1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 44 * bad. 45 * 46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 47 * in a physical eraseblock, it has to be moved. Technically this is the same 48 * as moving it for wear-leveling reasons. 49 * 50 * As it was said, for the UBI sub-system all physical eraseblocks are either 51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 53 * RB-trees, as well as (temporarily) in the @wl->pq queue. 54 * 55 * When the WL sub-system returns a physical eraseblock, the physical 56 * eraseblock is protected from being moved for some "time". For this reason, 57 * the physical eraseblock is not directly moved from the @wl->free tree to the 58 * @wl->used tree. There is a protection queue in between where this 59 * physical eraseblock is temporarily stored (@wl->pq). 60 * 61 * All this protection stuff is needed because: 62 * o we don't want to move physical eraseblocks just after we have given them 63 * to the user; instead, we first want to let users fill them up with data; 64 * 65 * o there is a chance that the user will put the physical eraseblock very 66 * soon, so it makes sense not to move it for some time, but wait. 67 * 68 * Physical eraseblocks stay protected only for limited time. But the "time" is 69 * measured in erase cycles in this case. This is implemented with help of the 70 * protection queue. Eraseblocks are put to the tail of this queue when they 71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 72 * head of the queue on each erase operation (for any eraseblock). So the 73 * length of the queue defines how may (global) erase cycles PEBs are protected. 74 * 75 * To put it differently, each physical eraseblock has 2 main states: free and 76 * used. The former state corresponds to the @wl->free tree. The latter state 77 * is split up on several sub-states: 78 * o the WL movement is allowed (@wl->used tree); 79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 80 * erroneous - e.g., there was a read error; 81 * o the WL movement is temporarily prohibited (@wl->pq queue); 82 * o scrubbing is needed (@wl->scrub tree). 83 * 84 * Depending on the sub-state, wear-leveling entries of the used physical 85 * eraseblocks may be kept in one of those structures. 86 * 87 * Note, in this implementation, we keep a small in-RAM object for each physical 88 * eraseblock. This is surely not a scalable solution. But it appears to be good 89 * enough for moderately large flashes and it is simple. In future, one may 90 * re-work this sub-system and make it more scalable. 91 * 92 * At the moment this sub-system does not utilize the sequence number, which 93 * was introduced relatively recently. But it would be wise to do this because 94 * the sequence number of a logical eraseblock characterizes how old is it. For 95 * example, when we move a PEB with low erase counter, and we need to pick the 96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 97 * pick target PEB with an average EC if our PEB is not very "old". This is a 98 * room for future re-works of the WL sub-system. 99 */ 100 101 #include <linux/slab.h> 102 #include <linux/crc32.h> 103 #include <linux/freezer.h> 104 #include <linux/kthread.h> 105 #include "ubi.h" 106 #include "wl.h" 107 108 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 109 #define WL_RESERVED_PEBS 1 110 111 /* 112 * Maximum difference between two erase counters. If this threshold is 113 * exceeded, the WL sub-system starts moving data from used physical 114 * eraseblocks with low erase counter to free physical eraseblocks with high 115 * erase counter. 116 */ 117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 118 119 /* 120 * When a physical eraseblock is moved, the WL sub-system has to pick the target 121 * physical eraseblock to move to. The simplest way would be just to pick the 122 * one with the highest erase counter. But in certain workloads this could lead 123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 124 * situation when the picked physical eraseblock is constantly erased after the 125 * data is written to it. So, we have a constant which limits the highest erase 126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 127 * does not pick eraseblocks with erase counter greater than the