xref: /openbmc/linux/drivers/net/bonding/bond_alb.c (revision 78c99ba1)
1 /*
2  * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License along
15  * with this program; if not, write to the Free Software Foundation, Inc.,
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  */
22 
23 #include <linux/skbuff.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/pkt_sched.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/ip.h>
31 #include <linux/ipv6.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/if_bonding.h>
35 #include <linux/if_vlan.h>
36 #include <linux/in.h>
37 #include <net/ipx.h>
38 #include <net/arp.h>
39 #include <net/ipv6.h>
40 #include <asm/byteorder.h>
41 #include "bonding.h"
42 #include "bond_alb.h"
43 
44 
45 #define ALB_TIMER_TICKS_PER_SEC	    10	/* should be a divisor of HZ */
46 #define BOND_TLB_REBALANCE_INTERVAL 10	/* In seconds, periodic re-balancing.
47 					 * Used for division - never set
48 					 * to zero !!!
49 					 */
50 #define BOND_ALB_LP_INTERVAL	    1	/* In seconds, periodic send of
51 					 * learning packets to the switch
52 					 */
53 
54 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
55 				  * ALB_TIMER_TICKS_PER_SEC)
56 
57 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
58 			   * ALB_TIMER_TICKS_PER_SEC)
59 
60 #define TLB_HASH_TABLE_SIZE 256	/* The size of the clients hash table.
61 				 * Note that this value MUST NOT be smaller
62 				 * because the key hash table is BYTE wide !
63 				 */
64 
65 
66 #define TLB_NULL_INDEX		0xffffffff
67 #define MAX_LP_BURST		3
68 
69 /* rlb defs */
70 #define RLB_HASH_TABLE_SIZE	256
71 #define RLB_NULL_INDEX		0xffffffff
72 #define RLB_UPDATE_DELAY	2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
73 #define RLB_ARP_BURST_SIZE	2
74 #define RLB_UPDATE_RETRY	3	/* 3-ticks - must be smaller than the rlb
75 					 * rebalance interval (5 min).
76 					 */
77 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
78  * promiscuous after failover
79  */
80 #define RLB_PROMISC_TIMEOUT	10*ALB_TIMER_TICKS_PER_SEC
81 
82 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
83 static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01};
84 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
85 
86 #pragma pack(1)
87 struct learning_pkt {
88 	u8 mac_dst[ETH_ALEN];
89 	u8 mac_src[ETH_ALEN];
90 	__be16 type;
91 	u8 padding[ETH_ZLEN - ETH_HLEN];
92 };
93 
94 struct arp_pkt {
95 	__be16  hw_addr_space;
96 	__be16  prot_addr_space;
97 	u8      hw_addr_len;
98 	u8      prot_addr_len;
99 	__be16  op_code;
100 	u8      mac_src[ETH_ALEN];	/* sender hardware address */
101 	__be32  ip_src;			/* sender IP address */
102 	u8      mac_dst[ETH_ALEN];	/* target hardware address */
103 	__be32  ip_dst;			/* target IP address */
104 };
105 #pragma pack()
106 
107 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
108 {
109 	return (struct arp_pkt *)skb_network_header(skb);
110 }
111 
112 /* Forward declaration */
113 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
114 
115 static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
116 {
117 	int i;
118 	u8 hash = 0;
119 
120 	for (i = 0; i < hash_size; i++) {
121 		hash ^= hash_start[i];
122 	}
123 
124 	return hash;
125 }
126 
127 /*********************** tlb specific functions ***************************/
128 
129 static inline void _lock_tx_hashtbl(struct bonding *bond)
130 {
131 	spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
132 }
133 
134 static inline void _unlock_tx_hashtbl(struct bonding *bond)
135 {
136 	spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
137 }
138 
139 /* Caller must hold tx_hashtbl lock */
140 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
141 {
142 	if (save_load) {
143 		entry->load_history = 1 + entry->tx_bytes /
144 				      BOND_TLB_REBALANCE_INTERVAL;
145 		entry->tx_bytes = 0;
146 	}
147 
148 	entry->tx_slave = NULL;
149 	entry->next = TLB_NULL_INDEX;
150 	entry->prev = TLB_NULL_INDEX;
151 }
152 
153 static inline void tlb_init_slave(struct slave *slave)
154 {
155 	SLAVE_TLB_INFO(slave).load = 0;
156 	SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
157 }
158 
159 /* Caller must hold bond lock for read */
160 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
161 {
162 	struct tlb_client_info *tx_hash_table;
163 	u32 index;
164 
165 	_lock_tx_hashtbl(bond);
166 
167 	/* clear slave from tx_hashtbl */
168 	tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
169 
170 	/* skip this if we've already freed the tx hash table */
171 	if (tx_hash_table) {
172 		index = SLAVE_TLB_INFO(slave).head;
173 		while (index != TLB_NULL_INDEX) {
174 			u32 next_index = tx_hash_table[index].next;
175 			tlb_init_table_entry(&tx_hash_table[index], save_load);
176 			index = next_index;
177 		}
178 	}
179 
180 	tlb_init_slave(slave);
181 
182 	_unlock_tx_hashtbl(bond);
183 }
184 
185 /* Must be called before starting the monitor timer */
186 static int tlb_initialize(struct bonding *bond)
187 {
188 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
189 	int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
190 	struct tlb_client_info *new_hashtbl;
191 	int i;
192 
193 	spin_lock_init(&(bond_info->tx_hashtbl_lock));
194 
195 	new_hashtbl = kzalloc(size, GFP_KERNEL);
196 	if (!new_hashtbl) {
197 		printk(KERN_ERR DRV_NAME
198 		       ": %s: Error: Failed to allocate TLB hash table\n",
199 		       bond->dev->name);
200 		return -1;
201 	}
202 	_lock_tx_hashtbl(bond);
203 
204 	bond_info->tx_hashtbl = new_hashtbl;
205 
206 	for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
207 		tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
208 	}
209 
210 	_unlock_tx_hashtbl(bond);
211 
212 	return 0;
213 }
214 
215 /* Must be called only after all slaves have been released */
216 static void tlb_deinitialize(struct bonding *bond)
217 {
218 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
219 
220 	_lock_tx_hashtbl(bond);
221 
222 	kfree(bond_info->tx_hashtbl);
223 	bond_info->tx_hashtbl = NULL;
224 
225 	_unlock_tx_hashtbl(bond);
226 }
227 
228 /* Caller must hold bond lock for read */
229 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
230 {
231 	struct slave *slave, *least_loaded;
232 	s64 max_gap;
233 	int i, found = 0;
234 
235 	/* Find the first enabled slave */
236 	bond_for_each_slave(bond, slave, i) {
237 		if (SLAVE_IS_OK(slave)) {
238 			found = 1;
239 			break;
240 		}
241 	}
242 
243 	if (!found) {
