xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109 
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117 
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130 
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136 
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139 				 struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141 			    struct ubi_wl_entry *e);
142 
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151 	ubi_update_fastmap(ubi);
152 }
153 
154 /**
155  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156  *  @ubi: UBI device description object
157  *  @pnum: the to be checked PEB
158  */
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161 	int i;
162 
163 	if (!ubi->fm)
164 		return 0;
165 
166 	for (i = 0; i < ubi->fm->used_blocks; i++)
167 		if (ubi->fm->e[i]->pnum == pnum)
168 			return 1;
169 
170 	return 0;
171 }
172 #else
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175 	return 0;
176 }
177 #endif
178 
179 /**
180  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181  * @e: the wear-leveling entry to add
182  * @root: the root of the tree
183  *
184  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185  * the @ubi->used and @ubi->free RB-trees.
186  */
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189 	struct rb_node **p, *parent = NULL;
190 
191 	p = &root->rb_node;
192 	while (*p) {
193 		struct ubi_wl_entry *e1;
194 
195 		parent = *p;
196 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197 
198 		if (e->ec < e1->ec)
199 			p = &(*p)->rb_left;
200 		else if (e->ec > e1->ec)
201 			p = &(*p)->rb_right;
202 		else {
203 			ubi_assert(e->pnum != e1->pnum);
204 			if (e->pnum < e1->pnum)
205 				p = &(*p)->rb_left;
206 			else
207 				p = &(*p)->rb_right;
208 		}
209 	}
210 
211 	rb_link_node(&e->u.rb, parent, p);
212 	rb_insert_color(&e->u.rb, root);
213 }
214 
215 /**
216  * do_work - do one pending work.
217  * @ubi: UBI device description object
218  *
219  * This function returns zero in case of success and a negative error code in
220  * case of failure.
221  */
222 static int do_work(struct ubi_device *ubi)
223 {
224 	int err;
225 	struct ubi_work *wrk;
226 
227 	cond_resched();
228 
229 	/*
230 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
231 	 * it in read mode, so many of them may be doing works at a time. But
232 	 * the queue flush code has to be sure the whole queue of works is
233 	 * done, and it takes the mutex in write mode.
234 	 */
235 	down_read(&ubi->work_sem);
236 	spin_lock(&ubi->wl_lock);
237 	if (list_empty(&ubi->works)) {
238 		spin_unlock(&ubi->wl_lock);
239 		up_read(&ubi->work_sem);
240 		return 0;
241 	}
242 
243 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
244 	list_del(&wrk->list);
245 	ubi->works_count -= 1;
246 	ubi_assert(ubi->works_count >= 0);
247 	spin_unlock(&ubi->wl_lock);
248 
249 	/*
250 	 * Call the worker function. Do not touch the work structure
251 	 * after this call as it will have been freed or reused by that
252 	 * time by the worker function.
253 	 */
254 	err = wrk->func(ubi, wrk, 0);
255 	if (err)
256 		ubi_err(ubi, "work failed with error code %d", err);
257 	up_read(&ubi->work_sem);
258 
259 	return err;
260 }
261 
262 /**
263  * produce_free_peb - produce a free physical eraseblock.
264  * @ubi: UBI device description object
265  *
266  * This function tries to make a free PEB by means of synchronous execution of
267  * pending works. This may be needed if, for example the background thread is
268  * disabled. Returns zero in case of success and a negative error code in case
269  * of failure.
270  */
271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273 	int err;
274 
275 	while (!ubi->free.rb_node && ubi->works_count) {
276 		spin_unlock(&ubi->wl_lock);
277 
278 		dbg_wl("do one work synchronously");
279 		err = do_work(ubi);
280 
281 		spin_lock(&ubi->wl_lock);
282 		if (err)
283 			return err;
284 	}
285 
286 	return 0;
287 }
288 
289 /**
290  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291  * @e: the wear-leveling entry to check
292  * @root: the root of the tree
293  *
294  * This function returns non-zero if @e is in the @root RB-tree and zero if it
295  * is not.
296  */
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299 	struct rb_node *p;
300 
301 	p = root->rb_node;
302 	while (p) {
303 		struct ubi_wl_entry *e1;
304 
305 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306 
307 		if (e->pnum == e1->pnum) {
308 			ubi_assert(e == e1);
309 			return 1;
310 		}
311 
312 		if (e->ec < e1->ec)
313 			p = p->rb_left;
314 		else if (e->ec > e1->ec)
315 			p = p->rb_right;
316 		else {
317 			ubi_assert(e->pnum != e1->pnum);
318 			if (e->pnum < e1->pnum)
319 				p = p->rb_left;
320 			else
321 				p = p->rb_right;
322 		}
323 	}
324 
325 	return 0;
326 }
327 
328 /**
329  * prot_queue_add - add physical eraseblock to the protection queue.
330  * @ubi: UBI device description object
331  * @e: the physical eraseblock to add
332  *
333  * This function adds @e to the tail of the protection queue @ubi->pq, where
334  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336  * be locked.
337  */
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340 	int pq_tail = ubi->pq_head - 1;
341 
342 	if (pq_tail < 0)
343 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
344 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348 
349 /**
350  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351  * @ubi: UBI device description object
352  * @root: the RB-tree where to look for
353  * @diff: maximum possible difference from the smallest erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * min + @diff, where min is the smallest erase counter.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359 					  struct rb_root *root, int diff)
360 {
361 	struct rb_node *p;
362 	struct ubi_wl_entry *e, *prev_e = NULL;
363 	int max;
364 
365 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366 	max = e->ec + diff;
367 
368 	p = root->rb_node;
369 	while (p) {
370 		struct ubi_wl_entry *e1;
371 
372 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373 		if (e1->ec >= max)
374 			p = p->rb_left;
375 		else {
376 			p = p->rb_right;
377 			prev_e = e;
378 			e = e1;
379 		}
380 	}
381 
382 	/* If no fastmap has been written and this WL entry can be used
383 	 * as anchor PEB, hold it back and return the second best WL entry
384 	 * such that fastmap can use the anchor PEB later. */
385 	if (prev_e && !ubi->fm_disabled &&
386 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
387 		return prev_e;
388 
389 	return e;
390 }
391 
392 /**
393  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394  * @ubi: UBI device description object
395  * @root: the RB-tree where to look for
396  *
397  * This function looks for a wear leveling entry with medium erase counter,
398  * but not greater or equivalent than the lowest erase counter plus
399  * %WL_FREE_MAX_DIFF/2.
400  */
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402 					       struct rb_root *root)
403 {
404 	struct ubi_wl_entry *e, *first, *last;
405 
406 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408 
409 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411 
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413 		/* If no fastmap has been written and this WL entry can be used
414 		 * as anchor PEB, hold it back and return the second best
415 		 * WL entry such that fastmap can use the anchor PEB later. */
416 		if (e && !ubi->fm_disabled && !ubi->fm &&
417 		    e->pnum < UBI_FM_MAX_START)
418 			e = rb_entry(rb_next(root->rb_node),
419 				     struct ubi_wl_entry, u.rb);
420 #endif
421 	} else
422 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423 
424 	return e;
425 }
426 
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430  * @root: the RB-tree where to look for
431  */
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434 	struct rb_node *p;
435 	struct ubi_wl_entry *e, *victim = NULL;
436 	int max_ec = UBI_MAX_ERASECOUNTER;
437 
438 	ubi_rb_for_each_entry(p, e, root, u.rb) {
439 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440 			victim = e;
441 			max_ec = e->ec;
442 		}
443 	}
444 
445 	return victim;
446 }
447 
448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450 	struct rb_node *p;
451 	struct ubi_wl_entry *e;
452 
453 	ubi_rb_for_each_entry(p, e, root, u.rb)
454 		if (e->pnum < UBI_FM_MAX_START)
455 			return 1;
456 
457 	return 0;
458 }
459 
460 /**
461  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462  * @ubi: UBI device description object
463  * @anchor: This PEB will be used as anchor PEB by fastmap
464  *
465  * The function returns a physical erase block with a given maximal number
466  * and removes it from the wl subsystem.
