xref: /openbmc/linux/drivers/net/bonding/bond_main.c (revision 384740dc)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 //#define BONDING_DEBUG 1
35 
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <linux/jiffies.h>
78 #include <net/route.h>
79 #include <net/net_namespace.h>
80 #include "bonding.h"
81 #include "bond_3ad.h"
82 #include "bond_alb.h"
83 
84 /*---------------------------- Module parameters ----------------------------*/
85 
86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
87 #define BOND_LINK_MON_INTERV	0
88 #define BOND_LINK_ARP_INTERV	0
89 
90 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
91 static int num_grat_arp = 1;
92 static int miimon	= BOND_LINK_MON_INTERV;
93 static int updelay	= 0;
94 static int downdelay	= 0;
95 static int use_carrier	= 1;
96 static char *mode	= NULL;
97 static char *primary	= NULL;
98 static char *lacp_rate	= NULL;
99 static char *xmit_hash_policy = NULL;
100 static int arp_interval = BOND_LINK_ARP_INTERV;
101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
102 static char *arp_validate = NULL;
103 static char *fail_over_mac = NULL;
104 struct bond_params bonding_defaults;
105 
106 module_param(max_bonds, int, 0);
107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
108 module_param(num_grat_arp, int, 0644);
109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event");
110 module_param(miimon, int, 0);
111 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
112 module_param(updelay, int, 0);
113 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
114 module_param(downdelay, int, 0);
115 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
116 			    "in milliseconds");
117 module_param(use_carrier, int, 0);
118 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
119 			      "0 for off, 1 for on (default)");
120 module_param(mode, charp, 0);
121 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
122 		       "1 for active-backup, 2 for balance-xor, "
123 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
124 		       "6 for balance-alb");
125 module_param(primary, charp, 0);
126 MODULE_PARM_DESC(primary, "Primary network device to use");
127 module_param(lacp_rate, charp, 0);
128 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
129 			    "(slow/fast)");
130 module_param(xmit_hash_policy, charp, 0);
131 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
132 				   ", 1 for layer 3+4");
133 module_param(arp_interval, int, 0);
134 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
135 module_param_array(arp_ip_target, charp, NULL, 0);
136 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
137 module_param(arp_validate, charp, 0);
138 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
139 module_param(fail_over_mac, charp, 0);
140 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC.  none (default), active or follow");
141 
142 /*----------------------------- Global variables ----------------------------*/
143 
144 static const char * const version =
145 	DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
146 
147 LIST_HEAD(bond_dev_list);
148 
149 #ifdef CONFIG_PROC_FS
150 static struct proc_dir_entry *bond_proc_dir = NULL;
151 #endif
152 
153 extern struct rw_semaphore bonding_rwsem;
154 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
155 static int arp_ip_count	= 0;
156 static int bond_mode	= BOND_MODE_ROUNDROBIN;
157 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
158 static int lacp_fast	= 0;
159 
160 
161 struct bond_parm_tbl bond_lacp_tbl[] = {
162 {	"slow",		AD_LACP_SLOW},
163 {	"fast",		AD_LACP_FAST},
164 {	NULL,		-1},
165 };
166 
167 struct bond_parm_tbl bond_mode_tbl[] = {
168 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
169 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
170 {	"balance-xor",		BOND_MODE_XOR},
171 {	"broadcast",		BOND_MODE_BROADCAST},
172 {	"802.3ad",		BOND_MODE_8023AD},
173 {	"balance-tlb",		BOND_MODE_TLB},
174 {	"balance-alb",		BOND_MODE_ALB},
175 {	NULL,			-1},
176 };
177 
178 struct bond_parm_tbl xmit_hashtype_tbl[] = {
179 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
180 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
181 {	"layer2+3",		BOND_XMIT_POLICY_LAYER23},
182 {	NULL,			-1},
183 };
184 
185 struct bond_parm_tbl arp_validate_tbl[] = {
186 {	"none",			BOND_ARP_VALIDATE_NONE},
187 {	"active",		BOND_ARP_VALIDATE_ACTIVE},
188 {	"backup",		BOND_ARP_VALIDATE_BACKUP},
189 {	"all",			BOND_ARP_VALIDATE_ALL},
190 {	NULL,			-1},
191 };
192 
193 struct bond_parm_tbl fail_over_mac_tbl[] = {
194 {	"none",			BOND_FOM_NONE},
195 {	"active",		BOND_FOM_ACTIVE},
196 {	"follow",		BOND_FOM_FOLLOW},
197 {	NULL,			-1},
198 };
199 
200 /*-------------------------- Forward declarations ---------------------------*/
201 
202 static void bond_send_gratuitous_arp(struct bonding *bond);
203 static void bond_deinit(struct net_device *bond_dev);
204 
205 /*---------------------------- General routines -----------------------------*/
206 
207 static const char *bond_mode_name(int mode)
208 {
209 	switch (mode) {
210 	case BOND_MODE_ROUNDROBIN :
211 		return "load balancing (round-robin)";
212 	case BOND_MODE_ACTIVEBACKUP :
213 		return "fault-tolerance (active-backup)";
214 	case BOND_MODE_XOR :
215 		return "load balancing (xor)";
216 	case BOND_MODE_BROADCAST :
217 		return "fault-tolerance (broadcast)";
218 	case BOND_MODE_8023AD:
219 		return "IEEE 802.3ad Dynamic link aggregation";
220 	case BOND_MODE_TLB:
221 		return "transmit load balancing";
222 	case BOND_MODE_ALB:
223 		return "adaptive load balancing";
224 	default:
225 		return "unknown";
226 	}
227 }
228 
229 /*---------------------------------- VLAN -----------------------------------*/
230 
231 /**
232  * bond_add_vlan - add a new vlan id on bond
233  * @bond: bond that got the notification
234  * @vlan_id: the vlan id to add
235  *
236  * Returns -ENOMEM if allocation failed.
237  */
238 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
239 {
240 	struct vlan_entry *vlan;
241 
242 	dprintk("bond: %s, vlan id %d\n",
243 		(bond ? bond->dev->name: "None"), vlan_id);
244 
245 	vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
246 	if (!vlan) {
247 		return -ENOMEM;
248 	}
249 
250 	INIT_LIST_HEAD(&vlan->vlan_list);
251 	vlan->vlan_id = vlan_id;
252 	vlan->vlan_ip = 0;
253 
254 	write_lock_bh(&bond->lock);
255 
256 	list_add_tail(&vlan->vlan_list, &bond->vlan_list);
257 
258 	write_unlock_bh(&bond->lock);
259 
260 	dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
261 
262 	return 0;
263 }
264 
265 /**
266  * bond_del_vlan - delete a vlan id from bond
267  * @bond: bond that got the notification
268  * @vlan_id: the vlan id to delete
269  *
270  * returns -ENODEV if @vlan_id was not found in @bond.
271  */
272 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
273 {
274 	struct vlan_entry *vlan;
275 	int res = -ENODEV;
276 
277 	dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
278 
279 	write_lock_bh(&bond->lock);
280 
281 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
282 		if (vlan->vlan_id == vlan_id) {
283 			list_del(&vlan->vlan_list);
284 
285 			if ((bond->params.mode == BOND_MODE_TLB) ||
286 			    (bond->params.mode == BOND_MODE_ALB)) {
287 				bond_alb_clear_vlan(bond, vlan_id);
288 			}
289 
290 			dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
291 				bond->dev->name);
292 
293 			kfree(vlan);
294 
295 			if (list_empty(&bond->vlan_list) &&
296 			    (bond->slave_cnt == 0)) {
297 				/* Last VLAN removed and no slaves, so
298 				 * restore block on adding VLANs. This will
299 				 * be removed once new slaves that are not
300 				 * VLAN challenged will be added.
301 				 */
302 				bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
303 			}
304 
305 			res = 0;
306 			goto out;
307 		}
308 	}
309 
310 	dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
311 		bond->dev->name);
312 
313 out:
314 	write_unlock_bh(&bond->lock);
315 	return res;
316 }
317 
318 /**
319  * bond_has_challenged_slaves
320  * @bond: the bond we're working on
321  *
322  * Searches the slave list. Returns 1 if a vlan challenged slave
323  * was found, 0 otherwise.
324  *
325  * Assumes bond->lock is held.
326  */
327 static int bond_has_challenged_slaves(struct bonding *bond)
328 {
329 	struct slave *slave;
330 	int i;
331 
332 	bond_for_each_slave(bond, slave, i) {
333 		if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
334 			dprintk("found VLAN challenged slave - %s\n",
335 				slave->dev->name);
336 			return 1;
337 		}
338 	}
339 
340 	dprintk("no VLAN challenged slaves found\n");
341 	return 0;
342 }
343 
344 /**
345  * bond_next_vlan - safely skip to the next item in the vlans list.
346  * @bond: the bond we're working on
347  * @curr: item we're advancing from
348  *
349  * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
350  * or @curr->next otherwise (even if it is @curr itself again).
351  *
352  * Caller must hold bond->lock
353  */
354 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
355 {
356 	struct vlan_entry *next, *last;
357 
358 	if (list_empty(&bond->vlan_list)) {
359 		return NULL;
360 	}
361 
362 	if (!curr) {
363 		next = list_entry(bond->vlan_list.next,
364 				  struct vlan_entry, vlan_list);
365 	} else {
366 		last = list_entry(bond->vlan_list.prev,
367 				  struct vlan_entry, vlan_list);
368 		if (last == curr) {
369 			next = list_entry(bond->vlan_list.next,
370 					  struct vlan_entry, vlan_list);
371 		} else {
372 			next = list_entry(curr->vlan_list.next,
373 					  struct vlan_entry, vlan_list);
374 		}
375 	}
376 
377 	return next;
378 }
379 
380 /**
381  * bond_dev_queue_xmit - Prepare skb for xmit.
382  *
383  * @bond: bond device that got this skb for tx.
384  * @skb: hw accel VLAN tagged skb to transmit
385  * @slave_dev: slave that is supposed to xmit this skbuff
386  *
387  * When the bond gets an skb to transmit that is
388  * already hardware accelerated VLAN tagged, and it
389  * needs to relay this skb to a slave that is not
390  * hw accel capable, the skb needs to be "unaccelerated",
391  * i.e. strip the hwaccel tag and re-insert it as part
392  * of the payload.
393  */
394 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
395 {
396 	unsigned short uninitialized_var(vlan_id);
397 
398 	if (!list_empty(&bond->vlan_list) &&
399 	    !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
400 	    vlan_get_tag(skb, &vlan_id) == 0) {
401 		skb->dev = slave_dev;
402 		skb = vlan_put_tag(skb, vlan_id);
403 		if (!skb) {
404 			/* vlan_put_tag() frees the skb in case of error,
405 			 * so return success here so the calling functions
406 			 * won't attempt to free is again.
407 			 */
408 			return 0;
409 		}
410 	} else {
411 		skb->dev = slave_dev;
412 	}
413 
414 	skb->priority = 1;
415 	dev_queue_xmit(skb);
416 
417 	return 0;
418 }
419 
420 /*
421  * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
422  * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
423  * lock because:
424  * a. This operation is performed in IOCTL context,
425  * b. The operation is protected by the RTNL semaphore in the 8021q code,
426  * c. Holding a lock with BH disabled while directly calling a base driver
427  *    entry point is generally a BAD idea.
428  *
429  * The design of synchronization/protection for this operation in the 8021q
430  * module is good for one or more VLAN devices over a single physical device
431  * and cannot be extended for a teaming solution like bonding, so there is a
432  * potential race condition here where a net device from the vlan group might
433  * be referenced (either by a base driver or the 8021q code) while it is being
434  * removed from the system. However, it turns out we're not making matters
435  * worse, and if it works for regular VLAN usage it will work here too.
436 */
437 
438 /**
439  * bond_vlan_rx_register - Propagates registration to slaves
440  * @bond_dev: bonding net device that got called
441  * @grp: vlan group being registered
442  */
443 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
444 {
445 	struct bonding *bond = bond_dev->priv;
446 	struct slave *slave;
447 	int i;
448 
449 	bond->vlgrp = grp;
450 
451 	bond_for_each_slave(bond, slave, i) {
452 		struct net_device *slave_dev = slave->dev;
453 
454 		if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
455 		    slave_dev->vlan_rx_register) {
456 			slave_dev->vlan_rx_register(slave_dev, grp);
457 		}
458 	}
459 }
460 
461 /**
462  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
463  * @bond_dev: bonding net device that got called
464  * @vid: vlan id being added
465  */
466 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
467 {
468 	struct bonding *bond = bond_dev->priv;
469 	struct slave *slave;
470 	int i, res;
471 
472 	bond_for_each_slave(bond, slave, i) {
473 		struct net_device *slave_dev = slave->dev;
474 
475 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
476 		    slave_dev->vlan_rx_add_vid) {
477 			slave_dev->vlan_rx_add_vid(slave_dev, vid);
478 		}
479 	}
480 
481 	res = bond_add_vlan(bond, vid);
482 	if (res) {
483 		printk(KERN_ERR DRV_NAME
484 		       ": %s: Error: Failed to add vlan id %d\n",
485 		       bond_dev->name, vid);
486 	}
487 }
488 
489 /**
490  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
491  * @bond_dev: bonding net device that got called
492  * @vid: vlan id being removed
493  */
494 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
495 {
496 	struct bonding *bond = bond_dev->priv;
497 	struct slave *slave;
498 	struct net_device *vlan_dev;
499 	int i, res;
500 
501 	bond_for_each_slave(bond, slave, i) {
502 		struct net_device *slave_dev = slave->dev;
503 
504 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
505 		    slave_dev->vlan_rx_kill_vid) {
506 			/* Save and then restore vlan_dev in the grp array,
507 			 * since the slave's driver might clear it.
508 			 */
509 			vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
510 			slave_dev->vlan_rx_kill_vid(slave_dev, vid);
511 			vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
512 		}
513 	}
514 
515 	res = bond_del_vlan(bond, vid);
516 	if (res) {
517 		printk(KERN_ERR DRV_NAME
518 		       ": %s: Error: Failed to remove vlan id %d\n",
519 		       bond_dev->name, vid);
520 	}
521 }
522 
523 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
524 {
525 	struct vlan_entry *vlan;
526 
527 	write_lock_bh(&bond->lock);
528 
529 	if (list_empty(&bond->vlan_list)) {
530 		goto out;
531 	}
532 
533 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
534 	    slave_dev->vlan_rx_register) {
535 		slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
536 	}
537 
538 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
539 	    !(slave_dev->vlan_rx_add_vid)) {
540 		goto out;
541 	}
542 
543 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
544 		slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
545 	}
546 
547 out:
548 	write_unlock_bh(&bond->lock);
549 }
550 
551 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
552 {
553 	struct vlan_entry *vlan;
554 	struct net_device *vlan_dev;
555 
556 	write_lock_bh(&bond->lock);
557 
558 	if (list_empty(&bond->vlan_list)) {
559 		goto out;
560 	}
561 
562 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
563 	    !(slave_dev->vlan_rx_kill_vid)) {
564 		goto unreg;
565 	}
566 
567 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
568 		/* Save and then restore vlan_dev in the grp array,
569 		 * since the slave's driver might clear it.
570 		 */
571 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
572 		slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
573 		vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
574 	}
575 
576 unreg:
577 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
578 	    slave_dev->vlan_rx_register) {
579 		slave_dev->vlan_rx_register(slave_dev, NULL);
580 	}
581 
582 out:
583 	write_unlock_bh(&bond->lock);
584 }
585 
586 /*------------------------------- Link status -------------------------------*/
587 
588 /*
589  * Set the carrier state for the master according to the state of its
590  * slaves.  If any slaves are up, the master is up.  In 802.3ad mode,
591  * do special 802.3ad magic.
592  *
593  * Returns zero if carrier state does not change, nonzero if it does.
594  */
595 static int bond_set_carrier(struct bonding *bond)
596 {
597 	struct slave *slave;
598 	int i;
599 
600 	if (bond->slave_cnt == 0)
601 		goto down;
602 
603 	if (bond->params.mode == BOND_MODE_8023AD)
604 		return bond_3ad_set_carrier(bond);
605 
606 	bond_for_each_slave(bond, slave, i) {
607 		if (slave->link == BOND_LINK_UP) {
608 			if (!netif_carrier_ok(bond->dev)) {
609 				netif_carrier_on(bond->dev);
610 				return 1;
611 			}
612 			return 0;
613 		}
614 	}
615 
616 down:
617 	if (netif_carrier_ok(bond->dev)) {
618 		netif_carrier_off(bond->dev);
619 		return 1;
620 	}
621 	return 0;
622 }
623 
624 /*
625  * Get link speed and duplex from the slave's base driver
626  * using ethtool. If for some reason the call fails or the
627  * values are invalid, fake speed and duplex to 100/Full
628  * and return error.
629  */
630 static int bond_update_speed_duplex(struct slave *slave)
631 {
632 	struct net_device *slave_dev = slave->dev;
633 	struct ethtool_cmd etool;
634 	int res;
635 
636 	/* Fake speed and duplex */
637 	slave->speed = SPEED_100;
638 	slave->duplex = DUPLEX_FULL;
639 
640 	if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
641 		return -1;
642 
643 	res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
644 	if (res < 0)
645 		return -1;
646 
647 	switch (etool.speed) {
648 	case SPEED_10:
649 	case SPEED_100:
650 	case SPEED_1000:
651 	case SPEED_10000:
652 		break;
653 	default:
654 		return -1;
655 	}
656 
657 	switch (etool.duplex) {
658 	case DUPLEX_FULL:
659 	case DUPLEX_HALF:
660 		break;
661 	default:
662 		return -1;
663 	}
664 
665 	slave->speed = etool.speed;
666 	slave->duplex = etool.duplex;
667 
668 	return 0;
669 }
670 
671 /*
672  * if <dev> supports MII link status reporting, check its link status.
673  *
674  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
675  * depening upon the setting of the use_carrier parameter.
676  *
677  * Return either BMSR_LSTATUS, meaning that the link is up (or we
678  * can't tell and just pretend it is), or 0, meaning that the link is
679  * down.
680  *
681  * If reporting is non-zero, instead of faking link up, return -1 if
682  * both ETHTOOL and MII ioctls fail (meaning the device does not
683  * support them).  If use_carrier is set, return whatever it says.
684  * It'd be nice if there was a good way to tell if a driver supports
685  * netif_carrier, but there really isn't.
686  */
687 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
688 {
689 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
690 	struct ifreq ifr;
691 	struct mii_ioctl_data *mii;
692 
693 	if (bond->params.use_carrier) {
694 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
695 	}
696 
697 	ioctl = slave_dev->do_ioctl;
698 	if (ioctl) {
699 		/* TODO: set pointer to correct ioctl on a per team member */
700 		/*       bases to make this more efficient. that is, once  */
701 		/*       we determine the correct ioctl, we will always    */
702 		/*       call it and not the others for that team          */
703 		/*       member.                                           */
704 
705 		/*
706 		 * We cannot assume that SIOCGMIIPHY will also read a
707 		 * register; not all network drivers (e.g., e100)
708 		 * support that.
709 		 */
710 
711 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
712 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
713 		mii = if_mii(&ifr);
714 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
715 			mii->reg_num = MII_BMSR;
716 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
717 				return (mii->val_out & BMSR_LSTATUS);
718 			}
719 		}
720 	}
721 
722 	/*
723 	 * Some drivers cache ETHTOOL_GLINK for a period of time so we only
724 	 * attempt to get link status from it if the above MII ioctls fail.
725 	 */
726 	if (slave_dev->ethtool_ops) {
727 		if (slave_dev->ethtool_ops->get_link) {
728 			u32 link;
729 
730 			link = slave_dev->ethtool_ops->get_link(slave_dev);
731 
732 			return link ? BMSR_LSTATUS : 0;
733 		}
734 	}
735 
736 	/*
737 	 * If reporting, report that either there's no dev->do_ioctl,
738 	 * or both SIOCGMIIREG and get_link failed (meaning that we
739 	 * cannot report link status).  If not reporting, pretend
740 	 * we're ok.