244 		return NULL;
245 	}
246 
247 	least_loaded = slave;
248 	max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
249 			(s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
250 
251 	/* Find the slave with the largest gap */
252 	bond_for_each_slave_from(bond, slave, i, least_loaded) {
253 		if (SLAVE_IS_OK(slave)) {
254 			s64 gap = (s64)(slave->speed << 20) -
255 					(s64)(SLAVE_TLB_INFO(slave).load << 3);
256 			if (max_gap < gap) {
257 				least_loaded = slave;
258 				max_gap = gap;
259 			}
260 		}
261 	}
262 
263 	return least_loaded;
264 }
265 
266 /* Caller must hold bond lock for read */
267 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
268 {
269 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
270 	struct tlb_client_info *hash_table;
271 	struct slave *assigned_slave;
272 
273 	_lock_tx_hashtbl(bond);
274 
275 	hash_table = bond_info->tx_hashtbl;
276 	assigned_slave = hash_table[hash_index].tx_slave;
277 	if (!assigned_slave) {
278 		assigned_slave = tlb_get_least_loaded_slave(bond);
279 
280 		if (assigned_slave) {
281 			struct tlb_slave_info *slave_info =
282 				&(SLAVE_TLB_INFO(assigned_slave));
283 			u32 next_index = slave_info->head;
284 
285 			hash_table[hash_index].tx_slave = assigned_slave;
286 			hash_table[hash_index].next = next_index;
287 			hash_table[hash_index].prev = TLB_NULL_INDEX;
288 
289 			if (next_index != TLB_NULL_INDEX) {
290 				hash_table[next_index].prev = hash_index;
291 			}
292 
293 			slave_info->head = hash_index;
294 			slave_info->load +=
295 				hash_table[hash_index].load_history;
296 		}
297 	}
298 
299 	if (assigned_slave) {
300 		hash_table[hash_index].tx_bytes += skb_len;
301 	}
302 
303 	_unlock_tx_hashtbl(bond);
304 
305 	return assigned_slave;
306 }
307 
308 /*********************** rlb specific functions ***************************/
309 static inline void _lock_rx_hashtbl(struct bonding *bond)
310 {
311 	spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
312 }
313 
314 static inline void _unlock_rx_hashtbl(struct bonding *bond)
315 {
316 	spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
317 }
318 
319 /* when an ARP REPLY is received from a client update its info
320  * in the rx_hashtbl
321  */
322 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
323 {
324 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
325 	struct rlb_client_info *client_info;
326 	u32 hash_index;
327 
328 	_lock_rx_hashtbl(bond);
329 
330 	hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
331 	client_info = &(bond_info->rx_hashtbl[hash_index]);
332 
333 	if ((client_info->assigned) &&
334 	    (client_info->ip_src == arp->ip_dst) &&
335 	    (client_info->ip_dst == arp->ip_src)) {
336 		/* update the clients MAC address */
337 		memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
338 		client_info->ntt = 1;
339 		bond_info->rx_ntt = 1;
340 	}
341 
342 	_unlock_rx_hashtbl(bond);
343 }
344 
345 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
346 {
347 	struct bonding *bond;
348 	struct arp_pkt *arp = (struct arp_pkt *)skb->data;
349 	int res = NET_RX_DROP;
350 
351 	if (dev_net(bond_dev) != &init_net)
352 		goto out;
353 
354 	while (bond_dev->priv_flags & IFF_802_1Q_VLAN)
355 		bond_dev = vlan_dev_real_dev(bond_dev);
356 
357 	if (!(bond_dev->priv_flags & IFF_BONDING) ||
358 	    !(bond_dev->flags & IFF_MASTER))
359 		goto out;
360 
361 	if (!arp) {
362 		pr_debug("Packet has no ARP data\n");
363 		goto out;
364 	}
365 
366 	if (skb->len < sizeof(struct arp_pkt)) {
367 		pr_debug("Packet is too small to be an ARP\n");
368 		goto out;
369 	}
370 
371 	if (arp->op_code == htons(ARPOP_REPLY)) {
372 		/* update rx hash table for this ARP */
373 		bond = netdev_priv(bond_dev);
374 		rlb_update_entry_from_arp(bond, arp);
375 		pr_debug("Server received an ARP Reply from client\n");
376 	}
377 
378 	res = NET_RX_SUCCESS;
379 
380 out:
381 	dev_kfree_skb(skb);
382 
383 	return res;
384 }
385 
386 /* Caller must hold bond lock for read */
387 static struct slave *rlb_next_rx_slave(struct bonding *bond)
388 {
389 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
390 	struct slave *rx_slave, *slave, *start_at;
391 	int i = 0;
392 
393 	if (bond_info->next_rx_slave) {
394 		start_at = bond_info->next_rx_slave;
395 	} else {
396 		start_at = bond->first_slave;
397 	}
398 
399 	rx_slave = NULL;
400 
401 	bond_for_each_slave_from(bond, slave, i, start_at) {
402 		if (SLAVE_IS_OK(slave)) {
403 			if (!rx_slave) {
404 				rx_slave = slave;
405 			} else if (slave->speed > rx_slave->speed) {
406 				rx_slave = slave;
407 			}
408 		}
409 	}
410 
411 	if (rx_slave) {
412 		bond_info->next_rx_slave = rx_slave->next;
413 	}
414 
415 	return rx_slave;
416 }
417 
418 /* teach the switch the mac of a disabled slave
419  * on the primary for fault tolerance
420  *
421  * Caller must hold bond->curr_slave_lock for write or bond lock for write
422  */
423 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
424 {
425 	if (!bond->curr_active_slave) {
426 		return;
427 	}
428 
429 	if (!bond->alb_info.primary_is_promisc) {
430 		if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1))
431 			bond->alb_info.primary_is_promisc = 1;
432 		else
433 			bond->alb_info.primary_is_promisc = 0;
434 	}
435 
436 	bond->alb_info.rlb_promisc_timeout_counter = 0;
437 
438 	alb_send_learning_packets(bond->curr_active_slave, addr);
439 }
440 
441 /* slave being removed should not be active at this point
442  *
443  * Caller must hold bond lock for read
444  */
445 static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
446 {
447 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
448 	struct rlb_client_info *rx_hash_table;
449 	u32 index, next_index;
450 
451 	/* clear slave from rx_hashtbl */
452 	_lock_rx_hashtbl(bond);
453 
454 	rx_hash_table = bond_info->rx_hashtbl;
455 	index = bond_info->rx_hashtbl_head;
456 	for (; index != RLB_NULL_INDEX; index = next_index) {
457 		next_index = rx_hash_table[index].next;
458 		if (rx_hash_table[index].slave == slave) {
459 			struct slave *assigned_slave = rlb_next_rx_slave(bond);
460 
461 			if (assigned_slave) {
462 				rx_hash_table[index].slave = assigned_slave;
463 				if (memcmp(rx_hash_table[index].mac_dst,
464 					   mac_bcast, ETH_ALEN)) {
465 					bond_info->rx_hashtbl[index].ntt = 1;
466 					bond_info->rx_ntt = 1;
467 					/* A slave has been removed from the
468 					 * table because it is either disabled