467  * Must be called with wl_lock held!
468  */
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471 	struct ubi_wl_entry *e = NULL;
472 
473 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
474 		goto out;
475 
476 	if (anchor)
477 		e = find_anchor_wl_entry(&ubi->free);
478 	else
479 		e = find_mean_wl_entry(ubi, &ubi->free);
480 
481 	if (!e)
482 		goto out;
483 
484 	self_check_in_wl_tree(ubi, e, &ubi->free);
485 
486 	/* remove it from the free list,
487 	 * the wl subsystem does no longer know this erase block */
488 	rb_erase(&e->u.rb, &ubi->free);
489 	ubi->free_count--;
490 out:
491 	return e;
492 }
493 #endif
494 
495 /**
496  * __wl_get_peb - get a physical eraseblock.
497  * @ubi: UBI device description object
498  *
499  * This function returns a physical eraseblock in case of success and a
500  * negative error code in case of failure.
501  */
502 static int __wl_get_peb(struct ubi_device *ubi)
503 {
504 	int err;
505 	struct ubi_wl_entry *e;
506 
507 retry:
508 	if (!ubi->free.rb_node) {
509 		if (ubi->works_count == 0) {
510 			ubi_err(ubi, "no free eraseblocks");
511 			ubi_assert(list_empty(&ubi->works));
512 			return -ENOSPC;
513 		}
514 
515 		err = produce_free_peb(ubi);
516 		if (err < 0)
517 			return err;
518 		goto retry;
519 	}
520 
521 	e = find_mean_wl_entry(ubi, &ubi->free);
522 	if (!e) {
523 		ubi_err(ubi, "no free eraseblocks");
524 		return -ENOSPC;
525 	}
526 
527 	self_check_in_wl_tree(ubi, e, &ubi->free);
528 
529 	/*
530 	 * Move the physical eraseblock to the protection queue where it will
531 	 * be protected from being moved for some time.
532 	 */
533 	rb_erase(&e->u.rb, &ubi->free);
534 	ubi->free_count--;
535 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
536 #ifndef CONFIG_MTD_UBI_FASTMAP
537 	/* We have to enqueue e only if fastmap is disabled,
538 	 * is fastmap enabled prot_queue_add() will be called by
539 	 * ubi_wl_get_peb() after removing e from the pool. */
540 	prot_queue_add(ubi, e);
541 #endif
542 	return e->pnum;
543 }
544 
545 #ifdef CONFIG_MTD_UBI_FASTMAP
546 /**
547  * return_unused_pool_pebs - returns unused PEB to the free tree.
548  * @ubi: UBI device description object
549  * @pool: fastmap pool description object
550  */
551 static void return_unused_pool_pebs(struct ubi_device *ubi,
552 				    struct ubi_fm_pool *pool)
553 {
554 	int i;
555 	struct ubi_wl_entry *e;
556 
557 	for (i = pool->used; i < pool->size; i++) {
558 		e = ubi->lookuptbl[pool->pebs[i]];
559 		wl_tree_add(e, &ubi->free);
560 		ubi->free_count++;
561 	}
562 }
563 
564 /**
565  * refill_wl_pool - refills all the fastmap pool used by the
566  * WL sub-system.
567  * @ubi: UBI device description object
568  */
569 static void refill_wl_pool(struct ubi_device *ubi)
570 {
571 	struct ubi_wl_entry *e;
572 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
573 
574 	return_unused_pool_pebs(ubi, pool);
575 
576 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
577 		if (!ubi->free.rb_node ||
578 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
579 			break;
580 
581 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
582 		self_check_in_wl_tree(ubi, e, &ubi->free);
583 		rb_erase(&e->u.rb, &ubi->free);
584 		ubi->free_count--;
585 
586 		pool->pebs[pool->size] = e->pnum;
587 	}
588 	pool->used = 0;
589 }
590 
591 /**
592  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
593  * @ubi: UBI device description object
594  */
595 static void refill_wl_user_pool(struct ubi_device *ubi)
596 {
597 	struct ubi_fm_pool *pool = &ubi->fm_pool;
598 
599 	return_unused_pool_pebs(ubi, pool);
600 
601 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
602 		pool->pebs[pool->size] = __wl_get_peb(ubi);
603 		if (pool->pebs[pool->size] < 0)
604 			break;
605 	}
606 	pool->used = 0;
607 }
608 
609 /**
610  * ubi_refill_pools - refills all fastmap PEB pools.
611  * @ubi: UBI device description object
612  */
613 void ubi_refill_pools(struct ubi_device *ubi)
614 {
615 	spin_lock(&ubi->wl_lock);
616 	refill_wl_pool(ubi);
617 	refill_wl_user_pool(ubi);
618 	spin_unlock(&ubi->wl_lock);
619 }
620 
621 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
622  * the fastmap pool.
623  */
624 int ubi_wl_get_peb(struct ubi_device *ubi)
625 {
626 	int ret;
627 	struct ubi_fm_pool *pool = &ubi->fm_pool;
628 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
629 
630 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
631 	    wl_pool->used == wl_pool->size)
632 		ubi_update_fastmap(ubi);
633 
634 	/* we got not a single free PEB */
635 	if (!pool->size)
636 		ret = -ENOSPC;
637 	else {
638 		spin_lock(&ubi->wl_lock);
639 		ret = pool->pebs[pool->used++];
640 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
641 		spin_unlock(&ubi->wl_lock);
642 	}
643 
644 	return ret;
645 }
646 
647 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
648  *
649  * @ubi: UBI device description object
650  */
651 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
652 {
653 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
654 	int pnum;
655 
656 	if (pool->used == pool->size || !pool->size) {
657 		/* We cannot update the fastmap here because this
658 		 * function is called in atomic context.
659 		 * Let's fail here and refill/update it as soon as possible. */
660 		schedule_work(&ubi->fm_work);
661 		return NULL;
662 	} else {
663 		pnum = pool->pebs[pool->used++];
664 		return ubi->lookuptbl[pnum];
665 	}
666 }
667 #else
668 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
669 {
670 	struct ubi_wl_entry *e;
671 
672 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
673 	self_check_in_wl_tree(ubi, e, &ubi->free);
674 	ubi->free_count--;
675 	ubi_assert(ubi->free_count >= 0);
676 	rb_erase(&e->u.rb, &ubi->free);
677 
678 	return e;
679 }
680 
681 int ubi_wl_get_peb(struct ubi_device *ubi)
682 {
683 	int peb, err;
684 
685 	spin_lock(&ubi->wl_lock);
686 	peb = __wl_get_peb(ubi);
687 	spin_unlock(&ubi->wl_lock);
688 
689 	if (peb < 0)
690 		return peb;
691 
692 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
693 				    ubi->peb_size - ubi->vid_hdr_aloffset);
694 	if (err) {
695 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes",
696 			peb);
697 		return err;
698 	}
699 
700 	return peb;
701 }
702 #endif
703 
704 /**
705  * prot_queue_del - remove a physical eraseblock from the protection queue.
706  * @ubi: UBI device description object
707  * @pnum: the physical eraseblock to remove
708  *
709  * This function deletes PEB @pnum from the protection queue and returns zero
710  * in case of success and %-ENODEV if the PEB was not found.
