xref: /openbmc/linux/drivers/net/bonding/bond_alb.c (revision a1e58bbd)
1 /*
2  * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License along
15  * with this program; if not, write to the Free Software Foundation, Inc.,
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  */
22 
23 //#define BONDING_DEBUG 1
24 
25 #include <linux/skbuff.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/pkt_sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/ip.h>
33 #include <linux/ipv6.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/if_bonding.h>
37 #include <linux/if_vlan.h>
38 #include <linux/in.h>
39 #include <net/ipx.h>
40 #include <net/arp.h>
41 #include <asm/byteorder.h>
42 #include "bonding.h"
43 #include "bond_alb.h"
44 
45 
46 #define ALB_TIMER_TICKS_PER_SEC	    10	/* should be a divisor of HZ */
47 #define BOND_TLB_REBALANCE_INTERVAL 10	/* In seconds, periodic re-balancing.
48 					 * Used for division - never set
49 					 * to zero !!!
50 					 */
51 #define BOND_ALB_LP_INTERVAL	    1	/* In seconds, periodic send of
52 					 * learning packets to the switch
53 					 */
54 
55 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
56 				  * ALB_TIMER_TICKS_PER_SEC)
57 
58 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
59 			   * ALB_TIMER_TICKS_PER_SEC)
60 
61 #define TLB_HASH_TABLE_SIZE 256	/* The size of the clients hash table.
62 				 * Note that this value MUST NOT be smaller
63 				 * because the key hash table is BYTE wide !
64 				 */
65 
66 
67 #define TLB_NULL_INDEX		0xffffffff
68 #define MAX_LP_BURST		3
69 
70 /* rlb defs */
71 #define RLB_HASH_TABLE_SIZE	256
72 #define RLB_NULL_INDEX		0xffffffff
73 #define RLB_UPDATE_DELAY	2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
74 #define RLB_ARP_BURST_SIZE	2
75 #define RLB_UPDATE_RETRY	3	/* 3-ticks - must be smaller than the rlb
76 					 * rebalance interval (5 min).
77 					 */
78 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
79  * promiscuous after failover
80  */
81 #define RLB_PROMISC_TIMEOUT	10*ALB_TIMER_TICKS_PER_SEC
82 
83 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
84 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
85 
86 #pragma pack(1)
87 struct learning_pkt {
88 	u8 mac_dst[ETH_ALEN];
89 	u8 mac_src[ETH_ALEN];
90 	__be16 type;
91 	u8 padding[ETH_ZLEN - ETH_HLEN];
92 };
93 
94 struct arp_pkt {
95 	__be16  hw_addr_space;
96 	__be16  prot_addr_space;
97 	u8      hw_addr_len;
98 	u8      prot_addr_len;
99 	__be16  op_code;
100 	u8      mac_src[ETH_ALEN];	/* sender hardware address */
101 	__be32  ip_src;			/* sender IP address */
102 	u8      mac_dst[ETH_ALEN];	/* target hardware address */
103 	__be32  ip_dst;			/* target IP address */
104 };
105 #pragma pack()
106 
107 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
108 {
109 	return (struct arp_pkt *)skb_network_header(skb);
110 }
111 
112 /* Forward declaration */
113 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
114 
115 static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
116 {
117 	int i;
118 	u8 hash = 0;
119 
120 	for (i = 0; i < hash_size; i++) {
121 		hash ^= hash_start[i];
122 	}
123 
124 	return hash;
125 }
126 
127 /*********************** tlb specific functions ***************************/
128 
129 static inline void _lock_tx_hashtbl(struct bonding *bond)
130 {
131 	spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
132 }
133 
134 static inline void _unlock_tx_hashtbl(struct bonding *bond)
135 {
136 	spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
137 }
138 
139 /* Caller must hold tx_hashtbl lock */
140 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
141 {
142 	if (save_load) {
143 		entry->load_history = 1 + entry->tx_bytes /
144 				      BOND_TLB_REBALANCE_INTERVAL;
145 		entry->tx_bytes = 0;
146 	}
147 
148 	entry->tx_slave = NULL;
149 	entry->next = TLB_NULL_INDEX;
150 	entry->prev = TLB_NULL_INDEX;
151 }
152 
153 static inline void tlb_init_slave(struct slave *slave)
154 {
155 	SLAVE_TLB_INFO(slave).load = 0;
156 	SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
157 }
158 
159 /* Caller must hold bond lock for read */
160 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
161 {
162 	struct tlb_client_info *tx_hash_table;
163 	u32 index;
164 
165 	_lock_tx_hashtbl(bond);
166 
167 	/* clear slave from tx_hashtbl */
168 	tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
169 
170 	index = SLAVE_TLB_INFO(slave).head;
171 	while (index != TLB_NULL_INDEX) {
172 		u32 next_index = tx_hash_table[index].next;
173 		tlb_init_table_entry(&tx_hash_table[index], save_load);
174 		index = next_index;
175 	}
176 
177 	tlb_init_slave(slave);
178 
179 	_unlock_tx_hashtbl(bond);
180 }
181 
182 /* Must be called before starting the monitor timer */
183 static int tlb_initialize(struct bonding *bond)
184 {
185 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
186 	int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
187 	struct tlb_client_info *new_hashtbl;
188 	int i;
189 
190 	spin_lock_init(&(bond_info->tx_hashtbl_lock));
191 
192 	new_hashtbl = kzalloc(size, GFP_KERNEL);
193 	if (!new_hashtbl) {
194 		printk(KERN_ERR DRV_NAME
195 		       ": %s: Error: Failed to allocate TLB hash table\n",
196 		       bond->dev->name);
197 		return -1;
198 	}
199 	_lock_tx_hashtbl(bond);
200 
201 	bond_info->tx_hashtbl = new_hashtbl;
202 
203 	for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
204 		tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
205 	}
206 
207 	_unlock_tx_hashtbl(bond);
208 
209 	return 0;
210 }
211 
212 /* Must be called only after all slaves have been released */
213 static void tlb_deinitialize(struct bonding *bond)
214 {
215 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
216 
217 	_lock_tx_hashtbl(bond);
218 
219 	kfree(bond_info->tx_hashtbl);
220 	bond_info->tx_hashtbl = NULL;
221 
222 	_unlock_tx_hashtbl(bond);
223 }
224 
225 /* Caller must hold bond lock for read */
226 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
227 {
228 	struct slave *slave, *least_loaded;
229 	s64 max_gap;
230 	int i, found = 0;
231 
232 	/* Find the first enabled slave */
233 	bond_for_each_slave(bond, slave, i) {
234 		if (SLAVE_IS_OK(slave)) {
235 			found = 1;
236 			break;
237 		}
238 	}
239 
240 	if (!found) {
241 		return NULL;
242 	}
243 