469 					 * or being released. We must retry the
470 					 * update to avoid clients from not
471 					 * being updated & disconnecting when
472 					 * there is stress
473 					 */
474 					bond_info->rlb_update_retry_counter =
475 						RLB_UPDATE_RETRY;
476 				}
477 			} else {  /* there is no active slave */
478 				rx_hash_table[index].slave = NULL;
479 			}
480 		}
481 	}
482 
483 	_unlock_rx_hashtbl(bond);
484 
485 	write_lock_bh(&bond->curr_slave_lock);
486 
487 	if (slave != bond->curr_active_slave) {
488 		rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
489 	}
490 
491 	write_unlock_bh(&bond->curr_slave_lock);
492 }
493 
494 static void rlb_update_client(struct rlb_client_info *client_info)
495 {
496 	int i;
497 
498 	if (!client_info->slave) {
499 		return;
500 	}
501 
502 	for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
503 		struct sk_buff *skb;
504 
505 		skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
506 				 client_info->ip_dst,
507 				 client_info->slave->dev,
508 				 client_info->ip_src,
509 				 client_info->mac_dst,
510 				 client_info->slave->dev->dev_addr,
511 				 client_info->mac_dst);
512 		if (!skb) {
513 			printk(KERN_ERR DRV_NAME
514 			       ": %s: Error: failed to create an ARP packet\n",
515 			       client_info->slave->dev->master->name);
516 			continue;
517 		}
518 
519 		skb->dev = client_info->slave->dev;
520 
521 		if (client_info->tag) {
522 			skb = vlan_put_tag(skb, client_info->vlan_id);
523 			if (!skb) {
524 				printk(KERN_ERR DRV_NAME
525 				       ": %s: Error: failed to insert VLAN tag\n",
526 				       client_info->slave->dev->master->name);
527 				continue;
528 			}
529 		}
530 
531 		arp_xmit(skb);
532 	}
533 }
534 
535 /* sends ARP REPLIES that update the clients that need updating */
536 static void rlb_update_rx_clients(struct bonding *bond)
537 {
538 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
539 	struct rlb_client_info *client_info;
540 	u32 hash_index;
541 
542 	_lock_rx_hashtbl(bond);
543 
544 	hash_index = bond_info->rx_hashtbl_head;
545 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
546 		client_info = &(bond_info->rx_hashtbl[hash_index]);
547 		if (client_info->ntt) {
548 			rlb_update_client(client_info);
549 			if (bond_info->rlb_update_retry_counter == 0) {
550 				client_info->ntt = 0;
551 			}
552 		}
553 	}
554 
555 	/* do not update the entries again untill this counter is zero so that
556 	 * not to confuse the clients.
557 	 */
558 	bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
559 
560 	_unlock_rx_hashtbl(bond);
561 }
562 
563 /* The slave was assigned a new mac address - update the clients */
564 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
565 {
566 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
567 	struct rlb_client_info *client_info;
568 	int ntt = 0;
569 	u32 hash_index;
570 
571 	_lock_rx_hashtbl(bond);
572 
573 	hash_index = bond_info->rx_hashtbl_head;
574 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
575 		client_info = &(bond_info->rx_hashtbl[hash_index]);
576 
577 		if ((client_info->slave == slave) &&
578 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
579 			client_info->ntt = 1;
580 			ntt = 1;
581 		}
582 	}
583 
584 	// update the team's flag only after the whole iteration
585 	if (ntt) {
586 		bond_info->rx_ntt = 1;
587 		//fasten the change
588 		bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
589 	}
590 
591 	_unlock_rx_hashtbl(bond);
592 }
593 
594 /* mark all clients using src_ip to be updated */
595 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
596 {
597 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
598 	struct rlb_client_info *client_info;
599 	u32 hash_index;
600 
601 	_lock_rx_hashtbl(bond);
602 
603 	hash_index = bond_info->rx_hashtbl_head;
604 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
605 		client_info = &(bond_info->rx_hashtbl[hash_index]);
606 
607 		if (!client_info->slave) {
608 			printk(KERN_ERR DRV_NAME
609 			       ": %s: Error: found a client with no channel in "
610 			       "the client's hash table\n",
611 			       bond->dev->name);
612 			continue;
613 		}
614 		/*update all clients using this src_ip, that are not assigned
615 		 * to the team's address (curr_active_slave) and have a known
616 		 * unicast mac address.
617 		 */
618 		if ((client_info->ip_src == src_ip) &&
619 		    memcmp(client_info->slave->dev->dev_addr,
620 			   bond->dev->dev_addr, ETH_ALEN) &&
621 		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
622 			client_info->ntt = 1;
623 			bond_info->rx_ntt = 1;
624 		}
625 	}
626 
627 	_unlock_rx_hashtbl(bond);
628 }
629 
630 /* Caller must hold both bond and ptr locks for read */
631 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
632 {
633 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
634 	struct arp_pkt *arp = arp_pkt(skb);
635 	struct slave *assigned_slave;
636 	struct rlb_client_info *client_info;
637 	u32 hash_index = 0;
638 
639 	_lock_rx_hashtbl(bond);
640 
641 	hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
642 	client_info = &(bond_info->rx_hashtbl[hash_index]);
643 
644 	if (client_info->assigned) {
645 		if ((client_info->ip_src == arp->ip_src) &&
646 		    (client_info->ip_dst == arp->ip_dst)) {
647 			/* the entry is already assigned to this client */
648 			if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
649 				/* update mac address from arp */
650 				memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
651 			}
652 
653 			assigned_slave = client_info->slave;
654 			if (assigned_slave) {
655 				_unlock_rx_hashtbl(bond);
656 				return assigned_slave;
657 			}
658 		} else {
659 			/* the entry is already assigned to some other client,
660 			 * move the old client to primary (curr_active_slave) so
661 			 * that the new client can be assigned to this entry.
662 			 */
663 			if (bond->curr_active_slave &&
664 			    client_info->slave != bond->curr_active_slave) {
665 				client_info->slave = bond->curr_active_slave;
666 				rlb_update_client(client_info);
667 			}
668 		}
669 	}
670 	/* assign a new slave */
671 	assigned_slave = rlb_next_rx_slave(bond);
672 
673 	if (assigned_slave) {
674 		client_info->ip_src = arp->ip_src;
675 		client_info->ip_dst = arp->ip_dst;
676 		/* arp->mac_dst is broadcast for arp reqeusts.
677 		 * will be updated with clients actual unicast mac address
678 		 * upon receiving an arp reply.
