xref: /openbmc/linux/drivers/net/bonding/bond_alb.c (revision 9ac8d3fb)
1 /*
2  * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License along
15  * with this program; if not, write to the Free Software Foundation, Inc.,
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  */
22 
23 //#define BONDING_DEBUG 1
24 
25 #include <linux/skbuff.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/pkt_sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/ip.h>
33 #include <linux/ipv6.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/if_bonding.h>
37 #include <linux/if_vlan.h>
38 #include <linux/in.h>
39 #include <net/ipx.h>
40 #include <net/arp.h>
41 #include <net/ipv6.h>
42 #include <asm/byteorder.h>
43 #include "bonding.h"
44 #include "bond_alb.h"
45 
46 
47 #define ALB_TIMER_TICKS_PER_SEC	    10	/* should be a divisor of HZ */
48 #define BOND_TLB_REBALANCE_INTERVAL 10	/* In seconds, periodic re-balancing.
49 					 * Used for division - never set
50 					 * to zero !!!
51 					 */
52 #define BOND_ALB_LP_INTERVAL	    1	/* In seconds, periodic send of
53 					 * learning packets to the switch
54 					 */
55 
56 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
57 				  * ALB_TIMER_TICKS_PER_SEC)
58 
59 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
60 			   * ALB_TIMER_TICKS_PER_SEC)
61 
62 #define TLB_HASH_TABLE_SIZE 256	/* The size of the clients hash table.
63 				 * Note that this value MUST NOT be smaller
64 				 * because the key hash table is BYTE wide !
65 				 */
66 
67 
68 #define TLB_NULL_INDEX		0xffffffff
69 #define MAX_LP_BURST		3
70 
71 /* rlb defs */
72 #define RLB_HASH_TABLE_SIZE	256
73 #define RLB_NULL_INDEX		0xffffffff
74 #define RLB_UPDATE_DELAY	2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
75 #define RLB_ARP_BURST_SIZE	2
76 #define RLB_UPDATE_RETRY	3	/* 3-ticks - must be smaller than the rlb
77 					 * rebalance interval (5 min).
78 					 */
79 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
80  * promiscuous after failover
81  */
82 #define RLB_PROMISC_TIMEOUT	10*ALB_TIMER_TICKS_PER_SEC
83 
84 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
85 static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01};
86 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
87 
88 #pragma pack(1)
89 struct learning_pkt {
90 	u8 mac_dst[ETH_ALEN];
91 	u8 mac_src[ETH_ALEN];
92 	__be16 type;
93 	u8 padding[ETH_ZLEN - ETH_HLEN];
94 };
95 
96 struct arp_pkt {
97 	__be16  hw_addr_space;
98 	__be16  prot_addr_space;
99 	u8      hw_addr_len;
100 	u8      prot_addr_len;
101 	__be16  op_code;
102 	u8      mac_src[ETH_ALEN];	/* sender hardware address */
103 	__be32  ip_src;			/* sender IP address */
104 	u8      mac_dst[ETH_ALEN];	/* target hardware address */
105 	__be32  ip_dst;			/* target IP address */
106 };
107 #pragma pack()
108 
109 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
110 {
111 	return (struct arp_pkt *)skb_network_header(skb);
112 }
113 
114 /* Forward declaration */
115 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
116 
117 static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
118 {
119 	int i;
120 	u8 hash = 0;
121 
122 	for (i = 0; i < hash_size; i++) {
123 		hash ^= hash_start[i];
124 	}
125 
126 	return hash;
127 }
128 
129 /*********************** tlb specific functions ***************************/
130 
131 static inline void _lock_tx_hashtbl(struct bonding *bond)
132 {
133 	spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
134 }
135 
136 static inline void _unlock_tx_hashtbl(struct bonding *bond)
137 {
138 	spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
139 }
140 
141 /* Caller must hold tx_hashtbl lock */
142 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
143 {
144 	if (save_load) {
145 		entry->load_history = 1 + entry->tx_bytes /
146 				      BOND_TLB_REBALANCE_INTERVAL;
147 		entry->tx_bytes = 0;
148 	}
149 
150 	entry->tx_slave = NULL;
151 	entry->next = TLB_NULL_INDEX;
152 	entry->prev = TLB_NULL_INDEX;
153 }
154 
155 static inline void tlb_init_slave(struct slave *slave)
156 {
157 	SLAVE_TLB_INFO(slave).load = 0;
158 	SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
159 }
160 
161 /* Caller must hold bond lock for read */
162 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
163 {
164 	struct tlb_client_info *tx_hash_table;
165 	u32 index;
166 
167 	_lock_tx_hashtbl(bond);
168 
169 	/* clear slave from tx_hashtbl */
170 	tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
171 
172 	/* skip this if we've already freed the tx hash table */
173 	if (tx_hash_table) {
174 		index = SLAVE_TLB_INFO(slave).head;
175 		while (index != TLB_NULL_INDEX) {
176 			u32 next_index = tx_hash_table[index].next;
177 			tlb_init_table_entry(&tx_hash_table[index], save_load);
178 			index = next_index;
179 		}
180 	}
181 
182 	tlb_init_slave(slave);
183 
184 	_unlock_tx_hashtbl(bond);
185 }
186 
187 /* Must be called before starting the monitor timer */
188 static int tlb_initialize(struct bonding *bond)
189 {
190 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
191 	int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
192 	struct tlb_client_info *new_hashtbl;
193 	int i;
194 
195 	spin_lock_init(&(bond_info->tx_hashtbl_lock));
196 
197 	new_hashtbl = kzalloc(size, GFP_KERNEL);
198 	if (!new_hashtbl) {
199 		printk(KERN_ERR DRV_NAME
200 		       ": %s: Error: Failed to allocate TLB hash table\n",
201 		       bond->dev->name);
202 		return -1;
203 	}
204 	_lock_tx_hashtbl(bond);
205 
206 	bond_info->tx_hashtbl = new_hashtbl;
207 
208 	for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
209 		tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
210 	}
211 
212 	_unlock_tx_hashtbl(bond);
213 
214 	return 0;
215 }
216 
217 /* Must be called only after all slaves have been released */
218 static void tlb_deinitialize(struct bonding *bond)
219 {
220 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
221 
222 	_lock_tx_hashtbl(bond);
223 
224 	kfree(bond_info->tx_hashtbl);
225 	bond_info->tx_hashtbl = NULL;
226 
227 	_unlock_tx_hashtbl(bond);
228 }
229 
230 /* Caller must hold bond lock for read */
231 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
232 {
233 	struct slave *slave, *least_loaded;
234 	s64 max_gap;
235 	int i, found = 0;
236 
237 	/* Find the first enabled slave */
238 	bond_for_each_slave(bond, slave, i) {
239 		if (SLAVE_IS_OK(slave)) {