244 	least_loaded = slave;
245 	max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
246 			(s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
247 
248 	/* Find the slave with the largest gap */
249 	bond_for_each_slave_from(bond, slave, i, least_loaded) {
250 		if (SLAVE_IS_OK(slave)) {
251 			s64 gap = (s64)(slave->speed << 20) -
252 					(s64)(SLAVE_TLB_INFO(slave).load << 3);
253 			if (max_gap < gap) {
254 				least_loaded = slave;
255 				max_gap = gap;
256 			}
257 		}
258 	}
259 
260 	return least_loaded;
261 }
262 
263 /* Caller must hold bond lock for read */
264 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
265 {
266 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
267 	struct tlb_client_info *hash_table;
268 	struct slave *assigned_slave;
269 
270 	_lock_tx_hashtbl(bond);
271 
272 	hash_table = bond_info->tx_hashtbl;
273 	assigned_slave = hash_table[hash_index].tx_slave;
274 	if (!assigned_slave) {
275 		assigned_slave = tlb_get_least_loaded_slave(bond);
276 
277 		if (assigned_slave) {
278 			struct tlb_slave_info *slave_info =
279 				&(SLAVE_TLB_INFO(assigned_slave));
280 			u32 next_index = slave_info->head;
281 
282 			hash_table[hash_index].tx_slave = assigned_slave;
283 			hash_table[hash_index].next = next_index;
284 			hash_table[hash_index].prev = TLB_NULL_INDEX;
285 
286 			if (next_index != TLB_NULL_INDEX) {
287 				hash_table[next_index].prev = hash_index;
288 			}
289 
290 			slave_info->head = hash_index;
291 			slave_info->load +=
292 				hash_table[hash_index].load_history;
293 		}
294 	}
295 
296 	if (assigned_slave) {
297 		hash_table[hash_index].tx_bytes += skb_len;
298 	}
299 
300 	_unlock_tx_hashtbl(bond);
301 
302 	return assigned_slave;
303 }
304 
305 /*********************** rlb specific functions ***************************/
306 static inline void _lock_rx_hashtbl(struct bonding *bond)
307 {
308 	spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
309 }
310 
311 static inline void _unlock_rx_hashtbl(struct bonding *bond)
312 {
313 	spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
314 }
315 
316 /* when an ARP REPLY is received from a client update its info
317  * in the rx_hashtbl
318  */
319 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
320 {
321 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
322 	struct rlb_client_info *client_info;
323 	u32 hash_index;
324 
325 	_lock_rx_hashtbl(bond);
326 
327 	hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
328 	client_info = &(bond_info->rx_hashtbl[hash_index]);
329 
330 	if ((client_info->assigned) &&
331 	    (client_info->ip_src == arp->ip_dst) &&
332 	    (client_info->ip_dst == arp->ip_src)) {
333 		/* update the clients MAC address */
334 		memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
335 		client_info->ntt = 1;
336 		bond_info->rx_ntt = 1;
337 	}
338 
339 	_unlock_rx_hashtbl(bond);
340 }
341 
342 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
343 {
344 	struct bonding *bond = bond_dev->priv;
345 	struct arp_pkt *arp = (struct arp_pkt *)skb->data;
346 	int res = NET_RX_DROP;
347 
348 	if (bond_dev->nd_net != &init_net)
349 		goto out;
350 
351 	if (!(bond_dev->flags & IFF_MASTER))
352 		goto out;
353 
354 	if (!arp) {
355 		dprintk("Packet has no ARP data\n");
356 		goto out;
357 	}
358 
359 	if (skb->len < sizeof(struct arp_pkt)) {
360 		dprintk("Packet is too small to be an ARP\n");
361 		goto out;
362 	}
363 
364 	if (arp->op_code == htons(ARPOP_REPLY)) {
365 		/* update rx hash table for this ARP */
366 		rlb_update_entry_from_arp(bond, arp);
367 		dprintk("Server received an ARP Reply from client\n");
368 	}
369 
370 	res = NET_RX_SUCCESS;
371 
372 out:
373 	dev_kfree_skb(skb);
374 
375 	return res;
376 }
377 
378 /* Caller must hold bond lock for read */
379 static struct slave *rlb_next_rx_slave(struct bonding *bond)
380 {
381 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
382 	struct slave *rx_slave, *slave, *start_at;
383 	int i = 0;
384 
385 	if (bond_info->next_rx_slave) {
386 		start_at = bond_info->next_rx_slave;
387 	} else {
388 		start_at = bond->first_slave;
389 	}
390 
391 	rx_slave = NULL;
392 
393 	bond_for_each_slave_from(bond, slave, i, start_at) {
394 		if (SLAVE_IS_OK(slave)) {
395 			if (!rx_slave) {
396 				rx_slave = slave;
397 			} else if (slave->speed > rx_slave->speed) {
398 				rx_slave = slave;
399 			}
400 		}
401 	}
402 
403 	if (rx_slave) {
404 		bond_info->next_rx_slave = rx_slave->next;
405 	}
406 
407 	return rx_slave;
408 }
409 
410 /* teach the switch the mac of a disabled slave
411  * on the primary for fault tolerance
412  *
413  * Caller must hold bond->curr_slave_lock for write or bond lock for write
414  */
415 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
416 {
417 	if (!bond->curr_active_slave) {
418 		return;
419 	}
420 
421 	if (!bond->alb_info.primary_is_promisc) {
422 		bond->alb_info.primary_is_promisc = 1;
423 		dev_set_promiscuity(bond->curr_active_slave->dev, 1);
424 	}
425 
426 	bond->alb_info.rlb_promisc_timeout_counter = 0;
427 
428 	alb_send_learning_packets(bond->curr_active_slave, addr);
429 }
430 
431 /* slave being removed should not be active at this point
432  *
433  * Caller must hold bond lock for read
434  */
435 static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
436 {
437 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
438 	struct rlb_client_info *rx_hash_table;
439 	u32 index, next_index;
440 
441 	/* clear slave from rx_hashtbl */
442 	_lock_rx_hashtbl(bond);
443 
444 	rx_hash_table = bond_info->rx_hashtbl;
445 	index = bond_info->rx_hashtbl_head;
446 	for (; index != RLB_NULL_INDEX; index = next_index) {
447 		next_index = rx_hash_table[index].next;
448 		if (rx_hash_table[index].slave == slave) {
449 			struct slave *assigned_slave = rlb_next_rx_slave(bond);
450 
451 			if (assigned_slave) {
452 				rx_hash_table[index].slave = assigned_slave;
453 				if (memcmp(rx_hash_table[index].mac_dst,
454 					   mac_bcast, ETH_ALEN)) {
455 					bond_info->rx_hashtbl[index].ntt = 1;
456 					bond_info->rx_ntt = 1;
457 					/* A slave has been removed from the
458 					 * table because it is either disabled
459 					 * or being released. We must retry the
460 					 * update to avoid clients from not
461 					 * being updated & disconnecting when