741 	 */
742 	return (reporting ? -1 : BMSR_LSTATUS);
743 }
744 
745 /*----------------------------- Multicast list ------------------------------*/
746 
747 /*
748  * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
749  */
750 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
751 {
752 	return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
753 			dmi1->dmi_addrlen == dmi2->dmi_addrlen;
754 }
755 
756 /*
757  * returns dmi entry if found, NULL otherwise
758  */
759 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
760 {
761 	struct dev_mc_list *idmi;
762 
763 	for (idmi = mc_list; idmi; idmi = idmi->next) {
764 		if (bond_is_dmi_same(dmi, idmi)) {
765 			return idmi;
766 		}
767 	}
768 
769 	return NULL;
770 }
771 
772 /*
773  * Push the promiscuity flag down to appropriate slaves
774  */
775 static int bond_set_promiscuity(struct bonding *bond, int inc)
776 {
777 	int err = 0;
778 	if (USES_PRIMARY(bond->params.mode)) {
779 		/* write lock already acquired */
780 		if (bond->curr_active_slave) {
781 			err = dev_set_promiscuity(bond->curr_active_slave->dev,
782 						  inc);
783 		}
784 	} else {
785 		struct slave *slave;
786 		int i;
787 		bond_for_each_slave(bond, slave, i) {
788 			err = dev_set_promiscuity(slave->dev, inc);
789 			if (err)
790 				return err;
791 		}
792 	}
793 	return err;
794 }
795 
796 /*
797  * Push the allmulti flag down to all slaves
798  */
799 static int bond_set_allmulti(struct bonding *bond, int inc)
800 {
801 	int err = 0;
802 	if (USES_PRIMARY(bond->params.mode)) {
803 		/* write lock already acquired */
804 		if (bond->curr_active_slave) {
805 			err = dev_set_allmulti(bond->curr_active_slave->dev,
806 					       inc);
807 		}
808 	} else {
809 		struct slave *slave;
810 		int i;
811 		bond_for_each_slave(bond, slave, i) {
812 			err = dev_set_allmulti(slave->dev, inc);
813 			if (err)
814 				return err;
815 		}
816 	}
817 	return err;
818 }
819 
820 /*
821  * Add a Multicast address to slaves
822  * according to mode
823  */
824 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
825 {
826 	if (USES_PRIMARY(bond->params.mode)) {
827 		/* write lock already acquired */
828 		if (bond->curr_active_slave) {
829 			dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
830 		}
831 	} else {
832 		struct slave *slave;
833 		int i;
834 		bond_for_each_slave(bond, slave, i) {
835 			dev_mc_add(slave->dev, addr, alen, 0);
836 		}
837 	}
838 }
839 
840 /*
841  * Remove a multicast address from slave
842  * according to mode
843  */
844 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
845 {
846 	if (USES_PRIMARY(bond->params.mode)) {
847 		/* write lock already acquired */
848 		if (bond->curr_active_slave) {
849 			dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
850 		}
851 	} else {
852 		struct slave *slave;
853 		int i;
854 		bond_for_each_slave(bond, slave, i) {
855 			dev_mc_delete(slave->dev, addr, alen, 0);
856 		}
857 	}
858 }
859 
860 
861 /*
862  * Retrieve the list of registered multicast addresses for the bonding
863  * device and retransmit an IGMP JOIN request to the current active
864  * slave.
865  */
866 static void bond_resend_igmp_join_requests(struct bonding *bond)
867 {
868 	struct in_device *in_dev;
869 	struct ip_mc_list *im;
870 
871 	rcu_read_lock();
872 	in_dev = __in_dev_get_rcu(bond->dev);
873 	if (in_dev) {
874 		for (im = in_dev->mc_list; im; im = im->next) {
875 			ip_mc_rejoin_group(im);
876 		}
877 	}
878 
879 	rcu_read_unlock();
880 }
881 
882 /*
883  * Totally destroys the mc_list in bond
884  */
885 static void bond_mc_list_destroy(struct bonding *bond)
886 {
887 	struct dev_mc_list *dmi;
888 
889 	dmi = bond->mc_list;
890 	while (dmi) {
891 		bond->mc_list = dmi->next;
892 		kfree(dmi);
893 		dmi = bond->mc_list;
894 	}
895         bond->mc_list = NULL;
896 }
897 
898 /*
899  * Copy all the Multicast addresses from src to the bonding device dst
900  */
901 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
902 			     gfp_t gfp_flag)
903 {
904 	struct dev_mc_list *dmi, *new_dmi;
905 
906 	for (dmi = mc_list; dmi; dmi = dmi->next) {
907 		new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
908 
909 		if (!new_dmi) {
910 			/* FIXME: Potential memory leak !!! */
911 			return -ENOMEM;
912 		}
913 
914 		new_dmi->next = bond->mc_list;
915 		bond->mc_list = new_dmi;
916 		new_dmi->dmi_addrlen = dmi->dmi_addrlen;
917 		memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
918 		new_dmi->dmi_users = dmi->dmi_users;
919 		new_dmi->dmi_gusers = dmi->dmi_gusers;
920 	}
921 
922 	return 0;
923 }
924 
925 /*
926  * flush all members of flush->mc_list from device dev->mc_list
927  */
928 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
929 {
930 	struct bonding *bond = bond_dev->priv;
931 	struct dev_mc_list *dmi;
932 
933 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
934 		dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
935 	}
936 
937 	if (bond->params.mode == BOND_MODE_8023AD) {
938 		/* del lacpdu mc addr from mc list */
939 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
940 
941 		dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
942 	}
943 }
944 
945 /*--------------------------- Active slave change ---------------------------*/
946 
947 /*
948  * Update the mc list and multicast-related flags for the new and
949  * old active slaves (if any) according to the multicast mode, and
950  * promiscuous flags unconditionally.
951  */
952 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
953 {
954 	struct dev_mc_list *dmi;
955 
956 	if (!USES_PRIMARY(bond->params.mode)) {
957 		/* nothing to do -  mc list is already up-to-date on
958 		 * all slaves
959 		 */
960 		return;
961 	}
962 
963 	if (old_active) {
964 		if (bond->dev->flags & IFF_PROMISC) {
965 			dev_set_promiscuity(old_active->dev, -1);
966 		}
967 
968 		if (bond->dev->flags & IFF_ALLMULTI) {
969 			dev_set_allmulti(old_active->dev, -1);
970 		}
971 
972 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
973 			dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
974 		}
975 	}
976 
977 	if (new_active) {
978 		/* FIXME: Signal errors upstream. */
979 		if (bond->dev->flags & IFF_PROMISC) {
980 			dev_set_promiscuity(new_active->dev, 1);
981 		}
982 
983 		if (bond->dev->flags & IFF_ALLMULTI) {
984 			dev_set_allmulti(new_active->dev, 1);
985 		}
986 
987 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
988 			dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
989 		}
990 		bond_resend_igmp_join_requests(bond);
991 	}
992 }
993 
994 /*
995  * bond_do_fail_over_mac
996  *
997  * Perform special MAC address swapping for fail_over_mac settings
998  *
999  * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh.
1000  */
1001 static void bond_do_fail_over_mac(struct bonding *bond,
1002 				  struct slave *new_active,
1003 				  struct slave *old_active)
1004 {
1005 	u8 tmp_mac[ETH_ALEN];
1006 	struct sockaddr saddr;
1007 	int rv;
1008 
1009 	switch (bond->params.fail_over_mac) {
1010 	case BOND_FOM_ACTIVE:
1011 		if (new_active)
1012 			memcpy(bond->dev->dev_addr,  new_active->dev->dev_addr,
1013 			       new_active->dev->addr_len);
1014 		break;
1015 	case BOND_FOM_FOLLOW:
1016 		/*
1017 		 * if new_active && old_active, swap them
1018 		 * if just old_active, do nothing (going to no active slave)
1019 		 * if just new_active, set new_active to bond's MAC
1020 		 */
1021 		if (!new_active)
1022 			return;
1023 
1024 		write_unlock_bh(&bond->curr_slave_lock);
1025 		read_unlock(&bond->lock);
1026 
1027 		if (old_active) {
1028 			memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN);
1029 			memcpy(saddr.sa_data, old_active->dev->dev_addr,
1030 			       ETH_ALEN);
1031 			saddr.sa_family = new_active->dev->type;
1032 		} else {
1033 			memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN);
1034 			saddr.sa_family = bond->dev->type;
1035 		}
1036 
1037 		rv = dev_set_mac_address(new_active->dev, &saddr);
1038 		if (rv) {
1039 			printk(KERN_ERR DRV_NAME
1040 			       ": %s: Error %d setting MAC of slave %s\n",
1041 			       bond->dev->name, -rv, new_active->dev->name);
1042 			goto out;
1043 		}
1044 
1045 		if (!old_active)
1046 			goto out;
1047 
1048 		memcpy(saddr.sa_data, tmp_mac, ETH_ALEN);
1049 		saddr.sa_family = old_active->dev->type;
1050 
1051 		rv = dev_set_mac_address(old_active->dev, &saddr);
1052 		if (rv)
1053 			printk(KERN_ERR DRV_NAME
1054 			       ": %s: Error %d setting MAC of slave %s\n",
1055 			       bond->dev->name, -rv, new_active->dev->name);
1056 out:
1057 		read_lock(&bond->lock);
1058 		write_lock_bh(&bond->curr_slave_lock);
1059 		break;
1060 	default:
1061 		printk(KERN_ERR DRV_NAME
1062 		       ": %s: bond_do_fail_over_mac impossible: bad policy %d\n",
1063 		       bond->dev->name, bond->params.fail_over_mac);
1064 		break;
1065 	}
1066 
1067 }
1068 
1069 
1070 /**
1071  * find_best_interface - select the best available slave to be the active one
1072  * @bond: our bonding struct
1073  *
1074  * Warning: Caller must hold curr_slave_lock for writing.
1075  */
1076 static struct slave *bond_find_best_slave(struct bonding *bond)
1077 {
1078 	struct slave *new_active, *old_active;
1079 	struct slave *bestslave = NULL;
1080 	int mintime = bond->params.updelay;
1081 	int i;
1082 
1083 	new_active = old_active = bond->curr_active_slave;
1084 
1085 	if (!new_active) { /* there were no active slaves left */
1086 		if (bond->slave_cnt > 0) {  /* found one slave */
1087 			new_active = bond->first_slave;
1088 		} else {
1089 			return NULL; /* still no slave, return NULL */
1090 		}
1091 	}
1092 
1093 	/* first try the primary link; if arping, a link must tx/rx traffic
1094 	 * before it can be considered the curr_active_slave - also, we would skip
1095 	 * slaves between the curr_active_slave and primary_slave that may be up
1096 	 * and able to arp
1097 	 */
1098 	if ((bond->primary_slave) &&
1099 	    (!bond->params.arp_interval) &&
1100 	    (IS_UP(bond->primary_slave->dev))) {
1101 		new_active = bond->primary_slave;
1102 	}
1103 
1104 	/* remember where to stop iterating over the slaves */
1105 	old_active = new_active;
1106 
1107 	bond_for_each_slave_from(bond, new_active, i, old_active) {
1108 		if (IS_UP(new_active->dev)) {
1109 			if (new_active->link == BOND_LINK_UP) {
1110 				return new_active;
1111 			} else if (new_active->link == BOND_LINK_BACK) {
1112 				/* link up, but waiting for stabilization */
1113 				if (new_active->delay < mintime) {
1114 					mintime = new_active->delay;
1115 					bestslave = new_active;
1116 				}
1117 			}
1118 		}
1119 	}
1120 
1121 	return bestslave;
1122 }
1123 
1124 /**
1125  * change_active_interface - change the active slave into the specified one
1126  * @bond: our bonding struct
1127  * @new: the new slave to make the active one
1128  *
1129  * Set the new slave to the bond's settings and unset them on the old
1130  * curr_active_slave.
1131  * Setting include flags, mc-list, promiscuity, allmulti, etc.
1132  *
1133  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1134  * because it is apparently the best available slave we have, even though its
1135  * updelay hasn't timed out yet.
1136  *
1137  * If new_active is not NULL, caller must hold bond->lock for read and
1138  * curr_slave_lock for write_bh.
1139  */
1140 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1141 {
1142 	struct slave *old_active = bond->curr_active_slave;
1143 
1144 	if (old_active == new_active) {
1145 		return;
1146 	}
1147 
1148 	if (new_active) {
1149 		new_active->jiffies = jiffies;
1150 
1151 		if (new_active->link == BOND_LINK_BACK) {
1152 			if (USES_PRIMARY(bond->params.mode)) {
1153 				printk(KERN_INFO DRV_NAME
1154 				       ": %s: making interface %s the new "
1155 				       "active one %d ms earlier.\n",
1156 				       bond->dev->name, new_active->dev->name,
1157 				       (bond->params.updelay - new_active->delay) * bond->params.miimon);
1158 			}
1159 
1160 			new_active->delay = 0;
1161 			new_active->link = BOND_LINK_UP;
1162 
1163 			if (bond->params.mode == BOND_MODE_8023AD) {
1164 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1165 			}
1166 
1167 			if ((bond->params.mode == BOND_MODE_TLB) ||
1168 			    (bond->params.mode == BOND_MODE_ALB)) {
1169 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1170 			}
1171 		} else {
1172 			if (USES_PRIMARY(bond->params.mode)) {
1173 				printk(KERN_INFO DRV_NAME
1174 				       ": %s: making interface %s the new "
1175 				       "active one.\n",
1176 				       bond->dev->name, new_active->dev->name);
1177 			}
1178 		}
1179 	}
1180 
1181 	if (USES_PRIMARY(bond->params.mode)) {
1182 		bond_mc_swap(bond, new_active, old_active);
1183 	}
1184 
1185 	if ((bond->params.mode == BOND_MODE_TLB) ||
1186 	    (bond->params.mode == BOND_MODE_ALB)) {
1187 		bond_alb_handle_active_change(bond, new_active);
1188 		if (old_active)
1189 			bond_set_slave_inactive_flags(old_active);
1190 		if (new_active)
1191 			bond_set_slave_active_flags(new_active);
1192 	} else {
1193 		bond->curr_active_slave = new_active;
1194 	}
1195 
1196 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1197 		if (old_active) {
1198 			bond_set_slave_inactive_flags(old_active);
1199 		}
1200 
1201 		if (new_active) {
1202 			bond_set_slave_active_flags(new_active);
1203 
1204 			if (bond->params.fail_over_mac)
1205 				bond_do_fail_over_mac(bond, new_active,
1206 						      old_active);
1207 
1208 			bond->send_grat_arp = bond->params.num_grat_arp;
1209 			bond_send_gratuitous_arp(bond);
1210 
1211 			write_unlock_bh(&bond->curr_slave_lock);
1212 			read_unlock(&bond->lock);
1213 
1214 			netdev_bonding_change(bond->dev);
1215 
1216 			read_lock(&bond->lock);
1217 			write_lock_bh(&bond->curr_slave_lock);
1218 		}
1219 	}
1220 }
1221 
1222 /**
1223  * bond_select_active_slave - select a new active slave, if needed
1224  * @bond: our bonding struct
1225  *
1226  * This functions shoud be called when one of the following occurs:
1227  * - The old curr_active_slave has been released or lost its link.
1228  * - The primary_slave has got its link back.
1229  * - A slave has got its link back and there's no old curr_active_slave.
1230  *
1231  * Caller must hold bond->lock for read and curr_slave_lock for write_bh.
1232  */
1233 void bond_select_active_slave(struct bonding *bond)
1234 {
1235 	struct slave *best_slave;
1236 	int rv;
1237 
1238 	best_slave = bond_find_best_slave(bond);
1239 	if (best_slave != bond->curr_active_slave) {
1240 		bond_change_active_slave(bond, best_slave);
1241 		rv = bond_set_carrier(bond);
1242 		if (!rv)
1243 			return;
1244 
1245 		if (netif_carrier_ok(bond->dev)) {
1246 			printk(KERN_INFO DRV_NAME
1247 			       ": %s: first active interface up!\n",
1248 			       bond->dev->name);
1249 		} else {
1250 			printk(KERN_INFO DRV_NAME ": %s: "
1251 			       "now running without any active interface !\n",
1252 			       bond->dev->name);
1253 		}
1254 	}
1255 }
1256 
1257 /*--------------------------- slave list handling ---------------------------*/
1258 
1259 /*
1260  * This function attaches the slave to the end of list.
1261  *
1262  * bond->lock held for writing by caller.
1263  */
1264 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1265 {
1266 	if (bond->first_slave == NULL) { /* attaching the first slave */
1267 		new_slave->next = new_slave;
1268 		new_slave->prev = new_slave;
1269 		bond->first_slave = new_slave;
1270 	} else {
1271 		new_slave->next = bond->first_slave;
1272 		new_slave->prev = bond->first_slave->prev;
1273 		new_slave->next->prev = new_slave;
1274 		new_slave->prev->next = new_slave;
1275 	}
1276 
1277 	bond->slave_cnt++;
1278 }
1279 
1280 /*
1281  * This function detaches the slave from the list.
1282  * WARNING: no check is made to verify if the slave effectively
1283  * belongs to <bond>.
1284  * Nothing is freed on return, structures are just unchained.
1285  * If any slave pointer in bond was pointing to <slave>,
1286  * it should be changed by the calling function.
1287  *
1288  * bond->lock held for writing by caller.
1289  */
1290 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1291 {
1292 	if (slave->next) {
1293 		slave->next->prev = slave->prev;
1294 	}
1295 
1296 	if (slave->prev) {
1297 		slave->prev->next = slave->next;
1298 	}
1299 
1300 	if (bond->first_slave == slave) { /* slave is the first slave */
1301 		if (bond->slave_cnt > 1) { /* there are more slave */
1302 			bond->first_slave = slave->next;
1303 		} else {
1304 			bond->first_slave = NULL; /* slave was the last one */
1305 		}
1306 	}
1307 
1308 	slave->next = NULL;
1309 	slave->prev = NULL;
1310 	bond->slave_cnt--;
1311 }
1312 
1313 /*---------------------------------- IOCTL ----------------------------------*/
1314 
1315 static int bond_sethwaddr(struct net_device *bond_dev,
1316 			  struct net_device *slave_dev)
1317 {
1318 	dprintk("bond_dev=%p\n", bond_dev);
1319 	dprintk("slave_dev=%p\n", slave_dev);
1320 	dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1321 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1322 	return 0;
1323 }
1324 
1325 #define BOND_VLAN_FEATURES \
1326 	(NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1327 	 NETIF_F_HW_VLAN_FILTER)
1328 
1329 /*
1330  * Compute the common dev->feature set available to all slaves.  Some
1331  * feature bits are managed elsewhere, so preserve those feature bits
1332  * on the master device.
1333  */
1334 static int bond_compute_features(struct bonding *bond)
1335 {
1336 	struct slave *slave;
1337 	struct net_device *bond_dev = bond->dev;
1338 	unsigned long features = bond_dev->features;
1339 	unsigned short max_hard_header_len = max((u16)ETH_HLEN,
1340 						bond_dev->hard_header_len);
1341 	int i;
1342 
1343 	features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1344 	features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA |
1345 		    NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1346 
1347 	bond_for_each_slave(bond, slave, i) {
1348 		features = netdev_compute_features(features,
1349 						   slave->dev->features);
1350 		if (slave->dev->hard_header_len > max_hard_header_len)
1351 			max_hard_header_len = slave->dev->hard_header_len;
1352 	}
1353 
1354 	features |= (bond_dev->features & BOND_VLAN_FEATURES);
1355 	bond_dev->features = features;
1356 	bond_dev->hard_header_len = max_hard_header_len;
1357 
1358 	return 0;
1359 }
1360 
1361 
1362 static void bond_setup_by_slave(struct net_device *bond_dev,
1363 				struct net_device *slave_dev)
1364 {
1365 	struct bonding *bond = bond_dev->priv;
1366 
1367 	bond_dev->neigh_setup           = slave_dev->neigh_setup;
1368 	bond_dev->header_ops		= slave_dev->header_ops;
1369 
1370 	bond_dev->type		    = slave_dev->type;
1371 	bond_dev->hard_header_len   = slave_dev->hard_header_len;
1372 	bond_dev->addr_len	    = slave_dev->addr_len;
1373 
1374 	memcpy(bond_dev->broadcast, slave_dev->broadcast,
1375 		slave_dev->addr_len);
1376 	bond->setup_by_slave = 1;
1377 }
1378 
1379 /* enslave device <slave> to bond device <master> */
1380 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1381 {
1382 	struct bonding *bond = bond_dev->priv;
1383 	struct slave *new_slave = NULL;
1384 	struct dev_mc_list *dmi;
1385 	struct sockaddr addr;
1386 	int link_reporting;
1387 	int old_features = bond_dev->features;
1388 	int res = 0;
1389 
1390 	if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1391 		slave_dev->do_ioctl == NULL) {
1392 		printk(KERN_WARNING DRV_NAME
1393 		       ": %s: Warning: no link monitoring support for %s\n",
1394 		       bond_dev->name, slave_dev->name);
1395 	}
1396 
1397 	/* bond must be initialized by bond_open() before enslaving */
1398 	if (!(bond_dev->flags & IFF_UP)) {
1399 		printk(KERN_WARNING DRV_NAME
1400 			" %s: master_dev is not up in bond_enslave\n",
1401 			bond_dev->name);
1402 	}
1403 
1404 	/* already enslaved */
1405 	if (slave_dev->flags & IFF_SLAVE) {
1406 		dprintk("Error, Device was already enslaved\n");
1407 		return -EBUSY;
1408 	}
1409 
1410 	/* vlan challenged mutual exclusion */
1411 	/* no need to lock since we're protected by rtnl_lock */
1412 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1413 		dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1414 		if (!list_empty(&bond->vlan_list)) {
1415 			printk(KERN_ERR DRV_NAME
1416 			       ": %s: Error: cannot enslave VLAN "
1417 			       "challenged slave %s on VLAN enabled "
1418 			       "bond %s\n", bond_dev->name, slave_dev->name,
1419 			       bond_dev->name);
1420 			return -EPERM;
1421 		} else {
1422 			printk(KERN_WARNING DRV_NAME
1423 			       ": %s: Warning: enslaved VLAN challenged "
1424 			       "slave %s. Adding VLANs will be blocked as "
1425 			       "long as %s is part of bond %s\n",
1426 			       bond_dev->name, slave_dev->name, slave_dev->name,
1427 			       bond_dev->name);
1428 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1429 		}
1430 	} else {
1431 		dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1432 		if (bond->slave_cnt == 0) {
1433 			/* First slave, and it is not VLAN challenged,
1434 			 * so remove the block of adding VLANs over the bond.