240 			found = 1;
241 			break;
242 		}
243 	}
244 
245 	if (!found) {
246 		return NULL;
247 	}
248 
249 	least_loaded = slave;
250 	max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
251 			(s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
252 
253 	/* Find the slave with the largest gap */
254 	bond_for_each_slave_from(bond, slave, i, least_loaded) {
255 		if (SLAVE_IS_OK(slave)) {
256 			s64 gap = (s64)(slave->speed << 20) -
257 					(s64)(SLAVE_TLB_INFO(slave).load << 3);
258 			if (max_gap < gap) {
259 				least_loaded = slave;
260 				max_gap = gap;
261 			}
262 		}
263 	}
264 
265 	return least_loaded;
266 }
267 
268 /* Caller must hold bond lock for read */
269 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
270 {
271 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
272 	struct tlb_client_info *hash_table;
273 	struct slave *assigned_slave;
274 
275 	_lock_tx_hashtbl(bond);
276 
277 	hash_table = bond_info->tx_hashtbl;
278 	assigned_slave = hash_table[hash_index].tx_slave;
279 	if (!assigned_slave) {
280 		assigned_slave = tlb_get_least_loaded_slave(bond);
281 
282 		if (assigned_slave) {
283 			struct tlb_slave_info *slave_info =
284 				&(SLAVE_TLB_INFO(assigned_slave));
285 			u32 next_index = slave_info->head;
286 
287 			hash_table[hash_index].tx_slave = assigned_slave;
288 			hash_table[hash_index].next = next_index;
289 			hash_table[hash_index].prev = TLB_NULL_INDEX;
290 
291 			if (next_index != TLB_NULL_INDEX) {
292 				hash_table[next_index].prev = hash_index;
293 			}
294 
295 			slave_info->head = hash_index;
296 			slave_info->load +=
297 				hash_table[hash_index].load_history;
298 		}
299 	}
300 
301 	if (assigned_slave) {
302 		hash_table[hash_index].tx_bytes += skb_len;
303 	}
304 
305 	_unlock_tx_hashtbl(bond);
306 
307 	return assigned_slave;
308 }
309 
310 /*********************** rlb specific functions ***************************/
311 static inline void _lock_rx_hashtbl(struct bonding *bond)
312 {
313 	spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
314 }
315 
316 static inline void _unlock_rx_hashtbl(struct bonding *bond)
317 {
318 	spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
319 }
320 
321 /* when an ARP REPLY is received from a client update its info
322  * in the rx_hashtbl
323  */
324 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
325 {
326 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
327 	struct rlb_client_info *client_info;
328 	u32 hash_index;
329 
330 	_lock_rx_hashtbl(bond);
331 
332 	hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
333 	client_info = &(bond_info->rx_hashtbl[hash_index]);
334 
335 	if ((client_info->assigned) &&
336 	    (client_info->ip_src == arp->ip_dst) &&
337 	    (client_info->ip_dst == arp->ip_src)) {
338 		/* update the clients MAC address */
339 		memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
340 		client_info->ntt = 1;
341 		bond_info->rx_ntt = 1;
342 	}
343 
344 	_unlock_rx_hashtbl(bond);
345 }
346 
347 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
348 {
349 	struct bonding *bond = bond_dev->priv;
350 	struct arp_pkt *arp = (struct arp_pkt *)skb->data;
351 	int res = NET_RX_DROP;
352 
353 	if (dev_net(bond_dev) != &init_net)
354 		goto out;
355 
356 	if (!(bond_dev->flags & IFF_MASTER))
357 		goto out;
358 
359 	if (!arp) {
360 		dprintk("Packet has no ARP data\n");
361 		goto out;
362 	}
363 
364 	if (skb->len < sizeof(struct arp_pkt)) {
365 		dprintk("Packet is too small to be an ARP\n");
366 		goto out;
367 	}
368 
369 	if (arp->op_code == htons(ARPOP_REPLY)) {
370 		/* update rx hash table for this ARP */
371 		rlb_update_entry_from_arp(bond, arp);
372 		dprintk("Server received an ARP Reply from client\n");
373 	}
374 
375 	res = NET_RX_SUCCESS;
376 
377 out:
378 	dev_kfree_skb(skb);
379 
380 	return res;
381 }
382 
383 /* Caller must hold bond lock for read */
384 static struct slave *rlb_next_rx_slave(struct bonding *bond)
385 {
386 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
387 	struct slave *rx_slave, *slave, *start_at;
388 	int i = 0;
389 
390 	if (bond_info->next_rx_slave) {
391 		start_at = bond_info->next_rx_slave;
392 	} else {
393 		start_at = bond->first_slave;
394 	}
395 
396 	rx_slave = NULL;
397 
398 	bond_for_each_slave_from(bond, slave, i, start_at) {
399 		if (SLAVE_IS_OK(slave)) {
400 			if (!rx_slave) {
401 				rx_slave = slave;
402 			} else if (slave->speed > rx_slave->speed) {
403 				rx_slave = slave;
404 			}
405 		}
406 	}
407 
408 	if (rx_slave) {
409 		bond_info->next_rx_slave = rx_slave->next;
410 	}
411 
412 	return rx_slave;
413 }
414 
415 /* teach the switch the mac of a disabled slave
416  * on the primary for fault tolerance
417  *
418  * Caller must hold bond->curr_slave_lock for write or bond lock for write
419  */
420 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
421 {
422 	if (!bond->curr_active_slave) {
423 		return;
424 	}
425 
426 	if (!bond->alb_info.primary_is_promisc) {
427 		if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1))
428 			bond->alb_info.primary_is_promisc = 1;
429 		else
430 			bond->alb_info.primary_is_promisc = 0;
431 	}
432 
433 	bond->alb_info.rlb_promisc_timeout_counter = 0;
434 
435 	alb_send_learning_packets(bond->curr_active_slave, addr);
436 }
437 
438 /* slave being removed should not be active at this point
439  *
440  * Caller must hold bond lock for read
441  */
442 static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
443 {
444 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
445 	struct rlb_client_info *rx_hash_table;
446 	u32 index, next_index;
447 
448 	/* clear slave from rx_hashtbl */
449 	_lock_rx_hashtbl(bond);
450 
451 	rx_hash_table = bond_info->rx_hashtbl;
452 	index = bond_info->rx_hashtbl_head;
453 	for (; index != RLB_NULL_INDEX; index = next_index) {
454 		next_index = rx_hash_table[index].next;
455 		if (rx_hash_table[index].slave == slave) {
456 			struct slave *assigned_slave = rlb_next_rx_slave(bond);
457 
458 			if (assigned_slave) {
459 				rx_hash_table[index].slave = assigned_slave;
460 				if (memcmp(rx_hash_table[index].mac_dst,
461 					   mac_bcast, ETH_ALEN)) {
462 					bond_info->rx_hashtbl[index].ntt = 1;
463 					bond_info->rx_ntt = 1;
464 					/* A slave has been removed from the
465 					 * table because it is either disabled
466 					 * or being released. We must retry the
