1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_tree_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188 static int do_work(struct ubi_device *ubi) 189 { 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226 } 227 228 /** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237 { 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265 } 266 267 /** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276 { 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286 } 287 288 /** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299 { 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307 } 308 309 /** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320 { 321 struct rb_node *p; 322 struct ubi_wl_entry *e; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 e = e1; 338 } 339 } 340 341 return e; 342 } 343 344 /** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355 { 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372 } 373 374 /** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383 { 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403 } 404 405 /** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413 static int prot_queue_del(struct ubi_device *ubi, int pnum) 414 { 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427 } 428 429 /** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440 { 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485 out_free: 486 kfree(ec_hdr); 487 return err; 488 } 489 490 /** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498 static void serve_prot_queue(struct ubi_device *ubi) 499 { 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507 repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532 } 533 534 /** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543 { 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551 } 552 553 /** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562 { 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566 } 567 568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571 /** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * 579 * This function returns zero in case of success and a %-ENOMEM in case of 580 * failure. 581 */ 582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 583 int vol_id, int lnum, int torture, bool nested) 584 { 585 struct ubi_work *wl_wrk; 586 587 ubi_assert(e); 588 589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 590 e->pnum, e->ec, torture); 591 592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 593 if (!wl_wrk) 594 return -ENOMEM; 595 596 wl_wrk->func = &erase_worker; 597 wl_wrk->e = e; 598 wl_wrk->vol_id = vol_id; 599 wl_wrk->lnum = lnum; 600 wl_wrk->torture = torture; 601 602 if (nested) 603 __schedule_ubi_work(ubi, wl_wrk); 604 else 605 schedule_ubi_work(ubi, wl_wrk); 606 return 0; 607 } 608 609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 610 /** 611 * do_sync_erase - run the erase worker synchronously. 612 * @ubi: UBI device description object 613 * @e: the WL entry of the physical eraseblock to erase 614 * @vol_id: the volume ID that last used this PEB 615 * @lnum: the last used logical eraseblock number for the PEB 616 * @torture: if the physical eraseblock has to be tortured 617 * 618 */ 619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 620 int vol_id, int lnum, int torture) 621 { 622 struct ubi_work wl_wrk; 623 624 dbg_wl("sync erase of PEB %i", e->pnum); 625 626 wl_wrk.e = e; 627 wl_wrk.vol_id = vol_id; 628 wl_wrk.lnum = lnum; 629 wl_wrk.torture = torture; 630 631 return __erase_worker(ubi, &wl_wrk); 632 } 633 634 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 635 /** 636 * wear_leveling_worker - wear-leveling worker function. 637 * @ubi: UBI device description object 638 * @wrk: the work object 639 * @shutdown: non-zero if the worker has to free memory and exit 640 * because the WL-subsystem is shutting down 641 * 642 * This function copies a more worn out physical eraseblock to a less worn out 643 * one. Returns zero in case of success and a negative error code in case of 644 * failure. 645 */ 646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 647 int shutdown) 648 { 649 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 650 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 651 struct ubi_wl_entry *e1, *e2; 652 struct ubi_vid_io_buf *vidb; 653 struct ubi_vid_hdr *vid_hdr; 654 int dst_leb_clean = 0; 655 656 kfree(wrk); 657 if (shutdown) 658 return 0; 659 660 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 661 if (!vidb) 662 return -ENOMEM; 663 664 vid_hdr = ubi_get_vid_hdr(vidb); 665 666 down_read(&ubi->fm_eba_sem); 667 mutex_lock(&ubi->move_mutex); 668 spin_lock(&ubi->wl_lock); 669 ubi_assert(!ubi->move_from && !ubi->move_to); 670 ubi_assert(!ubi->move_to_put); 671 672 if (!ubi->free.rb_node || 673 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 674 /* 675 * No free physical eraseblocks? Well, they must be waiting in 676 * the queue to be erased. Cancel movement - it will be 677 * triggered again when a free physical eraseblock appears. 678 * 679 * No used physical eraseblocks? They must be temporarily 680 * protected from being moved. They will be moved to the 681 * @ubi->used tree later and the wear-leveling will be 682 * triggered again. 683 */ 684 dbg_wl("cancel WL, a list is empty: free %d, used %d", 685 !ubi->free.rb_node, !ubi->used.rb_node); 686 goto out_cancel; 687 } 688 689 #ifdef CONFIG_MTD_UBI_FASTMAP 690 e1 = find_anchor_wl_entry(&ubi->used); 691 if (e1 && ubi->fm_next_anchor && 692 (ubi->fm_next_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) { 693 ubi->fm_do_produce_anchor = 1; 694 /* fm_next_anchor is no longer considered a good anchor 695 * candidate. 