1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_tree_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188 static int do_work(struct ubi_device *ubi) 189 { 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226 } 227 228 /** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237 { 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265 } 266 267 /** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276 { 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286 } 287 288 /** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299 { 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307 } 308 309 /** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320 { 321 struct rb_node *p; 322 struct ubi_wl_entry *e; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 e = e1; 338 } 339 } 340 341 return e; 342 } 343 344 /** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355 { 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372 } 373 374 /** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383 { 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403 } 404 405 /** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413 static int prot_queue_del(struct ubi_device *ubi, int pnum) 414 { 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427 } 428 429 /** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440 { 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485 out_free: 486 kfree(ec_hdr); 487 return err; 488 } 489 490 /** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498 static void serve_prot_queue(struct ubi_device *ubi) 499 { 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507 repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532 } 533 534 /** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543 { 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551 } 552 553 /** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562 { 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566 } 567 568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571 /** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * 579 * This function returns zero in case of success and a %-ENOMEM in case of 580 * failure. 581 */ 582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 583 int vol_id, int lnum, int torture, bool nested) 584 { 585 struct ubi_work *wl_wrk; 586 587 ubi_assert(e); 588 589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 590 e->pnum, e->ec, torture); 591 592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 593 if (!wl_wrk) 594 return -ENOMEM; 595 596 wl_wrk->func = &erase_worker; 597 wl_wrk->e = e; 598 wl_wrk->vol_id = vol_id; 599 wl_wrk->lnum = lnum; 600 wl_wrk->torture = torture; 601 602 if (nested) 603 __schedule_ubi_work(ubi, wl_wrk); 604 else 605 schedule_ubi_work(ubi, wl_wrk); 606 return 0; 607 } 608 609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 610 /** 611 * do_sync_erase - run the erase worker synchronously. 612 * @ubi: UBI device description object 613 * @e: the WL entry of the physical eraseblock to erase 614 * @vol_id: the volume ID that last used this PEB 615 * @lnum: the last used logical eraseblock number for the PEB 616 * @torture: if the physical eraseblock has to be tortured 617 * 618 */ 619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 620 int vol_id, int lnum, int torture) 621 { 622 struct ubi_work wl_wrk; 623 624 dbg_wl("sync erase of PEB %i", e->pnum); 625 626 wl_wrk.e = e; 627 wl_wrk.vol_id = vol_id; 628 wl_wrk.lnum = lnum; 629 wl_wrk.torture = torture; 630 631 return __erase_worker(ubi, &wl_wrk); 632 } 633 634 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 635 /** 636 * wear_leveling_worker - wear-leveling worker function. 637 * @ubi: UBI device description object 638 * @wrk: the work object 639 * @shutdown: non-zero if the worker has to free memory and exit 640 * because the WL-subsystem is shutting down 641 * 642 * This function copies a more worn out physical eraseblock to a less worn out 643 * one. Returns zero in case of success and a negative error code in case of 644 * failure. 645 */ 646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 647 int shutdown) 648 { 649 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 650 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 651 struct ubi_wl_entry *e1, *e2; 652 struct ubi_vid_io_buf *vidb; 653 struct ubi_vid_hdr *vid_hdr; 654 int dst_leb_clean = 0; 655 656 kfree(wrk); 657 if (shutdown) 658 return 0; 659 660 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 661 if (!vidb) 662 return -ENOMEM; 663 664 vid_hdr = ubi_get_vid_hdr(vidb); 665 666 down_read(&ubi->fm_eba_sem); 667 mutex_lock(&ubi->move_mutex); 668 spin_lock(&ubi->wl_lock); 669 ubi_assert(!ubi->move_from && !ubi->move_to); 670 ubi_assert(!ubi->move_to_put); 671 672 if (!ubi->free.rb_node || 673 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 674 /* 675 * No free physical eraseblocks? Well, they must be waiting in 676 * the queue to be erased. Cancel movement - it will be 677 * triggered again when a free physical eraseblock appears. 678 * 679 * No used physical eraseblocks? They must be temporarily 680 * protected from being moved. They will be moved to the 681 * @ubi->used tree later and the wear-leveling will be 682 * triggered again. 683 */ 684 dbg_wl("cancel WL, a list is empty: free %d, used %d", 685 !ubi->free.rb_node, !ubi->used.rb_node); 686 goto out_cancel; 687 } 688 689 #ifdef CONFIG_MTD_UBI_FASTMAP 690 if (ubi->fm_do_produce_anchor) { 691 e1 = find_anchor_wl_entry(&ubi->used); 692 if (!e1) 693 goto out_cancel; 694 e2 = get_peb_for_wl(ubi); 695 if (!e2) 696 goto out_cancel; 697 698 /* 699 * Anchor move within the anchor area is useless. 