467 					 * update to avoid clients from not
468 					 * being updated & disconnecting when
469 					 * there is stress
470 					 */
471 					bond_info->rlb_update_retry_counter =
472 						RLB_UPDATE_RETRY;
473 				}
474 			} else {  /* there is no active slave */
475 				rx_hash_table[index].slave = NULL;
476 			}
477 		}
478 	}
479 
480 	_unlock_rx_hashtbl(bond);
481 
482 	write_lock_bh(&bond->curr_slave_lock);
483 
484 	if (slave != bond->curr_active_slave) {
485 		rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
486 	}
487 
488 	write_unlock_bh(&bond->curr_slave_lock);
489 }
490 
491 static void rlb_update_client(struct rlb_client_info *client_info)
492 {
493 	int i;
494 
495 	if (!client_info->slave) {
496 		return;
497 	}
498 
499 	for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
500 		struct sk_buff *skb;
501 
502 		skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
503 				 client_info->ip_dst,
504 				 client_info->slave->dev,
505 				 client_info->ip_src,
506 				 client_info->mac_dst,
507 				 client_info->slave->dev->dev_addr,
508 				 client_info->mac_dst);
509 		if (!skb) {
510 			printk(KERN_ERR DRV_NAME
511 			       ": %s: Error: failed to create an ARP packet\n",
512 			       client_info->slave->dev->master->name);
513 			continue;
514 		}
515 
516 		skb->dev = client_info->slave->dev;
517 
518 		if (client_info->tag) {
519 			skb = vlan_put_tag(skb, client_info->vlan_id);
520 			if (!skb) {
521 				printk(KERN_ERR DRV_NAME
522 				       ": %s: Error: failed to insert VLAN tag\n",
523 				       client_info->slave->dev->master->name);
524 				continue;
525 			}
526 		}
527 
528 		arp_xmit(skb);
529 	}
530 }
531 
532 /* sends ARP REPLIES that update the clients that need updating */
533 static void rlb_update_rx_clients(struct bonding *bond)
534 {
535 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
536 	struct rlb_client_info *client_info;
537 	u32 hash_index;
538 
539 	_lock_rx_hashtbl(bond);
540 
541 	hash_index = bond_info->rx_hashtbl_head;
542 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
543 		client_info = &(bond_info->rx_hashtbl[hash_index]);
544 		if (client_info->ntt) {
545 			rlb_update_client(client_info);
546 			if (bond_info->rlb_update_retry_counter == 0) {
547 				client_info->ntt = 0;
548 			}
549 		}
550 	}
551 
552 	/* do not update the entries again untill this counter is zero so that
553 	 * not to confuse the clients.
554 	 */
555 	bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
556 
557 	_unlock_rx_hashtbl(bond);
558 }
559 
560 /* The slave was assigned a new mac address - update the clients */
561 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
562 {
563 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
564 	struct rlb_client_info *client_info;
565 	int ntt = 0;
566 	u32 hash_index;
567 
568 	_lock_rx_hashtbl(bond);
569 
570 	hash_index = bond_info->rx_hashtbl_head;
571 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
572 		client_info = &(bond_info->rx_hashtbl[hash_index]);
573 
574 		if ((client_info->slave == slave) &&
575 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
576 			client_info->ntt = 1;
577 			ntt = 1;
578 		}
579 	}
580 
581 	// update the team's flag only after the whole iteration
582 	if (ntt) {
583 		bond_info->rx_ntt = 1;
584 		//fasten the change
585 		bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
586 	}
587 
588 	_unlock_rx_hashtbl(bond);
589 }
590 
591 /* mark all clients using src_ip to be updated */
592 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
593 {
594 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
595 	struct rlb_client_info *client_info;
596 	u32 hash_index;
597 
598 	_lock_rx_hashtbl(bond);
599 
600 	hash_index = bond_info->rx_hashtbl_head;
601 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
602 		client_info = &(bond_info->rx_hashtbl[hash_index]);
603 
604 		if (!client_info->slave) {
605 			printk(KERN_ERR DRV_NAME
606 			       ": %s: Error: found a client with no channel in "
607 			       "the client's hash table\n",
608 			       bond->dev->name);
609 			continue;
610 		}
611 		/*update all clients using this src_ip, that are not assigned
612 		 * to the team's address (curr_active_slave) and have a known
613 		 * unicast mac address.
614 		 */
615 		if ((client_info->ip_src == src_ip) &&
616 		    memcmp(client_info->slave->dev->dev_addr,
617 			   bond->dev->dev_addr, ETH_ALEN) &&
618 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
619 			client_info->ntt = 1;
620 			bond_info->rx_ntt = 1;
621 		}
622 	}
623 
624 	_unlock_rx_hashtbl(bond);
625 }
626 
627 /* Caller must hold both bond and ptr locks for read */
628 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
629 {
630 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
631 	struct arp_pkt *arp = arp_pkt(skb);
632 	struct slave *assigned_slave;
633 	struct rlb_client_info *client_info;
634 	u32 hash_index = 0;
635 
636 	_lock_rx_hashtbl(bond);
637 
638 	hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
639 	client_info = &(bond_info->rx_hashtbl[hash_index]);
640 
641 	if (client_info->assigned) {
642 		if ((client_info->ip_src == arp->ip_src) &&
643 		    (client_info->ip_dst == arp->ip_dst)) {
644 			/* the entry is already assigned to this client */
645 			if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
646 				/* update mac address from arp */
647 				memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
648 			}
649 
650 			assigned_slave = client_info->slave;
651 			if (assigned_slave) {
652 				_unlock_rx_hashtbl(bond);
653 				return assigned_slave;
654 			}
655 		} else {
656 			/* the entry is already assigned to some other client,
657 			 * move the old client to primary (curr_active_slave) so
658 			 * that the new client can be assigned to this entry.
659 			 */
660 			if (bond->curr_active_slave &&
661 			    client_info->slave != bond->curr_active_slave) {
662 				client_info->slave = bond->curr_active_slave;
663 				rlb_update_client(client_info);
664 			}
665 		}
666 	}
667 	/* assign a new slave */
668 	assigned_slave = rlb_next_rx_slave(bond);
669 
670 	if (assigned_slave) {
671 		client_info->ip_src = arp->ip_src;
672 		client_info->ip_dst = arp->ip_dst;
673 		/* arp->mac_dst is broadcast for arp reqeusts.
674 		 * will be updated with clients actual unicast mac address
675 		 * upon receiving an arp reply.
