1 /* 2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License along 15 * with this program; if not, write to the Free Software Foundation, Inc., 16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called LICENSE. 20 * 21 */ 22 23 #include <linux/skbuff.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/pkt_sched.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/ip.h> 31 #include <linux/ipv6.h> 32 #include <linux/if_arp.h> 33 #include <linux/if_ether.h> 34 #include <linux/if_bonding.h> 35 #include <linux/if_vlan.h> 36 #include <linux/in.h> 37 #include <net/ipx.h> 38 #include <net/arp.h> 39 #include <net/ipv6.h> 40 #include <asm/byteorder.h> 41 #include "bonding.h" 42 #include "bond_alb.h" 43 44 45 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */ 46 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing. 47 * Used for division - never set 48 * to zero !!! 49 */ 50 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of 51 * learning packets to the switch 52 */ 53 54 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \ 55 * ALB_TIMER_TICKS_PER_SEC) 56 57 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \ 58 * ALB_TIMER_TICKS_PER_SEC) 59 60 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table. 61 * Note that this value MUST NOT be smaller 62 * because the key hash table is BYTE wide ! 63 */ 64 65 66 #define TLB_NULL_INDEX 0xffffffff 67 #define MAX_LP_BURST 3 68 69 /* rlb defs */ 70 #define RLB_HASH_TABLE_SIZE 256 71 #define RLB_NULL_INDEX 0xffffffff 72 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */ 73 #define RLB_ARP_BURST_SIZE 2 74 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb 75 * rebalance interval (5 min). 76 */ 77 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is 78 * promiscuous after failover 79 */ 80 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC 81 82 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff}; 83 static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01}; 84 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC; 85 86 #pragma pack(1) 87 struct learning_pkt { 88 u8 mac_dst[ETH_ALEN]; 89 u8 mac_src[ETH_ALEN]; 90 __be16 type; 91 u8 padding[ETH_ZLEN - ETH_HLEN]; 92 }; 93 94 struct arp_pkt { 95 __be16 hw_addr_space; 96 __be16 prot_addr_space; 97 u8 hw_addr_len; 98 u8 prot_addr_len; 99 __be16 op_code; 100 u8 mac_src[ETH_ALEN]; /* sender hardware address */ 101 __be32 ip_src; /* sender IP address */ 102 u8 mac_dst[ETH_ALEN]; /* target hardware address */ 103 __be32 ip_dst; /* target IP address */ 104 }; 105 #pragma pack() 106 107 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb) 108 { 109 return (struct arp_pkt *)skb_network_header(skb); 110 } 111 112 /* Forward declaration */ 113 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]); 114 115 static inline u8 _simple_hash(const u8 *hash_start, int hash_size) 116 { 117 int i; 118 u8 hash = 0; 119 120 for (i = 0; i < hash_size; i++) { 121 hash ^= hash_start[i]; 122 } 123 124 return hash; 125 } 126 127 /*********************** tlb specific functions ***************************/ 128 129 static inline void _lock_tx_hashtbl(struct bonding *bond) 130 { 131 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 132 } 133 134 static inline void _unlock_tx_hashtbl(struct bonding *bond) 135 { 136 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock)); 137 } 138 139 /* Caller must hold tx_hashtbl lock */ 140 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load) 141 { 142 if (save_load) { 143 entry->load_history = 1 + entry->tx_bytes / 144 BOND_TLB_REBALANCE_INTERVAL; 145 entry->tx_bytes = 0; 146 } 147 148 entry->tx_slave = NULL; 149 entry->next = TLB_NULL_INDEX; 150 entry->prev = TLB_NULL_INDEX; 151 } 152 153 static inline void tlb_init_slave(struct slave *slave) 154 { 155 SLAVE_TLB_INFO(slave).load = 0; 156 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX; 157 } 158 159 /* Caller must hold bond lock for read */ 160 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load) 161 { 162 struct tlb_client_info *tx_hash_table; 163 u32 index; 164 165 _lock_tx_hashtbl(bond); 166 167 /* clear slave from tx_hashtbl */ 168 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl; 169 170 /* skip this if we've already freed the tx hash table */ 171 if (tx_hash_table) { 172 index = SLAVE_TLB_INFO(slave).head; 173 while (index != TLB_NULL_INDEX) { 174 u32 next_index = tx_hash_table[index].next; 175 tlb_init_table_entry(&tx_hash_table[index], save_load); 176 index = next_index; 177 } 178 } 179 180 tlb_init_slave(slave); 181 182 _unlock_tx_hashtbl(bond); 183 } 184 185 /* Must be called before starting the monitor timer */ 186 static int tlb_initialize(struct bonding *bond) 187 { 188 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 189 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info); 190 struct tlb_client_info *new_hashtbl; 191 int i; 192 193 spin_lock_init(&(bond_info->tx_hashtbl_lock)); 194 195 new_hashtbl = kzalloc(size, GFP_KERNEL); 196 if (!new_hashtbl) { 197 printk(KERN_ERR DRV_NAME 198 ": %s: Error: Failed to allocate TLB hash table\n", 199 bond->dev->name); 200 return -1; 201 } 202 _lock_tx_hashtbl(bond); 203 204 bond_info->tx_hashtbl = new_hashtbl; 205 206 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) { 207 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1); 208 } 209 210 _unlock_tx_hashtbl(bond); 211 212 return 0; 213 } 214 215 /* Must be called only after all slaves have been released */ 216 static void tlb_deinitialize(struct bonding *bond) 217 { 218 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 219 220 _lock_tx_hashtbl(bond); 221 222 kfree(bond_info->tx_hashtbl); 223 bond_info->tx_hashtbl = NULL; 224 225 _unlock_tx_hashtbl(bond); 226 } 227 228 /* Caller must hold bond lock for read */ 229 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond) 230 { 231 struct slave *slave, *least_loaded; 232 s64 max_gap; 233 int i, found = 0; 234 235 /* Find the first enabled slave */ 236 bond_for_each_slave(bond, slave, i) { 237 if (SLAVE_IS_OK(slave)) { 238 found = 1; 239 break; 240 } 241 } 242 243 if (!found) { 244 return NULL; 245 } 246 247 least_loaded = slave; 248 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */ 249 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */ 250 251 /* Find the slave with the largest gap */ 252 bond_for_each_slave_from(bond, slave, i, least_loaded) { 253 if (SLAVE_IS_OK(slave)) { 254 s64 gap = (s64)(slave->speed << 20) - 255 (s64)(SLAVE_TLB_INFO(slave).load << 3); 256 if (max_gap < gap) { 257 least_loaded = slave; 258 max_gap = gap; 259 } 260 } 261 } 262 263 return least_loaded; 264 } 265 266 /* Caller must hold bond lock for read */ 267 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len) 268 { 269 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 270 struct tlb_client_info *hash_table; 271 struct slave *assigned_slave; 272 273 _lock_tx_hashtbl(bond); 274 275 hash_table = bond_info->tx_hashtbl; 276 assigned_slave = hash_table[hash_index].tx_slave; 277 if (!assigned_slave) { 278 assigned_slave = tlb_get_least_loaded_slave(bond); 279 280 if (assigned_slave) { 281 struct tlb_slave_info *slave_info = 282 &(SLAVE_TLB_INFO(assigned_slave)); 283 u32 next_index = slave_info->head; 284 285 hash_table[hash_index].tx_slave = assigned_slave; 286 hash_table[hash_index].next = next_index; 287 hash_table[hash_index].prev = TLB_NULL_INDEX; 288 289 if (next_index != TLB_NULL_INDEX) { 290 hash_table[next_index].prev = hash_index; 291 } 292 293 slave_info->head = hash_index; 294 slave_info->load += 295 hash_table[hash_index].load_history; 296 } 297 } 298 299 if (assigned_slave) { 300 hash_table[hash_index].tx_bytes += skb_len; 301 } 302 303 _unlock_tx_hashtbl(bond); 304 305 return assigned_slave; 306 } 307 308 /*********************** rlb specific functions ***************************/ 309 static inline void _lock_rx_hashtbl(struct bonding *bond) 310 { 311 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 312 } 313 314 static inline void _unlock_rx_hashtbl(struct bonding *bond) 315 { 316 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock)); 317 } 318 319 /* when an ARP REPLY is received from a client update its info 320 * in the rx_hashtbl 321 */ 322 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp) 323 { 324 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 325 struct rlb_client_info *client_info; 326 u32 hash_index; 327 328 _lock_rx_hashtbl(bond); 329 330 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src)); 331 client_info = &(bond_info->rx_hashtbl[hash_index]); 332 333 if ((client_info->assigned) && 334 (client_info->ip_src == arp->ip_dst) && 335 (client_info->ip_dst == arp->ip_src)) { 336 /* update the clients MAC address */ 337 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN); 338 client_info->ntt = 1; 339 bond_info->rx_ntt = 1; 340 } 341 342 _unlock_rx_hashtbl(bond); 343 } 344 345 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev) 346 { 347 struct bonding *bond; 348 struct arp_pkt *arp = (struct arp_pkt *)skb->data; 349 int res = NET_RX_DROP; 350 351 if (dev_net(bond_dev) != &init_net) 352 goto out; 353 354 while (bond_dev->priv_flags & IFF_802_1Q_VLAN) 355 bond_dev = vlan_dev_real_dev(bond_dev); 356 357 if (!(bond_dev->priv_flags & IFF_BONDING) || 358 !(bond_dev->flags & IFF_MASTER)) 359 goto out; 360 361 if (!arp) { 362 pr_debug("Packet has no ARP data\n"); 363 goto out; 364 } 365 366 if (skb->len < sizeof(struct arp_pkt)) { 367 pr_debug("Packet is too small to be an ARP\n"); 368 goto out; 369 } 370 371 if (arp->op_code == htons(ARPOP_REPLY)) { 372 /* update rx hash table for this ARP */ 373 bond = netdev_priv(bond_dev); 374 rlb_update_entry_from_arp(bond, arp); 375 pr_debug("Server received an ARP Reply from client\n"); 376 } 377 378 res = NET_RX_SUCCESS; 379 380 out: 381 dev_kfree_skb(skb); 382 383 return res; 384 } 385 386 /* Caller must hold bond lock for read */ 387 static struct slave *rlb_next_rx_slave(struct bonding *bond) 388 { 389 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 390 struct slave *rx_slave, *slave, *start_at; 391 int i = 0; 392 393 if (bond_info->next_rx_slave) { 394 start_at = bond_info->next_rx_slave; 395 } else { 396 start_at = bond->first_slave; 397 } 398 399 rx_slave = NULL; 400 401 bond_for_each_slave_from(bond, slave, i, start_at) { 402 if (SLAVE_IS_OK(slave)) { 403 if (!rx_slave) { 404 rx_slave = slave; 405 } else if (slave->speed > rx_slave->speed) { 406 rx_slave = slave; 407 } 408 } 409 } 410 411 if (rx_slave) { 412 bond_info->next_rx_slave = rx_slave->next; 413 } 414 415 return rx_slave; 416 } 417 418 /* teach the switch the mac of a disabled slave 419 * on the primary for fault tolerance 420 * 421 * Caller must hold bond->curr_slave_lock for write or bond lock for write 422 */ 423 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[]) 424 { 425 if (!bond->curr_active_slave) { 426 return; 427 } 428 429 if (!bond->alb_info.primary_is_promisc) { 430 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1)) 431 bond->alb_info.primary_is_promisc = 1; 432 else 433 bond->alb_info.primary_is_promisc = 0; 434 } 435 436 bond->alb_info.rlb_promisc_timeout_counter = 0; 437 438 alb_send_learning_packets(bond->curr_active_slave, addr); 439 } 440 441 /* slave being removed should not be active at this point 442 * 443 * Caller must hold bond lock for read 444 */ 445 static void rlb_clear_slave(struct bonding *bond, struct slave *slave) 446 { 447 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 448 struct rlb_client_info *rx_hash_table; 449 u32 index, next_index; 450 451 /* clear slave from rx_hashtbl */ 452 _lock_rx_hashtbl(bond); 453 454 rx_hash_table = bond_info->rx_hashtbl; 455 index = bond_info->rx_hashtbl_head; 456 for (; index != RLB_NULL_INDEX; index = next_index) { 457 next_index = rx_hash_table[index].next; 458 if (rx_hash_table[index].slave == slave) { 459 struct slave *assigned_slave = rlb_next_rx_slave(bond); 460 461 if (assigned_slave) { 462 rx_hash_table[index].slave = assigned_slave; 463 if (memcmp(rx_hash_table[index].mac_dst, 464 mac_bcast, ETH_ALEN)) { 465 bond_info->rx_hashtbl[index].ntt = 1; 466 bond_info->rx_ntt = 1; 467 /* A slave has