700 */ 701 if (e2->pnum < UBI_FM_MAX_START) 702 goto out_cancel; 703 704 self_check_in_wl_tree(ubi, e1, &ubi->used); 705 rb_erase(&e1->u.rb, &ubi->used); 706 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 707 ubi->fm_do_produce_anchor = 0; 708 } else if (!ubi->scrub.rb_node) { 709 #else 710 if (!ubi->scrub.rb_node) { 711 #endif 712 /* 713 * Now pick the least worn-out used physical eraseblock and a 714 * highly worn-out free physical eraseblock. If the erase 715 * counters differ much enough, start wear-leveling. 716 */ 717 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 718 e2 = get_peb_for_wl(ubi); 719 if (!e2) 720 goto out_cancel; 721 722 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 723 dbg_wl("no WL needed: min used EC %d, max free EC %d", 724 e1->ec, e2->ec); 725 726 /* Give the unused PEB back */ 727 wl_tree_add(e2, &ubi->free); 728 ubi->free_count++; 729 goto out_cancel; 730 } 731 self_check_in_wl_tree(ubi, e1, &ubi->used); 732 rb_erase(&e1->u.rb, &ubi->used); 733 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 734 e1->pnum, e1->ec, e2->pnum, e2->ec); 735 } else { 736 /* Perform scrubbing */ 737 scrubbing = 1; 738 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 739 e2 = get_peb_for_wl(ubi); 740 if (!e2) 741 goto out_cancel; 742 743 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 744 rb_erase(&e1->u.rb, &ubi->scrub); 745 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 746 } 747 748 ubi->move_from = e1; 749 ubi->move_to = e2; 750 spin_unlock(&ubi->wl_lock); 751 752 /* 753 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 754 * We so far do not know which logical eraseblock our physical 755 * eraseblock (@e1) belongs to. We have to read the volume identifier 756 * header first. 757 * 758 * Note, we are protected from this PEB being unmapped and erased. The 759 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 760 * which is being moved was unmapped. 761 */ 762 763 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 764 if (err && err != UBI_IO_BITFLIPS) { 765 dst_leb_clean = 1; 766 if (err == UBI_IO_FF) { 767 /* 768 * We are trying to move PEB without a VID header. UBI 769 * always write VID headers shortly after the PEB was 770 * given, so we have a situation when it has not yet 771 * had a chance to write it, because it was preempted. 772 * So add this PEB to the protection queue so far, 773 * because presumably more data will be written there 774 * (including the missing VID header), and then we'll 775 * move it. 776 */ 777 dbg_wl("PEB %d has no VID header", e1->pnum); 778 protect = 1; 779 goto out_not_moved; 780 } else if (err == UBI_IO_FF_BITFLIPS) { 781 /* 782 * The same situation as %UBI_IO_FF, but bit-flips were 783 * detected. It is better to schedule this PEB for 784 * scrubbing. 785 */ 786 dbg_wl("PEB %d has no VID header but has bit-flips", 787 e1->pnum); 788 scrubbing = 1; 789 goto out_not_moved; 790 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 791 /* 792 * While a full scan would detect interrupted erasures 793 * at attach time we can face them here when attached from 794 * Fastmap. 795 */ 796 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 797 e1->pnum); 798 erase = 1; 799 goto out_not_moved; 800 } 801 802 ubi_err(ubi, "error %d while reading VID header from PEB %d", 803 err, e1->pnum); 804 goto out_error; 805 } 806 807 vol_id = be32_to_cpu(vid_hdr->vol_id); 808 lnum = be32_to_cpu(vid_hdr->lnum); 809 810 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 811 if (err) { 812 if (err == MOVE_CANCEL_RACE) { 813 /* 814 * The LEB has not been moved because the volume is 815 * being deleted or the PEB has been put meanwhile. We 816 * should prevent this PEB from being selected for 817 * wear-leveling movement again, so put it to the 818 * protection queue. 819 */ 820 protect = 1; 821 dst_leb_clean = 1; 822 goto out_not_moved; 823 } 824 if (err == MOVE_RETRY) { 825 scrubbing = 1; 826 dst_leb_clean = 1; 827 goto out_not_moved; 828 } 829 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 830 err == MOVE_TARGET_RD_ERR) { 831 /* 832 * Target PEB had bit-flips or write error - torture it. 833 */ 834 torture = 1; 835 keep = 1; 836 goto out_not_moved; 837 } 838 839 if (err == MOVE_SOURCE_RD_ERR) { 840 /* 841 * An error happened while reading the source PEB. Do 842 * not switch to R/O mode in this case, and give the 843 * upper layers a possibility to recover from this, 844 * e.g. by unmapping corresponding LEB. Instead, just 845 * put this PEB to the @ubi->erroneous list to prevent 846 * UBI from trying to move it over and over again. 847 */ 848 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 849 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 850 ubi->erroneous_peb_count); 851 goto out_error; 852 } 853 dst_leb_clean = 1; 854 erroneous = 1; 855 goto out_not_moved; 856 } 857 858 if (err < 0) 859 goto out_error; 860 861 ubi_assert(0); 862 } 863 864 /* The PEB has been successfully moved */ 865 if (scrubbing) 866 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 867 e1->pnum, vol_id, lnum, e2->pnum); 868 ubi_free_vid_buf(vidb); 869 870 spin_lock(&ubi->wl_lock); 871 if (!ubi->move_to_put) { 872 wl_tree_add(e2, &ubi->used); 873 e2 = NULL; 874 } 875 ubi->move_from = ubi->move_to = NULL; 876 ubi->move_to_put = ubi->wl_scheduled = 0; 877 spin_unlock(&ubi->wl_lock); 878 879 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 880 if (err) { 881 if (e2) 882 wl_entry_destroy(ubi, e2); 883 goto out_ro; 884 } 885 886 if (e2) { 887 /* 888 * Well, the target PEB was put meanwhile, schedule it for 889 * erasure. 