679 		 */
680 		memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
681 		client_info->slave = assigned_slave;
682 
683 		if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
684 			client_info->ntt = 1;
685 			bond->alb_info.rx_ntt = 1;
686 		} else {
687 			client_info->ntt = 0;
688 		}
689 
690 		if (!list_empty(&bond->vlan_list)) {
691 			if (!vlan_get_tag(skb, &client_info->vlan_id))
692 				client_info->tag = 1;
693 		}
694 
695 		if (!client_info->assigned) {
696 			u32 prev_tbl_head = bond_info->rx_hashtbl_head;
697 			bond_info->rx_hashtbl_head = hash_index;
698 			client_info->next = prev_tbl_head;
699 			if (prev_tbl_head != RLB_NULL_INDEX) {
700 				bond_info->rx_hashtbl[prev_tbl_head].prev =
701 					hash_index;
702 			}
703 			client_info->assigned = 1;
704 		}
705 	}
706 
707 	_unlock_rx_hashtbl(bond);
708 
709 	return assigned_slave;
710 }
711 
712 /* chooses (and returns) transmit channel for arp reply
713  * does not choose channel for other arp types since they are
714  * sent on the curr_active_slave
715  */
716 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
717 {
718 	struct arp_pkt *arp = arp_pkt(skb);
719 	struct slave *tx_slave = NULL;
720 
721 	if (arp->op_code == htons(ARPOP_REPLY)) {
722 		/* the arp must be sent on the selected
723 		* rx channel
724 		*/
725 		tx_slave = rlb_choose_channel(skb, bond);
726 		if (tx_slave) {
727 			memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
728 		}
729 		pr_debug("Server sent ARP Reply packet\n");
730 	} else if (arp->op_code == htons(ARPOP_REQUEST)) {
731 		/* Create an entry in the rx_hashtbl for this client as a
732 		 * place holder.
733 		 * When the arp reply is received the entry will be updated
734 		 * with the correct unicast address of the client.
735 		 */
736 		rlb_choose_channel(skb, bond);
737 
738 		/* The ARP relpy packets must be delayed so that
739 		 * they can cancel out the influence of the ARP request.
740 		 */
741 		bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
742 
743 		/* arp requests are broadcast and are sent on the primary
744 		 * the arp request will collapse all clients on the subnet to
745 		 * the primary slave. We must register these clients to be
746 		 * updated with their assigned mac.
747 		 */
748 		rlb_req_update_subnet_clients(bond, arp->ip_src);
749 		pr_debug("Server sent ARP Request packet\n");
750 	}
751 
752 	return tx_slave;
753 }
754 
755 /* Caller must hold bond lock for read */
756 static void rlb_rebalance(struct bonding *bond)
757 {
758 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
759 	struct slave *assigned_slave;
760 	struct rlb_client_info *client_info;
761 	int ntt;
762 	u32 hash_index;
763 
764 	_lock_rx_hashtbl(bond);
765 
766 	ntt = 0;
767 	hash_index = bond_info->rx_hashtbl_head;
768 	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
769 		client_info = &(bond_info->rx_hashtbl[hash_index]);
770 		assigned_slave = rlb_next_rx_slave(bond);
771 		if (assigned_slave && (client_info->slave != assigned_slave)) {
772 			client_info->slave = assigned_slave;
773 			client_info->ntt = 1;
774 			ntt = 1;
775 		}
776 	}
777 
778 	/* update the team's flag only after the whole iteration */
779 	if (ntt) {
780 		bond_info->rx_ntt = 1;
781 	}
782 	_unlock_rx_hashtbl(bond);
783 }
784 
785 /* Caller must hold rx_hashtbl lock */
786 static void rlb_init_table_entry(struct rlb_client_info *entry)
787 {
788 	memset(entry, 0, sizeof(struct rlb_client_info));
789 	entry->next = RLB_NULL_INDEX;
790 	entry->prev = RLB_NULL_INDEX;
791 }
792 
793 static int rlb_initialize(struct bonding *bond)
794 {
795 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
796 	struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
797 	struct rlb_client_info	*new_hashtbl;
798 	int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
799 	int i;
800 
801 	spin_lock_init(&(bond_info->rx_hashtbl_lock));
802 
803 	new_hashtbl = kmalloc(size, GFP_KERNEL);
804 	if (!new_hashtbl) {
805 		printk(KERN_ERR DRV_NAME
806 		       ": %s: Error: Failed to allocate RLB hash table\n",
807 		       bond->dev->name);
808 		return -1;
809 	}
810 	_lock_rx_hashtbl(bond);
811 
812 	bond_info->rx_hashtbl = new_hashtbl;
813 
814 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
815 
816 	for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
817 		rlb_init_table_entry(bond_info->rx_hashtbl + i);
818 	}
819 
820 	_unlock_rx_hashtbl(bond);
821 
822 	/*initialize packet type*/
823 	pk_type->type = cpu_to_be16(ETH_P_ARP);
824 	pk_type->dev = NULL;
825 	pk_type->func = rlb_arp_recv;
826 
827 	/* register to receive ARPs */
828 	dev_add_pack(pk_type);
829 
830 	return 0;
831 }
832 
833 static void rlb_deinitialize(struct bonding *bond)
834 {
835 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
836 
837 	dev_remove_pack(&(bond_info->rlb_pkt_type));
838 
839 	_lock_rx_hashtbl(bond);
840 
841 	kfree(bond_info->rx_hashtbl);
842 	bond_info->rx_hashtbl = NULL;
843 	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
844 
845 	_unlock_rx_hashtbl(bond);
846 }
847 
848 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
849 {
850 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
851 	u32 curr_index;
852 
853 	_lock_rx_hashtbl(bond);
854 
855 	curr_index = bond_info->rx_hashtbl_head;
856 	while (curr_index != RLB_NULL_INDEX) {
857 		struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
858 		u32 next_index = bond_info->rx_hashtbl[curr_index].next;
859 		u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
860 
861 		if (curr->tag && (curr->vlan_id == vlan_id)) {
862 			if (curr_index == bond_info->rx_hashtbl_head) {
863 				bond_info->rx_hashtbl_head = next_index;
864 			}
865 			if (prev_index != RLB_NULL_INDEX) {
866 				bond_info->rx_hashtbl[prev_index].next = next_index;
867 			}
868 			if (next_index != RLB_NULL_INDEX) {
869 				bond_info->rx_hashtbl[next_index].prev = prev_index;
870 			}
871 
872 			rlb_init_table_entry(curr);
873 		}
874 
875 		curr_index = next_index;
876 	}
877 
878 	_unlock_rx_hashtbl(bond);
879 }
880 
881 /*********************** tlb/rlb shared functions *********************/
882 
883 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
884 {
885 	struct bonding *bond = bond_get_bond_by_slave(slave);
886 	struct learning_pkt pkt;
887 	int size = sizeof(struct learning_pkt);
888 	int i;
889 
890 	memset(&pkt, 0, size);
891 	memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
