1 /* 2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License along 15 * with this program; if not, write to the Free Software Foundation, Inc., 16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called LICENSE. 20 * 21 */ 22 23 #include <linux/skbuff.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/pkt_sched.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/ip.h> 31 #include <linux/ipv6.h> 32 #include <linux/if_arp.h> 33 #include <linux/if_ether.h> 34 #include <linux/if_bonding.h> 35 #include <linux/if_vlan.h> 36 #include <linux/in.h> 37 #include <net/ipx.h> 38 #include <net/arp.h> 39 #include <net/ipv6.h> 40 #include <asm/byteorder.h> 41 #include "bonding.h" 42 #include "bond_alb.h" 43 44 45 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */ 46 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing. 47 * Used for division - never set 48 * to zero !!! 49 */ 50 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of 51 * learning packets to the switch 52 */ 53 54 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \ 55 * ALB_TIMER_TICKS_PER_SEC) 56 57 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \ 58 * ALB_TIMER_TICKS_PER_SEC) 59 60 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table. 61 * Note that this value MUST NOT be smaller 62 * because the key hash table is BYTE wide ! 63 */ 64 65 66 #define TLB_NULL_INDEX 0xffffffff 67 #define MAX_LP_BURST 3 68 69 /* rlb defs */ 70 #define RLB_HASH_TABLE_SIZE 256 71 #define RLB_NULL_INDEX 0xffffffff 72 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */ 73 #define RLB_ARP_BURST_SIZE 2 74 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb 75 * rebalance interval (5 min). 76 */ 77 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is 78 * promiscuous after failover 79 */ 80 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC 81 82 #ifndef __long_aligned 83 #define __long_aligned __attribute__((aligned((sizeof(long))))) 84 #endif 85 static const u8 mac_bcast[ETH_ALEN] __long_aligned = { 86 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 87 }; 88 static const u8 mac_v6_allmcast[ETH_ALEN] __long_aligned = { 89 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 90 }; 91 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; 92 93 #pragma pack(1) 94 struct learning_pkt { 95 u8 mac_dst[ETH_ALEN]; 96 u8 mac_src[ETH_ALEN]; 97 __be16 type; 98 u8 padding[ETH_ZLEN - ETH_HLEN]; 99 }; 100 101 struct arp_pkt { 102 __be16 hw_addr_space; 103 __be16 prot_addr_space; 104 u8 hw_addr_len; 105 u8 prot_addr_len; 106 __be16 op_code; 107 u8 mac_src[ETH_ALEN]; /* sender hardware address */ 108 __be32 ip_src; /* sender IP address */ 109 u8 mac_dst[ETH_ALEN]; /* target hardware address */ 110 __be32 ip_dst; /* target IP address */ 111 }; 112 #pragma pack() 113 114 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb) 115 { 116 return (struct arp_pkt *)skb_network_header(skb); 117 } 118 119 /* Forward declaration */ 120 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]); 121 122 static inline u8 _simple_hash(const u8 *hash_start, int hash_size) 123 { 124 int i; 125 u8 hash = 0; 126 127 for (i = 0; i < hash_size; i++) { 128 hash ^= hash_start[i]; 129 } 130 131 return hash; 132 } 133 134 /*********************** tlb specific functions ***************************/ 135 136 static inline void _lock_tx_hashtbl(struct bonding *bond) 137 { 138 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 139 } 140 141 static inline void _unlock_tx_hashtbl(struct bonding *bond) 142 { 143 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 144 } 145 146 /* Caller must hold tx_hashtbl lock */ 147 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) 148 { 149 if (save_load) { 150 entry->load_history = 1 + entry->tx_bytes / 151 BOND_TLB_REBALANCE_INTERVAL; 152 entry->tx_bytes = 0; 153 } 154 155 entry->tx_slave = NULL; 156 entry->next = TLB_NULL_INDEX; 157 entry->prev = TLB_NULL_INDEX; 158 } 159 160 static inline void tlb_init_slave(struct slave *slave) 161 { 162 SLAVE_TLB_INFO(slave).load = 0; 163 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; 164 } 165 166 /* Caller must hold bond lock for read */ 167 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) 168 { 169 struct tlb_client_info *tx_hash_table; 170 u32 index; 171 172 _lock_tx_hashtbl(bond); 173 174 /* clear slave from tx_hashtbl */ 175 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; 176 177 /* skip this if we've already freed the tx hash table */ 178 if (tx_hash_table) { 179 index = SLAVE_TLB_INFO(slave).head; 180 while (index != TLB_NULL_INDEX) { 181 u32 next_index = tx_hash_table[index].next; 182 tlb_init_table_entry(&tx_hash_table[index], save_load); 183 index = next_index; 184 } 185 } 186 187 tlb_init_slave(slave); 188 189 _unlock_tx_hashtbl(bond); 190 } 191 192 /* Must be called before starting the monitor timer */ 193 static int tlb_initialize(struct bonding *bond) 194 { 195 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 196 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); 197 struct tlb_client_info *new_hashtbl; 198 int i; 199 200 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 201 202 new_hashtbl = kzalloc(size, GFP_KERNEL); 203 if (!new_hashtbl) { 204 pr_err(DRV_NAME 205 ": %s: Error: Failed to allocate TLB hash table\n", 206 bond->dev->name); 207 return -1; 208 } 209 _lock_tx_hashtbl(bond); 210 211 bond_info->tx_hashtbl = new_hashtbl; 212 213 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) { 214 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1); 215 } 216 217 _unlock_tx_hashtbl(bond); 218 219 return 0; 220 } 221 222 /* Must be called only after all slaves have been released */ 223 static void tlb_deinitialize(struct bonding *bond) 224 { 225 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 226 227 _lock_tx_hashtbl(bond); 228 229 kfree(bond_info->tx_hashtbl); 230 bond_info->tx_hashtbl = NULL; 231 232 _unlock_tx_hashtbl(bond); 233 } 234 235 /* Caller must hold bond lock for read */ 236 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) 237 { 238 struct slave *slave, *least_loaded; 239 s64 max_gap; 240 int i, found = 0; 241 242 /* Find the first enabled slave */ 243 bond_for_each_slave(bond, slave, i) { 244 if (SLAVE_IS_OK(slave)) { 245 found = 1; 246 break; 247 } 248 } 249 250 if (!found) { 251 return NULL; 252 } 253 254 least_loaded = slave; 255 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */ 256 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ 257 258 /* Find the slave with the largest gap */ 259 bond_for_each_slave_from(bond, slave, i, least_loaded) { 260 if (SLAVE_IS_OK(slave)) { 261 s64 gap = (s64)(slave->speed << 20) - 262 (s64)(SLAVE_TLB_INFO(slave).load << 3); 263 if (max_gap < gap) { 264 least_loaded = slave; 265 max_gap = gap; 266 } 267 } 268 } 269 270 return least_loaded; 271 } 272 273 /* Caller must hold bond lock for read */ 274 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) 275 { 276 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 277 struct tlb_client_info *hash_table; 278 struct slave *assigned_slave; 279 280 _lock_tx_hashtbl(bond); 281 282 hash_table = bond_info->tx_hashtbl; 283 assigned_slave = hash_table[hash_index].tx_slave; 284 if (!assigned_slave) { 285 assigned_slave = tlb_get_least_loaded_slave(bond); 286 287 if (assigned_slave) { 288 struct tlb_slave_info *slave_info = 289 &(SLAVE_TLB_INFO(assigned_slave)); 290 u32 next_index = slave_info->head; 291 292 hash_table[hash_index].tx_slave = assigned_slave; 293 hash_table[hash_index].next = next_index; 294 hash_table[hash_index].prev = TLB_NULL_INDEX; 295 296 if (next_index != TLB_NULL_INDEX) { 297 hash_table[next_index].prev = hash_index; 298 } 299 300 slave_info->head = hash_index; 301 slave_info->load += 302 hash_table[hash_index].load_history; 303 } 304 } 305 306 if (assigned_slave) { 307 hash_table[hash_index].tx_bytes += skb_len; 308 } 309 310 _unlock_tx_hashtbl(bond); 311 312 return assigned_slave; 313 } 314 315 /*********************** rlb specific functions ***************************/ 316 static inline void _lock_rx_hashtbl(struct bonding *bond) 317 { 318 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 319 } 320 321 static inline void _unlock_rx_hashtbl(struct bonding *bond) 322 { 323 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 324 } 325 326 /* when an ARP REPLY is received from a client update its info 327 * in the rx_hashtbl 328 */ 329 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) 330 { 331 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 332 struct rlb_client_info *client_info; 333 u32 hash_index; 334 335 _lock_rx_hashtbl(bond); 336 337 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src)); 338 client_info = &(bond_info->rx_hashtbl[hash_index]); 339 340 if ((client_info->assigned) && 341 (client_info->ip_src == arp->ip_dst) && 342 (client_info->ip_dst == arp->ip_src)) { 343 /* update the clients MAC address */ 344 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN); 345 client_info->ntt = 1; 346 bond_info->rx_ntt = 1; 347 } 348 349 _unlock_rx_hashtbl(bond); 350 } 351 352 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev) 353 { 354 struct bonding *bond; 355 struct arp_pkt *arp = (struct arp_pkt *)skb->data; 356 int res = NET_RX_DROP; 357 358 if (dev_net(bond_dev) != &init_net) 359 goto out; 360 361 while (bond_dev->priv_flags & IFF_802_1Q_VLAN) 362 bond_dev = vlan_dev_real_dev(bond_dev); 363 364 if (!(bond_dev->priv_flags & IFF_BONDING) || 365 !(bond_dev->flags & IFF_MASTER)) 366 goto out; 367 368 if (!arp) { 369 pr_debug("Packet has no ARP data\n"); 370 goto out; 371 } 372 373 if (skb->len < sizeof(struct arp_pkt)) { 374 pr_debug("Packet is too small to be an ARP\n"); 375 goto out; 376 } 377 378 if (arp->op_code == htons(ARPOP_REPLY)) { 379 /* update rx hash table for this ARP */ 380 bond = netdev_priv(bond_dev); 381 rlb_update_entry_from_arp(bond, arp); 382 pr_debug("Server received an ARP Reply from client\n"); 383 } 384 385 res = NET_RX_SUCCESS; 386 387 out: 388 dev_kfree_skb(skb); 389 390 return res; 391 } 392 393 /* Caller must hold bond lock for read */ 394 static struct slave *rlb_next_rx_slave(struct bonding *bond) 395 { 396 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 397 struct slave *rx_slave, *slave, *start_at; 398 int i = 0; 399 400 if (bond_info->next_rx_slave) { 401 start_at = bond_info->next_rx_slave; 402 } else { 403 start_at = bond->first_slave; 404 } 405 406 rx_slave = NULL; 407 408 bond_for_each_slave_from(bond, slave, i, start_at) { 409 if (SLAVE_IS_OK(slave)) { 410 if (!rx_slave) { 411 rx_slave = slave; 412 } else if (slave->speed > rx_slave->speed) { 413 rx_slave = slave; 414 } 415 } 416 } 417 418 if (rx_slave) { 419 bond_info->next_rx_slave = rx_slave->next; 420 } 421 422 return rx_slave; 423 } 424 425 /* teach the switch the mac of a disabled slave 426 * on the primary for fault tolerance 427 * 428 * Caller must hold bond->curr_slave_lock for write or bond lock for write 429 */ 430 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[]) 431 { 432 if (!bond->curr_active_slave) { 433 return; 434 } 435 436 if (!bond->alb_info.primary_is_promisc) { 437 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1)) 438 bond->alb_info.primary_is_promisc = 1; 439 else 440 bond->alb_info.primary_is_promisc = 0; 441 } 442 443 bond->alb_info.rlb_promisc_timeout_counter = 0; 444 445 alb_send_learning_packets(bond->curr_active_slave, addr); 446 } 447 448 /* slave being removed should not be active at this point 449 * 450 * Caller must hold bond lock for read 451 */ 452 static void rlb_clear_slave(struct bonding *bond, struct slave *slave) 453 { 454 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 455 struct rlb_client_info *rx_hash_table; 456 u32 index, next_index; 457 458 /* clear slave from rx_hashtbl */ 459 _lock_rx_hashtbl(bond); 460 461 rx_hash_table = bond_info->rx_hashtbl; 462 index = bond_info->rx_hashtbl_head; 463 for (; index != RLB_NULL_INDEX; index = next_index) { 464 next_index = rx_hash_table[index].next; 465 if (rx_hash_table[index].slave == slave) { 466 struct slave *assigned_slave = rlb_next_rx_slave(bond); 467 468 if (assigned_slave) { 469 rx_hash_table[index].slave = assigned_slave; 470 if (compare_ether_addr_64bits(rx_hash_table[index].mac_dst, 471 mac_bcast)) { 472 bond_info->rx_hashtbl[index].ntt = 1; 473 bond_info->rx_ntt = 1; 474 /* A slave has been removed from the 475 * table because it is either disabled 476 * or being released. We must retry the 477 * update to avoid clients from not 478 * being updated & disconnecting when 479 * there is stress 480 */ 481 bond_info->rlb_update_retry_counter = 482 RLB_UPDATE_RETRY; 483 } 484 } else { /* there is no active slave */ 485 rx_hash_table[index].slave = NULL; 486 } 487 } 488 } 489 490 _unlock_rx_hashtbl(bond); 491 492 write_lock_bh(&bond->curr_slave_lock); 493 494 if (slave != bond->curr_active_slave) { 495 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); 496 } 497 498 write_unlock_bh(&bond->curr_slave_lock); 499 } 500 501 static void rlb_update_client(struct rlb_client_info *client_info) 502 { 503 int i; 504 505 if (!client_info->slave) { 506 return; 507 } 508 509 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { 510 struct sk_buff *skb; 511 512 skb = arp_create(ARPOP_REPLY, ETH_P_ARP, 513 client_info->ip_dst, 514 client_info->slave->dev, 515 client_info->ip_src, 516 client_info->mac_dst, 517 client_info->slave->dev->dev_addr, 518 client_info->mac_dst); 519 if (!skb) { 520 pr_err(DRV_NAME 521 ": %s: Error: failed to create an ARP packet\n", 522 client_info->slave->dev->master->name); 523 continue; 524 } 525 526 skb->dev = client_info->slave->dev; 527 528 if (client_info->tag) { 529 skb = vlan_put_tag(skb, client_info->vlan_id); 530 if (!skb) { 531 pr_err(DRV_NAME 532 ": %s: Error: failed to insert VLAN tag\n", 533 client_info->slave->dev->master->name); 534 continue; 535 } 536 } 537 538 arp_xmit(skb); 539 } 540 } 541 542 /* sends ARP REPLIES that update the clients that need updating */ 543 static void rlb_update_rx_clients(struct bonding *bond) 544 { 545 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 546 struct rlb_client_info *client_info; 547 u32 hash_index; 548 549 _lock_rx_hashtbl(bond); 550 551 hash_index = bond_info->rx_hashtbl_head; 552 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 553 client_info = &(bond_info->rx_hashtbl[hash_index]); 554 if (client_info->ntt) { 555 rlb_update_client(client_info); 556 if (bond_info->rlb_update_retry_counter == 0) { 557 client_info->ntt = 0; 558 } 559 } 560 } 561 562 /* do not update the entries again untill this counter is zero so that 563 * not to confuse the clients. 564 */ 565 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; 566 567 _unlock_rx_hashtbl(bond); 568 } 569 570 /* The slave was assigned a new mac address - update the clients */ 571 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) 572 { 573 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 574 struct rlb_client_info *client_info; 575 int ntt = 0; 576 u32 hash_index; 577 578 _lock_rx_hashtbl(bond); 579 580 hash_index = bond_info->rx_hashtbl_head; 581 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 582 client_info = &(bond_info->rx_hashtbl[hash_index]); 583 584 if ((client_info->slave == slave) && 585 compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) { 586 client_info->ntt = 1; 587 ntt = 1; 588 } 589 } 590 591 // update the team's flag only after the whole iteration 592 if (ntt) { 593 bond_info->rx_ntt = 1; 594 //fasten the change 595 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; 596 } 597 598 _unlock_rx_hashtbl(bond); 599 } 600 601 /* mark all clients using src_ip to be updated */ 602 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) 603 { 604 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 605 struct rlb_client_info *client_info; 606 u32 hash_index; 607 608 _lock_rx_hashtbl(bond); 609 610 hash_index = bond_info->rx_hashtbl_head; 611 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 612 client_info = &(bond_info->rx_hashtbl[hash_index]); 613 614 if (!client_info->slave) { 615 pr_err(DRV_NAME 616 ": %s: Error: found a client with no channel in " 617 "the client's hash table\n", 618 bond->dev->name); 619 continue; 620 } 621 /*update all clients using this src_ip, that are not assigned 622 * to the team's address (curr_active_slave) and have a known 623 * unicast mac address. 624 */ 625 if ((client_info->ip_src == src_ip) && 626 compare_ether_addr_64bits(client_info->slave->dev->dev_addr, 627 bond->dev->dev_addr) && 628 compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) { 629 client_info->ntt = 1; 630 bond_info->rx_ntt = 1; 631 } 632 } 633 634 _unlock_rx_hashtbl(bond); 635 } 636 637 /* Caller must hold both bond and ptr locks for read */ 638 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond) 639 { 640 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 641 struct arp_pkt *arp = arp_pkt(skb); 642 struct slave *assigned_slave; 643 struct rlb_client_info *client_info; 644 u32 hash_index = 0; 645 646 _lock_rx_hashtbl(bond); 647 648 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src)); 649 client_info = &(bond_info->rx_hashtbl[hash_index]); 650 651 if (client_info->assigned) { 652 if ((client_info->ip_src == arp->ip_src) && 653 (client_info->ip_dst == arp->ip_dst)) { 654 /* the entry is already assigned to this client */ 655 if (compare_ether_addr_64bits(arp->mac_dst, mac_bcast)) { 656 /* update mac address from arp */ 657 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 658 } 659 660 assigned_slave = client_info->slave; 661 if (assigned_slave) { 662 _unlock_rx_hashtbl(bond); 663 return assigned_slave; 664 } 665 } else { 666 /* the entry is already assigned to some other client, 667 * move the old client to primary (curr_active_slave) so 668 * that the new client can be assigned to this entry. 669 */ 670 if (bond->curr_active_slave && 671 client_info->slave != bond->curr_active_slave) { 672 client_info->slave = bond->curr_active_slave; 673 rlb_update_client(client_info); 674 } 675 } 676 } 677 /* assign a new slave */ 678 assigned_slave = rlb_next_rx_slave(bond); 679 680 if (assigned_slave) { 681 client_info->ip_src = arp->ip_src; 682 client_info->ip_dst = arp->ip_dst; 683 /* arp->mac_dst is broadcast for arp reqeusts. 