been removed from the 468 * table because it is either disabled 469 * or being released. We must retry the 470 * update to avoid clients from not 471 * being updated & disconnecting when 472 * there is stress 473 */ 474 bond_info->rlb_update_retry_counter = 475 RLB_UPDATE_RETRY; 476 } 477 } else { /* there is no active slave */ 478 rx_hash_table[index].slave = NULL; 479 } 480 } 481 } 482 483 _unlock_rx_hashtbl(bond); 484 485 write_lock_bh(&bond->curr_slave_lock); 486 487 if (slave != bond->curr_active_slave) { 488 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr); 489 } 490 491 write_unlock_bh(&bond->curr_slave_lock); 492 } 493 494 static void rlb_update_client(struct rlb_client_info *client_info) 495 { 496 int i; 497 498 if (!client_info->slave) { 499 return; 500 } 501 502 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) { 503 struct sk_buff *skb; 504 505 skb = arp_create(ARPOP_REPLY, ETH_P_ARP, 506 client_info->ip_dst, 507 client_info->slave->dev, 508 client_info->ip_src, 509 client_info->mac_dst, 510 client_info->slave->dev->dev_addr, 511 client_info->mac_dst); 512 if (!skb) { 513 printk(KERN_ERR DRV_NAME 514 ": %s: Error: failed to create an ARP packet\n", 515 client_info->slave->dev->master->name); 516 continue; 517 } 518 519 skb->dev = client_info->slave->dev; 520 521 if (client_info->tag) { 522 skb = vlan_put_tag(skb, client_info->vlan_id); 523 if (!skb) { 524 printk(KERN_ERR DRV_NAME 525 ": %s: Error: failed to insert VLAN tag\n", 526 client_info->slave->dev->master->name); 527 continue; 528 } 529 } 530 531 arp_xmit(skb); 532 } 533 } 534 535 /* sends ARP REPLIES that update the clients that need updating */ 536 static void rlb_update_rx_clients(struct bonding *bond) 537 { 538 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 539 struct rlb_client_info *client_info; 540 u32 hash_index; 541 542 _lock_rx_hashtbl(bond); 543 544 hash_index = bond_info->rx_hashtbl_head; 545 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 546 client_info = &(bond_info->rx_hashtbl[hash_index]); 547 if (client_info->ntt) { 548 rlb_update_client(client_info); 549 if (bond_info->rlb_update_retry_counter == 0) { 550 client_info->ntt = 0; 551 } 552 } 553 } 554 555 /* do not update the entries again untill this counter is zero so that 556 * not to confuse the clients. 557 */ 558 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY; 559 560 _unlock_rx_hashtbl(bond); 561 } 562 563 /* The slave was assigned a new mac address - update the clients */ 564 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave) 565 { 566 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 567 struct rlb_client_info *client_info; 568 int ntt = 0; 569 u32 hash_index; 570 571 _lock_rx_hashtbl(bond); 572 573 hash_index = bond_info->rx_hashtbl_head; 574 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 575 client_info = &(bond_info->rx_hashtbl[hash_index]); 576 577 if ((client_info->slave == slave) && 578 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 579 client_info->ntt = 1; 580 ntt = 1; 581 } 582 } 583 584 // update the team's flag only after the whole iteration 585 if (ntt) { 586 bond_info->rx_ntt = 1; 587 //fasten the change 588 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY; 589 } 590 591 _unlock_rx_hashtbl(bond); 592 } 593 594 /* mark all clients using src_ip to be updated */ 595 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip) 596 { 597 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 598 struct rlb_client_info *client_info; 599 u32 hash_index; 600 601 _lock_rx_hashtbl(bond); 602 603 hash_index = bond_info->rx_hashtbl_head; 604 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 605 client_info = &(bond_info->rx_hashtbl[hash_index]); 606 607 if (!client_info->slave) { 608 printk(KERN_ERR DRV_NAME 609 ": %s: Error: found a client with no channel in " 610 "the client's hash table\n", 611 bond->dev->name); 612 continue; 613 } 614 /*update all clients using this src_ip, that are not assigned 615 * to the team's address (curr_active_slave) and have a known 616 * unicast mac address. 617 */ 618 if ((client_info->ip_src == src_ip) && 619 memcmp(client_info->slave->dev->dev_addr, 620 bond->dev->dev_addr, ETH_ALEN) && 621 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 622 client_info->ntt = 1; 623 bond_info->rx_ntt = 1; 624 } 625 } 626 627 _unlock_rx_hashtbl(bond); 628 } 629 630 /* Caller must hold both bond and ptr locks for read */ 631 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond) 632 { 633 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 634 struct arp_pkt *arp = arp_pkt(skb); 635 struct slave *assigned_slave; 636 struct rlb_client_info *client_info; 637 u32 hash_index = 0; 638 639 _lock_rx_hashtbl(bond); 640 641 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src)); 642 client_info = &(bond_info->rx_hashtbl[hash_index]); 643 644 if (client_info->assigned) { 645 if ((client_info->ip_src == arp->ip_src) && 646 (client_info->ip_dst == arp->ip_dst)) { 647 /* the entry is already assigned to this client */ 648 if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) { 649 /* update mac address from arp */ 650 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 651 } 652 653 assigned_slave = client_info->slave; 654 if (assigned_slave) { 655 _unlock_rx_hashtbl(bond); 656 return assigned_slave; 657 } 658 } else { 659 /* the entry is already assigned to some other client, 660 * move the old client to primary (curr_active_slave) so 661 * that the new client can be assigned to this entry. 662 */ 663 if (bond->curr_active_slave && 664 client_info->slave != bond->curr_active_slave) { 665 client_info->slave = bond->curr_active_slave; 666 rlb_update_client(client_info); 667 } 668 } 669 } 670 /* assign a new slave */ 671 assigned_slave = rlb_next_rx_slave(bond); 672 673 if (assigned_slave) { 674 client_info->ip_src = arp->ip_src; 675 client_info->ip_dst = arp->ip_dst; 676 /* arp->mac_dst is broadcast for arp reqeusts. 677 * will be updated with clients actual unicast mac address 678 * upon receiving an arp reply. 