xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107 
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110 
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118 
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131 
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137 
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 				 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 			    struct ubi_wl_entry *e);
143 
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154 	struct rb_node **p, *parent = NULL;
155 
156 	p = &root->rb_node;
157 	while (*p) {
158 		struct ubi_wl_entry *e1;
159 
160 		parent = *p;
161 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162 
163 		if (e->ec < e1->ec)
164 			p = &(*p)->rb_left;
165 		else if (e->ec > e1->ec)
166 			p = &(*p)->rb_right;
167 		else {
168 			ubi_assert(e->pnum != e1->pnum);
169 			if (e->pnum < e1->pnum)
170 				p = &(*p)->rb_left;
171 			else
172 				p = &(*p)->rb_right;
173 		}
174 	}
175 
176 	rb_link_node(&e->u.rb, parent, p);
177 	rb_insert_color(&e->u.rb, root);
178 }
179 
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190 	ubi->lookuptbl[e->pnum] = NULL;
191 	kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193 
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203 	int err;
204 	struct ubi_work *wrk;
205 
206 	cond_resched();
207 
208 	/*
209 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
210 	 * it in read mode, so many of them may be doing works at a time. But
211 	 * the queue flush code has to be sure the whole queue of works is
212 	 * done, and it takes the mutex in write mode.
213 	 */
214 	down_read(&ubi->work_sem);
215 	spin_lock(&ubi->wl_lock);
216 	if (list_empty(&ubi->works)) {
217 		spin_unlock(&ubi->wl_lock);
218 		up_read(&ubi->work_sem);
219 		return 0;
220 	}
221 
222 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
223 	list_del(&wrk->list);
224 	ubi->works_count -= 1;
225 	ubi_assert(ubi->works_count >= 0);
226 	spin_unlock(&ubi->wl_lock);
227 
228 	/*
229 	 * Call the worker function. Do not touch the work structure
230 	 * after this call as it will have been freed or reused by that
231 	 * time by the worker function.
232 	 */
233 	err = wrk->func(ubi, wrk, 0);
234 	if (err)
235 		ubi_err(ubi, "work failed with error code %d", err);
236 	up_read(&ubi->work_sem);
237 
238 	return err;
239 }
240 
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251 	struct rb_node *p;
252 
253 	p = root->rb_node;
254 	while (p) {
255 		struct ubi_wl_entry *e1;
256 
257 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258 
259 		if (e->pnum == e1->pnum) {
260 			ubi_assert(e == e1);
261 			return 1;
262 		}
263 
264 		if (e->ec < e1->ec)
265 			p = p->rb_left;
266 		else if (e->ec > e1->ec)
267 			p = p->rb_right;
268 		else {
269 			ubi_assert(e->pnum != e1->pnum);
270 			if (e->pnum < e1->pnum)
271 				p = p->rb_left;
272 			else
273 				p = p->rb_right;
274 		}
275 	}
276 
277 	return 0;
278 }
279 
280 /**
281  * prot_queue_add - add physical eraseblock to the protection queue.
282  * @ubi: UBI device description object
283  * @e: the physical eraseblock to add
284  *
285  * This function adds @e to the tail of the protection queue @ubi->pq, where
286  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288  * be locked.
289  */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292 	int pq_tail = ubi->pq_head - 1;
293 
294 	if (pq_tail < 0)
295 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
296 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300 
301 /**
302  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303  * @ubi: UBI device description object
304  * @root: the RB-tree where to look for
305  * @diff: maximum possible difference from the smallest erase counter
306  *
307  * This function looks for a wear leveling entry with erase counter closest to
308  * min + @diff, where min is the smallest erase counter.
309  */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311 					  struct rb_root *root, int diff)
312 {
313 	struct rb_node *p;
314 	struct ubi_wl_entry *e, *prev_e = NULL;
315 	int max;
316 
317 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318 	max = e->ec + diff;
319 
320 	p = root->rb_node;
321 	while (p) {
322 		struct ubi_wl_entry *e1;
323 
324 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325 		if (e1->ec >= max)
326 			p = p->rb_left;
327 		else {
328 			p = p->rb_right;
329 			prev_e = e;
330 			e = e1;
331 		}
332 	}
333 
334 	/* If no fastmap has been written and this WL entry can be used
335 	 * as anchor PEB, hold it back and return the second best WL entry
336 	 * such that fastmap can use the anchor PEB later. */
337 	if (prev_e && !ubi->fm_disabled &&
338 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
339 		return prev_e;
340 
341 	return e;
342 }
343 
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 					       struct rb_root *root)
355 {
356 	struct ubi_wl_entry *e, *first, *last;
357 
358 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360 
361 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363 
364 		/* If no fastmap has been written and this WL entry can be used
365 		 * as anchor PEB, hold it back and return the second best
366 		 * WL entry such that fastmap can use the anchor PEB later. */
367 		e = may_reserve_for_fm(ubi, e, root);
368 	} else
369 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370 
371 	return e;
372 }
373 
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 	struct ubi_wl_entry *e;
385 
386 	e = find_mean_wl_entry(ubi, &ubi->free);
387 	if (!e) {
388 		ubi_err(ubi, "no free eraseblocks");
389 		return NULL;
390 	}
391 
392 	self_check_in_wl_tree(ubi, e, &ubi->free);
393 
394 	/*
395 	 * Move the physical eraseblock to the protection queue where it will
396 	 * be protected from being moved for some time.
397 	 */
398 	rb_erase(&e->u.rb, &ubi->free);
399 	ubi->free_count--;
400 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401 
402 	return e;
403 }
404 
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 	struct ubi_wl_entry *e;
416 
417 	e = ubi->lookuptbl[pnum];
418 	if (!e)
419 		return -ENODEV;
420 
421 	if (self_check_in_pq(ubi, e))
422 		return -ENODEV;
423 
424 	list_del(&e->u.list);
425 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 	return 0;
427 }
428 
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 		      int torture)
440 {
441 	int err;
442 	struct ubi_ec_hdr *ec_hdr;
443 	unsigned long long ec = e->ec;
444 
445 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446 
447 	err = self_check_ec(ubi, e->pnum, e->ec);
448 	if (err)
449 		return -EINVAL;
450 
451 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 	if (!ec_hdr)
453 		return -ENOMEM;
454 
455 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 	if (err < 0)
457 		goto out_free;
458 
459 	ec += err;
460 	if (ec > UBI_MAX_ERASECOUNTER) {
461 		/*
462 		 * Erase counter overflow. Upgrade UBI and use 64-bit
463 		 * erase counters internally.