lowest erase 128 * counter plus %WL_FREE_MAX_DIFF. 129 */ 130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 131 132 /* 133 * Maximum number of consecutive background thread failures which is enough to 134 * switch to read-only mode. 135 */ 136 #define WL_MAX_FAILURES 32 137 138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 139 static int self_check_in_wl_tree(const struct ubi_device *ubi, 140 struct ubi_wl_entry *e, struct rb_root *root); 141 static int self_check_in_pq(const struct ubi_device *ubi, 142 struct ubi_wl_entry *e); 143 144 /** 145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 146 * @e: the wear-leveling entry to add 147 * @root: the root of the tree 148 * 149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 150 * the @ubi->used and @ubi->free RB-trees. 151 */ 152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 153 { 154 struct rb_node **p, *parent = NULL; 155 156 p = &root->rb_node; 157 while (*p) { 158 struct ubi_wl_entry *e1; 159 160 parent = *p; 161 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 162 163 if (e->ec < e1->ec) 164 p = &(*p)->rb_left; 165 else if (e->ec > e1->ec) 166 p = &(*p)->rb_right; 167 else { 168 ubi_assert(e->pnum != e1->pnum); 169 if (e->pnum < e1->pnum) 170 p = &(*p)->rb_left; 171 else 172 p = &(*p)->rb_right; 173 } 174 } 175 176 rb_link_node(&e->u.rb, parent, p); 177 rb_insert_color(&e->u.rb, root); 178 } 179 180 /** 181 * wl_tree_destroy - destroy a wear-leveling entry. 182 * @ubi: UBI device description object 183 * @e: the wear-leveling entry to add 184 * 185 * This function destroys a wear leveling entry and removes 186 * the reference from the lookup table. 187 */ 188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 189 { 190 ubi->lookuptbl[e->pnum] = NULL; 191 kmem_cache_free(ubi_wl_entry_slab, e); 192 } 193 194 /** 195 * do_work - do one pending work. 196 * @ubi: UBI device description object 197 * 198 * This function returns zero in case of success and a negative error code in 199 * case of failure. 200 */ 201 static int do_work(struct ubi_device *ubi) 202 { 203 int err; 204 struct ubi_work *wrk; 205 206 cond_resched(); 207 208 /* 209 * @ubi->work_sem is used to synchronize with the workers. Workers take 210 * it in read mode, so many of them may be doing works at a time. But 211 * the queue flush code has to be sure the whole queue of works is 212 * done, and it takes the mutex in write mode. 213 */ 214 down_read(&ubi->work_sem); 215 spin_lock(&ubi->wl_lock); 216 if (list_empty(&ubi->works)) { 217 spin_unlock(&ubi->wl_lock); 218 up_read(&ubi->work_sem); 219 return 0; 220 } 221 222 wrk = list_entry(ubi->works.next, struct ubi_work, list); 223 list_del(&wrk->list); 224 ubi->works_count -= 1; 225 ubi_assert(ubi->works_count >= 0); 226 spin_unlock(&ubi->wl_lock); 227 228 /* 229 * Call the worker function. Do not touch the work structure 230 * after this call as it will have been freed or reused by that 231 * time by the worker function. 232 */ 233 err = wrk->func(ubi, wrk, 0); 234 if (err) 235 ubi_err(ubi, "work failed with error code %d", err); 236 up_read(&ubi->work_sem); 237 238 return err; 239 } 240 241 /** 242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 243 * @e: the wear-leveling entry to check 244 * @root: the root of the tree 245 * 246 * This function returns non-zero if @e is in the @root RB-tree and zero if it 247 * is not. 248 */ 249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 250 { 251 struct rb_node *p; 252 253 p = root->rb_node; 254 while (p) { 255 struct ubi_wl_entry *e1; 256 257 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 258 259 if (e->pnum == e1->pnum) { 260 ubi_assert(e == e1); 261 return 1; 262 } 263 264 if (e->ec < e1->ec) 265 p = p->rb_left; 266 else if (e->ec > e1->ec) 267 p = p->rb_right; 268 else { 269 ubi_assert(e->pnum != e1->pnum); 270 if (e->pnum < e1->pnum) 271 p = p->rb_left; 272 else 273 p = p->rb_right; 274 } 275 } 276 277 return 0; 278 } 279 280 /** 281 * in_pq - check if a wear-leveling entry is present in the protection queue. 