684 * will be updated with clients actual unicast mac address 685 * upon receiving an arp reply. 686 */ 687 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 688 client_info->slave = assigned_slave; 689 690 if (compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) { 691 client_info->ntt = 1; 692 bond->alb_info.rx_ntt = 1; 693 } else { 694 client_info->ntt = 0; 695 } 696 697 if (!list_empty(&bond->vlan_list)) { 698 if (!vlan_get_tag(skb, &client_info->vlan_id)) 699 client_info->tag = 1; 700 } 701 702 if (!client_info->assigned) { 703 u32 prev_tbl_head = bond_info->rx_hashtbl_head; 704 bond_info->rx_hashtbl_head = hash_index; 705 client_info->next = prev_tbl_head; 706 if (prev_tbl_head != RLB_NULL_INDEX) { 707 bond_info->rx_hashtbl[prev_tbl_head].prev = 708 hash_index; 709 } 710 client_info->assigned = 1; 711 } 712 } 713 714 _unlock_rx_hashtbl(bond); 715 716 return assigned_slave; 717 } 718 719 /* chooses (and returns) transmit channel for arp reply 720 * does not choose channel for other arp types since they are 721 * sent on the curr_active_slave 722 */ 723 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) 724 { 725 struct arp_pkt *arp = arp_pkt(skb); 726 struct slave *tx_slave = NULL; 727 728 if (arp->op_code == htons(ARPOP_REPLY)) { 729 /* the arp must be sent on the selected 730 * rx channel 731 */ 732 tx_slave = rlb_choose_channel(skb, bond); 733 if (tx_slave) { 734 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN); 735 } 736 pr_debug("Server sent ARP Reply packet\n"); 737 } else if (arp->op_code == htons(ARPOP_REQUEST)) { 738 /* Create an entry in the rx_hashtbl for this client as a 739 * place holder. 740 * When the arp reply is received the entry will be updated 741 * with the correct unicast address of the client. 742 */ 743 rlb_choose_channel(skb, bond); 744 745 /* The ARP relpy packets must be delayed so that 746 * they can cancel out the influence of the ARP request. 747 */ 748 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; 749 750 /* arp requests are broadcast and are sent on the primary 751 * the arp request will collapse all clients on the subnet to 752 * the primary slave. We must register these clients to be 753 * updated with their assigned mac. 754 */ 755 rlb_req_update_subnet_clients(bond, arp->ip_src); 756 pr_debug("Server sent ARP Request packet\n"); 757 } 758 759 return tx_slave; 760 } 761 762 /* Caller must hold bond lock for read */ 763 static void rlb_rebalance(struct bonding *bond) 764 { 765 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 766 struct slave *assigned_slave; 767 struct rlb_client_info *client_info; 768 int ntt; 769 u32 hash_index; 770 771 _lock_rx_hashtbl(bond); 772 773 ntt = 0; 774 hash_index = bond_info->rx_hashtbl_head; 775 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 776 client_info = &(bond_info->rx_hashtbl[hash_index]); 777 assigned_slave = rlb_next_rx_slave(bond); 778 if (assigned_slave && (client_info->slave != assigned_slave)) { 779 client_info->slave = assigned_slave; 780 client_info->ntt = 1; 781 ntt = 1; 782 } 783 } 784 785 /* update the team's flag only after the whole iteration */ 786 if (ntt) { 787 bond_info->rx_ntt = 1; 788 } 789 _unlock_rx_hashtbl(bond); 790 } 791 792 /* Caller must hold rx_hashtbl lock */ 793 static void rlb_init_table_entry(struct rlb_client_info *entry) 794 { 795 memset(entry, 0, sizeof(struct rlb_client_info)); 796 entry->next = RLB_NULL_INDEX; 797 entry->prev = RLB_NULL_INDEX; 798 } 799 800 static int rlb_initialize(struct bonding *bond) 801 { 802 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 803 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type); 804 struct rlb_client_info *new_hashtbl; 805 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); 806 int i; 807 808 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 809 810 new_hashtbl = kmalloc(size, GFP_KERNEL); 811 if (!new_hashtbl) { 812 pr_err(DRV_NAME 813 ": %s: Error: Failed to allocate RLB hash table\n", 814 bond->dev->name); 815 return -1; 816 } 817 _lock_rx_hashtbl(bond); 818 819 bond_info->rx_hashtbl = new_hashtbl; 820 821 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 822 823 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) { 824 rlb_init_table_entry(bond_info->rx_hashtbl + i); 825 } 826 827 _unlock_rx_hashtbl(bond); 828 829 /*initialize packet type*/ 830 pk_type->type = cpu_to_be16(ETH_P_ARP); 831 pk_type->dev = NULL; 832 pk_type->func = rlb_arp_recv; 833 834 /* register to receive ARPs */ 835 dev_add_pack(pk_type); 836 837 return 0; 838 } 839 840 static void rlb_deinitialize(struct bonding *bond) 841 { 842 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 843 844 dev_remove_pack(&(bond_info->rlb_pkt_type)); 845 846 _lock_rx_hashtbl(bond); 847 848 kfree(bond_info->rx_hashtbl); 849 bond_info->rx_hashtbl = NULL; 850 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 851 852 _unlock_rx_hashtbl(bond); 853 } 854 855 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 856 { 857 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 858 u32 curr_index; 859 860 _lock_rx_hashtbl(bond); 861 862 curr_index = bond_info->rx_hashtbl_head; 863 while (curr_index != RLB_NULL_INDEX) { 864 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); 865 u32 next_index = bond_info->rx_hashtbl[curr_index].next; 866 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev; 867 868 if (curr->tag && (curr->vlan_id == vlan_id)) { 869 if (curr_index == bond_info->rx_hashtbl_head) { 870 bond_info->rx_hashtbl_head = next_index; 871 } 872 if (prev_index != RLB_NULL_INDEX) { 873 bond_info->rx_hashtbl[prev_index].next = next_index; 874 } 875 if (next_index != RLB_NULL_INDEX) { 876 bond_info->rx_hashtbl[next_index].prev = prev_index; 877 } 878 879 rlb_init_table_entry(curr); 880 } 881 882 curr_index = next_index; 883 } 884 885 _unlock_rx_hashtbl(bond); 886 } 887 888 /*********************** tlb/rlb shared functions *********************/ 889 890 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]) 891 { 892 struct bonding *bond = bond_get_bond_by_slave(slave); 893 struct learning_pkt pkt; 894 int size = sizeof(struct learning_pkt); 895 