xref: /openbmc/linux/drivers/net/bonding/bond_alb.c (revision b627b4ed)
1 /*
2  * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License along
15  * with this program; if not, write to the Free Software Foundation, Inc.,
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  */
22 
23 #include <linux/skbuff.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/pkt_sched.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/ip.h>
31 #include <linux/ipv6.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/if_bonding.h>
35 #include <linux/if_vlan.h>
36 #include <linux/in.h>
37 #include <net/ipx.h>
38 #include <net/arp.h>
39 #include <net/ipv6.h>
40 #include <asm/byteorder.h>
41 #include "bonding.h"
42 #include "bond_alb.h"
43 
44 
45 #define ALB_TIMER_TICKS_PER_SEC	    10	/* should be a divisor of HZ */
46 #define BOND_TLB_REBALANCE_INTERVAL 10	/* In seconds, periodic re-balancing.
47 					 * Used for division - never set
48 					 * to zero !!!
49 					 */
50 #define BOND_ALB_LP_INTERVAL	    1	/* In seconds, periodic send of
51 					 * learning packets to the switch
52 					 */
53 
54 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
55 				  * ALB_TIMER_TICKS_PER_SEC)
56 
57 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
58 			   * ALB_TIMER_TICKS_PER_SEC)
59 
60 #define TLB_HASH_TABLE_SIZE 256	/* The size of the clients hash table.
61 				 * Note that this value MUST NOT be smaller
62 				 * because the key hash table is BYTE wide !
63 				 */
64 
65 
66 #define TLB_NULL_INDEX		0xffffffff
67 #define MAX_LP_BURST		3
68 
69 /* rlb defs */
70 #define RLB_HASH_TABLE_SIZE	256
71 #define RLB_NULL_INDEX		0xffffffff
72 #define RLB_UPDATE_DELAY	2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
73 #define RLB_ARP_BURST_SIZE	2
74 #define RLB_UPDATE_RETRY	3	/* 3-ticks - must be smaller than the rlb
75 					 * rebalance interval (5 min).
76 					 */
77 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
78  * promiscuous after failover
79  */
80 #define RLB_PROMISC_TIMEOUT	10*ALB_TIMER_TICKS_PER_SEC
81 
82 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
83 static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01};
84 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
85 
86 #pragma pack(1)
87 struct learning_pkt {
88 	u8 mac_dst[ETH_ALEN];
89 	u8 mac_src[ETH_ALEN];
90 	__be16 type;
91 	u8 padding[ETH_ZLEN - ETH_HLEN];
92 };
93 
94 struct arp_pkt {
95 	__be16  hw_addr_space;
96 	__be16  prot_addr_space;
97 	u8      hw_addr_len;
98 	u8      prot_addr_len;
99 	__be16  op_code;
100 	u8      mac_src[ETH_ALEN];	/* sender hardware address */
101 	__be32  ip_src;			/* sender IP address */
102 	u8      mac_dst[ETH_ALEN];	/* target hardware address */
103 	__be32  ip_dst;			/* target IP address */
104 };
105 #pragma pack()
106 
107 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
108 {
109 	return (struct arp_pkt *)skb_network_header(skb);
110 }
111 
112 /* Forward declaration */
113 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
114 
115 static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
116 {
117 	int i;
118 	u8 hash = 0;
119 
120 	for (i = 0; i < hash_size; i++) {
121 		hash ^= hash_start[i];
122 	}
123 
124 	return hash;
125 }
126 
127 /*********************** tlb specific functions ***************************/
128 
129 static inline void _lock_tx_hashtbl(struct bonding *bond)
130 {
131 	spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
132 }
133 
134 static inline void _unlock_tx_hashtbl(struct bonding *bond)
135 {
136 	spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
137 }
138 
139 /* Caller must hold tx_hashtbl lock */
140 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
141 {
142 	if (save_load) {
143 		entry->load_history = 1 + entry->tx_bytes /
144 				      BOND_TLB_REBALANCE_INTERVAL;
145 		entry->tx_bytes = 0;
146 	}
147 
148 	entry->tx_slave = NULL;
149 	entry->next = TLB_NULL_INDEX;
150 	entry->prev = TLB_NULL_INDEX;
151 }
152 
153 static inline void tlb_init_slave(struct slave *slave)
154 {
155 	SLAVE_TLB_INFO(slave).load = 0;
156 	SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
157 }
158 
159 /* Caller must hold bond lock for read */
160 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
161 {
162 	struct tlb_client_info *tx_hash_table;
163 	u32 index;
164 
165 	_lock_tx_hashtbl(bond);
166 
167 	/* clear slave from tx_hashtbl */
168 	tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
169 
170 	/* skip this if we've already freed the tx hash table */
171 	if (tx_hash_table) {
172 		index = SLAVE_TLB_INFO(slave).head;
173 		while (index != TLB_NULL_INDEX) {
174 			u32 next_index = tx_hash_table[index].next;
175 			tlb_init_table_entry(&tx_hash_table[index], save_load);
176 			index = next_index;
177 		}
178 	}
179 
180 	tlb_init_slave(slave);
181 
182 	_unlock_tx_hashtbl(bond);
183 }
184 
185 /* Must be called before starting the monitor timer */
186 static int tlb_initialize(struct bonding *bond)
187 {
188 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
189 	int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
190 	struct tlb_client_info *new_hashtbl;
191 	int i;
192 
193 	spin_lock_init(&(bond_info->tx_hashtbl_lock));
194 
195 	new_hashtbl = kzalloc(size, GFP_KERNEL);
196 	if (!new_hashtbl) {
197 		printk(KERN_ERR DRV_NAME
198 		       ": %s: Error: Failed to allocate TLB hash table\n",
199 		       bond->dev->name);
200 		return -1;
201 	}
202 	_lock_tx_hashtbl(bond);
203 
204 	bond_info->tx_hashtbl = new_hashtbl;
205 
206 	for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
207 		tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
208 	}
209 
210 	_unlock_tx_hashtbl(bond);
211 
212 	return 0;
213 }
214 
215 /* Must be called only after all slaves have been released */
216 static void tlb_deinitialize(struct bonding *bond)
217 {
218 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
219 
220 	_lock_tx_hashtbl(bond);
221 
222 	kfree(bond_info->tx_hashtbl);
223 	bond_info->tx_hashtbl = NULL;
224 
225 	_unlock_tx_hashtbl(bond);
226 }
227 
228 /* Caller must hold bond lock for read */
229 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
230 {
231 	struct slave *slave, *least_loaded;
232 	s64 max_gap;
233 	int i, found = 0;
234 
235 	/* Find the first enabled slave */
236 	bond_for_each_slave(bond, slave, i) {
237 		if (SLAVE_IS_OK(slave)) {
238 			found = 1;
239 			break;
240 		}
241 	}
242 
243 	if (!found) {
244 		return NULL;
245 	}
246 