464 		 */
465 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 			e->pnum, ec);
467 		err = -EINVAL;
468 		goto out_free;
469 	}
470 
471 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472 
473 	ec_hdr->ec = cpu_to_be64(ec);
474 
475 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 	if (err)
477 		goto out_free;
478 
479 	e->ec = ec;
480 	spin_lock(&ubi->wl_lock);
481 	if (e->ec > ubi->max_ec)
482 		ubi->max_ec = e->ec;
483 	spin_unlock(&ubi->wl_lock);
484 
485 out_free:
486 	kfree(ec_hdr);
487 	return err;
488 }
489 
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 	struct ubi_wl_entry *e, *tmp;
501 	int count;
502 
503 	/*
504 	 * There may be several protected physical eraseblock to remove,
505 	 * process them all.
506 	 */
507 repeat:
508 	count = 0;
509 	spin_lock(&ubi->wl_lock);
510 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 		dbg_wl("PEB %d EC %d protection over, move to used tree",
512 			e->pnum, e->ec);
513 
514 		list_del(&e->u.list);
515 		wl_tree_add(e, &ubi->used);
516 		if (count++ > 32) {
517 			/*
518 			 * Let's be nice and avoid holding the spinlock for
519 			 * too long.
520 			 */
521 			spin_unlock(&ubi->wl_lock);
522 			cond_resched();
523 			goto repeat;
524 		}
525 	}
526 
527 	ubi->pq_head += 1;
528 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 		ubi->pq_head = 0;
530 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 	spin_unlock(&ubi->wl_lock);
532 }
533 
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 	spin_lock(&ubi->wl_lock);
545 	list_add_tail(&wrk->list, &ubi->works);
546 	ubi_assert(ubi->works_count >= 0);
547 	ubi->works_count += 1;
548 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 		wake_up_process(ubi->bgt_thread);
550 	spin_unlock(&ubi->wl_lock);
551 }
552 
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 	down_read(&ubi->work_sem);
564 	__schedule_ubi_work(ubi, wrk);
565 	up_read(&ubi->work_sem);
566 }
567 
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 			int shutdown);
570 
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a %-ENOMEM in case of
580  * failure.
581  */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 			  int vol_id, int lnum, int torture)
584 {
585 	struct ubi_work *wl_wrk;
586 
587 	ubi_assert(e);
588 
589 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 	       e->pnum, e->ec, torture);
591 
592 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 	if (!wl_wrk)
594 		return -ENOMEM;
595 
596 	wl_wrk->func = &erase_worker;
597 	wl_wrk->e = e;
598 	wl_wrk->vol_id = vol_id;
599 	wl_wrk->lnum = lnum;
600 	wl_wrk->torture = torture;
601 
602 	schedule_ubi_work(ubi, wl_wrk);
603 	return 0;
604 }
605 
606 /**
607  * do_sync_erase - run the erase worker synchronously.
608  * @ubi: UBI device description object
609  * @e: the WL entry of the physical eraseblock to erase
610  * @vol_id: the volume ID that last used this PEB
611  * @lnum: the last used logical eraseblock number for the PEB
612  * @torture: if the physical eraseblock has to be tortured
613  *
614  */
615 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
616 			 int vol_id, int lnum, int torture)
617 {
618 	struct ubi_work *wl_wrk;
619 
620 	dbg_wl("sync erase of PEB %i", e->pnum);
621 
622 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
623 	if (!wl_wrk)
624 		return -ENOMEM;
625 
626 	wl_wrk->e = e;
627 	wl_wrk->vol_id = vol_id;
628 	wl_wrk->lnum = lnum;
629 	wl_wrk->torture = torture;
630 
631 	return erase_worker(ubi, wl_wrk, 0);
632 }
633 
634 /**
635  * wear_leveling_worker - wear-leveling worker function.
636  * @ubi: UBI device description object
637  * @wrk: the work object
638  * @shutdown: non-zero if the worker has to free memory and exit
639  * because the WL-subsystem is shutting down
640  *
641  * This function copies a more worn out physical eraseblock to a less worn out
642  * one. Returns zero in case of success and a negative error code in case of
643  * failure.
644  */
645 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
646 				int shutdown)
647 {
648 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
649 	int vol_id = -1, lnum = -1;
650 #ifdef CONFIG_MTD_UBI_FASTMAP
651 	int anchor = wrk->anchor;
652 #endif
653 	struct ubi_wl_entry *e1, *e2;
654 	struct ubi_vid_hdr *vid_hdr;
655 
656 	kfree(wrk);
657 	if (shutdown)
658 		return 0;
659 
660 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
661 	if (!vid_hdr)
662 		return -ENOMEM;
663 
664 	mutex_lock(&ubi->move_mutex);
665 	spin_lock(&ubi->wl_lock);
666 	ubi_assert(!ubi->move_from && !ubi->move_to);
667 	ubi_assert(!ubi->move_to_put);
668 
669 	if (!ubi->free.rb_node ||
670 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
671 		/*
672 		 * No free physical eraseblocks? Well, they must be waiting in
673 		 * the queue to be erased. Cancel movement - it will be
674 		 * triggered again when a free physical eraseblock appears.
675 		 *
676 		 * No used physical eraseblocks? They must be temporarily
677 		 * protected from being moved. They will be moved to the
678 		 * @ubi->used tree later and the wear-leveling will be
679 		 * triggered again.
680 		 */
681 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
682 		       !ubi->free.rb_node, !ubi->used.rb_node);
683 		goto out_cancel;
684 	}
685 
686 #ifdef CONFIG_MTD_UBI_FASTMAP
687 	/* Check whether we need to produce an anchor PEB */
688 	if (!anchor)
689 		anchor = !anchor_pebs_avalible(&ubi->free);
690 
691 	if (anchor) {
692 		e1 = find_anchor_wl_entry(&ubi->used);
693 		if (!e1)
694 			goto out_cancel;
695 		e2 = get_peb_for_wl(ubi);
696 		if (!e2)
697 			goto out_cancel;
698 
699 		self_check_in_wl_tree(ubi, e1, &ubi->used);
700 		rb_erase(&e1->u.rb, &ubi->used);
701 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
702 	} else if (!ubi->scrub.rb_node) {
703 #else
704 	if (!ubi->scrub.rb_node) {
705 #endif
706 		/*
707 		 * Now pick the least worn-out used physical eraseblock and a
708 		 * highly worn-out free physical eraseblock. If the erase
709 		 * counters differ much enough, start wear-leveling.