676 		 */
677 		memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
678 		client_info->slave = assigned_slave;
679 
680 		if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
681 			client_info->ntt = 1;
682 			bond->alb_info.rx_ntt = 1;
683 		} else {
684 			client_info->ntt = 0;
685 		}
686 
687 		if (!list_empty(&bond->vlan_list)) {
688 			if (!vlan_get_tag(skb, &client_info->vlan_id))
689 				client_info->tag = 1;
690 		}
691 
692 		if (!client_info->assigned) {
693 			u32 prev_tbl_head = bond_info->rx_hashtbl_head;
694 			bond_info->rx_hashtbl_head = hash_index;
695 			client_info->next = prev_tbl_head;
696 			if (prev_tbl_head != RLB_NULL_INDEX) {
697 				bond_info->rx_hashtbl[prev_tbl_head].prev =
698 					hash_index;
699 			}
700 			client_info->assigned = 1;
701 		}
702 	}
703 
704 	_unlock_rx_hashtbl(bond);
705 
706 	return assigned_slave;
707 }
708 
709 /* chooses (and returns) transmit channel for arp reply
710  * does not choose channel for other arp types since they are
711  * sent on the curr_active_slave
712  */
713 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
714 {
715 	struct arp_pkt *arp = arp_pkt(skb);
716 	struct slave *tx_slave = NULL;
717 
718 	if (arp->op_code == htons(ARPOP_REPLY)) {
719 		/* the arp must be sent on the selected
720 		* rx channel
721 		*/
722 		tx_slave = rlb_choose_channel(skb, bond);
723 		if (tx_slave) {
724 			memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
725 		}
726 		dprintk("Server sent ARP Reply packet\n");
727 	} else if (arp->op_code == htons(ARPOP_REQUEST)) {
728 		/* Create an entry in the rx_hashtbl for this client as a
729 		 * place holder.
730 		 * When the arp reply is received the entry will be updated
731 		 * with the correct unicast address of the client.
732 		 */
733 		rlb_choose_channel(skb, bond);
734 
735 		/* The ARP relpy packets must be delayed so that
736 		 * they can cancel out the influence of the ARP request.
737 		 */
738 		bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
739 
740 		/* arp requests are broadcast and are sent on the primary
741 		 * the arp request will collapse all clients on the subnet to
742 		 * the primary slave. We must register these clients to be
743 		 * updated with their assigned mac.
744 		 */
745 		rlb_req_update_subnet_clients(bond, arp->ip_src);
746 		dprintk("Server sent ARP Request packet\n");
747 	}
748 
749 	return tx_slave;
750 }
751 
752 /* Caller must hold bond lock for read */
753 static void rlb_rebalance(struct bonding *bond)
754 {
755 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
756 	struct slave *assigned_slave;
757 	struct rlb_client_info *client_info;
758 	int ntt;
759 	u32 hash_index;
760 
761 	_lock_rx_hashtbl(bond);
762 
763 	ntt = 0;
764 	hash_index = bond_info->rx_hashtbl_head;
765 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
766 		client_info = &(bond_info->rx_hashtbl[hash_index]);
767 		assigned_slave = rlb_next_rx_slave(bond);
768 		if (assigned_slave && (client_info->slave != assigned_slave)) {
769 			client_info->slave = assigned_slave;
770 			client_info->ntt = 1;
771 			ntt = 1;
772 		}
773 	}
774 
775 	/* update the team's flag only after the whole iteration */
776 	if (ntt) {
777 		bond_info->rx_ntt = 1;
778 	}
779 	_unlock_rx_hashtbl(bond);
780 }
781 
782 /* Caller must hold rx_hashtbl lock */
783 static void rlb_init_table_entry(struct rlb_client_info *entry)
784 {
785 	memset(entry, 0, sizeof(struct rlb_client_info));
786 	entry->next = RLB_NULL_INDEX;
787 	entry->prev = RLB_NULL_INDEX;
788 }
789 
790 static int rlb_initialize(struct bonding *bond)
791 {
792 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
793 	struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
794 	struct rlb_client_info	*new_hashtbl;
795 	int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
796 	int i;
797 
798 	spin_lock_init(&(bond_info->rx_hashtbl_lock));
799 
800 	new_hashtbl = kmalloc(size, GFP_KERNEL);
801 	if (!new_hashtbl) {
802 		printk(KERN_ERR DRV_NAME
803 		       ": %s: Error: Failed to allocate RLB hash table\n",
804 		       bond->dev->name);
805 		return -1;
806 	}
807 	_lock_rx_hashtbl(bond);
808 
809 	bond_info->rx_hashtbl = new_hashtbl;
810 
811 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
812 
813 	for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
814 		rlb_init_table_entry(bond_info->rx_hashtbl + i);
815 	}
816 
817 	_unlock_rx_hashtbl(bond);
818 
819 	/*initialize packet type*/
820 	pk_type->type = __constant_htons(ETH_P_ARP);
821 	pk_type->dev = bond->dev;
822 	pk_type->func = rlb_arp_recv;
823 
824 	/* register to receive ARPs */
825 	dev_add_pack(pk_type);
826 
827 	return 0;
828 }
829 
830 static void rlb_deinitialize(struct bonding *bond)
831 {
832 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
833 
834 	dev_remove_pack(&(bond_info->rlb_pkt_type));
835 
836 	_lock_rx_hashtbl(bond);
837 
838 	kfree(bond_info->rx_hashtbl);
839 	bond_info->rx_hashtbl = NULL;
840 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
841 
842 	_unlock_rx_hashtbl(bond);
843 }
844 
845 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
846 {
847 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
848 	u32 curr_index;
849 
850 	_lock_rx_hashtbl(bond);
851 
852 	curr_index = bond_info->rx_hashtbl_head;
853 	while (curr_index != RLB_NULL_INDEX) {
854 		struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
855 		u32 next_index = bond_info->rx_hashtbl[curr_index].next;
856 		u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
857 
858 		if (curr->tag && (curr->vlan_id == vlan_id)) {
859 			if (curr_index == bond_info->rx_hashtbl_head) {
860 				bond_info->rx_hashtbl_head = next_index;
861 			}
862 			if (prev_index != RLB_NULL_INDEX) {
863 				bond_info->rx_hashtbl[prev_index].next = next_index;
864 			}
865 			if (next_index != RLB_NULL_INDEX) {
866 				bond_info->rx_hashtbl[next_index].prev = prev_index;
867 			}
868 
869 			rlb_init_table_entry(curr);
870 		}
871 
872 		curr_index = next_index;
873 	}
874 
875 	_unlock_rx_hashtbl(bond);
876 }
877 
878 /*********************** tlb/rlb shared functions *********************/
879 
880 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
881 {
882 	struct bonding *bond = bond_get_bond_by_slave(slave);
883 	struct learning_pkt pkt;
884 	int size = sizeof(struct learning_pkt);
885 	int i;
886 
887 	memset(&pkt, 0, size);
888 	memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
889 	memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
890 	pkt.type = __constant_htons(ETH_P_LOOP);
891 
892 	for (i = 0; i < MAX_LP_BURST; i++) {
893 		struct sk_buff *skb;
894 		char *data;
895 
896 		skb = dev_alloc_skb(size);
897 		if (!skb) {
898 			return;
