1 /* 2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License along 15 * with this program; if not, write to the Free Software Foundation, Inc., 16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called LICENSE. 20 * 21 */ 22 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/skbuff.h> 26 #include <linux/netdevice.h> 27 #include <linux/etherdevice.h> 28 #include <linux/pkt_sched.h> 29 #include <linux/spinlock.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/ip.h> 33 #include <linux/ipv6.h> 34 #include <linux/if_arp.h> 35 #include <linux/if_ether.h> 36 #include <linux/if_bonding.h> 37 #include <linux/if_vlan.h> 38 #include <linux/in.h> 39 #include <net/ipx.h> 40 #include <net/arp.h> 41 #include <net/ipv6.h> 42 #include <asm/byteorder.h> 43 #include "bonding.h" 44 #include "bond_alb.h" 45 46 47 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */ 48 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing. 49 * Used for division - never set 50 * to zero !!! 51 */ 52 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of 53 * learning packets to the switch 54 */ 55 56 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \ 57 * ALB_TIMER_TICKS_PER_SEC) 58 59 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \ 60 * ALB_TIMER_TICKS_PER_SEC) 61 62 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table. 63 * Note that this value MUST NOT be smaller 64 * because the key hash table is BYTE wide ! 65 */ 66 67 68 #define TLB_NULL_INDEX 0xffffffff 69 #define MAX_LP_BURST 3 70 71 /* rlb defs */ 72 #define RLB_HASH_TABLE_SIZE 256 73 #define RLB_NULL_INDEX 0xffffffff 74 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */ 75 #define RLB_ARP_BURST_SIZE 2 76 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb 77 * rebalance interval (5 min). 78 */ 79 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is 80 * promiscuous after failover 81 */ 82 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC 83 84 #ifndef __long_aligned 85 #define __long_aligned __attribute__((aligned((sizeof(long))))) 86 #endif 87 static const u8 mac_bcast[ETH_ALEN] __long_aligned = { 88 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 89 }; 90 static const u8 mac_v6_allmcast[ETH_ALEN] __long_aligned = { 91 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 92 }; 93 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; 94 95 #pragma pack(1) 96 struct learning_pkt { 97 u8 mac_dst[ETH_ALEN]; 98 u8 mac_src[ETH_ALEN]; 99 __be16 type; 100 u8 padding[ETH_ZLEN - ETH_HLEN]; 101 }; 102 103 struct arp_pkt { 104 __be16 hw_addr_space; 105 __be16 prot_addr_space; 106 u8 hw_addr_len; 107 u8 prot_addr_len; 108 __be16 op_code; 109 u8 mac_src[ETH_ALEN]; /* sender hardware address */ 110 __be32 ip_src; /* sender IP address */ 111 u8 mac_dst[ETH_ALEN]; /* target hardware address */ 112 __be32 ip_dst; /* target IP address */ 113 }; 114 #pragma pack() 115 116 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb) 117 { 118 return (struct arp_pkt *)skb_network_header(skb); 119 } 120 121 /* Forward declaration */ 122 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]); 123 124 static inline u8 _simple_hash(const u8 *hash_start, int hash_size) 125 { 126 int i; 127 u8 hash = 0; 128 129 for (i = 0; i < hash_size; i++) { 130 hash ^= hash_start[i]; 131 } 132 133 return hash; 134 } 135 136 /*********************** tlb specific functions ***************************/ 137 138 static inline void _lock_tx_hashtbl(struct bonding *bond) 139 { 140 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 141 } 142 143 static inline void _unlock_tx_hashtbl(struct bonding *bond) 144 { 145 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 146 } 147 148 /* Caller must hold tx_hashtbl lock */ 149 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) 150 { 151 if (save_load) { 152 entry->load_history = 1 + entry->tx_bytes / 153 BOND_TLB_REBALANCE_INTERVAL; 154 entry->tx_bytes = 0; 155 } 156 157 entry->tx_slave = NULL; 158 entry->next = TLB_NULL_INDEX; 159 entry->prev = TLB_NULL_INDEX; 160 } 161 162 static inline void tlb_init_slave(struct slave *slave) 163 { 164 SLAVE_TLB_INFO(slave).load = 0; 165 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; 166 } 167 168 /* Caller must hold bond lock for read */ 169 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) 170 { 171 struct tlb_client_info *tx_hash_table; 172 u32 index; 173 174 _lock_tx_hashtbl(bond); 175 176 /* clear slave from tx_hashtbl */ 177 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; 178 179 /* skip this if we've already freed the tx hash table */ 180 if (tx_hash_table) { 181 index = SLAVE_TLB_INFO(slave).head; 182 while (index != TLB_NULL_INDEX) { 183 u32 next_index = tx_hash_table[index].next; 184 tlb_init_table_entry(&tx_hash_table[index], save_load); 185 index = next_index; 186 } 187 } 188 189 tlb_init_slave(slave); 190 191 _unlock_tx_hashtbl(bond); 192 } 193 194 /* Must be called before starting the monitor timer */ 195 static int tlb_initialize(struct bonding *bond) 196 { 197 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 198 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); 199 struct tlb_client_info *new_hashtbl; 200 int i; 201 202 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 203 204 new_hashtbl = kzalloc(size, GFP_KERNEL); 205 if (!new_hashtbl) { 206 pr_err("%s: Error: Failed to allocate TLB hash table\n", 207 bond->dev->name); 208 return -1; 209 } 210 _lock_tx_hashtbl(bond); 211 212 bond_info->tx_hashtbl = new_hashtbl; 213 214 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) { 215 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1); 216 } 217 218 _unlock_tx_hashtbl(bond); 219 220 return 0; 221 } 222 223 /* Must be called only after all slaves have been released */ 224 static void tlb_deinitialize(struct bonding *bond) 225 { 226 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 227 228 _lock_tx_hashtbl(bond); 229 230 kfree(bond_info->tx_hashtbl); 231 bond_info->tx_hashtbl = NULL; 232 233 _unlock_tx_hashtbl(bond); 234 } 235 236 /* Caller must hold bond lock for read */ 237 