1 /* 2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License along 15 * with this program; if not, write to the Free Software Foundation, Inc., 16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called LICENSE. 20 * 21 */ 22 23 #include <linux/skbuff.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/pkt_sched.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/ip.h> 31 #include <linux/ipv6.h> 32 #include <linux/if_arp.h> 33 #include <linux/if_ether.h> 34 #include <linux/if_bonding.h> 35 #include <linux/if_vlan.h> 36 #include <linux/in.h> 37 #include <net/ipx.h> 38 #include <net/arp.h> 39 #include <net/ipv6.h> 40 #include <asm/byteorder.h> 41 #include "bonding.h" 42 #include "bond_alb.h" 43 44 45 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */ 46 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing. 47 * Used for division - never set 48 * to zero !!! 49 */ 50 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of 51 * learning packets to the switch 52 */ 53 54 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \ 55 * ALB_TIMER_TICKS_PER_SEC) 56 57 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \ 58 * ALB_TIMER_TICKS_PER_SEC) 59 60 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table. 61 * Note that this value MUST NOT be smaller 62 * because the key hash table is BYTE wide ! 63 */ 64 65 66 #define TLB_NULL_INDEX 0xffffffff 67 #define MAX_LP_BURST 3 68 69 /* rlb defs */ 70 #define RLB_HASH_TABLE_SIZE 256 71 #define RLB_NULL_INDEX 0xffffffff 72 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */ 73 #define RLB_ARP_BURST_SIZE 2 74 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb 75 * rebalance interval (5 min). 76 */ 77 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is 78 * promiscuous after failover 79 */ 80 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC 81 82 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff}; 83 static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01}; 84 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; 85 86 #pragma pack(1) 87 struct learning_pkt { 88 u8 mac_dst[ETH_ALEN]; 89 u8 mac_src[ETH_ALEN]; 90 __be16 type; 91 u8 padding[ETH_ZLEN - ETH_HLEN]; 92 }; 93 94 struct arp_pkt { 95 __be16 hw_addr_space; 96 __be16 prot_addr_space; 97 u8 hw_addr_len; 98 u8 prot_addr_len; 99 __be16 op_code; 100 u8 mac_src[ETH_ALEN]; /* sender hardware address */ 101 __be32 ip_src; /* sender IP address */ 102 u8 mac_dst[ETH_ALEN]; /* target hardware address */ 103 __be32 ip_dst; /* target IP address */ 104 }; 105 #pragma pack() 106 107 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb) 108 { 109 return (struct arp_pkt *)skb_network_header(skb); 110 } 111 112 /* Forward declaration */ 113 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]); 114 115 static inline u8 _simple_hash(const u8 *hash_start, int hash_size) 116 { 117 int i; 118 u8 hash = 0; 119 120 for (i = 0; i < hash_size; i++) { 121 hash ^= hash_start[i]; 122 } 123 124 return hash; 125 } 126 127 /*********************** tlb specific functions ***************************/ 128 129 static inline void _lock_tx_hashtbl(struct bonding *bond) 130 { 131 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 132 } 133 134 static inline void _unlock_tx_hashtbl(struct bonding *bond) 135 { 136 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 137 } 138 139 /* Caller must hold tx_hashtbl lock */ 140 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) 141 { 142 if (save_load) { 143 entry->load_history = 1 + entry->tx_bytes / 144 BOND_TLB_REBALANCE_INTERVAL; 145 entry->tx_bytes = 0; 146 } 147 148 entry->tx_slave = NULL; 149 entry->next = TLB_NULL_INDEX; 150 entry->prev = TLB_NULL_INDEX; 151 } 152 153 static inline void tlb_init_slave(struct slave *slave) 154 { 155 SLAVE_TLB_INFO(slave).load = 0; 156 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; 157 } 158 159 /* Caller must hold bond lock for read */ 160 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) 161 { 162 struct tlb_client_info *tx_hash_table; 163 u32 index; 164 165 _lock_tx_hashtbl(bond); 166 167 /* clear slave from tx_hashtbl */ 168 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; 169 170 /* skip this if we've already freed the tx hash table */ 171 if (tx_hash_table) { 172 index = SLAVE_TLB_INFO(slave).head; 173 while (index != TLB_NULL_INDEX) { 174 u32 next_index = tx_hash_table[index].next; 175 tlb_init_table_entry(&tx_hash_table[index], save_load); 176 index = next_index; 177 } 178 } 179 180 tlb_init_slave(slave); 181 182 _unlock_tx_hashtbl(bond); 183 } 184 185 /* Must be called before starting the monitor timer */ 186 static int tlb_initialize(struct bonding *bond) 187 { 188 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 189 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); 190 struct tlb_client_info *new_hashtbl; 191 int i; 192 193 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 194 195 new_hashtbl = kzalloc(size, GFP_KERNEL); 196 if (!new_hashtbl) { 197 printk(KERN_ERR DRV_NAME 198 ": %s: Error: Failed to allocate TLB hash table\n", 199 bond->dev->name); 200 return -1; 201 } 202 _lock_tx_hashtbl(bond); 203 204 bond_info->tx_hashtbl = new_hashtbl; 205 206 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) { 207 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1); 208 } 209 210 _unlock_tx_hashtbl(bond); 211 212 return 0; 213 } 214 215 /* Must be called only after all slaves have been released */ 216 static void tlb_deinitialize(struct bonding *bond) 217 { 218 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 219 220 _lock_tx_hashtbl(bond); 221 222 kfree(bond_info->tx_hashtbl); 223 bond_info->tx_hashtbl = NULL; 224 225 _unlock_tx_hashtbl(bond); 226 } 227 228 /* Caller must hold bond lock for read */ 229 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) 230 { 231 struct slave *slave, *least_loaded; 232 s64 max_gap; 233 int i, found = 0; 234 235 /* Find the first enabled slave */ 236 bond_for_each_slave(bond, slave, i) { 237 if (SLAVE_IS_OK(slave)) { 238 found = 1; 239 break; 240 } 241 } 242 243 if (!found) { 244 return NULL; 245 } 246 247 