462 					 * there is stress
463 					 */
464 					bond_info->rlb_update_retry_counter =
465 						RLB_UPDATE_RETRY;
466 				}
467 			} else {  /* there is no active slave */
468 				rx_hash_table[index].slave = NULL;
469 			}
470 		}
471 	}
472 
473 	_unlock_rx_hashtbl(bond);
474 
475 	write_lock_bh(&bond->curr_slave_lock);
476 
477 	if (slave != bond->curr_active_slave) {
478 		rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
479 	}
480 
481 	write_unlock_bh(&bond->curr_slave_lock);
482 }
483 
484 static void rlb_update_client(struct rlb_client_info *client_info)
485 {
486 	int i;
487 
488 	if (!client_info->slave) {
489 		return;
490 	}
491 
492 	for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
493 		struct sk_buff *skb;
494 
495 		skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
496 				 client_info->ip_dst,
497 				 client_info->slave->dev,
498 				 client_info->ip_src,
499 				 client_info->mac_dst,
500 				 client_info->slave->dev->dev_addr,
501 				 client_info->mac_dst);
502 		if (!skb) {
503 			printk(KERN_ERR DRV_NAME
504 			       ": %s: Error: failed to create an ARP packet\n",
505 			       client_info->slave->dev->master->name);
506 			continue;
507 		}
508 
509 		skb->dev = client_info->slave->dev;
510 
511 		if (client_info->tag) {
512 			skb = vlan_put_tag(skb, client_info->vlan_id);
513 			if (!skb) {
514 				printk(KERN_ERR DRV_NAME
515 				       ": %s: Error: failed to insert VLAN tag\n",
516 				       client_info->slave->dev->master->name);
517 				continue;
518 			}
519 		}
520 
521 		arp_xmit(skb);
522 	}
523 }
524 
525 /* sends ARP REPLIES that update the clients that need updating */
526 static void rlb_update_rx_clients(struct bonding *bond)
527 {
528 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
529 	struct rlb_client_info *client_info;
530 	u32 hash_index;
531 
532 	_lock_rx_hashtbl(bond);
533 
534 	hash_index = bond_info->rx_hashtbl_head;
535 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
536 		client_info = &(bond_info->rx_hashtbl[hash_index]);
537 		if (client_info->ntt) {
538 			rlb_update_client(client_info);
539 			if (bond_info->rlb_update_retry_counter == 0) {
540 				client_info->ntt = 0;
541 			}
542 		}
543 	}
544 
545 	/* do not update the entries again untill this counter is zero so that
546 	 * not to confuse the clients.
547 	 */
548 	bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
549 
550 	_unlock_rx_hashtbl(bond);
551 }
552 
553 /* The slave was assigned a new mac address - update the clients */
554 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
555 {
556 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
557 	struct rlb_client_info *client_info;
558 	int ntt = 0;
559 	u32 hash_index;
560 
561 	_lock_rx_hashtbl(bond);
562 
563 	hash_index = bond_info->rx_hashtbl_head;
564 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
565 		client_info = &(bond_info->rx_hashtbl[hash_index]);
566 
567 		if ((client_info->slave == slave) &&
568 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
569 			client_info->ntt = 1;
570 			ntt = 1;
571 		}
572 	}
573 
574 	// update the team's flag only after the whole iteration
575 	if (ntt) {
576 		bond_info->rx_ntt = 1;
577 		//fasten the change
578 		bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
579 	}
580 
581 	_unlock_rx_hashtbl(bond);
582 }
583 
584 /* mark all clients using src_ip to be updated */
585 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
586 {
587 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
588 	struct rlb_client_info *client_info;
589 	u32 hash_index;
590 
591 	_lock_rx_hashtbl(bond);
592 
593 	hash_index = bond_info->rx_hashtbl_head;
594 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
595 		client_info = &(bond_info->rx_hashtbl[hash_index]);
596 
597 		if (!client_info->slave) {
598 			printk(KERN_ERR DRV_NAME
599 			       ": %s: Error: found a client with no channel in "
600 			       "the client's hash table\n",
601 			       bond->dev->name);
602 			continue;
603 		}
604 		/*update all clients using this src_ip, that are not assigned
605 		 * to the team's address (curr_active_slave) and have a known
606 		 * unicast mac address.
607 		 */
608 		if ((client_info->ip_src == src_ip) &&
609 		    memcmp(client_info->slave->dev->dev_addr,
610 			   bond->dev->dev_addr, ETH_ALEN) &&
611 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
612 			client_info->ntt = 1;
613 			bond_info->rx_ntt = 1;
614 		}
615 	}
616 
617 	_unlock_rx_hashtbl(bond);
618 }
619 
620 /* Caller must hold both bond and ptr locks for read */
621 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
622 {
623 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
624 	struct arp_pkt *arp = arp_pkt(skb);
625 	struct slave *assigned_slave;
626 	struct rlb_client_info *client_info;
627 	u32 hash_index = 0;
628 
629 	_lock_rx_hashtbl(bond);
630 
631 	hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
632 	client_info = &(bond_info->rx_hashtbl[hash_index]);
633 
634 	if (client_info->assigned) {
635 		if ((client_info->ip_src == arp->ip_src) &&
636 		    (client_info->ip_dst == arp->ip_dst)) {
637 			/* the entry is already assigned to this client */
638 			if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
639 				/* update mac address from arp */
640 				memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
641 			}
642 
643 			assigned_slave = client_info->slave;
644 			if (assigned_slave) {
645 				_unlock_rx_hashtbl(bond);
646 				return assigned_slave;
647 			}
648 		} else {
649 			/* the entry is already assigned to some other client,
650 			 * move the old client to primary (curr_active_slave) so
651 			 * that the new client can be assigned to this entry.
652 			 */
653 			if (bond->curr_active_slave &&
654 			    client_info->slave != bond->curr_active_slave) {
655 				client_info->slave = bond->curr_active_slave;
656 				rlb_update_client(client_info);
657 			}
658 		}
659 	}
660 	/* assign a new slave */
661 	assigned_slave = rlb_next_rx_slave(bond);
662 
663 	if (assigned_slave) {
664 		client_info->ip_src = arp->ip_src;
665 		client_info->ip_dst = arp->ip_dst;
666 		/* arp->mac_dst is broadcast for arp reqeusts.
667 		 * will be updated with clients actual unicast mac address
668 		 * upon receiving an arp reply.