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) 238 { 239 struct slave *slave, *least_loaded; 240 s64 max_gap; 241 int i, found = 0; 242 243 /* Find the first enabled slave */ 244 bond_for_each_slave(bond, slave, i) { 245 if (SLAVE_IS_OK(slave)) { 246 found = 1; 247 break; 248 } 249 } 250 251 if (!found) { 252 return NULL; 253 } 254 255 least_loaded = slave; 256 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */ 257 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ 258 259 /* Find the slave with the largest gap */ 260 bond_for_each_slave_from(bond, slave, i, least_loaded) { 261 if (SLAVE_IS_OK(slave)) { 262 s64 gap = (s64)(slave->speed << 20) - 263 (s64)(SLAVE_TLB_INFO(slave).load << 3); 264 if (max_gap < gap) { 265 least_loaded = slave; 266 max_gap = gap; 267 } 268 } 269 } 270 271 return least_loaded; 272 } 273 274 /* Caller must hold bond lock for read */ 275 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) 276 { 277 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 278 struct tlb_client_info *hash_table; 279 struct slave *assigned_slave; 280 281 _lock_tx_hashtbl(bond); 282 283 hash_table = bond_info->tx_hashtbl; 284 assigned_slave = hash_table[hash_index].tx_slave; 285 if (!assigned_slave) { 286 assigned_slave = tlb_get_least_loaded_slave(bond); 287 288 if (assigned_slave) { 289 struct tlb_slave_info *slave_info = 290 &(SLAVE_TLB_INFO(assigned_slave)); 291 u32 next_index = slave_info->head; 292 293 hash_table[hash_index].tx_slave = assigned_slave; 294 hash_table[hash_index].next = next_index; 295 hash_table[hash_index].prev = TLB_NULL_INDEX; 296 297 if (next_index != TLB_NULL_INDEX) { 298 hash_table[next_index].prev = hash_index; 299 } 300 301 slave_info->head = hash_index; 302 slave_info->load += 303 hash_table[hash_index].load_history; 304 } 305 } 306 307 if (assigned_slave) { 308 hash_table[hash_index].tx_bytes += skb_len; 309 } 310 311 _unlock_tx_hashtbl(bond); 312 313 return assigned_slave; 314 } 315 316 /*********************** rlb specific functions ***************************/ 317 static inline void _lock_rx_hashtbl(struct bonding *bond) 318 { 319 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 320 } 321 322 static inline void _unlock_rx_hashtbl(struct bonding *bond) 323 { 324 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 325 } 326 327 /* when an ARP REPLY is received from a client update its info 328 * in the rx_hashtbl 329 */ 330 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) 331 { 332 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 333 struct rlb_client_info *client_info; 334 u32 hash_index; 335 336 _lock_rx_hashtbl(bond); 337 338 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src)); 339 client_info = &(bond_info->rx_hashtbl[hash_index]); 340 341 if ((client_info->assigned) && 342 (client_info->ip_src == arp->ip_dst) && 343 (client_info->ip_dst == arp->ip_src)) { 344 /* update the clients MAC address */ 345 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN); 346 client_info->ntt = 1; 347 bond_info->rx_ntt = 1; 348 } 349 350 _unlock_rx_hashtbl(bond); 351 } 352 353 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev) 354 { 355 struct bonding *bond; 356 struct arp_pkt *arp = (struct arp_pkt *)skb->data; 357 int res = NET_RX_DROP; 358 359 while (bond_dev->priv_flags & IFF_802_1Q_VLAN) 360 bond_dev = vlan_dev_real_dev(bond_dev); 361 362 if (!(bond_dev->priv_flags & IFF_BONDING) || 363 !(bond_dev->flags & IFF_MASTER)) 364 goto out; 365 366 if (!arp) { 367 pr_debug("Packet has no ARP data\n"); 368 goto out; 369 } 370 371 if (skb->len < sizeof(struct arp_pkt)) { 372 pr_debug("Packet is too small to be an ARP\n"); 373 goto out; 374 } 375 376 if (arp->op_code == htons(ARPOP_REPLY)) { 377 /* update rx hash table for this ARP */ 378 bond = netdev_priv(bond_dev); 379 rlb_update_entry_from_arp(bond, arp); 380 pr_debug("Server received an ARP Reply from client\n"); 381 } 382 383 res = NET_RX_SUCCESS; 384 385 out: 386 dev_kfree_skb(skb); 387 388 return res; 389 } 390 391 /* Caller must hold bond lock for read */ 392 static struct slave *rlb_next_rx_slave(struct bonding *bond) 393 { 394 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 395 struct slave *rx_slave, *slave, *start_at; 396 int i = 0; 397 398 if (bond_info->next_rx_slave) { 399 start_at = bond_info->next_rx_slave; 400 } else { 401 start_at = bond->first_slave; 402 } 403 404 rx_slave = NULL; 405 406 bond_for_each_slave_from(bond, slave, i, start_at) { 407 if (SLAVE_IS_OK(slave)) { 408 if (!rx_slave) { 409 rx_slave = slave; 410 } else if (slave->speed > rx_slave->speed) { 411 rx_slave = slave; 412 } 413 } 414 } 415 416 if (rx_slave) { 417 bond_info->next_rx_slave = rx_slave->next; 418 } 419 420 return rx_slave; 421 } 422 423 /* teach the switch the mac of a disabled slave 424 * on the primary for fault tolerance 425 * 426 * Caller must hold bond->curr_slave_lock for write or bond lock for write 427 */ 428 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[]) 429 { 430 if (!bond->curr_active_slave) { 431 return; 432 } 433 434 if (!bond->alb_info.primary_is_promisc) { 435 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1)) 436 bond->alb_info.primary_is_promisc = 1; 437 else 438 bond->alb_info.primary_is_promisc = 0; 439 } 440 441 bond->alb_info.rlb_promisc_timeout_counter = 0; 442 443 alb_send_learning_packets(bond->curr_active_slave, addr); 444 } 445 446 /* slave being removed should not be active at this point 447 * 448 * Caller must hold bond lock for read 449 */ 450 static void rlb_clear_slave(struct bonding *bond, struct slave *slave) 451 { 452 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 453 struct rlb_client_info *rx_hash_table; 454 u32 index, next_index; 455 456 /* clear slave from rx_hashtbl */ 457 _lock_rx_hashtbl(bond); 458 459 rx_hash_table = bond_info->rx_hashtbl; 460 index = bond_info->rx_hashtbl_head; 461 for (; index != RLB_NULL_INDEX; index = next_index) { 462 next_index = rx_hash_table[index].next; 463 if (rx_hash_table[index].slave == slave) { 464 struct slave *assigned_slave = rlb_next_rx_slave(bond); 465 466 if (assigned_slave) { 467 