696 * NULL assignment also prevents multiple wear level checks 697 * of this PEB. 698 */ 699 wl_tree_add(ubi->fm_next_anchor, &ubi->free); 700 ubi->fm_next_anchor = NULL; 701 ubi->free_count++; 702 } 703 704 if (ubi->fm_do_produce_anchor) { 705 if (!e1) 706 goto out_cancel; 707 e2 = get_peb_for_wl(ubi); 708 if (!e2) 709 goto out_cancel; 710 711 self_check_in_wl_tree(ubi, e1, &ubi->used); 712 rb_erase(&e1->u.rb, &ubi->used); 713 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 714 ubi->fm_do_produce_anchor = 0; 715 } else if (!ubi->scrub.rb_node) { 716 #else 717 if (!ubi->scrub.rb_node) { 718 #endif 719 /* 720 * Now pick the least worn-out used physical eraseblock and a 721 * highly worn-out free physical eraseblock. If the erase 722 * counters differ much enough, start wear-leveling. 723 */ 724 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 725 e2 = get_peb_for_wl(ubi); 726 if (!e2) 727 goto out_cancel; 728 729 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 730 dbg_wl("no WL needed: min used EC %d, max free EC %d", 731 e1->ec, e2->ec); 732 733 /* Give the unused PEB back */ 734 wl_tree_add(e2, &ubi->free); 735 ubi->free_count++; 736 goto out_cancel; 737 } 738 self_check_in_wl_tree(ubi, e1, &ubi->used); 739 rb_erase(&e1->u.rb, &ubi->used); 740 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 741 e1->pnum, e1->ec, e2->pnum, e2->ec); 742 } else { 743 /* Perform scrubbing */ 744 scrubbing = 1; 745 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 746 e2 = get_peb_for_wl(ubi); 747 if (!e2) 748 goto out_cancel; 749 750 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 751 rb_erase(&e1->u.rb, &ubi->scrub); 752 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 753 } 754 755 ubi->move_from = e1; 756 ubi->move_to = e2; 757 spin_unlock(&ubi->wl_lock); 758 759 /* 760 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 761 * We so far do not know which logical eraseblock our physical 762 * eraseblock (@e1) belongs to. We have to read the volume identifier 763 * header first. 764 * 765 * Note, we are protected from this PEB being unmapped and erased. The 766 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 767 * which is being moved was unmapped. 768 */ 769 770 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 771 if (err && err != UBI_IO_BITFLIPS) { 772 dst_leb_clean = 1; 773 if (err == UBI_IO_FF) { 774 /* 775 * We are trying to move PEB without a VID header. UBI 776 * always write VID headers shortly after the PEB was 777 * given, so we have a situation when it has not yet 778 * had a chance to write it, because it was preempted. 779 * So add this PEB to the protection queue so far, 780 * because presumably more data will be written there 781 * (including the missing VID header), and then we'll 782 * move it. 783 */ 784 dbg_wl("PEB %d has no VID header", e1->pnum); 785 protect = 1; 786 goto out_not_moved; 787 } else if (err == UBI_IO_FF_BITFLIPS) { 788 /* 789 * The same situation as %UBI_IO_FF, but bit-flips were 790 * detected. It is better to schedule this PEB for 791 * scrubbing. 792 */ 793 dbg_wl("PEB %d has no VID header but has bit-flips", 794 e1->pnum); 795 scrubbing = 1; 796 goto out_not_moved; 797 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 798 /* 799 * While a full scan would detect interrupted erasures 800 * at attach time we can face them here when attached from 801 * Fastmap. 802 */ 803 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 804 e1->pnum); 805 erase = 1; 806 goto out_not_moved; 807 } 808 809 ubi_err(ubi, "error %d while reading VID header from PEB %d", 810 err, e1->pnum); 811 goto out_error; 812 } 813 814 vol_id = be32_to_cpu(vid_hdr->vol_id); 815 lnum = be32_to_cpu(vid_hdr->lnum); 816 817 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 818 if (err) { 819 if (err == MOVE_CANCEL_RACE) { 820 /* 821 * The LEB has not been moved because the volume is 822 * being deleted or the PEB has been put meanwhile. We 823 * should prevent this PEB from being selected for 824 * wear-leveling movement again, so put it to the 825 * protection queue. 826 */ 827 protect = 1; 828 dst_leb_clean = 1; 829 goto out_not_moved; 830 } 831 if (err == MOVE_RETRY) { 832 scrubbing = 1; 833 dst_leb_clean = 1; 834 goto out_not_moved; 835 } 836 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 837 err == MOVE_TARGET_RD_ERR) { 838 /* 839 * Target PEB had bit-flips or write error - torture it. 840 */ 841 torture = 1; 842 keep = 1; 843 goto out_not_moved; 844 } 845 846 if (err == MOVE_SOURCE_RD_ERR) { 847 /* 848 * An error happened while reading the source PEB. Do 849 * not switch to R/O mode in this case, and give the 850 * upper layers a possibility to recover from this, 851 * e.g. by unmapping corresponding LEB. Instead, just 852 * put this PEB to the @ubi->erroneous list to prevent 853 * UBI from trying to move it over and over again. 854 */ 855 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 856 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 857 ubi->erroneous_peb_count); 858 goto out_error; 859 } 860 dst_leb_clean = 1; 861 erroneous = 1; 862 goto out_not_moved; 863 } 864 865 if (err < 0) 866 goto out_error; 867 868 ubi_assert(0); 869 } 870 871 /* The PEB has been successfully moved */ 872 if (scrubbing) 873 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 874 e1->pnum, vol_id, lnum, e2->pnum); 875 ubi_free_vid_buf(vidb); 876 877 spin_lock(&ubi->wl_lock); 878 if (!ubi->move_to_put) { 879 wl_tree_add(e2, &ubi->used); 880 e2 = NULL; 881 } 882 ubi->move_from = ubi->move_to = NULL; 883 ubi->move_to_put = ubi->wl_scheduled = 0; 884 spin_unlock(&ubi->wl_lock); 885 886 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 887 if (err) { 888 if (e2) 889 wl_entry_destroy(ubi, e2); 890 goto out_ro; 891 } 892 893 if (e2) { 894 /* 895 * Well, the target PEB was put meanwhile, schedule it for 896 * erasure. 