282 * @ubi: UBI device description object 283 * @e: the wear-leveling entry to check 284 * 285 * This function returns non-zero if @e is in the protection queue and zero 286 * if it is not. 287 */ 288 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 289 { 290 struct ubi_wl_entry *p; 291 int i; 292 293 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 294 list_for_each_entry(p, &ubi->pq[i], u.list) 295 if (p == e) 296 return 1; 297 298 return 0; 299 } 300 301 /** 302 * prot_queue_add - add physical eraseblock to the protection queue. 303 * @ubi: UBI device description object 304 * @e: the physical eraseblock to add 305 * 306 * This function adds @e to the tail of the protection queue @ubi->pq, where 307 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 308 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 309 * be locked. 310 */ 311 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 312 { 313 int pq_tail = ubi->pq_head - 1; 314 315 if (pq_tail < 0) 316 pq_tail = UBI_PROT_QUEUE_LEN - 1; 317 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 318 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 319 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 320 } 321 322 /** 323 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 324 * @ubi: UBI device description object 325 * @root: the RB-tree where to look for 326 * @diff: maximum possible difference from the smallest erase counter 327 * 328 * This function looks for a wear leveling entry with erase counter closest to 329 * min + @diff, where min is the smallest erase counter. 330 */ 331 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 332 struct rb_root *root, int diff) 333 { 334 struct rb_node *p; 335 struct ubi_wl_entry *e, *prev_e = NULL; 336 int max; 337 338 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 339 max = e->ec + diff; 340 341 p = root->rb_node; 342 while (p) { 343 struct ubi_wl_entry *e1; 344 345 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 346 if (e1->ec >= max) 347 p = p->rb_left; 348 else { 349 p = p->rb_right; 350 prev_e = e; 351 e = e1; 352 } 353 } 354 355 /* If no fastmap has been written and this WL entry can be used 356 * as anchor PEB, hold it back and return the second best WL entry 357 * such that fastmap can use the anchor PEB later. */ 358 if (prev_e && !ubi->fm_disabled && 359 !ubi->fm && e->pnum < UBI_FM_MAX_START) 360 return prev_e; 361 362 return e; 363 } 364 365 /** 366 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 367 * @ubi: UBI device description object 368 * @root: the RB-tree where to look for 369 * 370 * This function looks for a wear leveling entry with medium erase counter, 371 * but not greater or equivalent than the lowest erase counter plus 372 * %WL_FREE_MAX_DIFF/2. 373 */ 374 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 375 struct rb_root *root) 376 { 377 struct ubi_wl_entry *e, *first, *last; 378 379 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 380 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 381 382 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 383 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 384 385 /* If no fastmap has been written and this WL entry can be used 386 * as anchor PEB, hold it back and return the second best 387 * WL entry such that fastmap can use the anchor PEB later. */ 388 e = may_reserve_for_fm(ubi, e, root); 389 } else 390 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 391 392 return e; 393 } 394 395 /** 396 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 397 * refill_wl_user_pool(). 398 * @ubi: UBI device description object 399 * 400 * This function returns a a wear leveling entry in case of success and 401 * NULL in case of failure. 402 */ 403 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 404 { 405 struct ubi_wl_entry *e; 406 407 e = find_mean_wl_entry(ubi, &ubi->free); 408 if (!e) { 409 ubi_err(ubi, "no free eraseblocks"); 410 return NULL; 411 } 412 413 self_check_in_wl_tree(ubi, e, &ubi->free); 414 415 /* 416 * Move the physical eraseblock to the protection queue where it will 417 * be protected from being moved for some time. 418 */ 419 rb_erase(&e->u.rb, &ubi->free); 420 ubi->free_count--; 421 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 422 423 return e; 424 } 425 426 /** 427 * prot_queue_del - remove a physical eraseblock from the protection queue. 