xref: /openbmc/linux/drivers/net/bonding/bond_main.c (revision 22246614)
1 /*
2  * originally based on the dummy device.
3  *
4  * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5  * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6  *
7  * bonding.c: an Ethernet Bonding driver
8  *
9  * This is useful to talk to a Cisco EtherChannel compatible equipment:
10  *	Cisco 5500
11  *	Sun Trunking (Solaris)
12  *	Alteon AceDirector Trunks
13  *	Linux Bonding
14  *	and probably many L2 switches ...
15  *
16  * How it works:
17  *    ifconfig bond0 ipaddress netmask up
18  *      will setup a network device, with an ip address.  No mac address
19  *	will be assigned at this time.  The hw mac address will come from
20  *	the first slave bonded to the channel.  All slaves will then use
21  *	this hw mac address.
22  *
23  *    ifconfig bond0 down
24  *         will release all slaves, marking them as down.
25  *
26  *    ifenslave bond0 eth0
27  *	will attach eth0 to bond0 as a slave.  eth0 hw mac address will either
28  *	a: be used as initial mac address
29  *	b: if a hw mac address already is there, eth0's hw mac address
30  *	   will then be set from bond0.
31  *
32  */
33 
34 //#define BONDING_DEBUG 1
35 
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <linux/jiffies.h>
78 #include <net/route.h>
79 #include <net/net_namespace.h>
80 #include "bonding.h"
81 #include "bond_3ad.h"
82 #include "bond_alb.h"
83 
84 /*---------------------------- Module parameters ----------------------------*/
85 
86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
87 #define BOND_LINK_MON_INTERV	0
88 #define BOND_LINK_ARP_INTERV	0
89 
90 static int max_bonds	= BOND_DEFAULT_MAX_BONDS;
91 static int miimon	= BOND_LINK_MON_INTERV;
92 static int updelay	= 0;
93 static int downdelay	= 0;
94 static int use_carrier	= 1;
95 static char *mode	= NULL;
96 static char *primary	= NULL;
97 static char *lacp_rate	= NULL;
98 static char *xmit_hash_policy = NULL;
99 static int arp_interval = BOND_LINK_ARP_INTERV;
100 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
101 static char *arp_validate = NULL;
102 static int fail_over_mac = 0;
103 struct bond_params bonding_defaults;
104 
105 module_param(max_bonds, int, 0);
106 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
107 module_param(miimon, int, 0);
108 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
109 module_param(updelay, int, 0);
110 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
111 module_param(downdelay, int, 0);
112 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
113 			    "in milliseconds");
114 module_param(use_carrier, int, 0);
115 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
116 			      "0 for off, 1 for on (default)");
117 module_param(mode, charp, 0);
118 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
119 		       "1 for active-backup, 2 for balance-xor, "
120 		       "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
121 		       "6 for balance-alb");
122 module_param(primary, charp, 0);
123 MODULE_PARM_DESC(primary, "Primary network device to use");
124 module_param(lacp_rate, charp, 0);
125 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
126 			    "(slow/fast)");
127 module_param(xmit_hash_policy, charp, 0);
128 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
129 				   ", 1 for layer 3+4");
130 module_param(arp_interval, int, 0);
131 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
132 module_param_array(arp_ip_target, charp, NULL, 0);
133 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
134 module_param(arp_validate, charp, 0);
135 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
136 module_param(fail_over_mac, int, 0);
137 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC.  0 of off (default), 1 for on.");
138 
139 /*----------------------------- Global variables ----------------------------*/
140 
141 static const char * const version =
142 	DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
143 
144 LIST_HEAD(bond_dev_list);
145 
146 #ifdef CONFIG_PROC_FS
147 static struct proc_dir_entry *bond_proc_dir = NULL;
148 #endif
149 
150 extern struct rw_semaphore bonding_rwsem;
151 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
152 static int arp_ip_count	= 0;
153 static int bond_mode	= BOND_MODE_ROUNDROBIN;
154 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
155 static int lacp_fast	= 0;
156 
157 
158 struct bond_parm_tbl bond_lacp_tbl[] = {
159 {	"slow",		AD_LACP_SLOW},
160 {	"fast",		AD_LACP_FAST},
161 {	NULL,		-1},
162 };
163 
164 struct bond_parm_tbl bond_mode_tbl[] = {
165 {	"balance-rr",		BOND_MODE_ROUNDROBIN},
166 {	"active-backup",	BOND_MODE_ACTIVEBACKUP},
167 {	"balance-xor",		BOND_MODE_XOR},
168 {	"broadcast",		BOND_MODE_BROADCAST},
169 {	"802.3ad",		BOND_MODE_8023AD},
170 {	"balance-tlb",		BOND_MODE_TLB},
171 {	"balance-alb",		BOND_MODE_ALB},
172 {	NULL,			-1},
173 };
174 
175 struct bond_parm_tbl xmit_hashtype_tbl[] = {
176 {	"layer2",		BOND_XMIT_POLICY_LAYER2},
177 {	"layer3+4",		BOND_XMIT_POLICY_LAYER34},
178 {	"layer2+3",		BOND_XMIT_POLICY_LAYER23},
179 {	NULL,			-1},
180 };
181 
182 struct bond_parm_tbl arp_validate_tbl[] = {
183 {	"none",			BOND_ARP_VALIDATE_NONE},
184 {	"active",		BOND_ARP_VALIDATE_ACTIVE},
185 {	"backup",		BOND_ARP_VALIDATE_BACKUP},
186 {	"all",			BOND_ARP_VALIDATE_ALL},
187 {	NULL,			-1},
188 };
189 
190 /*-------------------------- Forward declarations ---------------------------*/
191 
192 static void bond_send_gratuitous_arp(struct bonding *bond);
193 static void bond_deinit(struct net_device *bond_dev);
194 
195 /*---------------------------- General routines -----------------------------*/
196 
197 static const char *bond_mode_name(int mode)
198 {
199 	switch (mode) {
200 	case BOND_MODE_ROUNDROBIN :
201 		return "load balancing (round-robin)";
202 	case BOND_MODE_ACTIVEBACKUP :
203 		return "fault-tolerance (active-backup)";
204 	case BOND_MODE_XOR :
205 		return "load balancing (xor)";
206 	case BOND_MODE_BROADCAST :
207 		return "fault-tolerance (broadcast)";
208 	case BOND_MODE_8023AD:
209 		return "IEEE 802.3ad Dynamic link aggregation";
210 	case BOND_MODE_TLB:
211 		return "transmit load balancing";
212 	case BOND_MODE_ALB:
213 		return "adaptive load balancing";
214 	default:
215 		return "unknown";
216 	}
217 }
218 
219 /*---------------------------------- VLAN -----------------------------------*/
220 
221 /**
222  * bond_add_vlan - add a new vlan id on bond
223  * @bond: bond that got the notification
224  * @vlan_id: the vlan id to add
225  *
226  * Returns -ENOMEM if allocation failed.
227  */
228 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
229 {
230 	struct vlan_entry *vlan;
231 
232 	dprintk("bond: %s, vlan id %d\n",
233 		(bond ? bond->dev->name: "None"), vlan_id);
234 
235 	vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
236 	if (!vlan) {
237 		return -ENOMEM;
238 	}
239 
240 	INIT_LIST_HEAD(&vlan->vlan_list);
241 	vlan->vlan_id = vlan_id;
242 	vlan->vlan_ip = 0;
243 
244 	write_lock_bh(&bond->lock);
245 
246 	list_add_tail(&vlan->vlan_list, &bond->vlan_list);
247 
248 	write_unlock_bh(&bond->lock);
249 
250 	dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
251 
252 	return 0;
253 }
254 
255 /**
256  * bond_del_vlan - delete a vlan id from bond
257  * @bond: bond that got the notification
258  * @vlan_id: the vlan id to delete
259  *
260  * returns -ENODEV if @vlan_id was not found in @bond.
261  */
262 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
263 {
264 	struct vlan_entry *vlan, *next;
265 	int res = -ENODEV;
266 
267 	dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
268 
269 	write_lock_bh(&bond->lock);
270 
271 	list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) {
272 		if (vlan->vlan_id == vlan_id) {
273 			list_del(&vlan->vlan_list);
274 
275 			if ((bond->params.mode == BOND_MODE_TLB) ||
276 			    (bond->params.mode == BOND_MODE_ALB)) {
277 				bond_alb_clear_vlan(bond, vlan_id);
278 			}
279 
280 			dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
281 				bond->dev->name);
282 
283 			kfree(vlan);
284 
285 			if (list_empty(&bond->vlan_list) &&
286 			    (bond->slave_cnt == 0)) {
287 				/* Last VLAN removed and no slaves, so
288 				 * restore block on adding VLANs. This will
289 				 * be removed once new slaves that are not
290 				 * VLAN challenged will be added.
291 				 */
292 				bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
293 			}
294 
295 			res = 0;
296 			goto out;
297 		}
298 	}
299 
300 	dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
301 		bond->dev->name);
302 
303 out:
304 	write_unlock_bh(&bond->lock);
305 	return res;
306 }
307 
308 /**
309  * bond_has_challenged_slaves
310  * @bond: the bond we're working on
311  *
312  * Searches the slave list. Returns 1 if a vlan challenged slave
313  * was found, 0 otherwise.
314  *
315  * Assumes bond->lock is held.
316  */
317 static int bond_has_challenged_slaves(struct bonding *bond)
318 {
319 	struct slave *slave;
320 	int i;
321 
322 	bond_for_each_slave(bond, slave, i) {
323 		if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
324 			dprintk("found VLAN challenged slave - %s\n",
325 				slave->dev->name);
326 			return 1;
327 		}
328 	}
329 
330 	dprintk("no VLAN challenged slaves found\n");
331 	return 0;
332 }
333 
334 /**
335  * bond_next_vlan - safely skip to the next item in the vlans list.
336  * @bond: the bond we're working on
337  * @curr: item we're advancing from
338  *
339  * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
340  * or @curr->next otherwise (even if it is @curr itself again).
341  *
342  * Caller must hold bond->lock
343  */
344 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
345 {
346 	struct vlan_entry *next, *last;
347 
348 	if (list_empty(&bond->vlan_list)) {
349 		return NULL;
350 	}
351 
352 	if (!curr) {
353 		next = list_entry(bond->vlan_list.next,
354 				  struct vlan_entry, vlan_list);
355 	} else {
356 		last = list_entry(bond->vlan_list.prev,
357 				  struct vlan_entry, vlan_list);
358 		if (last == curr) {
359 			next = list_entry(bond->vlan_list.next,
360 					  struct vlan_entry, vlan_list);
361 		} else {
362 			next = list_entry(curr->vlan_list.next,
363 					  struct vlan_entry, vlan_list);
364 		}
365 	}
366 
367 	return next;
368 }
369 
370 /**
371  * bond_dev_queue_xmit - Prepare skb for xmit.
372  *
373  * @bond: bond device that got this skb for tx.
374  * @skb: hw accel VLAN tagged skb to transmit
375  * @slave_dev: slave that is supposed to xmit this skbuff
376  *
377  * When the bond gets an skb to transmit that is
378  * already hardware accelerated VLAN tagged, and it
379  * needs to relay this skb to a slave that is not
380  * hw accel capable, the skb needs to be "unaccelerated",
381  * i.e. strip the hwaccel tag and re-insert it as part
382  * of the payload.
383  */
384 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
385 {
386 	unsigned short uninitialized_var(vlan_id);
387 
388 	if (!list_empty(&bond->vlan_list) &&
389 	    !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
390 	    vlan_get_tag(skb, &vlan_id) == 0) {
391 		skb->dev = slave_dev;
392 		skb = vlan_put_tag(skb, vlan_id);
393 		if (!skb) {
394 			/* vlan_put_tag() frees the skb in case of error,
395 			 * so return success here so the calling functions
396 			 * won't attempt to free is again.
397 			 */
398 			return 0;
399 		}
400 	} else {
401 		skb->dev = slave_dev;
402 	}
403 
404 	skb->priority = 1;
405 	dev_queue_xmit(skb);
406 
407 	return 0;
408 }
409 
410 /*
411  * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
412  * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
413  * lock because:
414  * a. This operation is performed in IOCTL context,
415  * b. The operation is protected by the RTNL semaphore in the 8021q code,
416  * c. Holding a lock with BH disabled while directly calling a base driver
417  *    entry point is generally a BAD idea.
418  *
419  * The design of synchronization/protection for this operation in the 8021q
420  * module is good for one or more VLAN devices over a single physical device
421  * and cannot be extended for a teaming solution like bonding, so there is a
422  * potential race condition here where a net device from the vlan group might
423  * be referenced (either by a base driver or the 8021q code) while it is being
424  * removed from the system. However, it turns out we're not making matters
425  * worse, and if it works for regular VLAN usage it will work here too.
426 */
427 
428 /**
429  * bond_vlan_rx_register - Propagates registration to slaves
430  * @bond_dev: bonding net device that got called
431  * @grp: vlan group being registered
432  */
433 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
434 {
435 	struct bonding *bond = bond_dev->priv;
436 	struct slave *slave;
437 	int i;
438 
439 	bond->vlgrp = grp;
440 
441 	bond_for_each_slave(bond, slave, i) {
442 		struct net_device *slave_dev = slave->dev;
443 
444 		if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
445 		    slave_dev->vlan_rx_register) {
446 			slave_dev->vlan_rx_register(slave_dev, grp);
447 		}
448 	}
449 }
450 
451 /**
452  * bond_vlan_rx_add_vid - Propagates adding an id to slaves
453  * @bond_dev: bonding net device that got called
454  * @vid: vlan id being added
455  */
456 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
457 {
458 	struct bonding *bond = bond_dev->priv;
459 	struct slave *slave;
460 	int i, res;
461 
462 	bond_for_each_slave(bond, slave, i) {
463 		struct net_device *slave_dev = slave->dev;
464 
465 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
466 		    slave_dev->vlan_rx_add_vid) {
467 			slave_dev->vlan_rx_add_vid(slave_dev, vid);
468 		}
469 	}
470 
471 	res = bond_add_vlan(bond, vid);
472 	if (res) {
473 		printk(KERN_ERR DRV_NAME
474 		       ": %s: Error: Failed to add vlan id %d\n",
475 		       bond_dev->name, vid);
476 	}
477 }
478 
479 /**
480  * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
481  * @bond_dev: bonding net device that got called
482  * @vid: vlan id being removed
483  */
484 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
485 {
486 	struct bonding *bond = bond_dev->priv;
487 	struct slave *slave;
488 	struct net_device *vlan_dev;
489 	int i, res;
490 
491 	bond_for_each_slave(bond, slave, i) {
492 		struct net_device *slave_dev = slave->dev;
493 
494 		if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
495 		    slave_dev->vlan_rx_kill_vid) {
496 			/* Save and then restore vlan_dev in the grp array,
497 			 * since the slave's driver might clear it.
498 			 */
499 			vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
500 			slave_dev->vlan_rx_kill_vid(slave_dev, vid);
501 			vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
502 		}
503 	}
504 
505 	res = bond_del_vlan(bond, vid);
506 	if (res) {
507 		printk(KERN_ERR DRV_NAME
508 		       ": %s: Error: Failed to remove vlan id %d\n",
509 		       bond_dev->name, vid);
510 	}
511 }
512 
513 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
514 {
515 	struct vlan_entry *vlan;
516 
517 	write_lock_bh(&bond->lock);
518 
519 	if (list_empty(&bond->vlan_list)) {
520 		goto out;
521 	}
522 
523 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
524 	    slave_dev->vlan_rx_register) {
525 		slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
526 	}
527 
528 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
529 	    !(slave_dev->vlan_rx_add_vid)) {
530 		goto out;
531 	}
532 
533 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
534 		slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
535 	}
536 
537 out:
538 	write_unlock_bh(&bond->lock);
539 }
540 
541 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
542 {
543 	struct vlan_entry *vlan;
544 	struct net_device *vlan_dev;
545 
546 	write_lock_bh(&bond->lock);
547 
548 	if (list_empty(&bond->vlan_list)) {
549 		goto out;
550 	}
551 
552 	if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
553 	    !(slave_dev->vlan_rx_kill_vid)) {
554 		goto unreg;
555 	}
556 
557 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
558 		/* Save and then restore vlan_dev in the grp array,
559 		 * since the slave's driver might clear it.
560 		 */
561 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
562 		slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
563 		vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
564 	}
565 
566 unreg:
567 	if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
568 	    slave_dev->vlan_rx_register) {
569 		slave_dev->vlan_rx_register(slave_dev, NULL);
570 	}
571 
572 out:
573 	write_unlock_bh(&bond->lock);
574 }
575 
576 /*------------------------------- Link status -------------------------------*/
577 
578 /*
579  * Set the carrier state for the master according to the state of its
580  * slaves.  If any slaves are up, the master is up.  In 802.3ad mode,
581  * do special 802.3ad magic.
582  *
583  * Returns zero if carrier state does not change, nonzero if it does.
584  */
585 static int bond_set_carrier(struct bonding *bond)
586 {
587 	struct slave *slave;
588 	int i;
589 
590 	if (bond->slave_cnt == 0)
591 		goto down;
592 
593 	if (bond->params.mode == BOND_MODE_8023AD)
594 		return bond_3ad_set_carrier(bond);
595 
596 	bond_for_each_slave(bond, slave, i) {
597 		if (slave->link == BOND_LINK_UP) {
598 			if (!netif_carrier_ok(bond->dev)) {
599 				netif_carrier_on(bond->dev);
600 				return 1;
601 			}
602 			return 0;
603 		}
604 	}
605 
606 down:
607 	if (netif_carrier_ok(bond->dev)) {
608 		netif_carrier_off(bond->dev);
609 		return 1;
610 	}
611 	return 0;
612 }
613 
614 /*
615  * Get link speed and duplex from the slave's base driver
616  * using ethtool. If for some reason the call fails or the
617  * values are invalid, fake speed and duplex to 100/Full
618  * and return error.
619  */
620 static int bond_update_speed_duplex(struct slave *slave)
621 {
622 	struct net_device *slave_dev = slave->dev;
623 	struct ethtool_cmd etool;
624 	int res;
625 
626 	/* Fake speed and duplex */
627 	slave->speed = SPEED_100;
628 	slave->duplex = DUPLEX_FULL;
629 
630 	if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
631 		return -1;
632 
633 	res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
634 	if (res < 0)
635 		return -1;
636 
637 	switch (etool.speed) {
638 	case SPEED_10:
639 	case SPEED_100:
640 	case SPEED_1000:
641 	case SPEED_10000:
642 		break;
643 	default:
644 		return -1;
645 	}
646 
647 	switch (etool.duplex) {
648 	case DUPLEX_FULL:
649 	case DUPLEX_HALF:
650 		break;
651 	default:
652 		return -1;
653 	}
654 
655 	slave->speed = etool.speed;
656 	slave->duplex = etool.duplex;
657 
658 	return 0;
659 }
660 
661 /*
662  * if <dev> supports MII link status reporting, check its link status.
663  *
664  * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
665  * depening upon the setting of the use_carrier parameter.
666  *
667  * Return either BMSR_LSTATUS, meaning that the link is up (or we
668  * can't tell and just pretend it is), or 0, meaning that the link is
669  * down.
670  *
671  * If reporting is non-zero, instead of faking link up, return -1 if
672  * both ETHTOOL and MII ioctls fail (meaning the device does not
673  * support them).  If use_carrier is set, return whatever it says.
674  * It'd be nice if there was a good way to tell if a driver supports
675  * netif_carrier, but there really isn't.
676  */
677 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
678 {
679 	static int (* ioctl)(struct net_device *, struct ifreq *, int);
680 	struct ifreq ifr;
681 	struct mii_ioctl_data *mii;
682 
683 	if (bond->params.use_carrier) {
684 		return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
685 	}
686 
687 	ioctl = slave_dev->do_ioctl;
688 	if (ioctl) {
689 		/* TODO: set pointer to correct ioctl on a per team member */
690 		/*       bases to make this more efficient. that is, once  */
691 		/*       we determine the correct ioctl, we will always    */
692 		/*       call it and not the others for that team          */
693 		/*       member.                                           */
694 
695 		/*
696 		 * We cannot assume that SIOCGMIIPHY will also read a
697 		 * register; not all network drivers (e.g., e100)
698 		 * support that.
699 		 */
700 
701 		/* Yes, the mii is overlaid on the ifreq.ifr_ifru */
702 		strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
703 		mii = if_mii(&ifr);
704 		if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
705 			mii->reg_num = MII_BMSR;
706 			if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
707 				return (mii->val_out & BMSR_LSTATUS);
708 			}
709 		}
710 	}
711 
712 	/*
713 	 * Some drivers cache ETHTOOL_GLINK for a period of time so we only
714 	 * attempt to get link status from it if the above MII ioctls fail.
715 	 */
716 	if (slave_dev->ethtool_ops) {
717 		if (slave_dev->ethtool_ops->get_link) {
718 			u32 link;
719 
720 			link = slave_dev->ethtool_ops->get_link(slave_dev);
721 
722 			return link ? BMSR_LSTATUS : 0;
723 		}
724 	}
725 
726 	/*
727 	 * If reporting, report that either there's no dev->do_ioctl,
728 	 * or both SIOCGMIIREG and get_link failed (meaning that we
729 	 * cannot report link status).  If not reporting, pretend
730 	 * we're ok.