897 */ 898 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 899 e2->pnum, vol_id, lnum); 900 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 901 if (err) 902 goto out_ro; 903 } 904 905 dbg_wl("done"); 906 mutex_unlock(&ubi->move_mutex); 907 up_read(&ubi->fm_eba_sem); 908 return 0; 909 910 /* 911 * For some reasons the LEB was not moved, might be an error, might be 912 * something else. @e1 was not changed, so return it back. @e2 might 913 * have been changed, schedule it for erasure. 914 */ 915 out_not_moved: 916 if (vol_id != -1) 917 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 918 e1->pnum, vol_id, lnum, e2->pnum, err); 919 else 920 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 921 e1->pnum, e2->pnum, err); 922 spin_lock(&ubi->wl_lock); 923 if (protect) 924 prot_queue_add(ubi, e1); 925 else if (erroneous) { 926 wl_tree_add(e1, &ubi->erroneous); 927 ubi->erroneous_peb_count += 1; 928 } else if (scrubbing) 929 wl_tree_add(e1, &ubi->scrub); 930 else if (keep) 931 wl_tree_add(e1, &ubi->used); 932 if (dst_leb_clean) { 933 wl_tree_add(e2, &ubi->free); 934 ubi->free_count++; 935 } 936 937 ubi_assert(!ubi->move_to_put); 938 ubi->move_from = ubi->move_to = NULL; 939 ubi->wl_scheduled = 0; 940 spin_unlock(&ubi->wl_lock); 941 942 ubi_free_vid_buf(vidb); 943 if (dst_leb_clean) { 944 ensure_wear_leveling(ubi, 1); 945 } else { 946 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 947 if (err) 948 goto out_ro; 949 } 950 951 if (erase) { 952 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 953 if (err) 954 goto out_ro; 955 } 956 957 mutex_unlock(&ubi->move_mutex); 958 up_read(&ubi->fm_eba_sem); 959 return 0; 960 961 out_error: 962 if (vol_id != -1) 963 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 964 err, e1->pnum, e2->pnum); 965 else 966 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 967 err, e1->pnum, vol_id, lnum, e2->pnum); 968 spin_lock(&ubi->wl_lock); 969 ubi->move_from = ubi->move_to = NULL; 970 ubi->move_to_put = ubi->wl_scheduled = 0; 971 spin_unlock(&ubi->wl_lock); 972 973 ubi_free_vid_buf(vidb); 974 wl_entry_destroy(ubi, e1); 975 wl_entry_destroy(ubi, e2); 976 977 out_ro: 978 ubi_ro_mode(ubi); 979 mutex_unlock(&ubi->move_mutex); 980 up_read(&ubi->fm_eba_sem); 981 ubi_assert(err != 0); 982 return err < 0 ? err : -EIO; 983 984 out_cancel: 985 ubi->wl_scheduled = 0; 986 spin_unlock(&ubi->wl_lock); 987 mutex_unlock(&ubi->move_mutex); 988 up_read(&ubi->fm_eba_sem); 989 ubi_free_vid_buf(vidb); 990 return 0; 991 } 992 993 /** 994 * ensure_wear_leveling - schedule wear-leveling if it is needed. 995 * @ubi: UBI device description object 996 * @nested: set to non-zero if this function is called from UBI worker 997 * 998 * This function checks if it is time to start wear-leveling and schedules it 999 * if yes. This function returns zero in case of success and a negative error 1000 * code in case of failure. 1001 */ 1002 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1003 { 1004 int err = 0; 1005 struct ubi_wl_entry *e1; 1006 struct ubi_wl_entry *e2; 1007 struct ubi_work *wrk; 1008 1009 spin_lock(&ubi->wl_lock); 1010 if (ubi->wl_scheduled) 1011 /* Wear-leveling is already in the work queue */ 1012 goto out_unlock; 1013 1014 /* 1015 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1016 * the WL worker has to be scheduled anyway. 1017 */ 1018 if (!ubi->scrub.rb_node) { 1019 if (!ubi->used.rb_node || !ubi->free.rb_node) 1020 /* No physical eraseblocks - no deal */ 1021 goto out_unlock; 1022 1023 /* 1024 * We schedule wear-leveling only if the difference between the 1025 * lowest erase counter of used physical eraseblocks and a high 1026 * erase counter of free physical eraseblocks is greater than 1027 * %UBI_WL_THRESHOLD. 1028 */ 1029 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1030 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1031 1032 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1033 goto out_unlock; 1034 dbg_wl("schedule wear-leveling"); 1035 } else 1036 dbg_wl("schedule scrubbing"); 1037 1038 ubi->wl_scheduled = 1; 1039 spin_unlock(&ubi->wl_lock); 1040 1041 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1042 if (!wrk) { 1043 err = -ENOMEM; 1044 goto out_cancel; 1045 } 1046 1047 wrk->func = &wear_leveling_worker; 1048 if (nested) 1049 __schedule_ubi_work(ubi, wrk); 1050 else 1051 schedule_ubi_work(ubi, wrk); 1052 return err; 1053 1054 out_cancel: 1055 spin_lock(&ubi->wl_lock); 1056 ubi->wl_scheduled = 0; 1057 out_unlock: 1058 spin_unlock(&ubi->wl_lock); 1059 return err; 1060 } 1061 1062 /** 1063 * __erase_worker - physical eraseblock erase worker function. 1064 * @ubi: UBI device description object 1065 * @wl_wrk: the work object 1066 * @shutdown: non-zero if the worker has to free memory and exit 1067 * because the WL sub-system is shutting down 1068 * 1069 * This function erases a physical eraseblock and perform torture testing if 1070 * needed. It also takes care about marking the physical eraseblock bad if 1071 * needed. Returns zero in case of success and a negative error code in case of 1072 * failure. 