247 	least_loaded = slave;
248 	max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
249 			(s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
250 
251 	/* Find the slave with the largest gap */
252 	bond_for_each_slave_from(bond, slave, i, least_loaded) {
253 		if (SLAVE_IS_OK(slave)) {
254 			s64 gap = (s64)(slave->speed << 20) -
255 					(s64)(SLAVE_TLB_INFO(slave).load << 3);
256 			if (max_gap < gap) {
257 				least_loaded = slave;
258 				max_gap = gap;
259 			}
260 		}
261 	}
262 
263 	return least_loaded;
264 }
265 
266 /* Caller must hold bond lock for read */
267 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
268 {
269 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
270 	struct tlb_client_info *hash_table;
271 	struct slave *assigned_slave;
272 
273 	_lock_tx_hashtbl(bond);
274 
275 	hash_table = bond_info->tx_hashtbl;
276 	assigned_slave = hash_table[hash_index].tx_slave;
277 	if (!assigned_slave) {
278 		assigned_slave = tlb_get_least_loaded_slave(bond);
279 
280 		if (assigned_slave) {
281 			struct tlb_slave_info *slave_info =
282 				&(SLAVE_TLB_INFO(assigned_slave));
283 			u32 next_index = slave_info->head;
284 
285 			hash_table[hash_index].tx_slave = assigned_slave;
286 			hash_table[hash_index].next = next_index;
287 			hash_table[hash_index].prev = TLB_NULL_INDEX;
288 
289 			if (next_index != TLB_NULL_INDEX) {
290 				hash_table[next_index].prev = hash_index;
291 			}
292 
293 			slave_info->head = hash_index;
294 			slave_info->load +=
295 				hash_table[hash_index].load_history;
296 		}
297 	}
298 
299 	if (assigned_slave) {
300 		hash_table[hash_index].tx_bytes += skb_len;
301 	}
302 
303 	_unlock_tx_hashtbl(bond);
304 
305 	return assigned_slave;
306 }
307 
308 /*********************** rlb specific functions ***************************/
309 static inline void _lock_rx_hashtbl(struct bonding *bond)
310 {
311 	spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
312 }
313 
314 static inline void _unlock_rx_hashtbl(struct bonding *bond)
315 {
316 	spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
317 }
318 
319 /* when an ARP REPLY is received from a client update its info
320  * in the rx_hashtbl
321  */
322 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
323 {
324 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
325 	struct rlb_client_info *client_info;
326 	u32 hash_index;
327 
328 	_lock_rx_hashtbl(bond);
329 
330 	hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
331 	client_info = &(bond_info->rx_hashtbl[hash_index]);
332 
333 	if ((client_info->assigned) &&
334 	    (client_info->ip_src == arp->ip_dst) &&
335 	    (client_info->ip_dst == arp->ip_src)) {
336 		/* update the clients MAC address */
337 		memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
338 		client_info->ntt = 1;
339 		bond_info->rx_ntt = 1;
340 	}
341 
342 	_unlock_rx_hashtbl(bond);
343 }
344 
345 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
346 {
347 	struct bonding *bond;
348 	struct arp_pkt *arp = (struct arp_pkt *)skb->data;
349 	int res = NET_RX_DROP;
350 
351 	if (dev_net(bond_dev) != &init_net)
352 		goto out;
353 
354 	while (bond_dev->priv_flags & IFF_802_1Q_VLAN)
355 		bond_dev = vlan_dev_real_dev(bond_dev);
356 
357 	if (!(bond_dev->priv_flags & IFF_BONDING) ||
358 	    !(bond_dev->flags & IFF_MASTER))
359 		goto out;
360 
361 	if (!arp) {
362 		pr_debug("Packet has no ARP data\n");
363 		goto out;
364 	}
365 
366 	if (skb->len < sizeof(struct arp_pkt)) {
367 		pr_debug("Packet is too small to be an ARP\n");
368 		goto out;
369 	}
370 
371 	if (arp->op_code == htons(ARPOP_REPLY)) {
372 		/* update rx hash table for this ARP */
373 		printk("rar: update orig %s bond_dev %s\n", orig_dev->name,
374 		       bond_dev->name);
375 		bond = netdev_priv(bond_dev);
376 		rlb_update_entry_from_arp(bond, arp);
377 		pr_debug("Server received an ARP Reply from client\n");
378 	}
379 
380 	res = NET_RX_SUCCESS;
381 
382 out:
383 	dev_kfree_skb(skb);
384 
385 	return res;
386 }
387 
388 /* Caller must hold bond lock for read */
389 static struct slave *rlb_next_rx_slave(struct bonding *bond)
390 {
391 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
392 	struct slave *rx_slave, *slave, *start_at;
393 	int i = 0;
394 
395 	if (bond_info->next_rx_slave) {
396 		start_at = bond_info->next_rx_slave;
397 	} else {
398 		start_at = bond->first_slave;
399 	}
400 
401 	rx_slave = NULL;
402 
403 	bond_for_each_slave_from(bond, slave, i, start_at) {
404 		if (SLAVE_IS_OK(slave)) {
405 			if (!rx_slave) {
406 				rx_slave = slave;
407 			} else if (slave->speed > rx_slave->speed) {
408 				rx_slave = slave;
409 			}
410 		}
411 	}
412 
413 	if (rx_slave) {
414 		bond_info->next_rx_slave = rx_slave->next;
415 	}
416 
417 	return rx_slave;
418 }
419 
420 /* teach the switch the mac of a disabled slave
421  * on the primary for fault tolerance
422  *
423  * Caller must hold bond->curr_slave_lock for write or bond lock for write
424  */
425 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
426 {
427 	if (!bond->curr_active_slave) {
428 		return;
429 	}
430 
431 	if (!bond->alb_info.primary_is_promisc) {
432 		if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1))
433 			bond->alb_info.primary_is_promisc = 1;
434 		else
435 			bond->alb_info.primary_is_promisc = 0;
436 	}
437 
438 	bond->alb_info.rlb_promisc_timeout_counter = 0;
439 
440 	alb_send_learning_packets(bond->curr_active_slave, addr);
441 }
442 
443 /* slave being removed should not be active at this point
444  *
445  * Caller must hold bond lock for read
446  */
447 static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
448 {
449 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
450 	struct rlb_client_info *rx_hash_table;
451 	u32 index, next_index;
452 
453 	/* clear slave from rx_hashtbl */
454 	_lock_rx_hashtbl(bond);
455 
456 	rx_hash_table = bond_info->rx_hashtbl;
457 	index = bond_info->rx_hashtbl_head;
458 	for (; index != RLB_NULL_INDEX; index = next_index) {
459 		next_index = rx_hash_table[index].next;
460 		if (rx_hash_table[index].slave == slave) {
461 			struct slave *assigned_slave = rlb_next_rx_slave(bond);
462 
463 			if (assigned_slave) {
464 				rx_hash_table[index].slave = assigned_slave;
465 				if (memcmp(rx_hash_table[index].mac_dst,
466 					   mac_bcast, ETH_ALEN)) {
467 					bond_info->rx_hashtbl[index].ntt = 1;
468 					bond_info->rx_ntt = 1;
469 					/* A slave has been removed from the