890 */ 891 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 892 e2->pnum, vol_id, lnum); 893 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 894 if (err) 895 goto out_ro; 896 } 897 898 dbg_wl("done"); 899 mutex_unlock(&ubi->move_mutex); 900 up_read(&ubi->fm_eba_sem); 901 return 0; 902 903 /* 904 * For some reasons the LEB was not moved, might be an error, might be 905 * something else. @e1 was not changed, so return it back. @e2 might 906 * have been changed, schedule it for erasure. 907 */ 908 out_not_moved: 909 if (vol_id != -1) 910 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 911 e1->pnum, vol_id, lnum, e2->pnum, err); 912 else 913 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 914 e1->pnum, e2->pnum, err); 915 spin_lock(&ubi->wl_lock); 916 if (protect) 917 prot_queue_add(ubi, e1); 918 else if (erroneous) { 919 wl_tree_add(e1, &ubi->erroneous); 920 ubi->erroneous_peb_count += 1; 921 } else if (scrubbing) 922 wl_tree_add(e1, &ubi->scrub); 923 else if (keep) 924 wl_tree_add(e1, &ubi->used); 925 if (dst_leb_clean) { 926 wl_tree_add(e2, &ubi->free); 927 ubi->free_count++; 928 } 929 930 ubi_assert(!ubi->move_to_put); 931 ubi->move_from = ubi->move_to = NULL; 932 ubi->wl_scheduled = 0; 933 spin_unlock(&ubi->wl_lock); 934 935 ubi_free_vid_buf(vidb); 936 if (dst_leb_clean) { 937 ensure_wear_leveling(ubi, 1); 938 } else { 939 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 940 if (err) 941 goto out_ro; 942 } 943 944 if (erase) { 945 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 946 if (err) 947 goto out_ro; 948 } 949 950 mutex_unlock(&ubi->move_mutex); 951 up_read(&ubi->fm_eba_sem); 952 return 0; 953 954 out_error: 955 if (vol_id != -1) 956 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 957 err, e1->pnum, e2->pnum); 958 else 959 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 960 err, e1->pnum, vol_id, lnum, e2->pnum); 961 spin_lock(&ubi->wl_lock); 962 ubi->move_from = ubi->move_to = NULL; 963 ubi->move_to_put = ubi->wl_scheduled = 0; 964 spin_unlock(&ubi->wl_lock); 965 966 ubi_free_vid_buf(vidb); 967 wl_entry_destroy(ubi, e1); 968 wl_entry_destroy(ubi, e2); 969 970 out_ro: 971 ubi_ro_mode(ubi); 972 mutex_unlock(&ubi->move_mutex); 973 up_read(&ubi->fm_eba_sem); 974 ubi_assert(err != 0); 975 return err < 0 ? err : -EIO; 976 977 out_cancel: 978 ubi->wl_scheduled = 0; 979 spin_unlock(&ubi->wl_lock); 980 mutex_unlock(&ubi->move_mutex); 981 up_read(&ubi->fm_eba_sem); 982 ubi_free_vid_buf(vidb); 983 return 0; 984 } 985 986 /** 987 * ensure_wear_leveling - schedule wear-leveling if it is needed. 988 * @ubi: UBI device description object 989 * @nested: set to non-zero if this function is called from UBI worker 990 * 991 * This function checks if it is time to start wear-leveling and schedules it 992 * if yes. This function returns zero in case of success and a negative error 993 * code in case of failure. 994 */ 995 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 996 { 997 int err = 0; 998 struct ubi_wl_entry *e1; 999 struct ubi_wl_entry *e2; 1000 struct ubi_work *wrk; 1001 1002 spin_lock(&ubi->wl_lock); 1003 if (ubi->wl_scheduled) 1004 /* Wear-leveling is already in the work queue */ 1005 goto out_unlock; 1006 1007 /* 1008 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1009 * the WL worker has to be scheduled anyway. 1010 */ 1011 if (!ubi->scrub.rb_node) { 1012 if (!ubi->used.rb_node || !ubi->free.rb_node) 1013 /* No physical eraseblocks - no deal */ 1014 goto out_unlock; 1015 1016 /* 1017 * We schedule wear-leveling only if the difference between the 1018 * lowest erase counter of used physical eraseblocks and a high 1019 * erase counter of free physical eraseblocks is greater than 1020 * %UBI_WL_THRESHOLD. 1021 */ 1022 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1023 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1024 1025 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1026 goto out_unlock; 1027 dbg_wl("schedule wear-leveling"); 1028 } else 1029 dbg_wl("schedule scrubbing"); 1030 1031 ubi->wl_scheduled = 1; 1032 spin_unlock(&ubi->wl_lock); 1033 1034 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1035 if (!wrk) { 1036 err = -ENOMEM; 1037 goto out_cancel; 1038 } 1039 1040 wrk->func = &wear_leveling_worker; 1041 if (nested) 1042 __schedule_ubi_work(ubi, wrk); 1043 else 1044 schedule_ubi_work(ubi, wrk); 1045 return err; 1046 1047 out_cancel: 1048 spin_lock(&ubi->wl_lock); 1049 ubi->wl_scheduled = 0; 1050 out_unlock: 1051 spin_unlock(&ubi->wl_lock); 1052 return err; 1053 } 1054 1055 /** 1056 * __erase_worker - physical eraseblock erase worker function. 1057 * @ubi: UBI device description object 1058 * @wl_wrk: the work object 1059 * @shutdown: non-zero if the worker has to free memory and exit 1060 * because the WL sub-system is shutting down 1061 * 1062 * This function erases a physical eraseblock and perform torture testing if 1063 * needed. It also takes care about marking the physical eraseblock bad if 1064 * needed. Returns zero in case of success and a negative error code in case of 1065 * failure. 