899 		}
900 
901 		data = skb_put(skb, size);
902 		memcpy(data, &pkt, size);
903 
904 		skb_reset_mac_header(skb);
905 		skb->network_header = skb->mac_header + ETH_HLEN;
906 		skb->protocol = pkt.type;
907 		skb->priority = TC_PRIO_CONTROL;
908 		skb->dev = slave->dev;
909 
910 		if (!list_empty(&bond->vlan_list)) {
911 			struct vlan_entry *vlan;
912 
913 			vlan = bond_next_vlan(bond,
914 					      bond->alb_info.current_alb_vlan);
915 
916 			bond->alb_info.current_alb_vlan = vlan;
917 			if (!vlan) {
918 				kfree_skb(skb);
919 				continue;
920 			}
921 
922 			skb = vlan_put_tag(skb, vlan->vlan_id);
923 			if (!skb) {
924 				printk(KERN_ERR DRV_NAME
925 				       ": %s: Error: failed to insert VLAN tag\n",
926 				       bond->dev->name);
927 				continue;
928 			}
929 		}
930 
931 		dev_queue_xmit(skb);
932 	}
933 }
934 
935 /* hw is a boolean parameter that determines whether we should try and
936  * set the hw address of the device as well as the hw address of the
937  * net_device
938  */
939 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
940 {
941 	struct net_device *dev = slave->dev;
942 	struct sockaddr s_addr;
943 
944 	if (!hw) {
945 		memcpy(dev->dev_addr, addr, dev->addr_len);
946 		return 0;
947 	}
948 
949 	/* for rlb each slave must have a unique hw mac addresses so that */
950 	/* each slave will receive packets destined to a different mac */
951 	memcpy(s_addr.sa_data, addr, dev->addr_len);
952 	s_addr.sa_family = dev->type;
953 	if (dev_set_mac_address(dev, &s_addr)) {
954 		printk(KERN_ERR DRV_NAME
955 		       ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
956 		       "mode requires that the base driver support setting "
957 		       "the hw address also when the network device's "
958 		       "interface is open\n",
959 		       dev->master->name, dev->name);
960 		return -EOPNOTSUPP;
961 	}
962 	return 0;
963 }
964 
965 /*
966  * Swap MAC addresses between two slaves.
967  *
968  * Called with RTNL held, and no other locks.
969  *
970  */
971 
972 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
973 {
974 	u8 tmp_mac_addr[ETH_ALEN];
975 
976 	memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
977 	alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
978 	alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
979 
980 }
981 
982 /*
983  * Send learning packets after MAC address swap.
984  *
985  * Called with RTNL and no other locks
986  */
987 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
988 				struct slave *slave2)
989 {
990 	int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
991 	struct slave *disabled_slave = NULL;
992 
993 	ASSERT_RTNL();
994 
995 	/* fasten the change in the switch */
996 	if (SLAVE_IS_OK(slave1)) {
997 		alb_send_learning_packets(slave1, slave1->dev->dev_addr);
998 		if (bond->alb_info.rlb_enabled) {
999 			/* inform the clients that the mac address
1000 			 * has changed
1001 			 */
1002 			rlb_req_update_slave_clients(bond, slave1);
1003 		}
1004 	} else {
1005 		disabled_slave = slave1;
1006 	}
1007 
1008 	if (SLAVE_IS_OK(slave2)) {
1009 		alb_send_learning_packets(slave2, slave2->dev->dev_addr);
1010 		if (bond->alb_info.rlb_enabled) {
1011 			/* inform the clients that the mac address
1012 			 * has changed
1013 			 */
1014 			rlb_req_update_slave_clients(bond, slave2);
1015 		}
1016 	} else {
1017 		disabled_slave = slave2;
1018 	}
1019 
1020 	if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1021 		/* A disabled slave was assigned an active mac addr */
1022 		rlb_teach_disabled_mac_on_primary(bond,
1023 						  disabled_slave->dev->dev_addr);
1024 	}
1025 }
1026 
1027 /**
1028  * alb_change_hw_addr_on_detach
1029  * @bond: bonding we're working on
1030  * @slave: the slave that was just detached
1031  *
1032  * We assume that @slave was already detached from the slave list.
1033  *
1034  * If @slave's permanent hw address is different both from its current
1035  * address and from @bond's address, then somewhere in the bond there's
1036  * a slave that has @slave's permanet address as its current address.
1037  * We'll make sure that that slave no longer uses @slave's permanent address.
1038  *
1039  * Caller must hold RTNL and no other locks
1040  */
1041 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1042 {
1043 	int perm_curr_diff;
1044 	int perm_bond_diff;
1045 
1046 	perm_curr_diff = memcmp(slave->perm_hwaddr,
1047 				slave->dev->dev_addr,
1048 				ETH_ALEN);
1049 	perm_bond_diff = memcmp(slave->perm_hwaddr,
1050 				bond->dev->dev_addr,
1051 				ETH_ALEN);
1052 
1053 	if (perm_curr_diff && perm_bond_diff) {
1054 		struct slave *tmp_slave;
1055 		int i, found = 0;
1056 
1057 		bond_for_each_slave(bond, tmp_slave, i) {
1058 			if (!memcmp(slave->perm_hwaddr,
1059 				    tmp_slave->dev->dev_addr,
1060 				    ETH_ALEN)) {
1061 				found = 1;
1062 				break;
1063 			}
1064 		}
1065 
1066 		if (found) {
1067 			/* locking: needs RTNL and nothing else */
1068 			alb_swap_mac_addr(bond, slave, tmp_slave);
1069 			alb_fasten_mac_swap(bond, slave, tmp_slave);
1070 		}
1071 	}
1072 }
1073 
1074 /**
1075  * alb_handle_addr_collision_on_attach
1076  * @bond: bonding we're working on
1077  * @slave: the slave that was just attached
1078  *
1079  * checks uniqueness of slave's mac address and handles the case the
1080  * new slave uses the bonds mac address.
1081  *
1082  * If the permanent hw address of @slave is @bond's hw address, we need to
1083  * find a different hw address to give @slave, that isn't in use by any other
1084  * slave in the bond. This address must be, of course, one of the premanent
1085  * addresses of the other slaves.
1086  *
1087  * We go over the slave list, and for each slave there we compare its
1088  * permanent hw address with the current address of all the other slaves.
1089  * If no match was found, then we've found a slave with a permanent address
1090  * that isn't used by any other slave in the bond, so we can assign it to
1091  * @slave.
1092  *
1093  * assumption: this function is called before @slave is attached to the
1094  * 	       bond slave list.
1095  *
1096  * caller must hold the bond lock for write since the mac addresses are compared
1097  * and may be swapped.
1098  */
1099 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1100 {
1101 	struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1102 	struct slave *has_bond_addr = bond->curr_active_slave;
1103 	int i, j, found = 0;
1104 
1105 	if (bond->slave_cnt == 0) {
1106 		/* this is the first slave */
1107 		return 0;
1108 	}
1109 
1110 	/* if slave's mac address differs from bond's mac address
1111 	 * check uniqueness of slave's mac address against the other
1112 	 * slaves in the bond.