710 		 */
711 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
712 		e2 = get_peb_for_wl(ubi);
713 		if (!e2)
714 			goto out_cancel;
715 
716 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
717 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
718 			       e1->ec, e2->ec);
719 
720 			/* Give the unused PEB back */
721 			wl_tree_add(e2, &ubi->free);
722 			ubi->free_count++;
723 			goto out_cancel;
724 		}
725 		self_check_in_wl_tree(ubi, e1, &ubi->used);
726 		rb_erase(&e1->u.rb, &ubi->used);
727 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
728 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
729 	} else {
730 		/* Perform scrubbing */
731 		scrubbing = 1;
732 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
733 		e2 = get_peb_for_wl(ubi);
734 		if (!e2)
735 			goto out_cancel;
736 
737 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
738 		rb_erase(&e1->u.rb, &ubi->scrub);
739 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
740 	}
741 
742 	ubi->move_from = e1;
743 	ubi->move_to = e2;
744 	spin_unlock(&ubi->wl_lock);
745 
746 	/*
747 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
748 	 * We so far do not know which logical eraseblock our physical
749 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
750 	 * header first.
751 	 *
752 	 * Note, we are protected from this PEB being unmapped and erased. The
753 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
754 	 * which is being moved was unmapped.
755 	 */
756 
757 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
758 	if (err && err != UBI_IO_BITFLIPS) {
759 		if (err == UBI_IO_FF) {
760 			/*
761 			 * We are trying to move PEB without a VID header. UBI
762 			 * always write VID headers shortly after the PEB was
763 			 * given, so we have a situation when it has not yet
764 			 * had a chance to write it, because it was preempted.
765 			 * So add this PEB to the protection queue so far,
766 			 * because presumably more data will be written there
767 			 * (including the missing VID header), and then we'll
768 			 * move it.
769 			 */
770 			dbg_wl("PEB %d has no VID header", e1->pnum);
771 			protect = 1;
772 			goto out_not_moved;
773 		} else if (err == UBI_IO_FF_BITFLIPS) {
774 			/*
775 			 * The same situation as %UBI_IO_FF, but bit-flips were
776 			 * detected. It is better to schedule this PEB for
777 			 * scrubbing.
778 			 */
779 			dbg_wl("PEB %d has no VID header but has bit-flips",
780 			       e1->pnum);
781 			scrubbing = 1;
782 			goto out_not_moved;
783 		}
784 
785 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
786 			err, e1->pnum);
787 		goto out_error;
788 	}
789 
790 	vol_id = be32_to_cpu(vid_hdr->vol_id);
791 	lnum = be32_to_cpu(vid_hdr->lnum);
792 
793 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
794 	if (err) {
795 		if (err == MOVE_CANCEL_RACE) {
796 			/*
797 			 * The LEB has not been moved because the volume is
798 			 * being deleted or the PEB has been put meanwhile. We
799 			 * should prevent this PEB from being selected for
800 			 * wear-leveling movement again, so put it to the
801 			 * protection queue.
802 			 */
803 			protect = 1;
804 			goto out_not_moved;
805 		}
806 		if (err == MOVE_RETRY) {
807 			scrubbing = 1;
808 			goto out_not_moved;
809 		}
810 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
811 		    err == MOVE_TARGET_RD_ERR) {
812 			/*
813 			 * Target PEB had bit-flips or write error - torture it.
814 			 */
815 			torture = 1;
816 			goto out_not_moved;
817 		}
818 
819 		if (err == MOVE_SOURCE_RD_ERR) {
820 			/*
821 			 * An error happened while reading the source PEB. Do
822 			 * not switch to R/O mode in this case, and give the
823 			 * upper layers a possibility to recover from this,
824 			 * e.g. by unmapping corresponding LEB. Instead, just
825 			 * put this PEB to the @ubi->erroneous list to prevent
826 			 * UBI from trying to move it over and over again.
827 			 */
828 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
829 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
830 					ubi->erroneous_peb_count);
831 				goto out_error;
832 			}
833 			erroneous = 1;
834 			goto out_not_moved;
835 		}
836 
837 		if (err < 0)
838 			goto out_error;
839 
840 		ubi_assert(0);
841 	}
842 
843 	/* The PEB has been successfully moved */
844 	if (scrubbing)
845 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
846 			e1->pnum, vol_id, lnum, e2->pnum);
847 	ubi_free_vid_hdr(ubi, vid_hdr);
848 
849 	spin_lock(&ubi->wl_lock);
850 	if (!ubi->move_to_put) {
851 		wl_tree_add(e2, &ubi->used);
852 		e2 = NULL;
853 	}
854 	ubi->move_from = ubi->move_to = NULL;
855 	ubi->move_to_put = ubi->wl_scheduled = 0;
856 	spin_unlock(&ubi->wl_lock);
857 
858 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
859 	if (err) {
860 		if (e2)
861 			wl_entry_destroy(ubi, e2);
862 		goto out_ro;
863 	}
864 
865 	if (e2) {
866 		/*
867 		 * Well, the target PEB was put meanwhile, schedule it for
868 		 * erasure.
869 		 */
870 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
871 		       e2->pnum, vol_id, lnum);
872 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
873 		if (err)
874 			goto out_ro;
875 	}
876 
877 	dbg_wl("done");
878 	mutex_unlock(&ubi->move_mutex);
879 	return 0;
880 
881 	/*
882 	 * For some reasons the LEB was not moved, might be an error, might be
883 	 * something else. @e1 was not changed, so return it back. @e2 might
884 	 * have been changed, schedule it for erasure.