1073 */ 1074 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1075 { 1076 struct ubi_wl_entry *e = wl_wrk->e; 1077 int pnum = e->pnum; 1078 int vol_id = wl_wrk->vol_id; 1079 int lnum = wl_wrk->lnum; 1080 int err, available_consumed = 0; 1081 1082 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1083 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1084 1085 err = sync_erase(ubi, e, wl_wrk->torture); 1086 if (!err) { 1087 spin_lock(&ubi->wl_lock); 1088 1089 if (!ubi->fm_disabled && !ubi->fm_next_anchor && 1090 e->pnum < UBI_FM_MAX_START) { 1091 /* Abort anchor production, if needed it will be 1092 * enabled again in the wear leveling started below. 1093 */ 1094 ubi->fm_next_anchor = e; 1095 ubi->fm_do_produce_anchor = 0; 1096 } else { 1097 wl_tree_add(e, &ubi->free); 1098 ubi->free_count++; 1099 } 1100 1101 spin_unlock(&ubi->wl_lock); 1102 1103 /* 1104 * One more erase operation has happened, take care about 1105 * protected physical eraseblocks. 1106 */ 1107 serve_prot_queue(ubi); 1108 1109 /* And take care about wear-leveling */ 1110 err = ensure_wear_leveling(ubi, 1); 1111 return err; 1112 } 1113 1114 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1115 1116 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1117 err == -EBUSY) { 1118 int err1; 1119 1120 /* Re-schedule the LEB for erasure */ 1121 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1122 if (err1) { 1123 wl_entry_destroy(ubi, e); 1124 err = err1; 1125 goto out_ro; 1126 } 1127 return err; 1128 } 1129 1130 wl_entry_destroy(ubi, e); 1131 if (err != -EIO) 1132 /* 1133 * If this is not %-EIO, we have no idea what to do. Scheduling 1134 * this physical eraseblock for erasure again would cause 1135 * errors again and again. Well, lets switch to R/O mode. 1136 */ 1137 goto out_ro; 1138 1139 /* It is %-EIO, the PEB went bad */ 1140 1141 if (!ubi->bad_allowed) { 1142 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1143 goto out_ro; 1144 } 1145 1146 spin_lock(&ubi->volumes_lock); 1147 if (ubi->beb_rsvd_pebs == 0) { 1148 if (ubi->avail_pebs == 0) { 1149 spin_unlock(&ubi->volumes_lock); 1150 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1151 goto out_ro; 1152 } 1153 ubi->avail_pebs -= 1; 1154 available_consumed = 1; 1155 } 1156 spin_unlock(&ubi->volumes_lock); 1157 1158 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1159 err = ubi_io_mark_bad(ubi, pnum); 1160 if (err) 1161 goto out_ro; 1162 1163 spin_lock(&ubi->volumes_lock); 1164 if (ubi->beb_rsvd_pebs > 0) { 1165 if (available_consumed) { 1166 /* 1167 * The amount of reserved PEBs increased since we last 1168 * checked. 1169 */ 1170 ubi->avail_pebs += 1; 1171 available_consumed = 0; 1172 } 1173 ubi->beb_rsvd_pebs -= 1; 1174 } 1175 ubi->bad_peb_count += 1; 1176 ubi->good_peb_count -= 1; 1177 ubi_calculate_reserved(ubi); 1178 if (available_consumed) 1179 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1180 else if (ubi->beb_rsvd_pebs) 1181 ubi_msg(ubi, "%d PEBs left in the reserve", 1182 ubi->beb_rsvd_pebs); 1183 else 1184 ubi_warn(ubi, "last PEB from the reserve was used"); 1185 spin_unlock(&ubi->volumes_lock); 1186 1187 return err; 1188 1189 out_ro: 1190 if (available_consumed) { 1191 spin_lock(&ubi->volumes_lock); 1192 ubi->avail_pebs += 1; 1193 spin_unlock(&ubi->volumes_lock); 1194 } 1195 ubi_ro_mode(ubi); 1196 return err; 1197 } 1198 1199 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1200 int shutdown) 1201 { 1202 int ret; 1203 1204 if (shutdown) { 1205 struct ubi_wl_entry *e = wl_wrk->e; 1206 1207 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1208 kfree(wl_wrk); 1209 wl_entry_destroy(ubi, e); 1210 return 0; 1211 } 1212 1213 ret = __erase_worker(ubi, wl_wrk); 1214 kfree(wl_wrk); 1215 return ret; 1216 } 1217 1218 /** 1219 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1220 * @ubi: UBI device description object 1221 * @vol_id: the volume ID that last used this PEB 1222 * @lnum: the last used logical eraseblock number for the PEB 1223 * @pnum: physical eraseblock to return 1224 * @torture: if this physical eraseblock has to be tortured 1225 * 1226 * This function is called to return physical eraseblock @pnum to the pool of 1227 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1228 * occurred to this @pnum and it has to be tested. This function returns zero 1229 * in case of success, and a negative error code in case of failure. 1230 */ 1231 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1232 int pnum, int torture) 1233 { 1234 int err; 1235 struct ubi_wl_entry *e; 1236 1237 dbg_wl("PEB %d", pnum); 1238 ubi_assert(pnum >= 0); 1239 ubi_assert(pnum < ubi->peb_count); 1240 1241 down_read(&ubi->fm_protect); 1242 1243 retry: 1244 spin_lock(&ubi->wl_lock); 1245 e = ubi->lookuptbl[pnum]; 1246 if (e == ubi->move_from) { 1247 /* 1248 * User is putting the physical eraseblock which was selected to 1249 * be moved. It will be scheduled for erasure in the 1250 * wear-leveling worker. 1251 */ 1252 dbg_wl("PEB %d is being moved, wait", pnum); 1253 spin_unlock(&ubi->wl_lock); 1254 1255 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1256 mutex_lock(&ubi->move_mutex); 1257 mutex_unlock(&ubi->move_mutex); 1258 goto retry; 1259 } else if (e == ubi->move_to) { 1260 /* 1261 * User is putting the physical eraseblock which was selected 1262 * as the target the data is moved to. It may happen if the EBA 1263 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1264 * but the WL sub-system has not put the PEB to the "used" tree 1265 * yet, but it is about to do this. So we just set a flag which 1266 * will tell the WL worker that the PEB is not needed anymore 1267 * and should be scheduled for erasure. 