rx_hash_table[index].slave = assigned_slave; 468 if (compare_ether_addr_64bits(rx_hash_table[index].mac_dst, 469 mac_bcast)) { 470 bond_info->rx_hashtbl[index].ntt = 1; 471 bond_info->rx_ntt = 1; 472 /* A slave has been removed from the 473 * table because it is either disabled 474 * or being released. We must retry the 475 * update to avoid clients from not 476 * being updated & disconnecting when 477 * there is stress 478 */ 479 bond_info->rlb_update_retry_counter = 480 RLB_UPDATE_RETRY; 481 } 482 } else { /* there is no active slave */ 483 rx_hash_table[index].slave = NULL; 484 } 485 } 486 } 487 488 _unlock_rx_hashtbl(bond); 489 490 write_lock_bh(&bond->curr_slave_lock); 491 492 if (slave != bond->curr_active_slave) { 493 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); 494 } 495 496 write_unlock_bh(&bond->curr_slave_lock); 497 } 498 499 static void rlb_update_client(struct rlb_client_info *client_info) 500 { 501 int i; 502 503 if (!client_info->slave) { 504 return; 505 } 506 507 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { 508 struct sk_buff *skb; 509 510 skb = arp_create(ARPOP_REPLY, ETH_P_ARP, 511 client_info->ip_dst, 512 client_info->slave->dev, 513 client_info->ip_src, 514 client_info->mac_dst, 515 client_info->slave->dev->dev_addr, 516 client_info->mac_dst); 517 if (!skb) { 518 pr_err("%s: Error: failed to create an ARP packet\n", 519 client_info->slave->dev->master->name); 520 continue; 521 } 522 523 skb->dev = client_info->slave->dev; 524 525 if (client_info->tag) { 526 skb = vlan_put_tag(skb, client_info->vlan_id); 527 if (!skb) { 528 pr_err("%s: Error: failed to insert VLAN tag\n", 529 client_info->slave->dev->master->name); 530 continue; 531 } 532 } 533 534 arp_xmit(skb); 535 } 536 } 537 538 /* sends ARP REPLIES that update the clients that need updating */ 539 static void rlb_update_rx_clients(struct bonding *bond) 540 { 541 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 542 struct rlb_client_info *client_info; 543 u32 hash_index; 544 545 _lock_rx_hashtbl(bond); 546 547 hash_index = bond_info->rx_hashtbl_head; 548 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 549 client_info = &(bond_info->rx_hashtbl[hash_index]); 550 if (client_info->ntt) { 551 rlb_update_client(client_info); 552 if (bond_info->rlb_update_retry_counter == 0) { 553 client_info->ntt = 0; 554 } 555 } 556 } 557 558 /* do not update the entries again until this counter is zero so that 559 * not to confuse the clients. 560 */ 561 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; 562 563 _unlock_rx_hashtbl(bond); 564 } 565 566 /* The slave was assigned a new mac address - update the clients */ 567 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) 568 { 569 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 570 struct rlb_client_info *client_info; 571 int ntt = 0; 572 u32 hash_index; 573 574 _lock_rx_hashtbl(bond); 575 576 hash_index = bond_info->rx_hashtbl_head; 577 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 578 client_info = &(bond_info->rx_hashtbl[hash_index]); 579 580 if ((client_info->slave == slave) && 581 compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) { 582 client_info->ntt = 1; 583 ntt = 1; 584 } 585 } 586 587 // update the team's flag only after the whole iteration 588 if (ntt) { 589 bond_info->rx_ntt = 1; 590 //fasten the change 591 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; 592 } 593 594 _unlock_rx_hashtbl(bond); 595 } 596 597 /* mark all clients using src_ip to be updated */ 598 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) 599 { 600 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 601 struct rlb_client_info *client_info; 602 u32 hash_index; 603 604 _lock_rx_hashtbl(bond); 605 606 hash_index = bond_info->rx_hashtbl_head; 607 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 608 client_info = &(bond_info->rx_hashtbl[hash_index]); 609 610 if (!client_info->slave) { 611 pr_err("%s: Error: found a client with no channel in the client's hash table\n", 612 bond->dev->name); 613 continue; 614 } 615 /*update all clients using this src_ip, that are not assigned 616 * to the team's address (curr_active_slave) and have a known 617 * unicast mac address. 618 */ 619 if ((client_info->ip_src == src_ip) && 620 compare_ether_addr_64bits(client_info->slave->dev->dev_addr, 621 bond->dev->dev_addr) && 622 compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) { 623 client_info->ntt = 1; 624 bond_info->rx_ntt = 1; 625 } 626 } 627 628 _unlock_rx_hashtbl(bond); 629 } 630 631 /* Caller must hold both bond and ptr locks for read */ 632 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond) 633 { 634 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 635 struct arp_pkt *arp = arp_pkt(skb); 636 struct slave *assigned_slave; 637 struct rlb_client_info *client_info; 638 u32 hash_index = 0; 639 640 _lock_rx_hashtbl(bond); 641 642 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src)); 643 client_info = &(bond_info->rx_hashtbl[hash_index]); 644 645 if (client_info->assigned) { 646 if ((client_info->ip_src == arp->ip_src) && 647 (client_info->ip_dst == arp->ip_dst)) { 648 /* the entry is already assigned to this client */ 649 if (compare_ether_addr_64bits(arp->mac_dst, mac_bcast)) { 650 /* update mac address from arp */ 651 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 652 } 653 654 assigned_slave = client_info->slave; 655 if (assigned_slave) { 656 _unlock_rx_hashtbl(bond); 657 return assigned_slave; 658 } 659 } else { 660 /* the entry is already assigned to some other client, 661 * move the old client to primary (curr_active_slave) so 662 * that the new client can be assigned to this entry. 663 */ 664 if (bond->curr_active_slave && 665 client_info->slave != bond->curr_active_slave) { 666 client_info->slave = bond->curr_active_slave; 667 rlb_update_client(client_info); 668 } 669 } 670 } 671 /* assign a new slave */ 672 assigned_slave = rlb_next_rx_slave(bond); 673 674 if (assigned_slave) { 675 client_info->ip_src = arp->ip_src; 676 client_info->ip_dst = arp->ip_dst; 677 /* arp->mac_dst is broadcast for arp reqeusts. 