731 	 */
732 	return (reporting ? -1 : BMSR_LSTATUS);
733 }
734 
735 /*----------------------------- Multicast list ------------------------------*/
736 
737 /*
738  * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
739  */
740 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
741 {
742 	return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
743 			dmi1->dmi_addrlen == dmi2->dmi_addrlen;
744 }
745 
746 /*
747  * returns dmi entry if found, NULL otherwise
748  */
749 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
750 {
751 	struct dev_mc_list *idmi;
752 
753 	for (idmi = mc_list; idmi; idmi = idmi->next) {
754 		if (bond_is_dmi_same(dmi, idmi)) {
755 			return idmi;
756 		}
757 	}
758 
759 	return NULL;
760 }
761 
762 /*
763  * Push the promiscuity flag down to appropriate slaves
764  */
765 static void bond_set_promiscuity(struct bonding *bond, int inc)
766 {
767 	if (USES_PRIMARY(bond->params.mode)) {
768 		/* write lock already acquired */
769 		if (bond->curr_active_slave) {
770 			dev_set_promiscuity(bond->curr_active_slave->dev, inc);
771 		}
772 	} else {
773 		struct slave *slave;
774 		int i;
775 		bond_for_each_slave(bond, slave, i) {
776 			dev_set_promiscuity(slave->dev, inc);
777 		}
778 	}
779 }
780 
781 /*
782  * Push the allmulti flag down to all slaves
783  */
784 static void bond_set_allmulti(struct bonding *bond, int inc)
785 {
786 	if (USES_PRIMARY(bond->params.mode)) {
787 		/* write lock already acquired */
788 		if (bond->curr_active_slave) {
789 			dev_set_allmulti(bond->curr_active_slave->dev, inc);
790 		}
791 	} else {
792 		struct slave *slave;
793 		int i;
794 		bond_for_each_slave(bond, slave, i) {
795 			dev_set_allmulti(slave->dev, inc);
796 		}
797 	}
798 }
799 
800 /*
801  * Add a Multicast address to slaves
802  * according to mode
803  */
804 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
805 {
806 	if (USES_PRIMARY(bond->params.mode)) {
807 		/* write lock already acquired */
808 		if (bond->curr_active_slave) {
809 			dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
810 		}
811 	} else {
812 		struct slave *slave;
813 		int i;
814 		bond_for_each_slave(bond, slave, i) {
815 			dev_mc_add(slave->dev, addr, alen, 0);
816 		}
817 	}
818 }
819 
820 /*
821  * Remove a multicast address from slave
822  * according to mode
823  */
824 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
825 {
826 	if (USES_PRIMARY(bond->params.mode)) {
827 		/* write lock already acquired */
828 		if (bond->curr_active_slave) {
829 			dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
830 		}
831 	} else {
832 		struct slave *slave;
833 		int i;
834 		bond_for_each_slave(bond, slave, i) {
835 			dev_mc_delete(slave->dev, addr, alen, 0);
836 		}
837 	}
838 }
839 
840 
841 /*
842  * Retrieve the list of registered multicast addresses for the bonding
843  * device and retransmit an IGMP JOIN request to the current active
844  * slave.
845  */
846 static void bond_resend_igmp_join_requests(struct bonding *bond)
847 {
848 	struct in_device *in_dev;
849 	struct ip_mc_list *im;
850 
851 	rcu_read_lock();
852 	in_dev = __in_dev_get_rcu(bond->dev);
853 	if (in_dev) {
854 		for (im = in_dev->mc_list; im; im = im->next) {
855 			ip_mc_rejoin_group(im);
856 		}
857 	}
858 
859 	rcu_read_unlock();
860 }
861 
862 /*
863  * Totally destroys the mc_list in bond
864  */
865 static void bond_mc_list_destroy(struct bonding *bond)
866 {
867 	struct dev_mc_list *dmi;
868 
869 	dmi = bond->mc_list;
870 	while (dmi) {
871 		bond->mc_list = dmi->next;
872 		kfree(dmi);
873 		dmi = bond->mc_list;
874 	}
875         bond->mc_list = NULL;
876 }
877 
878 /*
879  * Copy all the Multicast addresses from src to the bonding device dst
880  */
881 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
882 			     gfp_t gfp_flag)
883 {
884 	struct dev_mc_list *dmi, *new_dmi;
885 
886 	for (dmi = mc_list; dmi; dmi = dmi->next) {
887 		new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
888 
889 		if (!new_dmi) {
890 			/* FIXME: Potential memory leak !!! */
891 			return -ENOMEM;
892 		}
893 
894 		new_dmi->next = bond->mc_list;
895 		bond->mc_list = new_dmi;
896 		new_dmi->dmi_addrlen = dmi->dmi_addrlen;
897 		memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
898 		new_dmi->dmi_users = dmi->dmi_users;
899 		new_dmi->dmi_gusers = dmi->dmi_gusers;
900 	}
901 
902 	return 0;
903 }
904 
905 /*
906  * flush all members of flush->mc_list from device dev->mc_list
907  */
908 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
909 {
910 	struct bonding *bond = bond_dev->priv;
911 	struct dev_mc_list *dmi;
912 
913 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
914 		dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
915 	}
916 
917 	if (bond->params.mode == BOND_MODE_8023AD) {
918 		/* del lacpdu mc addr from mc list */
919 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
920 
921 		dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
922 	}
923 }
924 
925 /*--------------------------- Active slave change ---------------------------*/
926 
927 /*
928  * Update the mc list and multicast-related flags for the new and
929  * old active slaves (if any) according to the multicast mode, and
930  * promiscuous flags unconditionally.
931  */
932 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
933 {
934 	struct dev_mc_list *dmi;
935 
936 	if (!USES_PRIMARY(bond->params.mode)) {
937 		/* nothing to do -  mc list is already up-to-date on
938 		 * all slaves
939 		 */
940 		return;
941 	}
942 
943 	if (old_active) {
944 		if (bond->dev->flags & IFF_PROMISC) {
945 			dev_set_promiscuity(old_active->dev, -1);
946 		}
947 
948 		if (bond->dev->flags & IFF_ALLMULTI) {
949 			dev_set_allmulti(old_active->dev, -1);
950 		}
951 
952 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
953 			dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
954 		}
955 	}
956 
957 	if (new_active) {
958 		if (bond->dev->flags & IFF_PROMISC) {
959 			dev_set_promiscuity(new_active->dev, 1);
960 		}
961 
962 		if (bond->dev->flags & IFF_ALLMULTI) {
963 			dev_set_allmulti(new_active->dev, 1);
964 		}
965 
966 		for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
967 			dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
968 		}
969 		bond_resend_igmp_join_requests(bond);
970 	}
971 }
972 
973 /**
974  * find_best_interface - select the best available slave to be the active one
975  * @bond: our bonding struct
976  *
977  * Warning: Caller must hold curr_slave_lock for writing.
978  */
979 static struct slave *bond_find_best_slave(struct bonding *bond)
980 {
981 	struct slave *new_active, *old_active;
982 	struct slave *bestslave = NULL;
983 	int mintime = bond->params.updelay;
984 	int i;
985 
986 	new_active = old_active = bond->curr_active_slave;
987 
988 	if (!new_active) { /* there were no active slaves left */
989 		if (bond->slave_cnt > 0) {  /* found one slave */
990 			new_active = bond->first_slave;
991 		} else {
992 			return NULL; /* still no slave, return NULL */
993 		}
994 	}
995 
996 	/* first try the primary link; if arping, a link must tx/rx traffic
997 	 * before it can be considered the curr_active_slave - also, we would skip
998 	 * slaves between the curr_active_slave and primary_slave that may be up
999 	 * and able to arp
1000 	 */
1001 	if ((bond->primary_slave) &&
1002 	    (!bond->params.arp_interval) &&
1003 	    (IS_UP(bond->primary_slave->dev))) {
1004 		new_active = bond->primary_slave;
1005 	}
1006 
1007 	/* remember where to stop iterating over the slaves */
1008 	old_active = new_active;
1009 
1010 	bond_for_each_slave_from(bond, new_active, i, old_active) {
1011 		if (IS_UP(new_active->dev)) {
1012 			if (new_active->link == BOND_LINK_UP) {
1013 				return new_active;
1014 			} else if (new_active->link == BOND_LINK_BACK) {
1015 				/* link up, but waiting for stabilization */
1016 				if (new_active->delay < mintime) {
1017 					mintime = new_active->delay;
1018 					bestslave = new_active;
1019 				}
1020 			}
1021 		}
1022 	}
1023 
1024 	return bestslave;
1025 }
1026 
1027 /**
1028  * change_active_interface - change the active slave into the specified one
1029  * @bond: our bonding struct
1030  * @new: the new slave to make the active one
1031  *
1032  * Set the new slave to the bond's settings and unset them on the old
1033  * curr_active_slave.
1034  * Setting include flags, mc-list, promiscuity, allmulti, etc.
1035  *
1036  * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1037  * because it is apparently the best available slave we have, even though its
1038  * updelay hasn't timed out yet.
1039  *
1040  * Warning: Caller must hold curr_slave_lock for writing.
1041  */
1042 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1043 {
1044 	struct slave *old_active = bond->curr_active_slave;
1045 
1046 	if (old_active == new_active) {
1047 		return;
1048 	}
1049 
1050 	if (new_active) {
1051 		if (new_active->link == BOND_LINK_BACK) {
1052 			if (USES_PRIMARY(bond->params.mode)) {
1053 				printk(KERN_INFO DRV_NAME
1054 				       ": %s: making interface %s the new "
1055 				       "active one %d ms earlier.\n",
1056 				       bond->dev->name, new_active->dev->name,
1057 				       (bond->params.updelay - new_active->delay) * bond->params.miimon);
1058 			}
1059 
1060 			new_active->delay = 0;
1061 			new_active->link = BOND_LINK_UP;
1062 			new_active->jiffies = jiffies;
1063 
1064 			if (bond->params.mode == BOND_MODE_8023AD) {
1065 				bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1066 			}
1067 
1068 			if ((bond->params.mode == BOND_MODE_TLB) ||
1069 			    (bond->params.mode == BOND_MODE_ALB)) {
1070 				bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1071 			}
1072 		} else {
1073 			if (USES_PRIMARY(bond->params.mode)) {
1074 				printk(KERN_INFO DRV_NAME
1075 				       ": %s: making interface %s the new "
1076 				       "active one.\n",
1077 				       bond->dev->name, new_active->dev->name);
1078 			}
1079 		}
1080 	}
1081 
1082 	if (USES_PRIMARY(bond->params.mode)) {
1083 		bond_mc_swap(bond, new_active, old_active);
1084 	}
1085 
1086 	if ((bond->params.mode == BOND_MODE_TLB) ||
1087 	    (bond->params.mode == BOND_MODE_ALB)) {
1088 		bond_alb_handle_active_change(bond, new_active);
1089 		if (old_active)
1090 			bond_set_slave_inactive_flags(old_active);
1091 		if (new_active)
1092 			bond_set_slave_active_flags(new_active);
1093 	} else {
1094 		bond->curr_active_slave = new_active;
1095 	}
1096 
1097 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1098 		if (old_active) {
1099 			bond_set_slave_inactive_flags(old_active);
1100 		}
1101 
1102 		if (new_active) {
1103 			bond_set_slave_active_flags(new_active);
1104 		}
1105 
1106 		/* when bonding does not set the slave MAC address, the bond MAC
1107 		 * address is the one of the active slave.
1108 		 */
1109 		if (new_active && bond->params.fail_over_mac)
1110 			memcpy(bond->dev->dev_addr,  new_active->dev->dev_addr,
1111 				new_active->dev->addr_len);
1112 		if (bond->curr_active_slave &&
1113 			test_bit(__LINK_STATE_LINKWATCH_PENDING,
1114 					&bond->curr_active_slave->dev->state)) {
1115 			dprintk("delaying gratuitous arp on %s\n",
1116 				bond->curr_active_slave->dev->name);
1117 			bond->send_grat_arp = 1;
1118 		} else
1119 			bond_send_gratuitous_arp(bond);
1120 	}
1121 }
1122 
1123 /**
1124  * bond_select_active_slave - select a new active slave, if needed
1125  * @bond: our bonding struct
1126  *
1127  * This functions shoud be called when one of the following occurs:
1128  * - The old curr_active_slave has been released or lost its link.
1129  * - The primary_slave has got its link back.
1130  * - A slave has got its link back and there's no old curr_active_slave.
1131  *
1132  * Warning: Caller must hold curr_slave_lock for writing.
1133  */
1134 void bond_select_active_slave(struct bonding *bond)
1135 {
1136 	struct slave *best_slave;
1137 	int rv;
1138 
1139 	best_slave = bond_find_best_slave(bond);
1140 	if (best_slave != bond->curr_active_slave) {
1141 		bond_change_active_slave(bond, best_slave);
1142 		rv = bond_set_carrier(bond);
1143 		if (!rv)
1144 			return;
1145 
1146 		if (netif_carrier_ok(bond->dev)) {
1147 			printk(KERN_INFO DRV_NAME
1148 			       ": %s: first active interface up!\n",
1149 			       bond->dev->name);
1150 		} else {
1151 			printk(KERN_INFO DRV_NAME ": %s: "
1152 			       "now running without any active interface !\n",
1153 			       bond->dev->name);
1154 		}
1155 	}
1156 }
1157 
1158 /*--------------------------- slave list handling ---------------------------*/
1159 
1160 /*
1161  * This function attaches the slave to the end of list.
1162  *
1163  * bond->lock held for writing by caller.
1164  */
1165 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1166 {
1167 	if (bond->first_slave == NULL) { /* attaching the first slave */
1168 		new_slave->next = new_slave;
1169 		new_slave->prev = new_slave;
1170 		bond->first_slave = new_slave;
1171 	} else {
1172 		new_slave->next = bond->first_slave;
1173 		new_slave->prev = bond->first_slave->prev;
1174 		new_slave->next->prev = new_slave;
1175 		new_slave->prev->next = new_slave;
1176 	}
1177 
1178 	bond->slave_cnt++;
1179 }
1180 
1181 /*
1182  * This function detaches the slave from the list.
1183  * WARNING: no check is made to verify if the slave effectively
1184  * belongs to <bond>.
1185  * Nothing is freed on return, structures are just unchained.
1186  * If any slave pointer in bond was pointing to <slave>,
1187  * it should be changed by the calling function.
1188  *
1189  * bond->lock held for writing by caller.
1190  */
1191 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1192 {
1193 	if (slave->next) {
1194 		slave->next->prev = slave->prev;
1195 	}
1196 
1197 	if (slave->prev) {
1198 		slave->prev->next = slave->next;
1199 	}
1200 
1201 	if (bond->first_slave == slave) { /* slave is the first slave */
1202 		if (bond->slave_cnt > 1) { /* there are more slave */
1203 			bond->first_slave = slave->next;
1204 		} else {
1205 			bond->first_slave = NULL; /* slave was the last one */
1206 		}
1207 	}
1208 
1209 	slave->next = NULL;
1210 	slave->prev = NULL;
1211 	bond->slave_cnt--;
1212 }
1213 
1214 /*---------------------------------- IOCTL ----------------------------------*/
1215 
1216 static int bond_sethwaddr(struct net_device *bond_dev,
1217 			  struct net_device *slave_dev)
1218 {
1219 	dprintk("bond_dev=%p\n", bond_dev);
1220 	dprintk("slave_dev=%p\n", slave_dev);
1221 	dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1222 	memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1223 	return 0;
1224 }
1225 
1226 #define BOND_VLAN_FEATURES \
1227 	(NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1228 	 NETIF_F_HW_VLAN_FILTER)
1229 
1230 /*
1231  * Compute the common dev->feature set available to all slaves.  Some
1232  * feature bits are managed elsewhere, so preserve those feature bits
1233  * on the master device.
1234  */
1235 static int bond_compute_features(struct bonding *bond)
1236 {
1237 	struct slave *slave;
1238 	struct net_device *bond_dev = bond->dev;
1239 	unsigned long features = bond_dev->features;
1240 	unsigned short max_hard_header_len = max((u16)ETH_HLEN,
1241 						bond_dev->hard_header_len);
1242 	int i;
1243 
1244 	features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1245 	features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA |
1246 		    NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1247 
1248 	bond_for_each_slave(bond, slave, i) {
1249 		features = netdev_compute_features(features,
1250 						   slave->dev->features);
1251 		if (slave->dev->hard_header_len > max_hard_header_len)
1252 			max_hard_header_len = slave->dev->hard_header_len;
1253 	}
1254 
1255 	features |= (bond_dev->features & BOND_VLAN_FEATURES);
1256 	bond_dev->features = features;
1257 	bond_dev->hard_header_len = max_hard_header_len;
1258 
1259 	return 0;
1260 }
1261 
1262 
1263 static void bond_setup_by_slave(struct net_device *bond_dev,
1264 				struct net_device *slave_dev)
1265 {
1266 	struct bonding *bond = bond_dev->priv;
1267 
1268 	bond_dev->neigh_setup           = slave_dev->neigh_setup;
1269 	bond_dev->header_ops		= slave_dev->header_ops;
1270 
1271 	bond_dev->type		    = slave_dev->type;
1272 	bond_dev->hard_header_len   = slave_dev->hard_header_len;
1273 	bond_dev->addr_len	    = slave_dev->addr_len;
1274 
1275 	memcpy(bond_dev->broadcast, slave_dev->broadcast,
1276 		slave_dev->addr_len);
1277 	bond->setup_by_slave = 1;
1278 }
1279 
1280 /* enslave device <slave> to bond device <master> */
1281 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1282 {
1283 	struct bonding *bond = bond_dev->priv;
1284 	struct slave *new_slave = NULL;
1285 	struct dev_mc_list *dmi;
1286 	struct sockaddr addr;
1287 	int link_reporting;
1288 	int old_features = bond_dev->features;
1289 	int res = 0;
1290 
1291 	if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1292 		slave_dev->do_ioctl == NULL) {
1293 		printk(KERN_WARNING DRV_NAME
1294 		       ": %s: Warning: no link monitoring support for %s\n",
1295 		       bond_dev->name, slave_dev->name);
1296 	}
1297 
1298 	/* bond must be initialized by bond_open() before enslaving */
1299 	if (!(bond_dev->flags & IFF_UP)) {
1300 		printk(KERN_WARNING DRV_NAME
1301 			" %s: master_dev is not up in bond_enslave\n",
1302 			bond_dev->name);
1303 	}
1304 
1305 	/* already enslaved */
1306 	if (slave_dev->flags & IFF_SLAVE) {
1307 		dprintk("Error, Device was already enslaved\n");
1308 		return -EBUSY;
1309 	}
1310 
1311 	/* vlan challenged mutual exclusion */
1312 	/* no need to lock since we're protected by rtnl_lock */
1313 	if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1314 		dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1315 		if (!list_empty(&bond->vlan_list)) {
1316 			printk(KERN_ERR DRV_NAME
1317 			       ": %s: Error: cannot enslave VLAN "
1318 			       "challenged slave %s on VLAN enabled "
1319 			       "bond %s\n", bond_dev->name, slave_dev->name,
1320 			       bond_dev->name);
1321 			return -EPERM;
1322 		} else {
1323 			printk(KERN_WARNING DRV_NAME
1324 			       ": %s: Warning: enslaved VLAN challenged "
1325 			       "slave %s. Adding VLANs will be blocked as "
1326 			       "long as %s is part of bond %s\n",
1327 			       bond_dev->name, slave_dev->name, slave_dev->name,
1328 			       bond_dev->name);
1329 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1330 		}
1331 	} else {
1332 		dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1333 		if (bond->slave_cnt == 0) {
1334 			/* First slave, and it is not VLAN challenged,
1335 			 * so remove the block of adding VLANs over the bond.
1336 			 */
1337 			bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1338 		}
1339 	}
1340 
1341 	/*
1342 	 * Old ifenslave binaries are no longer supported.  These can
1343 	 * be identified with moderate accurary by the state of the slave:
1344 	 * the current ifenslave will set the interface down prior to
1345 	 * enslaving it; the old ifenslave will not.
1346 	 */
1347 	if ((slave_dev->flags & IFF_UP)) {
1348 		printk(KERN_ERR DRV_NAME ": %s is up. "
1349 		       "This may be due to an out of date ifenslave.\n",
1350 		       slave_dev->name);
1351 		res = -EPERM;
1352 		goto err_undo_flags;
1353 	}
1354 
1355 	/* set bonding device ether type by slave - bonding netdevices are
1356 	 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1357 	 * there is a need to override some of the type dependent attribs/funcs.