679 */ 680 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN); 681 client_info->slave = assigned_slave; 682 683 if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) { 684 client_info->ntt = 1; 685 bond->alb_info.rx_ntt = 1; 686 } else { 687 client_info->ntt = 0; 688 } 689 690 if (!list_empty(&bond->vlan_list)) { 691 if (!vlan_get_tag(skb, &client_info->vlan_id)) 692 client_info->tag = 1; 693 } 694 695 if (!client_info->assigned) { 696 u32 prev_tbl_head = bond_info->rx_hashtbl_head; 697 bond_info->rx_hashtbl_head = hash_index; 698 client_info->next = prev_tbl_head; 699 if (prev_tbl_head != RLB_NULL_INDEX) { 700 bond_info->rx_hashtbl[prev_tbl_head].prev = 701 hash_index; 702 } 703 client_info->assigned = 1; 704 } 705 } 706 707 _unlock_rx_hashtbl(bond); 708 709 return assigned_slave; 710 } 711 712 /* chooses (and returns) transmit channel for arp reply 713 * does not choose channel for other arp types since they are 714 * sent on the curr_active_slave 715 */ 716 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond) 717 { 718 struct arp_pkt *arp = arp_pkt(skb); 719 struct slave *tx_slave = NULL; 720 721 if (arp->op_code == htons(ARPOP_REPLY)) { 722 /* the arp must be sent on the selected 723 * rx channel 724 */ 725 tx_slave = rlb_choose_channel(skb, bond); 726 if (tx_slave) { 727 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN); 728 } 729 pr_debug("Server sent ARP Reply packet\n"); 730 } else if (arp->op_code == htons(ARPOP_REQUEST)) { 731 /* Create an entry in the rx_hashtbl for this client as a 732 * place holder. 733 * When the arp reply is received the entry will be updated 734 * with the correct unicast address of the client. 735 */ 736 rlb_choose_channel(skb, bond); 737 738 /* The ARP relpy packets must be delayed so that 739 * they can cancel out the influence of the ARP request. 740 */ 741 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY; 742 743 /* arp requests are broadcast and are sent on the primary 744 * the arp request will collapse all clients on the subnet to 745 * the primary slave. We must register these clients to be 746 * updated with their assigned mac. 747 */ 748 rlb_req_update_subnet_clients(bond, arp->ip_src); 749 pr_debug("Server sent ARP Request packet\n"); 750 } 751 752 return tx_slave; 753 } 754 755 /* Caller must hold bond lock for read */ 756 static void rlb_rebalance(struct bonding *bond) 757 { 758 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 759 struct slave *assigned_slave; 760 struct rlb_client_info *client_info; 761 int ntt; 762 u32 hash_index; 763 764 _lock_rx_hashtbl(bond); 765 766 ntt = 0; 767 hash_index = bond_info->rx_hashtbl_head; 768 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) { 769 client_info = &(bond_info->rx_hashtbl[hash_index]); 770 assigned_slave = rlb_next_rx_slave(bond); 771 if (assigned_slave && (client_info->slave != assigned_slave)) { 772 client_info->slave = assigned_slave; 773 client_info->ntt = 1; 774 ntt = 1; 775 } 776 } 777 778 /* update the team's flag only after the whole iteration */ 779 if (ntt) { 780 bond_info->rx_ntt = 1; 781 } 782 _unlock_rx_hashtbl(bond); 783 } 784 785 /* Caller must hold rx_hashtbl lock */ 786 static void rlb_init_table_entry(struct rlb_client_info *entry) 787 { 788 memset(entry, 0, sizeof(struct rlb_client_info)); 789 entry->next = RLB_NULL_INDEX; 790 entry->prev = RLB_NULL_INDEX; 791 } 792 793 static int rlb_initialize(struct bonding *bond) 794 { 795 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 796 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type); 797 struct rlb_client_info *new_hashtbl; 798 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info); 799 int i; 800 801 spin_lock_init(&(bond_info->rx_hashtbl_lock)); 802 803 new_hashtbl = kmalloc(size, GFP_KERNEL); 804 if (!new_hashtbl) { 805 printk(KERN_ERR DRV_NAME 806 ": %s: Error: Failed to allocate RLB hash table\n", 807 bond->dev->name); 808 return -1; 809 } 810 _lock_rx_hashtbl(bond); 811 812 bond_info->rx_hashtbl = new_hashtbl; 813 814 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 815 816 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) { 817 rlb_init_table_entry(bond_info->rx_hashtbl + i); 818 } 819 820 _unlock_rx_hashtbl(bond); 821 822 /*initialize packet type*/ 823 pk_type->type = cpu_to_be16(ETH_P_ARP); 824 pk_type->dev = NULL; 825 pk_type->func = rlb_arp_recv; 826 827 /* register to receive ARPs */ 828 dev_add_pack(pk_type); 829 830 return 0; 831 } 832 833 static void rlb_deinitialize(struct bonding *bond) 834 { 835 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 836 837 dev_remove_pack(&(bond_info->rlb_pkt_type)); 838 839 _lock_rx_hashtbl(bond); 840 841 kfree(bond_info->rx_hashtbl); 842 bond_info->rx_hashtbl = NULL; 843 bond_info->rx_hashtbl_head = RLB_NULL_INDEX; 844 845 _unlock_rx_hashtbl(bond); 846 } 847 848 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 849 { 850 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 851 u32 curr_index; 852 853 _lock_rx_hashtbl(bond); 854 855 curr_index = bond_info->rx_hashtbl_head; 856 while (curr_index != RLB_NULL_INDEX) { 857 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]); 858 u32 next_index = bond_info->rx_hashtbl[curr_index].next; 859 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev; 860 861 if (curr->tag && (curr->vlan_id == vlan_id)) { 862 if (curr_index == bond_info->rx_hashtbl_head) { 863 bond_info->rx_hashtbl_head = next_index; 864 } 865 if (prev_index != RLB_NULL_INDEX) { 866 bond_info->rx_hashtbl[prev_index].next = next_index; 867 } 868 if (next_index != RLB_NULL_INDEX) { 869 bond_info->rx_hashtbl[next_index].prev = prev_index; 870 } 871 872 rlb_init_table_entry(curr); 873 } 874 875 curr_index = next_index; 876 } 877 878 _unlock_rx_hashtbl(bond); 879 } 880 881 /*********************** tlb/rlb shared functions *********************/ 882 883 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]) 884 { 885 struct bonding *bond = bond_get_bond_by_slave(slave); 886 struct learning_pkt pkt; 887 int size = sizeof(struct learning_pkt); 888 int i; 889 890 memset(&pkt, 0, size); 891 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN); 