678 * will be updated with clients actual unicast mac address 679 * upon receiving an arp reply. 680 */ 681 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 682 client_info->slave = assigned_slave; 683 684 if (compare_ether_addr_64bits(client_info->mac_dst, mac_bcast)) { 685 client_info->ntt = 1; 686 bond->alb_info.rx_ntt = 1; 687 } else { 688 client_info->ntt = 0; 689 } 690 691 if (!list_empty(&bond->vlan_list)) { 692 if (!vlan_get_tag(skb, &client_info->vlan_id)) 693 client_info->tag = 1; 694 } 695 696 if (!client_info->assigned) { 697 u32 prev_tbl_head = bond_info->rx_hashtbl_head; 698 bond_info->rx_hashtbl_head = hash_index; 699 client_info->next = prev_tbl_head; 700 if (prev_tbl_head != RLB_NULL_INDEX) { 701 bond_info->rx_hashtbl[prev_tbl_head].prev = 702 hash_index; 703 } 704 client_info->assigned = 1; 705 } 706 } 707 708 _unlock_rx_hashtbl(bond); 709 710 return assigned_slave; 711 } 712 713 /* chooses (and returns) transmit channel for arp reply 714 * does not choose channel for other arp types since they are 715 * sent on the curr_active_slave 716 */ 717 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) 718 { 719 struct arp_pkt *arp = arp_pkt(skb); 720 struct slave *tx_slave = NULL; 721 722 if (arp->op_code == htons(ARPOP_REPLY)) { 723 /* the arp must be sent on the selected 724 * rx channel 725 */ 726 tx_slave = rlb_choose_channel(skb, bond); 727 if (tx_slave) { 728 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN); 729 } 730 pr_debug("Server sent ARP Reply packet\n"); 731 } else if (arp->op_code == htons(ARPOP_REQUEST)) { 732 /* Create an entry in the rx_hashtbl for this client as a 733 * place holder. 734 * When the arp reply is received the entry will be updated 735 * with the correct unicast address of the client. 736 */ 737 rlb_choose_channel(skb, bond); 738 739 /* The ARP relpy packets must be delayed so that 740 * they can cancel out the influence of the ARP request. 741 */ 742 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; 743 744 /* arp requests are broadcast and are sent on the primary 745 * the arp request will collapse all clients on the subnet to 746 * the primary slave. We must register these clients to be 747 * updated with their assigned mac. 748 */ 749 rlb_req_update_subnet_clients(bond, arp->ip_src); 750 pr_debug("Server sent ARP Request packet\n"); 751 } 752 753 return tx_slave; 754 } 755 756 /* Caller must hold bond lock for read */ 757 static void rlb_rebalance(struct bonding *bond) 758 { 759 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 760 struct slave *assigned_slave; 761 struct rlb_client_info *client_info; 762 int ntt; 763 u32 hash_index; 764 765 _lock_rx_hashtbl(bond); 766 767 ntt = 0; 768 hash_index = bond_info->rx_hashtbl_head; 769 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 770 client_info = &(bond_info->rx_hashtbl[hash_index]); 771 assigned_slave = rlb_next_rx_slave(bond); 772 if (assigned_slave && (client_info->slave != assigned_slave)) { 773 client_info->slave = assigned_slave; 774 client_info->ntt = 1; 775 ntt = 1; 776 } 777 } 778 779 /* update the team's flag only after the whole iteration */ 780 if (ntt) { 781 bond_info->rx_ntt = 1; 782 } 783 _unlock_rx_hashtbl(bond); 784 } 785 786 /* Caller must hold rx_hashtbl lock */ 787 static void rlb_init_table_entry(struct rlb_client_info *entry) 788 { 789 memset(entry, 0, sizeof(struct rlb_client_info)); 790 entry->next = RLB_NULL_INDEX; 791 entry->prev = RLB_NULL_INDEX; 792 } 793 794 static int rlb_initialize(struct bonding *bond) 795 { 796 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 797 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type); 798 struct rlb_client_info *new_hashtbl; 799 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); 800 int i; 801 802 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 803 804 new_hashtbl = kmalloc(size, GFP_KERNEL); 805 if (!new_hashtbl) { 806 pr_err("%s: Error: Failed to allocate RLB hash table\n", 807 bond->dev->name); 808 return -1; 809 } 810 _lock_rx_hashtbl(bond); 811 812 bond_info->rx_hashtbl = new_hashtbl; 813 814 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 815 816 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) { 817 rlb_init_table_entry(bond_info->rx_hashtbl + i); 818 } 819 820 _unlock_rx_hashtbl(bond); 821 822 /*initialize packet type*/ 823 pk_type->type = cpu_to_be16(ETH_P_ARP); 824 pk_type->dev = NULL; 825 pk_type->func = rlb_arp_recv; 826 827 /* register to receive ARPs */ 828 dev_add_pack(pk_type); 829 830 return 0; 831 } 832 833 static void rlb_deinitialize(struct bonding *bond) 834 { 835 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 836 837 dev_remove_pack(&(bond_info->rlb_pkt_type)); 838 839 _lock_rx_hashtbl(bond); 840 841 kfree(bond_info->rx_hashtbl); 842 bond_info->rx_hashtbl = NULL; 843 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 844 845 _unlock_rx_hashtbl(bond); 846 } 847 848 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 849 { 850 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 851 u32 curr_index; 852 853 _lock_rx_hashtbl(bond); 854 855 curr_index = bond_info->rx_hashtbl_head; 856 while (curr_index != RLB_NULL_INDEX) { 857 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); 858 u32 next_index = bond_info->rx_hashtbl[curr_index].next; 859 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev; 860 861 if (curr->tag && (curr->vlan_id == vlan_id)) { 862 if (curr_index == bond_info->rx_hashtbl_head) { 863 bond_info->rx_hashtbl_head = next_index; 864 } 865 if (prev_index != RLB_NULL_INDEX) { 866 bond_info->rx_hashtbl[prev_index].next = next_index; 867 } 868 if (next_index != RLB_NULL_INDEX) { 869 bond_info->rx_hashtbl[next_index].prev = prev_index; 870 } 871 872 rlb_init_table_entry(curr); 873 } 874 875 curr_index = next_index; 876 } 877 878 _unlock_rx_hashtbl(bond); 879 } 880 881 /*********************** tlb/rlb shared functions *********************/ 882 883 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]) 884 { 885 struct bonding *bond = bond_get_bond_by_slave(slave); 886 struct learning_pkt pkt; 887 int