1066 */ 1067 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1068 { 1069 struct ubi_wl_entry *e = wl_wrk->e; 1070 int pnum = e->pnum; 1071 int vol_id = wl_wrk->vol_id; 1072 int lnum = wl_wrk->lnum; 1073 int err, available_consumed = 0; 1074 1075 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1076 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1077 1078 err = sync_erase(ubi, e, wl_wrk->torture); 1079 if (!err) { 1080 spin_lock(&ubi->wl_lock); 1081 1082 if (!ubi->fm_anchor && e->pnum < UBI_FM_MAX_START) { 1083 ubi->fm_anchor = e; 1084 ubi->fm_do_produce_anchor = 0; 1085 } else { 1086 wl_tree_add(e, &ubi->free); 1087 ubi->free_count++; 1088 } 1089 1090 spin_unlock(&ubi->wl_lock); 1091 1092 /* 1093 * One more erase operation has happened, take care about 1094 * protected physical eraseblocks. 1095 */ 1096 serve_prot_queue(ubi); 1097 1098 /* And take care about wear-leveling */ 1099 err = ensure_wear_leveling(ubi, 1); 1100 return err; 1101 } 1102 1103 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1104 1105 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1106 err == -EBUSY) { 1107 int err1; 1108 1109 /* Re-schedule the LEB for erasure */ 1110 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1111 if (err1) { 1112 wl_entry_destroy(ubi, e); 1113 err = err1; 1114 goto out_ro; 1115 } 1116 return err; 1117 } 1118 1119 wl_entry_destroy(ubi, e); 1120 if (err != -EIO) 1121 /* 1122 * If this is not %-EIO, we have no idea what to do. Scheduling 1123 * this physical eraseblock for erasure again would cause 1124 * errors again and again. Well, lets switch to R/O mode. 1125 */ 1126 goto out_ro; 1127 1128 /* It is %-EIO, the PEB went bad */ 1129 1130 if (!ubi->bad_allowed) { 1131 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1132 goto out_ro; 1133 } 1134 1135 spin_lock(&ubi->volumes_lock); 1136 if (ubi->beb_rsvd_pebs == 0) { 1137 if (ubi->avail_pebs == 0) { 1138 spin_unlock(&ubi->volumes_lock); 1139 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1140 goto out_ro; 1141 } 1142 ubi->avail_pebs -= 1; 1143 available_consumed = 1; 1144 } 1145 spin_unlock(&ubi->volumes_lock); 1146 1147 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1148 err = ubi_io_mark_bad(ubi, pnum); 1149 if (err) 1150 goto out_ro; 1151 1152 spin_lock(&ubi->volumes_lock); 1153 if (ubi->beb_rsvd_pebs > 0) { 1154 if (available_consumed) { 1155 /* 1156 * The amount of reserved PEBs increased since we last 1157 * checked. 1158 */ 1159 ubi->avail_pebs += 1; 1160 available_consumed = 0; 1161 } 1162 ubi->beb_rsvd_pebs -= 1; 1163 } 1164 ubi->bad_peb_count += 1; 1165 ubi->good_peb_count -= 1; 1166 ubi_calculate_reserved(ubi); 1167 if (available_consumed) 1168 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1169 else if (ubi->beb_rsvd_pebs) 1170 ubi_msg(ubi, "%d PEBs left in the reserve", 1171 ubi->beb_rsvd_pebs); 1172 else 1173 ubi_warn(ubi, "last PEB from the reserve was used"); 1174 spin_unlock(&ubi->volumes_lock); 1175 1176 return err; 1177 1178 out_ro: 1179 if (available_consumed) { 1180 spin_lock(&ubi->volumes_lock); 1181 ubi->avail_pebs += 1; 1182 spin_unlock(&ubi->volumes_lock); 1183 } 1184 ubi_ro_mode(ubi); 1185 return err; 1186 } 1187 1188 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1189 int shutdown) 1190 { 1191 int ret; 1192 1193 if (shutdown) { 1194 struct ubi_wl_entry *e = wl_wrk->e; 1195 1196 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1197 kfree(wl_wrk); 1198 wl_entry_destroy(ubi, e); 1199 return 0; 1200 } 1201 1202 ret = __erase_worker(ubi, wl_wrk); 1203 kfree(wl_wrk); 1204 return ret; 1205 } 1206 1207 /** 1208 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1209 * @ubi: UBI device description object 1210 * @vol_id: the volume ID that last used this PEB 1211 * @lnum: the last used logical eraseblock number for the PEB 1212 * @pnum: physical eraseblock to return 1213 * @torture: if this physical eraseblock has to be tortured 1214 * 1215 * This function is called to return physical eraseblock @pnum to the pool of 1216 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1217 * occurred to this @pnum and it has to be tested. This function returns zero 1218 * in case of success, and a negative error code in case of failure. 1219 */ 1220 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1221 int pnum, int torture) 1222 { 1223 int err; 1224 struct ubi_wl_entry *e; 1225 1226 dbg_wl("PEB %d", pnum); 1227 ubi_assert(pnum >= 0); 1228 ubi_assert(pnum < ubi->peb_count); 1229 1230 down_read(&ubi->fm_protect); 1231 1232 retry: 1233 spin_lock(&ubi->wl_lock); 1234 e = ubi->lookuptbl[pnum]; 1235 if (e == ubi->move_from) { 1236 /* 1237 * User is putting the physical eraseblock which was selected to 1238 * be moved. It will be scheduled for erasure in the 1239 * wear-leveling worker. 1240 */ 1241 dbg_wl("PEB %d is being moved, wait", pnum); 1242 spin_unlock(&ubi->wl_lock); 1243 1244 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1245 mutex_lock(&ubi->move_mutex); 1246 mutex_unlock(&ubi->move_mutex); 1247 goto retry; 1248 } else if (e == ubi->move_to) { 1249 /* 1250 * User is putting the physical eraseblock which was selected 1251 * as the target the data is moved to. It may happen if the EBA 1252 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1253 * but the WL sub-system has not put the PEB to the "used" tree 1254 * yet, but it is about to do this. So we just set a flag which 1255 * will tell the WL worker that the PEB is not needed anymore 1256 * and should be scheduled for erasure. 