669 		 */
670 		memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
671 		client_info->slave = assigned_slave;
672 
673 		if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
674 			client_info->ntt = 1;
675 			bond->alb_info.rx_ntt = 1;
676 		} else {
677 			client_info->ntt = 0;
678 		}
679 
680 		if (!list_empty(&bond->vlan_list)) {
681 			if (!vlan_get_tag(skb, &client_info->vlan_id))
682 				client_info->tag = 1;
683 		}
684 
685 		if (!client_info->assigned) {
686 			u32 prev_tbl_head = bond_info->rx_hashtbl_head;
687 			bond_info->rx_hashtbl_head = hash_index;
688 			client_info->next = prev_tbl_head;
689 			if (prev_tbl_head != RLB_NULL_INDEX) {
690 				bond_info->rx_hashtbl[prev_tbl_head].prev =
691 					hash_index;
692 			}
693 			client_info->assigned = 1;
694 		}
695 	}
696 
697 	_unlock_rx_hashtbl(bond);
698 
699 	return assigned_slave;
700 }
701 
702 /* chooses (and returns) transmit channel for arp reply
703  * does not choose channel for other arp types since they are
704  * sent on the curr_active_slave
705  */
706 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
707 {
708 	struct arp_pkt *arp = arp_pkt(skb);
709 	struct slave *tx_slave = NULL;
710 
711 	if (arp->op_code == __constant_htons(ARPOP_REPLY)) {
712 		/* the arp must be sent on the selected
713 		* rx channel
714 		*/
715 		tx_slave = rlb_choose_channel(skb, bond);
716 		if (tx_slave) {
717 			memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
718 		}
719 		dprintk("Server sent ARP Reply packet\n");
720 	} else if (arp->op_code == __constant_htons(ARPOP_REQUEST)) {
721 		/* Create an entry in the rx_hashtbl for this client as a
722 		 * place holder.
723 		 * When the arp reply is received the entry will be updated
724 		 * with the correct unicast address of the client.
725 		 */
726 		rlb_choose_channel(skb, bond);
727 
728 		/* The ARP relpy packets must be delayed so that
729 		 * they can cancel out the influence of the ARP request.
730 		 */
731 		bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
732 
733 		/* arp requests are broadcast and are sent on the primary
734 		 * the arp request will collapse all clients on the subnet to
735 		 * the primary slave. We must register these clients to be
736 		 * updated with their assigned mac.
737 		 */
738 		rlb_req_update_subnet_clients(bond, arp->ip_src);
739 		dprintk("Server sent ARP Request packet\n");
740 	}
741 
742 	return tx_slave;
743 }
744 
745 /* Caller must hold bond lock for read */
746 static void rlb_rebalance(struct bonding *bond)
747 {
748 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
749 	struct slave *assigned_slave;
750 	struct rlb_client_info *client_info;
751 	int ntt;
752 	u32 hash_index;
753 
754 	_lock_rx_hashtbl(bond);
755 
756 	ntt = 0;
757 	hash_index = bond_info->rx_hashtbl_head;
758 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
759 		client_info = &(bond_info->rx_hashtbl[hash_index]);
760 		assigned_slave = rlb_next_rx_slave(bond);
761 		if (assigned_slave && (client_info->slave != assigned_slave)) {
762 			client_info->slave = assigned_slave;
763 			client_info->ntt = 1;
764 			ntt = 1;
765 		}
766 	}
767 
768 	/* update the team's flag only after the whole iteration */
769 	if (ntt) {
770 		bond_info->rx_ntt = 1;
771 	}
772 	_unlock_rx_hashtbl(bond);
773 }
774 
775 /* Caller must hold rx_hashtbl lock */
776 static void rlb_init_table_entry(struct rlb_client_info *entry)
777 {
778 	memset(entry, 0, sizeof(struct rlb_client_info));
779 	entry->next = RLB_NULL_INDEX;
780 	entry->prev = RLB_NULL_INDEX;
781 }
782 
783 static int rlb_initialize(struct bonding *bond)
784 {
785 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
786 	struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
787 	struct rlb_client_info	*new_hashtbl;
788 	int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
789 	int i;
790 
791 	spin_lock_init(&(bond_info->rx_hashtbl_lock));
792 
793 	new_hashtbl = kmalloc(size, GFP_KERNEL);
794 	if (!new_hashtbl) {
795 		printk(KERN_ERR DRV_NAME
796 		       ": %s: Error: Failed to allocate RLB hash table\n",
797 		       bond->dev->name);
798 		return -1;
799 	}
800 	_lock_rx_hashtbl(bond);
801 
802 	bond_info->rx_hashtbl = new_hashtbl;
803 
804 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
805 
806 	for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
807 		rlb_init_table_entry(bond_info->rx_hashtbl + i);
808 	}
809 
810 	_unlock_rx_hashtbl(bond);
811 
812 	/*initialize packet type*/
813 	pk_type->type = __constant_htons(ETH_P_ARP);
814 	pk_type->dev = bond->dev;
815 	pk_type->func = rlb_arp_recv;
816 
817 	/* register to receive ARPs */
818 	dev_add_pack(pk_type);
819 
820 	return 0;
821 }
822 
823 static void rlb_deinitialize(struct bonding *bond)
824 {
825 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
826 
827 	dev_remove_pack(&(bond_info->rlb_pkt_type));
828 
829 	_lock_rx_hashtbl(bond);
830 
831 	kfree(bond_info->rx_hashtbl);
832 	bond_info->rx_hashtbl = NULL;
833 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
834 
835 	_unlock_rx_hashtbl(bond);
836 }
837 
838 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
839 {
840 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
841 	u32 curr_index;
842 
843 	_lock_rx_hashtbl(bond);
844 
845 	curr_index = bond_info->rx_hashtbl_head;
846 	while (curr_index != RLB_NULL_INDEX) {
847 		struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
848 		u32 next_index = bond_info->rx_hashtbl[curr_index].next;
849 		u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
850 
851 		if (curr->tag && (curr->vlan_id == vlan_id)) {
852 			if (curr_index == bond_info->rx_hashtbl_head) {
853 				bond_info->rx_hashtbl_head = next_index;
854 			}
855 			if (prev_index != RLB_NULL_INDEX) {
856 				bond_info->rx_hashtbl[prev_index].next = next_index;
857 			}
858 			if (next_index != RLB_NULL_INDEX) {
859 				bond_info->rx_hashtbl[next_index].prev = prev_index;
860 			}
861 
862 			rlb_init_table_entry(curr);
863 		}
864 
865 		curr_index = next_index;
866 	}
867 
868 	_unlock_rx_hashtbl(bond);
869 }
870 
871 /*********************** tlb/rlb shared functions *********************/
872 
873 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
874 {
875 	struct bonding *bond = bond_get_bond_by_slave(slave);
876 	struct learning_pkt pkt;
877 	int size = sizeof(struct learning_pkt);