428 * @ubi: UBI device description object 429 * @pnum: the physical eraseblock to remove 430 * 431 * This function deletes PEB @pnum from the protection queue and returns zero 432 * in case of success and %-ENODEV if the PEB was not found. 433 */ 434 static int prot_queue_del(struct ubi_device *ubi, int pnum) 435 { 436 struct ubi_wl_entry *e; 437 438 e = ubi->lookuptbl[pnum]; 439 if (!e) 440 return -ENODEV; 441 442 if (self_check_in_pq(ubi, e)) 443 return -ENODEV; 444 445 list_del(&e->u.list); 446 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 447 return 0; 448 } 449 450 /** 451 * sync_erase - synchronously erase a physical eraseblock. 452 * @ubi: UBI device description object 453 * @e: the the physical eraseblock to erase 454 * @torture: if the physical eraseblock has to be tortured 455 * 456 * This function returns zero in case of success and a negative error code in 457 * case of failure. 458 */ 459 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 460 int torture) 461 { 462 int err; 463 struct ubi_ec_hdr *ec_hdr; 464 unsigned long long ec = e->ec; 465 466 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 467 468 err = self_check_ec(ubi, e->pnum, e->ec); 469 if (err) 470 return -EINVAL; 471 472 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 473 if (!ec_hdr) 474 return -ENOMEM; 475 476 err = ubi_io_sync_erase(ubi, e->pnum, torture); 477 if (err < 0) 478 goto out_free; 479 480 ec += err; 481 if (ec > UBI_MAX_ERASECOUNTER) { 482 /* 483 * Erase counter overflow. Upgrade UBI and use 64-bit 484 * erase counters internally. 485 */ 486 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 487 e->pnum, ec); 488 err = -EINVAL; 489 goto out_free; 490 } 491 492 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 493 494 ec_hdr->ec = cpu_to_be64(ec); 495 496 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 497 if (err) 498 goto out_free; 499 500 e->ec = ec; 501 spin_lock(&ubi->wl_lock); 502 if (e->ec > ubi->max_ec) 503 ubi->max_ec = e->ec; 504 spin_unlock(&ubi->wl_lock); 505 506 out_free: 507 kfree(ec_hdr); 508 return err; 509 } 510 511 /** 512 * serve_prot_queue - check if it is time to stop protecting PEBs. 513 * @ubi: UBI device description object 514 * 515 * This function is called after each erase operation and removes PEBs from the 516 * tail of the protection queue. These PEBs have been protected for long enough 517 * and should be moved to the used tree. 518 */ 519 static void serve_prot_queue(struct ubi_device *ubi) 520 { 521 struct ubi_wl_entry *e, *tmp; 522 int count; 523 524 /* 525 * There may be several protected physical eraseblock to remove, 526 * process them all. 527 */ 528 repeat: 529 count = 0; 530 spin_lock(&ubi->wl_lock); 531 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 532 dbg_wl("PEB %d EC %d protection over, move to used tree", 533 e->pnum, e->ec); 534 535 list_del(&e->u.list); 536 wl_tree_add(e, &ubi->used); 537 if (count++ > 32) { 538 /* 539 * Let's be nice and avoid holding the spinlock for 540 * too long. 541 */ 542 spin_unlock(&ubi->wl_lock); 543 cond_resched(); 544 goto repeat; 545 } 546 } 547 548 ubi->pq_head += 1; 549 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 550 ubi->pq_head = 0; 551 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 552 spin_unlock(&ubi->wl_lock); 553 } 554 555 /** 556 * __schedule_ubi_work - schedule a work. 557 * @ubi: UBI device description object 558 * @wrk: the work to schedule 559 * 560 * This function adds a work defined by @wrk to the tail of the pending works 561 * list. Can only be used if ubi->work_sem is already held in read mode! 562 */ 563 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 564 { 565 spin_lock(&ubi->wl_lock); 566 list_add_tail(&wrk->list, &ubi->works); 567 ubi_assert(ubi->works_count >= 0); 568 ubi->works_count += 1; 569 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 570 wake_up_process(ubi->bgt_thread); 571 spin_unlock(&ubi->wl_lock); 572 } 573 574 /** 575 * schedule_ubi_work - schedule a work. 576 * @ubi: UBI device description object 577 * @wrk: the work to schedule 578 * 579 * This function adds a work defined by @wrk to the tail of the pending works 580 * list. 581 */ 582 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 583 { 584 down_read(&ubi->work_sem); 585 __schedule_ubi_work(ubi, wrk); 586 up_read(&ubi->work_sem); 587 } 588 589 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 590 int shutdown); 591 592 /** 593 * schedule_erase - schedule an erase work. 594 * @ubi: UBI device description object 595 * @e: the WL entry of the physical eraseblock to erase 596 * @vol_id: the volume ID that last used this PEB 597 * @lnum: the last used logical eraseblock number for the PEB 598 * @torture: if the physical eraseblock has to be tortured 599 * 600 * This function returns zero in case of success and a %-ENOMEM in case of 601 * failure. 