1358 	 *
1359 	 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1360 	 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1361 	 */
1362 	if (bond->slave_cnt == 0) {
1363 		if (slave_dev->type != ARPHRD_ETHER)
1364 			bond_setup_by_slave(bond_dev, slave_dev);
1365 	} else if (bond_dev->type != slave_dev->type) {
1366 		printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different "
1367 			"from other slaves (%d), can not enslave it.\n",
1368 			slave_dev->name,
1369 			slave_dev->type, bond_dev->type);
1370 			res = -EINVAL;
1371 			goto err_undo_flags;
1372 	}
1373 
1374 	if (slave_dev->set_mac_address == NULL) {
1375 		if (bond->slave_cnt == 0) {
1376 			printk(KERN_WARNING DRV_NAME
1377 			       ": %s: Warning: The first slave device "
1378 			       "specified does not support setting the MAC "
1379 			       "address. Enabling the fail_over_mac option.",
1380 			       bond_dev->name);
1381 			bond->params.fail_over_mac = 1;
1382 		} else if (!bond->params.fail_over_mac) {
1383 			printk(KERN_ERR DRV_NAME
1384 				": %s: Error: The slave device specified "
1385 				"does not support setting the MAC address, "
1386 				"but fail_over_mac is not enabled.\n"
1387 				, bond_dev->name);
1388 			res = -EOPNOTSUPP;
1389 			goto err_undo_flags;
1390 		}
1391 	}
1392 
1393 	new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1394 	if (!new_slave) {
1395 		res = -ENOMEM;
1396 		goto err_undo_flags;
1397 	}
1398 
1399 	/* save slave's original flags before calling
1400 	 * netdev_set_master and dev_open
1401 	 */
1402 	new_slave->original_flags = slave_dev->flags;
1403 
1404 	/*
1405 	 * Save slave's original ("permanent") mac address for modes
1406 	 * that need it, and for restoring it upon release, and then
1407 	 * set it to the master's address
1408 	 */
1409 	memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1410 
1411 	if (!bond->params.fail_over_mac) {
1412 		/*
1413 		 * Set slave to master's mac address.  The application already
1414 		 * set the master's mac address to that of the first slave
1415 		 */
1416 		memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1417 		addr.sa_family = slave_dev->type;
1418 		res = dev_set_mac_address(slave_dev, &addr);
1419 		if (res) {
1420 			dprintk("Error %d calling set_mac_address\n", res);
1421 			goto err_free;
1422 		}
1423 	}
1424 
1425 	res = netdev_set_master(slave_dev, bond_dev);
1426 	if (res) {
1427 		dprintk("Error %d calling netdev_set_master\n", res);
1428 		goto err_restore_mac;
1429 	}
1430 	/* open the slave since the application closed it */
1431 	res = dev_open(slave_dev);
1432 	if (res) {
1433 		dprintk("Openning slave %s failed\n", slave_dev->name);
1434 		goto err_unset_master;
1435 	}
1436 
1437 	new_slave->dev = slave_dev;
1438 	slave_dev->priv_flags |= IFF_BONDING;
1439 
1440 	if ((bond->params.mode == BOND_MODE_TLB) ||
1441 	    (bond->params.mode == BOND_MODE_ALB)) {
1442 		/* bond_alb_init_slave() must be called before all other stages since
1443 		 * it might fail and we do not want to have to undo everything
1444 		 */
1445 		res = bond_alb_init_slave(bond, new_slave);
1446 		if (res) {
1447 			goto err_close;
1448 		}
1449 	}
1450 
1451 	/* If the mode USES_PRIMARY, then the new slave gets the
1452 	 * master's promisc (and mc) settings only if it becomes the
1453 	 * curr_active_slave, and that is taken care of later when calling
1454 	 * bond_change_active()
1455 	 */
1456 	if (!USES_PRIMARY(bond->params.mode)) {
1457 		/* set promiscuity level to new slave */
1458 		if (bond_dev->flags & IFF_PROMISC) {
1459 			dev_set_promiscuity(slave_dev, 1);
1460 		}
1461 
1462 		/* set allmulti level to new slave */
1463 		if (bond_dev->flags & IFF_ALLMULTI) {
1464 			dev_set_allmulti(slave_dev, 1);
1465 		}
1466 
1467 		netif_tx_lock_bh(bond_dev);
1468 		/* upload master's mc_list to new slave */
1469 		for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1470 			dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1471 		}
1472 		netif_tx_unlock_bh(bond_dev);
1473 	}
1474 
1475 	if (bond->params.mode == BOND_MODE_8023AD) {
1476 		/* add lacpdu mc addr to mc list */
1477 		u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1478 
1479 		dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1480 	}
1481 
1482 	bond_add_vlans_on_slave(bond, slave_dev);
1483 
1484 	write_lock_bh(&bond->lock);
1485 
1486 	bond_attach_slave(bond, new_slave);
1487 
1488 	new_slave->delay = 0;
1489 	new_slave->link_failure_count = 0;
1490 
1491 	bond_compute_features(bond);
1492 
1493 	new_slave->last_arp_rx = jiffies;
1494 
1495 	if (bond->params.miimon && !bond->params.use_carrier) {
1496 		link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1497 
1498 		if ((link_reporting == -1) && !bond->params.arp_interval) {
1499 			/*
1500 			 * miimon is set but a bonded network driver
1501 			 * does not support ETHTOOL/MII and
1502 			 * arp_interval is not set.  Note: if
1503 			 * use_carrier is enabled, we will never go
1504 			 * here (because netif_carrier is always
1505 			 * supported); thus, we don't need to change
1506 			 * the messages for netif_carrier.
1507 			 */
1508 			printk(KERN_WARNING DRV_NAME
1509 			       ": %s: Warning: MII and ETHTOOL support not "
1510 			       "available for interface %s, and "
1511 			       "arp_interval/arp_ip_target module parameters "
1512 			       "not specified, thus bonding will not detect "
1513 			       "link failures! see bonding.txt for details.\n",
1514 			       bond_dev->name, slave_dev->name);
1515 		} else if (link_reporting == -1) {
1516 			/* unable get link status using mii/ethtool */
1517 			printk(KERN_WARNING DRV_NAME
1518 			       ": %s: Warning: can't get link status from "
1519 			       "interface %s; the network driver associated "
1520 			       "with this interface does not support MII or "
1521 			       "ETHTOOL link status reporting, thus miimon "
1522 			       "has no effect on this interface.\n",
1523 			       bond_dev->name, slave_dev->name);
1524 		}
1525 	}
1526 
1527 	/* check for initial state */
1528 	if (!bond->params.miimon ||
1529 	    (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1530 		if (bond->params.updelay) {
1531 			dprintk("Initial state of slave_dev is "
1532 				"BOND_LINK_BACK\n");
1533 			new_slave->link  = BOND_LINK_BACK;
1534 			new_slave->delay = bond->params.updelay;
1535 		} else {
1536 			dprintk("Initial state of slave_dev is "
1537 				"BOND_LINK_UP\n");
1538 			new_slave->link  = BOND_LINK_UP;
1539 		}
1540 		new_slave->jiffies = jiffies;
1541 	} else {
1542 		dprintk("Initial state of slave_dev is "
1543 			"BOND_LINK_DOWN\n");
1544 		new_slave->link  = BOND_LINK_DOWN;
1545 	}
1546 
1547 	if (bond_update_speed_duplex(new_slave) &&
1548 	    (new_slave->link != BOND_LINK_DOWN)) {
1549 		printk(KERN_WARNING DRV_NAME
1550 		       ": %s: Warning: failed to get speed and duplex from %s, "
1551 		       "assumed to be 100Mb/sec and Full.\n",
1552 		       bond_dev->name, new_slave->dev->name);
1553 
1554 		if (bond->params.mode == BOND_MODE_8023AD) {
1555 			printk(KERN_WARNING DRV_NAME
1556 			       ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1557 			       "support in base driver for proper aggregator "
1558 			       "selection.\n", bond_dev->name);
1559 		}
1560 	}
1561 
1562 	if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1563 		/* if there is a primary slave, remember it */
1564 		if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1565 			bond->primary_slave = new_slave;
1566 		}
1567 	}
1568 
1569 	switch (bond->params.mode) {
1570 	case BOND_MODE_ACTIVEBACKUP:
1571 		bond_set_slave_inactive_flags(new_slave);
1572 		bond_select_active_slave(bond);
1573 		break;
1574 	case BOND_MODE_8023AD:
1575 		/* in 802.3ad mode, the internal mechanism
1576 		 * will activate the slaves in the selected
1577 		 * aggregator
1578 		 */
1579 		bond_set_slave_inactive_flags(new_slave);
1580 		/* if this is the first slave */
1581 		if (bond->slave_cnt == 1) {
1582 			SLAVE_AD_INFO(new_slave).id = 1;
1583 			/* Initialize AD with the number of times that the AD timer is called in 1 second
1584 			 * can be called only after the mac address of the bond is set
1585 			 */
1586 			bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1587 					    bond->params.lacp_fast);
1588 		} else {
1589 			SLAVE_AD_INFO(new_slave).id =
1590 				SLAVE_AD_INFO(new_slave->prev).id + 1;
1591 		}
1592 
1593 		bond_3ad_bind_slave(new_slave);
1594 		break;
1595 	case BOND_MODE_TLB:
1596 	case BOND_MODE_ALB:
1597 		new_slave->state = BOND_STATE_ACTIVE;
1598 		bond_set_slave_inactive_flags(new_slave);
1599 		break;
1600 	default:
1601 		dprintk("This slave is always active in trunk mode\n");
1602 
1603 		/* always active in trunk mode */
1604 		new_slave->state = BOND_STATE_ACTIVE;
1605 
1606 		/* In trunking mode there is little meaning to curr_active_slave
1607 		 * anyway (it holds no special properties of the bond device),
1608 		 * so we can change it without calling change_active_interface()
1609 		 */
1610 		if (!bond->curr_active_slave) {
1611 			bond->curr_active_slave = new_slave;
1612 		}
1613 		break;
1614 	} /* switch(bond_mode) */
1615 
1616 	bond_set_carrier(bond);
1617 
1618 	write_unlock_bh(&bond->lock);
1619 
1620 	res = bond_create_slave_symlinks(bond_dev, slave_dev);
1621 	if (res)
1622 		goto err_close;
1623 
1624 	printk(KERN_INFO DRV_NAME
1625 	       ": %s: enslaving %s as a%s interface with a%s link.\n",
1626 	       bond_dev->name, slave_dev->name,
1627 	       new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1628 	       new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1629 
1630 	/* enslave is successful */
1631 	return 0;
1632 
1633 /* Undo stages on error */
1634 err_close:
1635 	dev_close(slave_dev);
1636 
1637 err_unset_master:
1638 	netdev_set_master(slave_dev, NULL);
1639 
1640 err_restore_mac:
1641 	if (!bond->params.fail_over_mac) {
1642 		memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1643 		addr.sa_family = slave_dev->type;
1644 		dev_set_mac_address(slave_dev, &addr);
1645 	}
1646 
1647 err_free:
1648 	kfree(new_slave);
1649 
1650 err_undo_flags:
1651 	bond_dev->features = old_features;
1652 
1653 	return res;
1654 }
1655 
1656 /*
1657  * Try to release the slave device <slave> from the bond device <master>
1658  * It is legal to access curr_active_slave without a lock because all the function
1659  * is write-locked.
1660  *
1661  * The rules for slave state should be:
1662  *   for Active/Backup:
1663  *     Active stays on all backups go down
1664  *   for Bonded connections:
1665  *     The first up interface should be left on and all others downed.
1666  */
1667 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1668 {
1669 	struct bonding *bond = bond_dev->priv;
1670 	struct slave *slave, *oldcurrent;
1671 	struct sockaddr addr;
1672 	int mac_addr_differ;
1673 	DECLARE_MAC_BUF(mac);
1674 
1675 	/* slave is not a slave or master is not master of this slave */
1676 	if (!(slave_dev->flags & IFF_SLAVE) ||
1677 	    (slave_dev->master != bond_dev)) {
1678 		printk(KERN_ERR DRV_NAME
1679 		       ": %s: Error: cannot release %s.\n",
1680 		       bond_dev->name, slave_dev->name);
1681 		return -EINVAL;
1682 	}
1683 
1684 	write_lock_bh(&bond->lock);
1685 
1686 	slave = bond_get_slave_by_dev(bond, slave_dev);
1687 	if (!slave) {
1688 		/* not a slave of this bond */
1689 		printk(KERN_INFO DRV_NAME
1690 		       ": %s: %s not enslaved\n",
1691 		       bond_dev->name, slave_dev->name);
1692 		write_unlock_bh(&bond->lock);
1693 		return -EINVAL;
1694 	}
1695 
1696 	mac_addr_differ = memcmp(bond_dev->dev_addr,
1697 				 slave->perm_hwaddr,
1698 				 ETH_ALEN);
1699 	if (!mac_addr_differ && (bond->slave_cnt > 1)) {
1700 		printk(KERN_WARNING DRV_NAME
1701 		       ": %s: Warning: the permanent HWaddr of %s - "
1702 		       "%s - is still in use by %s. "
1703 		       "Set the HWaddr of %s to a different address "
1704 		       "to avoid conflicts.\n",
1705 		       bond_dev->name,
1706 		       slave_dev->name,
1707 		       print_mac(mac, slave->perm_hwaddr),
1708 		       bond_dev->name,
1709 		       slave_dev->name);
1710 	}
1711 
1712 	/* Inform AD package of unbinding of slave. */
1713 	if (bond->params.mode == BOND_MODE_8023AD) {
1714 		/* must be called before the slave is
1715 		 * detached from the list
1716 		 */
1717 		bond_3ad_unbind_slave(slave);
1718 	}
1719 
1720 	printk(KERN_INFO DRV_NAME
1721 	       ": %s: releasing %s interface %s\n",
1722 	       bond_dev->name,
1723 	       (slave->state == BOND_STATE_ACTIVE)
1724 	       ? "active" : "backup",
1725 	       slave_dev->name);
1726 
1727 	oldcurrent = bond->curr_active_slave;
1728 
1729 	bond->current_arp_slave = NULL;
1730 
1731 	/* release the slave from its bond */
1732 	bond_detach_slave(bond, slave);
1733 
1734 	bond_compute_features(bond);
1735 
1736 	if (bond->primary_slave == slave) {
1737 		bond->primary_slave = NULL;
1738 	}
1739 
1740 	if (oldcurrent == slave) {
1741 		bond_change_active_slave(bond, NULL);
1742 	}
1743 
1744 	if ((bond->params.mode == BOND_MODE_TLB) ||
1745 	    (bond->params.mode == BOND_MODE_ALB)) {
1746 		/* Must be called only after the slave has been
1747 		 * detached from the list and the curr_active_slave
1748 		 * has been cleared (if our_slave == old_current),
1749 		 * but before a new active slave is selected.
1750 		 */
1751 		write_unlock_bh(&bond->lock);
1752 		bond_alb_deinit_slave(bond, slave);
1753 		write_lock_bh(&bond->lock);
1754 	}
1755 
1756 	if (oldcurrent == slave) {
1757 		/*
1758 		 * Note that we hold RTNL over this sequence, so there
1759 		 * is no concern that another slave add/remove event
1760 		 * will interfere.
1761 		 */
1762 		write_unlock_bh(&bond->lock);
1763 		read_lock(&bond->lock);
1764 		write_lock_bh(&bond->curr_slave_lock);
1765 
1766 		bond_select_active_slave(bond);
1767 
1768 		write_unlock_bh(&bond->curr_slave_lock);
1769 		read_unlock(&bond->lock);
1770 		write_lock_bh(&bond->lock);
1771 	}
1772 
1773 	if (bond->slave_cnt == 0) {
1774 		bond_set_carrier(bond);
1775 
1776 		/* if the last slave was removed, zero the mac address
1777 		 * of the master so it will be set by the application
1778 		 * to the mac address of the first slave
1779 		 */
1780 		memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1781 
1782 		if (list_empty(&bond->vlan_list)) {
1783 			bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1784 		} else {
1785 			printk(KERN_WARNING DRV_NAME
1786 			       ": %s: Warning: clearing HW address of %s while it "
1787 			       "still has VLANs.\n",
1788 			       bond_dev->name, bond_dev->name);
1789 			printk(KERN_WARNING DRV_NAME
1790 			       ": %s: When re-adding slaves, make sure the bond's "
1791 			       "HW address matches its VLANs'.\n",
1792 			       bond_dev->name);
1793 		}
1794 	} else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1795 		   !bond_has_challenged_slaves(bond)) {
1796 		printk(KERN_INFO DRV_NAME
1797 		       ": %s: last VLAN challenged slave %s "
1798 		       "left bond %s. VLAN blocking is removed\n",
1799 		       bond_dev->name, slave_dev->name, bond_dev->name);
1800 		bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1801 	}
1802 
1803 	write_unlock_bh(&bond->lock);
1804 
1805 	/* must do this from outside any spinlocks */
1806 	bond_destroy_slave_symlinks(bond_dev, slave_dev);
1807 
1808 	bond_del_vlans_from_slave(bond, slave_dev);
1809 
1810 	/* If the mode USES_PRIMARY, then we should only remove its
1811 	 * promisc and mc settings if it was the curr_active_slave, but that was
1812 	 * already taken care of above when we detached the slave
1813 	 */
1814 	if (!USES_PRIMARY(bond->params.mode)) {
1815 		/* unset promiscuity level from slave */
1816 		if (bond_dev->flags & IFF_PROMISC) {
1817 			dev_set_promiscuity(slave_dev, -1);
1818 		}
1819 
1820 		/* unset allmulti level from slave */
1821 		if (bond_dev->flags & IFF_ALLMULTI) {
1822 			dev_set_allmulti(slave_dev, -1);
1823 		}
1824 
1825 		/* flush master's mc_list from slave */
1826 		netif_tx_lock_bh(bond_dev);
1827 		bond_mc_list_flush(bond_dev, slave_dev);
1828 		netif_tx_unlock_bh(bond_dev);
1829 	}
1830 
1831 	netdev_set_master(slave_dev, NULL);
1832 
1833 	/* close slave before restoring its mac address */
1834 	dev_close(slave_dev);
1835 
1836 	if (!bond->params.fail_over_mac) {
1837 		/* restore original ("permanent") mac address */
1838 		memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1839 		addr.sa_family = slave_dev->type;
1840 		dev_set_mac_address(slave_dev, &addr);
1841 	}
1842 
1843 	slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1844 				   IFF_SLAVE_INACTIVE | IFF_BONDING |
1845 				   IFF_SLAVE_NEEDARP);
1846 
1847 	kfree(slave);
1848 
1849 	return 0;  /* deletion OK */
1850 }
1851 
1852 /*
1853 * Destroy a bonding device.
1854 * Must be under rtnl_lock when this function is called.
1855 */
1856 void bond_destroy(struct bonding *bond)
1857 {
1858 	bond_deinit(bond->dev);
1859 	bond_destroy_sysfs_entry(bond);
1860 	unregister_netdevice(bond->dev);
1861 }
1862 
1863 /*
1864 * First release a slave and than destroy the bond if no more slaves iare left.
1865 * Must be under rtnl_lock when this function is called.
1866 */
1867 int  bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev)
1868 {
1869 	struct bonding *bond = bond_dev->priv;
1870 	int ret;
1871 
1872 	ret = bond_release(bond_dev, slave_dev);
1873 	if ((ret == 0) && (bond->slave_cnt == 0)) {
1874 		printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n",
1875 		       bond_dev->name, bond_dev->name);
1876 		bond_destroy(bond);
1877 	}
1878 	return ret;
1879 }
1880 
1881 /*
1882  * This function releases all slaves.
1883  */
1884 static int bond_release_all(struct net_device *bond_dev)
1885 {
1886 	struct bonding *bond = bond_dev->priv;
1887 	struct slave *slave;
1888 	struct net_device *slave_dev;
1889 	struct sockaddr addr;
1890 
1891 	write_lock_bh(&bond->lock);
1892 
1893 	netif_carrier_off(bond_dev);
1894 
1895 	if (bond->slave_cnt == 0) {
1896 		goto out;
1897 	}
1898 
1899 	bond->current_arp_slave = NULL;
1900 	bond->primary_slave = NULL;
1901 	bond_change_active_slave(bond, NULL);
1902 
1903 	while ((slave = bond->first_slave) != NULL) {
1904 		/* Inform AD package of unbinding of slave
1905 		 * before slave is detached from the list.
1906 		 */
1907 		if (bond->params.mode == BOND_MODE_8023AD) {
1908 			bond_3ad_unbind_slave(slave);
1909 		}
1910 
1911 		slave_dev = slave->dev;
1912 		bond_detach_slave(bond, slave);
1913 
1914 		/* now that the slave is detached, unlock and perform
1915 		 * all the undo steps that should not be called from
1916 		 * within a lock.
