xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision dfe94d40)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94 
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97 
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105 
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118 
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124 
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 				 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 			    struct ubi_wl_entry *e);
130 
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 	struct rb_node **p, *parent = NULL;
142 
143 	p = &root->rb_node;
144 	while (*p) {
145 		struct ubi_wl_entry *e1;
146 
147 		parent = *p;
148 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149 
150 		if (e->ec < e1->ec)
151 			p = &(*p)->rb_left;
152 		else if (e->ec > e1->ec)
153 			p = &(*p)->rb_right;
154 		else {
155 			ubi_assert(e->pnum != e1->pnum);
156 			if (e->pnum < e1->pnum)
157 				p = &(*p)->rb_left;
158 			else
159 				p = &(*p)->rb_right;
160 		}
161 	}
162 
163 	rb_link_node(&e->u.rb, parent, p);
164 	rb_insert_color(&e->u.rb, root);
165 }
166 
167 /**
168  * wl_tree_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 	ubi->lookuptbl[e->pnum] = NULL;
178 	kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180 
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  *
185  * This function returns zero in case of success and a negative error code in
186  * case of failure.
187  */
188 static int do_work(struct ubi_device *ubi)
189 {
190 	int err;
191 	struct ubi_work *wrk;
192 
193 	cond_resched();
194 
195 	/*
196 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 	 * it in read mode, so many of them may be doing works at a time. But
198 	 * the queue flush code has to be sure the whole queue of works is
199 	 * done, and it takes the mutex in write mode.
200 	 */
201 	down_read(&ubi->work_sem);
202 	spin_lock(&ubi->wl_lock);
203 	if (list_empty(&ubi->works)) {
204 		spin_unlock(&ubi->wl_lock);
205 		up_read(&ubi->work_sem);
206 		return 0;
207 	}
208 
209 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 	list_del(&wrk->list);
211 	ubi->works_count -= 1;
212 	ubi_assert(ubi->works_count >= 0);
213 	spin_unlock(&ubi->wl_lock);
214 
215 	/*
216 	 * Call the worker function. Do not touch the work structure
217 	 * after this call as it will have been freed or reused by that
218 	 * time by the worker function.
219 	 */
220 	err = wrk->func(ubi, wrk, 0);
221 	if (err)
222 		ubi_err(ubi, "work failed with error code %d", err);
223 	up_read(&ubi->work_sem);
224 
225 	return err;
226 }
227 
228 /**
229  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230  * @e: the wear-leveling entry to check
231  * @root: the root of the tree
232  *
233  * This function returns non-zero if @e is in the @root RB-tree and zero if it
234  * is not.
235  */
236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 	struct rb_node *p;
239 
240 	p = root->rb_node;
241 	while (p) {
242 		struct ubi_wl_entry *e1;
243 
244 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245 
246 		if (e->pnum == e1->pnum) {
247 			ubi_assert(e == e1);
248 			return 1;
249 		}
250 
251 		if (e->ec < e1->ec)
252 			p = p->rb_left;
253 		else if (e->ec > e1->ec)
254 			p = p->rb_right;
255 		else {
256 			ubi_assert(e->pnum != e1->pnum);
257 			if (e->pnum < e1->pnum)
258 				p = p->rb_left;
259 			else
260 				p = p->rb_right;
261 		}
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * in_pq - check if a wear-leveling entry is present in the protection queue.
269  * @ubi: UBI device description object
270  * @e: the wear-leveling entry to check
271  *
272  * This function returns non-zero if @e is in the protection queue and zero
273  * if it is not.
274  */
275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 	struct ubi_wl_entry *p;
278 	int i;
279 
280 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 		list_for_each_entry(p, &ubi->pq[i], u.list)
282 			if (p == e)
283 				return 1;
284 
285 	return 0;
286 }
287 
288 /**
289  * prot_queue_add - add physical eraseblock to the protection queue.
290  * @ubi: UBI device description object
291  * @e: the physical eraseblock to add
292  *
293  * This function adds @e to the tail of the protection queue @ubi->pq, where
294  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296  * be locked.
297  */
298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 	int pq_tail = ubi->pq_head - 1;
301 
302 	if (pq_tail < 0)
303 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308 
309 /**
310  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311  * @ubi: UBI device description object
312  * @root: the RB-tree where to look for
313  * @diff: maximum possible difference from the smallest erase counter
314  *
315  * This function looks for a wear leveling entry with erase counter closest to
316  * min + @diff, where min is the smallest erase counter.
317  */
318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 					  struct rb_root *root, int diff)
320 {
321 	struct rb_node *p;
322 	struct ubi_wl_entry *e;
323 	int max;
324 
325 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 	max = e->ec + diff;
327 
328 	p = root->rb_node;
329 	while (p) {
330 		struct ubi_wl_entry *e1;
331 
332 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 		if (e1->ec >= max)
334 			p = p->rb_left;
335 		else {
336 			p = p->rb_right;
337 			e = e1;
338 		}
339 	}
340 
341 	return e;
342 }
343 
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 					       struct rb_root *root)
355 {
356 	struct ubi_wl_entry *e, *first, *last;
357 
358 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360 
361 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363 
364 		/* If no fastmap has been written and this WL entry can be used
365 		 * as anchor PEB, hold it back and return the second best
366 		 * WL entry such that fastmap can use the anchor PEB later. */
367 		e = may_reserve_for_fm(ubi, e, root);
368 	} else
369 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370 
371 	return e;
372 }
373 
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 	struct ubi_wl_entry *e;
385 
386 	e = find_mean_wl_entry(ubi, &ubi->free);
387 	if (!e) {
388 		ubi_err(ubi, "no free eraseblocks");
389 		return NULL;
390 	}
391 
392 	self_check_in_wl_tree(ubi, e, &ubi->free);
393 
394 	/*
395 	 * Move the physical eraseblock to the protection queue where it will
396 	 * be protected from being moved for some time.
397 	 */
398 	rb_erase(&e->u.rb, &ubi->free);
399 	ubi->free_count--;
400 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401 
402 	return e;
403 }
404 
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 	struct ubi_wl_entry *e;
416 
417 	e = ubi->lookuptbl[pnum];
418 	if (!e)
419 		return -ENODEV;
420 
421 	if (self_check_in_pq(ubi, e))
422 		return -ENODEV;
423 
424 	list_del(&e->u.list);
425 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 	return 0;
427 }
428 
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 		      int torture)
440 {
441 	int err;
442 	struct ubi_ec_hdr *ec_hdr;
443 	unsigned long long ec = e->ec;
444 
445 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446 
447 	err = self_check_ec(ubi, e->pnum, e->ec);
448 	if (err)
449 		return -EINVAL;
450 
451 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 	if (!ec_hdr)
453 		return -ENOMEM;
454 
455 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 	if (err < 0)
457 		goto out_free;
458 
459 	ec += err;
460 	if (ec > UBI_MAX_ERASECOUNTER) {
461 		/*
462 		 * Erase counter overflow. Upgrade UBI and use 64-bit
463 		 * erase counters internally.
464 		 */
465 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 			e->pnum, ec);
467 		err = -EINVAL;
468 		goto out_free;
469 	}
470 
471 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472 
473 	ec_hdr->ec = cpu_to_be64(ec);
474 
475 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 	if (err)
477 		goto out_free;
478 
479 	e->ec = ec;
480 	spin_lock(&ubi->wl_lock);
481 	if (e->ec > ubi->max_ec)
482 		ubi->max_ec = e->ec;
483 	spin_unlock(&ubi->wl_lock);
484 
485 out_free:
486 	kfree(ec_hdr);
487 	return err;
488 }
489 
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 	struct ubi_wl_entry *e, *tmp;
501 	int count;
502 
503 	/*
504 	 * There may be several protected physical eraseblock to remove,
505 	 * process them all.