int i; 896 897 memset(&pkt, 0, size); 898 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN); 899 memcpy(pkt.mac_src, mac_addr, ETH_ALEN); 900 pkt.type = cpu_to_be16(ETH_P_LOOP); 901 902 for (i = 0; i < MAX_LP_BURST; i++) { 903 struct sk_buff *skb; 904 char *data; 905 906 skb = dev_alloc_skb(size); 907 if (!skb) { 908 return; 909 } 910 911 data = skb_put(skb, size); 912 memcpy(data, &pkt, size); 913 914 skb_reset_mac_header(skb); 915 skb->network_header = skb->mac_header + ETH_HLEN; 916 skb->protocol = pkt.type; 917 skb->priority = TC_PRIO_CONTROL; 918 skb->dev = slave->dev; 919 920 if (!list_empty(&bond->vlan_list)) { 921 struct vlan_entry *vlan; 922 923 vlan = bond_next_vlan(bond, 924 bond->alb_info.current_alb_vlan); 925 926 bond->alb_info.current_alb_vlan = vlan; 927 if (!vlan) { 928 kfree_skb(skb); 929 continue; 930 } 931 932 skb = vlan_put_tag(skb, vlan->vlan_id); 933 if (!skb) { 934 pr_err(DRV_NAME 935 ": %s: Error: failed to insert VLAN tag\n", 936 bond->dev->name); 937 continue; 938 } 939 } 940 941 dev_queue_xmit(skb); 942 } 943 } 944 945 /* hw is a boolean parameter that determines whether we should try and 946 * set the hw address of the device as well as the hw address of the 947 * net_device 948 */ 949 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw) 950 { 951 struct net_device *dev = slave->dev; 952 struct sockaddr s_addr; 953 954 if (!hw) { 955 memcpy(dev->dev_addr, addr, dev->addr_len); 956 return 0; 957 } 958 959 /* for rlb each slave must have a unique hw mac addresses so that */ 960 /* each slave will receive packets destined to a different mac */ 961 memcpy(s_addr.sa_data, addr, dev->addr_len); 962 s_addr.sa_family = dev->type; 963 if (dev_set_mac_address(dev, &s_addr)) { 964 pr_err(DRV_NAME 965 ": %s: Error: dev_set_mac_address of dev %s failed! ALB " 966 "mode requires that the base driver support setting " 967 "the hw address also when the network device's " 968 "interface is open\n", 969 dev->master->name, dev->name); 970 return -EOPNOTSUPP; 971 } 972 return 0; 973 } 974 975 /* 976 * Swap MAC addresses between two slaves. 977 * 978 * Called with RTNL held, and no other locks. 979 * 980 */ 981 982 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2) 983 { 984 u8 tmp_mac_addr[ETH_ALEN]; 985 986 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN); 987 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled); 988 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled); 989 990 } 991 992 /* 993 * Send learning packets after MAC address swap. 994 * 995 * Called with RTNL and no other locks 996 */ 997 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, 998 struct slave *slave2) 999 { 1000 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2)); 1001 struct slave *disabled_slave = NULL; 1002 1003 ASSERT_RTNL(); 1004 1005 /* fasten the change in the switch */ 1006 if (SLAVE_IS_OK(slave1)) { 1007 alb_send_learning_packets(slave1, slave1->dev->dev_addr); 1008 if (bond->alb_info.rlb_enabled) { 1009 /* inform the clients that the mac address 1010 * has changed 1011 */ 1012 rlb_req_update_slave_clients(bond, slave1); 1013 } 1014 } else { 1015 disabled_slave = slave1; 1016 } 1017 1018 if (SLAVE_IS_OK(slave2)) { 1019 alb_send_learning_packets(slave2, slave2->dev->dev_addr); 1020 if (bond->alb_info.rlb_enabled) { 1021 /* inform the clients that the mac address 1022 * has changed 1023 */ 1024 rlb_req_update_slave_clients(bond, slave2); 1025 } 1026 } else { 1027 disabled_slave = slave2; 1028 } 1029 1030 if (bond->alb_info.rlb_enabled && slaves_state_differ) { 1031 /* A disabled slave was assigned an active mac addr */ 1032 rlb_teach_disabled_mac_on_primary(bond, 1033 disabled_slave->dev->dev_addr); 1034 } 1035 } 1036 1037 /** 1038 * alb_change_hw_addr_on_detach 1039 * @bond: bonding we're working on 1040 * @slave: the slave that was just detached 1041 * 1042 * We assume that @slave was already detached from the slave list. 1043 * 1044 * If @slave's permanent hw address is different both from its current 1045 * address and from @bond's address, then somewhere in the bond there's 1046 * a slave that has @slave's permanet address as its current address. 1047 * We'll make sure that that slave no longer uses @slave's permanent address. 1048 * 1049 * Caller must hold RTNL and no other locks 1050 */ 1051 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) 1052 { 1053 int perm_curr_diff; 1054 int perm_bond_diff; 1055 1056 perm_curr_diff = compare_ether_addr_64bits(slave->perm_hwaddr, 1057 slave->dev->dev_addr); 1058 perm_bond_diff = compare_ether_addr_64bits(slave->perm_hwaddr, 1059 bond->dev->dev_addr); 1060 1061 if (perm_curr_diff && perm_bond_diff) { 1062 struct slave *tmp_slave; 1063 int i, found = 0; 1064 1065 bond_for_each_slave(bond, tmp_slave, i) { 1066 if (!compare_ether_addr_64bits(slave->perm_hwaddr, 1067 tmp_slave->dev->dev_addr)) { 1068 found = 1; 1069 break; 1070 } 1071 } 1072 1073 if (found) { 1074 /* locking: needs RTNL and nothing else */ 1075 alb_swap_mac_addr(bond, slave, tmp_slave); 1076 alb_fasten_mac_swap(bond, slave, tmp_slave); 1077 } 1078 } 1079 } 1080 1081 /** 1082 * alb_handle_addr_collision_on_attach 1083 * @bond: bonding we're working on 1084 * @slave: the slave that was just attached 1085 * 1086 * checks uniqueness of slave's mac address and handles the case the 1087 * new slave uses the bonds mac address. 1088 * 1089 * If the permanent hw address of @slave is @bond's hw address, we need to 1090 * find a different hw address to give @slave, that isn't in use by any other 1091 * slave in the bond. This address must be, of course, one of the premanent 1092 * addresses of the other slaves. 1093 * 1094 * We go over the slave list, and for each slave there we compare its 1095 * permanent hw address with the current address of all the other slaves. 1096 * If no match was found, then we've found a slave with a permanent address 1097 * that isn't used by any other slave in the bond, so we can assign it to 1098 * @slave. 1099 * 1100 * assumption: this function is called before @slave is attached to the 1101 * bond slave list. 1102 * 1103 * caller must hold the bond lock for write since the mac addresses are compared 1104 * and may be swapped. 