892 	memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
893 	pkt.type = cpu_to_be16(ETH_P_LOOP);
894 
895 	for (i = 0; i < MAX_LP_BURST; i++) {
896 		struct sk_buff *skb;
897 		char *data;
898 
899 		skb = dev_alloc_skb(size);
900 		if (!skb) {
901 			return;
902 		}
903 
904 		data = skb_put(skb, size);
905 		memcpy(data, &pkt, size);
906 
907 		skb_reset_mac_header(skb);
908 		skb->network_header = skb->mac_header + ETH_HLEN;
909 		skb->protocol = pkt.type;
910 		skb->priority = TC_PRIO_CONTROL;
911 		skb->dev = slave->dev;
912 
913 		if (!list_empty(&bond->vlan_list)) {
914 			struct vlan_entry *vlan;
915 
916 			vlan = bond_next_vlan(bond,
917 					      bond->alb_info.current_alb_vlan);
918 
919 			bond->alb_info.current_alb_vlan = vlan;
920 			if (!vlan) {
921 				kfree_skb(skb);
922 				continue;
923 			}
924 
925 			skb = vlan_put_tag(skb, vlan->vlan_id);
926 			if (!skb) {
927 				printk(KERN_ERR DRV_NAME
928 				       ": %s: Error: failed to insert VLAN tag\n",
929 				       bond->dev->name);
930 				continue;
931 			}
932 		}
933 
934 		dev_queue_xmit(skb);
935 	}
936 }
937 
938 /* hw is a boolean parameter that determines whether we should try and
939  * set the hw address of the device as well as the hw address of the
940  * net_device
941  */
942 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
943 {
944 	struct net_device *dev = slave->dev;
945 	struct sockaddr s_addr;
946 
947 	if (!hw) {
948 		memcpy(dev->dev_addr, addr, dev->addr_len);
949 		return 0;
950 	}
951 
952 	/* for rlb each slave must have a unique hw mac addresses so that */
953 	/* each slave will receive packets destined to a different mac */
954 	memcpy(s_addr.sa_data, addr, dev->addr_len);
955 	s_addr.sa_family = dev->type;
956 	if (dev_set_mac_address(dev, &s_addr)) {
957 		printk(KERN_ERR DRV_NAME
958 		       ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
959 		       "mode requires that the base driver support setting "
960 		       "the hw address also when the network device's "
961 		       "interface is open\n",
962 		       dev->master->name, dev->name);
963 		return -EOPNOTSUPP;
964 	}
965 	return 0;
966 }
967 
968 /*
969  * Swap MAC addresses between two slaves.
970  *
971  * Called with RTNL held, and no other locks.
972  *
973  */
974 
975 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
976 {
977 	u8 tmp_mac_addr[ETH_ALEN];
978 
979 	memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
980 	alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
981 	alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
982 
983 }
984 
985 /*
986  * Send learning packets after MAC address swap.
987  *
988  * Called with RTNL and no other locks
989  */
990 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
991 				struct slave *slave2)
992 {
993 	int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
994 	struct slave *disabled_slave = NULL;
995 
996 	ASSERT_RTNL();
997 
998 	/* fasten the change in the switch */
999 	if (SLAVE_IS_OK(slave1)) {
1000 		alb_send_learning_packets(slave1, slave1->dev->dev_addr);
1001 		if (bond->alb_info.rlb_enabled) {
1002 			/* inform the clients that the mac address
1003 			 * has changed
1004 			 */
1005 			rlb_req_update_slave_clients(bond, slave1);
1006 		}
1007 	} else {
1008 		disabled_slave = slave1;
1009 	}
1010 
1011 	if (SLAVE_IS_OK(slave2)) {
1012 		alb_send_learning_packets(slave2, slave2->dev->dev_addr);
1013 		if (bond->alb_info.rlb_enabled) {
1014 			/* inform the clients that the mac address
1015 			 * has changed
1016 			 */
1017 			rlb_req_update_slave_clients(bond, slave2);
1018 		}
1019 	} else {
1020 		disabled_slave = slave2;
1021 	}
1022 
1023 	if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1024 		/* A disabled slave was assigned an active mac addr */
1025 		rlb_teach_disabled_mac_on_primary(bond,
1026 						  disabled_slave->dev->dev_addr);
1027 	}
1028 }
1029 
1030 /**
1031  * alb_change_hw_addr_on_detach
1032  * @bond: bonding we're working on
1033  * @slave: the slave that was just detached
1034  *
1035  * We assume that @slave was already detached from the slave list.
1036  *
1037  * If @slave's permanent hw address is different both from its current
1038  * address and from @bond's address, then somewhere in the bond there's
1039  * a slave that has @slave's permanet address as its current address.
1040  * We'll make sure that that slave no longer uses @slave's permanent address.
1041  *
1042  * Caller must hold RTNL and no other locks
1043  */
1044 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1045 {
1046 	int perm_curr_diff;
1047 	int perm_bond_diff;
1048 
1049 	perm_curr_diff = memcmp(slave->perm_hwaddr,
1050 				slave->dev->dev_addr,
1051 				ETH_ALEN);
1052 	perm_bond_diff = memcmp(slave->perm_hwaddr,
1053 				bond->dev->dev_addr,
1054 				ETH_ALEN);
1055 
1056 	if (perm_curr_diff && perm_bond_diff) {
1057 		struct slave *tmp_slave;
1058 		int i, found = 0;
1059 
1060 		bond_for_each_slave(bond, tmp_slave, i) {
1061 			if (!memcmp(slave->perm_hwaddr,
1062 				    tmp_slave->dev->dev_addr,
1063 				    ETH_ALEN)) {
1064 				found = 1;
1065 				break;
1066 			}
1067 		}
1068 
1069 		if (found) {
1070 			/* locking: needs RTNL and nothing else */
1071 			alb_swap_mac_addr(bond, slave, tmp_slave);
1072 			alb_fasten_mac_swap(bond, slave, tmp_slave);
1073 		}
1074 	}
1075 }
1076 
1077 /**
1078  * alb_handle_addr_collision_on_attach
1079  * @bond: bonding we're working on
1080  * @slave: the slave that was just attached
1081  *
1082  * checks uniqueness of slave's mac address and handles the case the
1083  * new slave uses the bonds mac address.
1084  *
1085  * If the permanent hw address of @slave is @bond's hw address, we need to
1086  * find a different hw address to give @slave, that isn't in use by any other
1087  * slave in the bond. This address must be, of course, one of the premanent
1088  * addresses of the other slaves.
1089  *
1090  * We go over the slave list, and for each slave there we compare its
1091  * permanent hw address with the current address of all the other slaves.
1092  * If no match was found, then we've found a slave with a permanent address
1093  * that isn't used by any other slave in the bond, so we can assign it to
1094  * @slave.
1095  *
1096  * assumption: this function is called before @slave is attached to the
1097  * 	       bond slave list.
1098  *
1099  * caller must hold the bond lock for write since the mac addresses are compared
1100  * and may be swapped.