least_loaded = slave; 248 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */ 249 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ 250 251 /* Find the slave with the largest gap */ 252 bond_for_each_slave_from(bond, slave, i, least_loaded) { 253 if (SLAVE_IS_OK(slave)) { 254 s64 gap = (s64)(slave->speed << 20) - 255 (s64)(SLAVE_TLB_INFO(slave).load << 3); 256 if (max_gap < gap) { 257 least_loaded = slave; 258 max_gap = gap; 259 } 260 } 261 } 262 263 return least_loaded; 264 } 265 266 /* Caller must hold bond lock for read */ 267 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) 268 { 269 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 270 struct tlb_client_info *hash_table; 271 struct slave *assigned_slave; 272 273 _lock_tx_hashtbl(bond); 274 275 hash_table = bond_info->tx_hashtbl; 276 assigned_slave = hash_table[hash_index].tx_slave; 277 if (!assigned_slave) { 278 assigned_slave = tlb_get_least_loaded_slave(bond); 279 280 if (assigned_slave) { 281 struct tlb_slave_info *slave_info = 282 &(SLAVE_TLB_INFO(assigned_slave)); 283 u32 next_index = slave_info->head; 284 285 hash_table[hash_index].tx_slave = assigned_slave; 286 hash_table[hash_index].next = next_index; 287 hash_table[hash_index].prev = TLB_NULL_INDEX; 288 289 if (next_index != TLB_NULL_INDEX) { 290 hash_table[next_index].prev = hash_index; 291 } 292 293 slave_info->head = hash_index; 294 slave_info->load += 295 hash_table[hash_index].load_history; 296 } 297 } 298 299 if (assigned_slave) { 300 hash_table[hash_index].tx_bytes += skb_len; 301 } 302 303 _unlock_tx_hashtbl(bond); 304 305 return assigned_slave; 306 } 307 308 /*********************** rlb specific functions ***************************/ 309 static inline void _lock_rx_hashtbl(struct bonding *bond) 310 { 311 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 312 } 313 314 static inline void _unlock_rx_hashtbl(struct bonding *bond) 315 { 316 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 317 } 318 319 /* when an ARP REPLY is received from a client update its info 320 * in the rx_hashtbl 321 */ 322 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) 323 { 324 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 325 struct rlb_client_info *client_info; 326 u32 hash_index; 327 328 _lock_rx_hashtbl(bond); 329 330 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src)); 331 client_info = &(bond_info->rx_hashtbl[hash_index]); 332 333 if ((client_info->assigned) && 334 (client_info->ip_src == arp->ip_dst) && 335 (client_info->ip_dst == arp->ip_src)) { 336 /* update the clients MAC address */ 337 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN); 338 client_info->ntt = 1; 339 bond_info->rx_ntt = 1; 340 } 341 342 _unlock_rx_hashtbl(bond); 343 } 344 345 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev) 346 { 347 struct bonding *bond; 348 struct arp_pkt *arp = (struct arp_pkt *)skb->data; 349 int res = NET_RX_DROP; 350 351 if (dev_net(bond_dev) != &init_net) 352 goto out; 353 354 while (bond_dev->priv_flags & IFF_802_1Q_VLAN) 355 bond_dev = vlan_dev_real_dev(bond_dev); 356 357 if (!(bond_dev->priv_flags & IFF_BONDING) || 358 !(bond_dev->flags & IFF_MASTER)) 359 goto out; 360 361 if (!arp) { 362 pr_debug("Packet has no ARP data\n"); 363 goto out; 364 } 365 366 if (skb->len < sizeof(struct arp_pkt)) { 367 pr_debug("Packet is too small to be an ARP\n"); 368 goto out; 369 } 370 371 if (arp->op_code == htons(ARPOP_REPLY)) { 372 /* update rx hash table for this ARP */ 373 printk("rar: update orig %s bond_dev %s\n", orig_dev->name, 374 bond_dev->name); 375 bond = netdev_priv(bond_dev); 376 rlb_update_entry_from_arp(bond, arp); 377 pr_debug("Server received an ARP Reply from client\n"); 378 } 379 380 res = NET_RX_SUCCESS; 381 382 out: 383 dev_kfree_skb(skb); 384 385 return res; 386 } 387 388 /* Caller must hold bond lock for read */ 389 static struct slave *rlb_next_rx_slave(struct bonding *bond) 390 { 391 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 392 struct slave *rx_slave, *slave, *start_at; 393 int i = 0; 394 395 if (bond_info->next_rx_slave) { 396 start_at = bond_info->next_rx_slave; 397 } else { 398 start_at = bond->first_slave; 399 } 400 401 rx_slave = NULL; 402 403 bond_for_each_slave_from(bond, slave, i, start_at) { 404 if (SLAVE_IS_OK(slave)) { 405 if (!rx_slave) { 406 rx_slave = slave; 407 } else if (slave->speed > rx_slave->speed) { 408 rx_slave = slave; 409 } 410 } 411 } 412 413 if (rx_slave) { 414 bond_info->next_rx_slave = rx_slave->next; 415 } 416 417 return rx_slave; 418 } 419 420 /* teach the switch the mac of a disabled slave 421 * on the primary for fault tolerance 422 * 423 * Caller must hold bond->curr_slave_lock for write or bond lock for write 424 */ 425 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[]) 426 { 427 if (!bond->curr_active_slave) { 428 return; 429 } 430 431 if (!bond->alb_info.primary_is_promisc) { 432 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1)) 433 bond->alb_info.primary_is_promisc = 1; 434 else 435 bond->alb_info.primary_is_promisc = 0; 436 } 437 438 bond->alb_info.rlb_promisc_timeout_counter = 0; 439 440 alb_send_learning_packets(bond->curr_active_slave, addr); 441 } 442 443 /* slave being removed should not be active at this point 444 * 445 * Caller must hold bond lock for read 446 */ 447 static void rlb_clear_slave(struct bonding *bond, struct slave *slave) 448 { 449 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 450 struct rlb_client_info *rx_hash_table; 451 u32 index, next_index; 452 453 /* clear slave from rx_hashtbl */ 454 _lock_rx_hashtbl(bond); 455 456 rx_hash_table = bond_info->rx_hashtbl; 457 index = bond_info->rx_hashtbl_head; 458 for (; index != RLB_NULL_INDEX; index = next_index) { 459 next_index = rx_hash_table[index].next; 460 if (rx_hash_table[index].slave == slave) { 461 struct slave *assigned_slave = rlb_next_rx_slave(bond); 462 463 if (assigned_slave) { 464 rx_hash_table[index].slave = assigned_slave; 465 if (memcmp(rx_hash_table[index].mac_dst, 466 mac_bcast, ETH_ALEN)) { 467 bond_info->rx_hashtbl[index].ntt = 1; 468 bond_info->rx_ntt = 1; 469 /* A