size = sizeof(struct learning_pkt); 888 int i; 889 890 memset(&pkt, 0, size); 891 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN); 892 memcpy(pkt.mac_src, mac_addr, ETH_ALEN); 893 pkt.type = cpu_to_be16(ETH_P_LOOP); 894 895 for (i = 0; i < MAX_LP_BURST; i++) { 896 struct sk_buff *skb; 897 char *data; 898 899 skb = dev_alloc_skb(size); 900 if (!skb) { 901 return; 902 } 903 904 data = skb_put(skb, size); 905 memcpy(data, &pkt, size); 906 907 skb_reset_mac_header(skb); 908 skb->network_header = skb->mac_header + ETH_HLEN; 909 skb->protocol = pkt.type; 910 skb->priority = TC_PRIO_CONTROL; 911 skb->dev = slave->dev; 912 913 if (!list_empty(&bond->vlan_list)) { 914 struct vlan_entry *vlan; 915 916 vlan = bond_next_vlan(bond, 917 bond->alb_info.current_alb_vlan); 918 919 bond->alb_info.current_alb_vlan = vlan; 920 if (!vlan) { 921 kfree_skb(skb); 922 continue; 923 } 924 925 skb = vlan_put_tag(skb, vlan->vlan_id); 926 if (!skb) { 927 pr_err("%s: Error: failed to insert VLAN tag\n", 928 bond->dev->name); 929 continue; 930 } 931 } 932 933 dev_queue_xmit(skb); 934 } 935 } 936 937 /* hw is a boolean parameter that determines whether we should try and 938 * set the hw address of the device as well as the hw address of the 939 * net_device 940 */ 941 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw) 942 { 943 struct net_device *dev = slave->dev; 944 struct sockaddr s_addr; 945 946 if (!hw) { 947 memcpy(dev->dev_addr, addr, dev->addr_len); 948 return 0; 949 } 950 951 /* for rlb each slave must have a unique hw mac addresses so that */ 952 /* each slave will receive packets destined to a different mac */ 953 memcpy(s_addr.sa_data, addr, dev->addr_len); 954 s_addr.sa_family = dev->type; 955 if (dev_set_mac_address(dev, &s_addr)) { 956 pr_err("%s: Error: dev_set_mac_address of dev %s failed!\n" 957 "ALB mode requires that the base driver support setting the hw address also when the network device's interface is open\n", 958 dev->master->name, dev->name); 959 return -EOPNOTSUPP; 960 } 961 return 0; 962 } 963 964 /* 965 * Swap MAC addresses between two slaves. 966 * 967 * Called with RTNL held, and no other locks. 968 * 969 */ 970 971 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2) 972 { 973 u8 tmp_mac_addr[ETH_ALEN]; 974 975 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN); 976 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled); 977 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled); 978 979 } 980 981 /* 982 * Send learning packets after MAC address swap. 983 * 984 * Called with RTNL and no other locks 985 */ 986 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, 987 struct slave *slave2) 988 { 989 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2)); 990 struct slave *disabled_slave = NULL; 991 992 ASSERT_RTNL(); 993 994 /* fasten the change in the switch */ 995 if (SLAVE_IS_OK(slave1)) { 996 alb_send_learning_packets(slave1, slave1->dev->dev_addr); 997 if (bond->alb_info.rlb_enabled) { 998 /* inform the clients that the mac address 999 * has changed 1000 */ 1001 rlb_req_update_slave_clients(bond, slave1); 1002 } 1003 } else { 1004 disabled_slave = slave1; 1005 } 1006 1007 if (SLAVE_IS_OK(slave2)) { 1008 alb_send_learning_packets(slave2, slave2->dev->dev_addr); 1009 if (bond->alb_info.rlb_enabled) { 1010 /* inform the clients that the mac address 1011 * has changed 1012 */ 1013 rlb_req_update_slave_clients(bond, slave2); 1014 } 1015 } else { 1016 disabled_slave = slave2; 1017 } 1018 1019 if (bond->alb_info.rlb_enabled && slaves_state_differ) { 1020 /* A disabled slave was assigned an active mac addr */ 1021 rlb_teach_disabled_mac_on_primary(bond, 1022 disabled_slave->dev->dev_addr); 1023 } 1024 } 1025 1026 /** 1027 * alb_change_hw_addr_on_detach 1028 * @bond: bonding we're working on 1029 * @slave: the slave that was just detached 1030 * 1031 * We assume that @slave was already detached from the slave list. 1032 * 1033 * If @slave's permanent hw address is different both from its current 1034 * address and from @bond's address, then somewhere in the bond there's 1035 * a slave that has @slave's permanet address as its current address. 1036 * We'll make sure that that slave no longer uses @slave's permanent address. 1037 * 1038 * Caller must hold RTNL and no other locks 1039 */ 1040 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) 1041 { 1042 int perm_curr_diff; 1043 int perm_bond_diff; 1044 1045 perm_curr_diff = compare_ether_addr_64bits(slave->perm_hwaddr, 1046 slave->dev->dev_addr); 1047 perm_bond_diff = compare_ether_addr_64bits(slave->perm_hwaddr, 1048 bond->dev->dev_addr); 1049 1050 if (perm_curr_diff && perm_bond_diff) { 1051 struct slave *tmp_slave; 1052 int i, found = 0; 1053 1054 bond_for_each_slave(bond, tmp_slave, i) { 1055 if (!compare_ether_addr_64bits(slave->perm_hwaddr, 1056 tmp_slave->dev->dev_addr)) { 1057 found = 1; 1058 break; 1059 } 1060 } 1061 1062 if (found) { 1063 /* locking: needs RTNL and nothing else */ 1064 alb_swap_mac_addr(bond, slave, tmp_slave); 1065 alb_fasten_mac_swap(bond, slave, tmp_slave); 1066 } 1067 } 1068 } 1069 1070 /** 1071 * alb_handle_addr_collision_on_attach 1072 * @bond: bonding we're working on 1073 * @slave: the slave that was just attached 1074 * 1075 * checks uniqueness of slave's mac address and handles the case the 1076 * new slave uses the bonds mac address. 1077 * 1078 * If the permanent hw address of @slave is @bond's hw address, we need to 1079 * find a different hw address to give @slave, that isn't in use by any other 1080 * slave in the bond. This address must be, of course, one of the premanent 1081 * addresses of the other slaves. 1082 * 1083 * We go over the slave list, and for each slave there we compare its 1084 * permanent hw address with the current address of all the other slaves. 1085 * If no match was found, then we've found a slave with a permanent address 1086 * that isn't used by any other slave in the bond, so we can assign it to 1087 * @slave. 1088 * 1089 * assumption: this function is called before @slave is attached to the 1090 * bond slave list. 1091 * 1092 * caller must hold the bond lock for write since the mac addresses are compared 1093 * and may be swapped. 