1435 			 */
1436 			bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * Old ifenslave binaries are no longer supported.  These can
1442 	 * be identified with moderate accurary by the state of the slave:
1443 	 * the current ifenslave will set the interface down prior to
1444 	 * enslaving it; the old ifenslave will not.
1445 	 */
1446 	if ((slave_dev->flags & IFF_UP)) {
1447 		printk(KERN_ERR DRV_NAME ": %s is up. "
1448 		       "This may be due to an out of date ifenslave.\n",
1449 		       slave_dev->name);
1450 		res = -EPERM;
1451 		goto err_undo_flags;
1452 	}
1453 
1454 	/* set bonding device ether type by slave - bonding netdevices are
1455 	 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1456 	 * there is a need to override some of the type dependent attribs/funcs.
1457 	 *
1458 	 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1459 	 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1460 	 */
1461 	if (bond->slave_cnt == 0) {
1462 		if (slave_dev->type != ARPHRD_ETHER)
1463 			bond_setup_by_slave(bond_dev, slave_dev);
1464 	} else if (bond_dev->type != slave_dev->type) {
1465 		printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different "
1466 			"from other slaves (%d), can not enslave it.\n",
1467 			slave_dev->name,
1468 			slave_dev->type, bond_dev->type);
1469 			res = -EINVAL;
1470 			goto err_undo_flags;
1471 	}
1472 
1473 	if (slave_dev->set_mac_address == NULL) {
1474 		if (bond->slave_cnt == 0) {
1475 			printk(KERN_WARNING DRV_NAME
1476 			       ": %s: Warning: The first slave device "
1477 			       "specified does not support setting the MAC "
1478 			       "address. Setting fail_over_mac to active.",
1479 			       bond_dev->name);
1480 			bond->params.fail_over_mac = BOND_FOM_ACTIVE;
1481 		} else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1482 			printk(KERN_ERR DRV_NAME
1483 				": %s: Error: The slave device specified "
1484 				"does not support setting the MAC address, "
1485 				"but fail_over_mac is not set to active.\n"
1486 				, bond_dev->name);
1487 			res = -EOPNOTSUPP;
1488 			goto err_undo_flags;
1489 		}
1490 	}
1491 
1492 	new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1493 	if (!new_slave) {
1494 		res = -ENOMEM;
1495 		goto err_undo_flags;
1496 	}
1497 
1498 	/* save slave's original flags before calling
1499 	 * netdev_set_master and dev_open
1500 	 */
1501 	new_slave->original_flags = slave_dev->flags;
1502 
1503 	/*
1504 	 * Save slave's original ("permanent") mac address for modes
1505 	 * that need it, and for restoring it upon release, and then
1506 	 * set it to the master's address
1507 	 */
1508 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1509 
1510 	if (!bond->params.fail_over_mac) {
1511 		/*
1512 		 * Set slave to master's mac address.  The application already
1513 		 * set the master's mac address to that of the first slave
1514 		 */
1515 		memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1516 		addr.sa_family = slave_dev->type;
1517 		res = dev_set_mac_address(slave_dev, &addr);
1518 		if (res) {
1519 			dprintk("Error %d calling set_mac_address\n", res);
1520 			goto err_free;
1521 		}
1522 	}
1523 
1524 	res = netdev_set_master(slave_dev, bond_dev);
1525 	if (res) {
1526 		dprintk("Error %d calling netdev_set_master\n", res);
1527 		goto err_restore_mac;
1528 	}
1529 	/* open the slave since the application closed it */
1530 	res = dev_open(slave_dev);
1531 	if (res) {
1532 		dprintk("Openning slave %s failed\n", slave_dev->name);
1533 		goto err_unset_master;
1534 	}
1535 
1536 	new_slave->dev = slave_dev;
1537 	slave_dev->priv_flags |= IFF_BONDING;
1538 
1539 	if ((bond->params.mode == BOND_MODE_TLB) ||
1540 	    (bond->params.mode == BOND_MODE_ALB)) {
1541 		/* bond_alb_init_slave() must be called before all other stages since
1542 		 * it might fail and we do not want to have to undo everything
1543 		 */
1544 		res = bond_alb_init_slave(bond, new_slave);
1545 		if (res) {
1546 			goto err_close;
1547 		}
1548 	}
1549 
1550 	/* If the mode USES_PRIMARY, then the new slave gets the
1551 	 * master's promisc (and mc) settings only if it becomes the
1552 	 * curr_active_slave, and that is taken care of later when calling
1553 	 * bond_change_active()
1554 	 */
1555 	if (!USES_PRIMARY(bond->params.mode)) {
1556 		/* set promiscuity level to new slave */
1557 		if (bond_dev->flags & IFF_PROMISC) {
1558 			res = dev_set_promiscuity(slave_dev, 1);
1559 			if (res)
1560 				goto err_close;
1561 		}
1562 
1563 		/* set allmulti level to new slave */
1564 		if (bond_dev->flags & IFF_ALLMULTI) {
1565 			res = dev_set_allmulti(slave_dev, 1);
1566 			if (res)
1567 				goto err_close;
1568 		}
1569 
1570 		netif_addr_lock_bh(bond_dev);
1571 		/* upload master's mc_list to new slave */
1572 		for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1573 			dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1574 		}
1575 		netif_addr_unlock_bh(bond_dev);
1576 	}
1577 
1578 	if (bond->params.mode == BOND_MODE_8023AD) {
1579 		/* add lacpdu mc addr to mc list */
1580 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1581 
1582 		dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1583 	}
1584 
1585 	bond_add_vlans_on_slave(bond, slave_dev);
1586 
1587 	write_lock_bh(&bond->lock);
1588 
1589 	bond_attach_slave(bond, new_slave);
1590 
1591 	new_slave->delay = 0;
1592 	new_slave->link_failure_count = 0;
1593 
1594 	bond_compute_features(bond);
1595 
1596 	write_unlock_bh(&bond->lock);
1597 
1598 	read_lock(&bond->lock);
1599 
1600 	new_slave->last_arp_rx = jiffies;
1601 
1602 	if (bond->params.miimon && !bond->params.use_carrier) {
1603 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1604 
1605 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1606 			/*
1607 			 * miimon is set but a bonded network driver
1608 			 * does not support ETHTOOL/MII and
1609 			 * arp_interval is not set.  Note: if
1610 			 * use_carrier is enabled, we will never go
1611 			 * here (because netif_carrier is always
1612 			 * supported); thus, we don't need to change
1613 			 * the messages for netif_carrier.
1614 			 */
1615 			printk(KERN_WARNING DRV_NAME
1616 			       ": %s: Warning: MII and ETHTOOL support not "
1617 			       "available for interface %s, and "
1618 			       "arp_interval/arp_ip_target module parameters "
1619 			       "not specified, thus bonding will not detect "
1620 			       "link failures! see bonding.txt for details.\n",
1621 			       bond_dev->name, slave_dev->name);
1622 		} else if (link_reporting == -1) {
1623 			/* unable get link status using mii/ethtool */
1624 			printk(KERN_WARNING DRV_NAME
1625 			       ": %s: Warning: can't get link status from "
1626 			       "interface %s; the network driver associated "
1627 			       "with this interface does not support MII or "
1628 			       "ETHTOOL link status reporting, thus miimon "
1629 			       "has no effect on this interface.\n",
1630 			       bond_dev->name, slave_dev->name);
1631 		}
1632 	}
1633 
1634 	/* check for initial state */
1635 	if (!bond->params.miimon ||
1636 	    (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1637 		if (bond->params.updelay) {
1638 			dprintk("Initial state of slave_dev is "
1639 				"BOND_LINK_BACK\n");
1640 			new_slave->link  = BOND_LINK_BACK;
1641 			new_slave->delay = bond->params.updelay;
1642 		} else {
1643 			dprintk("Initial state of slave_dev is "
1644 				"BOND_LINK_UP\n");
1645 			new_slave->link  = BOND_LINK_UP;
1646 		}
1647 		new_slave->jiffies = jiffies;
1648 	} else {
1649 		dprintk("Initial state of slave_dev is "
1650 			"BOND_LINK_DOWN\n");
1651 		new_slave->link  = BOND_LINK_DOWN;
1652 	}
1653 
1654 	if (bond_update_speed_duplex(new_slave) &&
1655 	    (new_slave->link != BOND_LINK_DOWN)) {
1656 		printk(KERN_WARNING DRV_NAME
1657 		       ": %s: Warning: failed to get speed and duplex from %s, "
1658 		       "assumed to be 100Mb/sec and Full.\n",
1659 		       bond_dev->name, new_slave->dev->name);
1660 
1661 		if (bond->params.mode == BOND_MODE_8023AD) {
1662 			printk(KERN_WARNING DRV_NAME
1663 			       ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1664 			       "support in base driver for proper aggregator "
1665 			       "selection.\n", bond_dev->name);
1666 		}
1667 	}
1668 
1669 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1670 		/* if there is a primary slave, remember it */
1671 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1672 			bond->primary_slave = new_slave;
1673 		}
1674 	}
1675 
1676 	write_lock_bh(&bond->curr_slave_lock);
1677 
1678 	switch (bond->params.mode) {
1679 	case BOND_MODE_ACTIVEBACKUP:
1680 		bond_set_slave_inactive_flags(new_slave);
1681 		bond_select_active_slave(bond);
1682 		break;
1683 	case BOND_MODE_8023AD:
1684 		/* in 802.3ad mode, the internal mechanism
1685 		 * will activate the slaves in the selected
1686 		 * aggregator
1687 		 */
1688 		bond_set_slave_inactive_flags(new_slave);
1689 		/* if this is the first slave */
1690 		if (bond->slave_cnt == 1) {
1691 			SLAVE_AD_INFO(new_slave).id = 1;
1692 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1693 			 * can be called only after the mac address of the bond is set
1694 			 */
1695 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1696 					    bond->params.lacp_fast);
1697 		} else {
1698 			SLAVE_AD_INFO(new_slave).id =
1699 				SLAVE_AD_INFO(new_slave->prev).id + 1;
1700 		}
1701 
1702 		bond_3ad_bind_slave(new_slave);
1703 		break;
1704 	case BOND_MODE_TLB:
1705 	case BOND_MODE_ALB:
1706 		new_slave->state = BOND_STATE_ACTIVE;
1707 		bond_set_slave_inactive_flags(new_slave);
1708 		break;
1709 	default:
1710 		dprintk("This slave is always active in trunk mode\n");
1711 
1712 		/* always active in trunk mode */
1713 		new_slave->state = BOND_STATE_ACTIVE;
1714 
1715 		/* In trunking mode there is little meaning to curr_active_slave
1716 		 * anyway (it holds no special properties of the bond device),
1717 		 * so we can change it without calling change_active_interface()
1718 		 */
1719 		if (!bond->curr_active_slave) {
1720 			bond->curr_active_slave = new_slave;
1721 		}
1722 		break;
1723 	} /* switch(bond_mode) */
1724 
1725 	write_unlock_bh(&bond->curr_slave_lock);
1726 
1727 	bond_set_carrier(bond);
1728 
1729 	read_unlock(&bond->lock);
1730 
1731 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1732 	if (res)
1733 		goto err_close;
1734 
1735 	printk(KERN_INFO DRV_NAME
1736 	       ": %s: enslaving %s as a%s interface with a%s link.\n",
1737 	       bond_dev->name, slave_dev->name,
1738 	       new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1739 	       new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1740 
1741 	/* enslave is successful */
1742 	return 0;
1743 
1744 /* Undo stages on error */
1745 err_close:
1746 	dev_close(slave_dev);
1747 
1748 err_unset_master:
1749 	netdev_set_master(slave_dev, NULL);
1750 
1751 err_restore_mac:
1752 	if (!bond->params.fail_over_mac) {
1753 		/* XXX TODO - fom follow mode needs to change master's
1754 		 * MAC if this slave's MAC is in use by the bond, or at
1755 		 * least print a warning.
1756 		 */
1757 		memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1758 		addr.sa_family = slave_dev->type;
1759 		dev_set_mac_address(slave_dev, &addr);
1760 	}
1761 
1762 err_free:
1763 	kfree(new_slave);
1764 
1765 err_undo_flags:
1766 	bond_dev->features = old_features;
1767 
1768 	return res;
1769 }
1770 
1771 /*
1772  * Try to release the slave device <slave> from the bond device <master>
1773  * It is legal to access curr_active_slave without a lock because all the function
1774  * is write-locked.
1775  *
1776  * The rules for slave state should be:
1777  *   for Active/Backup:
1778  *     Active stays on all backups go down
1779  *   for Bonded connections:
1780  *     The first up interface should be left on and all others downed.
1781  */
1782 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1783 {
1784 	struct bonding *bond = bond_dev->priv;
1785 	struct slave *slave, *oldcurrent;
1786 	struct sockaddr addr;
1787 	int mac_addr_differ;
1788 	DECLARE_MAC_BUF(mac);
1789 
1790 	/* slave is not a slave or master is not master of this slave */
1791 	if (!(slave_dev->flags & IFF_SLAVE) ||
1792 	    (slave_dev->master != bond_dev)) {
1793 		printk(KERN_ERR DRV_NAME
1794 		       ": %s: Error: cannot release %s.\n",
1795 		       bond_dev->name, slave_dev->name);
1796 		return -EINVAL;
1797 	}
1798 
1799 	write_lock_bh(&bond->lock);
1800 
1801 	slave = bond_get_slave_by_dev(bond, slave_dev);
1802 	if (!slave) {
1803 		/* not a slave of this bond */
1804 		printk(KERN_INFO DRV_NAME
1805 		       ": %s: %s not enslaved\n",
1806 		       bond_dev->name, slave_dev->name);
1807 		write_unlock_bh(&bond->lock);
1808 		return -EINVAL;
1809 	}
1810 
1811 	if (!bond->params.fail_over_mac) {
1812 		mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr,
1813 					 ETH_ALEN);
1814 		if (!mac_addr_differ && (bond->slave_cnt > 1))
1815 			printk(KERN_WARNING DRV_NAME
1816 			       ": %s: Warning: the permanent HWaddr of %s - "
1817 			       "%s - is still in use by %s. "
1818 			       "Set the HWaddr of %s to a different address "
1819 			       "to avoid conflicts.\n",
1820 			       bond_dev->name, slave_dev->name,
1821 			       print_mac(mac, slave->perm_hwaddr),
1822 			       bond_dev->name, slave_dev->name);
1823 	}
1824 
1825 	/* Inform AD package of unbinding of slave. */
1826 	if (bond->params.mode == BOND_MODE_8023AD) {
1827 		/* must be called before the slave is
1828 		 * detached from the list
1829 		 */
1830 		bond_3ad_unbind_slave(slave);
1831 	}
1832 
1833 	printk(KERN_INFO DRV_NAME
1834 	       ": %s: releasing %s interface %s\n",
1835 	       bond_dev->name,
1836 	       (slave->state == BOND_STATE_ACTIVE)
1837 	       ? "active" : "backup",
1838 	       slave_dev->name);
1839 
1840 	oldcurrent = bond->curr_active_slave;
1841 
1842 	bond->current_arp_slave = NULL;
1843 
1844 	/* release the slave from its bond */
1845 	bond_detach_slave(bond, slave);
1846 
1847 	bond_compute_features(bond);
1848 
1849 	if (bond->primary_slave == slave) {
1850 		bond->primary_slave = NULL;
1851 	}
1852 
1853 	if (oldcurrent == slave) {
1854 		bond_change_active_slave(bond, NULL);
1855 	}
1856 
1857 	if ((bond->params.mode == BOND_MODE_TLB) ||
1858 	    (bond->params.mode == BOND_MODE_ALB)) {
1859 		/* Must be called only after the slave has been
1860 		 * detached from the list and the curr_active_slave
1861 		 * has been cleared (if our_slave == old_current),
1862 		 * but before a new active slave is selected.
1863 		 */
1864 		write_unlock_bh(&bond->lock);
1865 		bond_alb_deinit_slave(bond, slave);
1866 		write_lock_bh(&bond->lock);
1867 	}
1868 
1869 	if (oldcurrent == slave) {
1870 		/*
1871 		 * Note that we hold RTNL over this sequence, so there
1872 		 * is no concern that another slave add/remove event
1873 		 * will interfere.
1874 		 */
1875 		write_unlock_bh(&bond->lock);
1876 		read_lock(&bond->lock);
1877 		write_lock_bh(&bond->curr_slave_lock);
1878 
1879 		bond_select_active_slave(bond);
1880 
1881 		write_unlock_bh(&bond->curr_slave_lock);
1882 		read_unlock(&bond->lock);
1883 		write_lock_bh(&bond->lock);
1884 	}
1885 
1886 	if (bond->slave_cnt == 0) {
1887 		bond_set_carrier(bond);
1888 
1889 		/* if the last slave was removed, zero the mac address
1890 		 * of the master so it will be set by the application
1891 		 * to the mac address of the first slave
1892 		 */
1893 		memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1894 
1895 		if (list_empty(&bond->vlan_list)) {
1896 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1897 		} else {
1898 			printk(KERN_WARNING DRV_NAME
1899 			       ": %s: Warning: clearing HW address of %s while it "
1900 			       "still has VLANs.\n",
1901 			       bond_dev->name, bond_dev->name);
1902 			printk(KERN_WARNING DRV_NAME
1903 			       ": %s: When re-adding slaves, make sure the bond's "
1904 			       "HW address matches its VLANs'.\n",
1905 			       bond_dev->name);
1906 		}
1907 	} else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1908 		   !bond_has_challenged_slaves(bond)) {
1909 		printk(KERN_INFO DRV_NAME
1910 		       ": %s: last VLAN challenged slave %s "
1911 		       "left bond %s. VLAN blocking is removed\n",
1912 		       bond_dev->name, slave_dev->name, bond_dev->name);
1913 		bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1914 	}
1915 
1916 	write_unlock_bh(&bond->lock);
1917 
1918 	/* must do this from outside any spinlocks */
1919 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1920 
1921 	bond_del_vlans_from_slave(bond, slave_dev);
1922 
1923 	/* If the mode USES_PRIMARY, then we should only remove its
1924 	 * promisc and mc settings if it was the curr_active_slave, but that was
1925 	 * already taken care of above when we detached the slave
1926 	 */
1927 	if (!USES_PRIMARY(bond->params.mode)) {
1928 		/* unset promiscuity level from slave */
1929 		if (bond_dev->flags & IFF_PROMISC) {
1930 			dev_set_promiscuity(slave_dev, -1);
1931 		}
1932 
1933 		/* unset allmulti level from slave */
1934 		if (bond_dev->flags & IFF_ALLMULTI) {
1935 			dev_set_allmulti(slave_dev, -1);
1936 		}
1937 
1938 		/* flush master's mc_list from slave */
1939 		netif_addr_lock_bh(bond_dev);
1940 		bond_mc_list_flush(bond_dev, slave_dev);
1941 		netif_addr_unlock_bh(bond_dev);
1942 	}
1943 
1944 	netdev_set_master(slave_dev, NULL);
1945 
1946 	/* close slave before restoring its mac address */
1947 	dev_close(slave_dev);
1948 
1949 	if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1950 		/* restore original ("permanent") mac address */
1951 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1952 		addr.sa_family = slave_dev->type;
1953 		dev_set_mac_address(slave_dev, &addr);
1954 	}
1955 
1956 	slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1957 				   IFF_SLAVE_INACTIVE | IFF_BONDING |
1958 				   IFF_SLAVE_NEEDARP);
1959 
1960 	kfree(slave);
1961 
1962 	return 0;  /* deletion OK */
1963 }
1964 
1965 /*
1966 * Destroy a bonding device.
1967 * Must be under rtnl_lock when this function is called.
1968 */
1969 void bond_destroy(struct bonding *bond)
1970 {
1971 	bond_deinit(bond->dev);
1972 	bond_destroy_sysfs_entry(bond);
1973 	unregister_netdevice(bond->dev);
1974 }
1975 
1976 /*
1977 * First release a slave and than destroy the bond if no more slaves iare left.
1978 * Must be under rtnl_lock when this function is called.
1979 */
1980 int  bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev)
1981 {
1982 	struct bonding *bond = bond_dev->priv;
1983 	int ret;
1984 
1985 	ret = bond_release(bond_dev, slave_dev);
1986 	if ((ret == 0) && (bond->slave_cnt == 0)) {
1987 		printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n",
1988 		       bond_dev->name, bond_dev->name);
1989 		bond_destroy(bond);
1990 	}
1991 	return ret;
1992 }
1993 
1994 /*
1995  * This function releases all slaves.
1996  */
1997 static int bond_release_all(struct net_device *bond_dev)
1998 {
1999 	struct bonding *bond = bond_dev->priv;
2000 	struct slave *slave;
2001 	struct net_device *slave_dev;
2002 	struct sockaddr addr;
2003 
2004 	write_lock_bh(&bond->lock);
2005 
2006 	netif_carrier_off(bond_dev);
2007 
2008 	if (bond->slave_cnt == 0) {
2009 		goto out;
2010 	}
2011 
2012 	bond->current_arp_slave = NULL;
2013 	bond->primary_slave = NULL;
2014 	bond_change_active_slave(bond, NULL);
2015 
2016 	while ((slave = bond->first_slave) != NULL) {
2017 		/* Inform AD package of unbinding of slave
2018 		 * before slave is detached from the list.
2019 		 */
2020 		if (bond->params.mode == BOND_MODE_8023AD) {
2021 			bond_3ad_unbind_slave(slave);
2022 		}
2023 
2024 		slave_dev = slave->dev;
2025 		bond_detach_slave(bond, slave);
2026 
2027 		/* now that the slave is detached, unlock and perform
2028 		 * all the undo steps that should not be called from
2029 		 * within a lock.