slave has been removed from the 470 * table because it is either disabled 471 * or being released. We must retry the 472 * update to avoid clients from not 473 * being updated & disconnecting when 474 * there is stress 475 */ 476 bond_info->rlb_update_retry_counter = 477 RLB_UPDATE_RETRY; 478 } 479 } else { /* there is no active slave */ 480 rx_hash_table[index].slave = NULL; 481 } 482 } 483 } 484 485 _unlock_rx_hashtbl(bond); 486 487 write_lock_bh(&bond->curr_slave_lock); 488 489 if (slave != bond->curr_active_slave) { 490 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); 491 } 492 493 write_unlock_bh(&bond->curr_slave_lock); 494 } 495 496 static void rlb_update_client(struct rlb_client_info *client_info) 497 { 498 int i; 499 500 if (!client_info->slave) { 501 return; 502 } 503 504 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { 505 struct sk_buff *skb; 506 507 skb = arp_create(ARPOP_REPLY, ETH_P_ARP, 508 client_info->ip_dst, 509 client_info->slave->dev, 510 client_info->ip_src, 511 client_info->mac_dst, 512 client_info->slave->dev->dev_addr, 513 client_info->mac_dst); 514 if (!skb) { 515 printk(KERN_ERR DRV_NAME 516 ": %s: Error: failed to create an ARP packet\n", 517 client_info->slave->dev->master->name); 518 continue; 519 } 520 521 skb->dev = client_info->slave->dev; 522 523 if (client_info->tag) { 524 skb = vlan_put_tag(skb, client_info->vlan_id); 525 if (!skb) { 526 printk(KERN_ERR DRV_NAME 527 ": %s: Error: failed to insert VLAN tag\n", 528 client_info->slave->dev->master->name); 529 continue; 530 } 531 } 532 533 arp_xmit(skb); 534 } 535 } 536 537 /* sends ARP REPLIES that update the clients that need updating */ 538 static void rlb_update_rx_clients(struct bonding *bond) 539 { 540 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 541 struct rlb_client_info *client_info; 542 u32 hash_index; 543 544 _lock_rx_hashtbl(bond); 545 546 hash_index = bond_info->rx_hashtbl_head; 547 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 548 client_info = &(bond_info->rx_hashtbl[hash_index]); 549 if (client_info->ntt) { 550 rlb_update_client(client_info); 551 if (bond_info->rlb_update_retry_counter == 0) { 552 client_info->ntt = 0; 553 } 554 } 555 } 556 557 /* do not update the entries again untill this counter is zero so that 558 * not to confuse the clients. 559 */ 560 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; 561 562 _unlock_rx_hashtbl(bond); 563 } 564 565 /* The slave was assigned a new mac address - update the clients */ 566 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) 567 { 568 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 569 struct rlb_client_info *client_info; 570 int ntt = 0; 571 u32 hash_index; 572 573 _lock_rx_hashtbl(bond); 574 575 hash_index = bond_info->rx_hashtbl_head; 576 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 577 client_info = &(bond_info->rx_hashtbl[hash_index]); 578 579 if ((client_info->slave == slave) && 580 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 581 client_info->ntt = 1; 582 ntt = 1; 583 } 584 } 585 586 // update the team's flag only after the whole iteration 587 if (ntt) { 588 bond_info->rx_ntt = 1; 589 //fasten the change 590 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; 591 } 592 593 _unlock_rx_hashtbl(bond); 594 } 595 596 /* mark all clients using src_ip to be updated */ 597 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) 598 { 599 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 600 struct rlb_client_info *client_info; 601 u32 hash_index; 602 603 _lock_rx_hashtbl(bond); 604 605 hash_index = bond_info->rx_hashtbl_head; 606 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 607 client_info = &(bond_info->rx_hashtbl[hash_index]); 608 609 if (!client_info->slave) { 610 printk(KERN_ERR DRV_NAME 611 ": %s: Error: found a client with no channel in " 612 "the client's hash table\n", 613 bond->dev->name); 614 continue; 615 } 616 /*update all clients using this src_ip, that are not assigned 617 * to the team's address (curr_active_slave) and have a known 618 * unicast mac address. 619 */ 620 if ((client_info->ip_src == src_ip) && 621 memcmp(client_info->slave->dev->dev_addr, 622 bond->dev->dev_addr, ETH_ALEN) && 623 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 624 client_info->ntt = 1; 625 bond_info->rx_ntt = 1; 626 } 627 } 628 629 _unlock_rx_hashtbl(bond); 630 } 631 632 /* Caller must hold both bond and ptr locks for read */ 633 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond) 634 { 635 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 636 struct arp_pkt *arp = arp_pkt(skb); 637 struct slave *assigned_slave; 638 struct rlb_client_info *client_info; 639 u32 hash_index = 0; 640 641 _lock_rx_hashtbl(bond); 642 643 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src)); 644 client_info = &(bond_info->rx_hashtbl[hash_index]); 645 646 if (client_info->assigned) { 647 if ((client_info->ip_src == arp->ip_src) && 648 (client_info->ip_dst == arp->ip_dst)) { 649 /* the entry is already assigned to this client */ 650 if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) { 651 /* update mac address from arp */ 652 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 653 } 654 655 assigned_slave = client_info->slave; 656 if (assigned_slave) { 657 _unlock_rx_hashtbl(bond); 658 return assigned_slave; 659 } 660 } else { 661 /* the entry is already assigned to some other client, 662 * move the old client to primary (curr_active_slave) so 663 * that the new client can be assigned to this entry. 664 */ 665 if (bond->curr_active_slave && 666 client_info->slave != bond->curr_active_slave) { 667 client_info->slave = bond->curr_active_slave; 668 rlb_update_client(client_info); 669 } 670 } 671 } 672 /* assign a new slave */ 673 assigned_slave = rlb_next_rx_slave(bond); 674 675 if (assigned_slave) { 676 client_info->ip_src = arp->ip_src; 677 client_info->ip_dst = arp->ip_dst; 678 /* arp->mac_dst is broadcast for arp reqeusts. 679 * will be updated with clients actual unicast mac address 680 * upon receiving an arp reply. 