1094 */ 1095 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) 1096 { 1097 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave; 1098 struct slave *has_bond_addr = bond->curr_active_slave; 1099 int i, j, found = 0; 1100 1101 if (bond->slave_cnt == 0) { 1102 /* this is the first slave */ 1103 return 0; 1104 } 1105 1106 /* if slave's mac address differs from bond's mac address 1107 * check uniqueness of slave's mac address against the other 1108 * slaves in the bond. 1109 */ 1110 if (compare_ether_addr_64bits(slave->perm_hwaddr, bond->dev->dev_addr)) { 1111 bond_for_each_slave(bond, tmp_slave1, i) { 1112 if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr, 1113 slave->dev->dev_addr)) { 1114 found = 1; 1115 break; 1116 } 1117 } 1118 1119 if (!found) 1120 return 0; 1121 1122 /* Try setting slave mac to bond address and fall-through 1123 to code handling that situation below... */ 1124 alb_set_slave_mac_addr(slave, bond->dev->dev_addr, 1125 bond->alb_info.rlb_enabled); 1126 } 1127 1128 /* The slave's address is equal to the address of the bond. 1129 * Search for a spare address in the bond for this slave. 1130 */ 1131 free_mac_slave = NULL; 1132 1133 bond_for_each_slave(bond, tmp_slave1, i) { 1134 found = 0; 1135 bond_for_each_slave(bond, tmp_slave2, j) { 1136 if (!compare_ether_addr_64bits(tmp_slave1->perm_hwaddr, 1137 tmp_slave2->dev->dev_addr)) { 1138 found = 1; 1139 break; 1140 } 1141 } 1142 1143 if (!found) { 1144 /* no slave has tmp_slave1's perm addr 1145 * as its curr addr 1146 */ 1147 free_mac_slave = tmp_slave1; 1148 break; 1149 } 1150 1151 if (!has_bond_addr) { 1152 if (!compare_ether_addr_64bits(tmp_slave1->dev->dev_addr, 1153 bond->dev->dev_addr)) { 1154 1155 has_bond_addr = tmp_slave1; 1156 } 1157 } 1158 } 1159 1160 if (free_mac_slave) { 1161 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, 1162 bond->alb_info.rlb_enabled); 1163 1164 pr_warning("%s: Warning: the hw address of slave %s is in use by the bond; giving it the hw address of %s\n", 1165 bond->dev->name, slave->dev->name, 1166 free_mac_slave->dev->name); 1167 1168 } else if (has_bond_addr) { 1169 pr_err("%s: Error: the hw address of slave %s is in use by the bond; couldn't find a slave with a free hw address to give it (this should not have happened)\n", 1170 bond->dev->name, slave->dev->name); 1171 return -EFAULT; 1172 } 1173 1174 return 0; 1175 } 1176 1177 /** 1178 * alb_set_mac_address 1179 * @bond: 1180 * @addr: 1181 * 1182 * In TLB mode all slaves are configured to the bond's hw address, but set 1183 * their dev_addr field to different addresses (based on their permanent hw 1184 * addresses). 1185 * 1186 * For each slave, this function sets the interface to the new address and then 1187 * changes its dev_addr field to its previous value. 1188 * 1189 * Unwinding assumes bond's mac address has not yet changed. 1190 */ 1191 static int alb_set_mac_address(struct bonding *bond, void *addr) 1192 { 1193 struct sockaddr sa; 1194 struct slave *slave, *stop_at; 1195 char tmp_addr[ETH_ALEN]; 1196 int res; 1197 int i; 1198 1199 if (bond->alb_info.rlb_enabled) { 1200 return 0; 1201 } 1202 1203 bond_for_each_slave(bond, slave, i) { 1204 /* save net_device's current hw address */ 1205 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1206 1207 res = dev_set_mac_address(slave->dev, addr); 1208 1209 /* restore net_device's hw address */ 1210 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1211 1212 if (res) 1213 goto unwind; 1214 } 1215 1216 return 0; 1217 1218 unwind: 1219 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len); 1220 sa.sa_family = bond->dev->type; 1221 1222 /* unwind from head to the slave that failed */ 1223 stop_at = slave; 1224 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 1225 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1226 dev_set_mac_address(slave->dev, &sa); 1227 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1228 } 1229 1230 return res; 1231 } 1232 1233 /************************ exported alb funcions ************************/ 1234 1235 int bond_alb_initialize(struct bonding *bond, int rlb_enabled) 1236 { 1237 int res; 1238 1239 res = tlb_initialize(bond); 1240 if (res) { 1241 return res; 1242 } 1243 1244 if (rlb_enabled) { 1245 bond->alb_info.rlb_enabled = 1; 1246 /* initialize rlb */ 1247 res = rlb_initialize(bond); 1248 if (res) { 1249 tlb_deinitialize(bond); 1250 return res; 1251 } 1252 } else { 1253 bond->alb_info.rlb_enabled = 0; 1254 } 1255 1256 return 0; 1257 } 1258 1259 void bond_alb_deinitialize(struct bonding *bond) 1260 { 1261 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1262 1263 tlb_deinitialize(bond); 1264 1265 if (bond_info->rlb_enabled) { 1266 rlb_deinitialize(bond); 1267 } 1268 } 1269 1270 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) 1271 { 1272 struct bonding *bond = netdev_priv(bond_dev); 1273 struct ethhdr *eth_data; 1274 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1275 struct slave *tx_slave = NULL; 1276 static const __be32 ip_bcast = htonl(0xffffffff); 1277 int hash_size = 0; 1278 int do_tx_balance = 1; 1279 u32 hash_index = 0; 1280 const u8 *hash_start = NULL; 1281 int res = 1; 1282 struct ipv6hdr *ip6hdr; 1283 1284 skb_reset_mac_header(skb); 1285 eth_data = eth_hdr(skb); 1286 1287 /* make sure that the curr_active_slave and the slaves list do 1288 * not change during tx 1289 */ 1290 read_lock(&bond->lock); 1291 read_lock(&bond->curr_slave_lock); 1292 1293 if (!BOND_IS_OK(bond)) { 1294 goto out; 1295 } 1296 1297 switch (ntohs(skb->protocol)) { 1298 case ETH_P_IP: { 1299 const struct iphdr *iph = ip_hdr(skb); 1300 1301 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast) || 1302 (iph->daddr == ip_bcast) || 1303 (iph->protocol == IPPROTO_IGMP)) { 1304 do_tx_balance = 0; 1305 break; 1306 } 1307 hash_start = (char *)&(iph->daddr); 1308 hash_size = sizeof(iph->daddr); 1309 } 1310 break; 1311 case ETH_P_IPV6: 1312 /* IPv6 doesn't really use broadcast mac address, but leave 1313 * that here just in case. 1314 */ 1315 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_bcast)) { 1316 do_tx_balance = 0; 1317 break; 1318 } 1319 1320 /* IPv6 uses all-nodes multicast as an equivalent to 1321 * broadcasts in IPv4. 