1268 */ 1269 dbg_wl("PEB %d is the target of data moving", pnum); 1270 ubi_assert(!ubi->move_to_put); 1271 ubi->move_to_put = 1; 1272 spin_unlock(&ubi->wl_lock); 1273 up_read(&ubi->fm_protect); 1274 return 0; 1275 } else { 1276 if (in_wl_tree(e, &ubi->used)) { 1277 self_check_in_wl_tree(ubi, e, &ubi->used); 1278 rb_erase(&e->u.rb, &ubi->used); 1279 } else if (in_wl_tree(e, &ubi->scrub)) { 1280 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1281 rb_erase(&e->u.rb, &ubi->scrub); 1282 } else if (in_wl_tree(e, &ubi->erroneous)) { 1283 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1284 rb_erase(&e->u.rb, &ubi->erroneous); 1285 ubi->erroneous_peb_count -= 1; 1286 ubi_assert(ubi->erroneous_peb_count >= 0); 1287 /* Erroneous PEBs should be tortured */ 1288 torture = 1; 1289 } else { 1290 err = prot_queue_del(ubi, e->pnum); 1291 if (err) { 1292 ubi_err(ubi, "PEB %d not found", pnum); 1293 ubi_ro_mode(ubi); 1294 spin_unlock(&ubi->wl_lock); 1295 up_read(&ubi->fm_protect); 1296 return err; 1297 } 1298 } 1299 } 1300 spin_unlock(&ubi->wl_lock); 1301 1302 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1303 if (err) { 1304 spin_lock(&ubi->wl_lock); 1305 wl_tree_add(e, &ubi->used); 1306 spin_unlock(&ubi->wl_lock); 1307 } 1308 1309 up_read(&ubi->fm_protect); 1310 return err; 1311 } 1312 1313 /** 1314 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1315 * @ubi: UBI device description object 1316 * @pnum: the physical eraseblock to schedule 1317 * 1318 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1319 * needs scrubbing. This function schedules a physical eraseblock for 1320 * scrubbing which is done in background. This function returns zero in case of 1321 * success and a negative error code in case of failure. 1322 */ 1323 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1324 { 1325 struct ubi_wl_entry *e; 1326 1327 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1328 1329 retry: 1330 spin_lock(&ubi->wl_lock); 1331 e = ubi->lookuptbl[pnum]; 1332 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1333 in_wl_tree(e, &ubi->erroneous)) { 1334 spin_unlock(&ubi->wl_lock); 1335 return 0; 1336 } 1337 1338 if (e == ubi->move_to) { 1339 /* 1340 * This physical eraseblock was used to move data to. The data 1341 * was moved but the PEB was not yet inserted to the proper 1342 * tree. We should just wait a little and let the WL worker 1343 * proceed. 1344 */ 1345 spin_unlock(&ubi->wl_lock); 1346 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1347 yield(); 1348 goto retry; 1349 } 1350 1351 if (in_wl_tree(e, &ubi->used)) { 1352 self_check_in_wl_tree(ubi, e, &ubi->used); 1353 rb_erase(&e->u.rb, &ubi->used); 1354 } else { 1355 int err; 1356 1357 err = prot_queue_del(ubi, e->pnum); 1358 if (err) { 1359 ubi_err(ubi, "PEB %d not found", pnum); 1360 ubi_ro_mode(ubi); 1361 spin_unlock(&ubi->wl_lock); 1362 return err; 1363 } 1364 } 1365 1366 wl_tree_add(e, &ubi->scrub); 1367 spin_unlock(&ubi->wl_lock); 1368 1369 /* 1370 * Technically scrubbing is the same as wear-leveling, so it is done 1371 * by the WL worker. 1372 */ 1373 return ensure_wear_leveling(ubi, 0); 1374 } 1375 1376 /** 1377 * ubi_wl_flush - flush all pending works. 1378 * @ubi: UBI device description object 1379 * @vol_id: the volume id to flush for 1380 * @lnum: the logical eraseblock number to flush for 1381 * 1382 * This function executes all pending works for a particular volume id / 1383 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1384 * acts as a wildcard for all of the corresponding volume numbers or logical 1385 * eraseblock numbers. It returns zero in case of success and a negative error 1386 * code in case of failure. 1387 */ 1388 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1389 { 1390 int err = 0; 1391 int found = 1; 1392 1393 /* 1394 * Erase while the pending works queue is not empty, but not more than 1395 * the number of currently pending works. 1396 */ 1397 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1398 vol_id, lnum, ubi->works_count); 1399 1400 while (found) { 1401 struct ubi_work *wrk, *tmp; 1402 found = 0; 1403 1404 down_read(&ubi->work_sem); 1405 spin_lock(&ubi->wl_lock); 1406 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1407 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1408 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1409 list_del(&wrk->list); 1410 ubi->works_count -= 1; 1411 ubi_assert(ubi->works_count >= 0); 1412 spin_unlock(&ubi->wl_lock); 1413 1414 err = wrk->func(ubi, wrk, 0); 1415 if (err) { 1416 up_read(&ubi->work_sem); 1417 return err; 1418 } 1419 1420 spin_lock(&ubi->wl_lock); 1421 found = 1; 1422 break; 1423 } 1424 } 1425 spin_unlock(&ubi->wl_lock); 1426 up_read(&ubi->work_sem); 1427 } 1428 1429 /* 1430 * Make sure all the works which have been done in parallel are 1431 * finished. 1432 */ 1433 down_write(&ubi->work_sem); 1434 up_write(&ubi->work_sem); 1435 1436 return err; 1437 } 1438 1439 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1440 { 1441 if (in_wl_tree(e, &ubi->scrub)) 1442 return false; 1443 else if (in_wl_tree(e, &ubi->erroneous)) 1444 return false; 1445 else if (ubi->move_from == e) 1446 return false; 1447 else if (ubi->move_to == e) 1448 return false; 1449 1450 return true; 1451 } 1452 1453 /** 1454 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1455 * @ubi: UBI device description object 1456 * @pnum: the physical eraseblock to schedule 1457 * @force: dont't read the block, assume bitflips happened and take action. 1458 * 1459 * This function reads the given eraseblock and checks if bitflips occured. 