681 */ 682 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 683 client_info->slave = assigned_slave; 684 685 if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 686 client_info->ntt = 1; 687 bond->alb_info.rx_ntt = 1; 688 } else { 689 client_info->ntt = 0; 690 } 691 692 if (!list_empty(&bond->vlan_list)) { 693 if (!vlan_get_tag(skb, &client_info->vlan_id)) 694 client_info->tag = 1; 695 } 696 697 if (!client_info->assigned) { 698 u32 prev_tbl_head = bond_info->rx_hashtbl_head; 699 bond_info->rx_hashtbl_head = hash_index; 700 client_info->next = prev_tbl_head; 701 if (prev_tbl_head != RLB_NULL_INDEX) { 702 bond_info->rx_hashtbl[prev_tbl_head].prev = 703 hash_index; 704 } 705 client_info->assigned = 1; 706 } 707 } 708 709 _unlock_rx_hashtbl(bond); 710 711 return assigned_slave; 712 } 713 714 /* chooses (and returns) transmit channel for arp reply 715 * does not choose channel for other arp types since they are 716 * sent on the curr_active_slave 717 */ 718 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) 719 { 720 struct arp_pkt *arp = arp_pkt(skb); 721 struct slave *tx_slave = NULL; 722 723 if (arp->op_code == htons(ARPOP_REPLY)) { 724 /* the arp must be sent on the selected 725 * rx channel 726 */ 727 tx_slave = rlb_choose_channel(skb, bond); 728 if (tx_slave) { 729 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN); 730 } 731 pr_debug("Server sent ARP Reply packet\n"); 732 } else if (arp->op_code == htons(ARPOP_REQUEST)) { 733 /* Create an entry in the rx_hashtbl for this client as a 734 * place holder. 735 * When the arp reply is received the entry will be updated 736 * with the correct unicast address of the client. 737 */ 738 rlb_choose_channel(skb, bond); 739 740 /* The ARP relpy packets must be delayed so that 741 * they can cancel out the influence of the ARP request. 742 */ 743 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; 744 745 /* arp requests are broadcast and are sent on the primary 746 * the arp request will collapse all clients on the subnet to 747 * the primary slave. We must register these clients to be 748 * updated with their assigned mac. 749 */ 750 rlb_req_update_subnet_clients(bond, arp->ip_src); 751 pr_debug("Server sent ARP Request packet\n"); 752 } 753 754 return tx_slave; 755 } 756 757 /* Caller must hold bond lock for read */ 758 static void rlb_rebalance(struct bonding *bond) 759 { 760 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 761 struct slave *assigned_slave; 762 struct rlb_client_info *client_info; 763 int ntt; 764 u32 hash_index; 765 766 _lock_rx_hashtbl(bond); 767 768 ntt = 0; 769 hash_index = bond_info->rx_hashtbl_head; 770 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 771 client_info = &(bond_info->rx_hashtbl[hash_index]); 772 assigned_slave = rlb_next_rx_slave(bond); 773 if (assigned_slave && (client_info->slave != assigned_slave)) { 774 client_info->slave = assigned_slave; 775 client_info->ntt = 1; 776 ntt = 1; 777 } 778 } 779 780 /* update the team's flag only after the whole iteration */ 781 if (ntt) { 782 bond_info->rx_ntt = 1; 783 } 784 _unlock_rx_hashtbl(bond); 785 } 786 787 /* Caller must hold rx_hashtbl lock */ 788 static void rlb_init_table_entry(struct rlb_client_info *entry) 789 { 790 memset(entry, 0, sizeof(struct rlb_client_info)); 791 entry->next = RLB_NULL_INDEX; 792 entry->prev = RLB_NULL_INDEX; 793 } 794 795 static int rlb_initialize(struct bonding *bond) 796 { 797 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 798 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type); 799 struct rlb_client_info *new_hashtbl; 800 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); 801 int i; 802 803 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 804 805 new_hashtbl = kmalloc(size, GFP_KERNEL); 806 if (!new_hashtbl) { 807 printk(KERN_ERR DRV_NAME 808 ": %s: Error: Failed to allocate RLB hash table\n", 809 bond->dev->name); 810 return -1; 811 } 812 _lock_rx_hashtbl(bond); 813 814 bond_info->rx_hashtbl = new_hashtbl; 815 816 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 817 818 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) { 819 rlb_init_table_entry(bond_info->rx_hashtbl + i); 820 } 821 822 _unlock_rx_hashtbl(bond); 823 824 /*initialize packet type*/ 825 pk_type->type = cpu_to_be16(ETH_P_ARP); 826 pk_type->dev = NULL; 827 pk_type->func = rlb_arp_recv; 828 829 /* register to receive ARPs */ 830 dev_add_pack(pk_type); 831 832 return 0; 833 } 834 835 static void rlb_deinitialize(struct bonding *bond) 836 { 837 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 838 839 dev_remove_pack(&(bond_info->rlb_pkt_type)); 840 841 _lock_rx_hashtbl(bond); 842 843 kfree(bond_info->rx_hashtbl); 844 bond_info->rx_hashtbl = NULL; 845 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 846 847 _unlock_rx_hashtbl(bond); 848 } 849 850 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 851 { 852 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 853 u32 curr_index; 854 855 _lock_rx_hashtbl(bond); 856 857 curr_index = bond_info->rx_hashtbl_head; 858 while (curr_index != RLB_NULL_INDEX) { 859 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); 860 u32 next_index = bond_info->rx_hashtbl[curr_index].next; 861 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev; 862 863 if (curr->tag && (curr->vlan_id == vlan_id)) { 864 if (curr_index == bond_info->rx_hashtbl_head) { 865 bond_info->rx_hashtbl_head = next_index; 866 } 867 if (prev_index != RLB_NULL_INDEX) { 868 bond_info->rx_hashtbl[prev_index].next = next_index; 869 } 870 if (next_index != RLB_NULL_INDEX) { 871 bond_info->rx_hashtbl[next_index].prev = prev_index; 872 } 873 874 rlb_init_table_entry(curr); 875 } 876 877 curr_index = next_index; 878 } 879 880 _unlock_rx_hashtbl(bond); 881 } 882 883 /*********************** tlb/rlb shared functions *********************/ 884 885 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]) 886 { 887 struct bonding *bond = bond_get_bond_by_slave(slave); 888 struct learning_pkt pkt; 889 int size = sizeof(struct learning_pkt); 890 int i; 891 892 memset(&pkt, 0, size); 893 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN); 894 