1113 	 */
1114 	if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1115 		bond_for_each_slave(bond, tmp_slave1, i) {
1116 			if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1117 				    ETH_ALEN)) {
1118 				found = 1;
1119 				break;
1120 			}
1121 		}
1122 
1123 		if (!found)
1124 			return 0;
1125 
1126 		/* Try setting slave mac to bond address and fall-through
1127 		   to code handling that situation below... */
1128 		alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1129 				       bond->alb_info.rlb_enabled);
1130 	}
1131 
1132 	/* The slave's address is equal to the address of the bond.
1133 	 * Search for a spare address in the bond for this slave.
1134 	 */
1135 	free_mac_slave = NULL;
1136 
1137 	bond_for_each_slave(bond, tmp_slave1, i) {
1138 		found = 0;
1139 		bond_for_each_slave(bond, tmp_slave2, j) {
1140 			if (!memcmp(tmp_slave1->perm_hwaddr,
1141 				    tmp_slave2->dev->dev_addr,
1142 				    ETH_ALEN)) {
1143 				found = 1;
1144 				break;
1145 			}
1146 		}
1147 
1148 		if (!found) {
1149 			/* no slave has tmp_slave1's perm addr
1150 			 * as its curr addr
1151 			 */
1152 			free_mac_slave = tmp_slave1;
1153 			break;
1154 		}
1155 
1156 		if (!has_bond_addr) {
1157 			if (!memcmp(tmp_slave1->dev->dev_addr,
1158 				    bond->dev->dev_addr,
1159 				    ETH_ALEN)) {
1160 
1161 				has_bond_addr = tmp_slave1;
1162 			}
1163 		}
1164 	}
1165 
1166 	if (free_mac_slave) {
1167 		alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1168 				       bond->alb_info.rlb_enabled);
1169 
1170 		printk(KERN_WARNING DRV_NAME
1171 		       ": %s: Warning: the hw address of slave %s is in use by "
1172 		       "the bond; giving it the hw address of %s\n",
1173 		       bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1174 
1175 	} else if (has_bond_addr) {
1176 		printk(KERN_ERR DRV_NAME
1177 		       ": %s: Error: the hw address of slave %s is in use by the "
1178 		       "bond; couldn't find a slave with a free hw address to "
1179 		       "give it (this should not have happened)\n",
1180 		       bond->dev->name, slave->dev->name);
1181 		return -EFAULT;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 /**
1188  * alb_set_mac_address
1189  * @bond:
1190  * @addr:
1191  *
1192  * In TLB mode all slaves are configured to the bond's hw address, but set
1193  * their dev_addr field to different addresses (based on their permanent hw
1194  * addresses).
1195  *
1196  * For each slave, this function sets the interface to the new address and then
1197  * changes its dev_addr field to its previous value.
1198  *
1199  * Unwinding assumes bond's mac address has not yet changed.
1200  */
1201 static int alb_set_mac_address(struct bonding *bond, void *addr)
1202 {
1203 	struct sockaddr sa;
1204 	struct slave *slave, *stop_at;
1205 	char tmp_addr[ETH_ALEN];
1206 	int res;
1207 	int i;
1208 
1209 	if (bond->alb_info.rlb_enabled) {
1210 		return 0;
1211 	}
1212 
1213 	bond_for_each_slave(bond, slave, i) {
1214 		if (slave->dev->set_mac_address == NULL) {
1215 			res = -EOPNOTSUPP;
1216 			goto unwind;
1217 		}
1218 
1219 		/* save net_device's current hw address */
1220 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1221 
1222 		res = dev_set_mac_address(slave->dev, addr);
1223 
1224 		/* restore net_device's hw address */
1225 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1226 
1227 		if (res) {
1228 			goto unwind;
1229 		}
1230 	}
1231 
1232 	return 0;
1233 
1234 unwind:
1235 	memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1236 	sa.sa_family = bond->dev->type;
1237 
1238 	/* unwind from head to the slave that failed */
1239 	stop_at = slave;
1240 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1241 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1242 		dev_set_mac_address(slave->dev, &sa);
1243 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1244 	}
1245 
1246 	return res;
1247 }
1248 
1249 /************************ exported alb funcions ************************/
1250 
1251 int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1252 {
1253 	int res;
1254 
1255 	res = tlb_initialize(bond);
1256 	if (res) {
1257 		return res;
1258 	}
1259 
1260 	if (rlb_enabled) {
1261 		bond->alb_info.rlb_enabled = 1;
1262 		/* initialize rlb */
1263 		res = rlb_initialize(bond);
1264 		if (res) {
1265 			tlb_deinitialize(bond);
1266 			return res;
1267 		}
1268 	} else {
1269 		bond->alb_info.rlb_enabled = 0;
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 void bond_alb_deinitialize(struct bonding *bond)
1276 {
1277 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1278 
1279 	tlb_deinitialize(bond);
1280 
1281 	if (bond_info->rlb_enabled) {
1282 		rlb_deinitialize(bond);
1283 	}
1284 }
1285 
1286 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1287 {
1288 	struct bonding *bond = bond_dev->priv;
1289 	struct ethhdr *eth_data;
1290 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1291 	struct slave *tx_slave = NULL;
1292 	static const __be32 ip_bcast = htonl(0xffffffff);
1293 	int hash_size = 0;
1294 	int do_tx_balance = 1;
1295 	u32 hash_index = 0;
1296 	const u8 *hash_start = NULL;
1297 	int res = 1;
1298 	struct ipv6hdr *ip6hdr;
1299 
1300 	skb_reset_mac_header(skb);
1301 	eth_data = eth_hdr(skb);
1302 
1303 	/* make sure that the curr_active_slave and the slaves list do
1304 	 * not change during tx
1305 	 */
1306 	read_lock(&bond->lock);
1307 	read_lock(&bond->curr_slave_lock);
1308 
1309 	if (!BOND_IS_OK(bond)) {
1310 		goto out;
1311 	}
1312 
1313 	switch (ntohs(skb->protocol)) {
1314 	case ETH_P_IP: {
1315 		const struct iphdr *iph = ip_hdr(skb);
1316 
1317 		if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1318 		    (iph->daddr == ip_bcast) ||
1319 		    (iph->protocol == IPPROTO_IGMP)) {
1320 			do_tx_balance = 0;
1321 			break;
1322 		}
1323 		hash_start = (char *)&(iph->daddr);
1324 		hash_size = sizeof(iph->daddr);
1325 	}
1326 		break;
1327 	case ETH_P_IPV6:
1328 		/* IPv6 doesn't really use broadcast mac address, but leave
1329 		 * that here just in case.
1330 		 */
1331 		if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1332 			do_tx_balance = 0;
1333 			break;
1334 		}
1335 
1336 		/* IPv6 uses all-nodes multicast as an equivalent to
1337 		 * broadcasts in IPv4.