878 	int i;
879 
880 	memset(&pkt, 0, size);
881 	memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
882 	memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
883 	pkt.type = __constant_htons(ETH_P_LOOP);
884 
885 	for (i = 0; i < MAX_LP_BURST; i++) {
886 		struct sk_buff *skb;
887 		char *data;
888 
889 		skb = dev_alloc_skb(size);
890 		if (!skb) {
891 			return;
892 		}
893 
894 		data = skb_put(skb, size);
895 		memcpy(data, &pkt, size);
896 
897 		skb_reset_mac_header(skb);
898 		skb->network_header = skb->mac_header + ETH_HLEN;
899 		skb->protocol = pkt.type;
900 		skb->priority = TC_PRIO_CONTROL;
901 		skb->dev = slave->dev;
902 
903 		if (!list_empty(&bond->vlan_list)) {
904 			struct vlan_entry *vlan;
905 
906 			vlan = bond_next_vlan(bond,
907 					      bond->alb_info.current_alb_vlan);
908 
909 			bond->alb_info.current_alb_vlan = vlan;
910 			if (!vlan) {
911 				kfree_skb(skb);
912 				continue;
913 			}
914 
915 			skb = vlan_put_tag(skb, vlan->vlan_id);
916 			if (!skb) {
917 				printk(KERN_ERR DRV_NAME
918 				       ": %s: Error: failed to insert VLAN tag\n",
919 				       bond->dev->name);
920 				continue;
921 			}
922 		}
923 
924 		dev_queue_xmit(skb);
925 	}
926 }
927 
928 /* hw is a boolean parameter that determines whether we should try and
929  * set the hw address of the device as well as the hw address of the
930  * net_device
931  */
932 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
933 {
934 	struct net_device *dev = slave->dev;
935 	struct sockaddr s_addr;
936 
937 	if (!hw) {
938 		memcpy(dev->dev_addr, addr, dev->addr_len);
939 		return 0;
940 	}
941 
942 	/* for rlb each slave must have a unique hw mac addresses so that */
943 	/* each slave will receive packets destined to a different mac */
944 	memcpy(s_addr.sa_data, addr, dev->addr_len);
945 	s_addr.sa_family = dev->type;
946 	if (dev_set_mac_address(dev, &s_addr)) {
947 		printk(KERN_ERR DRV_NAME
948 		       ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
949 		       "mode requires that the base driver support setting "
950 		       "the hw address also when the network device's "
951 		       "interface is open\n",
952 		       dev->master->name, dev->name);
953 		return -EOPNOTSUPP;
954 	}
955 	return 0;
956 }
957 
958 /*
959  * Swap MAC addresses between two slaves.
960  *
961  * Called with RTNL held, and no other locks.
962  *
963  */
964 
965 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
966 {
967 	u8 tmp_mac_addr[ETH_ALEN];
968 
969 	memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
970 	alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
971 	alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
972 
973 }
974 
975 /*
976  * Send learning packets after MAC address swap.
977  *
978  * Called with RTNL and no other locks
979  */
980 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
981 				struct slave *slave2)
982 {
983 	int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
984 	struct slave *disabled_slave = NULL;
985 
986 	ASSERT_RTNL();
987 
988 	/* fasten the change in the switch */
989 	if (SLAVE_IS_OK(slave1)) {
990 		alb_send_learning_packets(slave1, slave1->dev->dev_addr);
991 		if (bond->alb_info.rlb_enabled) {
992 			/* inform the clients that the mac address
993 			 * has changed
994 			 */
995 			rlb_req_update_slave_clients(bond, slave1);
996 		}
997 	} else {
998 		disabled_slave = slave1;
999 	}
1000 
1001 	if (SLAVE_IS_OK(slave2)) {
1002 		alb_send_learning_packets(slave2, slave2->dev->dev_addr);
1003 		if (bond->alb_info.rlb_enabled) {
1004 			/* inform the clients that the mac address
1005 			 * has changed
1006 			 */
1007 			rlb_req_update_slave_clients(bond, slave2);
1008 		}
1009 	} else {
1010 		disabled_slave = slave2;
1011 	}
1012 
1013 	if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1014 		/* A disabled slave was assigned an active mac addr */
1015 		rlb_teach_disabled_mac_on_primary(bond,
1016 						  disabled_slave->dev->dev_addr);
1017 	}
1018 }
1019 
1020 /**
1021  * alb_change_hw_addr_on_detach
1022  * @bond: bonding we're working on
1023  * @slave: the slave that was just detached
1024  *
1025  * We assume that @slave was already detached from the slave list.
1026  *
1027  * If @slave's permanent hw address is different both from its current
1028  * address and from @bond's address, then somewhere in the bond there's
1029  * a slave that has @slave's permanet address as its current address.
1030  * We'll make sure that that slave no longer uses @slave's permanent address.
1031  *
1032  * Caller must hold RTNL and no other locks
1033  */
1034 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1035 {
1036 	int perm_curr_diff;
1037 	int perm_bond_diff;
1038 
1039 	perm_curr_diff = memcmp(slave->perm_hwaddr,
1040 				slave->dev->dev_addr,
1041 				ETH_ALEN);
1042 	perm_bond_diff = memcmp(slave->perm_hwaddr,
1043 				bond->dev->dev_addr,
1044 				ETH_ALEN);
1045 
1046 	if (perm_curr_diff && perm_bond_diff) {
1047 		struct slave *tmp_slave;
1048 		int i, found = 0;
1049 
1050 		bond_for_each_slave(bond, tmp_slave, i) {
1051 			if (!memcmp(slave->perm_hwaddr,
1052 				    tmp_slave->dev->dev_addr,
1053 				    ETH_ALEN)) {
1054 				found = 1;
1055 				break;
1056 			}
1057 		}
1058 
1059 		if (found) {
1060 			/* locking: needs RTNL and nothing else */
1061 			alb_swap_mac_addr(bond, slave, tmp_slave);
1062 			alb_fasten_mac_swap(bond, slave, tmp_slave);
1063 		}
1064 	}
1065 }
1066 
1067 /**
1068  * alb_handle_addr_collision_on_attach
1069  * @bond: bonding we're working on
1070  * @slave: the slave that was just attached
1071  *
1072  * checks uniqueness of slave's mac address and handles the case the
1073  * new slave uses the bonds mac address.
1074  *
1075  * If the permanent hw address of @slave is @bond's hw address, we need to
1076  * find a different hw address to give @slave, that isn't in use by any other
1077  * slave in the bond. This address must be, of course, one of the premanent
1078  * addresses of the other slaves.
1079  *
1080  * We go over the slave list, and for each slave there we compare its
1081  * permanent hw address with the current address of all the other slaves.
1082  * If no match was found, then we've found a slave with a permanent address
1083  * that isn't used by any other slave in the bond, so we can assign it to
1084  * @slave.