892 memcpy(pkt.mac_src, mac_addr, ETH_ALEN); 893 pkt.type = cpu_to_be16(ETH_P_LOOP); 894 895 for (i = 0; i < MAX_LP_BURST; i++) { 896 struct sk_buff *skb; 897 char *data; 898 899 skb = dev_alloc_skb(size); 900 if (!skb) { 901 return; 902 } 903 904 data = skb_put(skb, size); 905 memcpy(data, &pkt, size); 906 907 skb_reset_mac_header(skb); 908 skb->network_header = skb->mac_header + ETH_HLEN; 909 skb->protocol = pkt.type; 910 skb->priority = TC_PRIO_CONTROL; 911 skb->dev = slave->dev; 912 913 if (!list_empty(&bond->vlan_list)) { 914 struct vlan_entry *vlan; 915 916 vlan = bond_next_vlan(bond, 917 bond->alb_info.current_alb_vlan); 918 919 bond->alb_info.current_alb_vlan = vlan; 920 if (!vlan) { 921 kfree_skb(skb); 922 continue; 923 } 924 925 skb = vlan_put_tag(skb, vlan->vlan_id); 926 if (!skb) { 927 printk(KERN_ERR DRV_NAME 928 ": %s: Error: failed to insert VLAN tag\n", 929 bond->dev->name); 930 continue; 931 } 932 } 933 934 dev_queue_xmit(skb); 935 } 936 } 937 938 /* hw is a boolean parameter that determines whether we should try and 939 * set the hw address of the device as well as the hw address of the 940 * net_device 941 */ 942 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw) 943 { 944 struct net_device *dev = slave->dev; 945 struct sockaddr s_addr; 946 947 if (!hw) { 948 memcpy(dev->dev_addr, addr, dev->addr_len); 949 return 0; 950 } 951 952 /* for rlb each slave must have a unique hw mac addresses so that */ 953 /* each slave will receive packets destined to a different mac */ 954 memcpy(s_addr.sa_data, addr, dev->addr_len); 955 s_addr.sa_family = dev->type; 956 if (dev_set_mac_address(dev, &s_addr)) { 957 printk(KERN_ERR DRV_NAME 958 ": %s: Error: dev_set_mac_address of dev %s failed! ALB " 959 "mode requires that the base driver support setting " 960 "the hw address also when the network device's " 961 "interface is open\n", 962 dev->master->name, dev->name); 963 return -EOPNOTSUPP; 964 } 965 return 0; 966 } 967 968 /* 969 * Swap MAC addresses between two slaves. 970 * 971 * Called with RTNL held, and no other locks. 972 * 973 */ 974 975 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2) 976 { 977 u8 tmp_mac_addr[ETH_ALEN]; 978 979 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN); 980 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled); 981 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled); 982 983 } 984 985 /* 986 * Send learning packets after MAC address swap. 987 * 988 * Called with RTNL and no other locks 989 */ 990 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1, 991 struct slave *slave2) 992 { 993 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2)); 994 struct slave *disabled_slave = NULL; 995 996 ASSERT_RTNL(); 997 998 /* fasten the change in the switch */ 999 if (SLAVE_IS_OK(slave1)) { 1000 alb_send_learning_packets(slave1, slave1->dev->dev_addr); 1001 if (bond->alb_info.rlb_enabled) { 1002 /* inform the clients that the mac address 1003 * has changed 1004 */ 1005 rlb_req_update_slave_clients(bond, slave1); 1006 } 1007 } else { 1008 disabled_slave = slave1; 1009 } 1010 1011 if (SLAVE_IS_OK(slave2)) { 1012 alb_send_learning_packets(slave2, slave2->dev->dev_addr); 1013 if (bond->alb_info.rlb_enabled) { 1014 /* inform the clients that the mac address 1015 * has changed 1016 */ 1017 rlb_req_update_slave_clients(bond, slave2); 1018 } 1019 } else { 1020 disabled_slave = slave2; 1021 } 1022 1023 if (bond->alb_info.rlb_enabled && slaves_state_differ) { 1024 /* A disabled slave was assigned an active mac addr */ 1025 rlb_teach_disabled_mac_on_primary(bond, 1026 disabled_slave->dev->dev_addr); 1027 } 1028 } 1029 1030 /** 1031 * alb_change_hw_addr_on_detach 1032 * @bond: bonding we're working on 1033 * @slave: the slave that was just detached 1034 * 1035 * We assume that @slave was already detached from the slave list. 1036 * 1037 * If @slave's permanent hw address is different both from its current 1038 * address and from @bond's address, then somewhere in the bond there's 1039 * a slave that has @slave's permanet address as its current address. 1040 * We'll make sure that that slave no longer uses @slave's permanent address. 1041 * 1042 * Caller must hold RTNL and no other locks 1043 */ 1044 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave) 1045 { 1046 int perm_curr_diff; 1047 int perm_bond_diff; 1048 1049 perm_curr_diff = memcmp(slave->perm_hwaddr, 1050 slave->dev->dev_addr, 1051 ETH_ALEN); 1052 perm_bond_diff = memcmp(slave->perm_hwaddr, 1053 bond->dev->dev_addr, 1054 ETH_ALEN); 1055 1056 if (perm_curr_diff && perm_bond_diff) { 1057 struct slave *tmp_slave; 1058 int i, found = 0; 1059 1060 bond_for_each_slave(bond, tmp_slave, i) { 1061 if (!memcmp(slave->perm_hwaddr, 1062 tmp_slave->dev->dev_addr, 1063 ETH_ALEN)) { 1064 found = 1; 1065 break; 1066 } 1067 } 1068 1069 if (found) { 1070 /* locking: needs RTNL and nothing else */ 1071 alb_swap_mac_addr(bond, slave, tmp_slave); 1072 alb_fasten_mac_swap(bond, slave, tmp_slave); 1073 } 1074 } 1075 } 1076 1077 /** 1078 * alb_handle_addr_collision_on_attach 1079 * @bond: bonding we're working on 1080 * @slave: the slave that was just attached 1081 * 1082 * checks uniqueness of slave's mac address and handles the case the 1083 * new slave uses the bonds mac address. 1084 * 1085 * If the permanent hw address of @slave is @bond's hw address, we need to 1086 * find a different hw address to give @slave, that isn't in use by any other 1087 * slave in the bond. This address must be, of course, one of the premanent 1088 * addresses of the other slaves. 1089 * 1090 * We go over the slave list, and for each slave there we compare its 1091 * permanent hw address with the current address of all the other slaves. 1092 * If no match was found, then we've found a slave with a permanent address 1093 * that isn't used by any other slave in the bond, so we can assign it to 1094 * @slave. 1095 * 1096 * assumption: this function is called before @slave is attached to the 1097 * bond slave list. 1098 * 1099 * caller must hold the bond lock for write since the mac addresses are compared 1100 * and may be swapped. 