711  */
712 static int prot_queue_del(struct ubi_device *ubi, int pnum)
713 {
714 	struct ubi_wl_entry *e;
715 
716 	e = ubi->lookuptbl[pnum];
717 	if (!e)
718 		return -ENODEV;
719 
720 	if (self_check_in_pq(ubi, e))
721 		return -ENODEV;
722 
723 	list_del(&e->u.list);
724 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
725 	return 0;
726 }
727 
728 /**
729  * sync_erase - synchronously erase a physical eraseblock.
730  * @ubi: UBI device description object
731  * @e: the the physical eraseblock to erase
732  * @torture: if the physical eraseblock has to be tortured
733  *
734  * This function returns zero in case of success and a negative error code in
735  * case of failure.
736  */
737 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
738 		      int torture)
739 {
740 	int err;
741 	struct ubi_ec_hdr *ec_hdr;
742 	unsigned long long ec = e->ec;
743 
744 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
745 
746 	err = self_check_ec(ubi, e->pnum, e->ec);
747 	if (err)
748 		return -EINVAL;
749 
750 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
751 	if (!ec_hdr)
752 		return -ENOMEM;
753 
754 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
755 	if (err < 0)
756 		goto out_free;
757 
758 	ec += err;
759 	if (ec > UBI_MAX_ERASECOUNTER) {
760 		/*
761 		 * Erase counter overflow. Upgrade UBI and use 64-bit
762 		 * erase counters internally.
763 		 */
764 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
765 			e->pnum, ec);
766 		err = -EINVAL;
767 		goto out_free;
768 	}
769 
770 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
771 
772 	ec_hdr->ec = cpu_to_be64(ec);
773 
774 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
775 	if (err)
776 		goto out_free;
777 
778 	e->ec = ec;
779 	spin_lock(&ubi->wl_lock);
780 	if (e->ec > ubi->max_ec)
781 		ubi->max_ec = e->ec;
782 	spin_unlock(&ubi->wl_lock);
783 
784 out_free:
785 	kfree(ec_hdr);
786 	return err;
787 }
788 
789 /**
790  * serve_prot_queue - check if it is time to stop protecting PEBs.
791  * @ubi: UBI device description object
792  *
793  * This function is called after each erase operation and removes PEBs from the
794  * tail of the protection queue. These PEBs have been protected for long enough
795  * and should be moved to the used tree.
796  */
797 static void serve_prot_queue(struct ubi_device *ubi)
798 {
799 	struct ubi_wl_entry *e, *tmp;
800 	int count;
801 
802 	/*
803 	 * There may be several protected physical eraseblock to remove,
804 	 * process them all.
805 	 */
806 repeat:
807 	count = 0;
808 	spin_lock(&ubi->wl_lock);
809 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
810 		dbg_wl("PEB %d EC %d protection over, move to used tree",
811 			e->pnum, e->ec);
812 
813 		list_del(&e->u.list);
814 		wl_tree_add(e, &ubi->used);
815 		if (count++ > 32) {
816 			/*
817 			 * Let's be nice and avoid holding the spinlock for
818 			 * too long.
819 			 */
820 			spin_unlock(&ubi->wl_lock);
821 			cond_resched();
822 			goto repeat;
823 		}
824 	}
825 
826 	ubi->pq_head += 1;
827 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
828 		ubi->pq_head = 0;
829 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
830 	spin_unlock(&ubi->wl_lock);
831 }
832 
833 /**
834  * __schedule_ubi_work - schedule a work.
835  * @ubi: UBI device description object
836  * @wrk: the work to schedule
837  *
838  * This function adds a work defined by @wrk to the tail of the pending works
839  * list. Can only be used if ubi->work_sem is already held in read mode!
840  */
841 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
842 {
843 	spin_lock(&ubi->wl_lock);
844 	list_add_tail(&wrk->list, &ubi->works);
845 	ubi_assert(ubi->works_count >= 0);
846 	ubi->works_count += 1;
847 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
848 		wake_up_process(ubi->bgt_thread);
849 	spin_unlock(&ubi->wl_lock);
850 }
851 
852 /**
853  * schedule_ubi_work - schedule a work.
854  * @ubi: UBI device description object
855  * @wrk: the work to schedule
856  *
857  * This function adds a work defined by @wrk to the tail of the pending works
858  * list.
859  */
860 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
861 {
862 	down_read(&ubi->work_sem);
863 	__schedule_ubi_work(ubi, wrk);
864 	up_read(&ubi->work_sem);
865 }
866 
867 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
868 			int shutdown);
869 
870 #ifdef CONFIG_MTD_UBI_FASTMAP
871 /**
872  * ubi_is_erase_work - checks whether a work is erase work.
873  * @wrk: The work object to be checked
874  */
875 int ubi_is_erase_work(struct ubi_work *wrk)
876 {
877 	return wrk->func == erase_worker;
878 }
879 #endif
880 
881 /**
882  * schedule_erase - schedule an erase work.
883  * @ubi: UBI device description object
884  * @e: the WL entry of the physical eraseblock to erase
885  * @vol_id: the volume ID that last used this PEB
886  * @lnum: the last used logical eraseblock number for the PEB
887  * @torture: if the physical eraseblock has to be tortured
888  *
889  * This function returns zero in case of success and a %-ENOMEM in case of
890  * failure.
891  */
892 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
893 			  int vol_id, int lnum, int torture)
894 {
895 	struct ubi_work *wl_wrk;
896 
897 	ubi_assert(e);
898 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
899 
900 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
901 	       e->pnum, e->ec, torture);
902 
903 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
904 	if (!wl_wrk)
905 		return -ENOMEM;
906 
907 	wl_wrk->func = &erase_worker;
908 	wl_wrk->e = e;
909 	wl_wrk->vol_id = vol_id;
910 	wl_wrk->lnum = lnum;
911 	wl_wrk->torture = torture;
912 
913 	schedule_ubi_work(ubi, wl_wrk);
914 	return 0;
915 }
916 
917 /**
918  * do_sync_erase - run the erase worker synchronously.
919  * @ubi: UBI device description object
920  * @e: the WL entry of the physical eraseblock to erase
921  * @vol_id: the volume ID that last used this PEB
922  * @lnum: the last used logical eraseblock number for the PEB
923  * @torture: if the physical eraseblock has to be tortured
924  *
925  */
926 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
927 			 int vol_id, int lnum, int torture)
928 {
929 	struct ubi_work *wl_wrk;
930 
931 	dbg_wl("sync erase of PEB %i", e->pnum);
932 
933 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
934 	if (!wl_wrk)
935 		return -ENOMEM;
936 
937 	wl_wrk->e = e;
938 	wl_wrk->vol_id = vol_id;
939 	wl_wrk->lnum = lnum;
940 	wl_wrk->torture = torture;
941 
942 	return erase_worker(ubi, wl_wrk, 0);
943 }
944 
945 #ifdef CONFIG_MTD_UBI_FASTMAP
946 /**
947  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
948  * sub-system.
949  * see: ubi_wl_put_peb()
950  *
951  * @ubi: UBI device description object
952  * @fm_e: physical eraseblock to return
953  * @lnum: the last used logical eraseblock number for the PEB
954  * @torture: if this physical eraseblock has to be tortured
955  */
956 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
957 		      int lnum, int torture)
958 {
959 	struct ubi_wl_entry *e;
960 	int vol_id, pnum = fm_e->pnum;
961 
962 	dbg_wl("PEB %d", pnum);
963 
964 	ubi_assert(pnum >= 0);
965 	ubi_assert(pnum < ubi->peb_count);
966 
967 	spin_lock(&ubi->wl_lock);
968 	e = ubi->lookuptbl[pnum];
969 
970 	/* This can happen if we recovered from a fastmap the very
971 	 * first time and writing now a new one. In this case the wl system
972 	 * has never seen any PEB used by the original fastmap.