506 	 */
507 repeat:
508 	count = 0;
509 	spin_lock(&ubi->wl_lock);
510 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 		dbg_wl("PEB %d EC %d protection over, move to used tree",
512 			e->pnum, e->ec);
513 
514 		list_del(&e->u.list);
515 		wl_tree_add(e, &ubi->used);
516 		if (count++ > 32) {
517 			/*
518 			 * Let's be nice and avoid holding the spinlock for
519 			 * too long.
520 			 */
521 			spin_unlock(&ubi->wl_lock);
522 			cond_resched();
523 			goto repeat;
524 		}
525 	}
526 
527 	ubi->pq_head += 1;
528 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 		ubi->pq_head = 0;
530 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 	spin_unlock(&ubi->wl_lock);
532 }
533 
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 	spin_lock(&ubi->wl_lock);
545 	list_add_tail(&wrk->list, &ubi->works);
546 	ubi_assert(ubi->works_count >= 0);
547 	ubi->works_count += 1;
548 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 		wake_up_process(ubi->bgt_thread);
550 	spin_unlock(&ubi->wl_lock);
551 }
552 
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 	down_read(&ubi->work_sem);
564 	__schedule_ubi_work(ubi, wrk);
565 	up_read(&ubi->work_sem);
566 }
567 
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 			int shutdown);
570 
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  * @nested: denotes whether the work_sem is already held in read mode
579  *
580  * This function returns zero in case of success and a %-ENOMEM in case of
581  * failure.
582  */
583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 			  int vol_id, int lnum, int torture, bool nested)
585 {
586 	struct ubi_work *wl_wrk;
587 
588 	ubi_assert(e);
589 
590 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 	       e->pnum, e->ec, torture);
592 
593 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594 	if (!wl_wrk)
595 		return -ENOMEM;
596 
597 	wl_wrk->func = &erase_worker;
598 	wl_wrk->e = e;
599 	wl_wrk->vol_id = vol_id;
600 	wl_wrk->lnum = lnum;
601 	wl_wrk->torture = torture;
602 
603 	if (nested)
604 		__schedule_ubi_work(ubi, wl_wrk);
605 	else
606 		schedule_ubi_work(ubi, wl_wrk);
607 	return 0;
608 }
609 
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 /**
612  * do_sync_erase - run the erase worker synchronously.
613  * @ubi: UBI device description object
614  * @e: the WL entry of the physical eraseblock to erase
615  * @vol_id: the volume ID that last used this PEB
616  * @lnum: the last used logical eraseblock number for the PEB
617  * @torture: if the physical eraseblock has to be tortured
618  *
619  */
620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 			 int vol_id, int lnum, int torture)
622 {
623 	struct ubi_work wl_wrk;
624 
625 	dbg_wl("sync erase of PEB %i", e->pnum);
626 
627 	wl_wrk.e = e;
628 	wl_wrk.vol_id = vol_id;
629 	wl_wrk.lnum = lnum;
630 	wl_wrk.torture = torture;
631 
632 	return __erase_worker(ubi, &wl_wrk);
633 }
634 
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 /**
637  * wear_leveling_worker - wear-leveling worker function.
638  * @ubi: UBI device description object
639  * @wrk: the work object
640  * @shutdown: non-zero if the worker has to free memory and exit
641  * because the WL-subsystem is shutting down
642  *
643  * This function copies a more worn out physical eraseblock to a less worn out
644  * one. Returns zero in case of success and a negative error code in case of
645  * failure.
646  */
647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648 				int shutdown)
649 {
650 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 	struct ubi_wl_entry *e1, *e2;
653 	struct ubi_vid_io_buf *vidb;
654 	struct ubi_vid_hdr *vid_hdr;
655 	int dst_leb_clean = 0;
656 
657 	kfree(wrk);
658 	if (shutdown)
659 		return 0;
660 
661 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662 	if (!vidb)
663 		return -ENOMEM;
664 
665 	vid_hdr = ubi_get_vid_hdr(vidb);
666 
667 	down_read(&ubi->fm_eba_sem);
668 	mutex_lock(&ubi->move_mutex);
669 	spin_lock(&ubi->wl_lock);
670 	ubi_assert(!ubi->move_from && !ubi->move_to);
671 	ubi_assert(!ubi->move_to_put);
672 
673 	if (!ubi->free.rb_node ||
674 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
675 		/*
676 		 * No free physical eraseblocks? Well, they must be waiting in
677 		 * the queue to be erased. Cancel movement - it will be
678 		 * triggered again when a free physical eraseblock appears.
679 		 *
680 		 * No used physical eraseblocks? They must be temporarily
681 		 * protected from being moved. They will be moved to the
682 		 * @ubi->used tree later and the wear-leveling will be
683 		 * triggered again.
684 		 */
685 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
686 		       !ubi->free.rb_node, !ubi->used.rb_node);
687 		goto out_cancel;
688 	}
689 
690 #ifdef CONFIG_MTD_UBI_FASTMAP
691 	e1 = find_anchor_wl_entry(&ubi->used);
692 	if (e1 && ubi->fm_next_anchor &&
693 	    (ubi->fm_next_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
694 		ubi->fm_do_produce_anchor = 1;
695 		/* fm_next_anchor is no longer considered a good anchor
696 		 * candidate.
697 		 * NULL assignment also prevents multiple wear level checks
698 		 * of this PEB.
699 		 */
700 		wl_tree_add(ubi->fm_next_anchor, &ubi->free);
701 		ubi->fm_next_anchor = NULL;
702 		ubi->free_count++;
703 	}
704 
705 	if (ubi->fm_do_produce_anchor) {
706 		if (!e1)
707 			goto out_cancel;
708 		e2 = get_peb_for_wl(ubi);
709 		if (!e2)
710 			goto out_cancel;
711 
712 		self_check_in_wl_tree(ubi, e1, &ubi->used);
713 		rb_erase(&e1->u.rb, &ubi->used);
714 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
715 		ubi->fm_do_produce_anchor = 0;
716 	} else if (!ubi->scrub.rb_node) {
717 #else
718 	if (!ubi->scrub.rb_node) {
719 #endif
720 		/*
721 		 * Now pick the least worn-out used physical eraseblock and a
722 		 * highly worn-out free physical eraseblock. If the erase
723 		 * counters differ much enough, start wear-leveling.
724 		 */
725 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
726 		e2 = get_peb_for_wl(ubi);
727 		if (!e2)
728 			goto out_cancel;
729 
730 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
731 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
732 			       e1->ec, e2->ec);
733 
734 			/* Give the unused PEB back */
735 			wl_tree_add(e2, &ubi->free);
736 			ubi->free_count++;
737 			goto out_cancel;
738 		}
739 		self_check_in_wl_tree(ubi, e1, &ubi->used);
740 		rb_erase(&e1->u.rb, &ubi->used);
741 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
742 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
743 	} else {
744 		/* Perform scrubbing */
745 		scrubbing = 1;
746 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
747 		e2 = get_peb_for_wl(ubi);
748 		if (!e2)
749 			goto out_cancel;
750 
751 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
752 		rb_erase(&e1->u.rb, &ubi->scrub);
753 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
754 	}
755 
756 	ubi->move_from = e1;
757 	ubi->move_to = e2;
758 	spin_unlock(&ubi->wl_lock);
759 
760 	/*
761 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
762 	 * We so far do not know which logical eraseblock our physical
763 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
764 	 * header first.