885 	 */
886 out_not_moved:
887 	if (vol_id != -1)
888 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
889 		       e1->pnum, vol_id, lnum, e2->pnum, err);
890 	else
891 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
892 		       e1->pnum, e2->pnum, err);
893 	spin_lock(&ubi->wl_lock);
894 	if (protect)
895 		prot_queue_add(ubi, e1);
896 	else if (erroneous) {
897 		wl_tree_add(e1, &ubi->erroneous);
898 		ubi->erroneous_peb_count += 1;
899 	} else if (scrubbing)
900 		wl_tree_add(e1, &ubi->scrub);
901 	else
902 		wl_tree_add(e1, &ubi->used);
903 	ubi_assert(!ubi->move_to_put);
904 	ubi->move_from = ubi->move_to = NULL;
905 	ubi->wl_scheduled = 0;
906 	spin_unlock(&ubi->wl_lock);
907 
908 	ubi_free_vid_hdr(ubi, vid_hdr);
909 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
910 	if (err)
911 		goto out_ro;
912 
913 	mutex_unlock(&ubi->move_mutex);
914 	return 0;
915 
916 out_error:
917 	if (vol_id != -1)
918 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
919 			err, e1->pnum, e2->pnum);
920 	else
921 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
922 			err, e1->pnum, vol_id, lnum, e2->pnum);
923 	spin_lock(&ubi->wl_lock);
924 	ubi->move_from = ubi->move_to = NULL;
925 	ubi->move_to_put = ubi->wl_scheduled = 0;
926 	spin_unlock(&ubi->wl_lock);
927 
928 	ubi_free_vid_hdr(ubi, vid_hdr);
929 	wl_entry_destroy(ubi, e1);
930 	wl_entry_destroy(ubi, e2);
931 
932 out_ro:
933 	ubi_ro_mode(ubi);
934 	mutex_unlock(&ubi->move_mutex);
935 	ubi_assert(err != 0);
936 	return err < 0 ? err : -EIO;
937 
938 out_cancel:
939 	ubi->wl_scheduled = 0;
940 	spin_unlock(&ubi->wl_lock);
941 	mutex_unlock(&ubi->move_mutex);
942 	ubi_free_vid_hdr(ubi, vid_hdr);
943 	return 0;
944 }
945 
946 /**
947  * ensure_wear_leveling - schedule wear-leveling if it is needed.
948  * @ubi: UBI device description object
949  * @nested: set to non-zero if this function is called from UBI worker
950  *
951  * This function checks if it is time to start wear-leveling and schedules it
952  * if yes. This function returns zero in case of success and a negative error
953  * code in case of failure.
954  */
955 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
956 {
957 	int err = 0;
958 	struct ubi_wl_entry *e1;
959 	struct ubi_wl_entry *e2;
960 	struct ubi_work *wrk;
961 
962 	spin_lock(&ubi->wl_lock);
963 	if (ubi->wl_scheduled)
964 		/* Wear-leveling is already in the work queue */
965 		goto out_unlock;
966 
967 	/*
968 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
969 	 * the WL worker has to be scheduled anyway.
970 	 */
971 	if (!ubi->scrub.rb_node) {
972 		if (!ubi->used.rb_node || !ubi->free.rb_node)
973 			/* No physical eraseblocks - no deal */
974 			goto out_unlock;
975 
976 		/*
977 		 * We schedule wear-leveling only if the difference between the
978 		 * lowest erase counter of used physical eraseblocks and a high
979 		 * erase counter of free physical eraseblocks is greater than
980 		 * %UBI_WL_THRESHOLD.
981 		 */
982 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
983 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
984 
985 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
986 			goto out_unlock;
987 		dbg_wl("schedule wear-leveling");
988 	} else
989 		dbg_wl("schedule scrubbing");
990 
991 	ubi->wl_scheduled = 1;
992 	spin_unlock(&ubi->wl_lock);
993 
994 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
995 	if (!wrk) {
996 		err = -ENOMEM;
997 		goto out_cancel;
998 	}
999 
1000 	wrk->anchor = 0;
1001 	wrk->func = &wear_leveling_worker;
1002 	if (nested)
1003 		__schedule_ubi_work(ubi, wrk);
1004 	else
1005 		schedule_ubi_work(ubi, wrk);
1006 	return err;
1007 
1008 out_cancel:
1009 	spin_lock(&ubi->wl_lock);
1010 	ubi->wl_scheduled = 0;
1011 out_unlock:
1012 	spin_unlock(&ubi->wl_lock);
1013 	return err;
1014 }
1015 
1016 /**
1017  * erase_worker - physical eraseblock erase worker function.
1018  * @ubi: UBI device description object
1019  * @wl_wrk: the work object
1020  * @shutdown: non-zero if the worker has to free memory and exit
1021  * because the WL sub-system is shutting down
1022  *
1023  * This function erases a physical eraseblock and perform torture testing if
1024  * needed. It also takes care about marking the physical eraseblock bad if
1025  * needed. Returns zero in case of success and a negative error code in case of
1026  * failure.
1027  */
1028 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1029 			int shutdown)
1030 {
1031 	struct ubi_wl_entry *e = wl_wrk->e;
1032 	int pnum = e->pnum;
1033 	int vol_id = wl_wrk->vol_id;
1034 	int lnum = wl_wrk->lnum;
1035 	int err, available_consumed = 0;
1036 
1037 	if (shutdown) {
1038 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1039 		kfree(wl_wrk);
1040 		wl_entry_destroy(ubi, e);
1041 		return 0;
1042 	}
1043 
1044 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1045 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1046 
1047 	err = sync_erase(ubi, e, wl_wrk->torture);
1048 	if (!err) {
1049 		/* Fine, we've erased it successfully */
1050 		kfree(wl_wrk);
1051 
1052 		spin_lock(&ubi->wl_lock);
1053 		wl_tree_add(e, &ubi->free);
1054 		ubi->free_count++;
1055 		spin_unlock(&ubi->wl_lock);
1056 
1057 		/*
1058 		 * One more erase operation has happened, take care about
1059 		 * protected physical eraseblocks.
1060 		 */
1061 		serve_prot_queue(ubi);
1062 
1063 		/* And take care about wear-leveling */
1064 		err = ensure_wear_leveling(ubi, 1);
1065 		return err;
1066 	}
1067 
1068 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1069 	kfree(wl_wrk);
1070 
1071 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1072 	    err == -EBUSY) {
1073 		int err1;
1074 
1075 		/* Re-schedule the LEB for erasure */
1076 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1077 		if (err1) {
1078 			err = err1;
1079 			goto out_ro;
1080 		}
1081 		return err;
1082 	}
1083 
1084 	wl_entry_destroy(ubi, e);
1085 	if (err != -EIO)
1086 		/*
1087 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1088 		 * this physical eraseblock for erasure again would cause
1089 		 * errors again and again. Well, lets switch to R/O mode.