973 	 */
974 	if (!e) {
975 		e = fm_e;
976 		ubi_assert(e->ec >= 0);
977 		ubi->lookuptbl[pnum] = e;
978 	} else {
979 		e->ec = fm_e->ec;
980 		kfree(fm_e);
981 	}
982 
983 	spin_unlock(&ubi->wl_lock);
984 
985 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
986 	return schedule_erase(ubi, e, vol_id, lnum, torture);
987 }
988 #endif
989 
990 /**
991  * wear_leveling_worker - wear-leveling worker function.
992  * @ubi: UBI device description object
993  * @wrk: the work object
994  * @shutdown: non-zero if the worker has to free memory and exit
995  * because the WL-subsystem is shutting down
996  *
997  * This function copies a more worn out physical eraseblock to a less worn out
998  * one. Returns zero in case of success and a negative error code in case of
999  * failure.
1000  */
1001 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1002 				int shutdown)
1003 {
1004 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1005 	int vol_id = -1, uninitialized_var(lnum);
1006 #ifdef CONFIG_MTD_UBI_FASTMAP
1007 	int anchor = wrk->anchor;
1008 #endif
1009 	struct ubi_wl_entry *e1, *e2;
1010 	struct ubi_vid_hdr *vid_hdr;
1011 
1012 	kfree(wrk);
1013 	if (shutdown)
1014 		return 0;
1015 
1016 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1017 	if (!vid_hdr)
1018 		return -ENOMEM;
1019 
1020 	mutex_lock(&ubi->move_mutex);
1021 	spin_lock(&ubi->wl_lock);
1022 	ubi_assert(!ubi->move_from && !ubi->move_to);
1023 	ubi_assert(!ubi->move_to_put);
1024 
1025 	if (!ubi->free.rb_node ||
1026 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1027 		/*
1028 		 * No free physical eraseblocks? Well, they must be waiting in
1029 		 * the queue to be erased. Cancel movement - it will be
1030 		 * triggered again when a free physical eraseblock appears.
1031 		 *
1032 		 * No used physical eraseblocks? They must be temporarily
1033 		 * protected from being moved. They will be moved to the
1034 		 * @ubi->used tree later and the wear-leveling will be
1035 		 * triggered again.
1036 		 */
1037 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1038 		       !ubi->free.rb_node, !ubi->used.rb_node);
1039 		goto out_cancel;
1040 	}
1041 
1042 #ifdef CONFIG_MTD_UBI_FASTMAP
1043 	/* Check whether we need to produce an anchor PEB */
1044 	if (!anchor)
1045 		anchor = !anchor_pebs_avalible(&ubi->free);
1046 
1047 	if (anchor) {
1048 		e1 = find_anchor_wl_entry(&ubi->used);
1049 		if (!e1)
1050 			goto out_cancel;
1051 		e2 = get_peb_for_wl(ubi);
1052 		if (!e2)
1053 			goto out_cancel;
1054 
1055 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1056 		rb_erase(&e1->u.rb, &ubi->used);
1057 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1058 	} else if (!ubi->scrub.rb_node) {
1059 #else
1060 	if (!ubi->scrub.rb_node) {
1061 #endif
1062 		/*
1063 		 * Now pick the least worn-out used physical eraseblock and a
1064 		 * highly worn-out free physical eraseblock. If the erase
1065 		 * counters differ much enough, start wear-leveling.
1066 		 */
1067 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1068 		e2 = get_peb_for_wl(ubi);
1069 		if (!e2)
1070 			goto out_cancel;
1071 
1072 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1073 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1074 			       e1->ec, e2->ec);
1075 
1076 			/* Give the unused PEB back */
1077 			wl_tree_add(e2, &ubi->free);
1078 			ubi->free_count++;
1079 			goto out_cancel;
1080 		}
1081 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1082 		rb_erase(&e1->u.rb, &ubi->used);
1083 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1084 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1085 	} else {
1086 		/* Perform scrubbing */
1087 		scrubbing = 1;
1088 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1089 		e2 = get_peb_for_wl(ubi);
1090 		if (!e2)
1091 			goto out_cancel;
1092 
1093 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1094 		rb_erase(&e1->u.rb, &ubi->scrub);
1095 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1096 	}
1097 
1098 	ubi->move_from = e1;
1099 	ubi->move_to = e2;
1100 	spin_unlock(&ubi->wl_lock);
1101 
1102 	/*
1103 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1104 	 * We so far do not know which logical eraseblock our physical
1105 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1106 	 * header first.
1107 	 *
1108 	 * Note, we are protected from this PEB being unmapped and erased. The
1109 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1110 	 * which is being moved was unmapped.
1111 	 */
1112 
1113 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1114 	if (err && err != UBI_IO_BITFLIPS) {
1115 		if (err == UBI_IO_FF) {
1116 			/*
1117 			 * We are trying to move PEB without a VID header. UBI
1118 			 * always write VID headers shortly after the PEB was
1119 			 * given, so we have a situation when it has not yet
1120 			 * had a chance to write it, because it was preempted.
1121 			 * So add this PEB to the protection queue so far,
1122 			 * because presumably more data will be written there
1123 			 * (including the missing VID header), and then we'll
1124 			 * move it.
1125 			 */
1126 			dbg_wl("PEB %d has no VID header", e1->pnum);
1127 			protect = 1;
1128 			goto out_not_moved;
1129 		} else if (err == UBI_IO_FF_BITFLIPS) {
1130 			/*
1131 			 * The same situation as %UBI_IO_FF, but bit-flips were
1132 			 * detected. It is better to schedule this PEB for
1133 			 * scrubbing.
1134 			 */
1135 			dbg_wl("PEB %d has no VID header but has bit-flips",
1136 			       e1->pnum);
1137 			scrubbing = 1;
1138 			goto out_not_moved;
1139 		}
1140 
1141 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
1142 			err, e1->pnum);
1143 		goto out_error;
1144 	}
1145 
1146 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1147 	lnum = be32_to_cpu(vid_hdr->lnum);
1148 
1149 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1150 	if (err) {
1151 		if (err == MOVE_CANCEL_RACE) {
1152 			/*
1153 			 * The LEB has not been moved because the volume is
1154 			 * being deleted or the PEB has been put meanwhile. We
1155 			 * should prevent this PEB from being selected for
1156 			 * wear-leveling movement again, so put it to the
1157 			 * protection queue.
1158 			 */
1159 			protect = 1;
1160 			goto out_not_moved;
1161 		}
1162 		if (err == MOVE_RETRY) {
1163 			scrubbing = 1;
1164 			goto out_not_moved;
1165 		}
1166 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1167 		    err == MOVE_TARGET_RD_ERR) {
1168 			/*
1169 			 * Target PEB had bit-flips or write error - torture it.
1170 			 */
1171 			torture = 1;
1172 			goto out_not_moved;
1173 		}
1174 
1175 		if (err == MOVE_SOURCE_RD_ERR) {
1176 			/*
1177 			 * An error happened while reading the source PEB. Do
1178 			 * not switch to R/O mode in this case, and give the
1179 			 * upper layers a possibility to recover from this,
1180 			 * e.g. by unmapping corresponding LEB. Instead, just
1181 			 * put this PEB to the @ubi->erroneous list to prevent
1182 			 * UBI from trying to move it over and over again.