470 					 * table because it is either disabled
471 					 * or being released. We must retry the
472 					 * update to avoid clients from not
473 					 * being updated & disconnecting when
474 					 * there is stress
475 					 */
476 					bond_info->rlb_update_retry_counter =
477 						RLB_UPDATE_RETRY;
478 				}
479 			} else {  /* there is no active slave */
480 				rx_hash_table[index].slave = NULL;
481 			}
482 		}
483 	}
484 
485 	_unlock_rx_hashtbl(bond);
486 
487 	write_lock_bh(&bond->curr_slave_lock);
488 
489 	if (slave != bond->curr_active_slave) {
490 		rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
491 	}
492 
493 	write_unlock_bh(&bond->curr_slave_lock);
494 }
495 
496 static void rlb_update_client(struct rlb_client_info *client_info)
497 {
498 	int i;
499 
500 	if (!client_info->slave) {
501 		return;
502 	}
503 
504 	for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
505 		struct sk_buff *skb;
506 
507 		skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
508 				 client_info->ip_dst,
509 				 client_info->slave->dev,
510 				 client_info->ip_src,
511 				 client_info->mac_dst,
512 				 client_info->slave->dev->dev_addr,
513 				 client_info->mac_dst);
514 		if (!skb) {
515 			printk(KERN_ERR DRV_NAME
516 			       ": %s: Error: failed to create an ARP packet\n",
517 			       client_info->slave->dev->master->name);
518 			continue;
519 		}
520 
521 		skb->dev = client_info->slave->dev;
522 
523 		if (client_info->tag) {
524 			skb = vlan_put_tag(skb, client_info->vlan_id);
525 			if (!skb) {
526 				printk(KERN_ERR DRV_NAME
527 				       ": %s: Error: failed to insert VLAN tag\n",
528 				       client_info->slave->dev->master->name);
529 				continue;
530 			}
531 		}
532 
533 		arp_xmit(skb);
534 	}
535 }
536 
537 /* sends ARP REPLIES that update the clients that need updating */
538 static void rlb_update_rx_clients(struct bonding *bond)
539 {
540 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
541 	struct rlb_client_info *client_info;
542 	u32 hash_index;
543 
544 	_lock_rx_hashtbl(bond);
545 
546 	hash_index = bond_info->rx_hashtbl_head;
547 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
548 		client_info = &(bond_info->rx_hashtbl[hash_index]);
549 		if (client_info->ntt) {
550 			rlb_update_client(client_info);
551 			if (bond_info->rlb_update_retry_counter == 0) {
552 				client_info->ntt = 0;
553 			}
554 		}
555 	}
556 
557 	/* do not update the entries again untill this counter is zero so that
558 	 * not to confuse the clients.
559 	 */
560 	bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
561 
562 	_unlock_rx_hashtbl(bond);
563 }
564 
565 /* The slave was assigned a new mac address - update the clients */
566 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
567 {
568 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
569 	struct rlb_client_info *client_info;
570 	int ntt = 0;
571 	u32 hash_index;
572 
573 	_lock_rx_hashtbl(bond);
574 
575 	hash_index = bond_info->rx_hashtbl_head;
576 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
577 		client_info = &(bond_info->rx_hashtbl[hash_index]);
578 
579 		if ((client_info->slave == slave) &&
580 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
581 			client_info->ntt = 1;
582 			ntt = 1;
583 		}
584 	}
585 
586 	// update the team's flag only after the whole iteration
587 	if (ntt) {
588 		bond_info->rx_ntt = 1;
589 		//fasten the change
590 		bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
591 	}
592 
593 	_unlock_rx_hashtbl(bond);
594 }
595 
596 /* mark all clients using src_ip to be updated */
597 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
598 {
599 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
600 	struct rlb_client_info *client_info;
601 	u32 hash_index;
602 
603 	_lock_rx_hashtbl(bond);
604 
605 	hash_index = bond_info->rx_hashtbl_head;
606 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
607 		client_info = &(bond_info->rx_hashtbl[hash_index]);
608 
609 		if (!client_info->slave) {
610 			printk(KERN_ERR DRV_NAME
611 			       ": %s: Error: found a client with no channel in "
612 			       "the client's hash table\n",
613 			       bond->dev->name);
614 			continue;
615 		}
616 		/*update all clients using this src_ip, that are not assigned
617 		 * to the team's address (curr_active_slave) and have a known
618 		 * unicast mac address.
619 		 */
620 		if ((client_info->ip_src == src_ip) &&
621 		    memcmp(client_info->slave->dev->dev_addr,
622 			   bond->dev->dev_addr, ETH_ALEN) &&
623 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
624 			client_info->ntt = 1;
625 			bond_info->rx_ntt = 1;
626 		}
627 	}
628 
629 	_unlock_rx_hashtbl(bond);
630 }
631 
632 /* Caller must hold both bond and ptr locks for read */
633 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
634 {
635 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
636 	struct arp_pkt *arp = arp_pkt(skb);
637 	struct slave *assigned_slave;
638 	struct rlb_client_info *client_info;
639 	u32 hash_index = 0;
640 
641 	_lock_rx_hashtbl(bond);
642 
643 	hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
644 	client_info = &(bond_info->rx_hashtbl[hash_index]);
645 
646 	if (client_info->assigned) {
647 		if ((client_info->ip_src == arp->ip_src) &&
648 		    (client_info->ip_dst == arp->ip_dst)) {
649 			/* the entry is already assigned to this client */
650 			if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
651 				/* update mac address from arp */
652 				memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
653 			}
654 
655 			assigned_slave = client_info->slave;
656 			if (assigned_slave) {
657 				_unlock_rx_hashtbl(bond);
658 				return assigned_slave;
659 			}
660 		} else {
661 			/* the entry is already assigned to some other client,
662 			 * move the old client to primary (curr_active_slave) so
663 			 * that the new client can be assigned to this entry.
664 			 */
665 			if (bond->curr_active_slave &&
666 			    client_info->slave != bond->curr_active_slave) {
667 				client_info->slave = bond->curr_active_slave;
668 				rlb_update_client(client_info);
669 			}
670 		}
671 	}
672 	/* assign a new slave */
673 	assigned_slave = rlb_next_rx_slave(bond);
674 
675 	if (assigned_slave) {
676 		client_info->ip_src = arp->ip_src;
677 		client_info->ip_dst = arp->ip_dst;
678 		/* arp->mac_dst is broadcast for arp reqeusts.
679 		 * will be updated with clients actual unicast mac address
680 		 * upon receiving an arp reply.