765 	 *
766 	 * Note, we are protected from this PEB being unmapped and erased. The
767 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
768 	 * which is being moved was unmapped.
769 	 */
770 
771 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
772 	if (err && err != UBI_IO_BITFLIPS) {
773 		dst_leb_clean = 1;
774 		if (err == UBI_IO_FF) {
775 			/*
776 			 * We are trying to move PEB without a VID header. UBI
777 			 * always write VID headers shortly after the PEB was
778 			 * given, so we have a situation when it has not yet
779 			 * had a chance to write it, because it was preempted.
780 			 * So add this PEB to the protection queue so far,
781 			 * because presumably more data will be written there
782 			 * (including the missing VID header), and then we'll
783 			 * move it.
784 			 */
785 			dbg_wl("PEB %d has no VID header", e1->pnum);
786 			protect = 1;
787 			goto out_not_moved;
788 		} else if (err == UBI_IO_FF_BITFLIPS) {
789 			/*
790 			 * The same situation as %UBI_IO_FF, but bit-flips were
791 			 * detected. It is better to schedule this PEB for
792 			 * scrubbing.
793 			 */
794 			dbg_wl("PEB %d has no VID header but has bit-flips",
795 			       e1->pnum);
796 			scrubbing = 1;
797 			goto out_not_moved;
798 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
799 			/*
800 			 * While a full scan would detect interrupted erasures
801 			 * at attach time we can face them here when attached from
802 			 * Fastmap.
803 			 */
804 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
805 			       e1->pnum);
806 			erase = 1;
807 			goto out_not_moved;
808 		}
809 
810 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
811 			err, e1->pnum);
812 		goto out_error;
813 	}
814 
815 	vol_id = be32_to_cpu(vid_hdr->vol_id);
816 	lnum = be32_to_cpu(vid_hdr->lnum);
817 
818 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
819 	if (err) {
820 		if (err == MOVE_CANCEL_RACE) {
821 			/*
822 			 * The LEB has not been moved because the volume is
823 			 * being deleted or the PEB has been put meanwhile. We
824 			 * should prevent this PEB from being selected for
825 			 * wear-leveling movement again, so put it to the
826 			 * protection queue.
827 			 */
828 			protect = 1;
829 			dst_leb_clean = 1;
830 			goto out_not_moved;
831 		}
832 		if (err == MOVE_RETRY) {
833 			scrubbing = 1;
834 			dst_leb_clean = 1;
835 			goto out_not_moved;
836 		}
837 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
838 		    err == MOVE_TARGET_RD_ERR) {
839 			/*
840 			 * Target PEB had bit-flips or write error - torture it.
841 			 */
842 			torture = 1;
843 			keep = 1;
844 			goto out_not_moved;
845 		}
846 
847 		if (err == MOVE_SOURCE_RD_ERR) {
848 			/*
849 			 * An error happened while reading the source PEB. Do
850 			 * not switch to R/O mode in this case, and give the
851 			 * upper layers a possibility to recover from this,
852 			 * e.g. by unmapping corresponding LEB. Instead, just
853 			 * put this PEB to the @ubi->erroneous list to prevent
854 			 * UBI from trying to move it over and over again.
855 			 */
856 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
857 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
858 					ubi->erroneous_peb_count);
859 				goto out_error;
860 			}
861 			dst_leb_clean = 1;
862 			erroneous = 1;
863 			goto out_not_moved;
864 		}
865 
866 		if (err < 0)
867 			goto out_error;
868 
869 		ubi_assert(0);
870 	}
871 
872 	/* The PEB has been successfully moved */
873 	if (scrubbing)
874 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
875 			e1->pnum, vol_id, lnum, e2->pnum);
876 	ubi_free_vid_buf(vidb);
877 
878 	spin_lock(&ubi->wl_lock);
879 	if (!ubi->move_to_put) {
880 		wl_tree_add(e2, &ubi->used);
881 		e2 = NULL;
882 	}
883 	ubi->move_from = ubi->move_to = NULL;
884 	ubi->move_to_put = ubi->wl_scheduled = 0;
885 	spin_unlock(&ubi->wl_lock);
886 
887 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
888 	if (err) {
889 		if (e2)
890 			wl_entry_destroy(ubi, e2);
891 		goto out_ro;
892 	}
893 
894 	if (e2) {
895 		/*
896 		 * Well, the target PEB was put meanwhile, schedule it for
897 		 * erasure.
898 		 */
899 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
900 		       e2->pnum, vol_id, lnum);
901 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
902 		if (err)
903 			goto out_ro;
904 	}
905 
906 	dbg_wl("done");
907 	mutex_unlock(&ubi->move_mutex);
908 	up_read(&ubi->fm_eba_sem);
909 	return 0;
910 
911 	/*
912 	 * For some reasons the LEB was not moved, might be an error, might be
913 	 * something else. @e1 was not changed, so return it back. @e2 might
914 	 * have been changed, schedule it for erasure.
915 	 */
916 out_not_moved:
917 	if (vol_id != -1)
918 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
919 		       e1->pnum, vol_id, lnum, e2->pnum, err);
920 	else
921 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
922 		       e1->pnum, e2->pnum, err);
923 	spin_lock(&ubi->wl_lock);
924 	if (protect)
925 		prot_queue_add(ubi, e1);
926 	else if (erroneous) {
927 		wl_tree_add(e1, &ubi->erroneous);
928 		ubi->erroneous_peb_count += 1;
929 	} else if (scrubbing)
930 		wl_tree_add(e1, &ubi->scrub);
931 	else if (keep)
932 		wl_tree_add(e1, &ubi->used);
933 	if (dst_leb_clean) {
934 		wl_tree_add(e2, &ubi->free);
935 		ubi->free_count++;
936 	}
937 
938 	ubi_assert(!ubi->move_to_put);
939 	ubi->move_from = ubi->move_to = NULL;
940 	ubi->wl_scheduled = 0;
941 	spin_unlock(&ubi->wl_lock);
942 
943 	ubi_free_vid_buf(vidb);
944 	if (dst_leb_clean) {
945 		ensure_wear_leveling(ubi, 1);
946 	} else {
947 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
948 		if (err)
949 			goto out_ro;
950 	}
951 
952 	if (erase) {
953 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
954 		if (err)
955 			goto out_ro;
956 	}
957 
958 	mutex_unlock(&ubi->move_mutex);
959 	up_read(&ubi->fm_eba_sem);
960 	return 0;
961 
962 out_error:
963 	if (vol_id != -1)
964 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
965 			err, e1->pnum, e2->pnum);
966 	else
967 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
968 			err, e1->pnum, vol_id, lnum, e2->pnum);
969 	spin_lock(&ubi->wl_lock);
970 	ubi->move_from = ubi->move_to = NULL;
971 	ubi->move_to_put = ubi->wl_scheduled = 0;
972 	spin_unlock(&ubi->wl_lock);
973 
974 	ubi_free_vid_buf(vidb);
975 	wl_entry_destroy(ubi, e1);
976 	wl_entry_destroy(ubi, e2);
977 
978 out_ro:
979 	ubi_ro_mode(ubi);
980 	mutex_unlock(&ubi->move_mutex);
981 	up_read(&ubi->fm_eba_sem);
982 	ubi_assert(err != 0);
983 	return err < 0 ? err : -EIO;
984 
985 out_cancel:
986 	ubi->wl_scheduled = 0;
987 	spin_unlock(&ubi->wl_lock);
988 	mutex_unlock(&ubi->move_mutex);
989 	up_read(&ubi->fm_eba_sem);
990 	ubi_free_vid_buf(vidb);
991 	return 0;
992 }
993 
994 /**
995  * ensure_wear_leveling - schedule wear-leveling if it is needed.