1090 		 */
1091 		goto out_ro;
1092 
1093 	/* It is %-EIO, the PEB went bad */
1094 
1095 	if (!ubi->bad_allowed) {
1096 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1097 		goto out_ro;
1098 	}
1099 
1100 	spin_lock(&ubi->volumes_lock);
1101 	if (ubi->beb_rsvd_pebs == 0) {
1102 		if (ubi->avail_pebs == 0) {
1103 			spin_unlock(&ubi->volumes_lock);
1104 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1105 			goto out_ro;
1106 		}
1107 		ubi->avail_pebs -= 1;
1108 		available_consumed = 1;
1109 	}
1110 	spin_unlock(&ubi->volumes_lock);
1111 
1112 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1113 	err = ubi_io_mark_bad(ubi, pnum);
1114 	if (err)
1115 		goto out_ro;
1116 
1117 	spin_lock(&ubi->volumes_lock);
1118 	if (ubi->beb_rsvd_pebs > 0) {
1119 		if (available_consumed) {
1120 			/*
1121 			 * The amount of reserved PEBs increased since we last
1122 			 * checked.
1123 			 */
1124 			ubi->avail_pebs += 1;
1125 			available_consumed = 0;
1126 		}
1127 		ubi->beb_rsvd_pebs -= 1;
1128 	}
1129 	ubi->bad_peb_count += 1;
1130 	ubi->good_peb_count -= 1;
1131 	ubi_calculate_reserved(ubi);
1132 	if (available_consumed)
1133 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1134 	else if (ubi->beb_rsvd_pebs)
1135 		ubi_msg(ubi, "%d PEBs left in the reserve",
1136 			ubi->beb_rsvd_pebs);
1137 	else
1138 		ubi_warn(ubi, "last PEB from the reserve was used");
1139 	spin_unlock(&ubi->volumes_lock);
1140 
1141 	return err;
1142 
1143 out_ro:
1144 	if (available_consumed) {
1145 		spin_lock(&ubi->volumes_lock);
1146 		ubi->avail_pebs += 1;
1147 		spin_unlock(&ubi->volumes_lock);
1148 	}
1149 	ubi_ro_mode(ubi);
1150 	return err;
1151 }
1152 
1153 /**
1154  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1155  * @ubi: UBI device description object
1156  * @vol_id: the volume ID that last used this PEB
1157  * @lnum: the last used logical eraseblock number for the PEB
1158  * @pnum: physical eraseblock to return
1159  * @torture: if this physical eraseblock has to be tortured
1160  *
1161  * This function is called to return physical eraseblock @pnum to the pool of
1162  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1163  * occurred to this @pnum and it has to be tested. This function returns zero
1164  * in case of success, and a negative error code in case of failure.
1165  */
1166 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1167 		   int pnum, int torture)
1168 {
1169 	int err;
1170 	struct ubi_wl_entry *e;
1171 
1172 	dbg_wl("PEB %d", pnum);
1173 	ubi_assert(pnum >= 0);
1174 	ubi_assert(pnum < ubi->peb_count);
1175 
1176 	down_read(&ubi->fm_protect);
1177 
1178 retry:
1179 	spin_lock(&ubi->wl_lock);
1180 	e = ubi->lookuptbl[pnum];
1181 	if (e == ubi->move_from) {
1182 		/*
1183 		 * User is putting the physical eraseblock which was selected to
1184 		 * be moved. It will be scheduled for erasure in the
1185 		 * wear-leveling worker.
1186 		 */
1187 		dbg_wl("PEB %d is being moved, wait", pnum);
1188 		spin_unlock(&ubi->wl_lock);
1189 
1190 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1191 		mutex_lock(&ubi->move_mutex);
1192 		mutex_unlock(&ubi->move_mutex);
1193 		goto retry;
1194 	} else if (e == ubi->move_to) {
1195 		/*
1196 		 * User is putting the physical eraseblock which was selected
1197 		 * as the target the data is moved to. It may happen if the EBA
1198 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1199 		 * but the WL sub-system has not put the PEB to the "used" tree
1200 		 * yet, but it is about to do this. So we just set a flag which
1201 		 * will tell the WL worker that the PEB is not needed anymore
1202 		 * and should be scheduled for erasure.
1203 		 */
1204 		dbg_wl("PEB %d is the target of data moving", pnum);
1205 		ubi_assert(!ubi->move_to_put);
1206 		ubi->move_to_put = 1;
1207 		spin_unlock(&ubi->wl_lock);
1208 		up_read(&ubi->fm_protect);
1209 		return 0;
1210 	} else {
1211 		if (in_wl_tree(e, &ubi->used)) {
1212 			self_check_in_wl_tree(ubi, e, &ubi->used);
1213 			rb_erase(&e->u.rb, &ubi->used);
1214 		} else if (in_wl_tree(e, &ubi->scrub)) {
1215 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1216 			rb_erase(&e->u.rb, &ubi->scrub);
1217 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1218 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1219 			rb_erase(&e->u.rb, &ubi->erroneous);
1220 			ubi->erroneous_peb_count -= 1;
1221 			ubi_assert(ubi->erroneous_peb_count >= 0);
1222 			/* Erroneous PEBs should be tortured */
1223 			torture = 1;
1224 		} else {
1225 			err = prot_queue_del(ubi, e->pnum);
1226 			if (err) {
1227 				ubi_err(ubi, "PEB %d not found", pnum);
1228 				ubi_ro_mode(ubi);
1229 				spin_unlock(&ubi->wl_lock);
1230 				up_read(&ubi->fm_protect);
1231 				return err;
1232 			}
1233 		}
1234 	}
1235 	spin_unlock(&ubi->wl_lock);
1236 
1237 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1238 	if (err) {
1239 		spin_lock(&ubi->wl_lock);
1240 		wl_tree_add(e, &ubi->used);
1241 		spin_unlock(&ubi->wl_lock);
1242 	}
1243 
1244 	up_read(&ubi->fm_protect);
1245 	return err;
1246 }
1247 
1248 /**
1249  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1250  * @ubi: UBI device description object
1251  * @pnum: the physical eraseblock to schedule
1252  *
1253  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1254  * needs scrubbing. This function schedules a physical eraseblock for
1255  * scrubbing which is done in background. This function returns zero in case of
1256  * success and a negative error code in case of failure.