memcpy(pkt.mac_src, mac_addr, ETH_ALEN); 895 pkt.type = cpu_to_be16(ETH_P_LOOP); 896 897 for (i = 0; i < MAX_LP_BURST; i++) { 898 struct sk_buff *skb; 899 char *data; 900 901 skb = dev_alloc_skb(size); 902 if (!skb) { 903 return; 904 } 905 906 data = skb_put(skb, size); 907 memcpy(data, &pkt, size); 908 909 skb_reset_mac_header(skb); 910 skb->network_header = skb->mac_header + ETH_HLEN; 911 skb->protocol = pkt.type; 912 skb->priority = TC_PRIO_CONTROL; 913 skb->dev = slave->dev; 914 915 if (!list_empty(&bond->vlan_list)) { 916 struct vlan_entry *vlan; 917 918 vlan = bond_next_vlan(bond, 919 bond->alb_info.current_alb_vlan); 920 921 bond->alb_info.current_alb_vlan = vlan; 922 if (!vlan) { 923 kfree_skb(skb); 924 continue; 925 } 926 927 skb = vlan_put_tag(skb, vlan->vlan_id); 928 if (!skb) { 929 printk(KERN_ERR DRV_NAME 930 ": %s: Error: failed to insert VLAN tag\n", 931 bond->dev->name); 932 continue; 933 } 934 } 935 936 dev_queue_xmit(skb); 937 } 938 } 939 940 /* hw is a boolean parameter that determines whether we should try and 941 * set the hw address of the device as well as the hw address of the 942 * net_device 943 */ 944 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw) 945 { 946 struct net_device *dev = slave->dev; 947 struct sockaddr s_addr; 948 949 if (!hw) { 950 memcpy(dev->dev_addr, addr, dev->addr_len); 951 return 0; 952 } 953 954 /* for rlb each slave must have a unique hw mac addresses so that */ 955 /* each slave will receive packets destined to a different mac */ 956 memcpy(s_addr.sa_data, addr, dev->addr_len); 957 s_addr.sa_family = dev->type; 958 if (dev_set_mac_address(dev, &s_addr)) { 959 printk(KERN_ERR DRV_NAME 960 ": %s: Error: dev_set_mac_address of dev %s failed! ALB " 961 "mode requires that the base driver support setting " 962 "the hw address also when the network device's " 963 "interface is open\n", 964 dev->master->name, dev->name); 965 return -EOPNOTSUPP; 966 } 967 return 0; 968 } 969 970 /* 971 * Swap MAC addresses between two slaves. 972 * 973 * Called with RTNL held, and no other locks. 974 * 975 */ 976 977 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2) 978 { 979 u8 tmp_mac_addr[ETH_ALEN]; 980 981 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN); 982 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled); 983 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled); 984 985 } 986 987 /* 988 * Send learning packets after MAC address swap. 989 * 990 * Called with RTNL and no other locks 991 */ 992 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, 993 struct slave *slave2) 994 { 995 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2)); 996 struct slave *disabled_slave = NULL; 997 998 ASSERT_RTNL(); 999 1000 /* fasten the change in the switch */ 1001 if (SLAVE_IS_OK(slave1)) { 1002 alb_send_learning_packets(slave1, slave1->dev->dev_addr); 1003 if (bond->alb_info.rlb_enabled) { 1004 /* inform the clients that the mac address 1005 * has changed 1006 */ 1007 rlb_req_update_slave_clients(bond, slave1); 1008 } 1009 } else { 1010 disabled_slave = slave1; 1011 } 1012 1013 if (SLAVE_IS_OK(slave2)) { 1014 alb_send_learning_packets(slave2, slave2->dev->dev_addr); 1015 if (bond->alb_info.rlb_enabled) { 1016 /* inform the clients that the mac address 1017 * has changed 1018 */ 1019 rlb_req_update_slave_clients(bond, slave2); 1020 } 1021 } else { 1022 disabled_slave = slave2; 1023 } 1024 1025 if (bond->alb_info.rlb_enabled && slaves_state_differ) { 1026 /* A disabled slave was assigned an active mac addr */ 1027 rlb_teach_disabled_mac_on_primary(bond, 1028 disabled_slave->dev->dev_addr); 1029 } 1030 } 1031 1032 /** 1033 * alb_change_hw_addr_on_detach 1034 * @bond: bonding we're working on 1035 * @slave: the slave that was just detached 1036 * 1037 * We assume that @slave was already detached from the slave list. 1038 * 1039 * If @slave's permanent hw address is different both from its current 1040 * address and from @bond's address, then somewhere in the bond there's 1041 * a slave that has @slave's permanet address as its current address. 1042 * We'll make sure that that slave no longer uses @slave's permanent address. 1043 * 1044 * Caller must hold RTNL and no other locks 1045 */ 1046 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) 1047 { 1048 int perm_curr_diff; 1049 int perm_bond_diff; 1050 1051 perm_curr_diff = memcmp(slave->perm_hwaddr, 1052 slave->dev->dev_addr, 1053 ETH_ALEN); 1054 perm_bond_diff = memcmp(slave->perm_hwaddr, 1055 bond->dev->dev_addr, 1056 ETH_ALEN); 1057 1058 if (perm_curr_diff && perm_bond_diff) { 1059 struct slave *tmp_slave; 1060 int i, found = 0; 1061 1062 bond_for_each_slave(bond, tmp_slave, i) { 1063 if (!memcmp(slave->perm_hwaddr, 1064 tmp_slave->dev->dev_addr, 1065 ETH_ALEN)) { 1066 found = 1; 1067 break; 1068 } 1069 } 1070 1071 if (found) { 1072 /* locking: needs RTNL and nothing else */ 1073 alb_swap_mac_addr(bond, slave, tmp_slave); 1074 alb_fasten_mac_swap(bond, slave, tmp_slave); 1075 } 1076 } 1077 } 1078 1079 /** 1080 * alb_handle_addr_collision_on_attach 1081 * @bond: bonding we're working on 1082 * @slave: the slave that was just attached 1083 * 1084 * checks uniqueness of slave's mac address and handles the case the 1085 * new slave uses the bonds mac address. 1086 * 1087 * If the permanent hw address of @slave is @bond's hw address, we need to 1088 * find a different hw address to give @slave, that isn't in use by any other 1089 * slave in the bond. This address must be, of course, one of the premanent 1090 * addresses of the other slaves. 1091 * 1092 * We go over the slave list, and for each slave there we compare its 1093 * permanent hw address with the current address of all the other slaves. 1094 * If no match was found, then we've found a slave with a permanent address 1095 * that isn't used by any other slave in the bond, so we can assign it to 1096 * @slave. 1097 * 1098 * assumption: this function is called before @slave is attached to the 1099 * bond slave list. 1100 * 1101 * caller must hold the bond lock for write since the mac addresses are compared 1102 * and may be swapped. 