602 */ 603 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 604 int vol_id, int lnum, int torture, bool nested) 605 { 606 struct ubi_work *wl_wrk; 607 608 ubi_assert(e); 609 610 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 611 e->pnum, e->ec, torture); 612 613 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 614 if (!wl_wrk) 615 return -ENOMEM; 616 617 wl_wrk->func = &erase_worker; 618 wl_wrk->e = e; 619 wl_wrk->vol_id = vol_id; 620 wl_wrk->lnum = lnum; 621 wl_wrk->torture = torture; 622 623 if (nested) 624 __schedule_ubi_work(ubi, wl_wrk); 625 else 626 schedule_ubi_work(ubi, wl_wrk); 627 return 0; 628 } 629 630 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 631 /** 632 * do_sync_erase - run the erase worker synchronously. 633 * @ubi: UBI device description object 634 * @e: the WL entry of the physical eraseblock to erase 635 * @vol_id: the volume ID that last used this PEB 636 * @lnum: the last used logical eraseblock number for the PEB 637 * @torture: if the physical eraseblock has to be tortured 638 * 639 */ 640 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 641 int vol_id, int lnum, int torture) 642 { 643 struct ubi_work wl_wrk; 644 645 dbg_wl("sync erase of PEB %i", e->pnum); 646 647 wl_wrk.e = e; 648 wl_wrk.vol_id = vol_id; 649 wl_wrk.lnum = lnum; 650 wl_wrk.torture = torture; 651 652 return __erase_worker(ubi, &wl_wrk); 653 } 654 655 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 656 /** 657 * wear_leveling_worker - wear-leveling worker function. 658 * @ubi: UBI device description object 659 * @wrk: the work object 660 * @shutdown: non-zero if the worker has to free memory and exit 661 * because the WL-subsystem is shutting down 662 * 663 * This function copies a more worn out physical eraseblock to a less worn out 664 * one. Returns zero in case of success and a negative error code in case of 665 * failure. 666 */ 667 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 668 int shutdown) 669 { 670 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 671 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 672 #ifdef CONFIG_MTD_UBI_FASTMAP 673 int anchor = wrk->anchor; 674 #endif 675 struct ubi_wl_entry *e1, *e2; 676 struct ubi_vid_io_buf *vidb; 677 struct ubi_vid_hdr *vid_hdr; 678 int dst_leb_clean = 0; 679 680 kfree(wrk); 681 if (shutdown) 682 return 0; 683 684 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 685 if (!vidb) 686 return -ENOMEM; 687 688 vid_hdr = ubi_get_vid_hdr(vidb); 689 690 down_read(&ubi->fm_eba_sem); 691 mutex_lock(&ubi->move_mutex); 692 spin_lock(&ubi->wl_lock); 693 ubi_assert(!ubi->move_from && !ubi->move_to); 694 ubi_assert(!ubi->move_to_put); 695 696 if (!ubi->free.rb_node || 697 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 698 /* 699 * No free physical eraseblocks? Well, they must be waiting in 700 * the queue to be erased. Cancel movement - it will be 701 * triggered again when a free physical eraseblock appears. 702 * 703 * No used physical eraseblocks? They must be temporarily 704 * protected from being moved. They will be moved to the 705 * @ubi->used tree later and the wear-leveling will be 706 * triggered again. 707 */ 708 dbg_wl("cancel WL, a list is empty: free %d, used %d", 709 !ubi->free.rb_node, !ubi->used.rb_node); 710 goto out_cancel; 711 } 712 713 #ifdef CONFIG_MTD_UBI_FASTMAP 714 /* Check whether we need to produce an anchor PEB */ 715 if (!anchor) 716 anchor = !anchor_pebs_available(&ubi->free); 717 718 if (anchor) { 719 e1 = find_anchor_wl_entry(&ubi->used); 720 if (!e1) 721 goto out_cancel; 722 e2 = get_peb_for_wl(ubi); 723 if (!e2) 724 goto out_cancel; 725 726 self_check_in_wl_tree(ubi, e1, &ubi->used); 727 rb_erase(&e1->u.rb, &ubi->used); 728 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 729 } else if (!ubi->scrub.rb_node) { 730 #else 731 if (!ubi->scrub.rb_node) { 732 #endif 733 /* 734 * Now pick the least worn-out used physical eraseblock and a 735 * highly worn-out free physical eraseblock. If the erase 736 * counters differ much enough, start wear-leveling. 