1101 */ 1102 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave) 1103 { 1104 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave; 1105 struct slave *has_bond_addr = bond->curr_active_slave; 1106 int i, j, found = 0; 1107 1108 if (bond->slave_cnt == 0) { 1109 /* this is the first slave */ 1110 return 0; 1111 } 1112 1113 /* if slave's mac address differs from bond's mac address 1114 * check uniqueness of slave's mac address against the other 1115 * slaves in the bond. 1116 */ 1117 if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) { 1118 bond_for_each_slave(bond, tmp_slave1, i) { 1119 if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr, 1120 ETH_ALEN)) { 1121 found = 1; 1122 break; 1123 } 1124 } 1125 1126 if (!found) 1127 return 0; 1128 1129 /* Try setting slave mac to bond address and fall-through 1130 to code handling that situation below... */ 1131 alb_set_slave_mac_addr(slave, bond->dev->dev_addr, 1132 bond->alb_info.rlb_enabled); 1133 } 1134 1135 /* The slave's address is equal to the address of the bond. 1136 * Search for a spare address in the bond for this slave. 1137 */ 1138 free_mac_slave = NULL; 1139 1140 bond_for_each_slave(bond, tmp_slave1, i) { 1141 found = 0; 1142 bond_for_each_slave(bond, tmp_slave2, j) { 1143 if (!memcmp(tmp_slave1->perm_hwaddr, 1144 tmp_slave2->dev->dev_addr, 1145 ETH_ALEN)) { 1146 found = 1; 1147 break; 1148 } 1149 } 1150 1151 if (!found) { 1152 /* no slave has tmp_slave1's perm addr 1153 * as its curr addr 1154 */ 1155 free_mac_slave = tmp_slave1; 1156 break; 1157 } 1158 1159 if (!has_bond_addr) { 1160 if (!memcmp(tmp_slave1->dev->dev_addr, 1161 bond->dev->dev_addr, 1162 ETH_ALEN)) { 1163 1164 has_bond_addr = tmp_slave1; 1165 } 1166 } 1167 } 1168 1169 if (free_mac_slave) { 1170 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr, 1171 bond->alb_info.rlb_enabled); 1172 1173 printk(KERN_WARNING DRV_NAME 1174 ": %s: Warning: the hw address of slave %s is in use by " 1175 "the bond; giving it the hw address of %s\n", 1176 bond->dev->name, slave->dev->name, free_mac_slave->dev->name); 1177 1178 } else if (has_bond_addr) { 1179 printk(KERN_ERR DRV_NAME 1180 ": %s: Error: the hw address of slave %s is in use by the " 1181 "bond; couldn't find a slave with a free hw address to " 1182 "give it (this should not have happened)\n", 1183 bond->dev->name, slave->dev->name); 1184 return -EFAULT; 1185 } 1186 1187 return 0; 1188 } 1189 1190 /** 1191 * alb_set_mac_address 1192 * @bond: 1193 * @addr: 1194 * 1195 * In TLB mode all slaves are configured to the bond's hw address, but set 1196 * their dev_addr field to different addresses (based on their permanent hw 1197 * addresses). 1198 * 1199 * For each slave, this function sets the interface to the new address and then 1200 * changes its dev_addr field to its previous value. 1201 * 1202 * Unwinding assumes bond's mac address has not yet changed. 1203 */ 1204 static int alb_set_mac_address(struct bonding *bond, void *addr) 1205 { 1206 struct sockaddr sa; 1207 struct slave *slave, *stop_at; 1208 char tmp_addr[ETH_ALEN]; 1209 int res; 1210 int i; 1211 1212 if (bond->alb_info.rlb_enabled) { 1213 return 0; 1214 } 1215 1216 bond_for_each_slave(bond, slave, i) { 1217 /* save net_device's current hw address */ 1218 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1219 1220 res = dev_set_mac_address(slave->dev, addr); 1221 1222 /* restore net_device's hw address */ 1223 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1224 1225 if (res) 1226 goto unwind; 1227 } 1228 1229 return 0; 1230 1231 unwind: 1232 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len); 1233 sa.sa_family = bond->dev->type; 1234 1235 /* unwind from head to the slave that failed */ 1236 stop_at = slave; 1237 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { 1238 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN); 1239 dev_set_mac_address(slave->dev, &sa); 1240 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN); 1241 } 1242 1243 return res; 1244 } 1245 1246 /************************ exported alb funcions ************************/ 1247 1248 int bond_alb_initialize(struct bonding *bond, int rlb_enabled) 1249 { 1250 int res; 1251 1252 res = tlb_initialize(bond); 1253 if (res) { 1254 return res; 1255 } 1256 1257 if (rlb_enabled) { 1258 bond->alb_info.rlb_enabled = 1; 1259 /* initialize rlb */ 1260 res = rlb_initialize(bond); 1261 if (res) { 1262 tlb_deinitialize(bond); 1263 return res; 1264 } 1265 } else { 1266 bond->alb_info.rlb_enabled = 0; 1267 } 1268 1269 return 0; 1270 } 1271 1272 void bond_alb_deinitialize(struct bonding *bond) 1273 { 1274 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1275 1276 tlb_deinitialize(bond); 1277 1278 if (bond_info->rlb_enabled) { 1279 rlb_deinitialize(bond); 1280 } 1281 } 1282 1283 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) 1284 { 1285 struct bonding *bond = netdev_priv(bond_dev); 1286 struct ethhdr *eth_data; 1287 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1288 struct slave *tx_slave = NULL; 1289 static const __be32 ip_bcast = htonl(0xffffffff); 1290 int hash_size = 0; 1291 int do_tx_balance = 1; 1292 u32 hash_index = 0; 1293 const u8 *hash_start = NULL; 1294 int res = 1; 1295 struct ipv6hdr *ip6hdr; 1296 1297 skb_reset_mac_header(skb); 1298 eth_data = eth_hdr(skb); 1299 1300 /* make sure that the curr_active_slave and the slaves list do 1301 * not change during tx 1302 */ 1303 read_lock(&bond->lock); 1304 read_lock(&bond->curr_slave_lock); 1305 1306 if (!BOND_IS_OK(bond)) { 1307 goto out; 1308 } 1309 1310 switch (ntohs(skb->protocol)) { 1311 case ETH_P_IP: { 1312 const struct iphdr *iph = ip_hdr(skb); 1313 1314 if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) || 1315 (iph->daddr == ip_bcast) || 1316 (iph->protocol == IPPROTO_IGMP)) { 1317 do_tx_balance = 0; 1318 break; 1319 } 1320 hash_start = (char *)&(iph->daddr); 1321 hash_size = sizeof(iph->daddr); 1322 } 1323 break; 1324 case ETH_P_IPV6: 1325 /* IPv6 doesn't really use broadcast mac address, but leave 1326 * that here just in case. 1327 */ 1328 if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) { 1329 do_tx_balance = 0; 1330 break; 1331 } 1332 1333 /* IPv6 uses all-nodes multicast as an equivalent to 1334 * broadcasts in IPv4. 