1103 */ 1104 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) 1105 { 1106 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave; 1107 struct slave *has_bond_addr = bond->curr_active_slave; 1108 int i, j, found = 0; 1109 1110 if (bond->slave_cnt == 0) { 1111 /* this is the first slave */ 1112 return 0; 1113 } 1114 1115 /* if slave's mac address differs from bond's mac address 1116 * check uniqueness of slave's mac address against the other 1117 * slaves in the bond. 1118 */ 1119 if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) { 1120 bond_for_each_slave(bond, tmp_slave1, i) { 1121 if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr, 1122 ETH_ALEN)) { 1123 found = 1; 1124 break; 1125 } 1126 } 1127 1128 if (!found) 1129 return 0; 1130 1131 /* Try setting slave mac to bond address and fall-through 1132 to code handling that situation below... */ 1133 alb_set_slave_mac_addr(slave, bond->dev->dev_addr, 1134 bond->alb_info.rlb_enabled); 1135 } 1136 1137 /* The slave's address is equal to the address of the bond. 1138 * Search for a spare address in the bond for this slave. 1139 */ 1140 free_mac_slave = NULL; 1141 1142 bond_for_each_slave(bond, tmp_slave1, i) { 1143 found = 0; 1144 bond_for_each_slave(bond, tmp_slave2, j) { 1145 if (!memcmp(tmp_slave1->perm_hwaddr, 1146 tmp_slave2->dev->dev_addr, 1147 ETH_ALEN)) { 1148 found = 1; 1149 break; 1150 } 1151 } 1152 1153 if (!found) { 1154 /* no slave has tmp_slave1's perm addr 1155 * as its curr addr 1156 */ 1157 free_mac_slave = tmp_slave1; 1158 break; 1159 } 1160 1161 if (!has_bond_addr) { 1162 if (!memcmp(tmp_slave1->dev->dev_addr, 1163 bond->dev->dev_addr, 1164 ETH_ALEN)) { 1165 1166 has_bond_addr = tmp_slave1; 1167 } 1168 } 1169 } 1170 1171 if (free_mac_slave) { 1172 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, 1173 bond->alb_info.rlb_enabled); 1174 1175 printk(KERN_WARNING DRV_NAME 1176 ": %s: Warning: the hw address of slave %s is in use by " 1177 "the bond; giving it the hw address of %s\n", 1178 bond->dev->name, slave->dev->name, free_mac_slave->dev->name); 1179 1180 } else if (has_bond_addr) { 1181 printk(KERN_ERR DRV_NAME 1182 ": %s: Error: the hw address of slave %s is in use by the " 1183 "bond; couldn't find a slave with a free hw address to " 1184 "give it (this should not have happened)\n", 1185 bond->dev->name, slave->dev->name); 1186 return -EFAULT; 1187 } 1188 1189 return 0; 1190 } 1191 1192 /** 1193 * alb_set_mac_address 1194 * @bond: 1195 * @addr: 1196 * 1197 * In TLB mode all slaves are configured to the bond's hw address, but set 1198 * their dev_addr field to different addresses (based on their permanent hw 1199 * addresses). 1200 * 1201 * For each slave, this function sets the interface to the new address and then 1202 * changes its dev_addr field to its previous value. 1203 * 1204 * Unwinding assumes bond's mac address has not yet changed. 1205 */ 1206 static int alb_set_mac_address(struct bonding *bond, void *addr) 1207 { 1208 struct sockaddr sa; 1209 struct slave *slave, *stop_at; 1210 char tmp_addr[ETH_ALEN]; 1211 int res; 1212 int i; 1213 1214 if (bond->alb_info.rlb_enabled) { 1215 return 0; 1216 } 1217 1218 bond_for_each_slave(bond, slave, i) { 1219 /* save net_device's current hw address */ 1220 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1221 1222 res = dev_set_mac_address(slave->dev, addr); 1223 1224 /* restore net_device's hw address */ 1225 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1226 1227 if (res) 1228 goto unwind; 1229 } 1230 1231 return 0; 1232 1233 unwind: 1234 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len); 1235 sa.sa_family = bond->dev->type; 1236 1237 /* unwind from head to the slave that failed */ 1238 stop_at = slave; 1239 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 1240 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1241 dev_set_mac_address(slave->dev, &sa); 1242 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1243 } 1244 1245 return res; 1246 } 1247 1248 /************************ exported alb funcions ************************/ 1249 1250 int bond_alb_initialize(struct bonding *bond, int rlb_enabled) 1251 { 1252 int res; 1253 1254 res = tlb_initialize(bond); 1255 if (res) { 1256 return res; 1257 } 1258 1259 if (rlb_enabled) { 1260 bond->alb_info.rlb_enabled = 1; 1261 /* initialize rlb */ 1262 res = rlb_initialize(bond); 1263 if (res) { 1264 tlb_deinitialize(bond); 1265 return res; 1266 } 1267 } else { 1268 bond->alb_info.rlb_enabled = 0; 1269 } 1270 1271 return 0; 1272 } 1273 1274 void bond_alb_deinitialize(struct bonding *bond) 1275 { 1276 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1277 1278 tlb_deinitialize(bond); 1279 1280 if (bond_info->rlb_enabled) { 1281 rlb_deinitialize(bond); 1282 } 1283 } 1284 1285 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) 1286 { 1287 struct bonding *bond = netdev_priv(bond_dev); 1288 struct ethhdr *eth_data; 1289 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1290 struct slave *tx_slave = NULL; 1291 static const __be32 ip_bcast = htonl(0xffffffff); 1292 int hash_size = 0; 1293 int do_tx_balance = 1; 1294 u32 hash_index = 0; 1295 const u8 *hash_start = NULL; 1296 int res = 1; 1297 struct ipv6hdr *ip6hdr; 1298 1299 skb_reset_mac_header(skb); 1300 eth_data = eth_hdr(skb); 1301 1302 /* make sure that the curr_active_slave and the slaves list do 1303 * not change during tx 1304 */ 1305 read_lock(&bond->lock); 1306 read_lock(&bond->curr_slave_lock); 1307 1308 if (!BOND_IS_OK(bond)) { 1309 goto out; 1310 } 1311 1312 switch (ntohs(skb->protocol)) { 1313 case ETH_P_IP: { 1314 const struct iphdr *iph = ip_hdr(skb); 1315 1316 if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) || 1317 (iph->daddr == ip_bcast) || 1318 (iph->protocol == IPPROTO_IGMP)) { 1319 do_tx_balance = 0; 1320 break; 1321 } 1322 hash_start = (char *)&(iph->daddr); 1323 hash_size = sizeof(iph->daddr); 1324 } 1325 break; 1326 case ETH_P_IPV6: 1327 /* IPv6 doesn't really use broadcast mac address, but leave 1328 * that here just in case. 1329 */ 1330 if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) { 1331 do_tx_balance = 0; 1332 break; 1333 } 1334 1335 /* IPv6 uses all-nodes multicast as an equivalent to 1336 * broadcasts in IPv4. 