1322 */ 1323 if (!compare_ether_addr_64bits(eth_data->h_dest, mac_v6_allmcast)) { 1324 do_tx_balance = 0; 1325 break; 1326 } 1327 1328 /* Additianally, DAD probes should not be tx-balanced as that 1329 * will lead to false positives for duplicate addresses and 1330 * prevent address configuration from working. 1331 */ 1332 ip6hdr = ipv6_hdr(skb); 1333 if (ipv6_addr_any(&ip6hdr->saddr)) { 1334 do_tx_balance = 0; 1335 break; 1336 } 1337 1338 hash_start = (char *)&(ipv6_hdr(skb)->daddr); 1339 hash_size = sizeof(ipv6_hdr(skb)->daddr); 1340 break; 1341 case ETH_P_IPX: 1342 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) { 1343 /* something is wrong with this packet */ 1344 do_tx_balance = 0; 1345 break; 1346 } 1347 1348 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) { 1349 /* The only protocol worth balancing in 1350 * this family since it has an "ARP" like 1351 * mechanism 1352 */ 1353 do_tx_balance = 0; 1354 break; 1355 } 1356 1357 hash_start = (char*)eth_data->h_dest; 1358 hash_size = ETH_ALEN; 1359 break; 1360 case ETH_P_ARP: 1361 do_tx_balance = 0; 1362 if (bond_info->rlb_enabled) { 1363 tx_slave = rlb_arp_xmit(skb, bond); 1364 } 1365 break; 1366 default: 1367 do_tx_balance = 0; 1368 break; 1369 } 1370 1371 if (do_tx_balance) { 1372 hash_index = _simple_hash(hash_start, hash_size); 1373 tx_slave = tlb_choose_channel(bond, hash_index, skb->len); 1374 } 1375 1376 if (!tx_slave) { 1377 /* unbalanced or unassigned, send through primary */ 1378 tx_slave = bond->curr_active_slave; 1379 bond_info->unbalanced_load += skb->len; 1380 } 1381 1382 if (tx_slave && SLAVE_IS_OK(tx_slave)) { 1383 if (tx_slave != bond->curr_active_slave) { 1384 memcpy(eth_data->h_source, 1385 tx_slave->dev->dev_addr, 1386 ETH_ALEN); 1387 } 1388 1389 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev); 1390 } else { 1391 if (tx_slave) { 1392 tlb_clear_slave(bond, tx_slave, 0); 1393 } 1394 } 1395 1396 out: 1397 if (res) { 1398 /* no suitable interface, frame not sent */ 1399 dev_kfree_skb(skb); 1400 } 1401 read_unlock(&bond->curr_slave_lock); 1402 read_unlock(&bond->lock); 1403 return NETDEV_TX_OK; 1404 } 1405 1406 void bond_alb_monitor(struct work_struct *work) 1407 { 1408 struct bonding *bond = container_of(work, struct bonding, 1409 alb_work.work); 1410 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1411 struct slave *slave; 1412 int i; 1413 1414 read_lock(&bond->lock); 1415 1416 if (bond->kill_timers) { 1417 goto out; 1418 } 1419 1420 if (bond->slave_cnt == 0) { 1421 bond_info->tx_rebalance_counter = 0; 1422 bond_info->lp_counter = 0; 1423 goto re_arm; 1424 } 1425 1426 bond_info->tx_rebalance_counter++; 1427 bond_info->lp_counter++; 1428 1429 /* send learning packets */ 1430 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) { 1431 /* change of curr_active_slave involves swapping of mac addresses. 1432 * in order to avoid this swapping from happening while 1433 * sending the learning packets, the curr_slave_lock must be held for 1434 * read. 1435 */ 1436 read_lock(&bond->curr_slave_lock); 1437 1438 bond_for_each_slave(bond, slave, i) { 1439 alb_send_learning_packets(slave, slave->dev->dev_addr); 1440 } 1441 1442 read_unlock(&bond->curr_slave_lock); 1443 1444 bond_info->lp_counter = 0; 1445 } 1446 1447 /* rebalance tx traffic */ 1448 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) { 1449 1450 read_lock(&bond->curr_slave_lock); 1451 1452 bond_for_each_slave(bond, slave, i) { 1453 tlb_clear_slave(bond, slave, 1); 1454 if (slave == bond->curr_active_slave) { 1455 SLAVE_TLB_INFO(slave).load = 1456 bond_info->unbalanced_load / 1457 BOND_TLB_REBALANCE_INTERVAL; 1458 bond_info->unbalanced_load = 0; 1459 } 1460 } 1461 1462 read_unlock(&bond->curr_slave_lock); 1463 1464 bond_info->tx_rebalance_counter = 0; 1465 } 1466 1467 /* handle rlb stuff */ 1468 if (bond_info->rlb_enabled) { 1469 if (bond_info->primary_is_promisc && 1470 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { 1471 1472 /* 1473 * dev_set_promiscuity requires rtnl and 1474 * nothing else. 1475 */ 1476 read_unlock(&bond->lock); 1477 rtnl_lock(); 1478 1479 bond_info->rlb_promisc_timeout_counter = 0; 1480 1481 /* If the primary was set to promiscuous mode 1482 * because a slave was disabled then 1483 * it can now leave promiscuous mode. 1484 */ 1485 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1486 bond_info->primary_is_promisc = 0; 1487 1488 rtnl_unlock(); 1489 read_lock(&bond->lock); 1490 } 1491 1492 if (bond_info->rlb_rebalance) { 1493 bond_info->rlb_rebalance = 0; 1494 rlb_rebalance(bond); 1495 } 1496 1497 /* check if clients need updating */ 1498 if (bond_info->rx_ntt) { 1499 if (bond_info->rlb_update_delay_counter) { 1500 --bond_info->rlb_update_delay_counter; 1501 } else { 1502 rlb_update_rx_clients(bond); 1503 if (bond_info->rlb_update_retry_counter) { 1504 --bond_info->rlb_update_retry_counter; 1505 } else { 1506 bond_info->rx_ntt = 0; 1507 } 1508 } 1509 } 1510 } 1511 1512 re_arm: 1513 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); 1514 out: 1515 read_unlock(&bond->lock); 1516 } 1517 1518 /* assumption: called before the slave is attached to the bond 1519 * and not locked by the bond lock 1520 */ 1521 int bond_alb_init_slave(struct bonding *bond, struct slave *slave) 1522 { 1523 int res; 1524 1525 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, 1526 bond->alb_info.rlb_enabled); 1527 if (res) { 1528 return res; 1529 } 1530 1531 /* caller must hold the bond lock for write since the mac addresses 1532 * are compared and may be swapped. 1533 */ 1534 read_lock(&bond->lock); 1535 1536 res = alb_handle_addr_collision_on_attach(bond, slave); 1537 1538 read_unlock(&bond->lock); 1539 1540 if (res) { 1541 return res; 1542 } 1543 1544 tlb_init_slave(slave); 1545 1546 /* order a rebalance ASAP */ 1547 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1548 1549 if (bond->alb_info.rlb_enabled) { 1550 bond->alb_info.rlb_rebalance = 1; 1551 } 1552 1553 return 0; 1554 } 1555 1556 /* 1557 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses 1558 * if necessary. 