1257  */
1258 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1259 {
1260 	struct ubi_wl_entry *e;
1261 
1262 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1263 
1264 retry:
1265 	spin_lock(&ubi->wl_lock);
1266 	e = ubi->lookuptbl[pnum];
1267 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1268 				   in_wl_tree(e, &ubi->erroneous)) {
1269 		spin_unlock(&ubi->wl_lock);
1270 		return 0;
1271 	}
1272 
1273 	if (e == ubi->move_to) {
1274 		/*
1275 		 * This physical eraseblock was used to move data to. The data
1276 		 * was moved but the PEB was not yet inserted to the proper
1277 		 * tree. We should just wait a little and let the WL worker
1278 		 * proceed.
1279 		 */
1280 		spin_unlock(&ubi->wl_lock);
1281 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1282 		yield();
1283 		goto retry;
1284 	}
1285 
1286 	if (in_wl_tree(e, &ubi->used)) {
1287 		self_check_in_wl_tree(ubi, e, &ubi->used);
1288 		rb_erase(&e->u.rb, &ubi->used);
1289 	} else {
1290 		int err;
1291 
1292 		err = prot_queue_del(ubi, e->pnum);
1293 		if (err) {
1294 			ubi_err(ubi, "PEB %d not found", pnum);
1295 			ubi_ro_mode(ubi);
1296 			spin_unlock(&ubi->wl_lock);
1297 			return err;
1298 		}
1299 	}
1300 
1301 	wl_tree_add(e, &ubi->scrub);
1302 	spin_unlock(&ubi->wl_lock);
1303 
1304 	/*
1305 	 * Technically scrubbing is the same as wear-leveling, so it is done
1306 	 * by the WL worker.
1307 	 */
1308 	return ensure_wear_leveling(ubi, 0);
1309 }
1310 
1311 /**
1312  * ubi_wl_flush - flush all pending works.
1313  * @ubi: UBI device description object
1314  * @vol_id: the volume id to flush for
1315  * @lnum: the logical eraseblock number to flush for
1316  *
1317  * This function executes all pending works for a particular volume id /
1318  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1319  * acts as a wildcard for all of the corresponding volume numbers or logical
1320  * eraseblock numbers. It returns zero in case of success and a negative error
1321  * code in case of failure.
1322  */
1323 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1324 {
1325 	int err = 0;
1326 	int found = 1;
1327 
1328 	/*
1329 	 * Erase while the pending works queue is not empty, but not more than
1330 	 * the number of currently pending works.
1331 	 */
1332 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1333 	       vol_id, lnum, ubi->works_count);
1334 
1335 	while (found) {
1336 		struct ubi_work *wrk, *tmp;
1337 		found = 0;
1338 
1339 		down_read(&ubi->work_sem);
1340 		spin_lock(&ubi->wl_lock);
1341 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1342 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1343 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1344 				list_del(&wrk->list);
1345 				ubi->works_count -= 1;
1346 				ubi_assert(ubi->works_count >= 0);
1347 				spin_unlock(&ubi->wl_lock);
1348 
1349 				err = wrk->func(ubi, wrk, 0);
1350 				if (err) {
1351 					up_read(&ubi->work_sem);
1352 					return err;
1353 				}
1354 
1355 				spin_lock(&ubi->wl_lock);
1356 				found = 1;
1357 				break;
1358 			}
1359 		}
1360 		spin_unlock(&ubi->wl_lock);
1361 		up_read(&ubi->work_sem);
1362 	}
1363 
1364 	/*
1365 	 * Make sure all the works which have been done in parallel are
1366 	 * finished.
1367 	 */
1368 	down_write(&ubi->work_sem);
1369 	up_write(&ubi->work_sem);
1370 
1371 	return err;
1372 }
1373 
1374 /**
1375  * tree_destroy - destroy an RB-tree.
1376  * @ubi: UBI device description object
1377  * @root: the root of the tree to destroy
1378  */
1379 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1380 {
1381 	struct rb_node *rb;
1382 	struct ubi_wl_entry *e;
1383 
1384 	rb = root->rb_node;
1385 	while (rb) {
1386 		if (rb->rb_left)
1387 			rb = rb->rb_left;
1388 		else if (rb->rb_right)
1389 			rb = rb->rb_right;
1390 		else {
1391 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1392 
1393 			rb = rb_parent(rb);
1394 			if (rb) {
1395 				if (rb->rb_left == &e->u.rb)
1396 					rb->rb_left = NULL;
1397 				else
1398 					rb->rb_right = NULL;
1399 			}
1400 
1401 			wl_entry_destroy(ubi, e);
1402 		}
1403 	}
1404 }
1405 
1406 /**
1407  * ubi_thread - UBI background thread.
1408  * @u: the UBI device description object pointer
1409  */
1410 int ubi_thread(void *u)
1411 {
1412 	int failures = 0;
1413 	struct ubi_device *ubi = u;
1414 
1415 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1416 		ubi->bgt_name, task_pid_nr(current));
1417 
1418 	set_freezable();
1419 	for (;;) {
1420 		int err;
1421 
1422 		if (kthread_should_stop())
1423 			break;
1424 
1425 		if (try_to_freeze())
1426 			continue;
1427 
1428 		spin_lock(&ubi->wl_lock);
1429 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1430 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1431 			set_current_state(TASK_INTERRUPTIBLE);
1432 			spin_unlock(&ubi->wl_lock);
1433 			schedule();
1434 			continue;
1435 		}
1436 		spin_unlock(&ubi->wl_lock);
1437 
1438 		err = do_work(ubi);
1439 		if (err) {
1440 			ubi_err(ubi, "%s: work failed with error code %d",
1441 				ubi->bgt_name, err);
1442 			if (failures++ > WL_MAX_FAILURES) {
1443 				/*
1444 				 * Too many failures, disable the thread and
1445 				 * switch to read-only mode.