1917 		 */
1918 		write_unlock_bh(&bond->lock);
1919 
1920 		if ((bond->params.mode == BOND_MODE_TLB) ||
1921 		    (bond->params.mode == BOND_MODE_ALB)) {
1922 			/* must be called only after the slave
1923 			 * has been detached from the list
1924 			 */
1925 			bond_alb_deinit_slave(bond, slave);
1926 		}
1927 
1928 		bond_compute_features(bond);
1929 
1930 		bond_destroy_slave_symlinks(bond_dev, slave_dev);
1931 		bond_del_vlans_from_slave(bond, slave_dev);
1932 
1933 		/* If the mode USES_PRIMARY, then we should only remove its
1934 		 * promisc and mc settings if it was the curr_active_slave, but that was
1935 		 * already taken care of above when we detached the slave
1936 		 */
1937 		if (!USES_PRIMARY(bond->params.mode)) {
1938 			/* unset promiscuity level from slave */
1939 			if (bond_dev->flags & IFF_PROMISC) {
1940 				dev_set_promiscuity(slave_dev, -1);
1941 			}
1942 
1943 			/* unset allmulti level from slave */
1944 			if (bond_dev->flags & IFF_ALLMULTI) {
1945 				dev_set_allmulti(slave_dev, -1);
1946 			}
1947 
1948 			/* flush master's mc_list from slave */
1949 			netif_tx_lock_bh(bond_dev);
1950 			bond_mc_list_flush(bond_dev, slave_dev);
1951 			netif_tx_unlock_bh(bond_dev);
1952 		}
1953 
1954 		netdev_set_master(slave_dev, NULL);
1955 
1956 		/* close slave before restoring its mac address */
1957 		dev_close(slave_dev);
1958 
1959 		if (!bond->params.fail_over_mac) {
1960 			/* restore original ("permanent") mac address*/
1961 			memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1962 			addr.sa_family = slave_dev->type;
1963 			dev_set_mac_address(slave_dev, &addr);
1964 		}
1965 
1966 		slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1967 					   IFF_SLAVE_INACTIVE);
1968 
1969 		kfree(slave);
1970 
1971 		/* re-acquire the lock before getting the next slave */
1972 		write_lock_bh(&bond->lock);
1973 	}
1974 
1975 	/* zero the mac address of the master so it will be
1976 	 * set by the application to the mac address of the
1977 	 * first slave
1978 	 */
1979 	memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1980 
1981 	if (list_empty(&bond->vlan_list)) {
1982 		bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1983 	} else {
1984 		printk(KERN_WARNING DRV_NAME
1985 		       ": %s: Warning: clearing HW address of %s while it "
1986 		       "still has VLANs.\n",
1987 		       bond_dev->name, bond_dev->name);
1988 		printk(KERN_WARNING DRV_NAME
1989 		       ": %s: When re-adding slaves, make sure the bond's "
1990 		       "HW address matches its VLANs'.\n",
1991 		       bond_dev->name);
1992 	}
1993 
1994 	printk(KERN_INFO DRV_NAME
1995 	       ": %s: released all slaves\n",
1996 	       bond_dev->name);
1997 
1998 out:
1999 	write_unlock_bh(&bond->lock);
2000 
2001 	return 0;
2002 }
2003 
2004 /*
2005  * This function changes the active slave to slave <slave_dev>.
2006  * It returns -EINVAL in the following cases.
2007  *  - <slave_dev> is not found in the list.
2008  *  - There is not active slave now.
2009  *  - <slave_dev> is already active.
2010  *  - The link state of <slave_dev> is not BOND_LINK_UP.
2011  *  - <slave_dev> is not running.
2012  * In these cases, this fuction does nothing.
2013  * In the other cases, currnt_slave pointer is changed and 0 is returned.
2014  */
2015 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2016 {
2017 	struct bonding *bond = bond_dev->priv;
2018 	struct slave *old_active = NULL;
2019 	struct slave *new_active = NULL;
2020 	int res = 0;
2021 
2022 	if (!USES_PRIMARY(bond->params.mode)) {
2023 		return -EINVAL;
2024 	}
2025 
2026 	/* Verify that master_dev is indeed the master of slave_dev */
2027 	if (!(slave_dev->flags & IFF_SLAVE) ||
2028 	    (slave_dev->master != bond_dev)) {
2029 		return -EINVAL;
2030 	}
2031 
2032 	read_lock(&bond->lock);
2033 
2034 	read_lock(&bond->curr_slave_lock);
2035 	old_active = bond->curr_active_slave;
2036 	read_unlock(&bond->curr_slave_lock);
2037 
2038 	new_active = bond_get_slave_by_dev(bond, slave_dev);
2039 
2040 	/*
2041 	 * Changing to the current active: do nothing; return success.
2042 	 */
2043 	if (new_active && (new_active == old_active)) {
2044 		read_unlock(&bond->lock);
2045 		return 0;
2046 	}
2047 
2048 	if ((new_active) &&
2049 	    (old_active) &&
2050 	    (new_active->link == BOND_LINK_UP) &&
2051 	    IS_UP(new_active->dev)) {
2052 		write_lock_bh(&bond->curr_slave_lock);
2053 		bond_change_active_slave(bond, new_active);
2054 		write_unlock_bh(&bond->curr_slave_lock);
2055 	} else {
2056 		res = -EINVAL;
2057 	}
2058 
2059 	read_unlock(&bond->lock);
2060 
2061 	return res;
2062 }
2063 
2064 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2065 {
2066 	struct bonding *bond = bond_dev->priv;
2067 
2068 	info->bond_mode = bond->params.mode;
2069 	info->miimon = bond->params.miimon;
2070 
2071 	read_lock(&bond->lock);
2072 	info->num_slaves = bond->slave_cnt;
2073 	read_unlock(&bond->lock);
2074 
2075 	return 0;
2076 }
2077 
2078 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2079 {
2080 	struct bonding *bond = bond_dev->priv;
2081 	struct slave *slave;
2082 	int i, found = 0;
2083 
2084 	if (info->slave_id < 0) {
2085 		return -ENODEV;
2086 	}
2087 
2088 	read_lock(&bond->lock);
2089 
2090 	bond_for_each_slave(bond, slave, i) {
2091 		if (i == (int)info->slave_id) {
2092 			found = 1;
2093 			break;
2094 		}
2095 	}
2096 
2097 	read_unlock(&bond->lock);
2098 
2099 	if (found) {
2100 		strcpy(info->slave_name, slave->dev->name);
2101 		info->link = slave->link;
2102 		info->state = slave->state;
2103 		info->link_failure_count = slave->link_failure_count;
2104 	} else {
2105 		return -ENODEV;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 /*-------------------------------- Monitoring -------------------------------*/
2112 
2113 /*
2114  * if !have_locks, return nonzero if a failover is necessary.  if
2115  * have_locks, do whatever failover activities are needed.
2116  *
2117  * This is to separate the inspection and failover steps for locking
2118  * purposes; failover requires rtnl, but acquiring it for every
2119  * inspection is undesirable, so a wrapper first does inspection, and
2120  * the acquires the necessary locks and calls again to perform
2121  * failover if needed.  Since all locks are dropped, a complete
2122  * restart is needed between calls.
2123  */
2124 static int __bond_mii_monitor(struct bonding *bond, int have_locks)
2125 {
2126 	struct slave *slave, *oldcurrent;
2127 	int do_failover = 0;
2128 	int i;
2129 
2130 	if (bond->slave_cnt == 0)
2131 		goto out;
2132 
2133 	/* we will try to read the link status of each of our slaves, and
2134 	 * set their IFF_RUNNING flag appropriately. For each slave not
2135 	 * supporting MII status, we won't do anything so that a user-space
2136 	 * program could monitor the link itself if needed.
2137 	 */
2138 
2139 	if (bond->send_grat_arp) {
2140 		if (bond->curr_active_slave && test_bit(__LINK_STATE_LINKWATCH_PENDING,
2141 				&bond->curr_active_slave->dev->state))
2142 			dprintk("Needs to send gratuitous arp but not yet\n");
2143 		else {
2144 			dprintk("sending delayed gratuitous arp on on %s\n",
2145 				bond->curr_active_slave->dev->name);
2146 			bond_send_gratuitous_arp(bond);
2147 			bond->send_grat_arp = 0;
2148 		}
2149 	}
2150 	read_lock(&bond->curr_slave_lock);
2151 	oldcurrent = bond->curr_active_slave;
2152 	read_unlock(&bond->curr_slave_lock);
2153 
2154 	bond_for_each_slave(bond, slave, i) {
2155 		struct net_device *slave_dev = slave->dev;
2156 		int link_state;
2157 		u16 old_speed = slave->speed;
2158 		u8 old_duplex = slave->duplex;
2159 
2160 		link_state = bond_check_dev_link(bond, slave_dev, 0);
2161 
2162 		switch (slave->link) {
2163 		case BOND_LINK_UP:	/* the link was up */
2164 			if (link_state == BMSR_LSTATUS) {
2165 				if (!oldcurrent) {
2166 					if (!have_locks)
2167 						return 1;
2168 					do_failover = 1;
2169 				}
2170 				break;
2171 			} else { /* link going down */
2172 				slave->link  = BOND_LINK_FAIL;
2173 				slave->delay = bond->params.downdelay;
2174 
2175 				if (slave->link_failure_count < UINT_MAX) {
2176 					slave->link_failure_count++;
2177 				}
2178 
2179 				if (bond->params.downdelay) {
2180 					printk(KERN_INFO DRV_NAME
2181 					       ": %s: link status down for %s "
2182 					       "interface %s, disabling it in "
2183 					       "%d ms.\n",
2184 					       bond->dev->name,
2185 					       IS_UP(slave_dev)
2186 					       ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
2187 						  ? ((slave == oldcurrent)
2188 						     ? "active " : "backup ")
2189 						  : "")
2190 					       : "idle ",
2191 					       slave_dev->name,
2192 					       bond->params.downdelay * bond->params.miimon);
2193 				}
2194 			}
2195 			/* no break ! fall through the BOND_LINK_FAIL test to
2196 			   ensure proper action to be taken
2197 			*/
2198 		case BOND_LINK_FAIL:	/* the link has just gone down */
2199 			if (link_state != BMSR_LSTATUS) {
2200 				/* link stays down */
2201 				if (slave->delay <= 0) {
2202 					if (!have_locks)
2203 						return 1;
2204 
2205 					/* link down for too long time */
2206 					slave->link = BOND_LINK_DOWN;
2207 
2208 					/* in active/backup mode, we must
2209 					 * completely disable this interface
2210 					 */
2211 					if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ||
2212 					    (bond->params.mode == BOND_MODE_8023AD)) {
2213 						bond_set_slave_inactive_flags(slave);
2214 					}
2215 
2216 					printk(KERN_INFO DRV_NAME
2217 					       ": %s: link status definitely "
2218 					       "down for interface %s, "
2219 					       "disabling it\n",
2220 					       bond->dev->name,
2221 					       slave_dev->name);
2222 
2223 					/* notify ad that the link status has changed */
2224 					if (bond->params.mode == BOND_MODE_8023AD) {
2225 						bond_3ad_handle_link_change(slave, BOND_LINK_DOWN);
2226 					}
2227 
2228 					if ((bond->params.mode == BOND_MODE_TLB) ||
2229 					    (bond->params.mode == BOND_MODE_ALB)) {
2230 						bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN);
2231 					}
2232 
2233 					if (slave == oldcurrent) {
2234 						do_failover = 1;
2235 					}
2236 				} else {
2237 					slave->delay--;
2238 				}
2239 			} else {
2240 				/* link up again */
2241 				slave->link  = BOND_LINK_UP;
2242 				slave->jiffies = jiffies;
2243 				printk(KERN_INFO DRV_NAME
2244 				       ": %s: link status up again after %d "
2245 				       "ms for interface %s.\n",
2246 				       bond->dev->name,
2247 				       (bond->params.downdelay - slave->delay) * bond->params.miimon,
2248 				       slave_dev->name);
2249 			}
2250 			break;
2251 		case BOND_LINK_DOWN:	/* the link was down */
2252 			if (link_state != BMSR_LSTATUS) {
2253 				/* the link stays down, nothing more to do */
2254 				break;
2255 			} else {	/* link going up */
2256 				slave->link  = BOND_LINK_BACK;
2257 				slave->delay = bond->params.updelay;
2258 
2259 				if (bond->params.updelay) {
2260 					/* if updelay == 0, no need to
2261 					   advertise about a 0 ms delay */
2262 					printk(KERN_INFO DRV_NAME
2263 					       ": %s: link status up for "
2264 					       "interface %s, enabling it "
2265 					       "in %d ms.\n",
2266 					       bond->dev->name,
2267 					       slave_dev->name,
2268 					       bond->params.updelay * bond->params.miimon);
2269 				}
2270 			}
2271 			/* no break ! fall through the BOND_LINK_BACK state in
2272 			   case there's something to do.
2273 			*/
2274 		case BOND_LINK_BACK:	/* the link has just come back */
2275 			if (link_state != BMSR_LSTATUS) {
2276 				/* link down again */
2277 				slave->link  = BOND_LINK_DOWN;
2278 
2279 				printk(KERN_INFO DRV_NAME
2280 				       ": %s: link status down again after %d "
2281 				       "ms for interface %s.\n",
2282 				       bond->dev->name,
2283 				       (bond->params.updelay - slave->delay) * bond->params.miimon,
2284 				       slave_dev->name);
2285 			} else {
2286 				/* link stays up */
2287 				if (slave->delay == 0) {
2288 					if (!have_locks)
2289 						return 1;
2290 
2291 					/* now the link has been up for long time enough */
2292 					slave->link = BOND_LINK_UP;
2293 					slave->jiffies = jiffies;
2294 
2295 					if (bond->params.mode == BOND_MODE_8023AD) {
2296 						/* prevent it from being the active one */
2297 						slave->state = BOND_STATE_BACKUP;
2298 					} else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2299 						/* make it immediately active */
2300 						slave->state = BOND_STATE_ACTIVE;
2301 					} else if (slave != bond->primary_slave) {
2302 						/* prevent it from being the active one */
2303 						slave->state = BOND_STATE_BACKUP;
2304 					}
2305 
2306 					printk(KERN_INFO DRV_NAME
2307 					       ": %s: link status definitely "
2308 					       "up for interface %s.\n",
2309 					       bond->dev->name,
2310 					       slave_dev->name);
2311 
2312 					/* notify ad that the link status has changed */
2313 					if (bond->params.mode == BOND_MODE_8023AD) {
2314 						bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2315 					}
2316 
2317 					if ((bond->params.mode == BOND_MODE_TLB) ||
2318 					    (bond->params.mode == BOND_MODE_ALB)) {
2319 						bond_alb_handle_link_change(bond, slave, BOND_LINK_UP);
2320 					}
2321 
2322 					if ((!oldcurrent) ||
2323 					    (slave == bond->primary_slave)) {
2324 						do_failover = 1;
2325 					}
2326 				} else {
2327 					slave->delay--;
2328 				}
2329 			}
2330 			break;
2331 		default:
2332 			/* Should not happen */
2333 			printk(KERN_ERR DRV_NAME
2334 			       ": %s: Error: %s Illegal value (link=%d)\n",
2335 			       bond->dev->name,
2336 			       slave->dev->name,
2337 			       slave->link);
2338 			goto out;
2339 		} /* end of switch (slave->link) */
2340 
2341 		bond_update_speed_duplex(slave);
2342 
2343 		if (bond->params.mode == BOND_MODE_8023AD) {
2344 			if (old_speed != slave->speed) {
2345 				bond_3ad_adapter_speed_changed(slave);
2346 			}
2347 
2348 			if (old_duplex != slave->duplex) {
2349 				bond_3ad_adapter_duplex_changed(slave);
2350 			}
2351 		}
2352 
2353 	} /* end of for */
2354 
2355 	if (do_failover) {
2356 		ASSERT_RTNL();
2357 
2358 		write_lock_bh(&bond->curr_slave_lock);
2359 
2360 		bond_select_active_slave(bond);
2361 
2362 		write_unlock_bh(&bond->curr_slave_lock);
2363 
2364 	} else
2365 		bond_set_carrier(bond);
2366 
2367 out:
2368 	return 0;
2369 }
2370 
2371 /*
2372  * bond_mii_monitor
2373  *
2374  * Really a wrapper that splits the mii monitor into two phases: an
2375  * inspection, then (if inspection indicates something needs to be
2376  * done) an acquisition of appropriate locks followed by another pass
2377  * to implement whatever link state changes are indicated.
2378  */
2379 void bond_mii_monitor(struct work_struct *work)
2380 {
2381 	struct bonding *bond = container_of(work, struct bonding,
2382 					    mii_work.work);
2383 	unsigned long delay;
2384 
2385 	read_lock(&bond->lock);
2386 	if (bond->kill_timers) {
2387 		read_unlock(&bond->lock);
2388 		return;
2389 	}
2390 	if (__bond_mii_monitor(bond, 0)) {
2391 		read_unlock(&bond->lock);
2392 		rtnl_lock();
2393 		read_lock(&bond->lock);
2394 		__bond_mii_monitor(bond, 1);
2395 		read_unlock(&bond->lock);
2396 		rtnl_unlock();	/* might sleep, hold no other locks */
2397 		read_lock(&bond->lock);
2398 	}
2399 
2400 	delay = ((bond->params.miimon * HZ) / 1000) ? : 1;
2401 	read_unlock(&bond->lock);
2402 	queue_delayed_work(bond->wq, &bond->mii_work, delay);
2403 }
2404 
2405 static __be32 bond_glean_dev_ip(struct net_device *dev)
2406 {
2407 	struct in_device *idev;
2408 	struct in_ifaddr *ifa;
2409 	__be32 addr = 0;
2410 
2411 	if (!dev)
2412 		return 0;
2413 
2414 	rcu_read_lock();
2415 	idev = __in_dev_get_rcu(dev);
2416 	if (!idev)
2417 		goto out;
2418 
2419 	ifa = idev->ifa_list;
2420 	if (!ifa)
2421 		goto out;
2422 
2423 	addr = ifa->ifa_local;
2424 out:
2425 	rcu_read_unlock();
2426 	return addr;
2427 }
2428 
2429 static int bond_has_ip(struct bonding *bond)
2430 {
2431 	struct vlan_entry *vlan, *vlan_next;
2432 
2433 	if (bond->master_ip)
2434 		return 1;
2435 
2436 	if (list_empty(&bond->vlan_list))
2437 		return 0;
2438 
2439 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2440 				 vlan_list) {
2441 		if (vlan->vlan_ip)
2442 			return 1;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2449 {
2450 	struct vlan_entry *vlan, *vlan_next;
2451 
2452 	if (ip == bond->master_ip)
2453 		return 1;
2454 
2455 	if (list_empty(&bond->vlan_list))
2456 		return 0;
2457 
2458 	list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2459 				 vlan_list) {
2460 		if (ip == vlan->vlan_ip)
2461 			return 1;
2462 	}
2463 
2464 	return 0;
2465 }
2466 
2467 /*
2468  * We go to the (large) trouble of VLAN tagging ARP frames because
2469  * switches in VLAN mode (especially if ports are configured as
2470  * "native" to a VLAN) might not pass non-tagged frames.
2471  */
2472 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2473 {
2474 	struct sk_buff *skb;
2475 
2476 	dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2477 	       slave_dev->name, dest_ip, src_ip, vlan_id);
2478 
2479 	skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2480 			 NULL, slave_dev->dev_addr, NULL);
2481 
2482 	if (!skb) {
2483 		printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2484 		return;
2485 	}
2486 	if (vlan_id) {
2487 		skb = vlan_put_tag(skb, vlan_id);
2488 		if (!skb) {
2489 			printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2490 			return;
2491 		}
2492 	}
2493 	arp_xmit(skb);
2494 }
2495 
2496 
2497 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2498 {
2499 	int i, vlan_id, rv;
2500 	__be32 *targets = bond->params.arp_targets;
2501 	struct vlan_entry *vlan, *vlan_next;
2502 	struct net_device *vlan_dev;
2503 	struct flowi fl;
2504 	struct rtable *rt;
2505 
2506 	for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2507 		if (!targets[i])
2508 			continue;
2509 		dprintk("basa: target %x\n", targets[i]);
2510 		if (list_empty(&bond->vlan_list)) {
2511 			dprintk("basa: empty vlan: arp_send\n");
2512 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2513 				      bond->master_ip, 0);
2514 			continue;
2515 		}
2516 
2517 		/*
2518 		 * If VLANs are configured, we do a route lookup to
2519 		 * determine which VLAN interface would be used, so we
2520 		 * can tag the ARP with the proper VLAN tag.
2521 		 */
2522 		memset(&fl, 0, sizeof(fl));
2523 		fl.fl4_dst = targets[i];
2524 		fl.fl4_tos = RTO_ONLINK;
2525 
2526 		rv = ip_route_output_key(&init_net, &rt, &fl);
2527 		if (rv) {
2528 			if (net_ratelimit()) {
2529 				printk(KERN_WARNING DRV_NAME
2530 			     ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2531 				       bond->dev->name, NIPQUAD(fl.fl4_dst));
2532 			}
2533 			continue;
2534 		}
2535 
2536 		/*
2537 		 * This target is not on a VLAN
2538 		 */
2539 		if (rt->u.dst.dev == bond->dev) {
2540 			ip_rt_put(rt);
2541 			dprintk("basa: rtdev == bond->dev: arp_send\n");
2542 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2543 				      bond->master_ip, 0);
2544 			continue;
2545 		}
2546 
2547 		vlan_id = 0;
2548 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2549 					 vlan_list) {
2550 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2551 			if (vlan_dev == rt->u.dst.dev) {
2552 				vlan_id = vlan->vlan_id;
2553 				dprintk("basa: vlan match on %s %d\n",
2554 				       vlan_dev->name, vlan_id);
2555 				break;
2556 			}
2557 		}
2558 
2559 		if (vlan_id) {
2560 			ip_rt_put(rt);
2561 			bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2562 				      vlan->vlan_ip, vlan_id);
2563 			continue;
2564 		}
2565 
2566 		if (net_ratelimit()) {
2567 			printk(KERN_WARNING DRV_NAME
2568 	       ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2569 			       bond->dev->name, NIPQUAD(fl.fl4_dst),
2570 			       rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2571 		}
2572 		ip_rt_put(rt);
2573 	}
2574 }
2575 
2576 /*
2577  * Kick out a gratuitous ARP for an IP on the bonding master plus one
2578  * for each VLAN above us.