1183 			 */
1184 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1185 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
1186 					ubi->erroneous_peb_count);
1187 				goto out_error;
1188 			}
1189 			erroneous = 1;
1190 			goto out_not_moved;
1191 		}
1192 
1193 		if (err < 0)
1194 			goto out_error;
1195 
1196 		ubi_assert(0);
1197 	}
1198 
1199 	/* The PEB has been successfully moved */
1200 	if (scrubbing)
1201 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1202 			e1->pnum, vol_id, lnum, e2->pnum);
1203 	ubi_free_vid_hdr(ubi, vid_hdr);
1204 
1205 	spin_lock(&ubi->wl_lock);
1206 	if (!ubi->move_to_put) {
1207 		wl_tree_add(e2, &ubi->used);
1208 		e2 = NULL;
1209 	}
1210 	ubi->move_from = ubi->move_to = NULL;
1211 	ubi->move_to_put = ubi->wl_scheduled = 0;
1212 	spin_unlock(&ubi->wl_lock);
1213 
1214 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1215 	if (err) {
1216 		if (e2)
1217 			kmem_cache_free(ubi_wl_entry_slab, e2);
1218 		goto out_ro;
1219 	}
1220 
1221 	if (e2) {
1222 		/*
1223 		 * Well, the target PEB was put meanwhile, schedule it for
1224 		 * erasure.
1225 		 */
1226 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1227 		       e2->pnum, vol_id, lnum);
1228 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1229 		if (err)
1230 			goto out_ro;
1231 	}
1232 
1233 	dbg_wl("done");
1234 	mutex_unlock(&ubi->move_mutex);
1235 	return 0;
1236 
1237 	/*
1238 	 * For some reasons the LEB was not moved, might be an error, might be
1239 	 * something else. @e1 was not changed, so return it back. @e2 might
1240 	 * have been changed, schedule it for erasure.
1241 	 */
1242 out_not_moved:
1243 	if (vol_id != -1)
1244 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1245 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1246 	else
1247 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1248 		       e1->pnum, e2->pnum, err);
1249 	spin_lock(&ubi->wl_lock);
1250 	if (protect)
1251 		prot_queue_add(ubi, e1);
1252 	else if (erroneous) {
1253 		wl_tree_add(e1, &ubi->erroneous);
1254 		ubi->erroneous_peb_count += 1;
1255 	} else if (scrubbing)
1256 		wl_tree_add(e1, &ubi->scrub);
1257 	else
1258 		wl_tree_add(e1, &ubi->used);
1259 	ubi_assert(!ubi->move_to_put);
1260 	ubi->move_from = ubi->move_to = NULL;
1261 	ubi->wl_scheduled = 0;
1262 	spin_unlock(&ubi->wl_lock);
1263 
1264 	ubi_free_vid_hdr(ubi, vid_hdr);
1265 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1266 	if (err)
1267 		goto out_ro;
1268 
1269 	mutex_unlock(&ubi->move_mutex);
1270 	return 0;
1271 
1272 out_error:
1273 	if (vol_id != -1)
1274 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
1275 			err, e1->pnum, e2->pnum);
1276 	else
1277 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1278 			err, e1->pnum, vol_id, lnum, e2->pnum);
1279 	spin_lock(&ubi->wl_lock);
1280 	ubi->move_from = ubi->move_to = NULL;
1281 	ubi->move_to_put = ubi->wl_scheduled = 0;
1282 	spin_unlock(&ubi->wl_lock);
1283 
1284 	ubi_free_vid_hdr(ubi, vid_hdr);
1285 	kmem_cache_free(ubi_wl_entry_slab, e1);
1286 	kmem_cache_free(ubi_wl_entry_slab, e2);
1287 
1288 out_ro:
1289 	ubi_ro_mode(ubi);
1290 	mutex_unlock(&ubi->move_mutex);
1291 	ubi_assert(err != 0);
1292 	return err < 0 ? err : -EIO;
1293 
1294 out_cancel:
1295 	ubi->wl_scheduled = 0;
1296 	spin_unlock(&ubi->wl_lock);
1297 	mutex_unlock(&ubi->move_mutex);
1298 	ubi_free_vid_hdr(ubi, vid_hdr);
1299 	return 0;
1300 }
1301 
1302 /**
1303  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1304  * @ubi: UBI device description object
1305  * @nested: set to non-zero if this function is called from UBI worker
1306  *
1307  * This function checks if it is time to start wear-leveling and schedules it
1308  * if yes. This function returns zero in case of success and a negative error
1309  * code in case of failure.
1310  */
1311 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1312 {
1313 	int err = 0;
1314 	struct ubi_wl_entry *e1;
1315 	struct ubi_wl_entry *e2;
1316 	struct ubi_work *wrk;
1317 
1318 	spin_lock(&ubi->wl_lock);
1319 	if (ubi->wl_scheduled)
1320 		/* Wear-leveling is already in the work queue */
1321 		goto out_unlock;
1322 
1323 	/*
1324 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1325 	 * the WL worker has to be scheduled anyway.
1326 	 */
1327 	if (!ubi->scrub.rb_node) {
1328 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1329 			/* No physical eraseblocks - no deal */
1330 			goto out_unlock;
1331 
1332 		/*
1333 		 * We schedule wear-leveling only if the difference between the
1334 		 * lowest erase counter of used physical eraseblocks and a high
1335 		 * erase counter of free physical eraseblocks is greater than
1336 		 * %UBI_WL_THRESHOLD.
1337 		 */
1338 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1339 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1340 
1341 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1342 			goto out_unlock;
1343 		dbg_wl("schedule wear-leveling");
1344 	} else
1345 		dbg_wl("schedule scrubbing");
1346 
1347 	ubi->wl_scheduled = 1;
1348 	spin_unlock(&ubi->wl_lock);
1349 
1350 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1351 	if (!wrk) {
1352 		err = -ENOMEM;
1353 		goto out_cancel;
1354 	}
1355 
1356 	wrk->anchor = 0;
1357 	wrk->func = &wear_leveling_worker;
1358 	if (nested)
1359 		__schedule_ubi_work(ubi, wrk);
1360 	else
1361 		schedule_ubi_work(ubi, wrk);
1362 	return err;
1363 
1364 out_cancel:
1365 	spin_lock(&ubi->wl_lock);
1366 	ubi->wl_scheduled = 0;
1367 out_unlock:
1368 	spin_unlock(&ubi->wl_lock);
1369 	return err;
1370 }
1371 
1372 #ifdef CONFIG_MTD_UBI_FASTMAP
1373 /**
1374  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1375  * @ubi: UBI device description object
1376  */
1377 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1378 {
1379 	struct ubi_work *wrk;
1380 
1381 	spin_lock(&ubi->wl_lock);
1382 	if (ubi->wl_scheduled) {
1383 		spin_unlock(&ubi->wl_lock);
1384 		return 0;
1385 	}
1386 	ubi->wl_scheduled = 1;
1387 	spin_unlock(&ubi->wl_lock);
1388 
1389 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1390 	if (!wrk) {
1391 		spin_lock(&ubi->wl_lock);
1392 		ubi->wl_scheduled = 0;
1393 		spin_unlock(&ubi->wl_lock);
1394 		return -ENOMEM;
1395 	}
1396 
1397 	wrk->anchor = 1;
1398 	wrk->func = &wear_leveling_worker;
1399 	schedule_ubi_work(ubi, wrk);
1400 	return 0;
1401 }
1402 #endif
1403 
1404 /**
1405  * erase_worker - physical eraseblock erase worker function.
1406  * @ubi: UBI device description object
1407  * @wl_wrk: the work object
1408  * @shutdown: non-zero if the worker has to free memory and exit
1409  * because the WL sub-system is shutting down
1410  *
1411  * This function erases a physical eraseblock and perform torture testing if
1412  * needed. It also takes care about marking the physical eraseblock bad if
1413  * needed. Returns zero in case of success and a negative error code in case of
1414  * failure.