1446 				 */
1447 				ubi_msg(ubi, "%s: %d consecutive failures",
1448 					ubi->bgt_name, WL_MAX_FAILURES);
1449 				ubi_ro_mode(ubi);
1450 				ubi->thread_enabled = 0;
1451 				continue;
1452 			}
1453 		} else
1454 			failures = 0;
1455 
1456 		cond_resched();
1457 	}
1458 
1459 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1460 	return 0;
1461 }
1462 
1463 /**
1464  * shutdown_work - shutdown all pending works.
1465  * @ubi: UBI device description object
1466  */
1467 static void shutdown_work(struct ubi_device *ubi)
1468 {
1469 #ifdef CONFIG_MTD_UBI_FASTMAP
1470 	flush_work(&ubi->fm_work);
1471 #endif
1472 	while (!list_empty(&ubi->works)) {
1473 		struct ubi_work *wrk;
1474 
1475 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1476 		list_del(&wrk->list);
1477 		wrk->func(ubi, wrk, 1);
1478 		ubi->works_count -= 1;
1479 		ubi_assert(ubi->works_count >= 0);
1480 	}
1481 }
1482 
1483 /**
1484  * ubi_wl_init - initialize the WL sub-system using attaching information.
1485  * @ubi: UBI device description object
1486  * @ai: attaching information
1487  *
1488  * This function returns zero in case of success, and a negative error code in
1489  * case of failure.
1490  */
1491 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1492 {
1493 	int err, i, reserved_pebs, found_pebs = 0;
1494 	struct rb_node *rb1, *rb2;
1495 	struct ubi_ainf_volume *av;
1496 	struct ubi_ainf_peb *aeb, *tmp;
1497 	struct ubi_wl_entry *e;
1498 
1499 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1500 	spin_lock_init(&ubi->wl_lock);
1501 	mutex_init(&ubi->move_mutex);
1502 	init_rwsem(&ubi->work_sem);
1503 	ubi->max_ec = ai->max_ec;
1504 	INIT_LIST_HEAD(&ubi->works);
1505 
1506 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1507 
1508 	err = -ENOMEM;
1509 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1510 	if (!ubi->lookuptbl)
1511 		return err;
1512 
1513 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1514 		INIT_LIST_HEAD(&ubi->pq[i]);
1515 	ubi->pq_head = 0;
1516 
1517 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1518 		cond_resched();
1519 
1520 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1521 		if (!e)
1522 			goto out_free;
1523 
1524 		e->pnum = aeb->pnum;
1525 		e->ec = aeb->ec;
1526 		ubi->lookuptbl[e->pnum] = e;
1527 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1528 			wl_entry_destroy(ubi, e);
1529 			goto out_free;
1530 		}
1531 
1532 		found_pebs++;
1533 	}
1534 
1535 	ubi->free_count = 0;
1536 	list_for_each_entry(aeb, &ai->free, u.list) {
1537 		cond_resched();
1538 
1539 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1540 		if (!e)
1541 			goto out_free;
1542 
1543 		e->pnum = aeb->pnum;
1544 		e->ec = aeb->ec;
1545 		ubi_assert(e->ec >= 0);
1546 
1547 		wl_tree_add(e, &ubi->free);
1548 		ubi->free_count++;
1549 
1550 		ubi->lookuptbl[e->pnum] = e;
1551 
1552 		found_pebs++;
1553 	}
1554 
1555 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1556 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1557 			cond_resched();
1558 
1559 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1560 			if (!e)
1561 				goto out_free;
1562 
1563 			e->pnum = aeb->pnum;
1564 			e->ec = aeb->ec;
1565 			ubi->lookuptbl[e->pnum] = e;
1566 
1567 			if (!aeb->scrub) {
1568 				dbg_wl("add PEB %d EC %d to the used tree",
1569 				       e->pnum, e->ec);
1570 				wl_tree_add(e, &ubi->used);
1571 			} else {
1572 				dbg_wl("add PEB %d EC %d to the scrub tree",
1573 				       e->pnum, e->ec);
1574 				wl_tree_add(e, &ubi->scrub);
1575 			}
1576 
1577 			found_pebs++;
1578 		}
1579 	}
1580 
1581 	dbg_wl("found %i PEBs", found_pebs);
1582 
1583 	if (ubi->fm) {
1584 		ubi_assert(ubi->good_peb_count ==
1585 			   found_pebs + ubi->fm->used_blocks);
1586 
1587 		for (i = 0; i < ubi->fm->used_blocks; i++) {
1588 			e = ubi->fm->e[i];
1589 			ubi->lookuptbl[e->pnum] = e;
1590 		}
1591 	}
1592 	else
1593 		ubi_assert(ubi->good_peb_count == found_pebs);
1594 
1595 	reserved_pebs = WL_RESERVED_PEBS;
1596 	ubi_fastmap_init(ubi, &reserved_pebs);
1597 
1598 	if (ubi->avail_pebs < reserved_pebs) {
1599 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1600 			ubi->avail_pebs, reserved_pebs);
1601 		if (ubi->corr_peb_count)
1602 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1603 				ubi->corr_peb_count);
1604 		goto out_free;
1605 	}
1606 	ubi->avail_pebs -= reserved_pebs;
1607 	ubi->rsvd_pebs += reserved_pebs;
1608 
1609 	/* Schedule wear-leveling if needed */
1610 	err = ensure_wear_leveling(ubi, 0);
1611 	if (err)
1612 		goto out_free;
1613 
1614 	return 0;
1615 
1616 out_free:
1617 	shutdown_work(ubi);
1618 	tree_destroy(ubi, &ubi->used);
1619 	tree_destroy(ubi, &ubi->free);
1620 	tree_destroy(ubi, &ubi->scrub);
1621 	kfree(ubi->lookuptbl);
1622 	return err;
1623 }
1624 
1625 /**
1626  * protection_queue_destroy - destroy the protection queue.
1627  * @ubi: UBI device description object
1628  */
1629 static void protection_queue_destroy(struct ubi_device *ubi)
1630 {
1631 	int i;
1632 	struct ubi_wl_entry *e, *tmp;
1633 
1634 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1635 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1636 			list_del(&e->u.list);
1637 			wl_entry_destroy(ubi, e);
1638 		}
1639 	}
1640 }
1641 
1642 /**
1643  * ubi_wl_close - close the wear-leveling sub-system.