1101  */
1102 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1103 {
1104 	struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1105 	struct slave *has_bond_addr = bond->curr_active_slave;
1106 	int i, j, found = 0;
1107 
1108 	if (bond->slave_cnt == 0) {
1109 		/* this is the first slave */
1110 		return 0;
1111 	}
1112 
1113 	/* if slave's mac address differs from bond's mac address
1114 	 * check uniqueness of slave's mac address against the other
1115 	 * slaves in the bond.
1116 	 */
1117 	if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1118 		bond_for_each_slave(bond, tmp_slave1, i) {
1119 			if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1120 				    ETH_ALEN)) {
1121 				found = 1;
1122 				break;
1123 			}
1124 		}
1125 
1126 		if (!found)
1127 			return 0;
1128 
1129 		/* Try setting slave mac to bond address and fall-through
1130 		   to code handling that situation below... */
1131 		alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1132 				       bond->alb_info.rlb_enabled);
1133 	}
1134 
1135 	/* The slave's address is equal to the address of the bond.
1136 	 * Search for a spare address in the bond for this slave.
1137 	 */
1138 	free_mac_slave = NULL;
1139 
1140 	bond_for_each_slave(bond, tmp_slave1, i) {
1141 		found = 0;
1142 		bond_for_each_slave(bond, tmp_slave2, j) {
1143 			if (!memcmp(tmp_slave1->perm_hwaddr,
1144 				    tmp_slave2->dev->dev_addr,
1145 				    ETH_ALEN)) {
1146 				found = 1;
1147 				break;
1148 			}
1149 		}
1150 
1151 		if (!found) {
1152 			/* no slave has tmp_slave1's perm addr
1153 			 * as its curr addr
1154 			 */
1155 			free_mac_slave = tmp_slave1;
1156 			break;
1157 		}
1158 
1159 		if (!has_bond_addr) {
1160 			if (!memcmp(tmp_slave1->dev->dev_addr,
1161 				    bond->dev->dev_addr,
1162 				    ETH_ALEN)) {
1163 
1164 				has_bond_addr = tmp_slave1;
1165 			}
1166 		}
1167 	}
1168 
1169 	if (free_mac_slave) {
1170 		alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1171 				       bond->alb_info.rlb_enabled);
1172 
1173 		printk(KERN_WARNING DRV_NAME
1174 		       ": %s: Warning: the hw address of slave %s is in use by "
1175 		       "the bond; giving it the hw address of %s\n",
1176 		       bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1177 
1178 	} else if (has_bond_addr) {
1179 		printk(KERN_ERR DRV_NAME
1180 		       ": %s: Error: the hw address of slave %s is in use by the "
1181 		       "bond; couldn't find a slave with a free hw address to "
1182 		       "give it (this should not have happened)\n",
1183 		       bond->dev->name, slave->dev->name);
1184 		return -EFAULT;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 /**
1191  * alb_set_mac_address
1192  * @bond:
1193  * @addr:
1194  *
1195  * In TLB mode all slaves are configured to the bond's hw address, but set
1196  * their dev_addr field to different addresses (based on their permanent hw
1197  * addresses).
1198  *
1199  * For each slave, this function sets the interface to the new address and then
1200  * changes its dev_addr field to its previous value.
1201  *
1202  * Unwinding assumes bond's mac address has not yet changed.
1203  */
1204 static int alb_set_mac_address(struct bonding *bond, void *addr)
1205 {
1206 	struct sockaddr sa;
1207 	struct slave *slave, *stop_at;
1208 	char tmp_addr[ETH_ALEN];
1209 	int res;
1210 	int i;
1211 
1212 	if (bond->alb_info.rlb_enabled) {
1213 		return 0;
1214 	}
1215 
1216 	bond_for_each_slave(bond, slave, i) {
1217 		/* save net_device's current hw address */
1218 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1219 
1220 		res = dev_set_mac_address(slave->dev, addr);
1221 
1222 		/* restore net_device's hw address */
1223 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1224 
1225 		if (res)
1226 			goto unwind;
1227 	}
1228 
1229 	return 0;
1230 
1231 unwind:
1232 	memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1233 	sa.sa_family = bond->dev->type;
1234 
1235 	/* unwind from head to the slave that failed */
1236 	stop_at = slave;
1237 	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1238 		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1239 		dev_set_mac_address(slave->dev, &sa);
1240 		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1241 	}
1242 
1243 	return res;
1244 }
1245 
1246 /************************ exported alb funcions ************************/
1247 
1248 int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1249 {
1250 	int res;
1251 
1252 	res = tlb_initialize(bond);
1253 	if (res) {
1254 		return res;
1255 	}
1256 
1257 	if (rlb_enabled) {
1258 		bond->alb_info.rlb_enabled = 1;
1259 		/* initialize rlb */
1260 		res = rlb_initialize(bond);
1261 		if (res) {
1262 			tlb_deinitialize(bond);
1263 			return res;
1264 		}
1265 	} else {
1266 		bond->alb_info.rlb_enabled = 0;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 void bond_alb_deinitialize(struct bonding *bond)
1273 {
1274 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1275 
1276 	tlb_deinitialize(bond);
1277 
1278 	if (bond_info->rlb_enabled) {
1279 		rlb_deinitialize(bond);
1280 	}
1281 }
1282 
1283 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1284 {
1285 	struct bonding *bond = netdev_priv(bond_dev);
1286 	struct ethhdr *eth_data;
1287 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1288 	struct slave *tx_slave = NULL;
1289 	static const __be32 ip_bcast = htonl(0xffffffff);
1290 	int hash_size = 0;
1291 	int do_tx_balance = 1;
1292 	u32 hash_index = 0;
1293 	const u8 *hash_start = NULL;
1294 	int res = 1;
1295 	struct ipv6hdr *ip6hdr;
1296 
1297 	skb_reset_mac_header(skb);
1298 	eth_data = eth_hdr(skb);
1299 
1300 	/* make sure that the curr_active_slave and the slaves list do
1301 	 * not change during tx
1302 	 */
1303 	read_lock(&bond->lock);
1304 	read_lock(&bond->curr_slave_lock);
1305 
1306 	if (!BOND_IS_OK(bond)) {
1307 		goto out;
1308 	}
1309 
1310 	switch (ntohs(skb->protocol)) {
1311 	case ETH_P_IP: {
1312 		const struct iphdr *iph = ip_hdr(skb);
1313 
1314 		if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1315 		    (iph->daddr == ip_bcast) ||
1316 		    (iph->protocol == IPPROTO_IGMP)) {
1317 			do_tx_balance = 0;
1318 			break;
1319 		}
1320 		hash_start = (char *)&(iph->daddr);
1321 		hash_size = sizeof(iph->daddr);
1322 	}
1323 		break;
1324 	case ETH_P_IPV6:
1325 		/* IPv6 doesn't really use broadcast mac address, but leave
1326 		 * that here just in case.
1327 		 */
1328 		if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1329 			do_tx_balance = 0;
1330 			break;
1331 		}
1332 
1333 		/* IPv6 uses all-nodes multicast as an equivalent to
1334 		 * broadcasts in IPv4.