2030 		 */
2031 		write_unlock_bh(&bond->lock);
2032 
2033 		if ((bond->params.mode == BOND_MODE_TLB) ||
2034 		    (bond->params.mode == BOND_MODE_ALB)) {
2035 			/* must be called only after the slave
2036 			 * has been detached from the list
2037 			 */
2038 			bond_alb_deinit_slave(bond, slave);
2039 		}
2040 
2041 		bond_compute_features(bond);
2042 
2043 		bond_destroy_slave_symlinks(bond_dev, slave_dev);
2044 		bond_del_vlans_from_slave(bond, slave_dev);
2045 
2046 		/* If the mode USES_PRIMARY, then we should only remove its
2047 		 * promisc and mc settings if it was the curr_active_slave, but that was
2048 		 * already taken care of above when we detached the slave
2049 		 */
2050 		if (!USES_PRIMARY(bond->params.mode)) {
2051 			/* unset promiscuity level from slave */
2052 			if (bond_dev->flags & IFF_PROMISC) {
2053 				dev_set_promiscuity(slave_dev, -1);
2054 			}
2055 
2056 			/* unset allmulti level from slave */
2057 			if (bond_dev->flags & IFF_ALLMULTI) {
2058 				dev_set_allmulti(slave_dev, -1);
2059 			}
2060 
2061 			/* flush master's mc_list from slave */
2062 			netif_addr_lock_bh(bond_dev);
2063 			bond_mc_list_flush(bond_dev, slave_dev);
2064 			netif_addr_unlock_bh(bond_dev);
2065 		}
2066 
2067 		netdev_set_master(slave_dev, NULL);
2068 
2069 		/* close slave before restoring its mac address */
2070 		dev_close(slave_dev);
2071 
2072 		if (!bond->params.fail_over_mac) {
2073 			/* restore original ("permanent") mac address*/
2074 			memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
2075 			addr.sa_family = slave_dev->type;
2076 			dev_set_mac_address(slave_dev, &addr);
2077 		}
2078 
2079 		slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
2080 					   IFF_SLAVE_INACTIVE);
2081 
2082 		kfree(slave);
2083 
2084 		/* re-acquire the lock before getting the next slave */
2085 		write_lock_bh(&bond->lock);
2086 	}
2087 
2088 	/* zero the mac address of the master so it will be
2089 	 * set by the application to the mac address of the
2090 	 * first slave
2091 	 */
2092 	memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
2093 
2094 	if (list_empty(&bond->vlan_list)) {
2095 		bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
2096 	} else {
2097 		printk(KERN_WARNING DRV_NAME
2098 		       ": %s: Warning: clearing HW address of %s while it "
2099 		       "still has VLANs.\n",
2100 		       bond_dev->name, bond_dev->name);
2101 		printk(KERN_WARNING DRV_NAME
2102 		       ": %s: When re-adding slaves, make sure the bond's "
2103 		       "HW address matches its VLANs'.\n",
2104 		       bond_dev->name);
2105 	}
2106 
2107 	printk(KERN_INFO DRV_NAME
2108 	       ": %s: released all slaves\n",
2109 	       bond_dev->name);
2110 
2111 out:
2112 	write_unlock_bh(&bond->lock);
2113 
2114 	return 0;
2115 }
2116 
2117 /*
2118  * This function changes the active slave to slave <slave_dev>.
2119  * It returns -EINVAL in the following cases.
2120  *  - <slave_dev> is not found in the list.
2121  *  - There is not active slave now.
2122  *  - <slave_dev> is already active.
2123  *  - The link state of <slave_dev> is not BOND_LINK_UP.
2124  *  - <slave_dev> is not running.
2125  * In these cases, this fuction does nothing.
2126  * In the other cases, currnt_slave pointer is changed and 0 is returned.
2127  */
2128 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2129 {
2130 	struct bonding *bond = bond_dev->priv;
2131 	struct slave *old_active = NULL;
2132 	struct slave *new_active = NULL;
2133 	int res = 0;
2134 
2135 	if (!USES_PRIMARY(bond->params.mode)) {
2136 		return -EINVAL;
2137 	}
2138 
2139 	/* Verify that master_dev is indeed the master of slave_dev */
2140 	if (!(slave_dev->flags & IFF_SLAVE) ||
2141 	    (slave_dev->master != bond_dev)) {
2142 		return -EINVAL;
2143 	}
2144 
2145 	read_lock(&bond->lock);
2146 
2147 	read_lock(&bond->curr_slave_lock);
2148 	old_active = bond->curr_active_slave;
2149 	read_unlock(&bond->curr_slave_lock);
2150 
2151 	new_active = bond_get_slave_by_dev(bond, slave_dev);
2152 
2153 	/*
2154 	 * Changing to the current active: do nothing; return success.
2155 	 */
2156 	if (new_active && (new_active == old_active)) {
2157 		read_unlock(&bond->lock);
2158 		return 0;
2159 	}
2160 
2161 	if ((new_active) &&
2162 	    (old_active) &&
2163 	    (new_active->link == BOND_LINK_UP) &&
2164 	    IS_UP(new_active->dev)) {
2165 		write_lock_bh(&bond->curr_slave_lock);
2166 		bond_change_active_slave(bond, new_active);
2167 		write_unlock_bh(&bond->curr_slave_lock);
2168 	} else {
2169 		res = -EINVAL;
2170 	}
2171 
2172 	read_unlock(&bond->lock);
2173 
2174 	return res;
2175 }
2176 
2177 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2178 {
2179 	struct bonding *bond = bond_dev->priv;
2180 
2181 	info->bond_mode = bond->params.mode;
2182 	info->miimon = bond->params.miimon;
2183 
2184 	read_lock(&bond->lock);
2185 	info->num_slaves = bond->slave_cnt;
2186 	read_unlock(&bond->lock);
2187 
2188 	return 0;
2189 }
2190 
2191 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2192 {
2193 	struct bonding *bond = bond_dev->priv;
2194 	struct slave *slave;
2195 	int i, found = 0;
2196 
2197 	if (info->slave_id < 0) {
2198 		return -ENODEV;
2199 	}
2200 
2201 	read_lock(&bond->lock);
2202 
2203 	bond_for_each_slave(bond, slave, i) {
2204 		if (i == (int)info->slave_id) {
2205 			found = 1;
2206 			break;
2207 		}
2208 	}
2209 
2210 	read_unlock(&bond->lock);
2211 
2212 	if (found) {
2213 		strcpy(info->slave_name, slave->dev->name);
2214 		info->link = slave->link;
2215 		info->state = slave->state;
2216 		info->link_failure_count = slave->link_failure_count;
2217 	} else {
2218 		return -ENODEV;
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 /*-------------------------------- Monitoring -------------------------------*/
2225 
2226 
2227 static int bond_miimon_inspect(struct bonding *bond)
2228 {
2229 	struct slave *slave;
2230 	int i, link_state, commit = 0;
2231 
2232 	bond_for_each_slave(bond, slave, i) {
2233 		slave->new_link = BOND_LINK_NOCHANGE;
2234 
2235 		link_state = bond_check_dev_link(bond, slave->dev, 0);
2236 
2237 		switch (slave->link) {
2238 		case BOND_LINK_UP:
2239 			if (link_state)
2240 				continue;
2241 
2242 			slave->link = BOND_LINK_FAIL;
2243 			slave->delay = bond->params.downdelay;
2244 			if (slave->delay) {
2245 				printk(KERN_INFO DRV_NAME
2246 				       ": %s: link status down for %s"
2247 				       "interface %s, disabling it in %d ms.\n",
2248 				       bond->dev->name,
2249 				       (bond->params.mode ==
2250 					BOND_MODE_ACTIVEBACKUP) ?
2251 				       ((slave->state == BOND_STATE_ACTIVE) ?
2252 					"active " : "backup ") : "",
2253 				       slave->dev->name,
2254 				       bond->params.downdelay * bond->params.miimon);
2255 			}
2256 			/*FALLTHRU*/
2257 		case BOND_LINK_FAIL:
2258 			if (link_state) {
2259 				/*
2260 				 * recovered before downdelay expired
2261 				 */
2262 				slave->link = BOND_LINK_UP;
2263 				slave->jiffies = jiffies;
2264 				printk(KERN_INFO DRV_NAME
2265 				       ": %s: link status up again after %d "
2266 				       "ms for interface %s.\n",
2267 				       bond->dev->name,
2268 				       (bond->params.downdelay - slave->delay) *
2269 				       bond->params.miimon,
2270 				       slave->dev->name);
2271 				continue;
2272 			}
2273 
2274 			if (slave->delay <= 0) {
2275 				slave->new_link = BOND_LINK_DOWN;
2276 				commit++;
2277 				continue;
2278 			}
2279 
2280 			slave->delay--;
2281 			break;
2282 
2283 		case BOND_LINK_DOWN:
2284 			if (!link_state)
2285 				continue;
2286 
2287 			slave->link = BOND_LINK_BACK;
2288 			slave->delay = bond->params.updelay;
2289 
2290 			if (slave->delay) {
2291 				printk(KERN_INFO DRV_NAME
2292 				       ": %s: link status up for "
2293 				       "interface %s, enabling it in %d ms.\n",
2294 				       bond->dev->name, slave->dev->name,
2295 				       bond->params.updelay *
2296 				       bond->params.miimon);
2297 			}
2298 			/*FALLTHRU*/
2299 		case BOND_LINK_BACK:
2300 			if (!link_state) {
2301 				slave->link = BOND_LINK_DOWN;
2302 				printk(KERN_INFO DRV_NAME
2303 				       ": %s: link status down again after %d "
2304 				       "ms for interface %s.\n",
2305 				       bond->dev->name,
2306 				       (bond->params.updelay - slave->delay) *
2307 				       bond->params.miimon,
2308 				       slave->dev->name);
2309 
2310 				continue;
2311 			}
2312 
2313 			if (slave->delay <= 0) {
2314 				slave->new_link = BOND_LINK_UP;
2315 				commit++;
2316 				continue;
2317 			}
2318 
2319 			slave->delay--;
2320 			break;
2321 		}
2322 	}
2323 
2324 	return commit;
2325 }
2326 
2327 static void bond_miimon_commit(struct bonding *bond)
2328 {
2329 	struct slave *slave;
2330 	int i;
2331 
2332 	bond_for_each_slave(bond, slave, i) {
2333 		switch (slave->new_link) {
2334 		case BOND_LINK_NOCHANGE:
2335 			continue;
2336 
2337 		case BOND_LINK_UP:
2338 			slave->link = BOND_LINK_UP;
2339 			slave->jiffies = jiffies;
2340 
2341 			if (bond->params.mode == BOND_MODE_8023AD) {
2342 				/* prevent it from being the active one */
2343 				slave->state = BOND_STATE_BACKUP;
2344 			} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2345 				/* make it immediately active */
2346 				slave->state = BOND_STATE_ACTIVE;
2347 			} else if (slave != bond->primary_slave) {
2348 				/* prevent it from being the active one */
2349 				slave->state = BOND_STATE_BACKUP;
2350 			}
2351 
2352 			printk(KERN_INFO DRV_NAME
2353 			       ": %s: link status definitely "
2354 			       "up for interface %s.\n",
2355 			       bond->dev->name, slave->dev->name);
2356 
2357 			/* notify ad that the link status has changed */
2358 			if (bond->params.mode == BOND_MODE_8023AD)
2359 				bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2360 
2361 			if ((bond->params.mode == BOND_MODE_TLB) ||
2362 			    (bond->params.mode == BOND_MODE_ALB))
2363 				bond_alb_handle_link_change(bond, slave,
2364 							    BOND_LINK_UP);
2365 
2366 			if (!bond->curr_active_slave ||
2367 			    (slave == bond->primary_slave))
2368 				goto do_failover;
2369 
2370 			continue;
2371 
2372 		case BOND_LINK_DOWN:
2373 			slave->link = BOND_LINK_DOWN;
2374 
2375 			if (bond->params.mode == BOND_MODE_ACTIVEBACKUP ||
2376 			    bond->params.mode == BOND_MODE_8023AD)
2377 				bond_set_slave_inactive_flags(slave);
2378 
2379 			printk(KERN_INFO DRV_NAME
2380 			       ": %s: link status definitely down for "
2381 			       "interface %s, disabling it\n",
2382 			       bond->dev->name, slave->dev->name);
2383 
2384 			if (bond->params.mode == BOND_MODE_8023AD)
2385 				bond_3ad_handle_link_change(slave,
2386 							    BOND_LINK_DOWN);
2387 
2388 			if (bond->params.mode == BOND_MODE_TLB ||
2389 			    bond->params.mode == BOND_MODE_ALB)
2390 				bond_alb_handle_link_change(bond, slave,
2391 							    BOND_LINK_DOWN);
2392 
2393 			if (slave == bond->curr_active_slave)
2394 				goto do_failover;
2395 
2396 			continue;
2397 
2398 		default:
2399 			printk(KERN_ERR DRV_NAME
2400 			       ": %s: invalid new link %d on slave %s\n",
2401 			       bond->dev->name, slave->new_link,
2402 			       slave->dev->name);
2403 			slave->new_link = BOND_LINK_NOCHANGE;
2404 
2405 			continue;
2406 		}
2407 
2408 do_failover:
2409 		ASSERT_RTNL();
2410 		write_lock_bh(&bond->curr_slave_lock);
2411 		bond_select_active_slave(bond);
2412 		write_unlock_bh(&bond->curr_slave_lock);
2413 	}
2414 
2415 	bond_set_carrier(bond);
2416 }
2417 
2418 /*
2419  * bond_mii_monitor
2420  *
2421  * Really a wrapper that splits the mii monitor into two phases: an
2422  * inspection, then (if inspection indicates something needs to be done)
2423  * an acquisition of appropriate locks followed by a commit phase to
2424  * implement whatever link state changes are indicated.
2425  */
2426 void bond_mii_monitor(struct work_struct *work)
2427 {
2428 	struct bonding *bond = container_of(work, struct bonding,
2429 					    mii_work.work);
2430 
2431 	read_lock(&bond->lock);
2432 	if (bond->kill_timers)
2433 		goto out;
2434 
2435 	if (bond->slave_cnt == 0)
2436 		goto re_arm;
2437 
2438 	if (bond->send_grat_arp) {
2439 		read_lock(&bond->curr_slave_lock);
2440 		bond_send_gratuitous_arp(bond);
2441 		read_unlock(&bond->curr_slave_lock);
2442 	}
2443 
2444 	if (bond_miimon_inspect(bond)) {
2445 		read_unlock(&bond->lock);
2446 		rtnl_lock();
2447 		read_lock(&bond->lock);
2448 
2449 		bond_miimon_commit(bond);
2450 
2451 		read_unlock(&bond->lock);
2452 		rtnl_unlock();	/* might sleep, hold no other locks */
2453 		read_lock(&bond->lock);
2454 	}
2455 
2456 re_arm:
2457 	if (bond->params.miimon)
2458 		queue_delayed_work(bond->wq, &bond->mii_work,
2459 				   msecs_to_jiffies(bond->params.miimon));
2460 out:
2461 	read_unlock(&bond->lock);
2462 }
2463 
2464 static __be32 bond_glean_dev_ip(struct net_device *dev)
2465 {
2466 	struct in_device *idev;
2467 	struct in_ifaddr *ifa;
2468 	__be32 addr = 0;
2469 
2470 	if (!dev)
2471 		return 0;
2472 
2473 	rcu_read_lock();
2474 	idev = __in_dev_get_rcu(dev);
2475 	if (!idev)
2476 		goto out;
2477 
2478 	ifa = idev->ifa_list;
2479 	if (!ifa)
2480 		goto out;
2481 
2482 	addr = ifa->ifa_local;
2483 out:
2484 	rcu_read_unlock();
2485 	return addr;
2486 }
2487 
2488 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2489 {
2490 	struct vlan_entry *vlan;
2491 
2492 	if (ip == bond->master_ip)
2493 		return 1;
2494 
2495 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2496 		if (ip == vlan->vlan_ip)
2497 			return 1;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 /*
2504  * We go to the (large) trouble of VLAN tagging ARP frames because
2505  * switches in VLAN mode (especially if ports are configured as
2506  * "native" to a VLAN) might not pass non-tagged frames.
2507  */
2508 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2509 {
2510 	struct sk_buff *skb;
2511 
2512 	dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2513 	       slave_dev->name, dest_ip, src_ip, vlan_id);
2514 
2515 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2516 			 NULL, slave_dev->dev_addr, NULL);
2517 
2518 	if (!skb) {
2519 		printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2520 		return;
2521 	}
2522 	if (vlan_id) {
2523 		skb = vlan_put_tag(skb, vlan_id);
2524 		if (!skb) {
2525 			printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2526 			return;
2527 		}
2528 	}
2529 	arp_xmit(skb);
2530 }
2531 
2532 
2533 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2534 {
2535 	int i, vlan_id, rv;
2536 	__be32 *targets = bond->params.arp_targets;
2537 	struct vlan_entry *vlan;
2538 	struct net_device *vlan_dev;
2539 	struct flowi fl;
2540 	struct rtable *rt;
2541 
2542 	for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2543 		if (!targets[i])
2544 			continue;
2545 		dprintk("basa: target %x\n", targets[i]);
2546 		if (list_empty(&bond->vlan_list)) {
2547 			dprintk("basa: empty vlan: arp_send\n");
2548 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2549 				      bond->master_ip, 0);
2550 			continue;
2551 		}
2552 
2553 		/*
2554 		 * If VLANs are configured, we do a route lookup to
2555 		 * determine which VLAN interface would be used, so we
2556 		 * can tag the ARP with the proper VLAN tag.
2557 		 */
2558 		memset(&fl, 0, sizeof(fl));
2559 		fl.fl4_dst = targets[i];
2560 		fl.fl4_tos = RTO_ONLINK;
2561 
2562 		rv = ip_route_output_key(&init_net, &rt, &fl);
2563 		if (rv) {
2564 			if (net_ratelimit()) {
2565 				printk(KERN_WARNING DRV_NAME
2566 			     ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2567 				       bond->dev->name, NIPQUAD(fl.fl4_dst));
2568 			}
2569 			continue;
2570 		}
2571 
2572 		/*
2573 		 * This target is not on a VLAN
2574 		 */
2575 		if (rt->u.dst.dev == bond->dev) {
2576 			ip_rt_put(rt);
2577 			dprintk("basa: rtdev == bond->dev: arp_send\n");
2578 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2579 				      bond->master_ip, 0);
2580 			continue;
2581 		}
2582 
2583 		vlan_id = 0;
2584 		list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2585 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2586 			if (vlan_dev == rt->u.dst.dev) {
2587 				vlan_id = vlan->vlan_id;
2588 				dprintk("basa: vlan match on %s %d\n",
2589 				       vlan_dev->name, vlan_id);
2590 				break;
2591 			}
2592 		}
2593 
2594 		if (vlan_id) {
2595 			ip_rt_put(rt);
2596 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2597 				      vlan->vlan_ip, vlan_id);
2598 			continue;
2599 		}
2600 
2601 		if (net_ratelimit()) {
2602 			printk(KERN_WARNING DRV_NAME
2603 	       ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2604 			       bond->dev->name, NIPQUAD(fl.fl4_dst),
2605 			       rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2606 		}
2607 		ip_rt_put(rt);
2608 	}
2609 }
2610 
2611 /*
2612  * Kick out a gratuitous ARP for an IP on the bonding master plus one
2613  * for each VLAN above us.
2614  *
2615  * Caller must hold curr_slave_lock for read or better
2616  */
2617 static void bond_send_gratuitous_arp(struct bonding *bond)
2618 {
2619 	struct slave *slave = bond->curr_active_slave;
2620 	struct vlan_entry *vlan;
2621 	struct net_device *vlan_dev;
2622 
2623 	dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2624 				slave ? slave->dev->name : "NULL");
2625 
2626 	if (!slave || !bond->send_grat_arp ||
2627 	    test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state))
2628 		return;
2629 
2630 	bond->send_grat_arp--;
2631 
2632 	if (bond->master_ip) {
2633 		bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2634 				bond->master_ip, 0);
2635 	}
2636 
2637 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2638 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2639 		if (vlan->vlan_ip) {
2640 			bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2641 				      vlan->vlan_ip, vlan->vlan_id);
2642 		}
2643 	}
2644 }
2645 
2646 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2647 {
2648 	int i;
2649 	__be32 *targets = bond->params.arp_targets;
2650 
2651 	targets = bond->params.arp_targets;
2652 	for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2653 		dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2654 			"%u.%u.%u.%u bhti(tip) %d\n",
2655 		       NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2656 		       bond_has_this_ip(bond, tip));
2657 		if (sip == targets[i]) {
2658 			if (bond_has_this_ip(bond, tip))
2659 				slave->last_arp_rx = jiffies;
2660 			return;
2661 		}
2662 	}
2663 }
2664 
2665 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2666 {
2667 	struct arphdr *arp;
2668 	struct slave *slave;
2669 	struct bonding *bond;
2670 	unsigned char *arp_ptr;
2671 	__be32 sip, tip;
2672 
2673 	if (dev_net(dev) != &init_net)
2674 		goto out;
2675 
2676 	if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2677 		goto out;
2678 
2679 	bond = dev->priv;
2680 	read_lock(&bond->lock);
2681 
2682 	dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2683 		bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2684 		orig_dev ? orig_dev->name : "NULL");
2685 
2686 	slave = bond_get_slave_by_dev(bond, orig_dev);
2687 	if (!slave || !slave_do_arp_validate(bond, slave))
2688 		goto out_unlock;
2689 
2690 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
2691 		goto out_unlock;
2692 
2693 	arp = arp_hdr(skb);
2694 	if (arp->ar_hln != dev->addr_len ||
2695 	    skb->pkt_type == PACKET_OTHERHOST ||
2696 	    skb->pkt_type == PACKET_LOOPBACK ||
2697 	    arp->ar_hrd != htons(ARPHRD_ETHER) ||
2698 	    arp->ar_pro != htons(ETH_P_IP) ||
2699 	    arp->ar_pln != 4)
2700 		goto out_unlock;
2701 
2702 	arp_ptr = (unsigned char *)(arp + 1);
2703 	arp_ptr += dev->addr_len;
2704 	memcpy(&sip, arp_ptr, 4);
2705 	arp_ptr += 4 + dev->addr_len;
2706 	memcpy(&tip, arp_ptr, 4);
2707 
2708 	dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2709 		" tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2710 		slave->state, bond->params.arp_validate,
2711 		slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2712 
2713 	/*
2714 	 * Backup slaves won't see the ARP reply, but do come through
2715 	 * here for each ARP probe (so we swap the sip/tip to validate
2716 	 * the probe).  In a "redundant switch, common router" type of
2717 	 * configuration, the ARP probe will (hopefully) travel from
2718 	 * the active, through one switch, the router, then the other
2719 	 * switch before reaching the backup.