681 		 */
682 		memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
683 		client_info->slave = assigned_slave;
684 
685 		if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
686 			client_info->ntt = 1;
687 			bond->alb_info.rx_ntt = 1;
688 		} else {
689 			client_info->ntt = 0;
690 		}
691 
692 		if (!list_empty(&bond->vlan_list)) {
693 			if (!vlan_get_tag(skb, &client_info->vlan_id))
694 				client_info->tag = 1;
695 		}
696 
697 		if (!client_info->assigned) {
698 			u32 prev_tbl_head = bond_info->rx_hashtbl_head;
699 			bond_info->rx_hashtbl_head = hash_index;
700 			client_info->next = prev_tbl_head;
701 			if (prev_tbl_head != RLB_NULL_INDEX) {
702 				bond_info->rx_hashtbl[prev_tbl_head].prev =
703 					hash_index;
704 			}
705 			client_info->assigned = 1;
706 		}
707 	}
708 
709 	_unlock_rx_hashtbl(bond);
710 
711 	return assigned_slave;
712 }
713 
714 /* chooses (and returns) transmit channel for arp reply
715  * does not choose channel for other arp types since they are
716  * sent on the curr_active_slave
717  */
718 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
719 {
720 	struct arp_pkt *arp = arp_pkt(skb);
721 	struct slave *tx_slave = NULL;
722 
723 	if (arp->op_code == htons(ARPOP_REPLY)) {
724 		/* the arp must be sent on the selected
725 		* rx channel
726 		*/
727 		tx_slave = rlb_choose_channel(skb, bond);
728 		if (tx_slave) {
729 			memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
730 		}
731 		pr_debug("Server sent ARP Reply packet\n");
732 	} else if (arp->op_code == htons(ARPOP_REQUEST)) {
733 		/* Create an entry in the rx_hashtbl for this client as a
734 		 * place holder.
735 		 * When the arp reply is received the entry will be updated
736 		 * with the correct unicast address of the client.
737 		 */
738 		rlb_choose_channel(skb, bond);
739 
740 		/* The ARP relpy packets must be delayed so that
741 		 * they can cancel out the influence of the ARP request.
742 		 */
743 		bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
744 
745 		/* arp requests are broadcast and are sent on the primary
746 		 * the arp request will collapse all clients on the subnet to
747 		 * the primary slave. We must register these clients to be
748 		 * updated with their assigned mac.
749 		 */
750 		rlb_req_update_subnet_clients(bond, arp->ip_src);
751 		pr_debug("Server sent ARP Request packet\n");
752 	}
753 
754 	return tx_slave;
755 }
756 
757 /* Caller must hold bond lock for read */
758 static void rlb_rebalance(struct bonding *bond)
759 {
760 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
761 	struct slave *assigned_slave;
762 	struct rlb_client_info *client_info;
763 	int ntt;
764 	u32 hash_index;
765 
766 	_lock_rx_hashtbl(bond);
767 
768 	ntt = 0;
769 	hash_index = bond_info->rx_hashtbl_head;
770 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
771 		client_info = &(bond_info->rx_hashtbl[hash_index]);
772 		assigned_slave = rlb_next_rx_slave(bond);
773 		if (assigned_slave && (client_info->slave != assigned_slave)) {
774 			client_info->slave = assigned_slave;
775 			client_info->ntt = 1;
776 			ntt = 1;
777 		}
778 	}
779 
780 	/* update the team's flag only after the whole iteration */
781 	if (ntt) {
782 		bond_info->rx_ntt = 1;
783 	}
784 	_unlock_rx_hashtbl(bond);
785 }
786 
787 /* Caller must hold rx_hashtbl lock */
788 static void rlb_init_table_entry(struct rlb_client_info *entry)
789 {
790 	memset(entry, 0, sizeof(struct rlb_client_info));
791 	entry->next = RLB_NULL_INDEX;
792 	entry->prev = RLB_NULL_INDEX;
793 }
794 
795 static int rlb_initialize(struct bonding *bond)
796 {
797 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
798 	struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
799 	struct rlb_client_info	*new_hashtbl;
800 	int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
801 	int i;
802 
803 	spin_lock_init(&(bond_info->rx_hashtbl_lock));
804 
805 	new_hashtbl = kmalloc(size, GFP_KERNEL);
806 	if (!new_hashtbl) {
807 		printk(KERN_ERR DRV_NAME
808 		       ": %s: Error: Failed to allocate RLB hash table\n",
809 		       bond->dev->name);
810 		return -1;
811 	}
812 	_lock_rx_hashtbl(bond);
813 
814 	bond_info->rx_hashtbl = new_hashtbl;
815 
816 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
817 
818 	for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
819 		rlb_init_table_entry(bond_info->rx_hashtbl + i);
820 	}
821 
822 	_unlock_rx_hashtbl(bond);
823 
824 	/*initialize packet type*/
825 	pk_type->type = cpu_to_be16(ETH_P_ARP);
826 	pk_type->dev = NULL;
827 	pk_type->func = rlb_arp_recv;
828 
829 	/* register to receive ARPs */
830 	dev_add_pack(pk_type);
831 
832 	return 0;
833 }
834 
835 static void rlb_deinitialize(struct bonding *bond)
836 {
837 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
838 
839 	dev_remove_pack(&(bond_info->rlb_pkt_type));
840 
841 	_lock_rx_hashtbl(bond);
842 
843 	kfree(bond_info->rx_hashtbl);
844 	bond_info->rx_hashtbl = NULL;
845 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
846 
847 	_unlock_rx_hashtbl(bond);
848 }
849 
850 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
851 {
852 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
853 	u32 curr_index;
854 
855 	_lock_rx_hashtbl(bond);
856 
857 	curr_index = bond_info->rx_hashtbl_head;
858 	while (curr_index != RLB_NULL_INDEX) {
859 		struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
860 		u32 next_index = bond_info->rx_hashtbl[curr_index].next;
861 		u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
862 
863 		if (curr->tag && (curr->vlan_id == vlan_id)) {
864 			if (curr_index == bond_info->rx_hashtbl_head) {
865 				bond_info->rx_hashtbl_head = next_index;
866 			}
867 			if (prev_index != RLB_NULL_INDEX) {
868 				bond_info->rx_hashtbl[prev_index].next = next_index;
869 			}
870 			if (next_index != RLB_NULL_INDEX) {
871 				bond_info->rx_hashtbl[next_index].prev = prev_index;
872 			}
873 
874 			rlb_init_table_entry(curr);
875 		}
876 
877 		curr_index = next_index;
878 	}
879 
880 	_unlock_rx_hashtbl(bond);
881 }
882 
883 /*********************** tlb/rlb shared functions *********************/
884 
885 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
886 {
887 	struct bonding *bond = bond_get_bond_by_slave(slave);
888 	struct learning_pkt pkt;
889 	int size = sizeof(struct learning_pkt);
890 	int i;
891 
892 	memset(&pkt, 0, size);
893 	memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
894 	memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
895 	pkt.type = cpu_to_be16(ETH_P_LOOP);
896 
897 	for (i = 0; i < MAX_LP_BURST; i++) {
898 		struct sk_buff *skb;
899 		char *data;
900 
901 		skb = dev_alloc_skb(size);
902 		if (!skb) {
903 			return;
904 		}
905 