2579  */
2580 static void bond_send_gratuitous_arp(struct bonding *bond)
2581 {
2582 	struct slave *slave = bond->curr_active_slave;
2583 	struct vlan_entry *vlan;
2584 	struct net_device *vlan_dev;
2585 
2586 	dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2587 				slave ? slave->dev->name : "NULL");
2588 	if (!slave)
2589 		return;
2590 
2591 	if (bond->master_ip) {
2592 		bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2593 				bond->master_ip, 0);
2594 	}
2595 
2596 	list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2597 		vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2598 		if (vlan->vlan_ip) {
2599 			bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2600 				      vlan->vlan_ip, vlan->vlan_id);
2601 		}
2602 	}
2603 }
2604 
2605 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2606 {
2607 	int i;
2608 	__be32 *targets = bond->params.arp_targets;
2609 
2610 	targets = bond->params.arp_targets;
2611 	for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2612 		dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2613 			"%u.%u.%u.%u bhti(tip) %d\n",
2614 		       NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2615 		       bond_has_this_ip(bond, tip));
2616 		if (sip == targets[i]) {
2617 			if (bond_has_this_ip(bond, tip))
2618 				slave->last_arp_rx = jiffies;
2619 			return;
2620 		}
2621 	}
2622 }
2623 
2624 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2625 {
2626 	struct arphdr *arp;
2627 	struct slave *slave;
2628 	struct bonding *bond;
2629 	unsigned char *arp_ptr;
2630 	__be32 sip, tip;
2631 
2632 	if (dev_net(dev) != &init_net)
2633 		goto out;
2634 
2635 	if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2636 		goto out;
2637 
2638 	bond = dev->priv;
2639 	read_lock(&bond->lock);
2640 
2641 	dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2642 		bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2643 		orig_dev ? orig_dev->name : "NULL");
2644 
2645 	slave = bond_get_slave_by_dev(bond, orig_dev);
2646 	if (!slave || !slave_do_arp_validate(bond, slave))
2647 		goto out_unlock;
2648 
2649 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
2650 		goto out_unlock;
2651 
2652 	arp = arp_hdr(skb);
2653 	if (arp->ar_hln != dev->addr_len ||
2654 	    skb->pkt_type == PACKET_OTHERHOST ||
2655 	    skb->pkt_type == PACKET_LOOPBACK ||
2656 	    arp->ar_hrd != htons(ARPHRD_ETHER) ||
2657 	    arp->ar_pro != htons(ETH_P_IP) ||
2658 	    arp->ar_pln != 4)
2659 		goto out_unlock;
2660 
2661 	arp_ptr = (unsigned char *)(arp + 1);
2662 	arp_ptr += dev->addr_len;
2663 	memcpy(&sip, arp_ptr, 4);
2664 	arp_ptr += 4 + dev->addr_len;
2665 	memcpy(&tip, arp_ptr, 4);
2666 
2667 	dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2668 		" tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2669 		slave->state, bond->params.arp_validate,
2670 		slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2671 
2672 	/*
2673 	 * Backup slaves won't see the ARP reply, but do come through
2674 	 * here for each ARP probe (so we swap the sip/tip to validate
2675 	 * the probe).  In a "redundant switch, common router" type of
2676 	 * configuration, the ARP probe will (hopefully) travel from
2677 	 * the active, through one switch, the router, then the other
2678 	 * switch before reaching the backup.
2679 	 */
2680 	if (slave->state == BOND_STATE_ACTIVE)
2681 		bond_validate_arp(bond, slave, sip, tip);
2682 	else
2683 		bond_validate_arp(bond, slave, tip, sip);
2684 
2685 out_unlock:
2686 	read_unlock(&bond->lock);
2687 out:
2688 	dev_kfree_skb(skb);
2689 	return NET_RX_SUCCESS;
2690 }
2691 
2692 /*
2693  * this function is called regularly to monitor each slave's link
2694  * ensuring that traffic is being sent and received when arp monitoring
2695  * is used in load-balancing mode. if the adapter has been dormant, then an
2696  * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2697  * arp monitoring in active backup mode.
2698  */
2699 void bond_loadbalance_arp_mon(struct work_struct *work)
2700 {
2701 	struct bonding *bond = container_of(work, struct bonding,
2702 					    arp_work.work);
2703 	struct slave *slave, *oldcurrent;
2704 	int do_failover = 0;
2705 	int delta_in_ticks;
2706 	int i;
2707 
2708 	read_lock(&bond->lock);
2709 
2710 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2711 
2712 	if (bond->kill_timers) {
2713 		goto out;
2714 	}
2715 
2716 	if (bond->slave_cnt == 0) {
2717 		goto re_arm;
2718 	}
2719 
2720 	read_lock(&bond->curr_slave_lock);
2721 	oldcurrent = bond->curr_active_slave;
2722 	read_unlock(&bond->curr_slave_lock);
2723 
2724 	/* see if any of the previous devices are up now (i.e. they have
2725 	 * xmt and rcv traffic). the curr_active_slave does not come into
2726 	 * the picture unless it is null. also, slave->jiffies is not needed
2727 	 * here because we send an arp on each slave and give a slave as
2728 	 * long as it needs to get the tx/rx within the delta.
2729 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2730 	 *       so it can wait
2731 	 */
2732 	bond_for_each_slave(bond, slave, i) {
2733 		if (slave->link != BOND_LINK_UP) {
2734 			if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) &&
2735 			    time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) {
2736 
2737 				slave->link  = BOND_LINK_UP;
2738 				slave->state = BOND_STATE_ACTIVE;
2739 
2740 				/* primary_slave has no meaning in round-robin
2741 				 * mode. the window of a slave being up and
2742 				 * curr_active_slave being null after enslaving
2743 				 * is closed.
2744 				 */
2745 				if (!oldcurrent) {
2746 					printk(KERN_INFO DRV_NAME
2747 					       ": %s: link status definitely "
2748 					       "up for interface %s, ",
2749 					       bond->dev->name,
2750 					       slave->dev->name);
2751 					do_failover = 1;
2752 				} else {
2753 					printk(KERN_INFO DRV_NAME
2754 					       ": %s: interface %s is now up\n",
2755 					       bond->dev->name,
2756 					       slave->dev->name);
2757 				}
2758 			}
2759 		} else {
2760 			/* slave->link == BOND_LINK_UP */
2761 
2762 			/* not all switches will respond to an arp request
2763 			 * when the source ip is 0, so don't take the link down
2764 			 * if we don't know our ip yet
2765 			 */
2766 			if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) ||
2767 			    (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks) &&
2768 			     bond_has_ip(bond))) {
2769 
2770 				slave->link  = BOND_LINK_DOWN;
2771 				slave->state = BOND_STATE_BACKUP;
2772 
2773 				if (slave->link_failure_count < UINT_MAX) {
2774 					slave->link_failure_count++;
2775 				}
2776 
2777 				printk(KERN_INFO DRV_NAME
2778 				       ": %s: interface %s is now down.\n",
2779 				       bond->dev->name,
2780 				       slave->dev->name);
2781 
2782 				if (slave == oldcurrent) {
2783 					do_failover = 1;
2784 				}
2785 			}
2786 		}
2787 
2788 		/* note: if switch is in round-robin mode, all links
2789 		 * must tx arp to ensure all links rx an arp - otherwise
2790 		 * links may oscillate or not come up at all; if switch is
2791 		 * in something like xor mode, there is nothing we can
2792 		 * do - all replies will be rx'ed on same link causing slaves
2793 		 * to be unstable during low/no traffic periods
2794 		 */
2795 		if (IS_UP(slave->dev)) {
2796 			bond_arp_send_all(bond, slave);
2797 		}
2798 	}
2799 
2800 	if (do_failover) {
2801 		write_lock_bh(&bond->curr_slave_lock);
2802 
2803 		bond_select_active_slave(bond);
2804 
2805 		write_unlock_bh(&bond->curr_slave_lock);
2806 	}
2807 
2808 re_arm:
2809 	if (bond->params.arp_interval)
2810 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2811 out:
2812 	read_unlock(&bond->lock);
2813 }
2814 
2815 /*
2816  * When using arp monitoring in active-backup mode, this function is
2817  * called to determine if any backup slaves have went down or a new
2818  * current slave needs to be found.
2819  * The backup slaves never generate traffic, they are considered up by merely
2820  * receiving traffic. If the current slave goes down, each backup slave will
2821  * be given the opportunity to tx/rx an arp before being taken down - this
2822  * prevents all slaves from being taken down due to the current slave not
2823  * sending any traffic for the backups to receive. The arps are not necessarily
2824  * necessary, any tx and rx traffic will keep the current slave up. While any
2825  * rx traffic will keep the backup slaves up, the current slave is responsible
2826  * for generating traffic to keep them up regardless of any other traffic they
2827  * may have received.
2828  * see loadbalance_arp_monitor for arp monitoring in load balancing mode
2829  */
2830 void bond_activebackup_arp_mon(struct work_struct *work)
2831 {
2832 	struct bonding *bond = container_of(work, struct bonding,
2833 					    arp_work.work);
2834 	struct slave *slave;
2835 	int delta_in_ticks;
2836 	int i;
2837 
2838 	read_lock(&bond->lock);
2839 
2840 	delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2841 
2842 	if (bond->kill_timers) {
2843 		goto out;
2844 	}
2845 
2846 	if (bond->slave_cnt == 0) {
2847 		goto re_arm;
2848 	}
2849 
2850 	/* determine if any slave has come up or any backup slave has
2851 	 * gone down
2852 	 * TODO: what about up/down delay in arp mode? it wasn't here before
2853 	 *       so it can wait
2854 	 */
2855 	bond_for_each_slave(bond, slave, i) {
2856 		if (slave->link != BOND_LINK_UP) {
2857 			if (time_before_eq(jiffies,
2858 			    slave_last_rx(bond, slave) + delta_in_ticks)) {
2859 
2860 				slave->link = BOND_LINK_UP;
2861 
2862 				write_lock_bh(&bond->curr_slave_lock);
2863 
2864 				if ((!bond->curr_active_slave) &&
2865 				    time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks)) {
2866 					bond_change_active_slave(bond, slave);
2867 					bond->current_arp_slave = NULL;
2868 				} else if (bond->curr_active_slave != slave) {
2869 					/* this slave has just come up but we
2870 					 * already have a current slave; this
2871 					 * can also happen if bond_enslave adds
2872 					 * a new slave that is up while we are
2873 					 * searching for a new slave
2874 					 */
2875 					bond_set_slave_inactive_flags(slave);
2876 					bond->current_arp_slave = NULL;
2877 				}
2878 
2879 				bond_set_carrier(bond);
2880 
2881 				if (slave == bond->curr_active_slave) {
2882 					printk(KERN_INFO DRV_NAME
2883 					       ": %s: %s is up and now the "
2884 					       "active interface\n",
2885 					       bond->dev->name,
2886 					       slave->dev->name);
2887 					netif_carrier_on(bond->dev);
2888 				} else {
2889 					printk(KERN_INFO DRV_NAME
2890 					       ": %s: backup interface %s is "
2891 					       "now up\n",
2892 					       bond->dev->name,
2893 					       slave->dev->name);
2894 				}
2895 
2896 				write_unlock_bh(&bond->curr_slave_lock);
2897 			}
2898 		} else {
2899 			read_lock(&bond->curr_slave_lock);
2900 
2901 			if ((slave != bond->curr_active_slave) &&
2902 			    (!bond->current_arp_slave) &&
2903 			    (time_after_eq(jiffies, slave_last_rx(bond, slave) + 3*delta_in_ticks) &&
2904 			     bond_has_ip(bond))) {
2905 				/* a backup slave has gone down; three times
2906 				 * the delta allows the current slave to be
2907 				 * taken out before the backup slave.
2908 				 * note: a non-null current_arp_slave indicates
2909 				 * the curr_active_slave went down and we are
2910 				 * searching for a new one; under this
2911 				 * condition we only take the curr_active_slave
2912 				 * down - this gives each slave a chance to
2913 				 * tx/rx traffic before being taken out
2914 				 */
2915 
2916 				read_unlock(&bond->curr_slave_lock);
2917 
2918 				slave->link  = BOND_LINK_DOWN;
2919 
2920 				if (slave->link_failure_count < UINT_MAX) {
2921 					slave->link_failure_count++;
2922 				}
2923 
2924 				bond_set_slave_inactive_flags(slave);
2925 
2926 				printk(KERN_INFO DRV_NAME
2927 				       ": %s: backup interface %s is now down\n",
2928 				       bond->dev->name,
2929 				       slave->dev->name);
2930 			} else {
2931 				read_unlock(&bond->curr_slave_lock);
2932 			}
2933 		}
2934 	}
2935 
2936 	read_lock(&bond->curr_slave_lock);
2937 	slave = bond->curr_active_slave;
2938 	read_unlock(&bond->curr_slave_lock);
2939 
2940 	if (slave) {
2941 		/* if we have sent traffic in the past 2*arp_intervals but
2942 		 * haven't xmit and rx traffic in that time interval, select
2943 		 * a different slave. slave->jiffies is only updated when
2944 		 * a slave first becomes the curr_active_slave - not necessarily
2945 		 * after every arp; this ensures the slave has a full 2*delta
2946 		 * before being taken out. if a primary is being used, check
2947 		 * if it is up and needs to take over as the curr_active_slave
2948 		 */
2949 		if ((time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) ||
2950 			(time_after_eq(jiffies, slave_last_rx(bond, slave) + 2*delta_in_ticks) &&
2951 			 bond_has_ip(bond))) &&
2952 			time_after_eq(jiffies, slave->jiffies + 2*delta_in_ticks)) {
2953 
2954 			slave->link  = BOND_LINK_DOWN;
2955 
2956 			if (slave->link_failure_count < UINT_MAX) {
2957 				slave->link_failure_count++;
2958 			}
2959 
2960 			printk(KERN_INFO DRV_NAME
2961 			       ": %s: link status down for active interface "
2962 			       "%s, disabling it\n",
2963 			       bond->dev->name,
2964 			       slave->dev->name);
2965 
2966 			write_lock_bh(&bond->curr_slave_lock);
2967 
2968 			bond_select_active_slave(bond);
2969 			slave = bond->curr_active_slave;
2970 
2971 			write_unlock_bh(&bond->curr_slave_lock);
2972 
2973 			bond->current_arp_slave = slave;
2974 
2975 			if (slave) {
2976 				slave->jiffies = jiffies;
2977 			}
2978 		} else if ((bond->primary_slave) &&
2979 			   (bond->primary_slave != slave) &&
2980 			   (bond->primary_slave->link == BOND_LINK_UP)) {
2981 			/* at this point, slave is the curr_active_slave */
2982 			printk(KERN_INFO DRV_NAME
2983 			       ": %s: changing from interface %s to primary "
2984 			       "interface %s\n",
2985 			       bond->dev->name,
2986 			       slave->dev->name,
2987 			       bond->primary_slave->dev->name);
2988 
2989 			/* primary is up so switch to it */
2990 			write_lock_bh(&bond->curr_slave_lock);
2991 			bond_change_active_slave(bond, bond->primary_slave);
2992 			write_unlock_bh(&bond->curr_slave_lock);
2993 
2994 			slave = bond->primary_slave;
2995 			slave->jiffies = jiffies;
2996 		} else {
2997 			bond->current_arp_slave = NULL;
2998 		}
2999 
3000 		/* the current slave must tx an arp to ensure backup slaves
3001 		 * rx traffic
3002 		 */
3003 		if (slave && bond_has_ip(bond)) {
3004 			bond_arp_send_all(bond, slave);
3005 		}
3006 	}
3007 
3008 	/* if we don't have a curr_active_slave, search for the next available
3009 	 * backup slave from the current_arp_slave and make it the candidate
3010 	 * for becoming the curr_active_slave
3011 	 */
3012 	if (!slave) {
3013 		if (!bond->current_arp_slave) {
3014 			bond->current_arp_slave = bond->first_slave;
3015 		}
3016 
3017 		if (bond->current_arp_slave) {
3018 			bond_set_slave_inactive_flags(bond->current_arp_slave);
3019 
3020 			/* search for next candidate */
3021 			bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3022 				if (IS_UP(slave->dev)) {
3023 					slave->link = BOND_LINK_BACK;
3024 					bond_set_slave_active_flags(slave);
3025 					bond_arp_send_all(bond, slave);
3026 					slave->jiffies = jiffies;
3027 					bond->current_arp_slave = slave;
3028 					break;
3029 				}
3030 
3031 				/* if the link state is up at this point, we
3032 				 * mark it down - this can happen if we have
3033 				 * simultaneous link failures and
3034 				 * reselect_active_interface doesn't make this
3035 				 * one the current slave so it is still marked
3036 				 * up when it is actually down
3037 				 */
3038 				if (slave->link == BOND_LINK_UP) {
3039 					slave->link  = BOND_LINK_DOWN;
3040 					if (slave->link_failure_count < UINT_MAX) {
3041 						slave->link_failure_count++;
3042 					}
3043 
3044 					bond_set_slave_inactive_flags(slave);
3045 
3046 					printk(KERN_INFO DRV_NAME
3047 					       ": %s: backup interface %s is "
3048 					       "now down.\n",
3049 					       bond->dev->name,
3050 					       slave->dev->name);
3051 				}
3052 			}
3053 		}
3054 	}
3055 
3056 re_arm:
3057 	if (bond->params.arp_interval) {
3058 		queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3059 	}
3060 out:
3061 	read_unlock(&bond->lock);
3062 }
3063 
3064 /*------------------------------ proc/seq_file-------------------------------*/
3065 
3066 #ifdef CONFIG_PROC_FS
3067 
3068 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
3069 {
3070 	struct bonding *bond = seq->private;
3071 	loff_t off = 0;
3072 	struct slave *slave;
3073 	int i;
3074 
3075 	/* make sure the bond won't be taken away */
3076 	read_lock(&dev_base_lock);
3077 	read_lock(&bond->lock);
3078 
3079 	if (*pos == 0) {
3080 		return SEQ_START_TOKEN;
3081 	}
3082 
3083 	bond_for_each_slave(bond, slave, i) {
3084 		if (++off == *pos) {
3085 			return slave;
3086 		}
3087 	}
3088 
3089 	return NULL;
3090 }
3091 
3092 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3093 {
3094 	struct bonding *bond = seq->private;
3095 	struct slave *slave = v;
3096 
3097 	++*pos;
3098 	if (v == SEQ_START_TOKEN) {
3099 		return bond->first_slave;
3100 	}
3101 
3102 	slave = slave->next;
3103 
3104 	return (slave == bond->first_slave) ? NULL : slave;
3105 }
3106 
3107 static void bond_info_seq_stop(struct seq_file *seq, void *v)
3108 {
3109 	struct bonding *bond = seq->private;
3110 
3111 	read_unlock(&bond->lock);
3112 	read_unlock(&dev_base_lock);
3113 }
3114 
3115 static void bond_info_show_master(struct seq_file *seq)
3116 {
3117 	struct bonding *bond = seq->private;
3118 	struct slave *curr;
3119 	int i;
3120 	u32 target;
3121 
3122 	read_lock(&bond->curr_slave_lock);
3123 	curr = bond->curr_active_slave;
3124 	read_unlock(&bond->curr_slave_lock);
3125 
3126 	seq_printf(seq, "Bonding Mode: %s",
3127 		   bond_mode_name(bond->params.mode));
3128 
3129 	if (bond->params.mode == BOND_MODE_ACTIVEBACKUP &&
3130 	    bond->params.fail_over_mac)
3131 		seq_printf(seq, " (fail_over_mac)");
3132 
3133 	seq_printf(seq, "\n");
3134 
3135 	if (bond->params.mode == BOND_MODE_XOR ||
3136 		bond->params.mode == BOND_MODE_8023AD) {
3137 		seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3138 			xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3139 			bond->params.xmit_policy);
3140 	}
3141 
3142 	if (USES_PRIMARY(bond->params.mode)) {
3143 		seq_printf(seq, "Primary Slave: %s\n",
3144 			   (bond->primary_slave) ?