2720 	 */
2721 	if (slave->state == BOND_STATE_ACTIVE)
2722 		bond_validate_arp(bond, slave, sip, tip);
2723 	else
2724 		bond_validate_arp(bond, slave, tip, sip);
2725 
2726 out_unlock:
2727 	read_unlock(&bond->lock);
2728 out:
2729 	dev_kfree_skb(skb);
2730 	return NET_RX_SUCCESS;
2731 }
2732 
2733 /*
2734  * this function is called regularly to monitor each slave's link
2735  * ensuring that traffic is being sent and received when arp monitoring
2736  * is used in load-balancing mode. if the adapter has been dormant, then an
2737  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2738  * arp monitoring in active backup mode.
2739  */
2740 void bond_loadbalance_arp_mon(struct work_struct *work)
2741 {
2742 	struct bonding *bond = container_of(work, struct bonding,
2743 					    arp_work.work);
2744 	struct slave *slave, *oldcurrent;
2745 	int do_failover = 0;
2746 	int delta_in_ticks;
2747 	int i;
2748 
2749 	read_lock(&bond->lock);
2750 
2751 	delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2752 
2753 	if (bond->kill_timers) {
2754 		goto out;
2755 	}
2756 
2757 	if (bond->slave_cnt == 0) {
2758 		goto re_arm;
2759 	}
2760 
2761 	read_lock(&bond->curr_slave_lock);
2762 	oldcurrent = bond->curr_active_slave;
2763 	read_unlock(&bond->curr_slave_lock);
2764 
2765 	/* see if any of the previous devices are up now (i.e. they have
2766 	 * xmt and rcv traffic). the curr_active_slave does not come into
2767 	 * the picture unless it is null. also, slave->jiffies is not needed
2768 	 * here because we send an arp on each slave and give a slave as
2769 	 * long as it needs to get the tx/rx within the delta.
2770 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2771 	 *       so it can wait
2772 	 */
2773 	bond_for_each_slave(bond, slave, i) {
2774 		if (slave->link != BOND_LINK_UP) {
2775 			if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) &&
2776 			    time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) {
2777 
2778 				slave->link  = BOND_LINK_UP;
2779 				slave->state = BOND_STATE_ACTIVE;
2780 
2781 				/* primary_slave has no meaning in round-robin
2782 				 * mode. the window of a slave being up and
2783 				 * curr_active_slave being null after enslaving
2784 				 * is closed.
2785 				 */
2786 				if (!oldcurrent) {
2787 					printk(KERN_INFO DRV_NAME
2788 					       ": %s: link status definitely "
2789 					       "up for interface %s, ",
2790 					       bond->dev->name,
2791 					       slave->dev->name);
2792 					do_failover = 1;
2793 				} else {
2794 					printk(KERN_INFO DRV_NAME
2795 					       ": %s: interface %s is now up\n",
2796 					       bond->dev->name,
2797 					       slave->dev->name);
2798 				}
2799 			}
2800 		} else {
2801 			/* slave->link == BOND_LINK_UP */
2802 
2803 			/* not all switches will respond to an arp request
2804 			 * when the source ip is 0, so don't take the link down
2805 			 * if we don't know our ip yet
2806 			 */
2807 			if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) ||
2808 			    (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) {
2809 
2810 				slave->link  = BOND_LINK_DOWN;
2811 				slave->state = BOND_STATE_BACKUP;
2812 
2813 				if (slave->link_failure_count < UINT_MAX) {
2814 					slave->link_failure_count++;
2815 				}
2816 
2817 				printk(KERN_INFO DRV_NAME
2818 				       ": %s: interface %s is now down.\n",
2819 				       bond->dev->name,
2820 				       slave->dev->name);
2821 
2822 				if (slave == oldcurrent) {
2823 					do_failover = 1;
2824 				}
2825 			}
2826 		}
2827 
2828 		/* note: if switch is in round-robin mode, all links
2829 		 * must tx arp to ensure all links rx an arp - otherwise
2830 		 * links may oscillate or not come up at all; if switch is
2831 		 * in something like xor mode, there is nothing we can
2832 		 * do - all replies will be rx'ed on same link causing slaves
2833 		 * to be unstable during low/no traffic periods
2834 		 */
2835 		if (IS_UP(slave->dev)) {
2836 			bond_arp_send_all(bond, slave);
2837 		}
2838 	}
2839 
2840 	if (do_failover) {
2841 		write_lock_bh(&bond->curr_slave_lock);
2842 
2843 		bond_select_active_slave(bond);
2844 
2845 		write_unlock_bh(&bond->curr_slave_lock);
2846 	}
2847 
2848 re_arm:
2849 	if (bond->params.arp_interval)
2850 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2851 out:
2852 	read_unlock(&bond->lock);
2853 }
2854 
2855 /*
2856  * Called to inspect slaves for active-backup mode ARP monitor link state
2857  * changes.  Sets new_link in slaves to specify what action should take
2858  * place for the slave.  Returns 0 if no changes are found, >0 if changes
2859  * to link states must be committed.
2860  *
2861  * Called with bond->lock held for read.
2862  */
2863 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks)
2864 {
2865 	struct slave *slave;
2866 	int i, commit = 0;
2867 
2868 	bond_for_each_slave(bond, slave, i) {
2869 		slave->new_link = BOND_LINK_NOCHANGE;
2870 
2871 		if (slave->link != BOND_LINK_UP) {
2872 			if (time_before_eq(jiffies, slave_last_rx(bond, slave) +
2873 					   delta_in_ticks)) {
2874 				slave->new_link = BOND_LINK_UP;
2875 				commit++;
2876 			}
2877 
2878 			continue;
2879 		}
2880 
2881 		/*
2882 		 * Give slaves 2*delta after being enslaved or made
2883 		 * active.  This avoids bouncing, as the last receive
2884 		 * times need a full ARP monitor cycle to be updated.
2885 		 */
2886 		if (!time_after_eq(jiffies, slave->jiffies +
2887 				   2 * delta_in_ticks))
2888 			continue;
2889 
2890 		/*
2891 		 * Backup slave is down if:
2892 		 * - No current_arp_slave AND
2893 		 * - more than 3*delta since last receive AND
2894 		 * - the bond has an IP address
2895 		 *
2896 		 * Note: a non-null current_arp_slave indicates
2897 		 * the curr_active_slave went down and we are
2898 		 * searching for a new one; under this condition
2899 		 * we only take the curr_active_slave down - this
2900 		 * gives each slave a chance to tx/rx traffic
2901 		 * before being taken out
2902 		 */
2903 		if (slave->state == BOND_STATE_BACKUP &&
2904 		    !bond->current_arp_slave &&
2905 		    time_after(jiffies, slave_last_rx(bond, slave) +
2906 			       3 * delta_in_ticks)) {
2907 			slave->new_link = BOND_LINK_DOWN;
2908 			commit++;
2909 		}
2910 
2911 		/*
2912 		 * Active slave is down if:
2913 		 * - more than 2*delta since transmitting OR
2914 		 * - (more than 2*delta since receive AND
2915 		 *    the bond has an IP address)
2916 		 */
2917 		if ((slave->state == BOND_STATE_ACTIVE) &&
2918 		    (time_after_eq(jiffies, slave->dev->trans_start +
2919 				    2 * delta_in_ticks) ||
2920 		      (time_after_eq(jiffies, slave_last_rx(bond, slave)
2921 				     + 2 * delta_in_ticks)))) {
2922 			slave->new_link = BOND_LINK_DOWN;
2923 			commit++;
2924 		}
2925 	}
2926 
2927 	read_lock(&bond->curr_slave_lock);
2928 
2929 	/*
2930 	 * Trigger a commit if the primary option setting has changed.
2931 	 */
2932 	if (bond->primary_slave &&
2933 	    (bond->primary_slave != bond->curr_active_slave) &&
2934 	    (bond->primary_slave->link == BOND_LINK_UP))
2935 		commit++;
2936 
2937 	read_unlock(&bond->curr_slave_lock);
2938 
2939 	return commit;
2940 }
2941 
2942 /*
2943  * Called to commit link state changes noted by inspection step of
2944  * active-backup mode ARP monitor.
2945  *
2946  * Called with RTNL and bond->lock for read.
2947  */
2948 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks)
2949 {
2950 	struct slave *slave;
2951 	int i;
2952 
2953 	bond_for_each_slave(bond, slave, i) {
2954 		switch (slave->new_link) {
2955 		case BOND_LINK_NOCHANGE:
2956 			continue;
2957 
2958 		case BOND_LINK_UP:
2959 			write_lock_bh(&bond->curr_slave_lock);
2960 
2961 			if (!bond->curr_active_slave &&
2962 			    time_before_eq(jiffies, slave->dev->trans_start +
2963 					   delta_in_ticks)) {
2964 				slave->link = BOND_LINK_UP;
2965 				bond_change_active_slave(bond, slave);
2966 				bond->current_arp_slave = NULL;
2967 
2968 				printk(KERN_INFO DRV_NAME
2969 				       ": %s: %s is up and now the "
2970 				       "active interface\n",
2971 				       bond->dev->name, slave->dev->name);
2972 
2973 			} else if (bond->curr_active_slave != slave) {
2974 				/* this slave has just come up but we
2975 				 * already have a current slave; this can
2976 				 * also happen if bond_enslave adds a new
2977 				 * slave that is up while we are searching
2978 				 * for a new slave
2979 				 */
2980 				slave->link = BOND_LINK_UP;
2981 				bond_set_slave_inactive_flags(slave);
2982 				bond->current_arp_slave = NULL;
2983 
2984 				printk(KERN_INFO DRV_NAME
2985 				       ": %s: backup interface %s is now up\n",
2986 				       bond->dev->name, slave->dev->name);
2987 			}
2988 
2989 			write_unlock_bh(&bond->curr_slave_lock);
2990 
2991 			break;
2992 
2993 		case BOND_LINK_DOWN:
2994 			if (slave->link_failure_count < UINT_MAX)
2995 				slave->link_failure_count++;
2996 
2997 			slave->link = BOND_LINK_DOWN;
2998 
2999 			if (slave == bond->curr_active_slave) {
3000 				printk(KERN_INFO DRV_NAME
3001 				       ": %s: link status down for active "
3002 				       "interface %s, disabling it\n",
3003 				       bond->dev->name, slave->dev->name);
3004 
3005 				bond_set_slave_inactive_flags(slave);
3006 
3007 				write_lock_bh(&bond->curr_slave_lock);
3008 
3009 				bond_select_active_slave(bond);
3010 				if (bond->curr_active_slave)
3011 					bond->curr_active_slave->jiffies =
3012 						jiffies;
3013 
3014 				write_unlock_bh(&bond->curr_slave_lock);
3015 
3016 				bond->current_arp_slave = NULL;
3017 
3018 			} else if (slave->state == BOND_STATE_BACKUP) {
3019 				printk(KERN_INFO DRV_NAME
3020 				       ": %s: backup interface %s is now down\n",
3021 				       bond->dev->name, slave->dev->name);
3022 
3023 				bond_set_slave_inactive_flags(slave);
3024 			}
3025 			break;
3026 
3027 		default:
3028 			printk(KERN_ERR DRV_NAME
3029 			       ": %s: impossible: new_link %d on slave %s\n",
3030 			       bond->dev->name, slave->new_link,
3031 			       slave->dev->name);
3032 		}
3033 	}
3034 
3035 	/*
3036 	 * No race with changes to primary via sysfs, as we hold rtnl.
3037 	 */
3038 	if (bond->primary_slave &&
3039 	    (bond->primary_slave != bond->curr_active_slave) &&
3040 	    (bond->primary_slave->link == BOND_LINK_UP)) {
3041 		write_lock_bh(&bond->curr_slave_lock);
3042 		bond_change_active_slave(bond, bond->primary_slave);
3043 		write_unlock_bh(&bond->curr_slave_lock);
3044 	}
3045 
3046 	bond_set_carrier(bond);
3047 }
3048 
3049 /*
3050  * Send ARP probes for active-backup mode ARP monitor.
3051  *
3052  * Called with bond->lock held for read.
3053  */
3054 static void bond_ab_arp_probe(struct bonding *bond)
3055 {
3056 	struct slave *slave;
3057 	int i;
3058 
3059 	read_lock(&bond->curr_slave_lock);
3060 
3061 	if (bond->current_arp_slave && bond->curr_active_slave)
3062 		printk("PROBE: c_arp %s && cas %s BAD\n",
3063 		       bond->current_arp_slave->dev->name,
3064 		       bond->curr_active_slave->dev->name);
3065 
3066 	if (bond->curr_active_slave) {
3067 		bond_arp_send_all(bond, bond->curr_active_slave);
3068 		read_unlock(&bond->curr_slave_lock);
3069 		return;
3070 	}
3071 
3072 	read_unlock(&bond->curr_slave_lock);
3073 
3074 	/* if we don't have a curr_active_slave, search for the next available
3075 	 * backup slave from the current_arp_slave and make it the candidate
3076 	 * for becoming the curr_active_slave
3077 	 */
3078 
3079 	if (!bond->current_arp_slave) {
3080 		bond->current_arp_slave = bond->first_slave;
3081 		if (!bond->current_arp_slave)
3082 			return;
3083 	}
3084 
3085 	bond_set_slave_inactive_flags(bond->current_arp_slave);
3086 
3087 	/* search for next candidate */
3088 	bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3089 		if (IS_UP(slave->dev)) {
3090 			slave->link = BOND_LINK_BACK;
3091 			bond_set_slave_active_flags(slave);
3092 			bond_arp_send_all(bond, slave);
3093 			slave->jiffies = jiffies;
3094 			bond->current_arp_slave = slave;
3095 			break;
3096 		}
3097 
3098 		/* if the link state is up at this point, we
3099 		 * mark it down - this can happen if we have
3100 		 * simultaneous link failures and
3101 		 * reselect_active_interface doesn't make this
3102 		 * one the current slave so it is still marked
3103 		 * up when it is actually down
3104 		 */
3105 		if (slave->link == BOND_LINK_UP) {
3106 			slave->link = BOND_LINK_DOWN;
3107 			if (slave->link_failure_count < UINT_MAX)
3108 				slave->link_failure_count++;
3109 
3110 			bond_set_slave_inactive_flags(slave);
3111 
3112 			printk(KERN_INFO DRV_NAME
3113 			       ": %s: backup interface %s is now down.\n",
3114 			       bond->dev->name, slave->dev->name);
3115 		}
3116 	}
3117 }
3118 
3119 void bond_activebackup_arp_mon(struct work_struct *work)
3120 {
3121 	struct bonding *bond = container_of(work, struct bonding,
3122 					    arp_work.work);
3123 	int delta_in_ticks;
3124 
3125 	read_lock(&bond->lock);
3126 
3127 	if (bond->kill_timers)
3128 		goto out;
3129 
3130 	delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
3131 
3132 	if (bond->slave_cnt == 0)
3133 		goto re_arm;
3134 
3135 	if (bond->send_grat_arp) {
3136 		read_lock(&bond->curr_slave_lock);
3137 		bond_send_gratuitous_arp(bond);
3138 		read_unlock(&bond->curr_slave_lock);
3139 	}
3140 
3141 	if (bond_ab_arp_inspect(bond, delta_in_ticks)) {
3142 		read_unlock(&bond->lock);
3143 		rtnl_lock();
3144 		read_lock(&bond->lock);
3145 
3146 		bond_ab_arp_commit(bond, delta_in_ticks);
3147 
3148 		read_unlock(&bond->lock);
3149 		rtnl_unlock();
3150 		read_lock(&bond->lock);
3151 	}
3152 
3153 	bond_ab_arp_probe(bond);
3154 
3155 re_arm:
3156 	if (bond->params.arp_interval) {
3157 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3158 	}
3159 out:
3160 	read_unlock(&bond->lock);
3161 }
3162 
3163 /*------------------------------ proc/seq_file-------------------------------*/
3164 
3165 #ifdef CONFIG_PROC_FS
3166 
3167 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
3168 {
3169 	struct bonding *bond = seq->private;
3170 	loff_t off = 0;
3171 	struct slave *slave;
3172 	int i;
3173 
3174 	/* make sure the bond won't be taken away */
3175 	read_lock(&dev_base_lock);
3176 	read_lock(&bond->lock);
3177 
3178 	if (*pos == 0) {
3179 		return SEQ_START_TOKEN;
3180 	}
3181 
3182 	bond_for_each_slave(bond, slave, i) {
3183 		if (++off == *pos) {
3184 			return slave;
3185 		}
3186 	}
3187 
3188 	return NULL;
3189 }
3190 
3191 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3192 {
3193 	struct bonding *bond = seq->private;
3194 	struct slave *slave = v;
3195 
3196 	++*pos;
3197 	if (v == SEQ_START_TOKEN) {
3198 		return bond->first_slave;
3199 	}
3200 
3201 	slave = slave->next;
3202 
3203 	return (slave == bond->first_slave) ? NULL : slave;
3204 }
3205 
3206 static void bond_info_seq_stop(struct seq_file *seq, void *v)
3207 {
3208 	struct bonding *bond = seq->private;
3209 
3210 	read_unlock(&bond->lock);
3211 	read_unlock(&dev_base_lock);
3212 }
3213 
3214 static void bond_info_show_master(struct seq_file *seq)
3215 {
3216 	struct bonding *bond = seq->private;
3217 	struct slave *curr;
3218 	int i;
3219 	u32 target;
3220 
3221 	read_lock(&bond->curr_slave_lock);
3222 	curr = bond->curr_active_slave;
3223 	read_unlock(&bond->curr_slave_lock);
3224 
3225 	seq_printf(seq, "Bonding Mode: %s",
3226 		   bond_mode_name(bond->params.mode));
3227 
3228 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP &&
3229 	    bond->params.fail_over_mac)
3230 		seq_printf(seq, " (fail_over_mac %s)",
3231 		   fail_over_mac_tbl[bond->params.fail_over_mac].modename);
3232 
3233 	seq_printf(seq, "\n");
3234 
3235 	if (bond->params.mode == BOND_MODE_XOR ||
3236 		bond->params.mode == BOND_MODE_8023AD) {
3237 		seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3238 			xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3239 			bond->params.xmit_policy);
3240 	}
3241 
3242 	if (USES_PRIMARY(bond->params.mode)) {
3243 		seq_printf(seq, "Primary Slave: %s\n",
3244 			   (bond->primary_slave) ?