1085  *
1086  * assumption: this function is called before @slave is attached to the
1087  * 	       bond slave list.
1088  *
1089  * caller must hold the bond lock for write since the mac addresses are compared
1090  * and may be swapped.
1091  */
1092 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1093 {
1094 	struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1095 	struct slave *has_bond_addr = bond->curr_active_slave;
1096 	int i, j, found = 0;
1097 
1098 	if (bond->slave_cnt == 0) {
1099 		/* this is the first slave */
1100 		return 0;
1101 	}
1102 
1103 	/* if slave's mac address differs from bond's mac address
1104 	 * check uniqueness of slave's mac address against the other
1105 	 * slaves in the bond.
1106 	 */
1107 	if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1108 		bond_for_each_slave(bond, tmp_slave1, i) {
1109 			if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1110 				    ETH_ALEN)) {
1111 				found = 1;
1112 				break;
1113 			}
1114 		}
1115 
1116 		if (!found)
1117 			return 0;
1118 
1119 		/* Try setting slave mac to bond address and fall-through
1120 		   to code handling that situation below... */
1121 		alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1122 				       bond->alb_info.rlb_enabled);
1123 	}
1124 
1125 	/* The slave's address is equal to the address of the bond.
1126 	 * Search for a spare address in the bond for this slave.
1127 	 */
1128 	free_mac_slave = NULL;
1129 
1130 	bond_for_each_slave(bond, tmp_slave1, i) {
1131 		found = 0;
1132 		bond_for_each_slave(bond, tmp_slave2, j) {
1133 			if (!memcmp(tmp_slave1->perm_hwaddr,
1134 				    tmp_slave2->dev->dev_addr,
1135 				    ETH_ALEN)) {
1136 				found = 1;
1137 				break;
1138 			}
1139 		}
1140 
1141 		if (!found) {
1142 			/* no slave has tmp_slave1's perm addr
1143 			 * as its curr addr
1144 			 */
1145 			free_mac_slave = tmp_slave1;
1146 			break;
1147 		}
1148 
1149 		if (!has_bond_addr) {
1150 			if (!memcmp(tmp_slave1->dev->dev_addr,
1151 				    bond->dev->dev_addr,
1152 				    ETH_ALEN)) {
1153 
1154 				has_bond_addr = tmp_slave1;
1155 			}
1156 		}
1157 	}
1158 
1159 	if (free_mac_slave) {
1160 		alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1161 				       bond->alb_info.rlb_enabled);
1162 
1163 		printk(KERN_WARNING DRV_NAME
1164 		       ": %s: Warning: the hw address of slave %s is in use by "
1165 		       "the bond; giving it the hw address of %s\n",
1166 		       bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1167 
1168 	} else if (has_bond_addr) {
1169 		printk(KERN_ERR DRV_NAME
1170 		       ": %s: Error: the hw address of slave %s is in use by the "
1171 		       "bond; couldn't find a slave with a free hw address to "
1172 		       "give it (this should not have happened)\n",
1173 		       bond->dev->name, slave->dev->name);
1174 		return -EFAULT;
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 /**
1181  * alb_set_mac_address
1182  * @bond:
1183  * @addr:
1184  *
1185  * In TLB mode all slaves are configured to the bond's hw address, but set
1186  * their dev_addr field to different addresses (based on their permanent hw
1187  * addresses).
1188  *
1189  * For each slave, this function sets the interface to the new address and then
1190  * changes its dev_addr field to its previous value.
1191  *
1192  * Unwinding assumes bond's mac address has not yet changed.
1193  */
1194 static int alb_set_mac_address(struct bonding *bond, void *addr)
1195 {
1196 	struct sockaddr sa;
1197 	struct slave *slave, *stop_at;
1198 	char tmp_addr[ETH_ALEN];
1199 	int res;
1200 	int i;
1201 
1202 	if (bond->alb_info.rlb_enabled) {
1203 		return 0;
1204 	}
1205 
1206 	bond_for_each_slave(bond, slave, i) {
1207 		if (slave->dev->set_mac_address == NULL) {
1208 			res = -EOPNOTSUPP;
1209 			goto unwind;
1210 		}
1211 
1212 		/* save net_device's current hw address */
1213 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1214 
1215 		res = dev_set_mac_address(slave->dev, addr);
1216 
1217 		/* restore net_device's hw address */
1218 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1219 
1220 		if (res) {
1221 			goto unwind;
1222 		}
1223 	}
1224 
1225 	return 0;
1226 
1227 unwind:
1228 	memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1229 	sa.sa_family = bond->dev->type;
1230 
1231 	/* unwind from head to the slave that failed */
1232 	stop_at = slave;
1233 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1234 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1235 		dev_set_mac_address(slave->dev, &sa);
1236 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1237 	}
1238 
1239 	return res;
1240 }
1241 
1242 /************************ exported alb funcions ************************/
1243 
1244 int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1245 {
1246 	int res;
1247 
1248 	res = tlb_initialize(bond);
1249 	if (res) {
1250 		return res;
1251 	}
1252 
1253 	if (rlb_enabled) {
1254 		bond->alb_info.rlb_enabled = 1;
1255 		/* initialize rlb */
1256 		res = rlb_initialize(bond);
1257 		if (res) {
1258 			tlb_deinitialize(bond);
1259 			return res;
1260 		}
1261 	} else {
1262 		bond->alb_info.rlb_enabled = 0;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 void bond_alb_deinitialize(struct bonding *bond)
1269 {
1270 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1271 
1272 	tlb_deinitialize(bond);
1273 
1274 	if (bond_info->rlb_enabled) {
1275 		rlb_deinitialize(bond);
1276 	}
1277 }
1278 
1279 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1280 {
1281 	struct bonding *bond = bond_dev->priv;
1282 	struct ethhdr *eth_data;
1283 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1284 	struct slave *tx_slave = NULL;
1285 	static const __be32 ip_bcast = htonl(0xffffffff);
1286 	int hash_size = 0;
1287 	int do_tx_balance = 1;
1288 	u32 hash_index = 0;
1289 	const u8 *hash_start = NULL;
1290 	int res = 1;
1291 
1292 	skb_reset_mac_header(skb);
1293 	eth_data = eth_hdr(skb);
1294 
1295 	/* make sure that the curr_active_slave and the slaves list do
1296 	 * not change during tx
1297 	 */
1298 	read_lock(&bond->lock);