3145 			   bond->primary_slave->dev->name : "None");
3146 
3147 		seq_printf(seq, "Currently Active Slave: %s\n",
3148 			   (curr) ? curr->dev->name : "None");
3149 	}
3150 
3151 	seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3152 		   "up" : "down");
3153 	seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3154 	seq_printf(seq, "Up Delay (ms): %d\n",
3155 		   bond->params.updelay * bond->params.miimon);
3156 	seq_printf(seq, "Down Delay (ms): %d\n",
3157 		   bond->params.downdelay * bond->params.miimon);
3158 
3159 
3160 	/* ARP information */
3161 	if(bond->params.arp_interval > 0) {
3162 		int printed=0;
3163 		seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3164 				bond->params.arp_interval);
3165 
3166 		seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3167 
3168 		for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3169 			if (!bond->params.arp_targets[i])
3170 				continue;
3171 			if (printed)
3172 				seq_printf(seq, ",");
3173 			target = ntohl(bond->params.arp_targets[i]);
3174 			seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3175 			printed = 1;
3176 		}
3177 		seq_printf(seq, "\n");
3178 	}
3179 
3180 	if (bond->params.mode == BOND_MODE_8023AD) {
3181 		struct ad_info ad_info;
3182 		DECLARE_MAC_BUF(mac);
3183 
3184 		seq_puts(seq, "\n802.3ad info\n");
3185 		seq_printf(seq, "LACP rate: %s\n",
3186 			   (bond->params.lacp_fast) ? "fast" : "slow");
3187 
3188 		if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3189 			seq_printf(seq, "bond %s has no active aggregator\n",
3190 				   bond->dev->name);
3191 		} else {
3192 			seq_printf(seq, "Active Aggregator Info:\n");
3193 
3194 			seq_printf(seq, "\tAggregator ID: %d\n",
3195 				   ad_info.aggregator_id);
3196 			seq_printf(seq, "\tNumber of ports: %d\n",
3197 				   ad_info.ports);
3198 			seq_printf(seq, "\tActor Key: %d\n",
3199 				   ad_info.actor_key);
3200 			seq_printf(seq, "\tPartner Key: %d\n",
3201 				   ad_info.partner_key);
3202 			seq_printf(seq, "\tPartner Mac Address: %s\n",
3203 				   print_mac(mac, ad_info.partner_system));
3204 		}
3205 	}
3206 }
3207 
3208 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3209 {
3210 	struct bonding *bond = seq->private;
3211 	DECLARE_MAC_BUF(mac);
3212 
3213 	seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3214 	seq_printf(seq, "MII Status: %s\n",
3215 		   (slave->link == BOND_LINK_UP) ?  "up" : "down");
3216 	seq_printf(seq, "Link Failure Count: %u\n",
3217 		   slave->link_failure_count);
3218 
3219 	seq_printf(seq,
3220 		   "Permanent HW addr: %s\n",
3221 		   print_mac(mac, slave->perm_hwaddr));
3222 
3223 	if (bond->params.mode == BOND_MODE_8023AD) {
3224 		const struct aggregator *agg
3225 			= SLAVE_AD_INFO(slave).port.aggregator;
3226 
3227 		if (agg) {
3228 			seq_printf(seq, "Aggregator ID: %d\n",
3229 				   agg->aggregator_identifier);
3230 		} else {
3231 			seq_puts(seq, "Aggregator ID: N/A\n");
3232 		}
3233 	}
3234 }
3235 
3236 static int bond_info_seq_show(struct seq_file *seq, void *v)
3237 {
3238 	if (v == SEQ_START_TOKEN) {
3239 		seq_printf(seq, "%s\n", version);
3240 		bond_info_show_master(seq);
3241 	} else {
3242 		bond_info_show_slave(seq, v);
3243 	}
3244 
3245 	return 0;
3246 }
3247 
3248 static struct seq_operations bond_info_seq_ops = {
3249 	.start = bond_info_seq_start,
3250 	.next  = bond_info_seq_next,
3251 	.stop  = bond_info_seq_stop,
3252 	.show  = bond_info_seq_show,
3253 };
3254 
3255 static int bond_info_open(struct inode *inode, struct file *file)
3256 {
3257 	struct seq_file *seq;
3258 	struct proc_dir_entry *proc;
3259 	int res;
3260 
3261 	res = seq_open(file, &bond_info_seq_ops);
3262 	if (!res) {
3263 		/* recover the pointer buried in proc_dir_entry data */
3264 		seq = file->private_data;
3265 		proc = PDE(inode);
3266 		seq->private = proc->data;
3267 	}
3268 
3269 	return res;
3270 }
3271 
3272 static const struct file_operations bond_info_fops = {
3273 	.owner   = THIS_MODULE,
3274 	.open    = bond_info_open,
3275 	.read    = seq_read,
3276 	.llseek  = seq_lseek,
3277 	.release = seq_release,
3278 };
3279 
3280 static int bond_create_proc_entry(struct bonding *bond)
3281 {
3282 	struct net_device *bond_dev = bond->dev;
3283 
3284 	if (bond_proc_dir) {
3285 		bond->proc_entry = proc_create_data(bond_dev->name,
3286 						    S_IRUGO, bond_proc_dir,
3287 						    &bond_info_fops, bond);
3288 		if (bond->proc_entry == NULL) {
3289 			printk(KERN_WARNING DRV_NAME
3290 			       ": Warning: Cannot create /proc/net/%s/%s\n",
3291 			       DRV_NAME, bond_dev->name);
3292 		} else {
3293 			memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3294 		}
3295 	}
3296 
3297 	return 0;
3298 }
3299 
3300 static void bond_remove_proc_entry(struct bonding *bond)
3301 {
3302 	if (bond_proc_dir && bond->proc_entry) {
3303 		remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3304 		memset(bond->proc_file_name, 0, IFNAMSIZ);
3305 		bond->proc_entry = NULL;
3306 	}
3307 }
3308 
3309 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3310  * Caller must hold rtnl_lock.
3311  */
3312 static void bond_create_proc_dir(void)
3313 {
3314 	int len = strlen(DRV_NAME);
3315 
3316 	for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir;
3317 	     bond_proc_dir = bond_proc_dir->next) {
3318 		if ((bond_proc_dir->namelen == len) &&
3319 		    !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3320 			break;
3321 		}
3322 	}
3323 
3324 	if (!bond_proc_dir) {
3325 		bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net);
3326 		if (bond_proc_dir) {
3327 			bond_proc_dir->owner = THIS_MODULE;
3328 		} else {
3329 			printk(KERN_WARNING DRV_NAME
3330 				": Warning: cannot create /proc/net/%s\n",
3331 				DRV_NAME);
3332 		}
3333 	}
3334 }
3335 
3336 /* Destroy the bonding directory under /proc/net, if empty.
3337  * Caller must hold rtnl_lock.
3338  */
3339 static void bond_destroy_proc_dir(void)
3340 {
3341 	struct proc_dir_entry *de;
3342 
3343 	if (!bond_proc_dir) {
3344 		return;
3345 	}
3346 
3347 	/* verify that the /proc dir is empty */
3348 	for (de = bond_proc_dir->subdir; de; de = de->next) {
3349 		/* ignore . and .. */
3350 		if (*(de->name) != '.') {
3351 			break;
3352 		}
3353 	}
3354 
3355 	if (de) {
3356 		if (bond_proc_dir->owner == THIS_MODULE) {
3357 			bond_proc_dir->owner = NULL;
3358 		}
3359 	} else {
3360 		remove_proc_entry(DRV_NAME, init_net.proc_net);
3361 		bond_proc_dir = NULL;
3362 	}
3363 }
3364 #endif /* CONFIG_PROC_FS */
3365 
3366 /*-------------------------- netdev event handling --------------------------*/
3367 
3368 /*
3369  * Change device name
3370  */
3371 static int bond_event_changename(struct bonding *bond)
3372 {
3373 #ifdef CONFIG_PROC_FS
3374 	bond_remove_proc_entry(bond);
3375 	bond_create_proc_entry(bond);
3376 #endif
3377 	down_write(&(bonding_rwsem));
3378         bond_destroy_sysfs_entry(bond);
3379         bond_create_sysfs_entry(bond);
3380 	up_write(&(bonding_rwsem));
3381 	return NOTIFY_DONE;
3382 }
3383 
3384 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3385 {
3386 	struct bonding *event_bond = bond_dev->priv;
3387 
3388 	switch (event) {
3389 	case NETDEV_CHANGENAME:
3390 		return bond_event_changename(event_bond);
3391 	case NETDEV_UNREGISTER:
3392 		bond_release_all(event_bond->dev);
3393 		break;
3394 	default:
3395 		break;
3396 	}
3397 
3398 	return NOTIFY_DONE;
3399 }
3400 
3401 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3402 {
3403 	struct net_device *bond_dev = slave_dev->master;
3404 	struct bonding *bond = bond_dev->priv;
3405 
3406 	switch (event) {
3407 	case NETDEV_UNREGISTER:
3408 		if (bond_dev) {
3409 			if (bond->setup_by_slave)
3410 				bond_release_and_destroy(bond_dev, slave_dev);
3411 			else
3412 				bond_release(bond_dev, slave_dev);
3413 		}
3414 		break;
3415 	case NETDEV_CHANGE:
3416 		/*
3417 		 * TODO: is this what we get if somebody
3418 		 * sets up a hierarchical bond, then rmmod's
3419 		 * one of the slave bonding devices?
3420 		 */
3421 		break;
3422 	case NETDEV_DOWN:
3423 		/*
3424 		 * ... Or is it this?
3425 		 */
3426 		break;
3427 	case NETDEV_CHANGEMTU:
3428 		/*
3429 		 * TODO: Should slaves be allowed to
3430 		 * independently alter their MTU?  For
3431 		 * an active-backup bond, slaves need
3432 		 * not be the same type of device, so
3433 		 * MTUs may vary.  For other modes,
3434 		 * slaves arguably should have the
3435 		 * same MTUs. To do this, we'd need to
3436 		 * take over the slave's change_mtu
3437 		 * function for the duration of their
3438 		 * servitude.
3439 		 */
3440 		break;
3441 	case NETDEV_CHANGENAME:
3442 		/*
3443 		 * TODO: handle changing the primary's name
3444 		 */
3445 		break;
3446 	case NETDEV_FEAT_CHANGE:
3447 		bond_compute_features(bond);
3448 		break;
3449 	default:
3450 		break;
3451 	}
3452 
3453 	return NOTIFY_DONE;
3454 }
3455 
3456 /*
3457  * bond_netdev_event: handle netdev notifier chain events.
3458  *
3459  * This function receives events for the netdev chain.  The caller (an
3460  * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3461  * locks for us to safely manipulate the slave devices (RTNL lock,
3462  * dev_probe_lock).
3463  */
3464 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3465 {
3466 	struct net_device *event_dev = (struct net_device *)ptr;
3467 
3468 	if (dev_net(event_dev) != &init_net)
3469 		return NOTIFY_DONE;
3470 
3471 	dprintk("event_dev: %s, event: %lx\n",
3472 		(event_dev ? event_dev->name : "None"),
3473 		event);
3474 
3475 	if (!(event_dev->priv_flags & IFF_BONDING))
3476 		return NOTIFY_DONE;
3477 
3478 	if (event_dev->flags & IFF_MASTER) {
3479 		dprintk("IFF_MASTER\n");
3480 		return bond_master_netdev_event(event, event_dev);
3481 	}
3482 
3483 	if (event_dev->flags & IFF_SLAVE) {
3484 		dprintk("IFF_SLAVE\n");
3485 		return bond_slave_netdev_event(event, event_dev);
3486 	}
3487 
3488 	return NOTIFY_DONE;
3489 }
3490 
3491 /*
3492  * bond_inetaddr_event: handle inetaddr notifier chain events.
3493  *
3494  * We keep track of device IPs primarily to use as source addresses in
3495  * ARP monitor probes (rather than spewing out broadcasts all the time).
3496  *
3497  * We track one IP for the main device (if it has one), plus one per VLAN.
3498  */
3499 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3500 {
3501 	struct in_ifaddr *ifa = ptr;
3502 	struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3503 	struct bonding *bond, *bond_next;
3504 	struct vlan_entry *vlan, *vlan_next;
3505 
3506 	if (dev_net(ifa->ifa_dev->dev) != &init_net)
3507 		return NOTIFY_DONE;
3508 
3509 	list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) {
3510 		if (bond->dev == event_dev) {
3511 			switch (event) {
3512 			case NETDEV_UP:
3513 				bond->master_ip = ifa->ifa_local;
3514 				return NOTIFY_OK;
3515 			case NETDEV_DOWN:
3516 				bond->master_ip = bond_glean_dev_ip(bond->dev);
3517 				return NOTIFY_OK;
3518 			default:
3519 				return NOTIFY_DONE;
3520 			}
3521 		}
3522 
3523 		if (list_empty(&bond->vlan_list))
3524 			continue;
3525 
3526 		list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
3527 					 vlan_list) {
3528 			vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3529 			if (vlan_dev == event_dev) {
3530 				switch (event) {
3531 				case NETDEV_UP:
3532 					vlan->vlan_ip = ifa->ifa_local;
3533 					return NOTIFY_OK;
3534 				case NETDEV_DOWN:
3535 					vlan->vlan_ip =
3536 						bond_glean_dev_ip(vlan_dev);
3537 					return NOTIFY_OK;
3538 				default:
3539 					return NOTIFY_DONE;
3540 				}
3541 			}
3542 		}
3543 	}
3544 	return NOTIFY_DONE;
3545 }
3546 
3547 static struct notifier_block bond_netdev_notifier = {
3548 	.notifier_call = bond_netdev_event,
3549 };
3550 
3551 static struct notifier_block bond_inetaddr_notifier = {
3552 	.notifier_call = bond_inetaddr_event,
3553 };
3554 
3555 /*-------------------------- Packet type handling ---------------------------*/
3556 
3557 /* register to receive lacpdus on a bond */
3558 static void bond_register_lacpdu(struct bonding *bond)
3559 {
3560 	struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3561 
3562 	/* initialize packet type */
3563 	pk_type->type = PKT_TYPE_LACPDU;
3564 	pk_type->dev = bond->dev;
3565 	pk_type->func = bond_3ad_lacpdu_recv;
3566 
3567 	dev_add_pack(pk_type);
3568 }
3569 
3570 /* unregister to receive lacpdus on a bond */
3571 static void bond_unregister_lacpdu(struct bonding *bond)
3572 {
3573 	dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3574 }
3575 
3576 void bond_register_arp(struct bonding *bond)
3577 {
3578 	struct packet_type *pt = &bond->arp_mon_pt;
3579 
3580 	if (pt->type)
3581 		return;
3582 
3583 	pt->type = htons(ETH_P_ARP);
3584 	pt->dev = bond->dev;
3585 	pt->func = bond_arp_rcv;
3586 	dev_add_pack(pt);
3587 }
3588 
3589 void bond_unregister_arp(struct bonding *bond)
3590 {
3591 	struct packet_type *pt = &bond->arp_mon_pt;
3592 
3593 	dev_remove_pack(pt);
3594 	pt->type = 0;
3595 }
3596 
3597 /*---------------------------- Hashing Policies -----------------------------*/
3598 
3599 /*
3600  * Hash for the output device based upon layer 2 and layer 3 data. If
3601  * the packet is not IP mimic bond_xmit_hash_policy_l2()
3602  */
3603 static int bond_xmit_hash_policy_l23(struct sk_buff *skb,
3604 				     struct net_device *bond_dev, int count)
3605 {
3606 	struct ethhdr *data = (struct ethhdr *)skb->data;
3607 	struct iphdr *iph = ip_hdr(skb);
3608 
3609 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3610 		return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3611 			(data->h_dest[5] ^ bond_dev->dev_addr[5])) % count;
3612 	}
3613 
3614 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3615 }
3616 
3617 /*
3618  * Hash for the output device based upon layer 3 and layer 4 data. If
3619  * the packet is a frag or not TCP or UDP, just use layer 3 data.  If it is
3620  * altogether not IP, mimic bond_xmit_hash_policy_l2()
3621  */
3622 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3623 				    struct net_device *bond_dev, int count)
3624 {
3625 	struct ethhdr *data = (struct ethhdr *)skb->data;
3626 	struct iphdr *iph = ip_hdr(skb);
3627 	__be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3628 	int layer4_xor = 0;
3629 
3630 	if (skb->protocol == __constant_htons(ETH_P_IP)) {
3631 		if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3632 		    (iph->protocol == IPPROTO_TCP ||
3633 		     iph->protocol == IPPROTO_UDP)) {
3634 			layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
3635 		}
3636 		return (layer4_xor ^
3637 			((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3638 
3639 	}
3640 
3641 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3642 }
3643 
3644 /*
3645  * Hash for the output device based upon layer 2 data
3646  */
3647 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3648 				   struct net_device *bond_dev, int count)
3649 {
3650 	struct ethhdr *data = (struct ethhdr *)skb->data;
3651 
3652 	return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3653 }
3654 
3655 /*-------------------------- Device entry points ----------------------------*/
3656 
3657 static int bond_open(struct net_device *bond_dev)
3658 {
3659 	struct bonding *bond = bond_dev->priv;
3660 
3661 	bond->kill_timers = 0;
3662 
3663 	if ((bond->params.mode == BOND_MODE_TLB) ||
3664 	    (bond->params.mode == BOND_MODE_ALB)) {
3665 		/* bond_alb_initialize must be called before the timer
3666 		 * is started.
3667 		 */
3668 		if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3669 			/* something went wrong - fail the open operation */
3670 			return -1;
3671 		}
3672 
3673 		INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3674 		queue_delayed_work(bond->wq, &bond->alb_work, 0);
3675 	}
3676 
3677 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3678 		INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3679 		queue_delayed_work(bond->wq, &bond->mii_work, 0);
3680 	}
3681 
3682 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3683 		if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3684 			INIT_DELAYED_WORK(&bond->arp_work,
3685 					  bond_activebackup_arp_mon);
3686 		else
3687 			INIT_DELAYED_WORK(&bond->arp_work,
3688 					  bond_loadbalance_arp_mon);
3689 
3690 		queue_delayed_work(bond->wq, &bond->arp_work, 0);
3691 		if (bond->params.arp_validate)
3692 			bond_register_arp(bond);
3693 	}
3694 
3695 	if (bond->params.mode == BOND_MODE_8023AD) {
3696 		INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3697 		queue_delayed_work(bond->wq, &bond->ad_work, 0);
3698 		/* register to receive LACPDUs */
3699 		bond_register_lacpdu(bond);
3700 	}
3701 
3702 	return 0;
3703 }
3704 
3705 static int bond_close(struct net_device *bond_dev)
3706 {
3707 	struct bonding *bond = bond_dev->priv;
3708 
3709 	if (bond->params.mode == BOND_MODE_8023AD) {
3710 		/* Unregister the receive of LACPDUs */
3711 		bond_unregister_lacpdu(bond);
3712 	}
3713 
3714 	if (bond->params.arp_validate)
3715 		bond_unregister_arp(bond);
3716 
3717 	write_lock_bh(&bond->lock);
3718 
3719 
3720 	/* signal timers not to re-arm */
3721 	bond->kill_timers = 1;
3722 
3723 	write_unlock_bh(&bond->lock);
3724 
3725 	if (bond->params.miimon) {  /* link check interval, in milliseconds. */
3726 		cancel_delayed_work(&bond->mii_work);
3727 	}
3728 
3729 	if (bond->params.arp_interval) {  /* arp interval, in milliseconds. */
3730 		cancel_delayed_work(&bond->arp_work);
3731 	}
3732 
3733 	switch (bond->params.mode) {
3734 	case BOND_MODE_8023AD:
3735 		cancel_delayed_work(&bond->ad_work);
3736 		break;
3737 	case BOND_MODE_TLB:
3738 	case BOND_MODE_ALB:
3739 		cancel_delayed_work(&bond->alb_work);
3740 		break;
3741 	default:
3742 		break;
3743 	}
3744 
3745 
3746 	if ((bond->params.mode == BOND_MODE_TLB) ||
3747 	    (bond->params.mode == BOND_MODE_ALB)) {
3748 		/* Must be called only after all
3749 		 * slaves have been released
3750 		 */
3751 		bond_alb_deinitialize(bond);
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3758 {
3759 	struct bonding *bond = bond_dev->priv;
3760 	struct net_device_stats *stats = &(bond->stats), *sstats;
3761 	struct net_device_stats local_stats;
3762 	struct slave *slave;
3763 	int i;
3764 
3765 	memset(&local_stats, 0, sizeof(struct net_device_stats));
3766 
3767 	read_lock_bh(&bond->lock);
3768 
3769 	bond_for_each_slave(bond, slave, i) {
3770 		sstats = slave->dev->get_stats(slave->dev);
3771 		local_stats.rx_packets += sstats->rx_packets;
3772 		local_stats.rx_bytes += sstats->rx_bytes;
3773 		local_stats.rx_errors += sstats->rx_errors;
3774 		local_stats.rx_dropped += sstats->rx_dropped;
3775 
3776 		local_stats.tx_packets += sstats->tx_packets;
3777 		local_stats.tx_bytes += sstats->tx_bytes;
3778 		local_stats.tx_errors += sstats->tx_errors;
3779 		local_stats.tx_dropped += sstats->tx_dropped;
3780 
3781 		local_stats.multicast += sstats->multicast;
3782 		local_stats.collisions += sstats->collisions;
3783 
3784 		local_stats.rx_length_errors += sstats->rx_length_errors;
3785 		local_stats.rx_over_errors += sstats->rx_over_errors;
3786 		local_stats.rx_crc_errors += sstats->rx_crc_errors;
3787 		local_stats.rx_frame_errors += sstats->rx_frame_errors;
3788 		local_stats.rx_fifo_errors += sstats->rx_fifo_errors;
3789 		local_stats.rx_missed_errors += sstats->rx_missed_errors;
3790 
3791 		local_stats.tx_aborted_errors += sstats->tx_aborted_errors;
3792 		local_stats.tx_carrier_errors += sstats->tx_carrier_errors;
3793 		local_stats.tx_fifo_errors += sstats->tx_fifo_errors;
3794 		local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3795 		local_stats.tx_window_errors += sstats->tx_window_errors;
3796 	}
3797 
3798 	memcpy(stats, &local_stats, sizeof(struct net_device_stats));
3799 
3800 	read_unlock_bh(&bond->lock);
3801 
3802 	return stats;
3803 }
3804 
3805 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3806 {
3807 	struct net_device *slave_dev = NULL;
3808 	struct ifbond k_binfo;
3809 	struct ifbond __user *u_binfo = NULL;
3810 	struct ifslave k_sinfo;
3811 	struct ifslave __user *u_sinfo = NULL;
3812 	struct mii_ioctl_data *mii = NULL;
3813 	int res = 0;
3814 
3815 	dprintk("bond_ioctl: master=%s, cmd=%d\n",
3816 		bond_dev->name, cmd);
3817 
3818 	switch (cmd) {
3819 	case SIOCGMIIPHY:
3820 		mii = if_mii(ifr);
3821 		if (!mii) {
3822 			return -EINVAL;
3823 		}
3824 		mii->phy_id = 0;
3825 		/* Fall Through */
3826 	case SIOCGMIIREG:
3827 		/*
3828 		 * We do this again just in case we were called by SIOCGMIIREG
3829 		 * instead of SIOCGMIIPHY.