1335 */ 1336 if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) { 1337 do_tx_balance = 0; 1338 break; 1339 } 1340 1341 /* Additianally, DAD probes should not be tx-balanced as that 1342 * will lead to false positives for duplicate addresses and 1343 * prevent address configuration from working. 1344 */ 1345 ip6hdr = ipv6_hdr(skb); 1346 if (ipv6_addr_any(&ip6hdr->saddr)) { 1347 do_tx_balance = 0; 1348 break; 1349 } 1350 1351 hash_start = (char *)&(ipv6_hdr(skb)->daddr); 1352 hash_size = sizeof(ipv6_hdr(skb)->daddr); 1353 break; 1354 case ETH_P_IPX: 1355 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) { 1356 /* something is wrong with this packet */ 1357 do_tx_balance = 0; 1358 break; 1359 } 1360 1361 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) { 1362 /* The only protocol worth balancing in 1363 * this family since it has an "ARP" like 1364 * mechanism 1365 */ 1366 do_tx_balance = 0; 1367 break; 1368 } 1369 1370 hash_start = (char*)eth_data->h_dest; 1371 hash_size = ETH_ALEN; 1372 break; 1373 case ETH_P_ARP: 1374 do_tx_balance = 0; 1375 if (bond_info->rlb_enabled) { 1376 tx_slave = rlb_arp_xmit(skb, bond); 1377 } 1378 break; 1379 default: 1380 do_tx_balance = 0; 1381 break; 1382 } 1383 1384 if (do_tx_balance) { 1385 hash_index = _simple_hash(hash_start, hash_size); 1386 tx_slave = tlb_choose_channel(bond, hash_index, skb->len); 1387 } 1388 1389 if (!tx_slave) { 1390 /* unbalanced or unassigned, send through primary */ 1391 tx_slave = bond->curr_active_slave; 1392 bond_info->unbalanced_load += skb->len; 1393 } 1394 1395 if (tx_slave && SLAVE_IS_OK(tx_slave)) { 1396 if (tx_slave != bond->curr_active_slave) { 1397 memcpy(eth_data->h_source, 1398 tx_slave->dev->dev_addr, 1399 ETH_ALEN); 1400 } 1401 1402 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev); 1403 } else { 1404 if (tx_slave) { 1405 tlb_clear_slave(bond, tx_slave, 0); 1406 } 1407 } 1408 1409 out: 1410 if (res) { 1411 /* no suitable interface, frame not sent */ 1412 dev_kfree_skb(skb); 1413 } 1414 read_unlock(&bond->curr_slave_lock); 1415 read_unlock(&bond->lock); 1416 return 0; 1417 } 1418 1419 void bond_alb_monitor(struct work_struct *work) 1420 { 1421 struct bonding *bond = container_of(work, struct bonding, 1422 alb_work.work); 1423 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1424 struct slave *slave; 1425 int i; 1426 1427 read_lock(&bond->lock); 1428 1429 if (bond->kill_timers) { 1430 goto out; 1431 } 1432 1433 if (bond->slave_cnt == 0) { 1434 bond_info->tx_rebalance_counter = 0; 1435 bond_info->lp_counter = 0; 1436 goto re_arm; 1437 } 1438 1439 bond_info->tx_rebalance_counter++; 1440 bond_info->lp_counter++; 1441 1442 /* send learning packets */ 1443 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) { 1444 /* change of curr_active_slave involves swapping of mac addresses. 1445 * in order to avoid this swapping from happening while 1446 * sending the learning packets, the curr_slave_lock must be held for 1447 * read. 1448 */ 1449 read_lock(&bond->curr_slave_lock); 1450 1451 bond_for_each_slave(bond, slave, i) { 1452 alb_send_learning_packets(slave, slave->dev->dev_addr); 1453 } 1454 1455 read_unlock(&bond->curr_slave_lock); 1456 1457 bond_info->lp_counter = 0; 1458 } 1459 1460 /* rebalance tx traffic */ 1461 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) { 1462 1463 read_lock(&bond->curr_slave_lock); 1464 1465 bond_for_each_slave(bond, slave, i) { 1466 tlb_clear_slave(bond, slave, 1); 1467 if (slave == bond->curr_active_slave) { 1468 SLAVE_TLB_INFO(slave).load = 1469 bond_info->unbalanced_load / 1470 BOND_TLB_REBALANCE_INTERVAL; 1471 bond_info->unbalanced_load = 0; 1472 } 1473 } 1474 1475 read_unlock(&bond->curr_slave_lock); 1476 1477 bond_info->tx_rebalance_counter = 0; 1478 } 1479 1480 /* handle rlb stuff */ 1481 if (bond_info->rlb_enabled) { 1482 if (bond_info->primary_is_promisc && 1483 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) { 1484 1485 /* 1486 * dev_set_promiscuity requires rtnl and 1487 * nothing else. 1488 */ 1489 read_unlock(&bond->lock); 1490 rtnl_lock(); 1491 1492 bond_info->rlb_promisc_timeout_counter = 0; 1493 1494 /* If the primary was set to promiscuous mode 1495 * because a slave was disabled then 1496 * it can now leave promiscuous mode. 1497 */ 1498 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1499 bond_info->primary_is_promisc = 0; 1500 1501 rtnl_unlock(); 1502 read_lock(&bond->lock); 1503 } 1504 1505 if (bond_info->rlb_rebalance) { 1506 bond_info->rlb_rebalance = 0; 1507 rlb_rebalance(bond); 1508 } 1509 1510 /* check if clients need updating */ 1511 if (bond_info->rx_ntt) { 1512 if (bond_info->rlb_update_delay_counter) { 1513 --bond_info->rlb_update_delay_counter; 1514 } else { 1515 rlb_update_rx_clients(bond); 1516 if (bond_info->rlb_update_retry_counter) { 1517 --bond_info->rlb_update_retry_counter; 1518 } else { 1519 bond_info->rx_ntt = 0; 1520 } 1521 } 1522 } 1523 } 1524 1525 re_arm: 1526 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks); 1527 out: 1528 read_unlock(&bond->lock); 1529 } 1530 1531 /* assumption: called before the slave is attached to the bond 1532 * and not locked by the bond lock 1533 */ 1534 int bond_alb_init_slave(struct bonding *bond, struct slave *slave) 1535 { 1536 int res; 1537 1538 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr, 1539 bond->alb_info.rlb_enabled); 1540 if (res) { 1541 return res; 1542 } 1543 1544 /* caller must hold the bond lock for write since the mac addresses 1545 * are compared and may be swapped. 1546 */ 1547 read_lock(&bond->lock); 1548 1549 res = alb_handle_addr_collision_on_attach(bond, slave); 1550 1551 read_unlock(&bond->lock); 1552 1553 if (res) { 1554 return res; 1555 } 1556 1557 tlb_init_slave(slave); 1558 1559 /* order a rebalance ASAP */ 1560 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1561 1562 if (bond->alb_info.rlb_enabled) { 1563 bond->alb_info.rlb_rebalance = 1; 1564 } 1565 1566 return 0; 1567 } 1568 1569 /* 1570 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses 1571 * if necessary. 