996  * @ubi: UBI device description object
997  * @nested: set to non-zero if this function is called from UBI worker
998  *
999  * This function checks if it is time to start wear-leveling and schedules it
1000  * if yes. This function returns zero in case of success and a negative error
1001  * code in case of failure.
1002  */
1003 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1004 {
1005 	int err = 0;
1006 	struct ubi_wl_entry *e1;
1007 	struct ubi_wl_entry *e2;
1008 	struct ubi_work *wrk;
1009 
1010 	spin_lock(&ubi->wl_lock);
1011 	if (ubi->wl_scheduled)
1012 		/* Wear-leveling is already in the work queue */
1013 		goto out_unlock;
1014 
1015 	/*
1016 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1017 	 * the WL worker has to be scheduled anyway.
1018 	 */
1019 	if (!ubi->scrub.rb_node) {
1020 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1021 			/* No physical eraseblocks - no deal */
1022 			goto out_unlock;
1023 
1024 		/*
1025 		 * We schedule wear-leveling only if the difference between the
1026 		 * lowest erase counter of used physical eraseblocks and a high
1027 		 * erase counter of free physical eraseblocks is greater than
1028 		 * %UBI_WL_THRESHOLD.
1029 		 */
1030 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1031 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1032 
1033 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1034 			goto out_unlock;
1035 		dbg_wl("schedule wear-leveling");
1036 	} else
1037 		dbg_wl("schedule scrubbing");
1038 
1039 	ubi->wl_scheduled = 1;
1040 	spin_unlock(&ubi->wl_lock);
1041 
1042 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1043 	if (!wrk) {
1044 		err = -ENOMEM;
1045 		goto out_cancel;
1046 	}
1047 
1048 	wrk->func = &wear_leveling_worker;
1049 	if (nested)
1050 		__schedule_ubi_work(ubi, wrk);
1051 	else
1052 		schedule_ubi_work(ubi, wrk);
1053 	return err;
1054 
1055 out_cancel:
1056 	spin_lock(&ubi->wl_lock);
1057 	ubi->wl_scheduled = 0;
1058 out_unlock:
1059 	spin_unlock(&ubi->wl_lock);
1060 	return err;
1061 }
1062 
1063 /**
1064  * __erase_worker - physical eraseblock erase worker function.
1065  * @ubi: UBI device description object
1066  * @wl_wrk: the work object
1067  *
1068  * This function erases a physical eraseblock and perform torture testing if
1069  * needed. It also takes care about marking the physical eraseblock bad if
1070  * needed. Returns zero in case of success and a negative error code in case of
1071  * failure.
1072  */
1073 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1074 {
1075 	struct ubi_wl_entry *e = wl_wrk->e;
1076 	int pnum = e->pnum;
1077 	int vol_id = wl_wrk->vol_id;
1078 	int lnum = wl_wrk->lnum;
1079 	int err, available_consumed = 0;
1080 
1081 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1082 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1083 
1084 	err = sync_erase(ubi, e, wl_wrk->torture);
1085 	if (!err) {
1086 		spin_lock(&ubi->wl_lock);
1087 
1088 		if (!ubi->fm_disabled && !ubi->fm_next_anchor &&
1089 		    e->pnum < UBI_FM_MAX_START) {
1090 			/* Abort anchor production, if needed it will be
1091 			 * enabled again in the wear leveling started below.
1092 			 */
1093 			ubi->fm_next_anchor = e;
1094 			ubi->fm_do_produce_anchor = 0;
1095 		} else {
1096 			wl_tree_add(e, &ubi->free);
1097 			ubi->free_count++;
1098 		}
1099 
1100 		spin_unlock(&ubi->wl_lock);
1101 
1102 		/*
1103 		 * One more erase operation has happened, take care about
1104 		 * protected physical eraseblocks.
1105 		 */
1106 		serve_prot_queue(ubi);
1107 
1108 		/* And take care about wear-leveling */
1109 		err = ensure_wear_leveling(ubi, 1);
1110 		return err;
1111 	}
1112 
1113 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1114 
1115 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1116 	    err == -EBUSY) {
1117 		int err1;
1118 
1119 		/* Re-schedule the LEB for erasure */
1120 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1121 		if (err1) {
1122 			wl_entry_destroy(ubi, e);
1123 			err = err1;
1124 			goto out_ro;
1125 		}
1126 		return err;
1127 	}
1128 
1129 	wl_entry_destroy(ubi, e);
1130 	if (err != -EIO)
1131 		/*
1132 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1133 		 * this physical eraseblock for erasure again would cause
1134 		 * errors again and again. Well, lets switch to R/O mode.
1135 		 */
1136 		goto out_ro;
1137 
1138 	/* It is %-EIO, the PEB went bad */
1139 
1140 	if (!ubi->bad_allowed) {
1141 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1142 		goto out_ro;
1143 	}
1144 
1145 	spin_lock(&ubi->volumes_lock);
1146 	if (ubi->beb_rsvd_pebs == 0) {
1147 		if (ubi->avail_pebs == 0) {
1148 			spin_unlock(&ubi->volumes_lock);
1149 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1150 			goto out_ro;
1151 		}
1152 		ubi->avail_pebs -= 1;
1153 		available_consumed = 1;
1154 	}
1155 	spin_unlock(&ubi->volumes_lock);
1156 
1157 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1158 	err = ubi_io_mark_bad(ubi, pnum);
1159 	if (err)
1160 		goto out_ro;
1161 
1162 	spin_lock(&ubi->volumes_lock);
1163 	if (ubi->beb_rsvd_pebs > 0) {
1164 		if (available_consumed) {
1165 			/*
1166 			 * The amount of reserved PEBs increased since we last
1167 			 * checked.
1168 			 */
1169 			ubi->avail_pebs += 1;
1170 			available_consumed = 0;
1171 		}
1172 		ubi->beb_rsvd_pebs -= 1;
1173 	}
1174 	ubi->bad_peb_count += 1;
1175 	ubi->good_peb_count -= 1;
1176 	ubi_calculate_reserved(ubi);
1177 	if (available_consumed)
1178 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1179 	else if (ubi->beb_rsvd_pebs)
1180 		ubi_msg(ubi, "%d PEBs left in the reserve",
1181 			ubi->beb_rsvd_pebs);
1182 	else
1183 		ubi_warn(ubi, "last PEB from the reserve was used");
1184 	spin_unlock(&ubi->volumes_lock);
1185 
1186 	return err;
1187 
1188 out_ro:
1189 	if (available_consumed) {
1190 		spin_lock(&ubi->volumes_lock);
1191 		ubi->avail_pebs += 1;
1192 		spin_unlock(&ubi->volumes_lock);
1193 	}
1194 	ubi_ro_mode(ubi);
1195 	return err;
1196 }
1197 
1198 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1199 			  int shutdown)
1200 {
1201 	int ret;
1202 
1203 	if (shutdown) {
1204 		struct ubi_wl_entry *e = wl_wrk->e;
1205 
1206 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1207 		kfree(wl_wrk);
1208 		wl_entry_destroy(ubi, e);
1209 		return 0;
1210 	}
1211 
1212 	ret = __erase_worker(ubi, wl_wrk);
1213 	kfree(wl_wrk);
1214 	return ret;
1215 }
1216 
1217 /**
1218  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1219  * @ubi: UBI device description object
1220  * @vol_id: the volume ID that last used this PEB
1221  * @lnum: the last used logical eraseblock number for the PEB
1222  * @pnum: physical eraseblock to return
1223  * @torture: if this physical eraseblock has to be tortured
1224  *
1225  * This function is called to return physical eraseblock @pnum to the pool of
1226  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1227  * occurred to this @pnum and it has to be tested. This function returns zero
1228  * in case of success, and a negative error code in case of failure.