1415  */
1416 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1417 			int shutdown)
1418 {
1419 	struct ubi_wl_entry *e = wl_wrk->e;
1420 	int pnum = e->pnum;
1421 	int vol_id = wl_wrk->vol_id;
1422 	int lnum = wl_wrk->lnum;
1423 	int err, available_consumed = 0;
1424 
1425 	if (shutdown) {
1426 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1427 		kfree(wl_wrk);
1428 		kmem_cache_free(ubi_wl_entry_slab, e);
1429 		return 0;
1430 	}
1431 
1432 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1433 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1434 
1435 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1436 
1437 	err = sync_erase(ubi, e, wl_wrk->torture);
1438 	if (!err) {
1439 		/* Fine, we've erased it successfully */
1440 		kfree(wl_wrk);
1441 
1442 		spin_lock(&ubi->wl_lock);
1443 		wl_tree_add(e, &ubi->free);
1444 		ubi->free_count++;
1445 		spin_unlock(&ubi->wl_lock);
1446 
1447 		/*
1448 		 * One more erase operation has happened, take care about
1449 		 * protected physical eraseblocks.
1450 		 */
1451 		serve_prot_queue(ubi);
1452 
1453 		/* And take care about wear-leveling */
1454 		err = ensure_wear_leveling(ubi, 1);
1455 		return err;
1456 	}
1457 
1458 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1459 	kfree(wl_wrk);
1460 
1461 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1462 	    err == -EBUSY) {
1463 		int err1;
1464 
1465 		/* Re-schedule the LEB for erasure */
1466 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1467 		if (err1) {
1468 			err = err1;
1469 			goto out_ro;
1470 		}
1471 		return err;
1472 	}
1473 
1474 	kmem_cache_free(ubi_wl_entry_slab, e);
1475 	if (err != -EIO)
1476 		/*
1477 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1478 		 * this physical eraseblock for erasure again would cause
1479 		 * errors again and again. Well, lets switch to R/O mode.
1480 		 */
1481 		goto out_ro;
1482 
1483 	/* It is %-EIO, the PEB went bad */
1484 
1485 	if (!ubi->bad_allowed) {
1486 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1487 		goto out_ro;
1488 	}
1489 
1490 	spin_lock(&ubi->volumes_lock);
1491 	if (ubi->beb_rsvd_pebs == 0) {
1492 		if (ubi->avail_pebs == 0) {
1493 			spin_unlock(&ubi->volumes_lock);
1494 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1495 			goto out_ro;
1496 		}
1497 		ubi->avail_pebs -= 1;
1498 		available_consumed = 1;
1499 	}
1500 	spin_unlock(&ubi->volumes_lock);
1501 
1502 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1503 	err = ubi_io_mark_bad(ubi, pnum);
1504 	if (err)
1505 		goto out_ro;
1506 
1507 	spin_lock(&ubi->volumes_lock);
1508 	if (ubi->beb_rsvd_pebs > 0) {
1509 		if (available_consumed) {
1510 			/*
1511 			 * The amount of reserved PEBs increased since we last
1512 			 * checked.
1513 			 */
1514 			ubi->avail_pebs += 1;
1515 			available_consumed = 0;
1516 		}
1517 		ubi->beb_rsvd_pebs -= 1;
1518 	}
1519 	ubi->bad_peb_count += 1;
1520 	ubi->good_peb_count -= 1;
1521 	ubi_calculate_reserved(ubi);
1522 	if (available_consumed)
1523 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1524 	else if (ubi->beb_rsvd_pebs)
1525 		ubi_msg(ubi, "%d PEBs left in the reserve",
1526 			ubi->beb_rsvd_pebs);
1527 	else
1528 		ubi_warn(ubi, "last PEB from the reserve was used");
1529 	spin_unlock(&ubi->volumes_lock);
1530 
1531 	return err;
1532 
1533 out_ro:
1534 	if (available_consumed) {
1535 		spin_lock(&ubi->volumes_lock);
1536 		ubi->avail_pebs += 1;
1537 		spin_unlock(&ubi->volumes_lock);
1538 	}
1539 	ubi_ro_mode(ubi);
1540 	return err;
1541 }
1542 
1543 /**
1544  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1545  * @ubi: UBI device description object
1546  * @vol_id: the volume ID that last used this PEB
1547  * @lnum: the last used logical eraseblock number for the PEB
1548  * @pnum: physical eraseblock to return
1549  * @torture: if this physical eraseblock has to be tortured
1550  *
1551  * This function is called to return physical eraseblock @pnum to the pool of
1552  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1553  * occurred to this @pnum and it has to be tested. This function returns zero
1554  * in case of success, and a negative error code in case of failure.
1555  */
1556 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1557 		   int pnum, int torture)
1558 {
1559 	int err;
1560 	struct ubi_wl_entry *e;
1561 
1562 	dbg_wl("PEB %d", pnum);
1563 	ubi_assert(pnum >= 0);
1564 	ubi_assert(pnum < ubi->peb_count);
1565 
1566 retry:
1567 	spin_lock(&ubi->wl_lock);
1568 	e = ubi->lookuptbl[pnum];
1569 	if (e == ubi->move_from) {
1570 		/*
1571 		 * User is putting the physical eraseblock which was selected to
1572 		 * be moved. It will be scheduled for erasure in the
1573 		 * wear-leveling worker.
1574 		 */
1575 		dbg_wl("PEB %d is being moved, wait", pnum);
1576 		spin_unlock(&ubi->wl_lock);
1577 
1578 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1579 		mutex_lock(&ubi->move_mutex);
1580 		mutex_unlock(&ubi->move_mutex);
1581 		goto retry;
1582 	} else if (e == ubi->move_to) {
1583 		/*
1584 		 * User is putting the physical eraseblock which was selected
1585 		 * as the target the data is moved to. It may happen if the EBA
1586 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1587 		 * but the WL sub-system has not put the PEB to the "used" tree
1588 		 * yet, but it is about to do this. So we just set a flag which
1589 		 * will tell the WL worker that the PEB is not needed anymore
1590 		 * and should be scheduled for erasure.
1591 		 */
1592 		dbg_wl("PEB %d is the target of data moving", pnum);
1593 		ubi_assert(!ubi->move_to_put);
1594 		ubi->move_to_put = 1;
1595 		spin_unlock(&ubi->wl_lock);
1596 		return 0;
1597 	} else {
1598 		if (in_wl_tree(e, &ubi->used)) {
1599 			self_check_in_wl_tree(ubi, e, &ubi->used);
1600 			rb_erase(&e->u.rb, &ubi->used);
1601 		} else if (in_wl_tree(e, &ubi->scrub)) {
1602 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1603 			rb_erase(&e->u.rb, &ubi->scrub);
1604 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1605 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1606 			rb_erase(&e->u.rb, &ubi->erroneous);
1607 			ubi->erroneous_peb_count -= 1;
1608 			ubi_assert(ubi->erroneous_peb_count >= 0);
1609 			/* Erroneous PEBs should be tortured */
1610 			torture = 1;
1611 		} else {
1612 			err = prot_queue_del(ubi, e->pnum);
1613 			if (err) {
1614 				ubi_err(ubi, "PEB %d not found", pnum);
1615 				ubi_ro_mode(ubi);
1616 				spin_unlock(&ubi->wl_lock);
1617 				return err;
1618 			}
1619 		}
1620 	}
1621 	spin_unlock(&ubi->wl_lock);
1622 
1623 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1624 	if (err) {
1625 		spin_lock(&ubi->wl_lock);
1626 		wl_tree_add(e, &ubi->used);
1627 		spin_unlock(&ubi->wl_lock);
1628 	}
1629 
1630 	return err;
1631 }
1632 
1633 /**
1634  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1635  * @ubi: UBI device description object
1636  * @pnum: the physical eraseblock to schedule
1637  *
1638  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1639  * needs scrubbing. This function schedules a physical eraseblock for
1640  * scrubbing which is done in background. This function returns zero in case of
1641  * success and a negative error code in case of failure.