1644  * @ubi: UBI device description object
1645  */
1646 void ubi_wl_close(struct ubi_device *ubi)
1647 {
1648 	dbg_wl("close the WL sub-system");
1649 	ubi_fastmap_close(ubi);
1650 	shutdown_work(ubi);
1651 	protection_queue_destroy(ubi);
1652 	tree_destroy(ubi, &ubi->used);
1653 	tree_destroy(ubi, &ubi->erroneous);
1654 	tree_destroy(ubi, &ubi->free);
1655 	tree_destroy(ubi, &ubi->scrub);
1656 	kfree(ubi->lookuptbl);
1657 }
1658 
1659 /**
1660  * self_check_ec - make sure that the erase counter of a PEB is correct.
1661  * @ubi: UBI device description object
1662  * @pnum: the physical eraseblock number to check
1663  * @ec: the erase counter to check
1664  *
1665  * This function returns zero if the erase counter of physical eraseblock @pnum
1666  * is equivalent to @ec, and a negative error code if not or if an error
1667  * occurred.
1668  */
1669 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1670 {
1671 	int err;
1672 	long long read_ec;
1673 	struct ubi_ec_hdr *ec_hdr;
1674 
1675 	if (!ubi_dbg_chk_gen(ubi))
1676 		return 0;
1677 
1678 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1679 	if (!ec_hdr)
1680 		return -ENOMEM;
1681 
1682 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1683 	if (err && err != UBI_IO_BITFLIPS) {
1684 		/* The header does not have to exist */
1685 		err = 0;
1686 		goto out_free;
1687 	}
1688 
1689 	read_ec = be64_to_cpu(ec_hdr->ec);
1690 	if (ec != read_ec && read_ec - ec > 1) {
1691 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1692 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1693 		dump_stack();
1694 		err = 1;
1695 	} else
1696 		err = 0;
1697 
1698 out_free:
1699 	kfree(ec_hdr);
1700 	return err;
1701 }
1702 
1703 /**
1704  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1705  * @ubi: UBI device description object
1706  * @e: the wear-leveling entry to check
1707  * @root: the root of the tree
1708  *
1709  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1710  * is not.
1711  */
1712 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1713 				 struct ubi_wl_entry *e, struct rb_root *root)
1714 {
1715 	if (!ubi_dbg_chk_gen(ubi))
1716 		return 0;
1717 
1718 	if (in_wl_tree(e, root))
1719 		return 0;
1720 
1721 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1722 		e->pnum, e->ec, root);
1723 	dump_stack();
1724 	return -EINVAL;
1725 }
1726 
1727 /**
1728  * self_check_in_pq - check if wear-leveling entry is in the protection
1729  *                        queue.
1730  * @ubi: UBI device description object
1731  * @e: the wear-leveling entry to check
1732  *
1733  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1734  */
1735 static int self_check_in_pq(const struct ubi_device *ubi,
1736 			    struct ubi_wl_entry *e)
1737 {
1738 	struct ubi_wl_entry *p;
1739 	int i;
1740 
1741 	if (!ubi_dbg_chk_gen(ubi))
1742 		return 0;
1743 
1744 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1745 		list_for_each_entry(p, &ubi->pq[i], u.list)
1746 			if (p == e)
1747 				return 0;
1748 
1749 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1750 		e->pnum, e->ec);
1751 	dump_stack();
1752 	return -EINVAL;
1753 }
1754 #ifndef CONFIG_MTD_UBI_FASTMAP
1755 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1756 {
1757 	struct ubi_wl_entry *e;
1758 
1759 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1760 	self_check_in_wl_tree(ubi, e, &ubi->free);
1761 	ubi->free_count--;
1762 	ubi_assert(ubi->free_count >= 0);
1763 	rb_erase(&e->u.rb, &ubi->free);
1764 
1765 	return e;
1766 }
1767 
1768 /**
1769  * produce_free_peb - produce a free physical eraseblock.
1770  * @ubi: UBI device description object
1771  *
1772  * This function tries to make a free PEB by means of synchronous execution of
1773  * pending works. This may be needed if, for example the background thread is
1774  * disabled. Returns zero in case of success and a negative error code in case
1775  * of failure.
1776  */
1777 static int produce_free_peb(struct ubi_device *ubi)
1778 {
1779 	int err;
1780 
1781 	while (!ubi->free.rb_node && ubi->works_count) {
1782 		spin_unlock(&ubi->wl_lock);
1783 
1784 		dbg_wl("do one work synchronously");
1785 		err = do_work(ubi);
1786 
1787 		spin_lock(&ubi->wl_lock);
1788 		if (err)
1789 			return err;
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /**
1796  * ubi_wl_get_peb - get a physical eraseblock.
1797  * @ubi: UBI device description object
1798  *
1799  * This function returns a physical eraseblock in case of success and a
1800  * negative error code in case of failure.
1801  * Returns with ubi->fm_eba_sem held in read mode!
1802  */
1803 int ubi_wl_get_peb(struct ubi_device *ubi)
1804 {
1805 	int err;
1806 	struct ubi_wl_entry *e;
1807 
1808 retry:
1809 	down_read(&ubi->fm_eba_sem);
1810 	spin_lock(&ubi->wl_lock);
1811 	if (!ubi->free.rb_node) {
1812 		if (ubi->works_count == 0) {
1813 			ubi_err(ubi, "no free eraseblocks");
1814 			ubi_assert(list_empty(&ubi->works));
1815 			spin_unlock(&ubi->wl_lock);
1816 			return -ENOSPC;
1817 		}
1818 
1819 		err = produce_free_peb(ubi);
1820 		if (err < 0) {
1821 			spin_unlock(&ubi->wl_lock);
1822 			return err;
1823 		}
1824 		spin_unlock(&ubi->wl_lock);
1825 		up_read(&ubi->fm_eba_sem);
1826 		goto retry;
1827 
1828 	}
1829 	e = wl_get_wle(ubi);
1830 	prot_queue_add(ubi, e);
1831 	spin_unlock(&ubi->wl_lock);
1832 
1833 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1834 				    ubi->peb_size - ubi->vid_hdr_aloffset);
1835 	if (err) {
1836 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1837 		return err;
1838 	}
1839 
1840 	return e->pnum;
1841 }
1842 #else
1843 #include "fastmap-wl.c"
1844 #endif
1845