3830 		 */
3831 		mii = if_mii(ifr);
3832 		if (!mii) {
3833 			return -EINVAL;
3834 		}
3835 
3836 		if (mii->reg_num == 1) {
3837 			struct bonding *bond = bond_dev->priv;
3838 			mii->val_out = 0;
3839 			read_lock(&bond->lock);
3840 			read_lock(&bond->curr_slave_lock);
3841 			if (netif_carrier_ok(bond->dev)) {
3842 				mii->val_out = BMSR_LSTATUS;
3843 			}
3844 			read_unlock(&bond->curr_slave_lock);
3845 			read_unlock(&bond->lock);
3846 		}
3847 
3848 		return 0;
3849 	case BOND_INFO_QUERY_OLD:
3850 	case SIOCBONDINFOQUERY:
3851 		u_binfo = (struct ifbond __user *)ifr->ifr_data;
3852 
3853 		if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3854 			return -EFAULT;
3855 		}
3856 
3857 		res = bond_info_query(bond_dev, &k_binfo);
3858 		if (res == 0) {
3859 			if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3860 				return -EFAULT;
3861 			}
3862 		}
3863 
3864 		return res;
3865 	case BOND_SLAVE_INFO_QUERY_OLD:
3866 	case SIOCBONDSLAVEINFOQUERY:
3867 		u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3868 
3869 		if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3870 			return -EFAULT;
3871 		}
3872 
3873 		res = bond_slave_info_query(bond_dev, &k_sinfo);
3874 		if (res == 0) {
3875 			if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3876 				return -EFAULT;
3877 			}
3878 		}
3879 
3880 		return res;
3881 	default:
3882 		/* Go on */
3883 		break;
3884 	}
3885 
3886 	if (!capable(CAP_NET_ADMIN)) {
3887 		return -EPERM;
3888 	}
3889 
3890 	down_write(&(bonding_rwsem));
3891 	slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave);
3892 
3893 	dprintk("slave_dev=%p: \n", slave_dev);
3894 
3895 	if (!slave_dev) {
3896 		res = -ENODEV;
3897 	} else {
3898 		dprintk("slave_dev->name=%s: \n", slave_dev->name);
3899 		switch (cmd) {
3900 		case BOND_ENSLAVE_OLD:
3901 		case SIOCBONDENSLAVE:
3902 			res = bond_enslave(bond_dev, slave_dev);
3903 			break;
3904 		case BOND_RELEASE_OLD:
3905 		case SIOCBONDRELEASE:
3906 			res = bond_release(bond_dev, slave_dev);
3907 			break;
3908 		case BOND_SETHWADDR_OLD:
3909 		case SIOCBONDSETHWADDR:
3910 			res = bond_sethwaddr(bond_dev, slave_dev);
3911 			break;
3912 		case BOND_CHANGE_ACTIVE_OLD:
3913 		case SIOCBONDCHANGEACTIVE:
3914 			res = bond_ioctl_change_active(bond_dev, slave_dev);
3915 			break;
3916 		default:
3917 			res = -EOPNOTSUPP;
3918 		}
3919 
3920 		dev_put(slave_dev);
3921 	}
3922 
3923 	up_write(&(bonding_rwsem));
3924 	return res;
3925 }
3926 
3927 static void bond_set_multicast_list(struct net_device *bond_dev)
3928 {
3929 	struct bonding *bond = bond_dev->priv;
3930 	struct dev_mc_list *dmi;
3931 
3932 	/*
3933 	 * Do promisc before checking multicast_mode
3934 	 */
3935 	if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
3936 		bond_set_promiscuity(bond, 1);
3937 	}
3938 
3939 	if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
3940 		bond_set_promiscuity(bond, -1);
3941 	}
3942 
3943 	/* set allmulti flag to slaves */
3944 	if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
3945 		bond_set_allmulti(bond, 1);
3946 	}
3947 
3948 	if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
3949 		bond_set_allmulti(bond, -1);
3950 	}
3951 
3952 	read_lock(&bond->lock);
3953 
3954 	bond->flags = bond_dev->flags;
3955 
3956 	/* looking for addresses to add to slaves' mc list */
3957 	for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
3958 		if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
3959 			bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3960 		}
3961 	}
3962 
3963 	/* looking for addresses to delete from slaves' list */
3964 	for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
3965 		if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
3966 			bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3967 		}
3968 	}
3969 
3970 	/* save master's multicast list */
3971 	bond_mc_list_destroy(bond);
3972 	bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
3973 
3974 	read_unlock(&bond->lock);
3975 }
3976 
3977 /*
3978  * Change the MTU of all of a master's slaves to match the master
3979  */
3980 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3981 {
3982 	struct bonding *bond = bond_dev->priv;
3983 	struct slave *slave, *stop_at;
3984 	int res = 0;
3985 	int i;
3986 
3987 	dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
3988 		(bond_dev ? bond_dev->name : "None"), new_mtu);
3989 
3990 	/* Can't hold bond->lock with bh disabled here since
3991 	 * some base drivers panic. On the other hand we can't
3992 	 * hold bond->lock without bh disabled because we'll
3993 	 * deadlock. The only solution is to rely on the fact
3994 	 * that we're under rtnl_lock here, and the slaves
3995 	 * list won't change. This doesn't solve the problem
3996 	 * of setting the slave's MTU while it is
3997 	 * transmitting, but the assumption is that the base
3998 	 * driver can handle that.
3999 	 *
4000 	 * TODO: figure out a way to safely iterate the slaves
4001 	 * list, but without holding a lock around the actual
4002 	 * call to the base driver.
4003 	 */
4004 
4005 	bond_for_each_slave(bond, slave, i) {
4006 		dprintk("s %p s->p %p c_m %p\n", slave,
4007 			slave->prev, slave->dev->change_mtu);
4008 
4009 		res = dev_set_mtu(slave->dev, new_mtu);
4010 
4011 		if (res) {
4012 			/* If we failed to set the slave's mtu to the new value
4013 			 * we must abort the operation even in ACTIVE_BACKUP
4014 			 * mode, because if we allow the backup slaves to have
4015 			 * different mtu values than the active slave we'll
4016 			 * need to change their mtu when doing a failover. That
4017 			 * means changing their mtu from timer context, which
4018 			 * is probably not a good idea.
4019 			 */
4020 			dprintk("err %d %s\n", res, slave->dev->name);
4021 			goto unwind;
4022 		}
4023 	}
4024 
4025 	bond_dev->mtu = new_mtu;
4026 
4027 	return 0;
4028 
4029 unwind:
4030 	/* unwind from head to the slave that failed */
4031 	stop_at = slave;
4032 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4033 		int tmp_res;
4034 
4035 		tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
4036 		if (tmp_res) {
4037 			dprintk("unwind err %d dev %s\n", tmp_res,
4038 				slave->dev->name);
4039 		}
4040 	}
4041 
4042 	return res;
4043 }
4044 
4045 /*
4046  * Change HW address
4047  *
4048  * Note that many devices must be down to change the HW address, and
4049  * downing the master releases all slaves.  We can make bonds full of
4050  * bonding devices to test this, however.
4051  */
4052 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
4053 {
4054 	struct bonding *bond = bond_dev->priv;
4055 	struct sockaddr *sa = addr, tmp_sa;
4056 	struct slave *slave, *stop_at;
4057 	int res = 0;
4058 	int i;
4059 
4060 	dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
4061 
4062 	/*
4063 	 * If fail_over_mac is enabled, do nothing and return success.
4064 	 * Returning an error causes ifenslave to fail.
4065 	 */
4066 	if (bond->params.fail_over_mac)
4067 		return 0;
4068 
4069 	if (!is_valid_ether_addr(sa->sa_data)) {
4070 		return -EADDRNOTAVAIL;
4071 	}
4072 
4073 	/* Can't hold bond->lock with bh disabled here since
4074 	 * some base drivers panic. On the other hand we can't
4075 	 * hold bond->lock without bh disabled because we'll
4076 	 * deadlock. The only solution is to rely on the fact
4077 	 * that we're under rtnl_lock here, and the slaves
4078 	 * list won't change. This doesn't solve the problem
4079 	 * of setting the slave's hw address while it is
4080 	 * transmitting, but the assumption is that the base
4081 	 * driver can handle that.
4082 	 *
4083 	 * TODO: figure out a way to safely iterate the slaves
4084 	 * list, but without holding a lock around the actual
4085 	 * call to the base driver.
4086 	 */
4087 
4088 	bond_for_each_slave(bond, slave, i) {
4089 		dprintk("slave %p %s\n", slave, slave->dev->name);
4090 
4091 		if (slave->dev->set_mac_address == NULL) {
4092 			res = -EOPNOTSUPP;
4093 			dprintk("EOPNOTSUPP %s\n", slave->dev->name);
4094 			goto unwind;
4095 		}
4096 
4097 		res = dev_set_mac_address(slave->dev, addr);
4098 		if (res) {
4099 			/* TODO: consider downing the slave
4100 			 * and retry ?
4101 			 * User should expect communications
4102 			 * breakage anyway until ARP finish
4103 			 * updating, so...
4104 			 */
4105 			dprintk("err %d %s\n", res, slave->dev->name);
4106 			goto unwind;
4107 		}
4108 	}
4109 
4110 	/* success */
4111 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
4112 	return 0;
4113 
4114 unwind:
4115 	memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
4116 	tmp_sa.sa_family = bond_dev->type;
4117 
4118 	/* unwind from head to the slave that failed */
4119 	stop_at = slave;
4120 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4121 		int tmp_res;
4122 
4123 		tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
4124 		if (tmp_res) {
4125 			dprintk("unwind err %d dev %s\n", tmp_res,
4126 				slave->dev->name);
4127 		}
4128 	}
4129 
4130 	return res;
4131 }
4132 
4133 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4134 {
4135 	struct bonding *bond = bond_dev->priv;
4136 	struct slave *slave, *start_at;
4137 	int i, slave_no, res = 1;
4138 
4139 	read_lock(&bond->lock);
4140 
4141 	if (!BOND_IS_OK(bond)) {
4142 		goto out;
4143 	}
4144 
4145 	/*
4146 	 * Concurrent TX may collide on rr_tx_counter; we accept that
4147 	 * as being rare enough not to justify using an atomic op here
4148 	 */
4149 	slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
4150 
4151 	bond_for_each_slave(bond, slave, i) {
4152 		slave_no--;
4153 		if (slave_no < 0) {
4154 			break;
4155 		}
4156 	}
4157 
4158 	start_at = slave;
4159 	bond_for_each_slave_from(bond, slave, i, start_at) {
4160 		if (IS_UP(slave->dev) &&
4161 		    (slave->link == BOND_LINK_UP) &&
4162 		    (slave->state == BOND_STATE_ACTIVE)) {
4163 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4164 			break;
4165 		}
4166 	}
4167 
4168 out:
4169 	if (res) {
4170 		/* no suitable interface, frame not sent */
4171 		dev_kfree_skb(skb);
4172 	}
4173 	read_unlock(&bond->lock);
4174 	return 0;
4175 }
4176 
4177 
4178 /*
4179  * in active-backup mode, we know that bond->curr_active_slave is always valid if
4180  * the bond has a usable interface.
4181  */
4182 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4183 {
4184 	struct bonding *bond = bond_dev->priv;
4185 	int res = 1;
4186 
4187 	read_lock(&bond->lock);
4188 	read_lock(&bond->curr_slave_lock);
4189 
4190 	if (!BOND_IS_OK(bond)) {
4191 		goto out;
4192 	}
4193 
4194 	if (!bond->curr_active_slave)
4195 		goto out;
4196 
4197 	res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4198 
4199 out:
4200 	if (res) {
4201 		/* no suitable interface, frame not sent */
4202 		dev_kfree_skb(skb);
4203 	}
4204 	read_unlock(&bond->curr_slave_lock);
4205 	read_unlock(&bond->lock);
4206 	return 0;
4207 }
4208 
4209 /*
4210  * In bond_xmit_xor() , we determine the output device by using a pre-
4211  * determined xmit_hash_policy(), If the selected device is not enabled,
4212  * find the next active slave.
4213  */
4214 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4215 {
4216 	struct bonding *bond = bond_dev->priv;
4217 	struct slave *slave, *start_at;
4218 	int slave_no;
4219 	int i;
4220 	int res = 1;
4221 
4222 	read_lock(&bond->lock);
4223 
4224 	if (!BOND_IS_OK(bond)) {
4225 		goto out;
4226 	}
4227 
4228 	slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4229 
4230 	bond_for_each_slave(bond, slave, i) {
4231 		slave_no--;
4232 		if (slave_no < 0) {
4233 			break;
4234 		}
4235 	}
4236 
4237 	start_at = slave;
4238 
4239 	bond_for_each_slave_from(bond, slave, i, start_at) {
4240 		if (IS_UP(slave->dev) &&
4241 		    (slave->link == BOND_LINK_UP) &&
4242 		    (slave->state == BOND_STATE_ACTIVE)) {
4243 			res = bond_dev_queue_xmit(bond, skb, slave->dev);
4244 			break;
4245 		}
4246 	}
4247 
4248 out:
4249 	if (res) {
4250 		/* no suitable interface, frame not sent */
4251 		dev_kfree_skb(skb);
4252 	}
4253 	read_unlock(&bond->lock);
4254 	return 0;
4255 }
4256 
4257 /*
4258  * in broadcast mode, we send everything to all usable interfaces.
4259  */
4260 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4261 {
4262 	struct bonding *bond = bond_dev->priv;
4263 	struct slave *slave, *start_at;
4264 	struct net_device *tx_dev = NULL;
4265 	int i;
4266 	int res = 1;
4267 
4268 	read_lock(&bond->lock);
4269 
4270 	if (!BOND_IS_OK(bond)) {
4271 		goto out;
4272 	}
4273 
4274 	read_lock(&bond->curr_slave_lock);
4275 	start_at = bond->curr_active_slave;
4276 	read_unlock(&bond->curr_slave_lock);
4277 
4278 	if (!start_at) {
4279 		goto out;
4280 	}
4281 
4282 	bond_for_each_slave_from(bond, slave, i, start_at) {
4283 		if (IS_UP(slave->dev) &&
4284 		    (slave->link == BOND_LINK_UP) &&
4285 		    (slave->state == BOND_STATE_ACTIVE)) {
4286 			if (tx_dev) {
4287 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4288 				if (!skb2) {
4289 					printk(KERN_ERR DRV_NAME
4290 					       ": %s: Error: bond_xmit_broadcast(): "
4291 					       "skb_clone() failed\n",
4292 					       bond_dev->name);
4293 					continue;
4294 				}
4295 
4296 				res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4297 				if (res) {
4298 					dev_kfree_skb(skb2);
4299 					continue;
4300 				}
4301 			}
4302 			tx_dev = slave->dev;
4303 		}
4304 	}
4305 
4306 	if (tx_dev) {
4307 		res = bond_dev_queue_xmit(bond, skb, tx_dev);
4308 	}
4309 
4310 out:
4311 	if (res) {
4312 		/* no suitable interface, frame not sent */
4313 		dev_kfree_skb(skb);
4314 	}
4315 	/* frame sent to all suitable interfaces */
4316 	read_unlock(&bond->lock);
4317 	return 0;
4318 }
4319 
4320 /*------------------------- Device initialization ---------------------------*/
4321 
4322 static void bond_set_xmit_hash_policy(struct bonding *bond)
4323 {
4324 	switch (bond->params.xmit_policy) {
4325 	case BOND_XMIT_POLICY_LAYER23:
4326 		bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
4327 		break;
4328 	case BOND_XMIT_POLICY_LAYER34:
4329 		bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4330 		break;
4331 	case BOND_XMIT_POLICY_LAYER2:
4332 	default:
4333 		bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4334 		break;
4335 	}
4336 }
4337 
4338 /*
4339  * set bond mode specific net device operations
4340  */
4341 void bond_set_mode_ops(struct bonding *bond, int mode)
4342 {
4343 	struct net_device *bond_dev = bond->dev;
4344 
4345 	switch (mode) {
4346 	case BOND_MODE_ROUNDROBIN:
4347 		bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4348 		break;
4349 	case BOND_MODE_ACTIVEBACKUP:
4350 		bond_dev->hard_start_xmit = bond_xmit_activebackup;
4351 		break;
4352 	case BOND_MODE_XOR:
4353 		bond_dev->hard_start_xmit = bond_xmit_xor;
4354 		bond_set_xmit_hash_policy(bond);
4355 		break;
4356 	case BOND_MODE_BROADCAST:
4357 		bond_dev->hard_start_xmit = bond_xmit_broadcast;
4358 		break;
4359 	case BOND_MODE_8023AD:
4360 		bond_set_master_3ad_flags(bond);
4361 		bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4362 		bond_set_xmit_hash_policy(bond);
4363 		break;
4364 	case BOND_MODE_ALB:
4365 		bond_set_master_alb_flags(bond);
4366 		/* FALLTHRU */
4367 	case BOND_MODE_TLB:
4368 		bond_dev->hard_start_xmit = bond_alb_xmit;
4369 		bond_dev->set_mac_address = bond_alb_set_mac_address;
4370 		break;
4371 	default:
4372 		/* Should never happen, mode already checked */
4373 		printk(KERN_ERR DRV_NAME
4374 		       ": %s: Error: Unknown bonding mode %d\n",
4375 		       bond_dev->name,
4376 		       mode);
4377 		break;
4378 	}
4379 }
4380 
4381 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4382 				    struct ethtool_drvinfo *drvinfo)
4383 {
4384 	strncpy(drvinfo->driver, DRV_NAME, 32);
4385 	strncpy(drvinfo->version, DRV_VERSION, 32);
4386 	snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4387 }
4388 
4389 static const struct ethtool_ops bond_ethtool_ops = {
4390 	.get_drvinfo		= bond_ethtool_get_drvinfo,
4391 };
4392 
4393 /*
4394  * Does not allocate but creates a /proc entry.
4395  * Allowed to fail.
4396  */
4397 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4398 {
4399 	struct bonding *bond = bond_dev->priv;
4400 
4401 	dprintk("Begin bond_init for %s\n", bond_dev->name);
4402 
4403 	/* initialize rwlocks */
4404 	rwlock_init(&bond->lock);
4405 	rwlock_init(&bond->curr_slave_lock);
4406 
4407 	bond->params = *params; /* copy params struct */
4408 
4409 	bond->wq = create_singlethread_workqueue(bond_dev->name);
4410 	if (!bond->wq)
4411 		return -ENOMEM;
4412 
4413 	/* Initialize pointers */
4414 	bond->first_slave = NULL;
4415 	bond->curr_active_slave = NULL;
4416 	bond->current_arp_slave = NULL;
4417 	bond->primary_slave = NULL;
4418 	bond->dev = bond_dev;
4419 	bond->send_grat_arp = 0;
4420 	bond->setup_by_slave = 0;
4421 	INIT_LIST_HEAD(&bond->vlan_list);
4422 
4423 	/* Initialize the device entry points */
4424 	bond_dev->open = bond_open;
4425 	bond_dev->stop = bond_close;
4426 	bond_dev->get_stats = bond_get_stats;
4427 	bond_dev->do_ioctl = bond_do_ioctl;
4428 	bond_dev->ethtool_ops = &bond_ethtool_ops;
4429 	bond_dev->set_multicast_list = bond_set_multicast_list;
4430 	bond_dev->change_mtu = bond_change_mtu;
4431 	bond_dev->set_mac_address = bond_set_mac_address;
4432 	bond_dev->validate_addr = NULL;
4433 
4434 	bond_set_mode_ops(bond, bond->params.mode);
4435 
4436 	bond_dev->destructor = free_netdev;
4437 
4438 	/* Initialize the device options */
4439 	bond_dev->tx_queue_len = 0;
4440 	bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4441 	bond_dev->priv_flags |= IFF_BONDING;
4442 
4443 	/* At first, we block adding VLANs. That's the only way to
4444 	 * prevent problems that occur when adding VLANs over an
4445 	 * empty bond. The block will be removed once non-challenged
4446 	 * slaves are enslaved.