906 		data = skb_put(skb, size);
907 		memcpy(data, &pkt, size);
908 
909 		skb_reset_mac_header(skb);
910 		skb->network_header = skb->mac_header + ETH_HLEN;
911 		skb->protocol = pkt.type;
912 		skb->priority = TC_PRIO_CONTROL;
913 		skb->dev = slave->dev;
914 
915 		if (!list_empty(&bond->vlan_list)) {
916 			struct vlan_entry *vlan;
917 
918 			vlan = bond_next_vlan(bond,
919 					      bond->alb_info.current_alb_vlan);
920 
921 			bond->alb_info.current_alb_vlan = vlan;
922 			if (!vlan) {
923 				kfree_skb(skb);
924 				continue;
925 			}
926 
927 			skb = vlan_put_tag(skb, vlan->vlan_id);
928 			if (!skb) {
929 				printk(KERN_ERR DRV_NAME
930 				       ": %s: Error: failed to insert VLAN tag\n",
931 				       bond->dev->name);
932 				continue;
933 			}
934 		}
935 
936 		dev_queue_xmit(skb);
937 	}
938 }
939 
940 /* hw is a boolean parameter that determines whether we should try and
941  * set the hw address of the device as well as the hw address of the
942  * net_device
943  */
944 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
945 {
946 	struct net_device *dev = slave->dev;
947 	struct sockaddr s_addr;
948 
949 	if (!hw) {
950 		memcpy(dev->dev_addr, addr, dev->addr_len);
951 		return 0;
952 	}
953 
954 	/* for rlb each slave must have a unique hw mac addresses so that */
955 	/* each slave will receive packets destined to a different mac */
956 	memcpy(s_addr.sa_data, addr, dev->addr_len);
957 	s_addr.sa_family = dev->type;
958 	if (dev_set_mac_address(dev, &s_addr)) {
959 		printk(KERN_ERR DRV_NAME
960 		       ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
961 		       "mode requires that the base driver support setting "
962 		       "the hw address also when the network device's "
963 		       "interface is open\n",
964 		       dev->master->name, dev->name);
965 		return -EOPNOTSUPP;
966 	}
967 	return 0;
968 }
969 
970 /*
971  * Swap MAC addresses between two slaves.
972  *
973  * Called with RTNL held, and no other locks.
974  *
975  */
976 
977 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
978 {
979 	u8 tmp_mac_addr[ETH_ALEN];
980 
981 	memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
982 	alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
983 	alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
984 
985 }
986 
987 /*
988  * Send learning packets after MAC address swap.
989  *
990  * Called with RTNL and no other locks
991  */
992 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
993 				struct slave *slave2)
994 {
995 	int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
996 	struct slave *disabled_slave = NULL;
997 
998 	ASSERT_RTNL();
999 
1000 	/* fasten the change in the switch */
1001 	if (SLAVE_IS_OK(slave1)) {
1002 		alb_send_learning_packets(slave1, slave1->dev->dev_addr);
1003 		if (bond->alb_info.rlb_enabled) {
1004 			/* inform the clients that the mac address
1005 			 * has changed
1006 			 */
1007 			rlb_req_update_slave_clients(bond, slave1);
1008 		}
1009 	} else {
1010 		disabled_slave = slave1;
1011 	}
1012 
1013 	if (SLAVE_IS_OK(slave2)) {
1014 		alb_send_learning_packets(slave2, slave2->dev->dev_addr);
1015 		if (bond->alb_info.rlb_enabled) {
1016 			/* inform the clients that the mac address
1017 			 * has changed
1018 			 */
1019 			rlb_req_update_slave_clients(bond, slave2);
1020 		}
1021 	} else {
1022 		disabled_slave = slave2;
1023 	}
1024 
1025 	if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1026 		/* A disabled slave was assigned an active mac addr */
1027 		rlb_teach_disabled_mac_on_primary(bond,
1028 						  disabled_slave->dev->dev_addr);
1029 	}
1030 }
1031 
1032 /**
1033  * alb_change_hw_addr_on_detach
1034  * @bond: bonding we're working on
1035  * @slave: the slave that was just detached
1036  *
1037  * We assume that @slave was already detached from the slave list.
1038  *
1039  * If @slave's permanent hw address is different both from its current
1040  * address and from @bond's address, then somewhere in the bond there's
1041  * a slave that has @slave's permanet address as its current address.
1042  * We'll make sure that that slave no longer uses @slave's permanent address.
1043  *
1044  * Caller must hold RTNL and no other locks
1045  */
1046 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1047 {
1048 	int perm_curr_diff;
1049 	int perm_bond_diff;
1050 
1051 	perm_curr_diff = memcmp(slave->perm_hwaddr,
1052 				slave->dev->dev_addr,
1053 				ETH_ALEN);
1054 	perm_bond_diff = memcmp(slave->perm_hwaddr,
1055 				bond->dev->dev_addr,
1056 				ETH_ALEN);
1057 
1058 	if (perm_curr_diff && perm_bond_diff) {
1059 		struct slave *tmp_slave;
1060 		int i, found = 0;
1061 
1062 		bond_for_each_slave(bond, tmp_slave, i) {
1063 			if (!memcmp(slave->perm_hwaddr,
1064 				    tmp_slave->dev->dev_addr,
1065 				    ETH_ALEN)) {
1066 				found = 1;
1067 				break;
1068 			}
1069 		}
1070 
1071 		if (found) {
1072 			/* locking: needs RTNL and nothing else */
1073 			alb_swap_mac_addr(bond, slave, tmp_slave);
1074 			alb_fasten_mac_swap(bond, slave, tmp_slave);
1075 		}
1076 	}
1077 }
1078 
1079 /**
1080  * alb_handle_addr_collision_on_attach
1081  * @bond: bonding we're working on
1082  * @slave: the slave that was just attached
1083  *
1084  * checks uniqueness of slave's mac address and handles the case the
1085  * new slave uses the bonds mac address.
1086  *
1087  * If the permanent hw address of @slave is @bond's hw address, we need to
1088  * find a different hw address to give @slave, that isn't in use by any other
1089  * slave in the bond. This address must be, of course, one of the premanent
1090  * addresses of the other slaves.
1091  *
1092  * We go over the slave list, and for each slave there we compare its
1093  * permanent hw address with the current address of all the other slaves.
1094  * If no match was found, then we've found a slave with a permanent address
1095  * that isn't used by any other slave in the bond, so we can assign it to
1096  * @slave.
1097  *
1098  * assumption: this function is called before @slave is attached to the
1099  * 	       bond slave list.
1100  *
1101  * caller must hold the bond lock for write since the mac addresses are compared
1102  * and may be swapped.
1103  */
1104 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1105 {
1106 	struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1107 	struct slave *has_bond_addr = bond->curr_active_slave;
1108 	int i, j, found = 0;
1109 
1110 	if (bond->slave_cnt == 0) {
1111 		/* this is the first slave */
1112 		return 0;
1113 	}
1114 
1115 	/* if slave's mac address differs from bond's mac address
1116 	 * check uniqueness of slave's mac address against the other
1117 	 * slaves in the bond.