1338 		 */
1339 		if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) {
1340 			do_tx_balance = 0;
1341 			break;
1342 		}
1343 
1344 		/* Additianally, DAD probes should not be tx-balanced as that
1345 		 * will lead to false positives for duplicate addresses and
1346 		 * prevent address configuration from working.
1347 		 */
1348 		ip6hdr = ipv6_hdr(skb);
1349 		if (ipv6_addr_any(&ip6hdr->saddr)) {
1350 			do_tx_balance = 0;
1351 			break;
1352 		}
1353 
1354 		hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1355 		hash_size = sizeof(ipv6_hdr(skb)->daddr);
1356 		break;
1357 	case ETH_P_IPX:
1358 		if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1359 			/* something is wrong with this packet */
1360 			do_tx_balance = 0;
1361 			break;
1362 		}
1363 
1364 		if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1365 			/* The only protocol worth balancing in
1366 			 * this family since it has an "ARP" like
1367 			 * mechanism
1368 			 */
1369 			do_tx_balance = 0;
1370 			break;
1371 		}
1372 
1373 		hash_start = (char*)eth_data->h_dest;
1374 		hash_size = ETH_ALEN;
1375 		break;
1376 	case ETH_P_ARP:
1377 		do_tx_balance = 0;
1378 		if (bond_info->rlb_enabled) {
1379 			tx_slave = rlb_arp_xmit(skb, bond);
1380 		}
1381 		break;
1382 	default:
1383 		do_tx_balance = 0;
1384 		break;
1385 	}
1386 
1387 	if (do_tx_balance) {
1388 		hash_index = _simple_hash(hash_start, hash_size);
1389 		tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1390 	}
1391 
1392 	if (!tx_slave) {
1393 		/* unbalanced or unassigned, send through primary */
1394 		tx_slave = bond->curr_active_slave;
1395 		bond_info->unbalanced_load += skb->len;
1396 	}
1397 
1398 	if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1399 		if (tx_slave != bond->curr_active_slave) {
1400 			memcpy(eth_data->h_source,
1401 			       tx_slave->dev->dev_addr,
1402 			       ETH_ALEN);
1403 		}
1404 
1405 		res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1406 	} else {
1407 		if (tx_slave) {
1408 			tlb_clear_slave(bond, tx_slave, 0);
1409 		}
1410 	}
1411 
1412 out:
1413 	if (res) {
1414 		/* no suitable interface, frame not sent */
1415 		dev_kfree_skb(skb);
1416 	}
1417 	read_unlock(&bond->curr_slave_lock);
1418 	read_unlock(&bond->lock);
1419 	return 0;
1420 }
1421 
1422 void bond_alb_monitor(struct work_struct *work)
1423 {
1424 	struct bonding *bond = container_of(work, struct bonding,
1425 					    alb_work.work);
1426 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1427 	struct slave *slave;
1428 	int i;
1429 
1430 	read_lock(&bond->lock);
1431 
1432 	if (bond->kill_timers) {
1433 		goto out;
1434 	}
1435 
1436 	if (bond->slave_cnt == 0) {
1437 		bond_info->tx_rebalance_counter = 0;
1438 		bond_info->lp_counter = 0;
1439 		goto re_arm;
1440 	}
1441 
1442 	bond_info->tx_rebalance_counter++;
1443 	bond_info->lp_counter++;
1444 
1445 	/* send learning packets */
1446 	if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1447 		/* change of curr_active_slave involves swapping of mac addresses.
1448 		 * in order to avoid this swapping from happening while
1449 		 * sending the learning packets, the curr_slave_lock must be held for
1450 		 * read.
1451 		 */
1452 		read_lock(&bond->curr_slave_lock);
1453 
1454 		bond_for_each_slave(bond, slave, i) {
1455 			alb_send_learning_packets(slave, slave->dev->dev_addr);
1456 		}
1457 
1458 		read_unlock(&bond->curr_slave_lock);
1459 
1460 		bond_info->lp_counter = 0;
1461 	}
1462 
1463 	/* rebalance tx traffic */
1464 	if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1465 
1466 		read_lock(&bond->curr_slave_lock);
1467 
1468 		bond_for_each_slave(bond, slave, i) {
1469 			tlb_clear_slave(bond, slave, 1);
1470 			if (slave == bond->curr_active_slave) {
1471 				SLAVE_TLB_INFO(slave).load =
1472 					bond_info->unbalanced_load /
1473 						BOND_TLB_REBALANCE_INTERVAL;
1474 				bond_info->unbalanced_load = 0;
1475 			}
1476 		}
1477 
1478 		read_unlock(&bond->curr_slave_lock);
1479 
1480 		bond_info->tx_rebalance_counter = 0;
1481 	}
1482 
1483 	/* handle rlb stuff */
1484 	if (bond_info->rlb_enabled) {
1485 		if (bond_info->primary_is_promisc &&
1486 		    (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1487 
1488 			/*
1489 			 * dev_set_promiscuity requires rtnl and
1490 			 * nothing else.
1491 			 */
1492 			read_unlock(&bond->lock);
1493 			rtnl_lock();
1494 
1495 			bond_info->rlb_promisc_timeout_counter = 0;
1496 
1497 			/* If the primary was set to promiscuous mode
1498 			 * because a slave was disabled then
1499 			 * it can now leave promiscuous mode.
1500 			 */
1501 			dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1502 			bond_info->primary_is_promisc = 0;
1503 
1504 			rtnl_unlock();
1505 			read_lock(&bond->lock);
1506 		}
1507 
1508 		if (bond_info->rlb_rebalance) {
1509 			bond_info->rlb_rebalance = 0;
1510 			rlb_rebalance(bond);
1511 		}
1512 
1513 		/* check if clients need updating */
1514 		if (bond_info->rx_ntt) {
1515 			if (bond_info->rlb_update_delay_counter) {
1516 				--bond_info->rlb_update_delay_counter;
1517 			} else {
1518 				rlb_update_rx_clients(bond);
1519 				if (bond_info->rlb_update_retry_counter) {
1520 					--bond_info->rlb_update_retry_counter;
1521 				} else {
1522 					bond_info->rx_ntt = 0;
1523 				}
1524 			}
1525 		}
1526 	}
1527 
1528 re_arm:
1529 	queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1530 out:
1531 	read_unlock(&bond->lock);
1532 }
1533 
1534 /* assumption: called before the slave is attached to the bond
1535  * and not locked by the bond lock
1536  */
1537 int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1538 {
1539 	int res;
1540 
1541 	res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1542 				     bond->alb_info.rlb_enabled);
1543 	if (res) {
1544 		return res;
1545 	}
1546 
1547 	/* caller must hold the bond lock for write since the mac addresses
1548 	 * are compared and may be swapped.