1229  */
1230 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1231 		   int pnum, int torture)
1232 {
1233 	int err;
1234 	struct ubi_wl_entry *e;
1235 
1236 	dbg_wl("PEB %d", pnum);
1237 	ubi_assert(pnum >= 0);
1238 	ubi_assert(pnum < ubi->peb_count);
1239 
1240 	down_read(&ubi->fm_protect);
1241 
1242 retry:
1243 	spin_lock(&ubi->wl_lock);
1244 	e = ubi->lookuptbl[pnum];
1245 	if (e == ubi->move_from) {
1246 		/*
1247 		 * User is putting the physical eraseblock which was selected to
1248 		 * be moved. It will be scheduled for erasure in the
1249 		 * wear-leveling worker.
1250 		 */
1251 		dbg_wl("PEB %d is being moved, wait", pnum);
1252 		spin_unlock(&ubi->wl_lock);
1253 
1254 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1255 		mutex_lock(&ubi->move_mutex);
1256 		mutex_unlock(&ubi->move_mutex);
1257 		goto retry;
1258 	} else if (e == ubi->move_to) {
1259 		/*
1260 		 * User is putting the physical eraseblock which was selected
1261 		 * as the target the data is moved to. It may happen if the EBA
1262 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1263 		 * but the WL sub-system has not put the PEB to the "used" tree
1264 		 * yet, but it is about to do this. So we just set a flag which
1265 		 * will tell the WL worker that the PEB is not needed anymore
1266 		 * and should be scheduled for erasure.
1267 		 */
1268 		dbg_wl("PEB %d is the target of data moving", pnum);
1269 		ubi_assert(!ubi->move_to_put);
1270 		ubi->move_to_put = 1;
1271 		spin_unlock(&ubi->wl_lock);
1272 		up_read(&ubi->fm_protect);
1273 		return 0;
1274 	} else {
1275 		if (in_wl_tree(e, &ubi->used)) {
1276 			self_check_in_wl_tree(ubi, e, &ubi->used);
1277 			rb_erase(&e->u.rb, &ubi->used);
1278 		} else if (in_wl_tree(e, &ubi->scrub)) {
1279 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1280 			rb_erase(&e->u.rb, &ubi->scrub);
1281 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1282 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1283 			rb_erase(&e->u.rb, &ubi->erroneous);
1284 			ubi->erroneous_peb_count -= 1;
1285 			ubi_assert(ubi->erroneous_peb_count >= 0);
1286 			/* Erroneous PEBs should be tortured */
1287 			torture = 1;
1288 		} else {
1289 			err = prot_queue_del(ubi, e->pnum);
1290 			if (err) {
1291 				ubi_err(ubi, "PEB %d not found", pnum);
1292 				ubi_ro_mode(ubi);
1293 				spin_unlock(&ubi->wl_lock);
1294 				up_read(&ubi->fm_protect);
1295 				return err;
1296 			}
1297 		}
1298 	}
1299 	spin_unlock(&ubi->wl_lock);
1300 
1301 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1302 	if (err) {
1303 		spin_lock(&ubi->wl_lock);
1304 		wl_tree_add(e, &ubi->used);
1305 		spin_unlock(&ubi->wl_lock);
1306 	}
1307 
1308 	up_read(&ubi->fm_protect);
1309 	return err;
1310 }
1311 
1312 /**
1313  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1314  * @ubi: UBI device description object
1315  * @pnum: the physical eraseblock to schedule
1316  *
1317  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1318  * needs scrubbing. This function schedules a physical eraseblock for
1319  * scrubbing which is done in background. This function returns zero in case of
1320  * success and a negative error code in case of failure.
1321  */
1322 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1323 {
1324 	struct ubi_wl_entry *e;
1325 
1326 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1327 
1328 retry:
1329 	spin_lock(&ubi->wl_lock);
1330 	e = ubi->lookuptbl[pnum];
1331 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1332 				   in_wl_tree(e, &ubi->erroneous)) {
1333 		spin_unlock(&ubi->wl_lock);
1334 		return 0;
1335 	}
1336 
1337 	if (e == ubi->move_to) {
1338 		/*
1339 		 * This physical eraseblock was used to move data to. The data
1340 		 * was moved but the PEB was not yet inserted to the proper
1341 		 * tree. We should just wait a little and let the WL worker
1342 		 * proceed.
1343 		 */
1344 		spin_unlock(&ubi->wl_lock);
1345 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1346 		yield();
1347 		goto retry;
1348 	}
1349 
1350 	if (in_wl_tree(e, &ubi->used)) {
1351 		self_check_in_wl_tree(ubi, e, &ubi->used);
1352 		rb_erase(&e->u.rb, &ubi->used);
1353 	} else {
1354 		int err;
1355 
1356 		err = prot_queue_del(ubi, e->pnum);
1357 		if (err) {
1358 			ubi_err(ubi, "PEB %d not found", pnum);
1359 			ubi_ro_mode(ubi);
1360 			spin_unlock(&ubi->wl_lock);
1361 			return err;
1362 		}
1363 	}
1364 
1365 	wl_tree_add(e, &ubi->scrub);
1366 	spin_unlock(&ubi->wl_lock);
1367 
1368 	/*
1369 	 * Technically scrubbing is the same as wear-leveling, so it is done
1370 	 * by the WL worker.
1371 	 */
1372 	return ensure_wear_leveling(ubi, 0);
1373 }
1374 
1375 /**
1376  * ubi_wl_flush - flush all pending works.
1377  * @ubi: UBI device description object
1378  * @vol_id: the volume id to flush for
1379  * @lnum: the logical eraseblock number to flush for
1380  *
1381  * This function executes all pending works for a particular volume id /
1382  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1383  * acts as a wildcard for all of the corresponding volume numbers or logical
1384  * eraseblock numbers. It returns zero in case of success and a negative error
1385  * code in case of failure.
1386  */
1387 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1388 {
1389 	int err = 0;
1390 	int found = 1;
1391 
1392 	/*
1393 	 * Erase while the pending works queue is not empty, but not more than
1394 	 * the number of currently pending works.
1395 	 */
1396 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1397 	       vol_id, lnum, ubi->works_count);
1398 
1399 	while (found) {
1400 		struct ubi_work *wrk, *tmp;
1401 		found = 0;
1402 
1403 		down_read(&ubi->work_sem);
1404 		spin_lock(&ubi->wl_lock);
1405 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1406 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1407 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1408 				list_del(&wrk->list);
1409 				ubi->works_count -= 1;
1410 				ubi_assert(ubi->works_count >= 0);
1411 				spin_unlock(&ubi->wl_lock);
1412 
1413 				err = wrk->func(ubi, wrk, 0);
1414 				if (err) {
1415 					up_read(&ubi->work_sem);
1416 					return err;
1417 				}
1418 
1419 				spin_lock(&ubi->wl_lock);
1420 				found = 1;
1421 				break;
1422 			}
1423 		}
1424 		spin_unlock(&ubi->wl_lock);
1425 		up_read(&ubi->work_sem);
1426 	}
1427 
1428 	/*
1429 	 * Make sure all the works which have been done in parallel are
1430 	 * finished.