1337 */ 1338 if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) { 1339 do_tx_balance = 0; 1340 break; 1341 } 1342 1343 /* Additianally, DAD probes should not be tx-balanced as that 1344 * will lead to false positives for duplicate addresses and 1345 * prevent address configuration from working. 1346 */ 1347 ip6hdr = ipv6_hdr(skb); 1348 if (ipv6_addr_any(&ip6hdr->saddr)) { 1349 do_tx_balance = 0; 1350 break; 1351 } 1352 1353 hash_start = (char *)&(ipv6_hdr(skb)->daddr); 1354 hash_size = sizeof(ipv6_hdr(skb)->daddr); 1355 break; 1356 case ETH_P_IPX: 1357 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) { 1358 /* something is wrong with this packet */ 1359 do_tx_balance = 0; 1360 break; 1361 } 1362 1363 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) { 1364 /* The only protocol worth balancing in 1365 * this family since it has an "ARP" like 1366 * mechanism 1367 */ 1368 do_tx_balance = 0; 1369 break; 1370 } 1371 1372 hash_start = (char*)eth_data->h_dest; 1373 hash_size = ETH_ALEN; 1374 break; 1375 case ETH_P_ARP: 1376 do_tx_balance = 0; 1377 if (bond_info->rlb_enabled) { 1378 tx_slave = rlb_arp_xmit(skb, bond); 1379 } 1380 break; 1381 default: 1382 do_tx_balance = 0; 1383 break; 1384 } 1385 1386 if (do_tx_balance) { 1387 hash_index = _simple_hash(hash_start, hash_size); 1388 tx_slave = tlb_choose_channel(bond, hash_index, skb->len); 1389 } 1390 1391 if (!tx_slave) { 1392 /* unbalanced or unassigned, send through primary */ 1393 tx_slave = bond->curr_active_slave; 1394 bond_info->unbalanced_load += skb->len; 1395 } 1396 1397 if (tx_slave && SLAVE_IS_OK(tx_slave)) { 1398 if (tx_slave != bond->curr_active_slave) { 1399 memcpy(eth_data->h_source, 1400 tx_slave->dev->dev_addr, 1401 ETH_ALEN); 1402 } 1403 1404 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev); 1405 } else { 1406 if (tx_slave) { 1407 tlb_clear_slave(bond, tx_slave, 0); 1408 } 1409 } 1410 1411 out: 1412 if (res) { 1413 /* no suitable interface, frame not sent */ 1414 dev_kfree_skb(skb); 1415 } 1416 read_unlock(&bond->curr_slave_lock); 1417 read_unlock(&bond->lock); 1418 return 0; 1419 } 1420 1421 void bond_alb_monitor(struct work_struct *work) 1422 { 1423 struct bonding *bond = container_of(work, struct bonding, 1424 alb_work.work); 1425 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1426 struct slave *slave; 1427 int i; 1428 1429 read_lock(&bond->lock); 1430 1431 if (bond->kill_timers) { 1432 goto out; 1433 } 1434 1435 if (bond->slave_cnt == 0) { 1436 bond_info->tx_rebalance_counter = 0; 1437 bond_info->lp_counter = 0; 1438 goto re_arm; 1439 } 1440 1441 bond_info->tx_rebalance_counter++; 1442 bond_info->lp_counter++; 1443 1444 /* send learning packets */ 1445 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) { 1446 /* change of curr_active_slave involves swapping of mac addresses. 1447 * in order to avoid this swapping from happening while 1448 * sending the learning packets, the curr_slave_lock must be held for 1449 * read. 1450 */ 1451 read_lock(&bond->curr_slave_lock); 1452 1453 bond_for_each_slave(bond, slave, i) { 1454 alb_send_learning_packets(slave, slave->dev->dev_addr); 1455 } 1456 1457 read_unlock(&bond->curr_slave_lock); 1458 1459 bond_info->lp_counter = 0; 1460 } 1461 1462 /* rebalance tx traffic */ 1463 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) { 1464 1465 read_lock(&bond->curr_slave_lock); 1466 1467 bond_for_each_slave(bond, slave, i) { 1468 tlb_clear_slave(bond, slave, 1); 1469 if (slave == bond->curr_active_slave) { 1470 SLAVE_TLB_INFO(slave).load = 1471 bond_info->unbalanced_load / 1472 BOND_TLB_REBALANCE_INTERVAL; 1473 bond_info->unbalanced_load = 0; 1474 } 1475 } 1476 1477 read_unlock(&bond->curr_slave_lock); 1478 1479 bond_info->tx_rebalance_counter = 0; 1480 } 1481 1482 /* handle rlb stuff */ 1483 if (bond_info->rlb_enabled) { 1484 if (bond_info->primary_is_promisc && 1485 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { 1486 1487 /* 1488 * dev_set_promiscuity requires rtnl and 1489 * nothing else. 1490 */ 1491 read_unlock(&bond->lock); 1492 rtnl_lock(); 1493 1494 bond_info->rlb_promisc_timeout_counter = 0; 1495 1496 /* If the primary was set to promiscuous mode 1497 * because a slave was disabled then 1498 * it can now leave promiscuous mode. 1499 */ 1500 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1501 bond_info->primary_is_promisc = 0; 1502 1503 rtnl_unlock(); 1504 read_lock(&bond->lock); 1505 } 1506 1507 if (bond_info->rlb_rebalance) { 1508 bond_info->rlb_rebalance = 0; 1509 rlb_rebalance(bond); 1510 } 1511 1512 /* check if clients need updating */ 1513 if (bond_info->rx_ntt) { 1514 if (bond_info->rlb_update_delay_counter) { 1515 --bond_info->rlb_update_delay_counter; 1516 } else { 1517 rlb_update_rx_clients(bond); 1518 if (bond_info->rlb_update_retry_counter) { 1519 --bond_info->rlb_update_retry_counter; 1520 } else { 1521 bond_info->rx_ntt = 0; 1522 } 1523 } 1524 } 1525 } 1526 1527 re_arm: 1528 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); 1529 out: 1530 read_unlock(&bond->lock); 1531 } 1532 1533 /* assumption: called before the slave is attached to the bond 1534 * and not locked by the bond lock 1535 */ 1536 int bond_alb_init_slave(struct bonding *bond, struct slave *slave) 1537 { 1538 int res; 1539 1540 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, 1541 bond->alb_info.rlb_enabled); 1542 if (res) { 1543 return res; 1544 } 1545 1546 /* caller must hold the bond lock for write since the mac addresses 1547 * are compared and may be swapped. 1548 */ 1549 read_lock(&bond->lock); 1550 1551 res = alb_handle_addr_collision_on_attach(bond, slave); 1552 1553 read_unlock(&bond->lock); 1554 1555 if (res) { 1556 return res; 1557 } 1558 1559 tlb_init_slave(slave); 1560 1561 /* order a rebalance ASAP */ 1562 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1563 1564 if (bond->alb_info.rlb_enabled) { 1565 bond->alb_info.rlb_rebalance = 1; 1566 } 1567 1568 return 0; 1569 } 1570 1571 /* 1572 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses 1573 * if necessary. 