1549 	 */
1550 	read_lock(&bond->lock);
1551 
1552 	res = alb_handle_addr_collision_on_attach(bond, slave);
1553 
1554 	read_unlock(&bond->lock);
1555 
1556 	if (res) {
1557 		return res;
1558 	}
1559 
1560 	tlb_init_slave(slave);
1561 
1562 	/* order a rebalance ASAP */
1563 	bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1564 
1565 	if (bond->alb_info.rlb_enabled) {
1566 		bond->alb_info.rlb_rebalance = 1;
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 /*
1573  * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1574  * if necessary.
1575  *
1576  * Caller must hold RTNL and no other locks
1577  */
1578 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1579 {
1580 	if (bond->slave_cnt > 1) {
1581 		alb_change_hw_addr_on_detach(bond, slave);
1582 	}
1583 
1584 	tlb_clear_slave(bond, slave, 0);
1585 
1586 	if (bond->alb_info.rlb_enabled) {
1587 		bond->alb_info.next_rx_slave = NULL;
1588 		rlb_clear_slave(bond, slave);
1589 	}
1590 }
1591 
1592 /* Caller must hold bond lock for read */
1593 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1594 {
1595 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1596 
1597 	if (link == BOND_LINK_DOWN) {
1598 		tlb_clear_slave(bond, slave, 0);
1599 		if (bond->alb_info.rlb_enabled) {
1600 			rlb_clear_slave(bond, slave);
1601 		}
1602 	} else if (link == BOND_LINK_UP) {
1603 		/* order a rebalance ASAP */
1604 		bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1605 		if (bond->alb_info.rlb_enabled) {
1606 			bond->alb_info.rlb_rebalance = 1;
1607 			/* If the updelay module parameter is smaller than the
1608 			 * forwarding delay of the switch the rebalance will
1609 			 * not work because the rebalance arp replies will
1610 			 * not be forwarded to the clients..
1611 			 */
1612 		}
1613 	}
1614 }
1615 
1616 /**
1617  * bond_alb_handle_active_change - assign new curr_active_slave
1618  * @bond: our bonding struct
1619  * @new_slave: new slave to assign
1620  *
1621  * Set the bond->curr_active_slave to @new_slave and handle
1622  * mac address swapping and promiscuity changes as needed.
1623  *
1624  * If new_slave is NULL, caller must hold curr_slave_lock or
1625  * bond->lock for write.
1626  *
1627  * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1628  * read and curr_slave_lock for write.  Processing here may sleep, so
1629  * no other locks may be held.
1630  */
1631 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1632 {
1633 	struct slave *swap_slave;
1634 	int i;
1635 
1636 	if (bond->curr_active_slave == new_slave) {
1637 		return;
1638 	}
1639 
1640 	if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1641 		dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1642 		bond->alb_info.primary_is_promisc = 0;
1643 		bond->alb_info.rlb_promisc_timeout_counter = 0;
1644 	}
1645 
1646 	swap_slave = bond->curr_active_slave;
1647 	bond->curr_active_slave = new_slave;
1648 
1649 	if (!new_slave || (bond->slave_cnt == 0)) {
1650 		return;
1651 	}
1652 
1653 	/* set the new curr_active_slave to the bonds mac address
1654 	 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1655 	 */
1656 	if (!swap_slave) {
1657 		struct slave *tmp_slave;
1658 		/* find slave that is holding the bond's mac address */
1659 		bond_for_each_slave(bond, tmp_slave, i) {
1660 			if (!memcmp(tmp_slave->dev->dev_addr,
1661 				    bond->dev->dev_addr, ETH_ALEN)) {
1662 				swap_slave = tmp_slave;
1663 				break;
1664 			}
1665 		}
1666 	}
1667 
1668 	/*
1669 	 * Arrange for swap_slave and new_slave to temporarily be
1670 	 * ignored so we can mess with their MAC addresses without
1671 	 * fear of interference from transmit activity.
1672 	 */
1673 	if (swap_slave) {
1674 		tlb_clear_slave(bond, swap_slave, 1);
1675 	}
1676 	tlb_clear_slave(bond, new_slave, 1);
1677 
1678 	write_unlock_bh(&bond->curr_slave_lock);
1679 	read_unlock(&bond->lock);
1680 
1681 	ASSERT_RTNL();
1682 
1683 	/* curr_active_slave must be set before calling alb_swap_mac_addr */
1684 	if (swap_slave) {
1685 		/* swap mac address */
1686 		alb_swap_mac_addr(bond, swap_slave, new_slave);
1687 	} else {
1688 		/* set the new_slave to the bond mac address */
1689 		alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1690 				       bond->alb_info.rlb_enabled);
1691 	}
1692 
1693 	if (swap_slave) {
1694 		alb_fasten_mac_swap(bond, swap_slave, new_slave);
1695 		read_lock(&bond->lock);
1696 	} else {
1697 		read_lock(&bond->lock);
1698 		alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1699 	}
1700 
1701 	write_lock_bh(&bond->curr_slave_lock);
1702 }
1703 
1704 /*
1705  * Called with RTNL
1706  */
1707 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1708 {
1709 	struct bonding *bond = bond_dev->priv;
1710 	struct sockaddr *sa = addr;
1711 	struct slave *slave, *swap_slave;
1712 	int res;
1713 	int i;
1714 
1715 	if (!is_valid_ether_addr(sa->sa_data)) {
1716 		return -EADDRNOTAVAIL;
1717 	}
1718 
1719 	res = alb_set_mac_address(bond, addr);
1720 	if (res) {
1721 		return res;
1722 	}
1723 
1724 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1725 
1726 	/* If there is no curr_active_slave there is nothing else to do.
1727 	 * Otherwise we'll need to pass the new address to it and handle
1728 	 * duplications.
1729 	 */
1730 	if (!bond->curr_active_slave) {
1731 		return 0;
1732 	}
1733 
1734 	swap_slave = NULL;
1735 
1736 	bond_for_each_slave(bond, slave, i) {
1737 		if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1738 			swap_slave = slave;
1739 			break;
1740 		}
1741 	}
1742 
1743 	write_unlock_bh(&bond->curr_slave_lock);
1744 	read_unlock(&bond->lock);
1745 
1746 	if (swap_slave) {
1747 		alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1748 		alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1749 	} else {
1750 		alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1751 				       bond->alb_info.rlb_enabled);
1752 
1753 		alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1754 		if (bond->alb_info.rlb_enabled) {
1755 			/* inform clients mac address has changed */
1756 			rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1757 		}
1758 	}
1759 
1760 	read_lock(&bond->lock);
1761 	write_lock_bh(&bond->curr_slave_lock);
1762 
1763 	return 0;
1764 }
1765 
1766 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1767 {
1768 	if (bond->alb_info.current_alb_vlan &&
1769 	    (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1770 		bond->alb_info.current_alb_vlan = NULL;
1771 	}
1772 
1773 	if (bond->alb_info.rlb_enabled) {
1774 		rlb_clear_vlan(bond, vlan_id);
1775 	}
1776 }
1777 
1778