1335 		 */
1336 		if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) {
1337 			do_tx_balance = 0;
1338 			break;
1339 		}
1340 
1341 		/* Additianally, DAD probes should not be tx-balanced as that
1342 		 * will lead to false positives for duplicate addresses and
1343 		 * prevent address configuration from working.
1344 		 */
1345 		ip6hdr = ipv6_hdr(skb);
1346 		if (ipv6_addr_any(&ip6hdr->saddr)) {
1347 			do_tx_balance = 0;
1348 			break;
1349 		}
1350 
1351 		hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1352 		hash_size = sizeof(ipv6_hdr(skb)->daddr);
1353 		break;
1354 	case ETH_P_IPX:
1355 		if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1356 			/* something is wrong with this packet */
1357 			do_tx_balance = 0;
1358 			break;
1359 		}
1360 
1361 		if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1362 			/* The only protocol worth balancing in
1363 			 * this family since it has an "ARP" like
1364 			 * mechanism
1365 			 */
1366 			do_tx_balance = 0;
1367 			break;
1368 		}
1369 
1370 		hash_start = (char*)eth_data->h_dest;
1371 		hash_size = ETH_ALEN;
1372 		break;
1373 	case ETH_P_ARP:
1374 		do_tx_balance = 0;
1375 		if (bond_info->rlb_enabled) {
1376 			tx_slave = rlb_arp_xmit(skb, bond);
1377 		}
1378 		break;
1379 	default:
1380 		do_tx_balance = 0;
1381 		break;
1382 	}
1383 
1384 	if (do_tx_balance) {
1385 		hash_index = _simple_hash(hash_start, hash_size);
1386 		tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1387 	}
1388 
1389 	if (!tx_slave) {
1390 		/* unbalanced or unassigned, send through primary */
1391 		tx_slave = bond->curr_active_slave;
1392 		bond_info->unbalanced_load += skb->len;
1393 	}
1394 
1395 	if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1396 		if (tx_slave != bond->curr_active_slave) {
1397 			memcpy(eth_data->h_source,
1398 			       tx_slave->dev->dev_addr,
1399 			       ETH_ALEN);
1400 		}
1401 
1402 		res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1403 	} else {
1404 		if (tx_slave) {
1405 			tlb_clear_slave(bond, tx_slave, 0);
1406 		}
1407 	}
1408 
1409 out:
1410 	if (res) {
1411 		/* no suitable interface, frame not sent */
1412 		dev_kfree_skb(skb);
1413 	}
1414 	read_unlock(&bond->curr_slave_lock);
1415 	read_unlock(&bond->lock);
1416 	return 0;
1417 }
1418 
1419 void bond_alb_monitor(struct work_struct *work)
1420 {
1421 	struct bonding *bond = container_of(work, struct bonding,
1422 					    alb_work.work);
1423 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1424 	struct slave *slave;
1425 	int i;
1426 
1427 	read_lock(&bond->lock);
1428 
1429 	if (bond->kill_timers) {
1430 		goto out;
1431 	}
1432 
1433 	if (bond->slave_cnt == 0) {
1434 		bond_info->tx_rebalance_counter = 0;
1435 		bond_info->lp_counter = 0;
1436 		goto re_arm;
1437 	}
1438 
1439 	bond_info->tx_rebalance_counter++;
1440 	bond_info->lp_counter++;
1441 
1442 	/* send learning packets */
1443 	if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1444 		/* change of curr_active_slave involves swapping of mac addresses.
1445 		 * in order to avoid this swapping from happening while
1446 		 * sending the learning packets, the curr_slave_lock must be held for
1447 		 * read.
1448 		 */
1449 		read_lock(&bond->curr_slave_lock);
1450 
1451 		bond_for_each_slave(bond, slave, i) {
1452 			alb_send_learning_packets(slave, slave->dev->dev_addr);
1453 		}
1454 
1455 		read_unlock(&bond->curr_slave_lock);
1456 
1457 		bond_info->lp_counter = 0;
1458 	}
1459 
1460 	/* rebalance tx traffic */
1461 	if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1462 
1463 		read_lock(&bond->curr_slave_lock);
1464 
1465 		bond_for_each_slave(bond, slave, i) {
1466 			tlb_clear_slave(bond, slave, 1);
1467 			if (slave == bond->curr_active_slave) {
1468 				SLAVE_TLB_INFO(slave).load =
1469 					bond_info->unbalanced_load /
1470 						BOND_TLB_REBALANCE_INTERVAL;
1471 				bond_info->unbalanced_load = 0;
1472 			}
1473 		}
1474 
1475 		read_unlock(&bond->curr_slave_lock);
1476 
1477 		bond_info->tx_rebalance_counter = 0;
1478 	}
1479 
1480 	/* handle rlb stuff */
1481 	if (bond_info->rlb_enabled) {
1482 		if (bond_info->primary_is_promisc &&
1483 		    (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1484 
1485 			/*
1486 			 * dev_set_promiscuity requires rtnl and
1487 			 * nothing else.
1488 			 */
1489 			read_unlock(&bond->lock);
1490 			rtnl_lock();
1491 
1492 			bond_info->rlb_promisc_timeout_counter = 0;
1493 
1494 			/* If the primary was set to promiscuous mode
1495 			 * because a slave was disabled then
1496 			 * it can now leave promiscuous mode.
1497 			 */
1498 			dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1499 			bond_info->primary_is_promisc = 0;
1500 
1501 			rtnl_unlock();
1502 			read_lock(&bond->lock);
1503 		}
1504 
1505 		if (bond_info->rlb_rebalance) {
1506 			bond_info->rlb_rebalance = 0;
1507 			rlb_rebalance(bond);
1508 		}
1509 
1510 		/* check if clients need updating */
1511 		if (bond_info->rx_ntt) {
1512 			if (bond_info->rlb_update_delay_counter) {
1513 				--bond_info->rlb_update_delay_counter;
1514 			} else {
1515 				rlb_update_rx_clients(bond);
1516 				if (bond_info->rlb_update_retry_counter) {
1517 					--bond_info->rlb_update_retry_counter;
1518 				} else {
1519 					bond_info->rx_ntt = 0;
1520 				}
1521 			}
1522 		}
1523 	}
1524 
1525 re_arm:
1526 	queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1527 out:
1528 	read_unlock(&bond->lock);
1529 }
1530 
1531 /* assumption: called before the slave is attached to the bond
1532  * and not locked by the bond lock
1533  */
1534 int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1535 {
1536 	int res;
1537 
1538 	res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1539 				     bond->alb_info.rlb_enabled);
1540 	if (res) {
1541 		return res;
1542 	}
1543 
1544 	/* caller must hold the bond lock for write since the mac addresses
1545 	 * are compared and may be swapped.
