(&bonding_defaults); 5104 if (res) { 5105 goto out; 5106 } 5107 5108 #ifdef CONFIG_PROC_FS 5109 bond_create_proc_dir(); 5110 #endif 5111 5112 init_rwsem(&bonding_rwsem); 5113 5114 for (i = 0; i < max_bonds; i++) { 5115 res = bond_create(NULL, &bonding_defaults); 5116 if (res) 5117 goto err; 5118 } 5119 5120 res = bond_create_sysfs(); 5121 if (res) 5122 goto err; 5123 5124 register_netdevice_notifier(&bond_netdev_notifier); 5125 register_inetaddr_notifier(&bond_inetaddr_notifier); 5126 5127 goto out; 5128 err: 5129 list_for_each_entry(bond, &bond_dev_list, bond_list) { 5130 bond_work_cancel_all(bond); 5131 destroy_workqueue(bond->wq); 5132 } 5133 5134 bond_destroy_sysfs(); 5135 5136 rtnl_lock(); 5137 bond_free_all(); 5138 rtnl_unlock(); 5139 out: 5140 return res; 5141 5142 } 5143 5144 static void __exit bonding_exit(void) 5145 { 5146 unregister_netdevice_notifier(&bond_netdev_notifier); 5147 unregister_inetaddr_notifier(&bond_inetaddr_notifier); 5148 5149 bond_destroy_sysfs(); 5150 5151 rtnl_lock(); 5152 bond_free_all(); 5153 rtnl_unlock(); 5154 } 5155 5156 module_init(bonding_init); 5157 module_exit(bonding_exit); 5158 MODULE_LICENSE("GPL"); 5159 MODULE_VERSION(DRV_VERSION); 5160 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); 5161 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); 5162 MODULE_SUPPORTED_DEVICE("most ethernet devices"); 5163 5164 /* 5165 * Local variables: 5166 * c-indent-level: 8 5167 * c-basic-offset: 8 5168 * tab-width: 8 5169 * End: 5170 */ 5171 5172