1642  */
1643 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1644 {
1645 	struct ubi_wl_entry *e;
1646 
1647 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1648 
1649 retry:
1650 	spin_lock(&ubi->wl_lock);
1651 	e = ubi->lookuptbl[pnum];
1652 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1653 				   in_wl_tree(e, &ubi->erroneous)) {
1654 		spin_unlock(&ubi->wl_lock);
1655 		return 0;
1656 	}
1657 
1658 	if (e == ubi->move_to) {
1659 		/*
1660 		 * This physical eraseblock was used to move data to. The data
1661 		 * was moved but the PEB was not yet inserted to the proper
1662 		 * tree. We should just wait a little and let the WL worker
1663 		 * proceed.
1664 		 */
1665 		spin_unlock(&ubi->wl_lock);
1666 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1667 		yield();
1668 		goto retry;
1669 	}
1670 
1671 	if (in_wl_tree(e, &ubi->used)) {
1672 		self_check_in_wl_tree(ubi, e, &ubi->used);
1673 		rb_erase(&e->u.rb, &ubi->used);
1674 	} else {
1675 		int err;
1676 
1677 		err = prot_queue_del(ubi, e->pnum);
1678 		if (err) {
1679 			ubi_err(ubi, "PEB %d not found", pnum);
1680 			ubi_ro_mode(ubi);
1681 			spin_unlock(&ubi->wl_lock);
1682 			return err;
1683 		}
1684 	}
1685 
1686 	wl_tree_add(e, &ubi->scrub);
1687 	spin_unlock(&ubi->wl_lock);
1688 
1689 	/*
1690 	 * Technically scrubbing is the same as wear-leveling, so it is done
1691 	 * by the WL worker.
1692 	 */
1693 	return ensure_wear_leveling(ubi, 0);
1694 }
1695 
1696 /**
1697  * ubi_wl_flush - flush all pending works.
1698  * @ubi: UBI device description object
1699  * @vol_id: the volume id to flush for
1700  * @lnum: the logical eraseblock number to flush for
1701  *
1702  * This function executes all pending works for a particular volume id /
1703  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1704  * acts as a wildcard for all of the corresponding volume numbers or logical
1705  * eraseblock numbers. It returns zero in case of success and a negative error
1706  * code in case of failure.
1707  */
1708 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1709 {
1710 	int err = 0;
1711 	int found = 1;
1712 
1713 	/*
1714 	 * Erase while the pending works queue is not empty, but not more than
1715 	 * the number of currently pending works.
1716 	 */
1717 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1718 	       vol_id, lnum, ubi->works_count);
1719 
1720 	while (found) {
1721 		struct ubi_work *wrk, *tmp;
1722 		found = 0;
1723 
1724 		down_read(&ubi->work_sem);
1725 		spin_lock(&ubi->wl_lock);
1726 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1727 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1728 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1729 				list_del(&wrk->list);
1730 				ubi->works_count -= 1;
1731 				ubi_assert(ubi->works_count >= 0);
1732 				spin_unlock(&ubi->wl_lock);
1733 
1734 				err = wrk->func(ubi, wrk, 0);
1735 				if (err) {
1736 					up_read(&ubi->work_sem);
1737 					return err;
1738 				}
1739 
1740 				spin_lock(&ubi->wl_lock);
1741 				found = 1;
1742 				break;
1743 			}
1744 		}
1745 		spin_unlock(&ubi->wl_lock);
1746 		up_read(&ubi->work_sem);
1747 	}
1748 
1749 	/*
1750 	 * Make sure all the works which have been done in parallel are
1751 	 * finished.
1752 	 */
1753 	down_write(&ubi->work_sem);
1754 	up_write(&ubi->work_sem);
1755 
1756 	return err;
1757 }
1758 
1759 /**
1760  * tree_destroy - destroy an RB-tree.
1761  * @root: the root of the tree to destroy
1762  */
1763 static void tree_destroy(struct rb_root *root)
1764 {
1765 	struct rb_node *rb;
1766 	struct ubi_wl_entry *e;
1767 
1768 	rb = root->rb_node;
1769 	while (rb) {
1770 		if (rb->rb_left)
1771 			rb = rb->rb_left;
1772 		else if (rb->rb_right)
1773 			rb = rb->rb_right;
1774 		else {
1775 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1776 
1777 			rb = rb_parent(rb);
1778 			if (rb) {
1779 				if (rb->rb_left == &e->u.rb)
1780 					rb->rb_left = NULL;
1781 				else
1782 					rb->rb_right = NULL;
1783 			}
1784 
1785 			kmem_cache_free(ubi_wl_entry_slab, e);
1786 		}
1787 	}
1788 }
1789 
1790 /**
1791  * ubi_thread - UBI background thread.
1792  * @u: the UBI device description object pointer
1793  */
1794 int ubi_thread(void *u)
1795 {
1796 	int failures = 0;
1797 	struct ubi_device *ubi = u;
1798 
1799 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1800 		ubi->bgt_name, task_pid_nr(current));
1801 
1802 	set_freezable();
1803 	for (;;) {
1804 		int err;
1805 
1806 		if (kthread_should_stop())
1807 			break;
1808 
1809 		if (try_to_freeze())
1810 			continue;
1811 
1812 		spin_lock(&ubi->wl_lock);
1813 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1814 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1815 			set_current_state(TASK_INTERRUPTIBLE);
1816 			spin_unlock(&ubi->wl_lock);
1817 			schedule();
1818 			continue;
1819 		}
1820 		spin_unlock(&ubi->wl_lock);
1821 
1822 		err = do_work(ubi);
1823 		if (err) {
1824 			ubi_err(ubi, "%s: work failed with error code %d",
1825 				ubi->bgt_name, err);
1826 			if (failures++ > WL_MAX_FAILURES) {
1827 				/*
1828 				 * Too many failures, disable the thread and
1829 				 * switch to read-only mode.
1830 				 */
1831 				ubi_msg(ubi, "%s: %d consecutive failures",
1832 					ubi->bgt_name, WL_MAX_FAILURES);
1833 				ubi_ro_mode(ubi);
1834 				ubi->thread_enabled = 0;
1835 				continue;
1836 			}
1837 		} else
1838 			failures = 0;
1839 
1840 		cond_resched();
1841 	}
1842 
1843 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1844 	return 0;
1845 }
1846 
1847 /**
1848  * shutdown_work - shutdown all pending works.
1849  * @ubi: UBI device description object
1850  */
1851 static void shutdown_work(struct ubi_device *ubi)
1852 {
1853 	while (!list_empty(&ubi->works)) {
1854 		struct ubi_work *wrk;
1855 
1856 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1857 		list_del(&wrk->list);
1858 		wrk->func(ubi, wrk, 1);
1859 		ubi->works_count -= 1;
1860 		ubi_assert(ubi->works_count >= 0);
1861 	}
1862 }
1863 
1864 /**
1865  * ubi_wl_init - initialize the WL sub-system using attaching information.
1866  * @ubi: UBI device description object
1867  * @ai: attaching information
1868  *
1869  * This function returns zero in case of success, and a negative error code in
1870  * case of failure.