1105 */ 1106 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) 1107 { 1108 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave; 1109 struct slave *has_bond_addr = bond->curr_active_slave; 1110 int i, j, found = 0; 1111 1112 if (bond->slave_cnt == 0) { 1113 /* this is the first slave */ 1114 return 0; 1115 } 1116 1117 /* if slave's mac address differs from bond's mac address 1118 * check uniqueness of slave's mac address against the other 1119 * slaves in the bond. 1120 */ 1121 if (compare_ether_addr_64bits(slave->perm_hwaddr, bond->dev->dev_addr)) { 1122 bond_for_each_slave(bond, tmp_slave1, i) { 1123 if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr, 1124 slave->dev->dev_addr)) { 1125 found = 1; 1126 break; 1127 } 1128 } 1129 1130 if (!found) 1131 return 0; 1132 1133 /* Try setting slave mac to bond address and fall-through 1134 to code handling that situation below... */ 1135 alb_set_slave_mac_addr(slave, bond->dev->dev_addr, 1136 bond->alb_info.rlb_enabled); 1137 } 1138 1139 /* The slave's address is equal to the address of the bond. 1140 * Search for a spare address in the bond for this slave. 1141 */ 1142 free_mac_slave = NULL; 1143 1144 bond_for_each_slave(bond, tmp_slave1, i) { 1145 found = 0; 1146 bond_for_each_slave(bond, tmp_slave2, j) { 1147 if (!compare_ether_addr_64bits(tmp_slave1->perm_hwaddr, 1148 tmp_slave2->dev->dev_addr)) { 1149 found = 1; 1150 break; 1151 } 1152 } 1153 1154 if (!found) { 1155 /* no slave has tmp_slave1's perm addr 1156 * as its curr addr 1157 */ 1158 free_mac_slave = tmp_slave1; 1159 break; 1160 } 1161 1162 if (!has_bond_addr) { 1163 if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr, 1164 bond->dev->dev_addr)) { 1165 1166 has_bond_addr = tmp_slave1; 1167 } 1168 } 1169 } 1170 1171 if (free_mac_slave) { 1172 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, 1173 bond->alb_info.rlb_enabled); 1174 1175 pr_warning(DRV_NAME 1176 ": %s: Warning: the hw address of slave %s is " 1177 "in use by the bond; giving it the hw address " 1178 "of %s\n", 1179 bond->dev->name, slave->dev->name, 1180 free_mac_slave->dev->name); 1181 1182 } else if (has_bond_addr) { 1183 pr_err(DRV_NAME 1184 ": %s: Error: the hw address of slave %s is in use by the " 1185 "bond; couldn't find a slave with a free hw address to " 1186 "give it (this should not have happened)\n", 1187 bond->dev->name, slave->dev->name); 1188 return -EFAULT; 1189 } 1190 1191 return 0; 1192 } 1193 1194 /** 1195 * alb_set_mac_address 1196 * @bond: 1197 * @addr: 1198 * 1199 * In TLB mode all slaves are configured to the bond's hw address, but set 1200 * their dev_addr field to different addresses (based on their permanent hw 1201 * addresses). 1202 * 1203 * For each slave, this function sets the interface to the new address and then 1204 * changes its dev_addr field to its previous value. 1205 * 1206 * Unwinding assumes bond's mac address has not yet changed. 1207 */ 1208 static int alb_set_mac_address(struct bonding *bond, void *addr) 1209 { 1210 struct sockaddr sa; 1211 struct slave *slave, *stop_at; 1212 char tmp_addr[ETH_ALEN]; 1213 int res; 1214 int i; 1215 1216 if (bond->alb_info.rlb_enabled) { 1217 return 0; 1218 } 1219 1220 bond_for_each_slave(bond, slave, i) { 1221 /* save net_device's current hw address */ 1222 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1223 1224 res = dev_set_mac_address(slave->dev, addr); 1225 1226 /* restore net_device's hw address */ 1227 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1228 1229 if (res) 1230 goto unwind; 1231 } 1232 1233 return 0; 1234 1235 unwind: 1236 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len); 1237 sa.sa_family = bond->dev->type; 1238 1239 /* unwind from head to the slave that failed */ 1240 stop_at = slave; 1241 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 1242 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1243 dev_set_mac_address(slave->dev, &sa); 1244 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1245 } 1246 1247 return res; 1248 } 1249 1250 /************************ exported alb funcions ************************/ 1251 1252 int bond_alb_initialize(struct bonding *bond, int rlb_enabled) 1253 { 1254 int res; 1255 1256 res = tlb_initialize(bond); 1257 if (res) { 1258 return res; 1259 } 1260 1261 if (rlb_enabled) { 1262 bond->alb_info.rlb_enabled = 1; 1263 /* initialize rlb */ 1264 res = rlb_initialize(bond); 1265 if (res) { 1266 tlb_deinitialize(bond); 1267 return res; 1268 } 1269 } else { 1270 bond->alb_info.rlb_enabled = 0; 1271 } 1272 1273 return 0; 1274 } 1275 1276 void bond_alb_deinitialize(struct bonding *bond) 1277 { 1278 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1279 1280 tlb_deinitialize(bond); 1281 1282 if (bond_info->rlb_enabled) { 1283 rlb_deinitialize(bond); 1284 } 1285 } 1286 1287 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) 1288 { 1289 struct bonding *bond = netdev_priv(bond_dev); 1290 struct ethhdr *eth_data; 1291 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1292 struct slave *tx_slave = NULL; 1293 static const __be32 ip_bcast = htonl(0xffffffff); 1294 int hash_size = 0; 1295 int do_tx_balance = 1; 1296 u32 hash_index = 0; 1297 const u8 *hash_start = NULL; 1298 int res = 1; 1299 struct ipv6hdr *ip6hdr; 1300 1301 skb_reset_mac_header(skb); 1302 eth_data = eth_hdr(skb); 1303 1304 /* make sure that the curr_active_slave and the slaves list do 1305 * not change during tx 1306 */ 1307 read_lock(&bond->lock); 1308 read_lock(&bond->curr_slave_lock); 1309 1310 if (!BOND_IS_OK(bond)) { 1311 goto out; 1312 } 1313 1314 switch (ntohs(skb->protocol)) { 1315 case ETH_P_IP: { 1316 const struct iphdr *iph = ip_hdr(skb); 1317 1318 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast) || 1319 (iph->daddr == ip_bcast) || 1320 (iph->protocol == IPPROTO_IGMP)) { 1321 do_tx_balance = 0; 1322 break; 1323 } 1324 hash_start = (char *)&(iph->daddr); 1325 hash_size = sizeof(iph->daddr); 1326 } 1327 break; 1328 case ETH_P_IPV6: 1329 /* IPv6 doesn't really use broadcast mac address, but leave 1330 * that here just in case. 1331 */ 1332 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast)) { 1333 do_tx_balance = 0; 1334 break; 1335 } 1336 1337 /* IPv6 uses all-nodes multicast as an equivalent to 1338 * broadcasts in IPv4. 