1431 	 */
1432 	down_write(&ubi->work_sem);
1433 	up_write(&ubi->work_sem);
1434 
1435 	return err;
1436 }
1437 
1438 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1439 {
1440 	if (in_wl_tree(e, &ubi->scrub))
1441 		return false;
1442 	else if (in_wl_tree(e, &ubi->erroneous))
1443 		return false;
1444 	else if (ubi->move_from == e)
1445 		return false;
1446 	else if (ubi->move_to == e)
1447 		return false;
1448 
1449 	return true;
1450 }
1451 
1452 /**
1453  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1454  * @ubi: UBI device description object
1455  * @pnum: the physical eraseblock to schedule
1456  * @force: dont't read the block, assume bitflips happened and take action.
1457  *
1458  * This function reads the given eraseblock and checks if bitflips occured.
1459  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1460  * If scrubbing is forced with @force, the eraseblock is not read,
1461  * but scheduled for scrubbing right away.
1462  *
1463  * Returns:
1464  * %EINVAL, PEB is out of range
1465  * %ENOENT, PEB is no longer used by UBI
1466  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1467  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1468  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1469  * %0, no bit flips detected
1470  */
1471 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1472 {
1473 	int err = 0;
1474 	struct ubi_wl_entry *e;
1475 
1476 	if (pnum < 0 || pnum >= ubi->peb_count) {
1477 		err = -EINVAL;
1478 		goto out;
1479 	}
1480 
1481 	/*
1482 	 * Pause all parallel work, otherwise it can happen that the
1483 	 * erase worker frees a wl entry under us.
1484 	 */
1485 	down_write(&ubi->work_sem);
1486 
1487 	/*
1488 	 * Make sure that the wl entry does not change state while
1489 	 * inspecting it.
1490 	 */
1491 	spin_lock(&ubi->wl_lock);
1492 	e = ubi->lookuptbl[pnum];
1493 	if (!e) {
1494 		spin_unlock(&ubi->wl_lock);
1495 		err = -ENOENT;
1496 		goto out_resume;
1497 	}
1498 
1499 	/*
1500 	 * Does it make sense to check this PEB?
1501 	 */
1502 	if (!scrub_possible(ubi, e)) {
1503 		spin_unlock(&ubi->wl_lock);
1504 		err = -EBUSY;
1505 		goto out_resume;
1506 	}
1507 	spin_unlock(&ubi->wl_lock);
1508 
1509 	if (!force) {
1510 		mutex_lock(&ubi->buf_mutex);
1511 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1512 		mutex_unlock(&ubi->buf_mutex);
1513 	}
1514 
1515 	if (force || err == UBI_IO_BITFLIPS) {
1516 		/*
1517 		 * Okay, bit flip happened, let's figure out what we can do.
1518 		 */
1519 		spin_lock(&ubi->wl_lock);
1520 
1521 		/*
1522 		 * Recheck. We released wl_lock, UBI might have killed the
1523 		 * wl entry under us.
1524 		 */
1525 		e = ubi->lookuptbl[pnum];
1526 		if (!e) {
1527 			spin_unlock(&ubi->wl_lock);
1528 			err = -ENOENT;
1529 			goto out_resume;
1530 		}
1531 
1532 		/*
1533 		 * Need to re-check state
1534 		 */
1535 		if (!scrub_possible(ubi, e)) {
1536 			spin_unlock(&ubi->wl_lock);
1537 			err = -EBUSY;
1538 			goto out_resume;
1539 		}
1540 
1541 		if (in_pq(ubi, e)) {
1542 			prot_queue_del(ubi, e->pnum);
1543 			wl_tree_add(e, &ubi->scrub);
1544 			spin_unlock(&ubi->wl_lock);
1545 
1546 			err = ensure_wear_leveling(ubi, 1);
1547 		} else if (in_wl_tree(e, &ubi->used)) {
1548 			rb_erase(&e->u.rb, &ubi->used);
1549 			wl_tree_add(e, &ubi->scrub);
1550 			spin_unlock(&ubi->wl_lock);
1551 
1552 			err = ensure_wear_leveling(ubi, 1);
1553 		} else if (in_wl_tree(e, &ubi->free)) {
1554 			rb_erase(&e->u.rb, &ubi->free);
1555 			ubi->free_count--;
1556 			spin_unlock(&ubi->wl_lock);
1557 
1558 			/*
1559 			 * This PEB is empty we can schedule it for
1560 			 * erasure right away. No wear leveling needed.
1561 			 */
1562 			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1563 					     force ? 0 : 1, true);
1564 		} else {
1565 			spin_unlock(&ubi->wl_lock);
1566 			err = -EAGAIN;
1567 		}
1568 
1569 		if (!err && !force)
1570 			err = -EUCLEAN;
1571 	} else {
1572 		err = 0;
1573 	}
1574 
1575 out_resume:
1576 	up_write(&ubi->work_sem);
1577 out:
1578 
1579 	return err;
1580 }
1581 
1582 /**
1583  * tree_destroy - destroy an RB-tree.
1584  * @ubi: UBI device description object
1585  * @root: the root of the tree to destroy
1586  */
1587 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1588 {
1589 	struct rb_node *rb;
1590 	struct ubi_wl_entry *e;
1591 
1592 	rb = root->rb_node;
1593 	while (rb) {
1594 		if (rb->rb_left)
1595 			rb = rb->rb_left;
1596 		else if (rb->rb_right)
1597 			rb = rb->rb_right;
1598 		else {
1599 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1600 
1601 			rb = rb_parent(rb);
1602 			if (rb) {
1603 				if (rb->rb_left == &e->u.rb)
1604 					rb->rb_left = NULL;
1605 				else
1606 					rb->rb_right = NULL;
1607 			}
1608 
1609 			wl_entry_destroy(ubi, e);
1610 		}
1611 	}
1612 }
1613 
1614 /**
1615  * ubi_thread - UBI background thread.
1616  * @u: the UBI device description object pointer
1617  */
1618 int ubi_thread(void *u)
1619 {
1620 	int failures = 0;
1621 	struct ubi_device *ubi = u;
1622 
1623 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1624 		ubi->bgt_name, task_pid_nr(current));
1625 
1626 	set_freezable();
1627 	for (;;) {
1628 		int err;
1629 
1630 		if (kthread_should_stop())
1631 			break;
1632 
1633 		if (try_to_freeze())
1634 			continue;
1635 
1636 		spin_lock(&ubi->wl_lock);
1637 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1638 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1639 			set_current_state(TASK_INTERRUPTIBLE);
1640 			spin_unlock(&ubi->wl_lock);
1641 
1642 			/*
1643 			 * Check kthread_should_stop() after we set the task
1644 			 * state to guarantee that we either see the stop bit
1645 			 * and exit or the task state is reset to runnable such
1646 			 * that it's not scheduled out indefinitely and detects
1647 			 * the stop bit at kthread_should_stop().