1871  */
1872 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1873 {
1874 	int err, i, reserved_pebs, found_pebs = 0;
1875 	struct rb_node *rb1, *rb2;
1876 	struct ubi_ainf_volume *av;
1877 	struct ubi_ainf_peb *aeb, *tmp;
1878 	struct ubi_wl_entry *e;
1879 
1880 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1881 	spin_lock_init(&ubi->wl_lock);
1882 	mutex_init(&ubi->move_mutex);
1883 	init_rwsem(&ubi->work_sem);
1884 	ubi->max_ec = ai->max_ec;
1885 	INIT_LIST_HEAD(&ubi->works);
1886 #ifdef CONFIG_MTD_UBI_FASTMAP
1887 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1888 #endif
1889 
1890 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1891 
1892 	err = -ENOMEM;
1893 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1894 	if (!ubi->lookuptbl)
1895 		return err;
1896 
1897 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1898 		INIT_LIST_HEAD(&ubi->pq[i]);
1899 	ubi->pq_head = 0;
1900 
1901 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1902 		cond_resched();
1903 
1904 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1905 		if (!e)
1906 			goto out_free;
1907 
1908 		e->pnum = aeb->pnum;
1909 		e->ec = aeb->ec;
1910 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1911 		ubi->lookuptbl[e->pnum] = e;
1912 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1913 			kmem_cache_free(ubi_wl_entry_slab, e);
1914 			goto out_free;
1915 		}
1916 
1917 		found_pebs++;
1918 	}
1919 
1920 	ubi->free_count = 0;
1921 	list_for_each_entry(aeb, &ai->free, u.list) {
1922 		cond_resched();
1923 
1924 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1925 		if (!e)
1926 			goto out_free;
1927 
1928 		e->pnum = aeb->pnum;
1929 		e->ec = aeb->ec;
1930 		ubi_assert(e->ec >= 0);
1931 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1932 
1933 		wl_tree_add(e, &ubi->free);
1934 		ubi->free_count++;
1935 
1936 		ubi->lookuptbl[e->pnum] = e;
1937 
1938 		found_pebs++;
1939 	}
1940 
1941 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1942 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1943 			cond_resched();
1944 
1945 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1946 			if (!e)
1947 				goto out_free;
1948 
1949 			e->pnum = aeb->pnum;
1950 			e->ec = aeb->ec;
1951 			ubi->lookuptbl[e->pnum] = e;
1952 
1953 			if (!aeb->scrub) {
1954 				dbg_wl("add PEB %d EC %d to the used tree",
1955 				       e->pnum, e->ec);
1956 				wl_tree_add(e, &ubi->used);
1957 			} else {
1958 				dbg_wl("add PEB %d EC %d to the scrub tree",
1959 				       e->pnum, e->ec);
1960 				wl_tree_add(e, &ubi->scrub);
1961 			}
1962 
1963 			found_pebs++;
1964 		}
1965 	}
1966 
1967 	dbg_wl("found %i PEBs", found_pebs);
1968 
1969 	if (ubi->fm)
1970 		ubi_assert(ubi->good_peb_count == \
1971 			   found_pebs + ubi->fm->used_blocks);
1972 	else
1973 		ubi_assert(ubi->good_peb_count == found_pebs);
1974 
1975 	reserved_pebs = WL_RESERVED_PEBS;
1976 #ifdef CONFIG_MTD_UBI_FASTMAP
1977 	/* Reserve enough LEBs to store two fastmaps. */
1978 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1979 #endif
1980 
1981 	if (ubi->avail_pebs < reserved_pebs) {
1982 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1983 			ubi->avail_pebs, reserved_pebs);
1984 		if (ubi->corr_peb_count)
1985 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1986 				ubi->corr_peb_count);
1987 		goto out_free;
1988 	}
1989 	ubi->avail_pebs -= reserved_pebs;
1990 	ubi->rsvd_pebs += reserved_pebs;
1991 
1992 	/* Schedule wear-leveling if needed */
1993 	err = ensure_wear_leveling(ubi, 0);
1994 	if (err)
1995 		goto out_free;
1996 
1997 	return 0;
1998 
1999 out_free:
2000 	shutdown_work(ubi);
2001 	tree_destroy(&ubi->used);
2002 	tree_destroy(&ubi->free);
2003 	tree_destroy(&ubi->scrub);
2004 	kfree(ubi->lookuptbl);
2005 	return err;
2006 }
2007 
2008 /**
2009  * protection_queue_destroy - destroy the protection queue.
2010  * @ubi: UBI device description object
2011  */
2012 static void protection_queue_destroy(struct ubi_device *ubi)
2013 {
2014 	int i;
2015 	struct ubi_wl_entry *e, *tmp;
2016 
2017 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2018 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2019 			list_del(&e->u.list);
2020 			kmem_cache_free(ubi_wl_entry_slab, e);
2021 		}
2022 	}
2023 }
2024 
2025 /**
2026  * ubi_wl_close - close the wear-leveling sub-system.
2027  * @ubi: UBI device description object
2028  */
2029 void ubi_wl_close(struct ubi_device *ubi)
2030 {
2031 	dbg_wl("close the WL sub-system");
2032 	shutdown_work(ubi);
2033 	protection_queue_destroy(ubi);
2034 	tree_destroy(&ubi->used);
2035 	tree_destroy(&ubi->erroneous);
2036 	tree_destroy(&ubi->free);
2037 	tree_destroy(&ubi->scrub);
2038 	kfree(ubi->lookuptbl);
2039 }
2040 
2041 /**
2042  * self_check_ec - make sure that the erase counter of a PEB is correct.
2043  * @ubi: UBI device description object
2044  * @pnum: the physical eraseblock number to check
2045  * @ec: the erase counter to check
2046  *
2047  * This function returns zero if the erase counter of physical eraseblock @pnum
2048  * is equivalent to @ec, and a negative error code if not or if an error
2049  * occurred.
2050  */
2051 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2052 {
2053 	int err;
2054 	long long read_ec;
2055 	struct ubi_ec_hdr *ec_hdr;
2056 
2057 	if (!ubi_dbg_chk_gen(ubi))
2058 		return 0;
2059 
2060 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2061 	if (!ec_hdr)
2062 		return -ENOMEM;
2063 
2064 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2065 	if (err && err != UBI_IO_BITFLIPS) {
2066 		/* The header does not have to exist */
2067 		err = 0;
2068 		goto out_free;
2069 	}
2070 
2071 	read_ec = be64_to_cpu(ec_hdr->ec);
2072 	if (ec != read_ec && read_ec - ec > 1) {
2073 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2074 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2075 		dump_stack();
2076 		err = 1;
2077 	} else
2078 		err = 0;
2079 
2080 out_free:
2081 	kfree(ec_hdr);
2082 	return err;
2083 }
2084 
2085 /**
2086  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2087  * @ubi: UBI device description object
2088  * @e: the wear-leveling entry to check
2089  * @root: the root of the tree
2090  *
2091  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2092  * is not.
2093  */
2094 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2095 				 struct ubi_wl_entry *e, struct rb_root *root)
2096 {
2097 	if (!ubi_dbg_chk_gen(ubi))
2098 		return 0;
2099 
2100 	if (in_wl_tree(e, root))
2101 		return 0;
2102 
2103 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2104 		e->pnum, e->ec, root);
2105 	dump_stack();
2106 	return -EINVAL;
2107 }
2108 
2109 /**
2110  * self_check_in_pq - check if wear-leveling entry is in the protection
2111  *                        queue.
2112  * @ubi: UBI device description object
2113  * @e: the wear-leveling entry to check
2114  *
2115  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2116  */
2117 static int self_check_in_pq(const struct ubi_device *ubi,
2118 			    struct ubi_wl_entry *e)
2119 {
2120 	struct ubi_wl_entry *p;
2121 	int i;
2122 
2123 	if (!ubi_dbg_chk_gen(ubi))
2124 		return 0;
2125 
2126 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2127 		list_for_each_entry(p, &ubi->pq[i], u.list)
2128 			if (p == e)
2129 				return 0;
2130 
2131 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2132 		e->pnum, e->ec);
2133 	dump_stack();
2134 	return -EINVAL;
2135 }
2136