1574 * 1575 * Caller must hold RTNL and no other locks 1576 */ 1577 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) 1578 { 1579 if (bond->slave_cnt > 1) { 1580 alb_change_hw_addr_on_detach(bond, slave); 1581 } 1582 1583 tlb_clear_slave(bond, slave, 0); 1584 1585 if (bond->alb_info.rlb_enabled) { 1586 bond->alb_info.next_rx_slave = NULL; 1587 rlb_clear_slave(bond, slave); 1588 } 1589 } 1590 1591 /* Caller must hold bond lock for read */ 1592 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) 1593 { 1594 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1595 1596 if (link == BOND_LINK_DOWN) { 1597 tlb_clear_slave(bond, slave, 0); 1598 if (bond->alb_info.rlb_enabled) { 1599 rlb_clear_slave(bond, slave); 1600 } 1601 } else if (link == BOND_LINK_UP) { 1602 /* order a rebalance ASAP */ 1603 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1604 if (bond->alb_info.rlb_enabled) { 1605 bond->alb_info.rlb_rebalance = 1; 1606 /* If the updelay module parameter is smaller than the 1607 * forwarding delay of the switch the rebalance will 1608 * not work because the rebalance arp replies will 1609 * not be forwarded to the clients.. 1610 */ 1611 } 1612 } 1613 } 1614 1615 /** 1616 * bond_alb_handle_active_change - assign new curr_active_slave 1617 * @bond: our bonding struct 1618 * @new_slave: new slave to assign 1619 * 1620 * Set the bond->curr_active_slave to @new_slave and handle 1621 * mac address swapping and promiscuity changes as needed. 1622 * 1623 * If new_slave is NULL, caller must hold curr_slave_lock or 1624 * bond->lock for write. 1625 * 1626 * If new_slave is not NULL, caller must hold RTNL, bond->lock for 1627 * read and curr_slave_lock for write. Processing here may sleep, so 1628 * no other locks may be held. 1629 */ 1630 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) 1631 __releases(&bond->curr_slave_lock) 1632 __releases(&bond->lock) 1633 __acquires(&bond->lock) 1634 __acquires(&bond->curr_slave_lock) 1635 { 1636 struct slave *swap_slave; 1637 int i; 1638 1639 if (bond->curr_active_slave == new_slave) { 1640 return; 1641 } 1642 1643 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) { 1644 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1645 bond->alb_info.primary_is_promisc = 0; 1646 bond->alb_info.rlb_promisc_timeout_counter = 0; 1647 } 1648 1649 swap_slave = bond->curr_active_slave; 1650 bond->curr_active_slave = new_slave; 1651 1652 if (!new_slave || (bond->slave_cnt == 0)) { 1653 return; 1654 } 1655 1656 /* set the new curr_active_slave to the bonds mac address 1657 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave 1658 */ 1659 if (!swap_slave) { 1660 struct slave *tmp_slave; 1661 /* find slave that is holding the bond's mac address */ 1662 bond_for_each_slave(bond, tmp_slave, i) { 1663 if (!memcmp(tmp_slave->dev->dev_addr, 1664 bond->dev->dev_addr, ETH_ALEN)) { 1665 swap_slave = tmp_slave; 1666 break; 1667 } 1668 } 1669 } 1670 1671 /* 1672 * Arrange for swap_slave and new_slave to temporarily be 1673 * ignored so we can mess with their MAC addresses without 1674 * fear of interference from transmit activity. 1675 */ 1676 if (swap_slave) { 1677 tlb_clear_slave(bond, swap_slave, 1); 1678 } 1679 tlb_clear_slave(bond, new_slave, 1); 1680 1681 write_unlock_bh(&bond->curr_slave_lock); 1682 read_unlock(&bond->lock); 1683 1684 ASSERT_RTNL(); 1685 1686 /* curr_active_slave must be set before calling alb_swap_mac_addr */ 1687 if (swap_slave) { 1688 /* swap mac address */ 1689 alb_swap_mac_addr(bond, swap_slave, new_slave); 1690 } else { 1691 /* set the new_slave to the bond mac address */ 1692 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, 1693 bond->alb_info.rlb_enabled); 1694 } 1695 1696 if (swap_slave) { 1697 alb_fasten_mac_swap(bond, swap_slave, new_slave); 1698 read_lock(&bond->lock); 1699 } else { 1700 read_lock(&bond->lock); 1701 alb_send_learning_packets(new_slave, bond->dev->dev_addr); 1702 } 1703 1704 write_lock_bh(&bond->curr_slave_lock); 1705 } 1706 1707 /* 1708 * Called with RTNL 1709 */ 1710 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) 1711 __releases(&bond->curr_slave_lock) 1712 __releases(&bond->lock) 1713 __acquires(&bond->lock) 1714 __acquires(&bond->curr_slave_lock) 1715 { 1716 struct bonding *bond = netdev_priv(bond_dev); 1717 struct sockaddr *sa = addr; 1718 struct slave *slave, *swap_slave; 1719 int res; 1720 int i; 1721 1722 if (!is_valid_ether_addr(sa->sa_data)) { 1723 return -EADDRNOTAVAIL; 1724 } 1725 1726 res = alb_set_mac_address(bond, addr); 1727 if (res) { 1728 return res; 1729 } 1730 1731 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 1732 1733 /* If there is no curr_active_slave there is nothing else to do. 1734 * Otherwise we'll need to pass the new address to it and handle 1735 * duplications. 1736 */ 1737 if (!bond->curr_active_slave) { 1738 return 0; 1739 } 1740 1741 swap_slave = NULL; 1742 1743 bond_for_each_slave(bond, slave, i) { 1744 if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) { 1745 swap_slave = slave; 1746 break; 1747 } 1748 } 1749 1750 write_unlock_bh(&bond->curr_slave_lock); 1751 read_unlock(&bond->lock); 1752 1753 if (swap_slave) { 1754 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave); 1755 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave); 1756 } else { 1757 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr, 1758 bond->alb_info.rlb_enabled); 1759 1760 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr); 1761 if (bond->alb_info.rlb_enabled) { 1762 /* inform clients mac address has changed */ 1763 rlb_req_update_slave_clients(bond, bond->curr_active_slave); 1764 } 1765 } 1766 1767 read_lock(&bond->lock); 1768 write_lock_bh(&bond->curr_slave_lock); 1769 1770 return 0; 1771 } 1772 1773 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 1774 { 1775 if (bond->alb_info.current_alb_vlan && 1776 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) { 1777 bond->alb_info.current_alb_vlan = NULL; 1778 } 1779 1780 if (bond->alb_info.rlb_enabled) { 1781 rlb_clear_vlan(bond, vlan_id); 1782 } 1783 } 1784 1785