1546 	 */
1547 	read_lock(&bond->lock);
1548 
1549 	res = alb_handle_addr_collision_on_attach(bond, slave);
1550 
1551 	read_unlock(&bond->lock);
1552 
1553 	if (res) {
1554 		return res;
1555 	}
1556 
1557 	tlb_init_slave(slave);
1558 
1559 	/* order a rebalance ASAP */
1560 	bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1561 
1562 	if (bond->alb_info.rlb_enabled) {
1563 		bond->alb_info.rlb_rebalance = 1;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 /*
1570  * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1571  * if necessary.
1572  *
1573  * Caller must hold RTNL and no other locks
1574  */
1575 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1576 {
1577 	if (bond->slave_cnt > 1) {
1578 		alb_change_hw_addr_on_detach(bond, slave);
1579 	}
1580 
1581 	tlb_clear_slave(bond, slave, 0);
1582 
1583 	if (bond->alb_info.rlb_enabled) {
1584 		bond->alb_info.next_rx_slave = NULL;
1585 		rlb_clear_slave(bond, slave);
1586 	}
1587 }
1588 
1589 /* Caller must hold bond lock for read */
1590 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1591 {
1592 	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1593 
1594 	if (link == BOND_LINK_DOWN) {
1595 		tlb_clear_slave(bond, slave, 0);
1596 		if (bond->alb_info.rlb_enabled) {
1597 			rlb_clear_slave(bond, slave);
1598 		}
1599 	} else if (link == BOND_LINK_UP) {
1600 		/* order a rebalance ASAP */
1601 		bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1602 		if (bond->alb_info.rlb_enabled) {
1603 			bond->alb_info.rlb_rebalance = 1;
1604 			/* If the updelay module parameter is smaller than the
1605 			 * forwarding delay of the switch the rebalance will
1606 			 * not work because the rebalance arp replies will
1607 			 * not be forwarded to the clients..
1608 			 */
1609 		}
1610 	}
1611 }
1612 
1613 /**
1614  * bond_alb_handle_active_change - assign new curr_active_slave
1615  * @bond: our bonding struct
1616  * @new_slave: new slave to assign
1617  *
1618  * Set the bond->curr_active_slave to @new_slave and handle
1619  * mac address swapping and promiscuity changes as needed.
1620  *
1621  * If new_slave is NULL, caller must hold curr_slave_lock or
1622  * bond->lock for write.
1623  *
1624  * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1625  * read and curr_slave_lock for write.  Processing here may sleep, so
1626  * no other locks may be held.
1627  */
1628 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1629 	__releases(&bond->curr_slave_lock)
1630 	__releases(&bond->lock)
1631 	__acquires(&bond->lock)
1632 	__acquires(&bond->curr_slave_lock)
1633 {
1634 	struct slave *swap_slave;
1635 	int i;
1636 
1637 	if (bond->curr_active_slave == new_slave) {
1638 		return;
1639 	}
1640 
1641 	if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1642 		dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1643 		bond->alb_info.primary_is_promisc = 0;
1644 		bond->alb_info.rlb_promisc_timeout_counter = 0;
1645 	}
1646 
1647 	swap_slave = bond->curr_active_slave;
1648 	bond->curr_active_slave = new_slave;
1649 
1650 	if (!new_slave || (bond->slave_cnt == 0)) {
1651 		return;
1652 	}
1653 
1654 	/* set the new curr_active_slave to the bonds mac address
1655 	 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1656 	 */
1657 	if (!swap_slave) {
1658 		struct slave *tmp_slave;
1659 		/* find slave that is holding the bond's mac address */
1660 		bond_for_each_slave(bond, tmp_slave, i) {
1661 			if (!memcmp(tmp_slave->dev->dev_addr,
1662 				    bond->dev->dev_addr, ETH_ALEN)) {
1663 				swap_slave = tmp_slave;
1664 				break;
1665 			}
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * Arrange for swap_slave and new_slave to temporarily be
1671 	 * ignored so we can mess with their MAC addresses without
1672 	 * fear of interference from transmit activity.
1673 	 */
1674 	if (swap_slave) {
1675 		tlb_clear_slave(bond, swap_slave, 1);
1676 	}
1677 	tlb_clear_slave(bond, new_slave, 1);
1678 
1679 	write_unlock_bh(&bond->curr_slave_lock);
1680 	read_unlock(&bond->lock);
1681 
1682 	ASSERT_RTNL();
1683 
1684 	/* curr_active_slave must be set before calling alb_swap_mac_addr */
1685 	if (swap_slave) {
1686 		/* swap mac address */
1687 		alb_swap_mac_addr(bond, swap_slave, new_slave);
1688 	} else {
1689 		/* set the new_slave to the bond mac address */
1690 		alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1691 				       bond->alb_info.rlb_enabled);
1692 	}
1693 
1694 	if (swap_slave) {
1695 		alb_fasten_mac_swap(bond, swap_slave, new_slave);
1696 		read_lock(&bond->lock);
1697 	} else {
1698 		read_lock(&bond->lock);
1699 		alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1700 	}
1701 
1702 	write_lock_bh(&bond->curr_slave_lock);
1703 }
1704 
1705 /*
1706  * Called with RTNL
1707  */
1708 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1709 	__acquires(&bond->lock)
1710 	__releases(&bond->lock)
1711 {
1712 	struct bonding *bond = netdev_priv(bond_dev);
1713 	struct sockaddr *sa = addr;
1714 	struct slave *slave, *swap_slave;
1715 	int res;
1716 	int i;
1717 
1718 	if (!is_valid_ether_addr(sa->sa_data)) {
1719 		return -EADDRNOTAVAIL;
1720 	}
1721 
1722 	res = alb_set_mac_address(bond, addr);
1723 	if (res) {
1724 		return res;
1725 	}
1726 
1727 	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1728 
1729 	/* If there is no curr_active_slave there is nothing else to do.
1730 	 * Otherwise we'll need to pass the new address to it and handle
1731 	 * duplications.
1732 	 */
1733 	if (!bond->curr_active_slave) {
1734 		return 0;
1735 	}
1736 
1737 	swap_slave = NULL;
1738 
1739 	bond_for_each_slave(bond, slave, i) {
1740 		if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1741 			swap_slave = slave;
1742 			break;
1743 		}
1744 	}
1745 
1746 	if (swap_slave) {
1747 		alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1748 		alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1749 	} else {
1750 		alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1751 				       bond->alb_info.rlb_enabled);
1752 
1753 		read_lock(&bond->lock);
1754 		alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1755 		if (bond->alb_info.rlb_enabled) {
1756 			/* inform clients mac address has changed */
1757 			rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1758 		}
1759 		read_unlock(&bond->lock);
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1766 {
1767 	if (bond->alb_info.current_alb_vlan &&
1768 	    (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1769 		bond->alb_info.current_alb_vlan = NULL;
1770 	}
1771 
1772 	if (bond->alb_info.rlb_enabled) {
1773 		rlb_clear_vlan(bond, vlan_id);
1774 	}
1775 }
1776 
1777