737 */ 738 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 739 e2 = get_peb_for_wl(ubi); 740 if (!e2) 741 goto out_cancel; 742 743 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 744 dbg_wl("no WL needed: min used EC %d, max free EC %d", 745 e1->ec, e2->ec); 746 747 /* Give the unused PEB back */ 748 wl_tree_add(e2, &ubi->free); 749 ubi->free_count++; 750 goto out_cancel; 751 } 752 self_check_in_wl_tree(ubi, e1, &ubi->used); 753 rb_erase(&e1->u.rb, &ubi->used); 754 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 755 e1->pnum, e1->ec, e2->pnum, e2->ec); 756 } else { 757 /* Perform scrubbing */ 758 scrubbing = 1; 759 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 760 e2 = get_peb_for_wl(ubi); 761 if (!e2) 762 goto out_cancel; 763 764 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 765 rb_erase(&e1->u.rb, &ubi->scrub); 766 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 767 } 768 769 ubi->move_from = e1; 770 ubi->move_to = e2; 771 spin_unlock(&ubi->wl_lock); 772 773 /* 774 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 775 * We so far do not know which logical eraseblock our physical 776 * eraseblock (@e1) belongs to. We have to read the volume identifier 777 * header first. 778 * 779 * Note, we are protected from this PEB being unmapped and erased. The 780 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 781 * which is being moved was unmapped. 782 */ 783 784 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 785 if (err && err != UBI_IO_BITFLIPS) { 786 dst_leb_clean = 1; 787 if (err == UBI_IO_FF) { 788 /* 789 * We are trying to move PEB without a VID header. UBI 790 * always write VID headers shortly after the PEB was 791 * given, so we have a situation when it has not yet 792 * had a chance to write it, because it was preempted. 793 * So add this PEB to the protection queue so far, 794 * because presumably more data will be written there 795 * (including the missing VID header), and then we'll 796 * move it. 797 */ 798 dbg_wl("PEB %d has no VID header", e1->pnum); 799 protect = 1; 800 goto out_not_moved; 801 } else if (err == UBI_IO_FF_BITFLIPS) { 802 /* 803 * The same situation as %UBI_IO_FF, but bit-flips were 804 * detected. It is better to schedule this PEB for 805 * scrubbing. 806 */ 807 dbg_wl("PEB %d has no VID header but has bit-flips", 808 e1->pnum); 809 scrubbing = 1; 810 goto out_not_moved; 811 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 812 /* 813 * While a full scan would detect interrupted erasures 814 * at attach time we can face them here when attached from 815 * Fastmap. 816 */ 817 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 818 e1->pnum); 819 erase = 1; 820 goto out_not_moved; 821 } 822 823 ubi_err(ubi, "error %d while reading VID header from PEB %d", 824 err, e1->pnum); 825 goto out_error; 826 } 827 828 vol_id = be32_to_cpu(vid_hdr->vol_id); 829 lnum = be32_to_cpu(vid_hdr->lnum); 830 831 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 832 if (err) { 833 if (err == MOVE_CANCEL_RACE) { 834 /* 835 * The LEB has not been moved because the volume is 836 * being deleted or the PEB has been put meanwhile. We 837 * should prevent this PEB from being selected for 838 * wear-leveling movement again, so put it to the 839 * protection queue. 840 */ 841 protect = 1; 842 dst_leb_clean = 1; 843 goto out_not_moved; 844 } 845 if (err == MOVE_RETRY) { 846 scrubbing = 1; 847 dst_leb_clean = 1; 848 goto out_not_moved; 849 } 850 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 851 err == MOVE_TARGET_RD_ERR) { 852 /* 853 * Target PEB had bit-flips or write error - torture it. 854 */ 855 torture = 1; 856 keep = 1; 857 goto out_not_moved; 858 } 859 860 if (err == MOVE_SOURCE_RD_ERR) { 861 /* 862 * An error happened while reading the source PEB. Do 863 * not switch to R/O mode in this case, and give the 864 * upper layers a possibility to recover from this, 865 * e.g. by unmapping corresponding LEB. Instead, just 866 * put this PEB to the @ubi->erroneous list to prevent 867 * UBI from trying to move it over and over again. 