1299 	read_lock(&bond->curr_slave_lock);
1300 
1301 	if (!BOND_IS_OK(bond)) {
1302 		goto out;
1303 	}
1304 
1305 	switch (ntohs(skb->protocol)) {
1306 	case ETH_P_IP: {
1307 		const struct iphdr *iph = ip_hdr(skb);
1308 
1309 		if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1310 		    (iph->daddr == ip_bcast) ||
1311 		    (iph->protocol == IPPROTO_IGMP)) {
1312 			do_tx_balance = 0;
1313 			break;
1314 		}
1315 		hash_start = (char *)&(iph->daddr);
1316 		hash_size = sizeof(iph->daddr);
1317 	}
1318 		break;
1319 	case ETH_P_IPV6:
1320 		if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1321 			do_tx_balance = 0;
1322 			break;
1323 		}
1324 
1325 		hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1326 		hash_size = sizeof(ipv6_hdr(skb)->daddr);
1327 		break;
1328 	case ETH_P_IPX:
1329 		if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1330 			/* something is wrong with this packet */
1331 			do_tx_balance = 0;
1332 			break;
1333 		}
1334 
1335 		if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1336 			/* The only protocol worth balancing in
1337 			 * this family since it has an "ARP" like
1338 			 * mechanism
1339 			 */
1340 			do_tx_balance = 0;
1341 			break;
1342 		}
1343 
1344 		hash_start = (char*)eth_data->h_dest;
1345 		hash_size = ETH_ALEN;
1346 		break;
1347 	case ETH_P_ARP:
1348 		do_tx_balance = 0;
1349 		if (bond_info->rlb_enabled) {
1350 			tx_slave = rlb_arp_xmit(skb, bond);
1351 		}
1352 		break;
1353 	default:
1354 		do_tx_balance = 0;
1355 		break;
1356 	}
1357 
1358 	if (do_tx_balance) {
1359 		hash_index = _simple_hash(hash_start, hash_size);
1360 		tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1361 	}
1362 
1363 	if (!tx_slave) {
1364 		/* unbalanced or unassigned, send through primary */
1365 		tx_slave = bond->curr_active_slave;
1366 		bond_info->unbalanced_load += skb->len;
1367 	}
1368 
1369 	if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1370 		if (tx_slave != bond->curr_active_slave) {
1371 			memcpy(eth_data->h_source,
1372 			       tx_slave->dev->dev_addr,
1373 			       ETH_ALEN);
1374 		}
1375 
1376 		res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1377 	} else {
1378 		if (tx_slave) {
1379 			tlb_clear_slave(bond, tx_slave, 0);
1380 		}
1381 	}
1382 
1383 out:
1384 	if (res) {
1385 		/* no suitable interface, frame not sent */
1386 		dev_kfree_skb(skb);
1387 	}
1388 	read_unlock(&bond->curr_slave_lock);
1389 	read_unlock(&bond->lock);
1390 	return 0;
1391 }
1392 
1393 void bond_alb_monitor(struct work_struct *work)
1394 {
1395 	struct bonding *bond = container_of(work, struct bonding,
1396 					    alb_work.work);
1397 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1398 	struct slave *slave;
1399 	int i;
1400 
1401 	read_lock(&bond->lock);
1402 
1403 	if (bond->kill_timers) {
1404 		goto out;
1405 	}
1406 
1407 	if (bond->slave_cnt == 0) {
1408 		bond_info->tx_rebalance_counter = 0;
1409 		bond_info->lp_counter = 0;
1410 		goto re_arm;
1411 	}
1412 
1413 	bond_info->tx_rebalance_counter++;
1414 	bond_info->lp_counter++;
1415 
1416 	/* send learning packets */
1417 	if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1418 		/* change of curr_active_slave involves swapping of mac addresses.
1419 		 * in order to avoid this swapping from happening while
1420 		 * sending the learning packets, the curr_slave_lock must be held for
1421 		 * read.
1422 		 */
1423 		read_lock(&bond->curr_slave_lock);
1424 
1425 		bond_for_each_slave(bond, slave, i) {
1426 			alb_send_learning_packets(slave, slave->dev->dev_addr);
1427 		}
1428 
1429 		read_unlock(&bond->curr_slave_lock);
1430 
1431 		bond_info->lp_counter = 0;
1432 	}
1433 
1434 	/* rebalance tx traffic */
1435 	if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1436 
1437 		read_lock(&bond->curr_slave_lock);
1438 
1439 		bond_for_each_slave(bond, slave, i) {
1440 			tlb_clear_slave(bond, slave, 1);
1441 			if (slave == bond->curr_active_slave) {
1442 				SLAVE_TLB_INFO(slave).load =
1443 					bond_info->unbalanced_load /
1444 						BOND_TLB_REBALANCE_INTERVAL;
1445 				bond_info->unbalanced_load = 0;
1446 			}
1447 		}
1448 
1449 		read_unlock(&bond->curr_slave_lock);
1450 
1451 		bond_info->tx_rebalance_counter = 0;
1452 	}
1453 
1454 	/* handle rlb stuff */
1455 	if (bond_info->rlb_enabled) {
1456 		if (bond_info->primary_is_promisc &&
1457 		    (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1458 
1459 			/*
1460 			 * dev_set_promiscuity requires rtnl and
1461 			 * nothing else.
1462 			 */
1463 			read_unlock(&bond->lock);
1464 			rtnl_lock();
1465 
1466 			bond_info->rlb_promisc_timeout_counter = 0;
1467 
1468 			/* If the primary was set to promiscuous mode
1469 			 * because a slave was disabled then
1470 			 * it can now leave promiscuous mode.
1471 			 */
1472 			dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1473 			bond_info->primary_is_promisc = 0;
1474 
1475 			rtnl_unlock();
1476 			read_lock(&bond->lock);
1477 		}
1478 
1479 		if (bond_info->rlb_rebalance) {
1480 			bond_info->rlb_rebalance = 0;
1481 			rlb_rebalance(bond);
1482 		}
1483 
1484 		/* check if clients need updating */
1485 		if (bond_info->rx_ntt) {
1486 			if (bond_info->rlb_update_delay_counter) {
1487 				--bond_info->rlb_update_delay_counter;
1488 			} else {
1489 				rlb_update_rx_clients(bond);
1490 				if (bond_info->rlb_update_retry_counter) {
1491 					--bond_info->rlb_update_retry_counter;
1492 				} else {
1493 					bond_info->rx_ntt = 0;
1494 				}
1495 			}
1496 		}
1497 	}
1498 
1499 re_arm:
1500 	queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1501 out:
1502 	read_unlock(&bond->lock);
1503 }
1504 
1505 /* assumption: called before the slave is attached to the bond
1506  * and not locked by the bond lock
1507  */
1508 int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1509 {
1510 	int res;
1511 
1512 	res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1513 				     bond->alb_info.rlb_enabled);
1514 	if (res) {
1515 		return res;
1516 	}
1517 
1518 	/* caller must hold the bond lock for write since the mac addresses
1519 	 * are compared and may be swapped.