1118 	 */
1119 	if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1120 		bond_for_each_slave(bond, tmp_slave1, i) {
1121 			if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1122 				    ETH_ALEN)) {
1123 				found = 1;
1124 				break;
1125 			}
1126 		}
1127 
1128 		if (!found)
1129 			return 0;
1130 
1131 		/* Try setting slave mac to bond address and fall-through
1132 		   to code handling that situation below... */
1133 		alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1134 				       bond->alb_info.rlb_enabled);
1135 	}
1136 
1137 	/* The slave's address is equal to the address of the bond.
1138 	 * Search for a spare address in the bond for this slave.
1139 	 */
1140 	free_mac_slave = NULL;
1141 
1142 	bond_for_each_slave(bond, tmp_slave1, i) {
1143 		found = 0;
1144 		bond_for_each_slave(bond, tmp_slave2, j) {
1145 			if (!memcmp(tmp_slave1->perm_hwaddr,
1146 				    tmp_slave2->dev->dev_addr,
1147 				    ETH_ALEN)) {
1148 				found = 1;
1149 				break;
1150 			}
1151 		}
1152 
1153 		if (!found) {
1154 			/* no slave has tmp_slave1's perm addr
1155 			 * as its curr addr
1156 			 */
1157 			free_mac_slave = tmp_slave1;
1158 			break;
1159 		}
1160 
1161 		if (!has_bond_addr) {
1162 			if (!memcmp(tmp_slave1->dev->dev_addr,
1163 				    bond->dev->dev_addr,
1164 				    ETH_ALEN)) {
1165 
1166 				has_bond_addr = tmp_slave1;
1167 			}
1168 		}
1169 	}
1170 
1171 	if (free_mac_slave) {
1172 		alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1173 				       bond->alb_info.rlb_enabled);
1174 
1175 		printk(KERN_WARNING DRV_NAME
1176 		       ": %s: Warning: the hw address of slave %s is in use by "
1177 		       "the bond; giving it the hw address of %s\n",
1178 		       bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1179 
1180 	} else if (has_bond_addr) {
1181 		printk(KERN_ERR DRV_NAME
1182 		       ": %s: Error: the hw address of slave %s is in use by the "
1183 		       "bond; couldn't find a slave with a free hw address to "
1184 		       "give it (this should not have happened)\n",
1185 		       bond->dev->name, slave->dev->name);
1186 		return -EFAULT;
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 /**
1193  * alb_set_mac_address
1194  * @bond:
1195  * @addr:
1196  *
1197  * In TLB mode all slaves are configured to the bond's hw address, but set
1198  * their dev_addr field to different addresses (based on their permanent hw
1199  * addresses).
1200  *
1201  * For each slave, this function sets the interface to the new address and then
1202  * changes its dev_addr field to its previous value.
1203  *
1204  * Unwinding assumes bond's mac address has not yet changed.
1205  */
1206 static int alb_set_mac_address(struct bonding *bond, void *addr)
1207 {
1208 	struct sockaddr sa;
1209 	struct slave *slave, *stop_at;
1210 	char tmp_addr[ETH_ALEN];
1211 	int res;
1212 	int i;
1213 
1214 	if (bond->alb_info.rlb_enabled) {
1215 		return 0;
1216 	}
1217 
1218 	bond_for_each_slave(bond, slave, i) {
1219 		/* save net_device's current hw address */
1220 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1221 
1222 		res = dev_set_mac_address(slave->dev, addr);
1223 
1224 		/* restore net_device's hw address */
1225 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1226 
1227 		if (res)
1228 			goto unwind;
1229 	}
1230 
1231 	return 0;
1232 
1233 unwind:
1234 	memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1235 	sa.sa_family = bond->dev->type;
1236 
1237 	/* unwind from head to the slave that failed */
1238 	stop_at = slave;
1239 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1240 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1241 		dev_set_mac_address(slave->dev, &sa);
1242 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1243 	}
1244 
1245 	return res;
1246 }
1247 
1248 /************************ exported alb funcions ************************/
1249 
1250 int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1251 {
1252 	int res;
1253 
1254 	res = tlb_initialize(bond);
1255 	if (res) {
1256 		return res;
1257 	}
1258 
1259 	if (rlb_enabled) {
1260 		bond->alb_info.rlb_enabled = 1;
1261 		/* initialize rlb */
1262 		res = rlb_initialize(bond);
1263 		if (res) {
1264 			tlb_deinitialize(bond);
1265 			return res;
1266 		}
1267 	} else {
1268 		bond->alb_info.rlb_enabled = 0;
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 void bond_alb_deinitialize(struct bonding *bond)
1275 {
1276 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1277 
1278 	tlb_deinitialize(bond);
1279 
1280 	if (bond_info->rlb_enabled) {
1281 		rlb_deinitialize(bond);
1282 	}
1283 }
1284 
1285 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1286 {
1287 	struct bonding *bond = netdev_priv(bond_dev);
1288 	struct ethhdr *eth_data;
1289 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1290 	struct slave *tx_slave = NULL;
1291 	static const __be32 ip_bcast = htonl(0xffffffff);
1292 	int hash_size = 0;
1293 	int do_tx_balance = 1;
1294 	u32 hash_index = 0;
1295 	const u8 *hash_start = NULL;
1296 	int res = 1;
1297 	struct ipv6hdr *ip6hdr;
1298 
1299 	skb_reset_mac_header(skb);
1300 	eth_data = eth_hdr(skb);
1301 
1302 	/* make sure that the curr_active_slave and the slaves list do
1303 	 * not change during tx
1304 	 */
1305 	read_lock(&bond->lock);
1306 	read_lock(&bond->curr_slave_lock);
1307 
1308 	if (!BOND_IS_OK(bond)) {
1309 		goto out;
1310 	}
1311 
1312 	switch (ntohs(skb->protocol)) {
1313 	case ETH_P_IP: {
1314 		const struct iphdr *iph = ip_hdr(skb);
1315 
1316 		if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1317 		    (iph->daddr == ip_bcast) ||
1318 		    (iph->protocol == IPPROTO_IGMP)) {
1319 			do_tx_balance = 0;
1320 			break;
1321 		}
1322 		hash_start = (char *)&(iph->daddr);
1323 		hash_size = sizeof(iph->daddr);
1324 	}
1325 		break;
1326 	case ETH_P_IPV6:
1327 		/* IPv6 doesn't really use broadcast mac address, but leave
1328 		 * that here just in case.
1329 		 */
1330 		if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1331 			do_tx_balance = 0;
1332 			break;
1333 		}
1334 
1335 		/* IPv6 uses all-nodes multicast as an equivalent to
1336 		 * broadcasts in IPv4.
1337 		 */
1338 		if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) {
1339 			do_tx_balance = 0;
1340 			break;
1341 		}
1342 
1343 		/* Additianally, DAD probes should not be tx-balanced as that
1344 		 * will lead to false positives for duplicate addresses and
1345 		 * prevent address configuration from working.