1648 			 */
1649 			if (kthread_should_stop()) {
1650 				set_current_state(TASK_RUNNING);
1651 				break;
1652 			}
1653 
1654 			schedule();
1655 			continue;
1656 		}
1657 		spin_unlock(&ubi->wl_lock);
1658 
1659 		err = do_work(ubi);
1660 		if (err) {
1661 			ubi_err(ubi, "%s: work failed with error code %d",
1662 				ubi->bgt_name, err);
1663 			if (failures++ > WL_MAX_FAILURES) {
1664 				/*
1665 				 * Too many failures, disable the thread and
1666 				 * switch to read-only mode.
1667 				 */
1668 				ubi_msg(ubi, "%s: %d consecutive failures",
1669 					ubi->bgt_name, WL_MAX_FAILURES);
1670 				ubi_ro_mode(ubi);
1671 				ubi->thread_enabled = 0;
1672 				continue;
1673 			}
1674 		} else
1675 			failures = 0;
1676 
1677 		cond_resched();
1678 	}
1679 
1680 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1681 	ubi->thread_enabled = 0;
1682 	return 0;
1683 }
1684 
1685 /**
1686  * shutdown_work - shutdown all pending works.
1687  * @ubi: UBI device description object
1688  */
1689 static void shutdown_work(struct ubi_device *ubi)
1690 {
1691 	while (!list_empty(&ubi->works)) {
1692 		struct ubi_work *wrk;
1693 
1694 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1695 		list_del(&wrk->list);
1696 		wrk->func(ubi, wrk, 1);
1697 		ubi->works_count -= 1;
1698 		ubi_assert(ubi->works_count >= 0);
1699 	}
1700 }
1701 
1702 /**
1703  * erase_aeb - erase a PEB given in UBI attach info PEB
1704  * @ubi: UBI device description object
1705  * @aeb: UBI attach info PEB
1706  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1707  */
1708 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1709 {
1710 	struct ubi_wl_entry *e;
1711 	int err;
1712 
1713 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1714 	if (!e)
1715 		return -ENOMEM;
1716 
1717 	e->pnum = aeb->pnum;
1718 	e->ec = aeb->ec;
1719 	ubi->lookuptbl[e->pnum] = e;
1720 
1721 	if (sync) {
1722 		err = sync_erase(ubi, e, false);
1723 		if (err)
1724 			goto out_free;
1725 
1726 		wl_tree_add(e, &ubi->free);
1727 		ubi->free_count++;
1728 	} else {
1729 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1730 		if (err)
1731 			goto out_free;
1732 	}
1733 
1734 	return 0;
1735 
1736 out_free:
1737 	wl_entry_destroy(ubi, e);
1738 
1739 	return err;
1740 }
1741 
1742 /**
1743  * ubi_wl_init - initialize the WL sub-system using attaching information.
1744  * @ubi: UBI device description object
1745  * @ai: attaching information
1746  *
1747  * This function returns zero in case of success, and a negative error code in
1748  * case of failure.
1749  */
1750 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1751 {
1752 	int err, i, reserved_pebs, found_pebs = 0;
1753 	struct rb_node *rb1, *rb2;
1754 	struct ubi_ainf_volume *av;
1755 	struct ubi_ainf_peb *aeb, *tmp;
1756 	struct ubi_wl_entry *e;
1757 
1758 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1759 	spin_lock_init(&ubi->wl_lock);
1760 	mutex_init(&ubi->move_mutex);
1761 	init_rwsem(&ubi->work_sem);
1762 	ubi->max_ec = ai->max_ec;
1763 	INIT_LIST_HEAD(&ubi->works);
1764 
1765 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1766 
1767 	err = -ENOMEM;
1768 	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1769 	if (!ubi->lookuptbl)
1770 		return err;
1771 
1772 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1773 		INIT_LIST_HEAD(&ubi->pq[i]);
1774 	ubi->pq_head = 0;
1775 
1776 	ubi->free_count = 0;
1777 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1778 		cond_resched();
1779 
1780 		err = erase_aeb(ubi, aeb, false);
1781 		if (err)
1782 			goto out_free;
1783 
1784 		found_pebs++;
1785 	}
1786 
1787 	list_for_each_entry(aeb, &ai->free, u.list) {
1788 		cond_resched();
1789 
1790 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1791 		if (!e) {
1792 			err = -ENOMEM;
1793 			goto out_free;
1794 		}
1795 
1796 		e->pnum = aeb->pnum;
1797 		e->ec = aeb->ec;
1798 		ubi_assert(e->ec >= 0);
1799 
1800 		wl_tree_add(e, &ubi->free);
1801 		ubi->free_count++;
1802 
1803 		ubi->lookuptbl[e->pnum] = e;
1804 
1805 		found_pebs++;
1806 	}
1807 
1808 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1809 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1810 			cond_resched();
1811 
1812 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1813 			if (!e) {
1814 				err = -ENOMEM;
1815 				goto out_free;
1816 			}
1817 
1818 			e->pnum = aeb->pnum;
1819 			e->ec = aeb->ec;
1820 			ubi->lookuptbl[e->pnum] = e;
1821 
1822 			if (!aeb->scrub) {
1823 				dbg_wl("add PEB %d EC %d to the used tree",
1824 				       e->pnum, e->ec);
1825 				wl_tree_add(e, &ubi->used);
1826 			} else {
1827 				dbg_wl("add PEB %d EC %d to the scrub tree",
1828 				       e->pnum, e->ec);
1829 				wl_tree_add(e, &ubi->scrub);
1830 			}
1831 
1832 			found_pebs++;
1833 		}
1834 	}
1835 
1836 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1837 		cond_resched();
1838 
1839 		e = ubi_find_fm_block(ubi, aeb->pnum);
1840 
1841 		if (e) {
1842 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1843 			ubi->lookuptbl[e->pnum] = e;
1844 		} else {
1845 			bool sync = false;
1846 
1847 			/*
1848 			 * Usually old Fastmap PEBs are scheduled for erasure
1849 			 * and we don't have to care about them but if we face
1850 			 * an power cut before scheduling them we need to
1851 			 * take care of them here.
1852 			 */
1853 			if (ubi->lookuptbl[aeb->pnum])
1854 				continue;
1855 
1856 			/*
1857 			 * The fastmap update code might not find a free PEB for
1858 			 * writing the fastmap anchor to and then reuses the
1859 			 * current fastmap anchor PEB. When this PEB gets erased
1860 			 * and a power cut happens before it is written again we
1861 			 * must make sure that the fastmap attach code doesn't
1862 			 * find any outdated fastmap anchors, hence we erase the
1863 			 * outdated fastmap anchor PEBs synchronously here.
1864 			 */
1865 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1866 				sync = true;
1867 
1868 			err = erase_aeb(ubi, aeb, sync);
1869 			if (err)
1870 				goto out_free;
1871 		}
1872 
1873 		found_pebs++;
1874 	}
1875 
1876 	dbg_wl("found %i PEBs", found_pebs);
1877 
1878 	ubi_assert(ubi->good_peb_count == found_pebs);
1879 
1880 	reserved_pebs = WL_RESERVED_PEBS;
1881 	ubi_fastmap_init(ubi, &reserved_pebs);
1882 
1883 	if (ubi->avail_pebs < reserved_pebs) {
1884 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1885 			ubi->avail_pebs, reserved_pebs);
1886 		if (ubi->corr_peb_count)
1887 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1888 				ubi->corr_peb_count);
1889 		err = -ENOSPC;
1890 		goto out_free;
1891 	}
1892 	ubi->avail_pebs -= reserved_pebs;
1893 	ubi->rsvd_pebs += reserved_pebs;
1894 
1895 	/* Schedule wear-leveling if needed */
1896 	err = ensure_wear_leveling(ubi, 0);
1897 	if (err)
1898 		goto out_free;
1899 
1900 #ifdef CONFIG_MTD_UBI_FASTMAP
1901 	if (!ubi->ro_mode && !ubi->fm_disabled)
1902 		ubi_ensure_anchor_pebs(ubi);
1903 #endif
1904 	return 0;
1905 
1906 out_free:
1907 	shutdown_work(ubi);
1908 	tree_destroy(ubi, &ubi->used);
1909 	tree_destroy(ubi, &ubi->free);
1910 	tree_destroy(ubi, &ubi->scrub);
1911 	kfree(ubi->lookuptbl);
1912 	return err;
1913 }
1914 
1915 /**
1916  * protection_queue_destroy - destroy the protection queue.