3245 			   bond->primary_slave->dev->name : "None");
3246 
3247 		seq_printf(seq, "Currently Active Slave: %s\n",
3248 			   (curr) ? curr->dev->name : "None");
3249 	}
3250 
3251 	seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3252 		   "up" : "down");
3253 	seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3254 	seq_printf(seq, "Up Delay (ms): %d\n",
3255 		   bond->params.updelay * bond->params.miimon);
3256 	seq_printf(seq, "Down Delay (ms): %d\n",
3257 		   bond->params.downdelay * bond->params.miimon);
3258 
3259 
3260 	/* ARP information */
3261 	if(bond->params.arp_interval > 0) {
3262 		int printed=0;
3263 		seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3264 				bond->params.arp_interval);
3265 
3266 		seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3267 
3268 		for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3269 			if (!bond->params.arp_targets[i])
3270 				continue;
3271 			if (printed)
3272 				seq_printf(seq, ",");
3273 			target = ntohl(bond->params.arp_targets[i]);
3274 			seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3275 			printed = 1;
3276 		}
3277 		seq_printf(seq, "\n");
3278 	}
3279 
3280 	if (bond->params.mode == BOND_MODE_8023AD) {
3281 		struct ad_info ad_info;
3282 		DECLARE_MAC_BUF(mac);
3283 
3284 		seq_puts(seq, "\n802.3ad info\n");
3285 		seq_printf(seq, "LACP rate: %s\n",
3286 			   (bond->params.lacp_fast) ? "fast" : "slow");
3287 
3288 		if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3289 			seq_printf(seq, "bond %s has no active aggregator\n",
3290 				   bond->dev->name);
3291 		} else {
3292 			seq_printf(seq, "Active Aggregator Info:\n");
3293 
3294 			seq_printf(seq, "\tAggregator ID: %d\n",
3295 				   ad_info.aggregator_id);
3296 			seq_printf(seq, "\tNumber of ports: %d\n",
3297 				   ad_info.ports);
3298 			seq_printf(seq, "\tActor Key: %d\n",
3299 				   ad_info.actor_key);
3300 			seq_printf(seq, "\tPartner Key: %d\n",
3301 				   ad_info.partner_key);
3302 			seq_printf(seq, "\tPartner Mac Address: %s\n",
3303 				   print_mac(mac, ad_info.partner_system));
3304 		}
3305 	}
3306 }
3307 
3308 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3309 {
3310 	struct bonding *bond = seq->private;
3311 	DECLARE_MAC_BUF(mac);
3312 
3313 	seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3314 	seq_printf(seq, "MII Status: %s\n",
3315 		   (slave->link == BOND_LINK_UP) ?  "up" : "down");
3316 	seq_printf(seq, "Link Failure Count: %u\n",
3317 		   slave->link_failure_count);
3318 
3319 	seq_printf(seq,
3320 		   "Permanent HW addr: %s\n",
3321 		   print_mac(mac, slave->perm_hwaddr));
3322 
3323 	if (bond->params.mode == BOND_MODE_8023AD) {
3324 		const struct aggregator *agg
3325 			= SLAVE_AD_INFO(slave).port.aggregator;
3326 
3327 		if (agg) {
3328 			seq_printf(seq, "Aggregator ID: %d\n",
3329 				   agg->aggregator_identifier);
3330 		} else {
3331 			seq_puts(seq, "Aggregator ID: N/A\n");
3332 		}
3333 	}
3334 }
3335 
3336 static int bond_info_seq_show(struct seq_file *seq, void *v)
3337 {
3338 	if (v == SEQ_START_TOKEN) {
3339 		seq_printf(seq, "%s\n", version);
3340 		bond_info_show_master(seq);
3341 	} else {
3342 		bond_info_show_slave(seq, v);
3343 	}
3344 
3345 	return 0;
3346 }
3347 
3348 static struct seq_operations bond_info_seq_ops = {
3349 	.start = bond_info_seq_start,
3350 	.next  = bond_info_seq_next,
3351 	.stop  = bond_info_seq_stop,
3352 	.show  = bond_info_seq_show,
3353 };
3354 
3355 static int bond_info_open(struct inode *inode, struct file *file)
3356 {
3357 	struct seq_file *seq;
3358 	struct proc_dir_entry *proc;
3359 	int res;
3360 
3361 	res = seq_open(file, &bond_info_seq_ops);
3362 	if (!res) {
3363 		/* recover the pointer buried in proc_dir_entry data */
3364 		seq = file->private_data;
3365 		proc = PDE(inode);
3366 		seq->private = proc->data;
3367 	}
3368 
3369 	return res;
3370 }
3371 
3372 static const struct file_operations bond_info_fops = {
3373 	.owner   = THIS_MODULE,
3374 	.open    = bond_info_open,
3375 	.read    = seq_read,
3376 	.llseek  = seq_lseek,
3377 	.release = seq_release,
3378 };
3379 
3380 static int bond_create_proc_entry(struct bonding *bond)
3381 {
3382 	struct net_device *bond_dev = bond->dev;
3383 
3384 	if (bond_proc_dir) {
3385 		bond->proc_entry = proc_create_data(bond_dev->name,
3386 						    S_IRUGO, bond_proc_dir,
3387 						    &bond_info_fops, bond);
3388 		if (bond->proc_entry == NULL) {
3389 			printk(KERN_WARNING DRV_NAME
3390 			       ": Warning: Cannot create /proc/net/%s/%s\n",
3391 			       DRV_NAME, bond_dev->name);
3392 		} else {
3393 			memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3394 		}
3395 	}
3396 
3397 	return 0;
3398 }
3399 
3400 static void bond_remove_proc_entry(struct bonding *bond)
3401 {
3402 	if (bond_proc_dir && bond->proc_entry) {
3403 		remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3404 		memset(bond->proc_file_name, 0, IFNAMSIZ);
3405 		bond->proc_entry = NULL;
3406 	}
3407 }
3408 
3409 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3410  * Caller must hold rtnl_lock.
3411  */
3412 static void bond_create_proc_dir(void)
3413 {
3414 	int len = strlen(DRV_NAME);
3415 
3416 	for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir;
3417 	     bond_proc_dir = bond_proc_dir->next) {
3418 		if ((bond_proc_dir->namelen == len) &&
3419 		    !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3420 			break;
3421 		}
3422 	}
3423 
3424 	if (!bond_proc_dir) {
3425 		bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net);
3426 		if (bond_proc_dir) {
3427 			bond_proc_dir->owner = THIS_MODULE;
3428 		} else {
3429 			printk(KERN_WARNING DRV_NAME
3430 				": Warning: cannot create /proc/net/%s\n",
3431 				DRV_NAME);
3432 		}
3433 	}
3434 }
3435 
3436 /* Destroy the bonding directory under /proc/net, if empty.
3437  * Caller must hold rtnl_lock.
3438  */
3439 static void bond_destroy_proc_dir(void)
3440 {
3441 	struct proc_dir_entry *de;
3442 
3443 	if (!bond_proc_dir) {
3444 		return;
3445 	}
3446 
3447 	/* verify that the /proc dir is empty */
3448 	for (de = bond_proc_dir->subdir; de; de = de->next) {
3449 		/* ignore . and .. */
3450 		if (*(de->name) != '.') {
3451 			break;
3452 		}
3453 	}
3454 
3455 	if (de) {
3456 		if (bond_proc_dir->owner == THIS_MODULE) {
3457 			bond_proc_dir->owner = NULL;
3458 		}
3459 	} else {
3460 		remove_proc_entry(DRV_NAME, init_net.proc_net);
3461 		bond_proc_dir = NULL;
3462 	}
3463 }
3464 #endif /* CONFIG_PROC_FS */
3465 
3466 /*-------------------------- netdev event handling --------------------------*/
3467 
3468 /*
3469  * Change device name
3470  */
3471 static int bond_event_changename(struct bonding *bond)
3472 {
3473 #ifdef CONFIG_PROC_FS
3474 	bond_remove_proc_entry(bond);
3475 	bond_create_proc_entry(bond);
3476 #endif
3477 	down_write(&(bonding_rwsem));
3478         bond_destroy_sysfs_entry(bond);
3479         bond_create_sysfs_entry(bond);
3480 	up_write(&(bonding_rwsem));
3481 	return NOTIFY_DONE;
3482 }
3483 
3484 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3485 {
3486 	struct bonding *event_bond = bond_dev->priv;
3487 
3488 	switch (event) {
3489 	case NETDEV_CHANGENAME:
3490 		return bond_event_changename(event_bond);
3491 	case NETDEV_UNREGISTER:
3492 		bond_release_all(event_bond->dev);
3493 		break;
3494 	default:
3495 		break;
3496 	}
3497 
3498 	return NOTIFY_DONE;
3499 }
3500 
3501 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3502 {
3503 	struct net_device *bond_dev = slave_dev->master;
3504 	struct bonding *bond = bond_dev->priv;
3505 
3506 	switch (event) {
3507 	case NETDEV_UNREGISTER:
3508 		if (bond_dev) {
3509 			if (bond->setup_by_slave)
3510 				bond_release_and_destroy(bond_dev, slave_dev);
3511 			else
3512 				bond_release(bond_dev, slave_dev);
3513 		}
3514 		break;
3515 	case NETDEV_CHANGE:
3516 		/*
3517 		 * TODO: is this what we get if somebody
3518 		 * sets up a hierarchical bond, then rmmod's
3519 		 * one of the slave bonding devices?
3520 		 */
3521 		break;
3522 	case NETDEV_DOWN:
3523 		/*
3524 		 * ... Or is it this?
3525 		 */
3526 		break;
3527 	case NETDEV_CHANGEMTU:
3528 		/*
3529 		 * TODO: Should slaves be allowed to
3530 		 * independently alter their MTU?  For
3531 		 * an active-backup bond, slaves need
3532 		 * not be the same type of device, so
3533 		 * MTUs may vary.  For other modes,
3534 		 * slaves arguably should have the
3535 		 * same MTUs. To do this, we'd need to
3536 		 * take over the slave's change_mtu
3537 		 * function for the duration of their
3538 		 * servitude.
3539 		 */
3540 		break;
3541 	case NETDEV_CHANGENAME:
3542 		/*
3543 		 * TODO: handle changing the primary's name
3544 		 */
3545 		break;
3546 	case NETDEV_FEAT_CHANGE:
3547 		bond_compute_features(bond);
3548 		break;
3549 	default:
3550 		break;
3551 	}
3552 
3553 	return NOTIFY_DONE;
3554 }
3555 
3556 /*
3557  * bond_netdev_event: handle netdev notifier chain events.
3558  *
3559  * This function receives events for the netdev chain.  The caller (an
3560  * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3561  * locks for us to safely manipulate the slave devices (RTNL lock,
3562  * dev_probe_lock).
3563  */
3564 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3565 {
3566 	struct net_device *event_dev = (struct net_device *)ptr;
3567 
3568 	if (dev_net(event_dev) != &init_net)
3569 		return NOTIFY_DONE;
3570 
3571 	dprintk("event_dev: %s, event: %lx\n",
3572 		(event_dev ? event_dev->name : "None"),
3573 		event);
3574 
3575 	if (!(event_dev->priv_flags & IFF_BONDING))
3576 		return NOTIFY_DONE;
3577 
3578 	if (event_dev->flags & IFF_MASTER) {
3579 		dprintk("IFF_MASTER\n");
3580 		return bond_master_netdev_event(event, event_dev);
3581 	}
3582 
3583 	if (event_dev->flags & IFF_SLAVE) {
3584 		dprintk("IFF_SLAVE\n");
3585 		return bond_slave_netdev_event(event, event_dev);
3586 	}
3587 
3588 	return NOTIFY_DONE;
3589 }
3590 
3591 /*
3592  * bond_inetaddr_event: handle inetaddr notifier chain events.
3593  *
3594  * We keep track of device IPs primarily to use as source addresses in
3595  * ARP monitor probes (rather than spewing out broadcasts all the time).
3596  *
3597  * We track one IP for the main device (if it has one), plus one per VLAN.
3598  */
3599 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3600 {
3601 	struct in_ifaddr *ifa = ptr;
3602 	struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3603 	struct bonding *bond;
3604 	struct vlan_entry *vlan;
3605 
3606 	if (dev_net(ifa->ifa_dev->dev) != &init_net)
3607 		return NOTIFY_DONE;
3608 
3609 	list_for_each_entry(bond, &bond_dev_list, bond_list) {
3610 		if (bond->dev == event_dev) {
3611 			switch (event) {
3612 			case NETDEV_UP:
3613 				bond->master_ip = ifa->ifa_local;
3614 				return NOTIFY_OK;
3615 			case NETDEV_DOWN:
3616 				bond->master_ip = bond_glean_dev_ip(bond->dev);
3617 				return NOTIFY_OK;
3618 			default:
3619 				return NOTIFY_DONE;
3620 			}
3621 		}
3622 
3623 		list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
3624 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3625 			if (vlan_dev == event_dev) {
3626 				switch (event) {
3627 				case NETDEV_UP:
3628 					vlan->vlan_ip = ifa->ifa_local;
3629 					return NOTIFY_OK;
3630 				case NETDEV_DOWN:
3631 					vlan->vlan_ip =
3632 						bond_glean_dev_ip(vlan_dev);
3633 					return NOTIFY_OK;
3634 				default:
3635 					return NOTIFY_DONE;
3636 				}
3637 			}
3638 		}
3639 	}
3640 	return NOTIFY_DONE;
3641 }
3642 
3643 static struct notifier_block bond_netdev_notifier = {
3644 	.notifier_call = bond_netdev_event,
3645 };
3646 
3647 static struct notifier_block bond_inetaddr_notifier = {
3648 	.notifier_call = bond_inetaddr_event,
3649 };
3650 
3651 /*-------------------------- Packet type handling ---------------------------*/
3652 
3653 /* register to receive lacpdus on a bond */
3654 static void bond_register_lacpdu(struct bonding *bond)
3655 {
3656 	struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3657 
3658 	/* initialize packet type */
3659 	pk_type->type = PKT_TYPE_LACPDU;
3660 	pk_type->dev = bond->dev;
3661 	pk_type->func = bond_3ad_lacpdu_recv;
3662 
3663 	dev_add_pack(pk_type);
3664 }
3665 
3666 /* unregister to receive lacpdus on a bond */
3667 static void bond_unregister_lacpdu(struct bonding *bond)
3668 {
3669 	dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3670 }
3671 
3672 void bond_register_arp(struct bonding *bond)
3673 {
3674 	struct packet_type *pt = &bond->arp_mon_pt;
3675 
3676 	if (pt->type)
3677 		return;
3678 
3679 	pt->type = htons(ETH_P_ARP);
3680 	pt->dev = bond->dev;
3681 	pt->func = bond_arp_rcv;
3682 	dev_add_pack(pt);
3683 }
3684 
3685 void bond_unregister_arp(struct bonding *bond)
3686 {
3687 	struct packet_type *pt = &bond->arp_mon_pt;
3688 
3689 	dev_remove_pack(pt);
3690 	pt->type = 0;
3691 }
3692 
3693 /*---------------------------- Hashing Policies -----------------------------*/
3694 
3695 /*
3696  * Hash for the output device based upon layer 2 and layer 3 data. If
3697  * the packet is not IP mimic bond_xmit_hash_policy_l2()
3698  */
3699 static int bond_xmit_hash_policy_l23(struct sk_buff *skb,
3700 				     struct net_device *bond_dev, int count)
3701 {
3702 	struct ethhdr *data = (struct ethhdr *)skb->data;
3703 	struct iphdr *iph = ip_hdr(skb);
3704 
3705 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3706 		return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3707 			(data->h_dest[5] ^ bond_dev->dev_addr[5])) % count;
3708 	}
3709 
3710 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3711 }
3712 
3713 /*
3714  * Hash for the output device based upon layer 3 and layer 4 data. If
3715  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3716  * altogether not IP, mimic bond_xmit_hash_policy_l2()
3717  */
3718 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3719 				    struct net_device *bond_dev, int count)
3720 {
3721 	struct ethhdr *data = (struct ethhdr *)skb->data;
3722 	struct iphdr *iph = ip_hdr(skb);
3723 	__be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3724 	int layer4_xor = 0;
3725 
3726 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3727 		if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3728 		    (iph->protocol == IPPROTO_TCP ||
3729 		     iph->protocol == IPPROTO_UDP)) {
3730 			layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
3731 		}
3732 		return (layer4_xor ^
3733 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3734 
3735 	}
3736 
3737 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3738 }
3739 
3740 /*
3741  * Hash for the output device based upon layer 2 data
3742  */
3743 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3744 				   struct net_device *bond_dev, int count)
3745 {
3746 	struct ethhdr *data = (struct ethhdr *)skb->data;
3747 
3748 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3749 }
3750 
3751 /*-------------------------- Device entry points ----------------------------*/
3752 
3753 static int bond_open(struct net_device *bond_dev)
3754 {
3755 	struct bonding *bond = bond_dev->priv;
3756 
3757 	bond->kill_timers = 0;
3758 
3759 	if ((bond->params.mode == BOND_MODE_TLB) ||
3760 	    (bond->params.mode == BOND_MODE_ALB)) {
3761 		/* bond_alb_initialize must be called before the timer
3762 		 * is started.
3763 		 */
3764 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3765 			/* something went wrong - fail the open operation */
3766 			return -1;
3767 		}
3768 
3769 		INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3770 		queue_delayed_work(bond->wq, &bond->alb_work, 0);
3771 	}
3772 
3773 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3774 		INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3775 		queue_delayed_work(bond->wq, &bond->mii_work, 0);
3776 	}
3777 
3778 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3779 		if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3780 			INIT_DELAYED_WORK(&bond->arp_work,
3781 					  bond_activebackup_arp_mon);
3782 		else
3783 			INIT_DELAYED_WORK(&bond->arp_work,
3784 					  bond_loadbalance_arp_mon);
3785 
3786 		queue_delayed_work(bond->wq, &bond->arp_work, 0);
3787 		if (bond->params.arp_validate)
3788 			bond_register_arp(bond);
3789 	}
3790 
3791 	if (bond->params.mode == BOND_MODE_8023AD) {
3792 		INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3793 		queue_delayed_work(bond->wq, &bond->ad_work, 0);
3794 		/* register to receive LACPDUs */
3795 		bond_register_lacpdu(bond);
3796 	}
3797 
3798 	return 0;
3799 }
3800 
3801 static int bond_close(struct net_device *bond_dev)
3802 {
3803 	struct bonding *bond = bond_dev->priv;
3804 
3805 	if (bond->params.mode == BOND_MODE_8023AD) {
3806 		/* Unregister the receive of LACPDUs */
3807 		bond_unregister_lacpdu(bond);
3808 	}
3809 
3810 	if (bond->params.arp_validate)
3811 		bond_unregister_arp(bond);
3812 
3813 	write_lock_bh(&bond->lock);
3814 
3815 	bond->send_grat_arp = 0;
3816 
3817 	/* signal timers not to re-arm */
3818 	bond->kill_timers = 1;
3819 
3820 	write_unlock_bh(&bond->lock);
3821 
3822 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3823 		cancel_delayed_work(&bond->mii_work);
3824 	}
3825 
3826 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3827 		cancel_delayed_work(&bond->arp_work);
3828 	}
3829 
3830 	switch (bond->params.mode) {
3831 	case BOND_MODE_8023AD:
3832 		cancel_delayed_work(&bond->ad_work);
3833 		break;
3834 	case BOND_MODE_TLB:
3835 	case BOND_MODE_ALB:
3836 		cancel_delayed_work(&bond->alb_work);
3837 		break;
3838 	default:
3839 		break;
3840 	}
3841 
3842 
3843 	if ((bond->params.mode == BOND_MODE_TLB) ||
3844 	    (bond->params.mode == BOND_MODE_ALB)) {
3845 		/* Must be called only after all
3846 		 * slaves have been released
3847 		 */
3848 		bond_alb_deinitialize(bond);
3849 	}
3850 
3851 	return 0;
3852 }
3853 
3854 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3855 {
3856 	struct bonding *bond = bond_dev->priv;
3857 	struct net_device_stats *stats = &(bond->stats), *sstats;
3858 	struct net_device_stats local_stats;
3859 	struct slave *slave;
3860 	int i;
3861 
3862 	memset(&local_stats, 0, sizeof(struct net_device_stats));
3863 
3864 	read_lock_bh(&bond->lock);
3865 
3866 	bond_for_each_slave(bond, slave, i) {
3867 		sstats = slave->dev->get_stats(slave->dev);
3868 		local_stats.rx_packets += sstats->rx_packets;
3869 		local_stats.rx_bytes += sstats->rx_bytes;
3870 		local_stats.rx_errors += sstats->rx_errors;
3871 		local_stats.rx_dropped += sstats->rx_dropped;
3872 
3873 		local_stats.tx_packets += sstats->tx_packets;
3874 		local_stats.tx_bytes += sstats->tx_bytes;
3875 		local_stats.tx_errors += sstats->tx_errors;
3876 		local_stats.tx_dropped += sstats->tx_dropped;
3877 
3878 		local_stats.multicast += sstats->multicast;
3879 		local_stats.collisions += sstats->collisions;
3880 
3881 		local_stats.rx_length_errors += sstats->rx_length_errors;
3882 		local_stats.rx_over_errors += sstats->rx_over_errors;
3883 		local_stats.rx_crc_errors += sstats->rx_crc_errors;
3884 		local_stats.rx_frame_errors += sstats->rx_frame_errors;
3885 		local_stats.rx_fifo_errors += sstats->rx_fifo_errors;
3886 		local_stats.rx_missed_errors += sstats->rx_missed_errors;
3887 
3888 		local_stats.tx_aborted_errors += sstats->tx_aborted_errors;
3889 		local_stats.tx_carrier_errors += sstats->tx_carrier_errors;
3890 		local_stats.tx_fifo_errors += sstats->tx_fifo_errors;
3891 		local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3892 		local_stats.tx_window_errors += sstats->tx_window_errors;
3893 	}
3894 
3895 	memcpy(stats, &local_stats, sizeof(struct net_device_stats));
3896 
3897 	read_unlock_bh(&bond->lock);
3898 
3899 	return stats;
3900 }
3901 
3902 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3903 {
3904 	struct net_device *slave_dev = NULL;
3905 	struct ifbond k_binfo;
3906 	struct ifbond __user *u_binfo = NULL;
3907 	struct ifslave k_sinfo;
3908 	struct ifslave __user *u_sinfo = NULL;
3909 	struct mii_ioctl_data *mii = NULL;
3910 	int res = 0;
3911 
3912 	dprintk("bond_ioctl: master=%s, cmd=%d\n",
3913 		bond_dev->name, cmd);
3914 
3915 	switch (cmd) {
3916 	case SIOCGMIIPHY:
3917 		mii = if_mii(ifr);
3918 		if (!mii) {
3919 			return -EINVAL;
3920 		}
3921 		mii->phy_id = 0;
3922 		/* Fall Through */
3923 	case SIOCGMIIREG:
3924 		/*
3925 		 * We do this again just in case we were called by SIOCGMIIREG
3926 		 * instead of SIOCGMIIPHY.