1257 */ 1258 dbg_wl("PEB %d is the target of data moving", pnum); 1259 ubi_assert(!ubi->move_to_put); 1260 ubi->move_to_put = 1; 1261 spin_unlock(&ubi->wl_lock); 1262 up_read(&ubi->fm_protect); 1263 return 0; 1264 } else { 1265 if (in_wl_tree(e, &ubi->used)) { 1266 self_check_in_wl_tree(ubi, e, &ubi->used); 1267 rb_erase(&e->u.rb, &ubi->used); 1268 } else if (in_wl_tree(e, &ubi->scrub)) { 1269 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1270 rb_erase(&e->u.rb, &ubi->scrub); 1271 } else if (in_wl_tree(e, &ubi->erroneous)) { 1272 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1273 rb_erase(&e->u.rb, &ubi->erroneous); 1274 ubi->erroneous_peb_count -= 1; 1275 ubi_assert(ubi->erroneous_peb_count >= 0); 1276 /* Erroneous PEBs should be tortured */ 1277 torture = 1; 1278 } else { 1279 err = prot_queue_del(ubi, e->pnum); 1280 if (err) { 1281 ubi_err(ubi, "PEB %d not found", pnum); 1282 ubi_ro_mode(ubi); 1283 spin_unlock(&ubi->wl_lock); 1284 up_read(&ubi->fm_protect); 1285 return err; 1286 } 1287 } 1288 } 1289 spin_unlock(&ubi->wl_lock); 1290 1291 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1292 if (err) { 1293 spin_lock(&ubi->wl_lock); 1294 wl_tree_add(e, &ubi->used); 1295 spin_unlock(&ubi->wl_lock); 1296 } 1297 1298 up_read(&ubi->fm_protect); 1299 return err; 1300 } 1301 1302 /** 1303 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1304 * @ubi: UBI device description object 1305 * @pnum: the physical eraseblock to schedule 1306 * 1307 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1308 * needs scrubbing. This function schedules a physical eraseblock for 1309 * scrubbing which is done in background. This function returns zero in case of 1310 * success and a negative error code in case of failure. 1311 */ 1312 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1313 { 1314 struct ubi_wl_entry *e; 1315 1316 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1317 1318 retry: 1319 spin_lock(&ubi->wl_lock); 1320 e = ubi->lookuptbl[pnum]; 1321 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1322 in_wl_tree(e, &ubi->erroneous)) { 1323 spin_unlock(&ubi->wl_lock); 1324 return 0; 1325 } 1326 1327 if (e == ubi->move_to) { 1328 /* 1329 * This physical eraseblock was used to move data to. The data 1330 * was moved but the PEB was not yet inserted to the proper 1331 * tree. We should just wait a little and let the WL worker 1332 * proceed. 1333 */ 1334 spin_unlock(&ubi->wl_lock); 1335 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1336 yield(); 1337 goto retry; 1338 } 1339 1340 if (in_wl_tree(e, &ubi->used)) { 1341 self_check_in_wl_tree(ubi, e, &ubi->used); 1342 rb_erase(&e->u.rb, &ubi->used); 1343 } else { 1344 int err; 1345 1346 err = prot_queue_del(ubi, e->pnum); 1347 if (err) { 1348 ubi_err(ubi, "PEB %d not found", pnum); 1349 ubi_ro_mode(ubi); 1350 spin_unlock(&ubi->wl_lock); 1351 return err; 1352 } 1353 } 1354 1355 wl_tree_add(e, &ubi->scrub); 1356 spin_unlock(&ubi->wl_lock); 1357 1358 /* 1359 * Technically scrubbing is the same as wear-leveling, so it is done 1360 * by the WL worker. 1361 */ 1362 return ensure_wear_leveling(ubi, 0); 1363 } 1364 1365 /** 1366 * ubi_wl_flush - flush all pending works. 1367 * @ubi: UBI device description object 1368 * @vol_id: the volume id to flush for 1369 * @lnum: the logical eraseblock number to flush for 1370 * 1371 * This function executes all pending works for a particular volume id / 1372 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1373 * acts as a wildcard for all of the corresponding volume numbers or logical 1374 * eraseblock numbers. It returns zero in case of success and a negative error 1375 * code in case of failure. 1376 */ 1377 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1378 { 1379 int err = 0; 1380 int found = 1; 1381 1382 /* 1383 * Erase while the pending works queue is not empty, but not more than 1384 * the number of currently pending works. 1385 */ 1386 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1387 vol_id, lnum, ubi->works_count); 1388 1389 while (found) { 1390 struct ubi_work *wrk, *tmp; 1391 found = 0; 1392 1393 down_read(&ubi->work_sem); 1394 spin_lock(&ubi->wl_lock); 1395 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1396 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1397 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1398 list_del(&wrk->list); 1399 ubi->works_count -= 1; 1400 ubi_assert(ubi->works_count >= 0); 1401 spin_unlock(&ubi->wl_lock); 1402 1403 err = wrk->func(ubi, wrk, 0); 1404 if (err) { 1405 up_read(&ubi->work_sem); 1406 return err; 1407 } 1408 1409 spin_lock(&ubi->wl_lock); 1410 found = 1; 1411 break; 1412 } 1413 } 1414 spin_unlock(&ubi->wl_lock); 1415 up_read(&ubi->work_sem); 1416 } 1417 1418 /* 1419 * Make sure all the works which have been done in parallel are 1420 * finished. 1421 */ 1422 down_write(&ubi->work_sem); 1423 up_write(&ubi->work_sem); 1424 1425 return err; 1426 } 1427 1428 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1429 { 1430 if (in_wl_tree(e, &ubi->scrub)) 1431 return false; 1432 else if (in_wl_tree(e, &ubi->erroneous)) 1433 return false; 1434 else if (ubi->move_from == e) 1435 return false; 1436 else if (ubi->move_to == e) 1437 return false; 1438 1439 return true; 1440 } 1441 1442 /** 1443 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1444 * @ubi: UBI device description object 1445 * @pnum: the physical eraseblock to schedule 1446 * @force: dont't read the block, assume bitflips happened and take action. 1447 * 1448 * This function reads the given eraseblock and checks if bitflips occured. 