1917  * @ubi: UBI device description object
1918  */
1919 static void protection_queue_destroy(struct ubi_device *ubi)
1920 {
1921 	int i;
1922 	struct ubi_wl_entry *e, *tmp;
1923 
1924 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1925 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1926 			list_del(&e->u.list);
1927 			wl_entry_destroy(ubi, e);
1928 		}
1929 	}
1930 }
1931 
1932 /**
1933  * ubi_wl_close - close the wear-leveling sub-system.
1934  * @ubi: UBI device description object
1935  */
1936 void ubi_wl_close(struct ubi_device *ubi)
1937 {
1938 	dbg_wl("close the WL sub-system");
1939 	ubi_fastmap_close(ubi);
1940 	shutdown_work(ubi);
1941 	protection_queue_destroy(ubi);
1942 	tree_destroy(ubi, &ubi->used);
1943 	tree_destroy(ubi, &ubi->erroneous);
1944 	tree_destroy(ubi, &ubi->free);
1945 	tree_destroy(ubi, &ubi->scrub);
1946 	kfree(ubi->lookuptbl);
1947 }
1948 
1949 /**
1950  * self_check_ec - make sure that the erase counter of a PEB is correct.
1951  * @ubi: UBI device description object
1952  * @pnum: the physical eraseblock number to check
1953  * @ec: the erase counter to check
1954  *
1955  * This function returns zero if the erase counter of physical eraseblock @pnum
1956  * is equivalent to @ec, and a negative error code if not or if an error
1957  * occurred.
1958  */
1959 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1960 {
1961 	int err;
1962 	long long read_ec;
1963 	struct ubi_ec_hdr *ec_hdr;
1964 
1965 	if (!ubi_dbg_chk_gen(ubi))
1966 		return 0;
1967 
1968 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1969 	if (!ec_hdr)
1970 		return -ENOMEM;
1971 
1972 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1973 	if (err && err != UBI_IO_BITFLIPS) {
1974 		/* The header does not have to exist */
1975 		err = 0;
1976 		goto out_free;
1977 	}
1978 
1979 	read_ec = be64_to_cpu(ec_hdr->ec);
1980 	if (ec != read_ec && read_ec - ec > 1) {
1981 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1982 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1983 		dump_stack();
1984 		err = 1;
1985 	} else
1986 		err = 0;
1987 
1988 out_free:
1989 	kfree(ec_hdr);
1990 	return err;
1991 }
1992 
1993 /**
1994  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1995  * @ubi: UBI device description object
1996  * @e: the wear-leveling entry to check
1997  * @root: the root of the tree
1998  *
1999  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2000  * is not.
2001  */
2002 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2003 				 struct ubi_wl_entry *e, struct rb_root *root)
2004 {
2005 	if (!ubi_dbg_chk_gen(ubi))
2006 		return 0;
2007 
2008 	if (in_wl_tree(e, root))
2009 		return 0;
2010 
2011 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2012 		e->pnum, e->ec, root);
2013 	dump_stack();
2014 	return -EINVAL;
2015 }
2016 
2017 /**
2018  * self_check_in_pq - check if wear-leveling entry is in the protection
2019  *                        queue.
2020  * @ubi: UBI device description object
2021  * @e: the wear-leveling entry to check
2022  *
2023  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2024  */
2025 static int self_check_in_pq(const struct ubi_device *ubi,
2026 			    struct ubi_wl_entry *e)
2027 {
2028 	if (!ubi_dbg_chk_gen(ubi))
2029 		return 0;
2030 
2031 	if (in_pq(ubi, e))
2032 		return 0;
2033 
2034 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2035 		e->pnum, e->ec);
2036 	dump_stack();
2037 	return -EINVAL;
2038 }
2039 #ifndef CONFIG_MTD_UBI_FASTMAP
2040 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2041 {
2042 	struct ubi_wl_entry *e;
2043 
2044 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2045 	self_check_in_wl_tree(ubi, e, &ubi->free);
2046 	ubi->free_count--;
2047 	ubi_assert(ubi->free_count >= 0);
2048 	rb_erase(&e->u.rb, &ubi->free);
2049 
2050 	return e;
2051 }
2052 
2053 /**
2054  * produce_free_peb - produce a free physical eraseblock.
2055  * @ubi: UBI device description object
2056  *
2057  * This function tries to make a free PEB by means of synchronous execution of
2058  * pending works. This may be needed if, for example the background thread is
2059  * disabled. Returns zero in case of success and a negative error code in case
2060  * of failure.
2061  */
2062 static int produce_free_peb(struct ubi_device *ubi)
2063 {
2064 	int err;
2065 
2066 	while (!ubi->free.rb_node && ubi->works_count) {
2067 		spin_unlock(&ubi->wl_lock);
2068 
2069 		dbg_wl("do one work synchronously");
2070 		err = do_work(ubi);
2071 
2072 		spin_lock(&ubi->wl_lock);
2073 		if (err)
2074 			return err;
2075 	}
2076 
2077 	return 0;
2078 }
2079 
2080 /**
2081  * ubi_wl_get_peb - get a physical eraseblock.
2082  * @ubi: UBI device description object
2083  *
2084  * This function returns a physical eraseblock in case of success and a
2085  * negative error code in case of failure.
2086  * Returns with ubi->fm_eba_sem held in read mode!
2087  */
2088 int ubi_wl_get_peb(struct ubi_device *ubi)
2089 {
2090 	int err;
2091 	struct ubi_wl_entry *e;
2092 
2093 retry:
2094 	down_read(&ubi->fm_eba_sem);
2095 	spin_lock(&ubi->wl_lock);
2096 	if (!ubi->free.rb_node) {
2097 		if (ubi->works_count == 0) {
2098 			ubi_err(ubi, "no free eraseblocks");
2099 			ubi_assert(list_empty(&ubi->works));
2100 			spin_unlock(&ubi->wl_lock);
2101 			return -ENOSPC;
2102 		}
2103 
2104 		err = produce_free_peb(ubi);
2105 		if (err < 0) {
2106 			spin_unlock(&ubi->wl_lock);
2107 			return err;
2108 		}
2109 		spin_unlock(&ubi->wl_lock);
2110 		up_read(&ubi->fm_eba_sem);
2111 		goto retry;
2112 
2113 	}
2114 	e = wl_get_wle(ubi);
2115 	prot_queue_add(ubi, e);
2116 	spin_unlock(&ubi->wl_lock);
2117 
2118 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2119 				    ubi->peb_size - ubi->vid_hdr_aloffset);
2120 	if (err) {
2121 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2122 		return err;
2123 	}
2124 
2125 	return e->pnum;
2126 }
2127 #else
2128 #include "fastmap-wl.c"
2129 #endif
2130