3927 		 */
3928 		mii = if_mii(ifr);
3929 		if (!mii) {
3930 			return -EINVAL;
3931 		}
3932 
3933 		if (mii->reg_num == 1) {
3934 			struct bonding *bond = bond_dev->priv;
3935 			mii->val_out = 0;
3936 			read_lock(&bond->lock);
3937 			read_lock(&bond->curr_slave_lock);
3938 			if (netif_carrier_ok(bond->dev)) {
3939 				mii->val_out = BMSR_LSTATUS;
3940 			}
3941 			read_unlock(&bond->curr_slave_lock);
3942 			read_unlock(&bond->lock);
3943 		}
3944 
3945 		return 0;
3946 	case BOND_INFO_QUERY_OLD:
3947 	case SIOCBONDINFOQUERY:
3948 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3949 
3950 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3951 			return -EFAULT;
3952 		}
3953 
3954 		res = bond_info_query(bond_dev, &k_binfo);
3955 		if (res == 0) {
3956 			if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3957 				return -EFAULT;
3958 			}
3959 		}
3960 
3961 		return res;
3962 	case BOND_SLAVE_INFO_QUERY_OLD:
3963 	case SIOCBONDSLAVEINFOQUERY:
3964 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3965 
3966 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3967 			return -EFAULT;
3968 		}
3969 
3970 		res = bond_slave_info_query(bond_dev, &k_sinfo);
3971 		if (res == 0) {
3972 			if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3973 				return -EFAULT;
3974 			}
3975 		}
3976 
3977 		return res;
3978 	default:
3979 		/* Go on */
3980 		break;
3981 	}
3982 
3983 	if (!capable(CAP_NET_ADMIN)) {
3984 		return -EPERM;
3985 	}
3986 
3987 	down_write(&(bonding_rwsem));
3988 	slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave);
3989 
3990 	dprintk("slave_dev=%p: \n", slave_dev);
3991 
3992 	if (!slave_dev) {
3993 		res = -ENODEV;
3994 	} else {
3995 		dprintk("slave_dev->name=%s: \n", slave_dev->name);
3996 		switch (cmd) {
3997 		case BOND_ENSLAVE_OLD:
3998 		case SIOCBONDENSLAVE:
3999 			res = bond_enslave(bond_dev, slave_dev);
4000 			break;
4001 		case BOND_RELEASE_OLD:
4002 		case SIOCBONDRELEASE:
4003 			res = bond_release(bond_dev, slave_dev);
4004 			break;
4005 		case BOND_SETHWADDR_OLD:
4006 		case SIOCBONDSETHWADDR:
4007 			res = bond_sethwaddr(bond_dev, slave_dev);
4008 			break;
4009 		case BOND_CHANGE_ACTIVE_OLD:
4010 		case SIOCBONDCHANGEACTIVE:
4011 			res = bond_ioctl_change_active(bond_dev, slave_dev);
4012 			break;
4013 		default:
4014 			res = -EOPNOTSUPP;
4015 		}
4016 
4017 		dev_put(slave_dev);
4018 	}
4019 
4020 	up_write(&(bonding_rwsem));
4021 	return res;
4022 }
4023 
4024 static void bond_set_multicast_list(struct net_device *bond_dev)
4025 {
4026 	struct bonding *bond = bond_dev->priv;
4027 	struct dev_mc_list *dmi;
4028 
4029 	/*
4030 	 * Do promisc before checking multicast_mode
4031 	 */
4032 	if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
4033 		/*
4034 		 * FIXME: Need to handle the error when one of the multi-slaves
4035 		 * encounters error.
4036 		 */
4037 		bond_set_promiscuity(bond, 1);
4038 	}
4039 
4040 	if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
4041 		bond_set_promiscuity(bond, -1);
4042 	}
4043 
4044 	/* set allmulti flag to slaves */
4045 	if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
4046 		/*
4047 		 * FIXME: Need to handle the error when one of the multi-slaves
4048 		 * encounters error.
4049 		 */
4050 		bond_set_allmulti(bond, 1);
4051 	}
4052 
4053 	if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
4054 		bond_set_allmulti(bond, -1);
4055 	}
4056 
4057 	read_lock(&bond->lock);
4058 
4059 	bond->flags = bond_dev->flags;
4060 
4061 	/* looking for addresses to add to slaves' mc list */
4062 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
4063 		if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
4064 			bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4065 		}
4066 	}
4067 
4068 	/* looking for addresses to delete from slaves' list */
4069 	for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
4070 		if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
4071 			bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4072 		}
4073 	}
4074 
4075 	/* save master's multicast list */
4076 	bond_mc_list_destroy(bond);
4077 	bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
4078 
4079 	read_unlock(&bond->lock);
4080 }
4081 
4082 /*
4083  * Change the MTU of all of a master's slaves to match the master
4084  */
4085 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
4086 {
4087 	struct bonding *bond = bond_dev->priv;
4088 	struct slave *slave, *stop_at;
4089 	int res = 0;
4090 	int i;
4091 
4092 	dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
4093 		(bond_dev ? bond_dev->name : "None"), new_mtu);
4094 
4095 	/* Can't hold bond->lock with bh disabled here since
4096 	 * some base drivers panic. On the other hand we can't
4097 	 * hold bond->lock without bh disabled because we'll
4098 	 * deadlock. The only solution is to rely on the fact
4099 	 * that we're under rtnl_lock here, and the slaves
4100 	 * list won't change. This doesn't solve the problem
4101 	 * of setting the slave's MTU while it is
4102 	 * transmitting, but the assumption is that the base
4103 	 * driver can handle that.
4104 	 *
4105 	 * TODO: figure out a way to safely iterate the slaves
4106 	 * list, but without holding a lock around the actual
4107 	 * call to the base driver.
4108 	 */
4109 
4110 	bond_for_each_slave(bond, slave, i) {
4111 		dprintk("s %p s->p %p c_m %p\n", slave,
4112 			slave->prev, slave->dev->change_mtu);
4113 
4114 		res = dev_set_mtu(slave->dev, new_mtu);
4115 
4116 		if (res) {
4117 			/* If we failed to set the slave's mtu to the new value
4118 			 * we must abort the operation even in ACTIVE_BACKUP
4119 			 * mode, because if we allow the backup slaves to have
4120 			 * different mtu values than the active slave we'll
4121 			 * need to change their mtu when doing a failover. That
4122 			 * means changing their mtu from timer context, which
4123 			 * is probably not a good idea.
4124 			 */
4125 			dprintk("err %d %s\n", res, slave->dev->name);
4126 			goto unwind;
4127 		}
4128 	}
4129 
4130 	bond_dev->mtu = new_mtu;
4131 
4132 	return 0;
4133 
4134 unwind:
4135 	/* unwind from head to the slave that failed */
4136 	stop_at = slave;
4137 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4138 		int tmp_res;
4139 
4140 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
4141 		if (tmp_res) {
4142 			dprintk("unwind err %d dev %s\n", tmp_res,
4143 				slave->dev->name);
4144 		}
4145 	}
4146 
4147 	return res;
4148 }
4149 
4150 /*
4151  * Change HW address
4152  *
4153  * Note that many devices must be down to change the HW address, and
4154  * downing the master releases all slaves.  We can make bonds full of
4155  * bonding devices to test this, however.
4156  */
4157 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
4158 {
4159 	struct bonding *bond = bond_dev->priv;
4160 	struct sockaddr *sa = addr, tmp_sa;
4161 	struct slave *slave, *stop_at;
4162 	int res = 0;
4163 	int i;
4164 
4165 	dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
4166 
4167 	/*
4168 	 * If fail_over_mac is set to active, do nothing and return
4169 	 * success.  Returning an error causes ifenslave to fail.
4170 	 */
4171 	if (bond->params.fail_over_mac == BOND_FOM_ACTIVE)
4172 		return 0;
4173 
4174 	if (!is_valid_ether_addr(sa->sa_data)) {
4175 		return -EADDRNOTAVAIL;
4176 	}
4177 
4178 	/* Can't hold bond->lock with bh disabled here since
4179 	 * some base drivers panic. On the other hand we can't
4180 	 * hold bond->lock without bh disabled because we'll
4181 	 * deadlock. The only solution is to rely on the fact
4182 	 * that we're under rtnl_lock here, and the slaves
4183 	 * list won't change. This doesn't solve the problem
4184 	 * of setting the slave's hw address while it is
4185 	 * transmitting, but the assumption is that the base
4186 	 * driver can handle that.
4187 	 *
4188 	 * TODO: figure out a way to safely iterate the slaves
4189 	 * list, but without holding a lock around the actual
4190 	 * call to the base driver.
4191 	 */
4192 
4193 	bond_for_each_slave(bond, slave, i) {
4194 		dprintk("slave %p %s\n", slave, slave->dev->name);
4195 
4196 		if (slave->dev->set_mac_address == NULL) {
4197 			res = -EOPNOTSUPP;
4198 			dprintk("EOPNOTSUPP %s\n", slave->dev->name);
4199 			goto unwind;
4200 		}
4201 
4202 		res = dev_set_mac_address(slave->dev, addr);
4203 		if (res) {
4204 			/* TODO: consider downing the slave
4205 			 * and retry ?
4206 			 * User should expect communications
4207 			 * breakage anyway until ARP finish
4208 			 * updating, so...
4209 			 */
4210 			dprintk("err %d %s\n", res, slave->dev->name);
4211 			goto unwind;
4212 		}
4213 	}
4214 
4215 	/* success */
4216 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
4217 	return 0;
4218 
4219 unwind:
4220 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
4221 	tmp_sa.sa_family = bond_dev->type;
4222 
4223 	/* unwind from head to the slave that failed */
4224 	stop_at = slave;
4225 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4226 		int tmp_res;
4227 
4228 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
4229 		if (tmp_res) {
4230 			dprintk("unwind err %d dev %s\n", tmp_res,
4231 				slave->dev->name);
4232 		}
4233 	}
4234 
4235 	return res;
4236 }
4237 
4238 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4239 {
4240 	struct bonding *bond = bond_dev->priv;
4241 	struct slave *slave, *start_at;
4242 	int i, slave_no, res = 1;
4243 
4244 	read_lock(&bond->lock);
4245 
4246 	if (!BOND_IS_OK(bond)) {
4247 		goto out;
4248 	}
4249 
4250 	/*
4251 	 * Concurrent TX may collide on rr_tx_counter; we accept that
4252 	 * as being rare enough not to justify using an atomic op here
4253 	 */
4254 	slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
4255 
4256 	bond_for_each_slave(bond, slave, i) {
4257 		slave_no--;
4258 		if (slave_no < 0) {
4259 			break;
4260 		}
4261 	}
4262 
4263 	start_at = slave;
4264 	bond_for_each_slave_from(bond, slave, i, start_at) {
4265 		if (IS_UP(slave->dev) &&
4266 		    (slave->link == BOND_LINK_UP) &&
4267 		    (slave->state == BOND_STATE_ACTIVE)) {
4268 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4269 			break;
4270 		}
4271 	}
4272 
4273 out:
4274 	if (res) {
4275 		/* no suitable interface, frame not sent */
4276 		dev_kfree_skb(skb);
4277 	}
4278 	read_unlock(&bond->lock);
4279 	return 0;
4280 }
4281 
4282 
4283 /*
4284  * in active-backup mode, we know that bond->curr_active_slave is always valid if
4285  * the bond has a usable interface.
4286  */
4287 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4288 {
4289 	struct bonding *bond = bond_dev->priv;
4290 	int res = 1;
4291 
4292 	read_lock(&bond->lock);
4293 	read_lock(&bond->curr_slave_lock);
4294 
4295 	if (!BOND_IS_OK(bond)) {
4296 		goto out;
4297 	}
4298 
4299 	if (!bond->curr_active_slave)
4300 		goto out;
4301 
4302 	res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4303 
4304 out:
4305 	if (res) {
4306 		/* no suitable interface, frame not sent */
4307 		dev_kfree_skb(skb);
4308 	}
4309 	read_unlock(&bond->curr_slave_lock);
4310 	read_unlock(&bond->lock);
4311 	return 0;
4312 }
4313 
4314 /*
4315  * In bond_xmit_xor() , we determine the output device by using a pre-
4316  * determined xmit_hash_policy(), If the selected device is not enabled,
4317  * find the next active slave.
4318  */
4319 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4320 {
4321 	struct bonding *bond = bond_dev->priv;
4322 	struct slave *slave, *start_at;
4323 	int slave_no;
4324 	int i;
4325 	int res = 1;
4326 
4327 	read_lock(&bond->lock);
4328 
4329 	if (!BOND_IS_OK(bond)) {
4330 		goto out;
4331 	}
4332 
4333 	slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4334 
4335 	bond_for_each_slave(bond, slave, i) {
4336 		slave_no--;
4337 		if (slave_no < 0) {
4338 			break;
4339 		}
4340 	}
4341 
4342 	start_at = slave;
4343 
4344 	bond_for_each_slave_from(bond, slave, i, start_at) {
4345 		if (IS_UP(slave->dev) &&
4346 		    (slave->link == BOND_LINK_UP) &&
4347 		    (slave->state == BOND_STATE_ACTIVE)) {
4348 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4349 			break;
4350 		}
4351 	}
4352 
4353 out:
4354 	if (res) {
4355 		/* no suitable interface, frame not sent */
4356 		dev_kfree_skb(skb);
4357 	}
4358 	read_unlock(&bond->lock);
4359 	return 0;
4360 }
4361 
4362 /*
4363  * in broadcast mode, we send everything to all usable interfaces.
4364  */
4365 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4366 {
4367 	struct bonding *bond = bond_dev->priv;
4368 	struct slave *slave, *start_at;
4369 	struct net_device *tx_dev = NULL;
4370 	int i;
4371 	int res = 1;
4372 
4373 	read_lock(&bond->lock);
4374 
4375 	if (!BOND_IS_OK(bond)) {
4376 		goto out;
4377 	}
4378 
4379 	read_lock(&bond->curr_slave_lock);
4380 	start_at = bond->curr_active_slave;
4381 	read_unlock(&bond->curr_slave_lock);
4382 
4383 	if (!start_at) {
4384 		goto out;
4385 	}
4386 
4387 	bond_for_each_slave_from(bond, slave, i, start_at) {
4388 		if (IS_UP(slave->dev) &&
4389 		    (slave->link == BOND_LINK_UP) &&
4390 		    (slave->state == BOND_STATE_ACTIVE)) {
4391 			if (tx_dev) {
4392 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4393 				if (!skb2) {
4394 					printk(KERN_ERR DRV_NAME
4395 					       ": %s: Error: bond_xmit_broadcast(): "
4396 					       "skb_clone() failed\n",
4397 					       bond_dev->name);
4398 					continue;
4399 				}
4400 
4401 				res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4402 				if (res) {
4403 					dev_kfree_skb(skb2);
4404 					continue;
4405 				}
4406 			}
4407 			tx_dev = slave->dev;
4408 		}
4409 	}
4410 
4411 	if (tx_dev) {
4412 		res = bond_dev_queue_xmit(bond, skb, tx_dev);
4413 	}
4414 
4415 out:
4416 	if (res) {
4417 		/* no suitable interface, frame not sent */
4418 		dev_kfree_skb(skb);
4419 	}
4420 	/* frame sent to all suitable interfaces */
4421 	read_unlock(&bond->lock);
4422 	return 0;
4423 }
4424 
4425 /*------------------------- Device initialization ---------------------------*/
4426 
4427 static void bond_set_xmit_hash_policy(struct bonding *bond)
4428 {
4429 	switch (bond->params.xmit_policy) {
4430 	case BOND_XMIT_POLICY_LAYER23:
4431 		bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
4432 		break;
4433 	case BOND_XMIT_POLICY_LAYER34:
4434 		bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4435 		break;
4436 	case BOND_XMIT_POLICY_LAYER2:
4437 	default:
4438 		bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4439 		break;
4440 	}
4441 }
4442 
4443 /*
4444  * set bond mode specific net device operations
4445  */
4446 void bond_set_mode_ops(struct bonding *bond, int mode)
4447 {
4448 	struct net_device *bond_dev = bond->dev;
4449 
4450 	switch (mode) {
4451 	case BOND_MODE_ROUNDROBIN:
4452 		bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4453 		break;
4454 	case BOND_MODE_ACTIVEBACKUP:
4455 		bond_dev->hard_start_xmit = bond_xmit_activebackup;
4456 		break;
4457 	case BOND_MODE_XOR:
4458 		bond_dev->hard_start_xmit = bond_xmit_xor;
4459 		bond_set_xmit_hash_policy(bond);
4460 		break;
4461 	case BOND_MODE_BROADCAST:
4462 		bond_dev->hard_start_xmit = bond_xmit_broadcast;
4463 		break;
4464 	case BOND_MODE_8023AD:
4465 		bond_set_master_3ad_flags(bond);
4466 		bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4467 		bond_set_xmit_hash_policy(bond);
4468 		break;
4469 	case BOND_MODE_ALB:
4470 		bond_set_master_alb_flags(bond);
4471 		/* FALLTHRU */
4472 	case BOND_MODE_TLB:
4473 		bond_dev->hard_start_xmit = bond_alb_xmit;
4474 		bond_dev->set_mac_address = bond_alb_set_mac_address;
4475 		break;
4476 	default:
4477 		/* Should never happen, mode already checked */
4478 		printk(KERN_ERR DRV_NAME
4479 		       ": %s: Error: Unknown bonding mode %d\n",
4480 		       bond_dev->name,
4481 		       mode);
4482 		break;
4483 	}
4484 }
4485 
4486 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4487 				    struct ethtool_drvinfo *drvinfo)
4488 {
4489 	strncpy(drvinfo->driver, DRV_NAME, 32);
4490 	strncpy(drvinfo->version, DRV_VERSION, 32);
4491 	snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4492 }
4493 
4494 static const struct ethtool_ops bond_ethtool_ops = {
4495 	.get_drvinfo		= bond_ethtool_get_drvinfo,
4496 };
4497 
4498 /*
4499  * Does not allocate but creates a /proc entry.
4500  * Allowed to fail.
4501  */
4502 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4503 {
4504 	struct bonding *bond = bond_dev->priv;
4505 
4506 	dprintk("Begin bond_init for %s\n", bond_dev->name);
4507 
4508 	/* initialize rwlocks */
4509 	rwlock_init(&bond->lock);
4510 	rwlock_init(&bond->curr_slave_lock);
4511 
4512 	bond->params = *params; /* copy params struct */
4513 
4514 	bond->wq = create_singlethread_workqueue(bond_dev->name);
4515 	if (!bond->wq)
4516 		return -ENOMEM;
4517 
4518 	/* Initialize pointers */
4519 	bond->first_slave = NULL;
4520 	bond->curr_active_slave = NULL;
4521 	bond->current_arp_slave = NULL;
4522 	bond->primary_slave = NULL;
4523 	bond->dev = bond_dev;
4524 	bond->send_grat_arp = 0;
4525 	bond->setup_by_slave = 0;
4526 	INIT_LIST_HEAD(&bond->vlan_list);
4527 
4528 	/* Initialize the device entry points */
4529 	bond_dev->open = bond_open;
4530 	bond_dev->stop = bond_close;
4531 	bond_dev->get_stats = bond_get_stats;
4532 	bond_dev->do_ioctl = bond_do_ioctl;
4533 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4534 	bond_dev->set_multicast_list = bond_set_multicast_list;
4535 	bond_dev->change_mtu = bond_change_mtu;
4536 	bond_dev->set_mac_address = bond_set_mac_address;
4537 	bond_dev->validate_addr = NULL;
4538 
4539 	bond_set_mode_ops(bond, bond->params.mode);
4540 
4541 	bond_dev->destructor = free_netdev;
4542 
4543 	/* Initialize the device options */
4544 	bond_dev->tx_queue_len = 0;
4545 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4546 	bond_dev->priv_flags |= IFF_BONDING;
4547 
4548 	/* At first, we block adding VLANs. That's the only way to
4549 	 * prevent problems that occur when adding VLANs over an
4550 	 * empty bond. The block will be removed once non-challenged
4551 	 * slaves are enslaved.
4552 	 */
4553 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4554 
4555 	/* don't acquire bond device's netif_tx_lock when
4556 	 * transmitting */
4557 	bond_dev->features |= NETIF_F_LLTX;
4558 
4559 	/* By default, we declare the bond to be fully
4560 	 * VLAN hardware accelerated capable. Special
4561 	 * care is taken in the various xmit functions
4562 	 * when there are slaves that are not hw accel
4563 	 * capable
4564 	 */
4565 	bond_dev->vlan_rx_register = bond_vlan_rx_register;
4566 	bond_dev->vlan_rx_add_vid  = bond_vlan_rx_add_vid;
4567 	bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4568 	bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4569 			       NETIF_F_HW_VLAN_RX |
4570 			       NETIF_F_HW_VLAN_FILTER);
4571 
4572 #ifdef CONFIG_PROC_FS
4573 	bond_create_proc_entry(bond);
4574 #endif
4575 	list_add_tail(&bond->bond_list, &bond_dev_list);
4576 
4577 	return 0;
4578 }
4579 
4580 /* De-initialize device specific data.