4447 	 */
4448 	bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4449 
4450 	/* don't acquire bond device's netif_tx_lock when
4451 	 * transmitting */
4452 	bond_dev->features |= NETIF_F_LLTX;
4453 
4454 	/* By default, we declare the bond to be fully
4455 	 * VLAN hardware accelerated capable. Special
4456 	 * care is taken in the various xmit functions
4457 	 * when there are slaves that are not hw accel
4458 	 * capable
4459 	 */
4460 	bond_dev->vlan_rx_register = bond_vlan_rx_register;
4461 	bond_dev->vlan_rx_add_vid  = bond_vlan_rx_add_vid;
4462 	bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4463 	bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4464 			       NETIF_F_HW_VLAN_RX |
4465 			       NETIF_F_HW_VLAN_FILTER);
4466 
4467 #ifdef CONFIG_PROC_FS
4468 	bond_create_proc_entry(bond);
4469 #endif
4470 	list_add_tail(&bond->bond_list, &bond_dev_list);
4471 
4472 	return 0;
4473 }
4474 
4475 /* De-initialize device specific data.
4476  * Caller must hold rtnl_lock.
4477  */
4478 static void bond_deinit(struct net_device *bond_dev)
4479 {
4480 	struct bonding *bond = bond_dev->priv;
4481 
4482 	list_del(&bond->bond_list);
4483 
4484 #ifdef CONFIG_PROC_FS
4485 	bond_remove_proc_entry(bond);
4486 #endif
4487 }
4488 
4489 static void bond_work_cancel_all(struct bonding *bond)
4490 {
4491 	write_lock_bh(&bond->lock);
4492 	bond->kill_timers = 1;
4493 	write_unlock_bh(&bond->lock);
4494 
4495 	if (bond->params.miimon && delayed_work_pending(&bond->mii_work))
4496 		cancel_delayed_work(&bond->mii_work);
4497 
4498 	if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work))
4499 		cancel_delayed_work(&bond->arp_work);
4500 
4501 	if (bond->params.mode == BOND_MODE_ALB &&
4502 	    delayed_work_pending(&bond->alb_work))
4503 		cancel_delayed_work(&bond->alb_work);
4504 
4505 	if (bond->params.mode == BOND_MODE_8023AD &&
4506 	    delayed_work_pending(&bond->ad_work))
4507 		cancel_delayed_work(&bond->ad_work);
4508 }
4509 
4510 /* Unregister and free all bond devices.
4511  * Caller must hold rtnl_lock.
4512  */
4513 static void bond_free_all(void)
4514 {
4515 	struct bonding *bond, *nxt;
4516 
4517 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4518 		struct net_device *bond_dev = bond->dev;
4519 
4520 		bond_work_cancel_all(bond);
4521 		netif_tx_lock_bh(bond_dev);
4522 		bond_mc_list_destroy(bond);
4523 		netif_tx_unlock_bh(bond_dev);
4524 		/* Release the bonded slaves */
4525 		bond_release_all(bond_dev);
4526 		bond_destroy(bond);
4527 	}
4528 
4529 #ifdef CONFIG_PROC_FS
4530 	bond_destroy_proc_dir();
4531 #endif
4532 }
4533 
4534 /*------------------------- Module initialization ---------------------------*/
4535 
4536 /*
4537  * Convert string input module parms.  Accept either the
4538  * number of the mode or its string name.  A bit complicated because
4539  * some mode names are substrings of other names, and calls from sysfs
4540  * may have whitespace in the name (trailing newlines, for example).
4541  */
4542 int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl)
4543 {
4544 	int mode = -1, i, rv;
4545 	char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4546 
4547 	for (p = (char *)buf; *p; p++)
4548 		if (!(isdigit(*p) || isspace(*p)))
4549 			break;
4550 
4551 	if (*p)
4552 		rv = sscanf(buf, "%20s", modestr);
4553 	else
4554 		rv = sscanf(buf, "%d", &mode);
4555 
4556 	if (!rv)
4557 		return -1;
4558 
4559 	for (i = 0; tbl[i].modename; i++) {
4560 		if (mode == tbl[i].mode)
4561 			return tbl[i].mode;
4562 		if (strcmp(modestr, tbl[i].modename) == 0)
4563 			return tbl[i].mode;
4564 	}
4565 
4566 	return -1;
4567 }
4568 
4569 static int bond_check_params(struct bond_params *params)
4570 {
4571 	int arp_validate_value;
4572 
4573 	/*
4574 	 * Convert string parameters.
4575 	 */
4576 	if (mode) {
4577 		bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4578 		if (bond_mode == -1) {
4579 			printk(KERN_ERR DRV_NAME
4580 			       ": Error: Invalid bonding mode \"%s\"\n",
4581 			       mode == NULL ? "NULL" : mode);
4582 			return -EINVAL;
4583 		}
4584 	}
4585 
4586 	if (xmit_hash_policy) {
4587 		if ((bond_mode != BOND_MODE_XOR) &&
4588 		    (bond_mode != BOND_MODE_8023AD)) {
4589 			printk(KERN_INFO DRV_NAME
4590 			       ": xor_mode param is irrelevant in mode %s\n",
4591 			       bond_mode_name(bond_mode));
4592 		} else {
4593 			xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4594 							xmit_hashtype_tbl);
4595 			if (xmit_hashtype == -1) {
4596 				printk(KERN_ERR DRV_NAME
4597 			       	": Error: Invalid xmit_hash_policy \"%s\"\n",
4598 			       	xmit_hash_policy == NULL ? "NULL" :
4599 				       xmit_hash_policy);
4600 				return -EINVAL;
4601 			}
4602 		}
4603 	}
4604 
4605 	if (lacp_rate) {
4606 		if (bond_mode != BOND_MODE_8023AD) {
4607 			printk(KERN_INFO DRV_NAME
4608 			       ": lacp_rate param is irrelevant in mode %s\n",
4609 			       bond_mode_name(bond_mode));
4610 		} else {
4611 			lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4612 			if (lacp_fast == -1) {
4613 				printk(KERN_ERR DRV_NAME
4614 				       ": Error: Invalid lacp rate \"%s\"\n",
4615 				       lacp_rate == NULL ? "NULL" : lacp_rate);
4616 				return -EINVAL;
4617 			}
4618 		}
4619 	}
4620 
4621 	if (max_bonds < 1 || max_bonds > INT_MAX) {
4622 		printk(KERN_WARNING DRV_NAME
4623 		       ": Warning: max_bonds (%d) not in range %d-%d, so it "
4624 		       "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4625 		       max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4626 		max_bonds = BOND_DEFAULT_MAX_BONDS;
4627 	}
4628 
4629 	if (miimon < 0) {
4630 		printk(KERN_WARNING DRV_NAME
4631 		       ": Warning: miimon module parameter (%d), "
4632 		       "not in range 0-%d, so it was reset to %d\n",
4633 		       miimon, INT_MAX, BOND_LINK_MON_INTERV);
4634 		miimon = BOND_LINK_MON_INTERV;
4635 	}
4636 
4637 	if (updelay < 0) {
4638 		printk(KERN_WARNING DRV_NAME
4639 		       ": Warning: updelay module parameter (%d), "
4640 		       "not in range 0-%d, so it was reset to 0\n",
4641 		       updelay, INT_MAX);
4642 		updelay = 0;
4643 	}
4644 
4645 	if (downdelay < 0) {
4646 		printk(KERN_WARNING DRV_NAME
4647 		       ": Warning: downdelay module parameter (%d), "
4648 		       "not in range 0-%d, so it was reset to 0\n",
4649 		       downdelay, INT_MAX);
4650 		downdelay = 0;
4651 	}
4652 
4653 	if ((use_carrier != 0) && (use_carrier != 1)) {
4654 		printk(KERN_WARNING DRV_NAME
4655 		       ": Warning: use_carrier module parameter (%d), "
4656 		       "not of valid value (0/1), so it was set to 1\n",
4657 		       use_carrier);
4658 		use_carrier = 1;
4659 	}
4660 
4661 	/* reset values for 802.3ad */
4662 	if (bond_mode == BOND_MODE_8023AD) {
4663 		if (!miimon) {
4664 			printk(KERN_WARNING DRV_NAME
4665 			       ": Warning: miimon must be specified, "
4666 			       "otherwise bonding will not detect link "
4667 			       "failure, speed and duplex which are "
4668 			       "essential for 802.3ad operation\n");
4669 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4670 			miimon = 100;
4671 		}
4672 	}
4673 
4674 	/* reset values for TLB/ALB */
4675 	if ((bond_mode == BOND_MODE_TLB) ||
4676 	    (bond_mode == BOND_MODE_ALB)) {
4677 		if (!miimon) {
4678 			printk(KERN_WARNING DRV_NAME
4679 			       ": Warning: miimon must be specified, "
4680 			       "otherwise bonding will not detect link "
4681 			       "failure and link speed which are essential "
4682 			       "for TLB/ALB load balancing\n");
4683 			printk(KERN_WARNING "Forcing miimon to 100msec\n");
4684 			miimon = 100;
4685 		}
4686 	}
4687 
4688 	if (bond_mode == BOND_MODE_ALB) {
4689 		printk(KERN_NOTICE DRV_NAME
4690 		       ": In ALB mode you might experience client "
4691 		       "disconnections upon reconnection of a link if the "
4692 		       "bonding module updelay parameter (%d msec) is "
4693 		       "incompatible with the forwarding delay time of the "
4694 		       "switch\n",
4695 		       updelay);
4696 	}
4697 
4698 	if (!miimon) {
4699 		if (updelay || downdelay) {
4700 			/* just warn the user the up/down delay will have
4701 			 * no effect since miimon is zero...
4702 			 */
4703 			printk(KERN_WARNING DRV_NAME
4704 			       ": Warning: miimon module parameter not set "
4705 			       "and updelay (%d) or downdelay (%d) module "
4706 			       "parameter is set; updelay and downdelay have "
4707 			       "no effect unless miimon is set\n",
4708 			       updelay, downdelay);
4709 		}
4710 	} else {
4711 		/* don't allow arp monitoring */
4712 		if (arp_interval) {
4713 			printk(KERN_WARNING DRV_NAME
4714 			       ": Warning: miimon (%d) and arp_interval (%d) "
4715 			       "can't be used simultaneously, disabling ARP "
4716 			       "monitoring\n",
4717 			       miimon, arp_interval);
4718 			arp_interval = 0;
4719 		}
4720 
4721 		if ((updelay % miimon) != 0) {
4722 			printk(KERN_WARNING DRV_NAME
4723 			       ": Warning: updelay (%d) is not a multiple "
4724 			       "of miimon (%d), updelay rounded to %d ms\n",
4725 			       updelay, miimon, (updelay / miimon) * miimon);
4726 		}
4727 
4728 		updelay /= miimon;
4729 
4730 		if ((downdelay % miimon) != 0) {
4731 			printk(KERN_WARNING DRV_NAME
4732 			       ": Warning: downdelay (%d) is not a multiple "
4733 			       "of miimon (%d), downdelay rounded to %d ms\n",
4734 			       downdelay, miimon,
4735 			       (downdelay / miimon) * miimon);
4736 		}
4737 
4738 		downdelay /= miimon;
4739 	}
4740 
4741 	if (arp_interval < 0) {
4742 		printk(KERN_WARNING DRV_NAME
4743 		       ": Warning: arp_interval module parameter (%d) "
4744 		       ", not in range 0-%d, so it was reset to %d\n",
4745 		       arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4746 		arp_interval = BOND_LINK_ARP_INTERV;
4747 	}
4748 
4749 	for (arp_ip_count = 0;
4750 	     (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4751 	     arp_ip_count++) {
4752 		/* not complete check, but should be good enough to
4753 		   catch mistakes */
4754 		if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4755 			printk(KERN_WARNING DRV_NAME
4756 			       ": Warning: bad arp_ip_target module parameter "
4757 			       "(%s), ARP monitoring will not be performed\n",
4758 			       arp_ip_target[arp_ip_count]);
4759 			arp_interval = 0;
4760 		} else {
4761 			__be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4762 			arp_target[arp_ip_count] = ip;
4763 		}
4764 	}
4765 
4766 	if (arp_interval && !arp_ip_count) {
4767 		/* don't allow arping if no arp_ip_target given... */
4768 		printk(KERN_WARNING DRV_NAME
4769 		       ": Warning: arp_interval module parameter (%d) "
4770 		       "specified without providing an arp_ip_target "
4771 		       "parameter, arp_interval was reset to 0\n",
4772 		       arp_interval);
4773 		arp_interval = 0;
4774 	}
4775 
4776 	if (arp_validate) {
4777 		if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4778 			printk(KERN_ERR DRV_NAME
4779 	       ": arp_validate only supported in active-backup mode\n");
4780 			return -EINVAL;
4781 		}
4782 		if (!arp_interval) {
4783 			printk(KERN_ERR DRV_NAME
4784 			       ": arp_validate requires arp_interval\n");
4785 			return -EINVAL;
4786 		}
4787 
4788 		arp_validate_value = bond_parse_parm(arp_validate,
4789 						     arp_validate_tbl);
4790 		if (arp_validate_value == -1) {
4791 			printk(KERN_ERR DRV_NAME
4792 			       ": Error: invalid arp_validate \"%s\"\n",
4793 			       arp_validate == NULL ? "NULL" : arp_validate);
4794 			return -EINVAL;
4795 		}
4796 	} else
4797 		arp_validate_value = 0;
4798 
4799 	if (miimon) {
4800 		printk(KERN_INFO DRV_NAME
4801 		       ": MII link monitoring set to %d ms\n",
4802 		       miimon);
4803 	} else if (arp_interval) {
4804 		int i;
4805 
4806 		printk(KERN_INFO DRV_NAME
4807 		       ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4808 		       arp_interval,
4809 		       arp_validate_tbl[arp_validate_value].modename,
4810 		       arp_ip_count);
4811 
4812 		for (i = 0; i < arp_ip_count; i++)
4813 			printk (" %s", arp_ip_target[i]);
4814 
4815 		printk("\n");
4816 
4817 	} else {
4818 		/* miimon and arp_interval not set, we need one so things
4819 		 * work as expected, see bonding.txt for details
4820 		 */
4821 		printk(KERN_WARNING DRV_NAME
4822 		       ": Warning: either miimon or arp_interval and "
4823 		       "arp_ip_target module parameters must be specified, "
4824 		       "otherwise bonding will not detect link failures! see "
4825 		       "bonding.txt for details.\n");
4826 	}
4827 
4828 	if (primary && !USES_PRIMARY(bond_mode)) {
4829 		/* currently, using a primary only makes sense
4830 		 * in active backup, TLB or ALB modes
4831 		 */
4832 		printk(KERN_WARNING DRV_NAME
4833 		       ": Warning: %s primary device specified but has no "
4834 		       "effect in %s mode\n",
4835 		       primary, bond_mode_name(bond_mode));
4836 		primary = NULL;
4837 	}
4838 
4839 	if (fail_over_mac && (bond_mode != BOND_MODE_ACTIVEBACKUP))
4840 		printk(KERN_WARNING DRV_NAME
4841 		       ": Warning: fail_over_mac only affects "
4842 		       "active-backup mode.\n");
4843 
4844 	/* fill params struct with the proper values */
4845 	params->mode = bond_mode;
4846 	params->xmit_policy = xmit_hashtype;
4847 	params->miimon = miimon;
4848 	params->arp_interval = arp_interval;
4849 	params->arp_validate = arp_validate_value;
4850 	params->updelay = updelay;
4851 	params->downdelay = downdelay;
4852 	params->use_carrier = use_carrier;
4853 	params->lacp_fast = lacp_fast;
4854 	params->primary[0] = 0;
4855 	params->fail_over_mac = fail_over_mac;
4856 
4857 	if (primary) {
4858 		strncpy(params->primary, primary, IFNAMSIZ);
4859 		params->primary[IFNAMSIZ - 1] = 0;
4860 	}
4861 
4862 	memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4863 
4864 	return 0;
4865 }
4866 
4867 static struct lock_class_key bonding_netdev_xmit_lock_key;
4868 
4869 /* Create a new bond based on the specified name and bonding parameters.
4870  * If name is NULL, obtain a suitable "bond%d" name for us.
4871  * Caller must NOT hold rtnl_lock; we need to release it here before we
4872  * set up our sysfs entries.
4873  */
4874 int bond_create(char *name, struct bond_params *params, struct bonding **newbond)
4875 {
4876 	struct net_device *bond_dev;
4877 	struct bonding *bond, *nxt;
4878 	int res;
4879 
4880 	rtnl_lock();
4881 	down_write(&bonding_rwsem);
4882 
4883 	/* Check to see if the bond already exists. */
4884 	if (name) {
4885 		list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list)
4886 			if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) {
4887 				printk(KERN_ERR DRV_NAME
4888 			       ": cannot add bond %s; it already exists\n",
4889 				       name);
4890 				res = -EPERM;
4891 				goto out_rtnl;
4892 			}
4893 	}
4894 
4895 	bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
4896 				ether_setup);
4897 	if (!bond_dev) {
4898 		printk(KERN_ERR DRV_NAME
4899 		       ": %s: eek! can't alloc netdev!\n",
4900 		       name);
4901 		res = -ENOMEM;
4902 		goto out_rtnl;
4903 	}
4904 
4905 	if (!name) {
4906 		res = dev_alloc_name(bond_dev, "bond%d");
4907 		if (res < 0)
4908 			goto out_netdev;
4909 	}
4910 
4911 	/* bond_init() must be called after dev_alloc_name() (for the
4912 	 * /proc files), but before register_netdevice(), because we
4913 	 * need to set function pointers.
4914 	 */
4915 
4916 	res = bond_init(bond_dev, params);
4917 	if (res < 0) {
4918 		goto out_netdev;
4919 	}
4920 
4921 	res = register_netdevice(bond_dev);
4922 	if (res < 0) {
4923 		goto out_bond;
4924 	}
4925 
4926 	lockdep_set_class(&bond_dev->_xmit_lock, &bonding_netdev_xmit_lock_key);
4927 
4928 	if (newbond)
4929 		*newbond = bond_dev->priv;
4930 
4931 	netif_carrier_off(bond_dev);
4932 
4933 	up_write(&bonding_rwsem);
4934 	rtnl_unlock(); /* allows sysfs registration of net device */
4935 	res = bond_create_sysfs_entry(bond_dev->priv);
4936 	if (res < 0) {
4937 		rtnl_lock();
4938 		down_write(&bonding_rwsem);
4939 		bond_deinit(bond_dev);
4940 		unregister_netdevice(bond_dev);
4941 		goto out_rtnl;
4942 	}
4943 
4944 	return 0;
4945 
4946 out_bond:
4947 	bond_deinit(bond_dev);
4948 out_netdev:
4949 	free_netdev(bond_dev);
4950 out_rtnl:
4951 	up_write(&bonding_rwsem);
4952 	rtnl_unlock();
4953 	return res;
4954 }
4955 
4956 static int __init bonding_init(void)
4957 {
4958 	int i;
4959 	int res;
4960 	struct bonding *bond, *nxt;
4961 
4962 	printk(KERN_INFO "%s", version);
4963 
4964 	res = bond_check_params(&bonding_defaults);
4965 	if (res) {
4966 		goto out;
4967 	}
4968 
4969 #ifdef CONFIG_PROC_FS
4970 	bond_create_proc_dir();
4971 #endif
4972 
4973 	init_rwsem(&bonding_rwsem);
4974 
4975 	for (i = 0; i < max_bonds; i++) {
4976 		res = bond_create(NULL, &bonding_defaults, NULL);
4977 		if (res)
4978 			goto err;
4979 	}
4980 
4981 	res = bond_create_sysfs();
4982 	if (res)
4983 		goto err;
4984 
4985 	register_netdevice_notifier(&bond_netdev_notifier);
4986 	register_inetaddr_notifier(&bond_inetaddr_notifier);
4987 
4988 	goto out;
4989 err:
4990 	list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4991 		bond_work_cancel_all(bond);
4992 		destroy_workqueue(bond->wq);
4993 	}
4994 
4995 	bond_destroy_sysfs();
4996 
4997 	rtnl_lock();
4998 	bond_free_all();
4999 	rtnl_unlock();
5000 out:
5001 	return res;
5002 
5003 }
5004 
5005 static void __exit bonding_exit(void)
5006 {
5007 	unregister_netdevice_notifier(&bond_netdev_notifier);
5008 	unregister_inetaddr_notifier(&bond_inetaddr_notifier);
5009 
5010 	bond_destroy_sysfs();
5011 
5012 	rtnl_lock();
5013 	bond_free_all();
5014 	rtnl_unlock();
5015 }
5016 
5017 module_init(bonding_init);
5018 module_exit(bonding_exit);
5019 MODULE_LICENSE("GPL");
5020 MODULE_VERSION(DRV_VERSION);
5021 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
5022 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
5023 MODULE_SUPPORTED_DEVICE("most ethernet devices");
5024 
5025 /*
5026  * Local variables:
5027  *  c-indent-level: 8
5028  *  c-basic-offset: 8
5029  *  tab-width: 8
5030  * End:
5031  */
5032 
5033