1346 		 */
1347 		ip6hdr = ipv6_hdr(skb);
1348 		if (ipv6_addr_any(&ip6hdr->saddr)) {
1349 			do_tx_balance = 0;
1350 			break;
1351 		}
1352 
1353 		hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1354 		hash_size = sizeof(ipv6_hdr(skb)->daddr);
1355 		break;
1356 	case ETH_P_IPX:
1357 		if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1358 			/* something is wrong with this packet */
1359 			do_tx_balance = 0;
1360 			break;
1361 		}
1362 
1363 		if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1364 			/* The only protocol worth balancing in
1365 			 * this family since it has an "ARP" like
1366 			 * mechanism
1367 			 */
1368 			do_tx_balance = 0;
1369 			break;
1370 		}
1371 
1372 		hash_start = (char*)eth_data->h_dest;
1373 		hash_size = ETH_ALEN;
1374 		break;
1375 	case ETH_P_ARP:
1376 		do_tx_balance = 0;
1377 		if (bond_info->rlb_enabled) {
1378 			tx_slave = rlb_arp_xmit(skb, bond);
1379 		}
1380 		break;
1381 	default:
1382 		do_tx_balance = 0;
1383 		break;
1384 	}
1385 
1386 	if (do_tx_balance) {
1387 		hash_index = _simple_hash(hash_start, hash_size);
1388 		tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1389 	}
1390 
1391 	if (!tx_slave) {
1392 		/* unbalanced or unassigned, send through primary */
1393 		tx_slave = bond->curr_active_slave;
1394 		bond_info->unbalanced_load += skb->len;
1395 	}
1396 
1397 	if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1398 		if (tx_slave != bond->curr_active_slave) {
1399 			memcpy(eth_data->h_source,
1400 			       tx_slave->dev->dev_addr,
1401 			       ETH_ALEN);
1402 		}
1403 
1404 		res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1405 	} else {
1406 		if (tx_slave) {
1407 			tlb_clear_slave(bond, tx_slave, 0);
1408 		}
1409 	}
1410 
1411 out:
1412 	if (res) {
1413 		/* no suitable interface, frame not sent */
1414 		dev_kfree_skb(skb);
1415 	}
1416 	read_unlock(&bond->curr_slave_lock);
1417 	read_unlock(&bond->lock);
1418 	return 0;
1419 }
1420 
1421 void bond_alb_monitor(struct work_struct *work)
1422 {
1423 	struct bonding *bond = container_of(work, struct bonding,
1424 					    alb_work.work);
1425 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1426 	struct slave *slave;
1427 	int i;
1428 
1429 	read_lock(&bond->lock);
1430 
1431 	if (bond->kill_timers) {
1432 		goto out;
1433 	}
1434 
1435 	if (bond->slave_cnt == 0) {
1436 		bond_info->tx_rebalance_counter = 0;
1437 		bond_info->lp_counter = 0;
1438 		goto re_arm;
1439 	}
1440 
1441 	bond_info->tx_rebalance_counter++;
1442 	bond_info->lp_counter++;
1443 
1444 	/* send learning packets */
1445 	if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1446 		/* change of curr_active_slave involves swapping of mac addresses.
1447 		 * in order to avoid this swapping from happening while
1448 		 * sending the learning packets, the curr_slave_lock must be held for
1449 		 * read.
1450 		 */
1451 		read_lock(&bond->curr_slave_lock);
1452 
1453 		bond_for_each_slave(bond, slave, i) {
1454 			alb_send_learning_packets(slave, slave->dev->dev_addr);
1455 		}
1456 
1457 		read_unlock(&bond->curr_slave_lock);
1458 
1459 		bond_info->lp_counter = 0;
1460 	}
1461 
1462 	/* rebalance tx traffic */
1463 	if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1464 
1465 		read_lock(&bond->curr_slave_lock);
1466 
1467 		bond_for_each_slave(bond, slave, i) {
1468 			tlb_clear_slave(bond, slave, 1);
1469 			if (slave == bond->curr_active_slave) {
1470 				SLAVE_TLB_INFO(slave).load =
1471 					bond_info->unbalanced_load /
1472 						BOND_TLB_REBALANCE_INTERVAL;
1473 				bond_info->unbalanced_load = 0;
1474 			}
1475 		}
1476 
1477 		read_unlock(&bond->curr_slave_lock);
1478 
1479 		bond_info->tx_rebalance_counter = 0;
1480 	}
1481 
1482 	/* handle rlb stuff */
1483 	if (bond_info->rlb_enabled) {
1484 		if (bond_info->primary_is_promisc &&
1485 		    (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1486 
1487 			/*
1488 			 * dev_set_promiscuity requires rtnl and
1489 			 * nothing else.
1490 			 */
1491 			read_unlock(&bond->lock);
1492 			rtnl_lock();
1493 
1494 			bond_info->rlb_promisc_timeout_counter = 0;
1495 
1496 			/* If the primary was set to promiscuous mode
1497 			 * because a slave was disabled then
1498 			 * it can now leave promiscuous mode.
1499 			 */
1500 			dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1501 			bond_info->primary_is_promisc = 0;
1502 
1503 			rtnl_unlock();
1504 			read_lock(&bond->lock);
1505 		}
1506 
1507 		if (bond_info->rlb_rebalance) {
1508 			bond_info->rlb_rebalance = 0;
1509 			rlb_rebalance(bond);
1510 		}
1511 
1512 		/* check if clients need updating */
1513 		if (bond_info->rx_ntt) {
1514 			if (bond_info->rlb_update_delay_counter) {
1515 				--bond_info->rlb_update_delay_counter;
1516 			} else {
1517 				rlb_update_rx_clients(bond);
1518 				if (bond_info->rlb_update_retry_counter) {
1519 					--bond_info->rlb_update_retry_counter;
1520 				} else {
1521 					bond_info->rx_ntt = 0;
1522 				}
1523 			}
1524 		}
1525 	}
1526 
1527 re_arm:
1528 	queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1529 out:
1530 	read_unlock(&bond->lock);
1531 }
1532 
1533 /* assumption: called before the slave is attached to the bond
1534  * and not locked by the bond lock
1535  */
1536 int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1537 {
1538 	int res;
1539 
1540 	res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1541 				     bond->alb_info.rlb_enabled);
1542 	if (res) {
1543 		return res;
1544 	}
1545 
1546 	/* caller must hold the bond lock for write since the mac addresses
1547 	 * are compared and may be swapped.
1548 	 */
1549 	read_lock(&bond->lock);
1550 
1551 	res = alb_handle_addr_collision_on_attach(bond, slave);
1552 
1553 	read_unlock(&bond->lock);
1554 
1555 	if (res) {
1556 		return res;
1557 	}
1558 
1559 	tlb_init_slave(slave);
1560 
1561 	/* order a rebalance ASAP */
1562 	bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1563 
1564 	if (bond->alb_info.rlb_enabled) {
1565 		bond->alb_info.rlb_rebalance = 1;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1573  * if necessary.