1460 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1461 * If scrubbing is forced with @force, the eraseblock is not read, 1462 * but scheduled for scrubbing right away. 1463 * 1464 * Returns: 1465 * %EINVAL, PEB is out of range 1466 * %ENOENT, PEB is no longer used by UBI 1467 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1468 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1469 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1470 * %0, no bit flips detected 1471 */ 1472 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1473 { 1474 int err = 0; 1475 struct ubi_wl_entry *e; 1476 1477 if (pnum < 0 || pnum >= ubi->peb_count) { 1478 err = -EINVAL; 1479 goto out; 1480 } 1481 1482 /* 1483 * Pause all parallel work, otherwise it can happen that the 1484 * erase worker frees a wl entry under us. 1485 */ 1486 down_write(&ubi->work_sem); 1487 1488 /* 1489 * Make sure that the wl entry does not change state while 1490 * inspecting it. 1491 */ 1492 spin_lock(&ubi->wl_lock); 1493 e = ubi->lookuptbl[pnum]; 1494 if (!e) { 1495 spin_unlock(&ubi->wl_lock); 1496 err = -ENOENT; 1497 goto out_resume; 1498 } 1499 1500 /* 1501 * Does it make sense to check this PEB? 1502 */ 1503 if (!scrub_possible(ubi, e)) { 1504 spin_unlock(&ubi->wl_lock); 1505 err = -EBUSY; 1506 goto out_resume; 1507 } 1508 spin_unlock(&ubi->wl_lock); 1509 1510 if (!force) { 1511 mutex_lock(&ubi->buf_mutex); 1512 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1513 mutex_unlock(&ubi->buf_mutex); 1514 } 1515 1516 if (force || err == UBI_IO_BITFLIPS) { 1517 /* 1518 * Okay, bit flip happened, let's figure out what we can do. 1519 */ 1520 spin_lock(&ubi->wl_lock); 1521 1522 /* 1523 * Recheck. We released wl_lock, UBI might have killed the 1524 * wl entry under us. 1525 */ 1526 e = ubi->lookuptbl[pnum]; 1527 if (!e) { 1528 spin_unlock(&ubi->wl_lock); 1529 err = -ENOENT; 1530 goto out_resume; 1531 } 1532 1533 /* 1534 * Need to re-check state 1535 */ 1536 if (!scrub_possible(ubi, e)) { 1537 spin_unlock(&ubi->wl_lock); 1538 err = -EBUSY; 1539 goto out_resume; 1540 } 1541 1542 if (in_pq(ubi, e)) { 1543 prot_queue_del(ubi, e->pnum); 1544 wl_tree_add(e, &ubi->scrub); 1545 spin_unlock(&ubi->wl_lock); 1546 1547 err = ensure_wear_leveling(ubi, 1); 1548 } else if (in_wl_tree(e, &ubi->used)) { 1549 rb_erase(&e->u.rb, &ubi->used); 1550 wl_tree_add(e, &ubi->scrub); 1551 spin_unlock(&ubi->wl_lock); 1552 1553 err = ensure_wear_leveling(ubi, 1); 1554 } else if (in_wl_tree(e, &ubi->free)) { 1555 rb_erase(&e->u.rb, &ubi->free); 1556 ubi->free_count--; 1557 spin_unlock(&ubi->wl_lock); 1558 1559 /* 1560 * This PEB is empty we can schedule it for 1561 * erasure right away. No wear leveling needed. 1562 */ 1563 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1564 force ? 0 : 1, true); 1565 } else { 1566 spin_unlock(&ubi->wl_lock); 1567 err = -EAGAIN; 1568 } 1569 1570 if (!err && !force) 1571 err = -EUCLEAN; 1572 } else { 1573 err = 0; 1574 } 1575 1576 out_resume: 1577 up_write(&ubi->work_sem); 1578 out: 1579 1580 return err; 1581 } 1582 1583 /** 1584 * tree_destroy - destroy an RB-tree. 1585 * @ubi: UBI device description object 1586 * @root: the root of the tree to destroy 1587 */ 1588 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1589 { 1590 struct rb_node *rb; 1591 struct ubi_wl_entry *e; 1592 1593 rb = root->rb_node; 1594 while (rb) { 1595 if (rb->rb_left) 1596 rb = rb->rb_left; 1597 else if (rb->rb_right) 1598 rb = rb->rb_right; 1599 else { 1600 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1601 1602 rb = rb_parent(rb); 1603 if (rb) { 1604 if (rb->rb_left == &e->u.rb) 1605 rb->rb_left = NULL; 1606 else 1607 rb->rb_right = NULL; 1608 } 1609 1610 wl_entry_destroy(ubi, e); 1611 } 1612 } 1613 } 1614 1615 /** 1616 * ubi_thread - UBI background thread. 1617 * @u: the UBI device description object pointer 1618 */ 1619 int ubi_thread(void *u) 1620 { 1621 int failures = 0; 1622 struct ubi_device *ubi = u; 1623 1624 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1625 ubi->bgt_name, task_pid_nr(current)); 1626 1627 set_freezable(); 1628 for (;;) { 1629 int err; 1630 1631 if (kthread_should_stop()) 1632 break; 1633 1634 if (try_to_freeze()) 1635 continue; 1636 1637 spin_lock(&ubi->wl_lock); 1638 if (list_empty(&ubi->works) || ubi->ro_mode || 1639 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1640 set_current_state(TASK_INTERRUPTIBLE); 1641 spin_unlock(&ubi->wl_lock); 1642 1643 /* 1644 * Check kthread_should_stop() after we set the task 1645 * state to guarantee that we either see the stop bit 1646 * and exit or the task state is reset to runnable such 1647 * that it's not scheduled out indefinitely and detects 1648 * the stop bit at kthread_should_stop(). 1649 */ 1650 if (kthread_should_stop()) { 1651 set_current_state(TASK_RUNNING); 1652 break; 1653 } 1654 1655 schedule(); 1656 continue; 1657 } 1658 spin_unlock(&ubi->wl_lock); 1659 1660 err = do_work(ubi); 1661 if (err) { 1662 ubi_err(ubi, "%s: work failed with error code %d", 1663 ubi->bgt_name, err); 1664 if (failures++ > WL_MAX_FAILURES) { 1665 /* 1666 * Too many failures, disable the thread and 1667 * switch to read-only mode. 1668 */ 1669 ubi_msg(ubi, "%s: %d consecutive failures", 1670 ubi->bgt_name, WL_MAX_FAILURES); 1671 ubi_ro_mode(ubi); 1672 ubi->thread_enabled = 0; 1673 continue; 1674 } 1675 } else 1676 failures = 0; 1677 1678 cond_resched(); 1679 } 1680 1681 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1682 ubi->thread_enabled = 0; 1683 return 0; 1684 } 1685 1686 /** 1687 * shutdown_work - shutdown all pending works. 