1339 */ 1340 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_v6_allmcast)) { 1341 do_tx_balance = 0; 1342 break; 1343 } 1344 1345 /* Additianally, DAD probes should not be tx-balanced as that 1346 * will lead to false positives for duplicate addresses and 1347 * prevent address configuration from working. 1348 */ 1349 ip6hdr = ipv6_hdr(skb); 1350 if (ipv6_addr_any(&ip6hdr->saddr)) { 1351 do_tx_balance = 0; 1352 break; 1353 } 1354 1355 hash_start = (char *)&(ipv6_hdr(skb)->daddr); 1356 hash_size = sizeof(ipv6_hdr(skb)->daddr); 1357 break; 1358 case ETH_P_IPX: 1359 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) { 1360 /* something is wrong with this packet */ 1361 do_tx_balance = 0; 1362 break; 1363 } 1364 1365 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) { 1366 /* The only protocol worth balancing in 1367 * this family since it has an "ARP" like 1368 * mechanism 1369 */ 1370 do_tx_balance = 0; 1371 break; 1372 } 1373 1374 hash_start = (char*)eth_data->h_dest; 1375 hash_size = ETH_ALEN; 1376 break; 1377 case ETH_P_ARP: 1378 do_tx_balance = 0; 1379 if (bond_info->rlb_enabled) { 1380 tx_slave = rlb_arp_xmit(skb, bond); 1381 } 1382 break; 1383 default: 1384 do_tx_balance = 0; 1385 break; 1386 } 1387 1388 if (do_tx_balance) { 1389 hash_index = _simple_hash(hash_start, hash_size); 1390 tx_slave = tlb_choose_channel(bond, hash_index, skb->len); 1391 } 1392 1393 if (!tx_slave) { 1394 /* unbalanced or unassigned, send through primary */ 1395 tx_slave = bond->curr_active_slave; 1396 bond_info->unbalanced_load += skb->len; 1397 } 1398 1399 if (tx_slave && SLAVE_IS_OK(tx_slave)) { 1400 if (tx_slave != bond->curr_active_slave) { 1401 memcpy(eth_data->h_source, 1402 tx_slave->dev->dev_addr, 1403 ETH_ALEN); 1404 } 1405 1406 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev); 1407 } else { 1408 if (tx_slave) { 1409 tlb_clear_slave(bond, tx_slave, 0); 1410 } 1411 } 1412 1413 out: 1414 if (res) { 1415 /* no suitable interface, frame not sent */ 1416 dev_kfree_skb(skb); 1417 } 1418 read_unlock(&bond->curr_slave_lock); 1419 read_unlock(&bond->lock); 1420 return NETDEV_TX_OK; 1421 } 1422 1423 void bond_alb_monitor(struct work_struct *work) 1424 { 1425 struct bonding *bond = container_of(work, struct bonding, 1426 alb_work.work); 1427 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1428 struct slave *slave; 1429 int i; 1430 1431 read_lock(&bond->lock); 1432 1433 if (bond->kill_timers) { 1434 goto out; 1435 } 1436 1437 if (bond->slave_cnt == 0) { 1438 bond_info->tx_rebalance_counter = 0; 1439 bond_info->lp_counter = 0; 1440 goto re_arm; 1441 } 1442 1443 bond_info->tx_rebalance_counter++; 1444 bond_info->lp_counter++; 1445 1446 /* send learning packets */ 1447 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) { 1448 /* change of curr_active_slave involves swapping of mac addresses. 1449 * in order to avoid this swapping from happening while 1450 * sending the learning packets, the curr_slave_lock must be held for 1451 * read. 1452 */ 1453 read_lock(&bond->curr_slave_lock); 1454 1455 bond_for_each_slave(bond, slave, i) { 1456 alb_send_learning_packets(slave, slave->dev->dev_addr); 1457 } 1458 1459 read_unlock(&bond->curr_slave_lock); 1460 1461 bond_info->lp_counter = 0; 1462 } 1463 1464 /* rebalance tx traffic */ 1465 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) { 1466 1467 read_lock(&bond->curr_slave_lock); 1468 1469 bond_for_each_slave(bond, slave, i) { 1470 tlb_clear_slave(bond, slave, 1); 1471 if (slave == bond->curr_active_slave) { 1472 SLAVE_TLB_INFO(slave).load = 1473 bond_info->unbalanced_load / 1474 BOND_TLB_REBALANCE_INTERVAL; 1475 bond_info->unbalanced_load = 0; 1476 } 1477 } 1478 1479 read_unlock(&bond->curr_slave_lock); 1480 1481 bond_info->tx_rebalance_counter = 0; 1482 } 1483 1484 /* handle rlb stuff */ 1485 if (bond_info->rlb_enabled) { 1486 if (bond_info->primary_is_promisc && 1487 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { 1488 1489 /* 1490 * dev_set_promiscuity requires rtnl and 1491 * nothing else. 1492 */ 1493 read_unlock(&bond->lock); 1494 rtnl_lock(); 1495 1496 bond_info->rlb_promisc_timeout_counter = 0; 1497 1498 /* If the primary was set to promiscuous mode 1499 * because a slave was disabled then 1500 * it can now leave promiscuous mode. 1501 */ 1502 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1503 bond_info->primary_is_promisc = 0; 1504 1505 rtnl_unlock(); 1506 read_lock(&bond->lock); 1507 } 1508 1509 if (bond_info->rlb_rebalance) { 1510 bond_info->rlb_rebalance = 0; 1511 rlb_rebalance(bond); 1512 } 1513 1514 /* check if clients need updating */ 1515 if (bond_info->rx_ntt) { 1516 if (bond_info->rlb_update_delay_counter) { 1517 --bond_info->rlb_update_delay_counter; 1518 } else { 1519 rlb_update_rx_clients(bond); 1520 if (bond_info->rlb_update_retry_counter) { 1521 --bond_info->rlb_update_retry_counter; 1522 } else { 1523 bond_info->rx_ntt = 0; 1524 } 1525 } 1526 } 1527 } 1528 1529 re_arm: 1530 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); 1531 out: 1532 read_unlock(&bond->lock); 1533 } 1534 1535 /* assumption: called before the slave is attached to the bond 1536 * and not locked by the bond lock 1537 */ 1538 int bond_alb_init_slave(struct bonding *bond, struct slave *slave) 1539 { 1540 int res; 1541 1542 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, 1543 bond->alb_info.rlb_enabled); 1544 if (res) { 1545 return res; 1546 } 1547 1548 /* caller must hold the bond lock for write since the mac addresses 1549 * are compared and may be swapped. 1550 */ 1551 read_lock(&bond->lock); 1552 1553 res = alb_handle_addr_collision_on_attach(bond, slave); 1554 1555 read_unlock(&bond->lock); 1556 1557 if (res) { 1558 return res; 1559 } 1560 1561 tlb_init_slave(slave); 1562 1563 /* order a rebalance ASAP */ 1564 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1565 1566 if (bond->alb_info.rlb_enabled) { 1567 bond->alb_info.rlb_rebalance = 1; 1568 } 1569 1570 return 0; 1571 } 1572 1573 /* 1574 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses 1575 * if necessary. 