1449 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1450 * If scrubbing is forced with @force, the eraseblock is not read, 1451 * but scheduled for scrubbing right away. 1452 * 1453 * Returns: 1454 * %EINVAL, PEB is out of range 1455 * %ENOENT, PEB is no longer used by UBI 1456 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1457 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1458 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1459 * %0, no bit flips detected 1460 */ 1461 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1462 { 1463 int err = 0; 1464 struct ubi_wl_entry *e; 1465 1466 if (pnum < 0 || pnum >= ubi->peb_count) { 1467 err = -EINVAL; 1468 goto out; 1469 } 1470 1471 /* 1472 * Pause all parallel work, otherwise it can happen that the 1473 * erase worker frees a wl entry under us. 1474 */ 1475 down_write(&ubi->work_sem); 1476 1477 /* 1478 * Make sure that the wl entry does not change state while 1479 * inspecting it. 1480 */ 1481 spin_lock(&ubi->wl_lock); 1482 e = ubi->lookuptbl[pnum]; 1483 if (!e) { 1484 spin_unlock(&ubi->wl_lock); 1485 err = -ENOENT; 1486 goto out_resume; 1487 } 1488 1489 /* 1490 * Does it make sense to check this PEB? 1491 */ 1492 if (!scrub_possible(ubi, e)) { 1493 spin_unlock(&ubi->wl_lock); 1494 err = -EBUSY; 1495 goto out_resume; 1496 } 1497 spin_unlock(&ubi->wl_lock); 1498 1499 if (!force) { 1500 mutex_lock(&ubi->buf_mutex); 1501 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1502 mutex_unlock(&ubi->buf_mutex); 1503 } 1504 1505 if (force || err == UBI_IO_BITFLIPS) { 1506 /* 1507 * Okay, bit flip happened, let's figure out what we can do. 1508 */ 1509 spin_lock(&ubi->wl_lock); 1510 1511 /* 1512 * Recheck. We released wl_lock, UBI might have killed the 1513 * wl entry under us. 1514 */ 1515 e = ubi->lookuptbl[pnum]; 1516 if (!e) { 1517 spin_unlock(&ubi->wl_lock); 1518 err = -ENOENT; 1519 goto out_resume; 1520 } 1521 1522 /* 1523 * Need to re-check state 1524 */ 1525 if (!scrub_possible(ubi, e)) { 1526 spin_unlock(&ubi->wl_lock); 1527 err = -EBUSY; 1528 goto out_resume; 1529 } 1530 1531 if (in_pq(ubi, e)) { 1532 prot_queue_del(ubi, e->pnum); 1533 wl_tree_add(e, &ubi->scrub); 1534 spin_unlock(&ubi->wl_lock); 1535 1536 err = ensure_wear_leveling(ubi, 1); 1537 } else if (in_wl_tree(e, &ubi->used)) { 1538 rb_erase(&e->u.rb, &ubi->used); 1539 wl_tree_add(e, &ubi->scrub); 1540 spin_unlock(&ubi->wl_lock); 1541 1542 err = ensure_wear_leveling(ubi, 1); 1543 } else if (in_wl_tree(e, &ubi->free)) { 1544 rb_erase(&e->u.rb, &ubi->free); 1545 ubi->free_count--; 1546 spin_unlock(&ubi->wl_lock); 1547 1548 /* 1549 * This PEB is empty we can schedule it for 1550 * erasure right away. No wear leveling needed. 1551 */ 1552 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1553 force ? 0 : 1, true); 1554 } else { 1555 spin_unlock(&ubi->wl_lock); 1556 err = -EAGAIN; 1557 } 1558 1559 if (!err && !force) 1560 err = -EUCLEAN; 1561 } else { 1562 err = 0; 1563 } 1564 1565 out_resume: 1566 up_write(&ubi->work_sem); 1567 out: 1568 1569 return err; 1570 } 1571 1572 /** 1573 * tree_destroy - destroy an RB-tree. 1574 * @ubi: UBI device description object 1575 * @root: the root of the tree to destroy 1576 */ 1577 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1578 { 1579 struct rb_node *rb; 1580 struct ubi_wl_entry *e; 1581 1582 rb = root->rb_node; 1583 while (rb) { 1584 if (rb->rb_left) 1585 rb = rb->rb_left; 1586 else if (rb->rb_right) 1587 rb = rb->rb_right; 1588 else { 1589 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1590 1591 rb = rb_parent(rb); 1592 if (rb) { 1593 if (rb->rb_left == &e->u.rb) 1594 rb->rb_left = NULL; 1595 else 1596 rb->rb_right = NULL; 1597 } 1598 1599 wl_entry_destroy(ubi, e); 1600 } 1601 } 1602 } 1603 1604 /** 1605 * ubi_thread - UBI background thread. 1606 * @u: the UBI device description object pointer 1607 */ 1608 int ubi_thread(void *u) 1609 { 1610 int failures = 0; 1611 struct ubi_device *ubi = u; 1612 1613 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1614 ubi->bgt_name, task_pid_nr(current)); 1615 1616 set_freezable(); 1617 for (;;) { 1618 int err; 1619 1620 if (kthread_should_stop()) 1621 break; 1622 1623 if (try_to_freeze()) 1624 continue; 1625 1626 spin_lock(&ubi->wl_lock); 1627 if (list_empty(&ubi->works) || ubi->ro_mode || 1628 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1629 set_current_state(TASK_INTERRUPTIBLE); 1630 spin_unlock(&ubi->wl_lock); 1631 schedule(); 1632 continue; 1633 } 1634 spin_unlock(&ubi->wl_lock); 1635 1636 err = do_work(ubi); 1637 if (err) { 1638 ubi_err(ubi, "%s: work failed with error code %d", 1639 ubi->bgt_name, err); 1640 if (failures++ > WL_MAX_FAILURES) { 1641 /* 1642 * Too many failures, disable the thread and 1643 * switch to read-only mode. 1644 */ 1645 ubi_msg(ubi, "%s: %d consecutive failures", 1646 ubi->bgt_name, WL_MAX_FAILURES); 1647 ubi_ro_mode(ubi); 1648 ubi->thread_enabled = 0; 1649 continue; 1650 } 1651 } else 1652 failures = 0; 1653 1654 cond_resched(); 1655 } 1656 1657 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1658 ubi->thread_enabled = 0; 1659 return 0; 1660 } 1661 1662 /** 1663 * shutdown_work - shutdown all pending works. 