868 */ 869 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 870 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 871 ubi->erroneous_peb_count); 872 goto out_error; 873 } 874 dst_leb_clean = 1; 875 erroneous = 1; 876 goto out_not_moved; 877 } 878 879 if (err < 0) 880 goto out_error; 881 882 ubi_assert(0); 883 } 884 885 /* The PEB has been successfully moved */ 886 if (scrubbing) 887 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 888 e1->pnum, vol_id, lnum, e2->pnum); 889 ubi_free_vid_buf(vidb); 890 891 spin_lock(&ubi->wl_lock); 892 if (!ubi->move_to_put) { 893 wl_tree_add(e2, &ubi->used); 894 e2 = NULL; 895 } 896 ubi->move_from = ubi->move_to = NULL; 897 ubi->move_to_put = ubi->wl_scheduled = 0; 898 spin_unlock(&ubi->wl_lock); 899 900 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 901 if (err) { 902 if (e2) 903 wl_entry_destroy(ubi, e2); 904 goto out_ro; 905 } 906 907 if (e2) { 908 /* 909 * Well, the target PEB was put meanwhile, schedule it for 910 * erasure. 911 */ 912 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 913 e2->pnum, vol_id, lnum); 914 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 915 if (err) 916 goto out_ro; 917 } 918 919 dbg_wl("done"); 920 mutex_unlock(&ubi->move_mutex); 921 up_read(&ubi->fm_eba_sem); 922 return 0; 923 924 /* 925 * For some reasons the LEB was not moved, might be an error, might be 926 * something else. @e1 was not changed, so return it back. @e2 might 927 * have been changed, schedule it for erasure. 928 */ 929 out_not_moved: 930 if (vol_id != -1) 931 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 932 e1->pnum, vol_id, lnum, e2->pnum, err); 933 else 934 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 935 e1->pnum, e2->pnum, err); 936 spin_lock(&ubi->wl_lock); 937 if (protect) 938 prot_queue_add(ubi, e1); 939 else if (erroneous) { 940 wl_tree_add(e1, &ubi->erroneous); 941 ubi->erroneous_peb_count += 1; 942 } else if (scrubbing) 943 wl_tree_add(e1, &ubi->scrub); 944 else if (keep) 945 wl_tree_add(e1, &ubi->used); 946 if (dst_leb_clean) { 947 wl_tree_add(e2, &ubi->free); 948 ubi->free_count++; 949 } 950 951 ubi_assert(!ubi->move_to_put); 952 ubi->move_from = ubi->move_to = NULL; 953 ubi->wl_scheduled = 0; 954 spin_unlock(&ubi->wl_lock); 955 956 ubi_free_vid_buf(vidb); 957 if (dst_leb_clean) { 958 ensure_wear_leveling(ubi, 1); 959 } else { 960 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 961 if (err) 962 goto out_ro; 963 } 964 965 if (erase) { 966 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 967 if (err) 968 goto out_ro; 969 } 970 971 mutex_unlock(&ubi->move_mutex); 972 up_read(&ubi->fm_eba_sem); 973 return 0; 974 975 out_error: 976 if (vol_id != -1) 977 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 978 err, e1->pnum, e2->pnum); 979 else 980 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 981 err, e1->pnum, vol_id, lnum, e2->pnum); 982 spin_lock(&ubi->wl_lock); 983 ubi->move_from = ubi->move_to = NULL; 984 ubi->move_to_put = ubi->wl_scheduled = 0; 985 spin_unlock(&ubi->wl_lock); 986 987 ubi_free_vid_buf(vidb); 988 wl_entry_destroy(ubi, e1); 989 wl_entry_destroy(ubi, e2); 990 991 out_ro: 992 ubi_ro_mode(ubi); 993 mutex_unlock(&ubi->move_mutex); 994 up_read(&ubi->fm_eba_sem); 995 ubi_assert(err != 0); 996 return err < 0 ? err : -EIO; 997 998 out_cancel: 999 ubi->wl_scheduled = 0; 1000 spin_unlock(&ubi->wl_lock); 1001 mutex_unlock(&ubi->move_mutex); 1002 up_read(&ubi->fm_eba_sem); 1003 ubi_free_vid_buf(vidb); 1004 return 0; 1005 } 1006 1007 /** 1008 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1009 * @ubi: UBI device description object 1010 * @nested: set to non-zero if this function is called from UBI worker 1011 * 1012 * This function checks if it is time to start wear-leveling and schedules it 1013 * if yes. This function returns zero in case of success and a negative error 1014 * code in case of failure. 1015 */ 1016 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1017 { 1018 int err = 0; 1019 struct ubi_wl_entry *e1; 1020 struct ubi_wl_entry *e2; 1021 struct ubi_work *wrk; 1022 1023 spin_lock(&ubi->wl_lock); 1024 if (ubi->wl_scheduled) 1025 /* Wear-leveling is already in the work queue */ 1026 goto out_unlock; 1027 1028 /* 1029 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1030 * the WL worker has to be scheduled anyway. 