1688 * @ubi: UBI device description object 1689 */ 1690 static void shutdown_work(struct ubi_device *ubi) 1691 { 1692 while (!list_empty(&ubi->works)) { 1693 struct ubi_work *wrk; 1694 1695 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1696 list_del(&wrk->list); 1697 wrk->func(ubi, wrk, 1); 1698 ubi->works_count -= 1; 1699 ubi_assert(ubi->works_count >= 0); 1700 } 1701 } 1702 1703 /** 1704 * erase_aeb - erase a PEB given in UBI attach info PEB 1705 * @ubi: UBI device description object 1706 * @aeb: UBI attach info PEB 1707 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1708 */ 1709 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1710 { 1711 struct ubi_wl_entry *e; 1712 int err; 1713 1714 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1715 if (!e) 1716 return -ENOMEM; 1717 1718 e->pnum = aeb->pnum; 1719 e->ec = aeb->ec; 1720 ubi->lookuptbl[e->pnum] = e; 1721 1722 if (sync) { 1723 err = sync_erase(ubi, e, false); 1724 if (err) 1725 goto out_free; 1726 1727 wl_tree_add(e, &ubi->free); 1728 ubi->free_count++; 1729 } else { 1730 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1731 if (err) 1732 goto out_free; 1733 } 1734 1735 return 0; 1736 1737 out_free: 1738 wl_entry_destroy(ubi, e); 1739 1740 return err; 1741 } 1742 1743 /** 1744 * ubi_wl_init - initialize the WL sub-system using attaching information. 1745 * @ubi: UBI device description object 1746 * @ai: attaching information 1747 * 1748 * This function returns zero in case of success, and a negative error code in 1749 * case of failure. 1750 */ 1751 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1752 { 1753 int err, i, reserved_pebs, found_pebs = 0; 1754 struct rb_node *rb1, *rb2; 1755 struct ubi_ainf_volume *av; 1756 struct ubi_ainf_peb *aeb, *tmp; 1757 struct ubi_wl_entry *e; 1758 1759 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1760 spin_lock_init(&ubi->wl_lock); 1761 mutex_init(&ubi->move_mutex); 1762 init_rwsem(&ubi->work_sem); 1763 ubi->max_ec = ai->max_ec; 1764 INIT_LIST_HEAD(&ubi->works); 1765 1766 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1767 1768 err = -ENOMEM; 1769 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1770 if (!ubi->lookuptbl) 1771 return err; 1772 1773 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1774 INIT_LIST_HEAD(&ubi->pq[i]); 1775 ubi->pq_head = 0; 1776 1777 ubi->free_count = 0; 1778 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1779 cond_resched(); 1780 1781 err = erase_aeb(ubi, aeb, false); 1782 if (err) 1783 goto out_free; 1784 1785 found_pebs++; 1786 } 1787 1788 list_for_each_entry(aeb, &ai->free, u.list) { 1789 cond_resched(); 1790 1791 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1792 if (!e) { 1793 err = -ENOMEM; 1794 goto out_free; 1795 } 1796 1797 e->pnum = aeb->pnum; 1798 e->ec = aeb->ec; 1799 ubi_assert(e->ec >= 0); 1800 1801 wl_tree_add(e, &ubi->free); 1802 ubi->free_count++; 1803 1804 ubi->lookuptbl[e->pnum] = e; 1805 1806 found_pebs++; 1807 } 1808 1809 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1810 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1811 cond_resched(); 1812 1813 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1814 if (!e) { 1815 err = -ENOMEM; 1816 goto out_free; 1817 } 1818 1819 e->pnum = aeb->pnum; 1820 e->ec = aeb->ec; 1821 ubi->lookuptbl[e->pnum] = e; 1822 1823 if (!aeb->scrub) { 1824 dbg_wl("add PEB %d EC %d to the used tree", 1825 e->pnum, e->ec); 1826 wl_tree_add(e, &ubi->used); 1827 } else { 1828 dbg_wl("add PEB %d EC %d to the scrub tree", 1829 e->pnum, e->ec); 1830 wl_tree_add(e, &ubi->scrub); 1831 } 1832 1833 found_pebs++; 1834 } 1835 } 1836 1837 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1838 cond_resched(); 1839 1840 e = ubi_find_fm_block(ubi, aeb->pnum); 1841 1842 if (e) { 1843 ubi_assert(!ubi->lookuptbl[e->pnum]); 1844 ubi->lookuptbl[e->pnum] = e; 1845 } else { 1846 bool sync = false; 1847 1848 /* 1849 * Usually old Fastmap PEBs are scheduled for erasure 1850 * and we don't have to care about them but if we face 1851 * an power cut before scheduling them we need to 1852 * take care of them here. 1853 */ 1854 if (ubi->lookuptbl[aeb->pnum]) 1855 continue; 1856 1857 /* 1858 * The fastmap update code might not find a free PEB for 1859 * writing the fastmap anchor to and then reuses the 1860 * current fastmap anchor PEB. When this PEB gets erased 1861 * and a power cut happens before it is written again we 1862 * must make sure that the fastmap attach code doesn't 1863 * find any outdated fastmap anchors, hence we erase the 1864 * outdated fastmap anchor PEBs synchronously here. 1865 */ 1866 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1867 sync = true; 1868 1869 err = erase_aeb(ubi, aeb, sync); 1870 if (err) 1871 goto out_free; 1872 } 1873 1874 found_pebs++; 1875 } 1876 1877 dbg_wl("found %i PEBs", found_pebs); 1878 1879 ubi_assert(ubi->good_peb_count == found_pebs); 1880 1881 reserved_pebs = WL_RESERVED_PEBS; 1882 ubi_fastmap_init(ubi, &reserved_pebs); 1883 1884 if (ubi->avail_pebs < reserved_pebs) { 1885 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1886 ubi->avail_pebs, reserved_pebs); 1887 if (ubi->corr_peb_count) 1888 ubi_err(ubi, "%d PEBs are corrupted and not used", 1889 ubi->corr_peb_count); 1890 err = -ENOSPC; 1891 goto out_free; 1892 } 1893 ubi->avail_pebs -= reserved_pebs; 1894 ubi->rsvd_pebs += reserved_pebs; 1895 1896 /* Schedule wear-leveling if needed */ 1897 err = ensure_wear_leveling(ubi, 0); 1898 if (err) 1899 goto out_free; 1900 1901 #ifdef CONFIG_MTD_UBI_FASTMAP 1902 if (!ubi->ro_mode && !ubi->fm_disabled) 1903 ubi_ensure_anchor_pebs(ubi); 1904 #endif 1905 return 0; 1906 1907 out_free: 1908 shutdown_work(ubi); 1909 tree_destroy(ubi, &ubi->used); 1910 tree_destroy(ubi, &ubi->free); 1911 tree_destroy(ubi, &ubi->scrub); 1912 kfree(ubi->lookuptbl); 1913 return err; 1914 } 1915 1916 /** 1917 * protection_queue_destroy - destroy the protection queue. 