1574  *
1575  * Caller must hold RTNL and no other locks
1576  */
1577 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1578 {
1579 	if (bond->slave_cnt > 1) {
1580 		alb_change_hw_addr_on_detach(bond, slave);
1581 	}
1582 
1583 	tlb_clear_slave(bond, slave, 0);
1584 
1585 	if (bond->alb_info.rlb_enabled) {
1586 		bond->alb_info.next_rx_slave = NULL;
1587 		rlb_clear_slave(bond, slave);
1588 	}
1589 }
1590 
1591 /* Caller must hold bond lock for read */
1592 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1593 {
1594 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1595 
1596 	if (link == BOND_LINK_DOWN) {
1597 		tlb_clear_slave(bond, slave, 0);
1598 		if (bond->alb_info.rlb_enabled) {
1599 			rlb_clear_slave(bond, slave);
1600 		}
1601 	} else if (link == BOND_LINK_UP) {
1602 		/* order a rebalance ASAP */
1603 		bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1604 		if (bond->alb_info.rlb_enabled) {
1605 			bond->alb_info.rlb_rebalance = 1;
1606 			/* If the updelay module parameter is smaller than the
1607 			 * forwarding delay of the switch the rebalance will
1608 			 * not work because the rebalance arp replies will
1609 			 * not be forwarded to the clients..
1610 			 */
1611 		}
1612 	}
1613 }
1614 
1615 /**
1616  * bond_alb_handle_active_change - assign new curr_active_slave
1617  * @bond: our bonding struct
1618  * @new_slave: new slave to assign
1619  *
1620  * Set the bond->curr_active_slave to @new_slave and handle
1621  * mac address swapping and promiscuity changes as needed.
1622  *
1623  * If new_slave is NULL, caller must hold curr_slave_lock or
1624  * bond->lock for write.
1625  *
1626  * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1627  * read and curr_slave_lock for write.  Processing here may sleep, so
1628  * no other locks may be held.
1629  */
1630 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1631 	__releases(&bond->curr_slave_lock)
1632 	__releases(&bond->lock)
1633 	__acquires(&bond->lock)
1634 	__acquires(&bond->curr_slave_lock)
1635 {
1636 	struct slave *swap_slave;
1637 	int i;
1638 
1639 	if (bond->curr_active_slave == new_slave) {
1640 		return;
1641 	}
1642 
1643 	if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1644 		dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1645 		bond->alb_info.primary_is_promisc = 0;
1646 		bond->alb_info.rlb_promisc_timeout_counter = 0;
1647 	}
1648 
1649 	swap_slave = bond->curr_active_slave;
1650 	bond->curr_active_slave = new_slave;
1651 
1652 	if (!new_slave || (bond->slave_cnt == 0)) {
1653 		return;
1654 	}
1655 
1656 	/* set the new curr_active_slave to the bonds mac address
1657 	 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1658 	 */
1659 	if (!swap_slave) {
1660 		struct slave *tmp_slave;
1661 		/* find slave that is holding the bond's mac address */
1662 		bond_for_each_slave(bond, tmp_slave, i) {
1663 			if (!memcmp(tmp_slave->dev->dev_addr,
1664 				    bond->dev->dev_addr, ETH_ALEN)) {
1665 				swap_slave = tmp_slave;
1666 				break;
1667 			}
1668 		}
1669 	}
1670 
1671 	/*
1672 	 * Arrange for swap_slave and new_slave to temporarily be
1673 	 * ignored so we can mess with their MAC addresses without
1674 	 * fear of interference from transmit activity.
1675 	 */
1676 	if (swap_slave) {
1677 		tlb_clear_slave(bond, swap_slave, 1);
1678 	}
1679 	tlb_clear_slave(bond, new_slave, 1);
1680 
1681 	write_unlock_bh(&bond->curr_slave_lock);
1682 	read_unlock(&bond->lock);
1683 
1684 	ASSERT_RTNL();
1685 
1686 	/* curr_active_slave must be set before calling alb_swap_mac_addr */
1687 	if (swap_slave) {
1688 		/* swap mac address */
1689 		alb_swap_mac_addr(bond, swap_slave, new_slave);
1690 	} else {
1691 		/* set the new_slave to the bond mac address */
1692 		alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1693 				       bond->alb_info.rlb_enabled);
1694 	}
1695 
1696 	if (swap_slave) {
1697 		alb_fasten_mac_swap(bond, swap_slave, new_slave);
1698 		read_lock(&bond->lock);
1699 	} else {
1700 		read_lock(&bond->lock);
1701 		alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1702 	}
1703 
1704 	write_lock_bh(&bond->curr_slave_lock);
1705 }
1706 
1707 /*
1708  * Called with RTNL
1709  */
1710 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1711 	__releases(&bond->curr_slave_lock)
1712 	__releases(&bond->lock)
1713 	__acquires(&bond->lock)
1714 	__acquires(&bond->curr_slave_lock)
1715 {
1716 	struct bonding *bond = netdev_priv(bond_dev);
1717 	struct sockaddr *sa = addr;
1718 	struct slave *slave, *swap_slave;
1719 	int res;
1720 	int i;
1721 
1722 	if (!is_valid_ether_addr(sa->sa_data)) {
1723 		return -EADDRNOTAVAIL;
1724 	}
1725 
1726 	res = alb_set_mac_address(bond, addr);
1727 	if (res) {
1728 		return res;
1729 	}
1730 
1731 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1732 
1733 	/* If there is no curr_active_slave there is nothing else to do.
1734 	 * Otherwise we'll need to pass the new address to it and handle
1735 	 * duplications.
1736 	 */
1737 	if (!bond->curr_active_slave) {
1738 		return 0;
1739 	}
1740 
1741 	swap_slave = NULL;
1742 
1743 	bond_for_each_slave(bond, slave, i) {
1744 		if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1745 			swap_slave = slave;
1746 			break;
1747 		}
1748 	}
1749 
1750 	write_unlock_bh(&bond->curr_slave_lock);
1751 	read_unlock(&bond->lock);
1752 
1753 	if (swap_slave) {
1754 		alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1755 		alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1756 	} else {
1757 		alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1758 				       bond->alb_info.rlb_enabled);
1759 
1760 		alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1761 		if (bond->alb_info.rlb_enabled) {
1762 			/* inform clients mac address has changed */
1763 			rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1764 		}
1765 	}
1766 
1767 	read_lock(&bond->lock);
1768 	write_lock_bh(&bond->curr_slave_lock);
1769 
1770 	return 0;
1771 }
1772 
1773 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1774 {
1775 	if (bond->alb_info.current_alb_vlan &&
1776 	    (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1777 		bond->alb_info.current_alb_vlan = NULL;
1778 	}
1779 
1780 	if (bond->alb_info.rlb_enabled) {
1781 		rlb_clear_vlan(bond, vlan_id);
1782 	}
1783 }
1784 
1785