1576 * 1577 * Caller must hold RTNL and no other locks 1578 */ 1579 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) 1580 { 1581 if (bond->slave_cnt > 1) { 1582 alb_change_hw_addr_on_detach(bond, slave); 1583 } 1584 1585 tlb_clear_slave(bond, slave, 0); 1586 1587 if (bond->alb_info.rlb_enabled) { 1588 bond->alb_info.next_rx_slave = NULL; 1589 rlb_clear_slave(bond, slave); 1590 } 1591 } 1592 1593 /* Caller must hold bond lock for read */ 1594 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) 1595 { 1596 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1597 1598 if (link == BOND_LINK_DOWN) { 1599 tlb_clear_slave(bond, slave, 0); 1600 if (bond->alb_info.rlb_enabled) { 1601 rlb_clear_slave(bond, slave); 1602 } 1603 } else if (link == BOND_LINK_UP) { 1604 /* order a rebalance ASAP */ 1605 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1606 if (bond->alb_info.rlb_enabled) { 1607 bond->alb_info.rlb_rebalance = 1; 1608 /* If the updelay module parameter is smaller than the 1609 * forwarding delay of the switch the rebalance will 1610 * not work because the rebalance arp replies will 1611 * not be forwarded to the clients.. 1612 */ 1613 } 1614 } 1615 } 1616 1617 /** 1618 * bond_alb_handle_active_change - assign new curr_active_slave 1619 * @bond: our bonding struct 1620 * @new_slave: new slave to assign 1621 * 1622 * Set the bond->curr_active_slave to @new_slave and handle 1623 * mac address swapping and promiscuity changes as needed. 1624 * 1625 * If new_slave is NULL, caller must hold curr_slave_lock or 1626 * bond->lock for write. 1627 * 1628 * If new_slave is not NULL, caller must hold RTNL, bond->lock for 1629 * read and curr_slave_lock for write. Processing here may sleep, so 1630 * no other locks may be held. 1631 */ 1632 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) 1633 __releases(&bond->curr_slave_lock) 1634 __releases(&bond->lock) 1635 __acquires(&bond->lock) 1636 __acquires(&bond->curr_slave_lock) 1637 { 1638 struct slave *swap_slave; 1639 int i; 1640 1641 if (bond->curr_active_slave == new_slave) { 1642 return; 1643 } 1644 1645 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) { 1646 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1647 bond->alb_info.primary_is_promisc = 0; 1648 bond->alb_info.rlb_promisc_timeout_counter = 0; 1649 } 1650 1651 swap_slave = bond->curr_active_slave; 1652 bond->curr_active_slave = new_slave; 1653 1654 if (!new_slave || (bond->slave_cnt == 0)) { 1655 return; 1656 } 1657 1658 /* set the new curr_active_slave to the bonds mac address 1659 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave 1660 */ 1661 if (!swap_slave) { 1662 struct slave *tmp_slave; 1663 /* find slave that is holding the bond's mac address */ 1664 bond_for_each_slave(bond, tmp_slave, i) { 1665 if (!compare_ether_addr_64bits(tmp_slave->dev->dev_addr, 1666 bond->dev->dev_addr)) { 1667 swap_slave = tmp_slave; 1668 break; 1669 } 1670 } 1671 } 1672 1673 /* 1674 * Arrange for swap_slave and new_slave to temporarily be 1675 * ignored so we can mess with their MAC addresses without 1676 * fear of interference from transmit activity. 1677 */ 1678 if (swap_slave) { 1679 tlb_clear_slave(bond, swap_slave, 1); 1680 } 1681 tlb_clear_slave(bond, new_slave, 1); 1682 1683 write_unlock_bh(&bond->curr_slave_lock); 1684 read_unlock(&bond->lock); 1685 1686 ASSERT_RTNL(); 1687 1688 /* curr_active_slave must be set before calling alb_swap_mac_addr */ 1689 if (swap_slave) { 1690 /* swap mac address */ 1691 alb_swap_mac_addr(bond, swap_slave, new_slave); 1692 } else { 1693 /* set the new_slave to the bond mac address */ 1694 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, 1695 bond->alb_info.rlb_enabled); 1696 } 1697 1698 if (swap_slave) { 1699 alb_fasten_mac_swap(bond, swap_slave, new_slave); 1700 read_lock(&bond->lock); 1701 } else { 1702 read_lock(&bond->lock); 1703 alb_send_learning_packets(new_slave, bond->dev->dev_addr); 1704 } 1705 1706 write_lock_bh(&bond->curr_slave_lock); 1707 } 1708 1709 /* 1710 * Called with RTNL 1711 */ 1712 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) 1713 __acquires(&bond->lock) 1714 __releases(&bond->lock) 1715 { 1716 struct bonding *bond = netdev_priv(bond_dev); 1717 struct sockaddr *sa = addr; 1718 struct slave *slave, *swap_slave; 1719 int res; 1720 int i; 1721 1722 if (!is_valid_ether_addr(sa->sa_data)) { 1723 return -EADDRNOTAVAIL; 1724 } 1725 1726 res = alb_set_mac_address(bond, addr); 1727 if (res) { 1728 return res; 1729 } 1730 1731 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 1732 1733 /* If there is no curr_active_slave there is nothing else to do. 1734 * Otherwise we'll need to pass the new address to it and handle 1735 * duplications. 1736 */ 1737 if (!bond->curr_active_slave) { 1738 return 0; 1739 } 1740 1741 swap_slave = NULL; 1742 1743 bond_for_each_slave(bond, slave, i) { 1744 if (!compare_ether_addr_64bits(slave->dev->dev_addr, 1745 bond_dev->dev_addr)) { 1746 swap_slave = slave; 1747 break; 1748 } 1749 } 1750 1751 if (swap_slave) { 1752 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave); 1753 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave); 1754 } else { 1755 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr, 1756 bond->alb_info.rlb_enabled); 1757 1758 read_lock(&bond->lock); 1759 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr); 1760 if (bond->alb_info.rlb_enabled) { 1761 /* inform clients mac address has changed */ 1762 rlb_req_update_slave_clients(bond, bond->curr_active_slave); 1763 } 1764 read_unlock(&bond->lock); 1765 } 1766 1767 return 0; 1768 } 1769 1770 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 1771 { 1772 if (bond->alb_info.current_alb_vlan && 1773 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) { 1774 bond->alb_info.current_alb_vlan = NULL; 1775 } 1776 1777 if (bond->alb_info.rlb_enabled) { 1778 rlb_clear_vlan(bond, vlan_id); 1779 } 1780 } 1781 1782