1572 * 1573 * Caller must hold RTNL and no other locks 1574 */ 1575 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave) 1576 { 1577 if (bond->slave_cnt > 1) { 1578 alb_change_hw_addr_on_detach(bond, slave); 1579 } 1580 1581 tlb_clear_slave(bond, slave, 0); 1582 1583 if (bond->alb_info.rlb_enabled) { 1584 bond->alb_info.next_rx_slave = NULL; 1585 rlb_clear_slave(bond, slave); 1586 } 1587 } 1588 1589 /* Caller must hold bond lock for read */ 1590 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link) 1591 { 1592 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond)); 1593 1594 if (link == BOND_LINK_DOWN) { 1595 tlb_clear_slave(bond, slave, 0); 1596 if (bond->alb_info.rlb_enabled) { 1597 rlb_clear_slave(bond, slave); 1598 } 1599 } else if (link == BOND_LINK_UP) { 1600 /* order a rebalance ASAP */ 1601 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS; 1602 if (bond->alb_info.rlb_enabled) { 1603 bond->alb_info.rlb_rebalance = 1; 1604 /* If the updelay module parameter is smaller than the 1605 * forwarding delay of the switch the rebalance will 1606 * not work because the rebalance arp replies will 1607 * not be forwarded to the clients.. 1608 */ 1609 } 1610 } 1611 } 1612 1613 /** 1614 * bond_alb_handle_active_change - assign new curr_active_slave 1615 * @bond: our bonding struct 1616 * @new_slave: new slave to assign 1617 * 1618 * Set the bond->curr_active_slave to @new_slave and handle 1619 * mac address swapping and promiscuity changes as needed. 1620 * 1621 * If new_slave is NULL, caller must hold curr_slave_lock or 1622 * bond->lock for write. 1623 * 1624 * If new_slave is not NULL, caller must hold RTNL, bond->lock for 1625 * read and curr_slave_lock for write. Processing here may sleep, so 1626 * no other locks may be held. 1627 */ 1628 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave) 1629 __releases(&bond->curr_slave_lock) 1630 __releases(&bond->lock) 1631 __acquires(&bond->lock) 1632 __acquires(&bond->curr_slave_lock) 1633 { 1634 struct slave *swap_slave; 1635 int i; 1636 1637 if (bond->curr_active_slave == new_slave) { 1638 return; 1639 } 1640 1641 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) { 1642 dev_set_promiscuity(bond->curr_active_slave->dev, -1); 1643 bond->alb_info.primary_is_promisc = 0; 1644 bond->alb_info.rlb_promisc_timeout_counter = 0; 1645 } 1646 1647 swap_slave = bond->curr_active_slave; 1648 bond->curr_active_slave = new_slave; 1649 1650 if (!new_slave || (bond->slave_cnt == 0)) { 1651 return; 1652 } 1653 1654 /* set the new curr_active_slave to the bonds mac address 1655 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave 1656 */ 1657 if (!swap_slave) { 1658 struct slave *tmp_slave; 1659 /* find slave that is holding the bond's mac address */ 1660 bond_for_each_slave(bond, tmp_slave, i) { 1661 if (!memcmp(tmp_slave->dev->dev_addr, 1662 bond->dev->dev_addr, ETH_ALEN)) { 1663 swap_slave = tmp_slave; 1664 break; 1665 } 1666 } 1667 } 1668 1669 /* 1670 * Arrange for swap_slave and new_slave to temporarily be 1671 * ignored so we can mess with their MAC addresses without 1672 * fear of interference from transmit activity. 1673 */ 1674 if (swap_slave) { 1675 tlb_clear_slave(bond, swap_slave, 1); 1676 } 1677 tlb_clear_slave(bond, new_slave, 1); 1678 1679 write_unlock_bh(&bond->curr_slave_lock); 1680 read_unlock(&bond->lock); 1681 1682 ASSERT_RTNL(); 1683 1684 /* curr_active_slave must be set before calling alb_swap_mac_addr */ 1685 if (swap_slave) { 1686 /* swap mac address */ 1687 alb_swap_mac_addr(bond, swap_slave, new_slave); 1688 } else { 1689 /* set the new_slave to the bond mac address */ 1690 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr, 1691 bond->alb_info.rlb_enabled); 1692 } 1693 1694 if (swap_slave) { 1695 alb_fasten_mac_swap(bond, swap_slave, new_slave); 1696 read_lock(&bond->lock); 1697 } else { 1698 read_lock(&bond->lock); 1699 alb_send_learning_packets(new_slave, bond->dev->dev_addr); 1700 } 1701 1702 write_lock_bh(&bond->curr_slave_lock); 1703 } 1704 1705 /* 1706 * Called with RTNL 1707 */ 1708 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr) 1709 __acquires(&bond->lock) 1710 __releases(&bond->lock) 1711 { 1712 struct bonding *bond = netdev_priv(bond_dev); 1713 struct sockaddr *sa = addr; 1714 struct slave *slave, *swap_slave; 1715 int res; 1716 int i; 1717 1718 if (!is_valid_ether_addr(sa->sa_data)) { 1719 return -EADDRNOTAVAIL; 1720 } 1721 1722 res = alb_set_mac_address(bond, addr); 1723 if (res) { 1724 return res; 1725 } 1726 1727 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); 1728 1729 /* If there is no curr_active_slave there is nothing else to do. 1730 * Otherwise we'll need to pass the new address to it and handle 1731 * duplications. 1732 */ 1733 if (!bond->curr_active_slave) { 1734 return 0; 1735 } 1736 1737 swap_slave = NULL; 1738 1739 bond_for_each_slave(bond, slave, i) { 1740 if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) { 1741 swap_slave = slave; 1742 break; 1743 } 1744 } 1745 1746 if (swap_slave) { 1747 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave); 1748 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave); 1749 } else { 1750 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr, 1751 bond->alb_info.rlb_enabled); 1752 1753 read_lock(&bond->lock); 1754 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr); 1755 if (bond->alb_info.rlb_enabled) { 1756 /* inform clients mac address has changed */ 1757 rlb_req_update_slave_clients(bond, bond->curr_active_slave); 1758 } 1759 read_unlock(&bond->lock); 1760 } 1761 1762 return 0; 1763 } 1764 1765 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id) 1766 { 1767 if (bond->alb_info.current_alb_vlan && 1768 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) { 1769 bond->alb_info.current_alb_vlan = NULL; 1770 } 1771 1772 if (bond->alb_info.rlb_enabled) { 1773 rlb_clear_vlan(bond, vlan_id); 1774 } 1775 } 1776 1777