1664 * @ubi: UBI device description object 1665 */ 1666 static void shutdown_work(struct ubi_device *ubi) 1667 { 1668 while (!list_empty(&ubi->works)) { 1669 struct ubi_work *wrk; 1670 1671 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1672 list_del(&wrk->list); 1673 wrk->func(ubi, wrk, 1); 1674 ubi->works_count -= 1; 1675 ubi_assert(ubi->works_count >= 0); 1676 } 1677 } 1678 1679 /** 1680 * erase_aeb - erase a PEB given in UBI attach info PEB 1681 * @ubi: UBI device description object 1682 * @aeb: UBI attach info PEB 1683 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1684 */ 1685 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1686 { 1687 struct ubi_wl_entry *e; 1688 int err; 1689 1690 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1691 if (!e) 1692 return -ENOMEM; 1693 1694 e->pnum = aeb->pnum; 1695 e->ec = aeb->ec; 1696 ubi->lookuptbl[e->pnum] = e; 1697 1698 if (sync) { 1699 err = sync_erase(ubi, e, false); 1700 if (err) 1701 goto out_free; 1702 1703 wl_tree_add(e, &ubi->free); 1704 ubi->free_count++; 1705 } else { 1706 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1707 if (err) 1708 goto out_free; 1709 } 1710 1711 return 0; 1712 1713 out_free: 1714 wl_entry_destroy(ubi, e); 1715 1716 return err; 1717 } 1718 1719 /** 1720 * ubi_wl_init - initialize the WL sub-system using attaching information. 1721 * @ubi: UBI device description object 1722 * @ai: attaching information 1723 * 1724 * This function returns zero in case of success, and a negative error code in 1725 * case of failure. 1726 */ 1727 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1728 { 1729 int err, i, reserved_pebs, found_pebs = 0; 1730 struct rb_node *rb1, *rb2; 1731 struct ubi_ainf_volume *av; 1732 struct ubi_ainf_peb *aeb, *tmp; 1733 struct ubi_wl_entry *e; 1734 1735 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1736 spin_lock_init(&ubi->wl_lock); 1737 mutex_init(&ubi->move_mutex); 1738 init_rwsem(&ubi->work_sem); 1739 ubi->max_ec = ai->max_ec; 1740 INIT_LIST_HEAD(&ubi->works); 1741 1742 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1743 1744 err = -ENOMEM; 1745 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1746 if (!ubi->lookuptbl) 1747 return err; 1748 1749 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1750 INIT_LIST_HEAD(&ubi->pq[i]); 1751 ubi->pq_head = 0; 1752 1753 ubi->free_count = 0; 1754 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1755 cond_resched(); 1756 1757 err = erase_aeb(ubi, aeb, false); 1758 if (err) 1759 goto out_free; 1760 1761 found_pebs++; 1762 } 1763 1764 list_for_each_entry(aeb, &ai->free, u.list) { 1765 cond_resched(); 1766 1767 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1768 if (!e) { 1769 err = -ENOMEM; 1770 goto out_free; 1771 } 1772 1773 e->pnum = aeb->pnum; 1774 e->ec = aeb->ec; 1775 ubi_assert(e->ec >= 0); 1776 1777 wl_tree_add(e, &ubi->free); 1778 ubi->free_count++; 1779 1780 ubi->lookuptbl[e->pnum] = e; 1781 1782 found_pebs++; 1783 } 1784 1785 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1786 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1787 cond_resched(); 1788 1789 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1790 if (!e) { 1791 err = -ENOMEM; 1792 goto out_free; 1793 } 1794 1795 e->pnum = aeb->pnum; 1796 e->ec = aeb->ec; 1797 ubi->lookuptbl[e->pnum] = e; 1798 1799 if (!aeb->scrub) { 1800 dbg_wl("add PEB %d EC %d to the used tree", 1801 e->pnum, e->ec); 1802 wl_tree_add(e, &ubi->used); 1803 } else { 1804 dbg_wl("add PEB %d EC %d to the scrub tree", 1805 e->pnum, e->ec); 1806 wl_tree_add(e, &ubi->scrub); 1807 } 1808 1809 found_pebs++; 1810 } 1811 } 1812 1813 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1814 cond_resched(); 1815 1816 e = ubi_find_fm_block(ubi, aeb->pnum); 1817 1818 if (e) { 1819 ubi_assert(!ubi->lookuptbl[e->pnum]); 1820 ubi->lookuptbl[e->pnum] = e; 1821 } else { 1822 bool sync = false; 1823 1824 /* 1825 * Usually old Fastmap PEBs are scheduled for erasure 1826 * and we don't have to care about them but if we face 1827 * an power cut before scheduling them we need to 1828 * take care of them here. 1829 */ 1830 if (ubi->lookuptbl[aeb->pnum]) 1831 continue; 1832 1833 /* 1834 * The fastmap update code might not find a free PEB for 1835 * writing the fastmap anchor to and then reuses the 1836 * current fastmap anchor PEB. When this PEB gets erased 1837 * and a power cut happens before it is written again we 1838 * must make sure that the fastmap attach code doesn't 1839 * find any outdated fastmap anchors, hence we erase the 1840 * outdated fastmap anchor PEBs synchronously here. 1841 */ 1842 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1843 sync = true; 1844 1845 err = erase_aeb(ubi, aeb, sync); 1846 if (err) 1847 goto out_free; 1848 } 1849 1850 found_pebs++; 1851 } 1852 1853 dbg_wl("found %i PEBs", found_pebs); 1854 1855 ubi_assert(ubi->good_peb_count == found_pebs); 1856 1857 reserved_pebs = WL_RESERVED_PEBS; 1858 ubi_fastmap_init(ubi, &reserved_pebs); 1859 1860 if (ubi->avail_pebs < reserved_pebs) { 1861 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1862 ubi->avail_pebs, reserved_pebs); 1863 if (ubi->corr_peb_count) 1864 ubi_err(ubi, "%d PEBs are corrupted and not used", 1865 ubi->corr_peb_count); 1866 err = -ENOSPC; 1867 goto out_free; 1868 } 1869 ubi->avail_pebs -= reserved_pebs; 1870 ubi->rsvd_pebs += reserved_pebs; 1871 1872 /* Schedule wear-leveling if needed */ 1873 err = ensure_wear_leveling(ubi, 0); 1874 if (err) 1875 goto out_free; 1876 1877 #ifdef CONFIG_MTD_UBI_FASTMAP 1878 ubi_ensure_anchor_pebs(ubi); 1879 #endif 1880 return 0; 1881 1882 out_free: 1883 shutdown_work(ubi); 1884 tree_destroy(ubi, &ubi->used); 1885 tree_destroy(ubi, &ubi->free); 1886 tree_destroy(ubi, &ubi->scrub); 1887 kfree(ubi->lookuptbl); 1888 return err; 1889 } 1890 1891 /** 1892 * protection_queue_destroy - destroy the protection queue. 