1559 * 1560 * Caller must hold RTNL and no other locks 1561 */ 1562 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) 1563 { 1564 if (bond->slave_cnt > 1) { 1565 alb_change_hw_addr_on_detach(bond, slave); 1566 } 1567 1568 tlb_clear_slave(bond, slave, 0); 1569 1570 if (bond->alb_info.rlb_enabled) { 1571 bond->alb_info.next_rx_slave = NULL; 1572 rlb_clear_slave(bond, slave); 1573 } 1574 } 1575 1576 /* Caller must hold bond lock for read */ 1577 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) 1578 { 1579 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1580 1581 if (link == BOND_LINK_DOWN) { 1582 tlb_clear_slave(bond, slave, 0); 1583 if (bond->alb_info.rlb_enabled) { 1584 rlb_clear_slave(bond, slave); 1585 } 1586 } else if (link == BOND_LINK_UP) { 1587 /* order a rebalance ASAP */ 1588 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1589 if (bond->alb_info.rlb_enabled) { 1590 bond->alb_info.rlb_rebalance = 1; 1591 /* If the updelay module parameter is smaller than the 1592 * forwarding delay of the switch the rebalance will 1593 * not work because the rebalance arp replies will 1594 * not be forwarded to the clients.. 1595 */ 1596 } 1597 } 1598 } 1599 1600 /** 1601 * bond_alb_handle_active_change - assign new curr_active_slave 1602 * @bond: our bonding struct 1603 * @new_slave: new slave to assign 1604 * 1605 * Set the bond->curr_active_slave to @new_slave and handle 1606 * mac address swapping and promiscuity changes as needed. 1607 * 1608 * If new_slave is NULL, caller must hold curr_slave_lock or 1609 * bond->lock for write. 1610 * 1611 * If new_slave is not NULL, caller must hold RTNL, bond->lock for 1612 * read and curr_slave_lock for write. Processing here may sleep, so 1613 * no other locks may be held. 1614 */ 1615 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) 1616 __releases(&bond->curr_slave_lock) 1617 __releases(&bond->lock) 1618 __acquires(&bond->lock) 1619 __acquires(&bond->curr_slave_lock) 1620 { 1621 struct slave *swap_slave; 1622 int i; 1623 1624 if (bond->curr_active_slave == new_slave) { 1625 return; 1626 } 1627 1628 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) { 1629 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1630 bond->alb_info.primary_is_promisc = 0; 1631 bond->alb_info.rlb_promisc_timeout_counter = 0; 1632 } 1633 1634 swap_slave = bond->curr_active_slave; 1635 bond->curr_active_slave = new_slave; 1636 1637 if (!new_slave || (bond->slave_cnt == 0)) { 1638 return; 1639 } 1640 1641 /* set the new curr_active_slave to the bonds mac address 1642 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave 1643 */ 1644 if (!swap_slave) { 1645 struct slave *tmp_slave; 1646 /* find slave that is holding the bond's mac address */ 1647 bond_for_each_slave(bond, tmp_slave, i) { 1648 if (!compare_ether_addr_64bits(tmp_slave->dev->dev_addr, 1649 bond->dev->dev_addr)) { 1650 swap_slave = tmp_slave; 1651 break; 1652 } 1653 } 1654 } 1655 1656 /* 1657 * Arrange for swap_slave and new_slave to temporarily be 1658 * ignored so we can mess with their MAC addresses without 1659 * fear of interference from transmit activity. 1660 */ 1661 if (swap_slave) { 1662 tlb_clear_slave(bond, swap_slave, 1); 1663 } 1664 tlb_clear_slave(bond, new_slave, 1); 1665 1666 write_unlock_bh(&bond->curr_slave_lock); 1667 read_unlock(&bond->lock); 1668 1669 ASSERT_RTNL(); 1670 1671 /* curr_active_slave must be set before calling alb_swap_mac_addr */ 1672 if (swap_slave) { 1673 /* swap mac address */ 1674 alb_swap_mac_addr(bond, swap_slave, new_slave); 1675 } else { 1676 /* set the new_slave to the bond mac address */ 1677 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, 1678 bond->alb_info.rlb_enabled); 1679 } 1680 1681 if (swap_slave) { 1682 alb_fasten_mac_swap(bond, swap_slave, new_slave); 1683 read_lock(&bond->lock); 1684 } else { 1685 read_lock(&bond->lock); 1686 alb_send_learning_packets(new_slave, bond->dev->dev_addr); 1687 } 1688 1689 write_lock_bh(&bond->curr_slave_lock); 1690 } 1691 1692 /* 1693 * Called with RTNL 1694 */ 1695 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) 1696 __acquires(&bond->lock) 1697 __releases(&bond->lock) 1698 { 1699 struct bonding *bond = netdev_priv(bond_dev); 1700 struct sockaddr *sa = addr; 1701 struct slave *slave, *swap_slave; 1702 int res; 1703 int i; 1704 1705 if (!is_valid_ether_addr(sa->sa_data)) { 1706 return -EADDRNOTAVAIL; 1707 } 1708 1709 res = alb_set_mac_address(bond, addr); 1710 if (res) { 1711 return res; 1712 } 1713 1714 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 1715 1716 /* If there is no curr_active_slave there is nothing else to do. 1717 * Otherwise we'll need to pass the new address to it and handle 1718 * duplications. 1719 */ 1720 if (!bond->curr_active_slave) { 1721 return 0; 1722 } 1723 1724 swap_slave = NULL; 1725 1726 bond_for_each_slave(bond, slave, i) { 1727 if (!compare_ether_addr_64bits(slave->dev->dev_addr, 1728 bond_dev->dev_addr)) { 1729 swap_slave = slave; 1730 break; 1731 } 1732 } 1733 1734 if (swap_slave) { 1735 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave); 1736 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave); 1737 } else { 1738 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr, 1739 bond->alb_info.rlb_enabled); 1740 1741 read_lock(&bond->lock); 1742 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr); 1743 if (bond->alb_info.rlb_enabled) { 1744 /* inform clients mac address has changed */ 1745 rlb_req_update_slave_clients(bond, bond->curr_active_slave); 1746 } 1747 read_unlock(&bond->lock); 1748 } 1749 1750 return 0; 1751 } 1752 1753 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 1754 { 1755 if (bond->alb_info.current_alb_vlan && 1756 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) { 1757 bond->alb_info.current_alb_vlan = NULL; 1758 } 1759 1760 if (bond->alb_info.rlb_enabled) { 1761 rlb_clear_vlan(bond, vlan_id); 1762 } 1763 } 1764 1765