4581  * Caller must hold rtnl_lock.
4582  */
4583 static void bond_deinit(struct net_device *bond_dev)
4584 {
4585 	struct bonding *bond = bond_dev->priv;
4586 
4587 	list_del(&bond->bond_list);
4588 
4589 #ifdef CONFIG_PROC_FS
4590 	bond_remove_proc_entry(bond);
4591 #endif
4592 }
4593 
4594 static void bond_work_cancel_all(struct bonding *bond)
4595 {
4596 	write_lock_bh(&bond->lock);
4597 	bond->kill_timers = 1;
4598 	write_unlock_bh(&bond->lock);
4599 
4600 	if (bond->params.miimon && delayed_work_pending(&bond->mii_work))
4601 		cancel_delayed_work(&bond->mii_work);
4602 
4603 	if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work))
4604 		cancel_delayed_work(&bond->arp_work);
4605 
4606 	if (bond->params.mode == BOND_MODE_ALB &&
4607 	    delayed_work_pending(&bond->alb_work))
4608 		cancel_delayed_work(&bond->alb_work);
4609 
4610 	if (bond->params.mode == BOND_MODE_8023AD &&
4611 	    delayed_work_pending(&bond->ad_work))
4612 		cancel_delayed_work(&bond->ad_work);
4613 }
4614 
4615 /* Unregister and free all bond devices.
4616  * Caller must hold rtnl_lock.
4617  */
4618 static void bond_free_all(void)
4619 {
4620 	struct bonding *bond, *nxt;
4621 
4622 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4623 		struct net_device *bond_dev = bond->dev;
4624 
4625 		bond_work_cancel_all(bond);
4626 		netif_addr_lock_bh(bond_dev);
4627 		bond_mc_list_destroy(bond);
4628 		netif_addr_unlock_bh(bond_dev);
4629 		/* Release the bonded slaves */
4630 		bond_release_all(bond_dev);
4631 		bond_destroy(bond);
4632 	}
4633 
4634 #ifdef CONFIG_PROC_FS
4635 	bond_destroy_proc_dir();
4636 #endif
4637 }
4638 
4639 /*------------------------- Module initialization ---------------------------*/
4640 
4641 /*
4642  * Convert string input module parms.  Accept either the
4643  * number of the mode or its string name.  A bit complicated because
4644  * some mode names are substrings of other names, and calls from sysfs
4645  * may have whitespace in the name (trailing newlines, for example).
4646  */
4647 int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl)
4648 {
4649 	int mode = -1, i, rv;
4650 	char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4651 
4652 	for (p = (char *)buf; *p; p++)
4653 		if (!(isdigit(*p) || isspace(*p)))
4654 			break;
4655 
4656 	if (*p)
4657 		rv = sscanf(buf, "%20s", modestr);
4658 	else
4659 		rv = sscanf(buf, "%d", &mode);
4660 
4661 	if (!rv)
4662 		return -1;
4663 
4664 	for (i = 0; tbl[i].modename; i++) {
4665 		if (mode == tbl[i].mode)
4666 			return tbl[i].mode;
4667 		if (strcmp(modestr, tbl[i].modename) == 0)
4668 			return tbl[i].mode;
4669 	}
4670 
4671 	return -1;
4672 }
4673 
4674 static int bond_check_params(struct bond_params *params)
4675 {
4676 	int arp_validate_value, fail_over_mac_value;
4677 
4678 	/*
4679 	 * Convert string parameters.
4680 	 */
4681 	if (mode) {
4682 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4683 		if (bond_mode == -1) {
4684 			printk(KERN_ERR DRV_NAME
4685 			       ": Error: Invalid bonding mode \"%s\"\n",
4686 			       mode == NULL ? "NULL" : mode);
4687 			return -EINVAL;
4688 		}
4689 	}
4690 
4691 	if (xmit_hash_policy) {
4692 		if ((bond_mode != BOND_MODE_XOR) &&
4693 		    (bond_mode != BOND_MODE_8023AD)) {
4694 			printk(KERN_INFO DRV_NAME
4695 			       ": xor_mode param is irrelevant in mode %s\n",
4696 			       bond_mode_name(bond_mode));
4697 		} else {
4698 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4699 							xmit_hashtype_tbl);
4700 			if (xmit_hashtype == -1) {
4701 				printk(KERN_ERR DRV_NAME
4702 			       	": Error: Invalid xmit_hash_policy \"%s\"\n",
4703 			       	xmit_hash_policy == NULL ? "NULL" :
4704 				       xmit_hash_policy);
4705 				return -EINVAL;
4706 			}
4707 		}
4708 	}
4709 
4710 	if (lacp_rate) {
4711 		if (bond_mode != BOND_MODE_8023AD) {
4712 			printk(KERN_INFO DRV_NAME
4713 			       ": lacp_rate param is irrelevant in mode %s\n",
4714 			       bond_mode_name(bond_mode));
4715 		} else {
4716 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4717 			if (lacp_fast == -1) {
4718 				printk(KERN_ERR DRV_NAME
4719 				       ": Error: Invalid lacp rate \"%s\"\n",
4720 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4721 				return -EINVAL;
4722 			}
4723 		}
4724 	}
4725 
4726 	if (max_bonds < 0 || max_bonds > INT_MAX) {
4727 		printk(KERN_WARNING DRV_NAME
4728 		       ": Warning: max_bonds (%d) not in range %d-%d, so it "
4729 		       "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4730 		       max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4731 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4732 	}
4733 
4734 	if (miimon < 0) {
4735 		printk(KERN_WARNING DRV_NAME
4736 		       ": Warning: miimon module parameter (%d), "
4737 		       "not in range 0-%d, so it was reset to %d\n",
4738 		       miimon, INT_MAX, BOND_LINK_MON_INTERV);
4739 		miimon = BOND_LINK_MON_INTERV;
4740 	}
4741 
4742 	if (updelay < 0) {
4743 		printk(KERN_WARNING DRV_NAME
4744 		       ": Warning: updelay module parameter (%d), "
4745 		       "not in range 0-%d, so it was reset to 0\n",
4746 		       updelay, INT_MAX);
4747 		updelay = 0;
4748 	}
4749 
4750 	if (downdelay < 0) {
4751 		printk(KERN_WARNING DRV_NAME
4752 		       ": Warning: downdelay module parameter (%d), "
4753 		       "not in range 0-%d, so it was reset to 0\n",
4754 		       downdelay, INT_MAX);
4755 		downdelay = 0;
4756 	}
4757 
4758 	if ((use_carrier != 0) && (use_carrier != 1)) {
4759 		printk(KERN_WARNING DRV_NAME
4760 		       ": Warning: use_carrier module parameter (%d), "
4761 		       "not of valid value (0/1), so it was set to 1\n",
4762 		       use_carrier);
4763 		use_carrier = 1;
4764 	}
4765 
4766 	if (num_grat_arp < 0 || num_grat_arp > 255) {
4767 		printk(KERN_WARNING DRV_NAME
4768 		       ": Warning: num_grat_arp (%d) not in range 0-255 so it "
4769 		       "was reset to 1 \n", num_grat_arp);
4770 		num_grat_arp = 1;
4771 	}
4772 
4773 	/* reset values for 802.3ad */
4774 	if (bond_mode == BOND_MODE_8023AD) {
4775 		if (!miimon) {
4776 			printk(KERN_WARNING DRV_NAME
4777 			       ": Warning: miimon must be specified, "
4778 			       "otherwise bonding will not detect link "
4779 			       "failure, speed and duplex which are "
4780 			       "essential for 802.3ad operation\n");
4781 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4782 			miimon = 100;
4783 		}
4784 	}
4785 
4786 	/* reset values for TLB/ALB */
4787 	if ((bond_mode == BOND_MODE_TLB) ||
4788 	    (bond_mode == BOND_MODE_ALB)) {
4789 		if (!miimon) {
4790 			printk(KERN_WARNING DRV_NAME
4791 			       ": Warning: miimon must be specified, "
4792 			       "otherwise bonding will not detect link "
4793 			       "failure and link speed which are essential "
4794 			       "for TLB/ALB load balancing\n");
4795 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4796 			miimon = 100;
4797 		}
4798 	}
4799 
4800 	if (bond_mode == BOND_MODE_ALB) {
4801 		printk(KERN_NOTICE DRV_NAME
4802 		       ": In ALB mode you might experience client "
4803 		       "disconnections upon reconnection of a link if the "
4804 		       "bonding module updelay parameter (%d msec) is "
4805 		       "incompatible with the forwarding delay time of the "
4806 		       "switch\n",
4807 		       updelay);
4808 	}
4809 
4810 	if (!miimon) {
4811 		if (updelay || downdelay) {
4812 			/* just warn the user the up/down delay will have
4813 			 * no effect since miimon is zero...
4814 			 */
4815 			printk(KERN_WARNING DRV_NAME
4816 			       ": Warning: miimon module parameter not set "
4817 			       "and updelay (%d) or downdelay (%d) module "
4818 			       "parameter is set; updelay and downdelay have "
4819 			       "no effect unless miimon is set\n",
4820 			       updelay, downdelay);
4821 		}
4822 	} else {
4823 		/* don't allow arp monitoring */
4824 		if (arp_interval) {
4825 			printk(KERN_WARNING DRV_NAME
4826 			       ": Warning: miimon (%d) and arp_interval (%d) "
4827 			       "can't be used simultaneously, disabling ARP "
4828 			       "monitoring\n",
4829 			       miimon, arp_interval);
4830 			arp_interval = 0;
4831 		}
4832 
4833 		if ((updelay % miimon) != 0) {
4834 			printk(KERN_WARNING DRV_NAME
4835 			       ": Warning: updelay (%d) is not a multiple "
4836 			       "of miimon (%d), updelay rounded to %d ms\n",
4837 			       updelay, miimon, (updelay / miimon) * miimon);
4838 		}
4839 
4840 		updelay /= miimon;
4841 
4842 		if ((downdelay % miimon) != 0) {
4843 			printk(KERN_WARNING DRV_NAME
4844 			       ": Warning: downdelay (%d) is not a multiple "
4845 			       "of miimon (%d), downdelay rounded to %d ms\n",
4846 			       downdelay, miimon,
4847 			       (downdelay / miimon) * miimon);
4848 		}
4849 
4850 		downdelay /= miimon;
4851 	}
4852 
4853 	if (arp_interval < 0) {
4854 		printk(KERN_WARNING DRV_NAME
4855 		       ": Warning: arp_interval module parameter (%d) "
4856 		       ", not in range 0-%d, so it was reset to %d\n",
4857 		       arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4858 		arp_interval = BOND_LINK_ARP_INTERV;
4859 	}
4860 
4861 	for (arp_ip_count = 0;
4862 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4863 	     arp_ip_count++) {
4864 		/* not complete check, but should be good enough to
4865 		   catch mistakes */
4866 		if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4867 			printk(KERN_WARNING DRV_NAME
4868 			       ": Warning: bad arp_ip_target module parameter "
4869 			       "(%s), ARP monitoring will not be performed\n",
4870 			       arp_ip_target[arp_ip_count]);
4871 			arp_interval = 0;
4872 		} else {
4873 			__be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4874 			arp_target[arp_ip_count] = ip;
4875 		}
4876 	}
4877 
4878 	if (arp_interval && !arp_ip_count) {
4879 		/* don't allow arping if no arp_ip_target given... */
4880 		printk(KERN_WARNING DRV_NAME
4881 		       ": Warning: arp_interval module parameter (%d) "
4882 		       "specified without providing an arp_ip_target "
4883 		       "parameter, arp_interval was reset to 0\n",
4884 		       arp_interval);
4885 		arp_interval = 0;
4886 	}
4887 
4888 	if (arp_validate) {
4889 		if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4890 			printk(KERN_ERR DRV_NAME
4891 	       ": arp_validate only supported in active-backup mode\n");
4892 			return -EINVAL;
4893 		}
4894 		if (!arp_interval) {
4895 			printk(KERN_ERR DRV_NAME
4896 			       ": arp_validate requires arp_interval\n");
4897 			return -EINVAL;
4898 		}
4899 
4900 		arp_validate_value = bond_parse_parm(arp_validate,
4901 						     arp_validate_tbl);
4902 		if (arp_validate_value == -1) {
4903 			printk(KERN_ERR DRV_NAME
4904 			       ": Error: invalid arp_validate \"%s\"\n",
4905 			       arp_validate == NULL ? "NULL" : arp_validate);
4906 			return -EINVAL;
4907 		}
4908 	} else
4909 		arp_validate_value = 0;
4910 
4911 	if (miimon) {
4912 		printk(KERN_INFO DRV_NAME
4913 		       ": MII link monitoring set to %d ms\n",
4914 		       miimon);
4915 	} else if (arp_interval) {
4916 		int i;
4917 
4918 		printk(KERN_INFO DRV_NAME
4919 		       ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4920 		       arp_interval,
4921 		       arp_validate_tbl[arp_validate_value].modename,
4922 		       arp_ip_count);
4923 
4924 		for (i = 0; i < arp_ip_count; i++)
4925 			printk (" %s", arp_ip_target[i]);
4926 
4927 		printk("\n");
4928 
4929 	} else if (max_bonds) {
4930 		/* miimon and arp_interval not set, we need one so things
4931 		 * work as expected, see bonding.txt for details
4932 		 */
4933 		printk(KERN_WARNING DRV_NAME
4934 		       ": Warning: either miimon or arp_interval and "
4935 		       "arp_ip_target module parameters must be specified, "
4936 		       "otherwise bonding will not detect link failures! see "
4937 		       "bonding.txt for details.\n");
4938 	}
4939 
4940 	if (primary && !USES_PRIMARY(bond_mode)) {
4941 		/* currently, using a primary only makes sense
4942 		 * in active backup, TLB or ALB modes
4943 		 */
4944 		printk(KERN_WARNING DRV_NAME
4945 		       ": Warning: %s primary device specified but has no "
4946 		       "effect in %s mode\n",
4947 		       primary, bond_mode_name(bond_mode));
4948 		primary = NULL;
4949 	}
4950 
4951 	if (fail_over_mac) {
4952 		fail_over_mac_value = bond_parse_parm(fail_over_mac,
4953 						      fail_over_mac_tbl);
4954 		if (fail_over_mac_value == -1) {
4955 			printk(KERN_ERR DRV_NAME
4956 			       ": Error: invalid fail_over_mac \"%s\"\n",
4957 			       arp_validate == NULL ? "NULL" : arp_validate);
4958 			return -EINVAL;
4959 		}
4960 
4961 		if (bond_mode != BOND_MODE_ACTIVEBACKUP)
4962 			printk(KERN_WARNING DRV_NAME
4963 			       ": Warning: fail_over_mac only affects "
4964 			       "active-backup mode.\n");
4965 	} else {
4966 		fail_over_mac_value = BOND_FOM_NONE;
4967 	}
4968 
4969 	/* fill params struct with the proper values */
4970 	params->mode = bond_mode;
4971 	params->xmit_policy = xmit_hashtype;
4972 	params->miimon = miimon;
4973 	params->num_grat_arp = num_grat_arp;
4974 	params->arp_interval = arp_interval;
4975 	params->arp_validate = arp_validate_value;
4976 	params->updelay = updelay;
4977 	params->downdelay = downdelay;
4978 	params->use_carrier = use_carrier;
4979 	params->lacp_fast = lacp_fast;
4980 	params->primary[0] = 0;
4981 	params->fail_over_mac = fail_over_mac_value;
4982 
4983 	if (primary) {
4984 		strncpy(params->primary, primary, IFNAMSIZ);
4985 		params->primary[IFNAMSIZ - 1] = 0;
4986 	}
4987 
4988 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4989 
4990 	return 0;
4991 }
4992 
4993 static struct lock_class_key bonding_netdev_xmit_lock_key;
4994 static struct lock_class_key bonding_netdev_addr_lock_key;
4995 
4996 static void bond_set_lockdep_class_one(struct net_device *dev,
4997 				       struct netdev_queue *txq,
4998 				       void *_unused)
4999 {
5000 	lockdep_set_class(&txq->_xmit_lock,
5001 			  &bonding_netdev_xmit_lock_key);
5002 }
5003 
5004 static void bond_set_lockdep_class(struct net_device *dev)
5005 {
5006 	lockdep_set_class(&dev->addr_list_lock,
5007 			  &bonding_netdev_addr_lock_key);
5008 	netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL);
5009 }
5010 
5011 /* Create a new bond based on the specified name and bonding parameters.
5012  * If name is NULL, obtain a suitable "bond%d" name for us.
5013  * Caller must NOT hold rtnl_lock; we need to release it here before we
5014  * set up our sysfs entries.
5015  */
5016 int bond_create(char *name, struct bond_params *params)
5017 {
5018 	struct net_device *bond_dev;
5019 	struct bonding *bond;
5020 	int res;
5021 
5022 	rtnl_lock();
5023 	down_write(&bonding_rwsem);
5024 
5025 	/* Check to see if the bond already exists. */
5026 	if (name) {
5027 		list_for_each_entry(bond, &bond_dev_list, bond_list)
5028 			if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) {
5029 				printk(KERN_ERR DRV_NAME
5030 			       ": cannot add bond %s; it already exists\n",
5031 				       name);
5032 				res = -EPERM;
5033 				goto out_rtnl;
5034 			}
5035 	}
5036 
5037 	bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
5038 				ether_setup);
5039 	if (!bond_dev) {
5040 		printk(KERN_ERR DRV_NAME
5041 		       ": %s: eek! can't alloc netdev!\n",
5042 		       name);
5043 		res = -ENOMEM;
5044 		goto out_rtnl;
5045 	}
5046 
5047 	if (!name) {
5048 		res = dev_alloc_name(bond_dev, "bond%d");
5049 		if (res < 0)
5050 			goto out_netdev;
5051 	}
5052 
5053 	/* bond_init() must be called after dev_alloc_name() (for the
5054 	 * /proc files), but before register_netdevice(), because we
5055 	 * need to set function pointers.
5056 	 */
5057 
5058 	res = bond_init(bond_dev, params);
5059 	if (res < 0) {
5060 		goto out_netdev;
5061 	}
5062 
5063 	res = register_netdevice(bond_dev);
5064 	if (res < 0) {
5065 		goto out_bond;
5066 	}
5067 
5068 	bond_set_lockdep_class(bond_dev);
5069 
5070 	netif_carrier_off(bond_dev);
5071 
5072 	up_write(&bonding_rwsem);
5073 	rtnl_unlock(); /* allows sysfs registration of net device */
5074 	res = bond_create_sysfs_entry(bond_dev->priv);
5075 	if (res < 0) {
5076 		rtnl_lock();
5077 		down_write(&bonding_rwsem);
5078 		bond_deinit(bond_dev);
5079 		unregister_netdevice(bond_dev);
5080 		goto out_rtnl;
5081 	}
5082 
5083 	return 0;
5084 
5085 out_bond:
5086 	bond_deinit(bond_dev);
5087 out_netdev:
5088 	free_netdev(bond_dev);
5089 out_rtnl:
5090 	up_write(&bonding_rwsem);
5091 	rtnl_unlock();
5092 	return res;
5093 }
5094 
5095 static int __init bonding_init(void)
5096 {
5097 	int i;
5098 	int res;
5099 	struct bonding *bond;
5100 
5101 	printk(KERN_INFO "%s", version);
5102 
5103 	res = bond_check_params(&bonding_defaults);
5104 	if (res) {
5105 		goto out;
5106 	}
5107 
5108 #ifdef CONFIG_PROC_FS
5109 	bond_create_proc_dir();
5110 #endif
5111 
5112 	init_rwsem(&bonding_rwsem);
5113 
5114 	for (i = 0; i < max_bonds; i++) {
5115 		res = bond_create(NULL, &bonding_defaults);
5116 		if (res)
5117 			goto err;
5118 	}
5119 
5120 	res = bond_create_sysfs();
5121 	if (res)
5122 		goto err;
5123 
5124 	register_netdevice_notifier(&bond_netdev_notifier);
5125 	register_inetaddr_notifier(&bond_inetaddr_notifier);
5126 
5127 	goto out;
5128 err:
5129 	list_for_each_entry(bond, &bond_dev_list, bond_list) {
5130 		bond_work_cancel_all(bond);
5131 		destroy_workqueue(bond->wq);
5132 	}
5133 
5134 	bond_destroy_sysfs();
5135 
5136 	rtnl_lock();
5137 	bond_free_all();
5138 	rtnl_unlock();
5139 out:
5140 	return res;
5141 
5142 }
5143 
5144 static void __exit bonding_exit(void)
5145 {
5146 	unregister_netdevice_notifier(&bond_netdev_notifier);
5147 	unregister_inetaddr_notifier(&bond_inetaddr_notifier);
5148 
5149 	bond_destroy_sysfs();
5150 
5151 	rtnl_lock();
5152 	bond_free_all();
5153 	rtnl_unlock();
5154 }
5155 
5156 module_init(bonding_init);
5157 module_exit(bonding_exit);
5158 MODULE_LICENSE("GPL");
5159 MODULE_VERSION(DRV_VERSION);
5160 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
5161 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
5162 MODULE_SUPPORTED_DEVICE("most ethernet devices");
5163 
5164 /*
5165  * Local variables:
5166  *  c-indent-level: 8
5167  *  c-basic-offset: 8
5168  *  tab-width: 8
5169  * End:
5170  */
5171 
5172