1520 	 */
1521 	read_lock(&bond->lock);
1522 
1523 	res = alb_handle_addr_collision_on_attach(bond, slave);
1524 
1525 	read_unlock(&bond->lock);
1526 
1527 	if (res) {
1528 		return res;
1529 	}
1530 
1531 	tlb_init_slave(slave);
1532 
1533 	/* order a rebalance ASAP */
1534 	bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1535 
1536 	if (bond->alb_info.rlb_enabled) {
1537 		bond->alb_info.rlb_rebalance = 1;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1545  * if necessary.
1546  *
1547  * Caller must hold RTNL and no other locks
1548  */
1549 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1550 {
1551 	if (bond->slave_cnt > 1) {
1552 		alb_change_hw_addr_on_detach(bond, slave);
1553 	}
1554 
1555 	tlb_clear_slave(bond, slave, 0);
1556 
1557 	if (bond->alb_info.rlb_enabled) {
1558 		bond->alb_info.next_rx_slave = NULL;
1559 		rlb_clear_slave(bond, slave);
1560 	}
1561 }
1562 
1563 /* Caller must hold bond lock for read */
1564 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1565 {
1566 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1567 
1568 	if (link == BOND_LINK_DOWN) {
1569 		tlb_clear_slave(bond, slave, 0);
1570 		if (bond->alb_info.rlb_enabled) {
1571 			rlb_clear_slave(bond, slave);
1572 		}
1573 	} else if (link == BOND_LINK_UP) {
1574 		/* order a rebalance ASAP */
1575 		bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1576 		if (bond->alb_info.rlb_enabled) {
1577 			bond->alb_info.rlb_rebalance = 1;
1578 			/* If the updelay module parameter is smaller than the
1579 			 * forwarding delay of the switch the rebalance will
1580 			 * not work because the rebalance arp replies will
1581 			 * not be forwarded to the clients..
1582 			 */
1583 		}
1584 	}
1585 }
1586 
1587 /**
1588  * bond_alb_handle_active_change - assign new curr_active_slave
1589  * @bond: our bonding struct
1590  * @new_slave: new slave to assign
1591  *
1592  * Set the bond->curr_active_slave to @new_slave and handle
1593  * mac address swapping and promiscuity changes as needed.
1594  *
1595  * If new_slave is NULL, caller must hold curr_slave_lock or
1596  * bond->lock for write.
1597  *
1598  * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1599  * read and curr_slave_lock for write.  Processing here may sleep, so
1600  * no other locks may be held.
1601  */
1602 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1603 {
1604 	struct slave *swap_slave;
1605 	int i;
1606 
1607 	if (bond->curr_active_slave == new_slave) {
1608 		return;
1609 	}
1610 
1611 	if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1612 		dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1613 		bond->alb_info.primary_is_promisc = 0;
1614 		bond->alb_info.rlb_promisc_timeout_counter = 0;
1615 	}
1616 
1617 	swap_slave = bond->curr_active_slave;
1618 	bond->curr_active_slave = new_slave;
1619 
1620 	if (!new_slave || (bond->slave_cnt == 0)) {
1621 		return;
1622 	}
1623 
1624 	/* set the new curr_active_slave to the bonds mac address
1625 	 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1626 	 */
1627 	if (!swap_slave) {
1628 		struct slave *tmp_slave;
1629 		/* find slave that is holding the bond's mac address */
1630 		bond_for_each_slave(bond, tmp_slave, i) {
1631 			if (!memcmp(tmp_slave->dev->dev_addr,
1632 				    bond->dev->dev_addr, ETH_ALEN)) {
1633 				swap_slave = tmp_slave;
1634 				break;
1635 			}
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * Arrange for swap_slave and new_slave to temporarily be
1641 	 * ignored so we can mess with their MAC addresses without
1642 	 * fear of interference from transmit activity.
1643 	 */
1644 	if (swap_slave) {
1645 		tlb_clear_slave(bond, swap_slave, 1);
1646 	}
1647 	tlb_clear_slave(bond, new_slave, 1);
1648 
1649 	write_unlock_bh(&bond->curr_slave_lock);
1650 	read_unlock(&bond->lock);
1651 
1652 	ASSERT_RTNL();
1653 
1654 	/* curr_active_slave must be set before calling alb_swap_mac_addr */
1655 	if (swap_slave) {
1656 		/* swap mac address */
1657 		alb_swap_mac_addr(bond, swap_slave, new_slave);
1658 	} else {
1659 		/* set the new_slave to the bond mac address */
1660 		alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1661 				       bond->alb_info.rlb_enabled);
1662 	}
1663 
1664 	if (swap_slave) {
1665 		alb_fasten_mac_swap(bond, swap_slave, new_slave);
1666 		read_lock(&bond->lock);
1667 	} else {
1668 		read_lock(&bond->lock);
1669 		alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1670 	}
1671 
1672 	write_lock_bh(&bond->curr_slave_lock);
1673 }
1674 
1675 /*
1676  * Called with RTNL
1677  */
1678 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1679 {
1680 	struct bonding *bond = bond_dev->priv;
1681 	struct sockaddr *sa = addr;
1682 	struct slave *slave, *swap_slave;
1683 	int res;
1684 	int i;
1685 
1686 	if (!is_valid_ether_addr(sa->sa_data)) {
1687 		return -EADDRNOTAVAIL;
1688 	}
1689 
1690 	res = alb_set_mac_address(bond, addr);
1691 	if (res) {
1692 		return res;
1693 	}
1694 
1695 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1696 
1697 	/* If there is no curr_active_slave there is nothing else to do.
1698 	 * Otherwise we'll need to pass the new address to it and handle
1699 	 * duplications.
1700 	 */
1701 	if (!bond->curr_active_slave) {
1702 		return 0;
1703 	}
1704 
1705 	swap_slave = NULL;
1706 
1707 	bond_for_each_slave(bond, slave, i) {
1708 		if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1709 			swap_slave = slave;
1710 			break;
1711 		}
1712 	}
1713 
1714 	write_unlock_bh(&bond->curr_slave_lock);
1715 	read_unlock(&bond->lock);
1716 
1717 	if (swap_slave) {
1718 		alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1719 		alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1720 	} else {
1721 		alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1722 				       bond->alb_info.rlb_enabled);
1723 
1724 		alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1725 		if (bond->alb_info.rlb_enabled) {
1726 			/* inform clients mac address has changed */
1727 			rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1728 		}
1729 	}
1730 
1731 	read_lock(&bond->lock);
1732 	write_lock_bh(&bond->curr_slave_lock);
1733 
1734 	return 0;
1735 }
1736 
1737 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1738 {
1739 	if (bond->alb_info.current_alb_vlan &&
1740 	    (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1741 		bond->alb_info.current_alb_vlan = NULL;
1742 	}
1743 
1744 	if (bond->alb_info.rlb_enabled) {
1745 		rlb_clear_vlan(bond, vlan_id);
1746 	}
1747 }
1748 
1749