1893 * @ubi: UBI device description object 1894 */ 1895 static void protection_queue_destroy(struct ubi_device *ubi) 1896 { 1897 int i; 1898 struct ubi_wl_entry *e, *tmp; 1899 1900 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1901 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1902 list_del(&e->u.list); 1903 wl_entry_destroy(ubi, e); 1904 } 1905 } 1906 } 1907 1908 /** 1909 * ubi_wl_close - close the wear-leveling sub-system. 1910 * @ubi: UBI device description object 1911 */ 1912 void ubi_wl_close(struct ubi_device *ubi) 1913 { 1914 dbg_wl("close the WL sub-system"); 1915 ubi_fastmap_close(ubi); 1916 shutdown_work(ubi); 1917 protection_queue_destroy(ubi); 1918 tree_destroy(ubi, &ubi->used); 1919 tree_destroy(ubi, &ubi->erroneous); 1920 tree_destroy(ubi, &ubi->free); 1921 tree_destroy(ubi, &ubi->scrub); 1922 kfree(ubi->lookuptbl); 1923 } 1924 1925 /** 1926 * self_check_ec - make sure that the erase counter of a PEB is correct. 1927 * @ubi: UBI device description object 1928 * @pnum: the physical eraseblock number to check 1929 * @ec: the erase counter to check 1930 * 1931 * This function returns zero if the erase counter of physical eraseblock @pnum 1932 * is equivalent to @ec, and a negative error code if not or if an error 1933 * occurred. 1934 */ 1935 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1936 { 1937 int err; 1938 long long read_ec; 1939 struct ubi_ec_hdr *ec_hdr; 1940 1941 if (!ubi_dbg_chk_gen(ubi)) 1942 return 0; 1943 1944 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1945 if (!ec_hdr) 1946 return -ENOMEM; 1947 1948 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1949 if (err && err != UBI_IO_BITFLIPS) { 1950 /* The header does not have to exist */ 1951 err = 0; 1952 goto out_free; 1953 } 1954 1955 read_ec = be64_to_cpu(ec_hdr->ec); 1956 if (ec != read_ec && read_ec - ec > 1) { 1957 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1958 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1959 dump_stack(); 1960 err = 1; 1961 } else 1962 err = 0; 1963 1964 out_free: 1965 kfree(ec_hdr); 1966 return err; 1967 } 1968 1969 /** 1970 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1971 * @ubi: UBI device description object 1972 * @e: the wear-leveling entry to check 1973 * @root: the root of the tree 1974 * 1975 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1976 * is not. 1977 */ 1978 static int self_check_in_wl_tree(const struct ubi_device *ubi, 1979 struct ubi_wl_entry *e, struct rb_root *root) 1980 { 1981 if (!ubi_dbg_chk_gen(ubi)) 1982 return 0; 1983 1984 if (in_wl_tree(e, root)) 1985 return 0; 1986 1987 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 1988 e->pnum, e->ec, root); 1989 dump_stack(); 1990 return -EINVAL; 1991 } 1992 1993 /** 1994 * self_check_in_pq - check if wear-leveling entry is in the protection 1995 * queue. 1996 * @ubi: UBI device description object 1997 * @e: the wear-leveling entry to check 1998 * 1999 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2000 */ 2001 static int self_check_in_pq(const struct ubi_device *ubi, 2002 struct ubi_wl_entry *e) 2003 { 2004 if (!ubi_dbg_chk_gen(ubi)) 2005 return 0; 2006 2007 if (in_pq(ubi, e)) 2008 return 0; 2009 2010 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2011 e->pnum, e->ec); 2012 dump_stack(); 2013 return -EINVAL; 2014 } 2015 #ifndef CONFIG_MTD_UBI_FASTMAP 2016 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2017 { 2018 struct ubi_wl_entry *e; 2019 2020 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2021 self_check_in_wl_tree(ubi, e, &ubi->free); 2022 ubi->free_count--; 2023 ubi_assert(ubi->free_count >= 0); 2024 rb_erase(&e->u.rb, &ubi->free); 2025 2026 return e; 2027 } 2028 2029 /** 2030 * produce_free_peb - produce a free physical eraseblock. 2031 * @ubi: UBI device description object 2032 * 2033 * This function tries to make a free PEB by means of synchronous execution of 2034 * pending works. This may be needed if, for example the background thread is 2035 * disabled. Returns zero in case of success and a negative error code in case 2036 * of failure. 2037 */ 2038 static int produce_free_peb(struct ubi_device *ubi) 2039 { 2040 int err; 2041 2042 while (!ubi->free.rb_node && ubi->works_count) { 2043 spin_unlock(&ubi->wl_lock); 2044 2045 dbg_wl("do one work synchronously"); 2046 err = do_work(ubi); 2047 2048 spin_lock(&ubi->wl_lock); 2049 if (err) 2050 return err; 2051 } 2052 2053 return 0; 2054 } 2055 2056 /** 2057 * ubi_wl_get_peb - get a physical eraseblock. 2058 * @ubi: UBI device description object 2059 * 2060 * This function returns a physical eraseblock in case of success and a 2061 * negative error code in case of failure. 2062 * Returns with ubi->fm_eba_sem held in read mode! 2063 */ 2064 int ubi_wl_get_peb(struct ubi_device *ubi) 2065 { 2066 int err; 2067 struct ubi_wl_entry *e; 2068 2069 retry: 2070 down_read(&ubi->fm_eba_sem); 2071 spin_lock(&ubi->wl_lock); 2072 if (!ubi->free.rb_node) { 2073 if (ubi->works_count == 0) { 2074 ubi_err(ubi, "no free eraseblocks"); 2075 ubi_assert(list_empty(&ubi->works)); 2076 spin_unlock(&ubi->wl_lock); 2077 return -ENOSPC; 2078 } 2079 2080 err = produce_free_peb(ubi); 2081 if (err < 0) { 2082 spin_unlock(&ubi->wl_lock); 2083 return err; 2084 } 2085 spin_unlock(&ubi->wl_lock); 2086 up_read(&ubi->fm_eba_sem); 2087 goto retry; 2088 2089 } 2090 e = wl_get_wle(ubi); 2091 prot_queue_add(ubi, e); 2092 spin_unlock(&ubi->wl_lock); 2093 2094 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2095 ubi->peb_size - ubi->vid_hdr_aloffset); 2096 if (err) { 2097 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2098 return err; 2099 } 2100 2101 return e->pnum; 2102 } 2103 #else 2104 #include "fastmap-wl.c" 2105 #endif 2106