1918 * @ubi: UBI device description object 1919 */ 1920 static void protection_queue_destroy(struct ubi_device *ubi) 1921 { 1922 int i; 1923 struct ubi_wl_entry *e, *tmp; 1924 1925 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1926 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1927 list_del(&e->u.list); 1928 wl_entry_destroy(ubi, e); 1929 } 1930 } 1931 } 1932 1933 /** 1934 * ubi_wl_close - close the wear-leveling sub-system. 1935 * @ubi: UBI device description object 1936 */ 1937 void ubi_wl_close(struct ubi_device *ubi) 1938 { 1939 dbg_wl("close the WL sub-system"); 1940 ubi_fastmap_close(ubi); 1941 shutdown_work(ubi); 1942 protection_queue_destroy(ubi); 1943 tree_destroy(ubi, &ubi->used); 1944 tree_destroy(ubi, &ubi->erroneous); 1945 tree_destroy(ubi, &ubi->free); 1946 tree_destroy(ubi, &ubi->scrub); 1947 kfree(ubi->lookuptbl); 1948 } 1949 1950 /** 1951 * self_check_ec - make sure that the erase counter of a PEB is correct. 1952 * @ubi: UBI device description object 1953 * @pnum: the physical eraseblock number to check 1954 * @ec: the erase counter to check 1955 * 1956 * This function returns zero if the erase counter of physical eraseblock @pnum 1957 * is equivalent to @ec, and a negative error code if not or if an error 1958 * occurred. 1959 */ 1960 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1961 { 1962 int err; 1963 long long read_ec; 1964 struct ubi_ec_hdr *ec_hdr; 1965 1966 if (!ubi_dbg_chk_gen(ubi)) 1967 return 0; 1968 1969 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1970 if (!ec_hdr) 1971 return -ENOMEM; 1972 1973 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1974 if (err && err != UBI_IO_BITFLIPS) { 1975 /* The header does not have to exist */ 1976 err = 0; 1977 goto out_free; 1978 } 1979 1980 read_ec = be64_to_cpu(ec_hdr->ec); 1981 if (ec != read_ec && read_ec - ec > 1) { 1982 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1983 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1984 dump_stack(); 1985 err = 1; 1986 } else 1987 err = 0; 1988 1989 out_free: 1990 kfree(ec_hdr); 1991 return err; 1992 } 1993 1994 /** 1995 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1996 * @ubi: UBI device description object 1997 * @e: the wear-leveling entry to check 1998 * @root: the root of the tree 1999 * 2000 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2001 * is not. 2002 */ 2003 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2004 struct ubi_wl_entry *e, struct rb_root *root) 2005 { 2006 if (!ubi_dbg_chk_gen(ubi)) 2007 return 0; 2008 2009 if (in_wl_tree(e, root)) 2010 return 0; 2011 2012 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 2013 e->pnum, e->ec, root); 2014 dump_stack(); 2015 return -EINVAL; 2016 } 2017 2018 /** 2019 * self_check_in_pq - check if wear-leveling entry is in the protection 2020 * queue. 2021 * @ubi: UBI device description object 2022 * @e: the wear-leveling entry to check 2023 * 2024 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2025 */ 2026 static int self_check_in_pq(const struct ubi_device *ubi, 2027 struct ubi_wl_entry *e) 2028 { 2029 if (!ubi_dbg_chk_gen(ubi)) 2030 return 0; 2031 2032 if (in_pq(ubi, e)) 2033 return 0; 2034 2035 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2036 e->pnum, e->ec); 2037 dump_stack(); 2038 return -EINVAL; 2039 } 2040 #ifndef CONFIG_MTD_UBI_FASTMAP 2041 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2042 { 2043 struct ubi_wl_entry *e; 2044 2045 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2046 self_check_in_wl_tree(ubi, e, &ubi->free); 2047 ubi->free_count--; 2048 ubi_assert(ubi->free_count >= 0); 2049 rb_erase(&e->u.rb, &ubi->free); 2050 2051 return e; 2052 } 2053 2054 /** 2055 * produce_free_peb - produce a free physical eraseblock. 2056 * @ubi: UBI device description object 2057 * 2058 * This function tries to make a free PEB by means of synchronous execution of 2059 * pending works. This may be needed if, for example the background thread is 2060 * disabled. Returns zero in case of success and a negative error code in case 2061 * of failure. 2062 */ 2063 static int produce_free_peb(struct ubi_device *ubi) 2064 { 2065 int err; 2066 2067 while (!ubi->free.rb_node && ubi->works_count) { 2068 spin_unlock(&ubi->wl_lock); 2069 2070 dbg_wl("do one work synchronously"); 2071 err = do_work(ubi); 2072 2073 spin_lock(&ubi->wl_lock); 2074 if (err) 2075 return err; 2076 } 2077 2078 return 0; 2079 } 2080 2081 /** 2082 * ubi_wl_get_peb - get a physical eraseblock. 2083 * @ubi: UBI device description object 2084 * 2085 * This function returns a physical eraseblock in case of success and a 2086 * negative error code in case of failure. 2087 * Returns with ubi->fm_eba_sem held in read mode! 2088 */ 2089 int ubi_wl_get_peb(struct ubi_device *ubi) 2090 { 2091 int err; 2092 struct ubi_wl_entry *e; 2093 2094 retry: 2095 down_read(&ubi->fm_eba_sem); 2096 spin_lock(&ubi->wl_lock); 2097 if (!ubi->free.rb_node) { 2098 if (ubi->works_count == 0) { 2099 ubi_err(ubi, "no free eraseblocks"); 2100 ubi_assert(list_empty(&ubi->works)); 2101 spin_unlock(&ubi->wl_lock); 2102 return -ENOSPC; 2103 } 2104 2105 err = produce_free_peb(ubi); 2106 if (err < 0) { 2107 spin_unlock(&ubi->wl_lock); 2108 return err; 2109 } 2110 spin_unlock(&ubi->wl_lock); 2111 up_read(&ubi->fm_eba_sem); 2112 goto retry; 2113 2114 } 2115 e = wl_get_wle(ubi); 2116 prot_queue_add(ubi, e); 2117 spin_unlock(&ubi->wl_lock); 2118 2119 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2120 ubi->peb_size - ubi->vid_hdr_aloffset); 2121 if (err) { 2122 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2123 return err; 2124 } 2125 2126 return e->pnum; 2127 } 2128 #else 2129 #include "fastmap-wl.c" 2130 #endif 2131