1031 */ 1032 if (!ubi->scrub.rb_node) { 1033 if (!ubi->used.rb_node || !ubi->free.rb_node) 1034 /* No physical eraseblocks - no deal */ 1035 goto out_unlock; 1036 1037 /* 1038 * We schedule wear-leveling only if the difference between the 1039 * lowest erase counter of used physical eraseblocks and a high 1040 * erase counter of free physical eraseblocks is greater than 1041 * %UBI_WL_THRESHOLD. 1042 */ 1043 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1044 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1045 1046 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1047 goto out_unlock; 1048 dbg_wl("schedule wear-leveling"); 1049 } else 1050 dbg_wl("schedule scrubbing"); 1051 1052 ubi->wl_scheduled = 1; 1053 spin_unlock(&ubi->wl_lock); 1054 1055 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1056 if (!wrk) { 1057 err = -ENOMEM; 1058 goto out_cancel; 1059 } 1060 1061 wrk->anchor = 0; 1062 wrk->func = &wear_leveling_worker; 1063 if (nested) 1064 __schedule_ubi_work(ubi, wrk); 1065 else 1066 schedule_ubi_work(ubi, wrk); 1067 return err; 1068 1069 out_cancel: 1070 spin_lock(&ubi->wl_lock); 1071 ubi->wl_scheduled = 0; 1072 out_unlock: 1073 spin_unlock(&ubi->wl_lock); 1074 return err; 1075 } 1076 1077 /** 1078 * __erase_worker - physical eraseblock erase worker function. 1079 * @ubi: UBI device description object 1080 * @wl_wrk: the work object 1081 * @shutdown: non-zero if the worker has to free memory and exit 1082 * because the WL sub-system is shutting down 1083 * 1084 * This function erases a physical eraseblock and perform torture testing if 1085 * needed. It also takes care about marking the physical eraseblock bad if 1086 * needed. Returns zero in case of success and a negative error code in case of 1087 * failure. 1088 */ 1089 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1090 { 1091 struct ubi_wl_entry *e = wl_wrk->e; 1092 int pnum = e->pnum; 1093 int vol_id = wl_wrk->vol_id; 1094 int lnum = wl_wrk->lnum; 1095 int err, available_consumed = 0; 1096 1097 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1098 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1099 1100 err = sync_erase(ubi, e, wl_wrk->torture); 1101 if (!err) { 1102 spin_lock(&ubi->wl_lock); 1103 wl_tree_add(e, &ubi->free); 1104 ubi->free_count++; 1105 spin_unlock(&ubi->wl_lock); 1106 1107 /* 1108 * One more erase operation has happened, take care about 1109 * protected physical eraseblocks. 1110 */ 1111 serve_prot_queue(ubi); 1112 1113 /* And take care about wear-leveling */ 1114 err = ensure_wear_leveling(ubi, 1); 1115 return err; 1116 } 1117 1118 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1119 1120 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1121 err == -EBUSY) { 1122 int err1; 1123 1124 /* Re-schedule the LEB for erasure */ 1125 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1126 if (err1) { 1127 wl_entry_destroy(ubi, e); 1128 err = err1; 1129 goto out_ro; 1130 } 1131 return err; 1132 } 1133 1134 wl_entry_destroy(ubi, e); 1135 if (err != -EIO) 1136 /* 1137 * If this is not %-EIO, we have no idea what to do. Scheduling 1138 * this physical eraseblock for erasure again would cause 1139 * errors again and again. Well, lets switch to R/O mode. 1140 */ 1141 goto out_ro; 1142 1143 /* It is %-EIO, the PEB went bad */ 1144 1145 if (!ubi->bad_allowed) { 1146 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1147 goto out_ro; 1148 } 1149 1150 spin_lock(&ubi->volumes_lock); 1151 if (ubi->beb_rsvd_pebs == 0) { 1152 if (ubi->avail_pebs == 0) { 1153 spin_unlock(&ubi->volumes_lock); 1154 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1155 goto out_ro; 1156 } 1157 ubi->avail_pebs -= 1; 1158 available_consumed = 1; 1159 } 1160 spin_unlock(&ubi->volumes_lock); 1161 1162 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1163 err = ubi_io_mark_bad(ubi, pnum); 1164 if (err) 1165 goto out_ro; 1166 1167 spin_lock(&ubi->volumes_lock); 1168 if (ubi->beb_rsvd_pebs > 0) { 1169 if (available_consumed) { 1170 /* 1171 * The amount of reserved PEBs increased since we last 1172 * checked. 1173 */ 1174 ubi->avail_pebs += 1; 1175 available_consumed = 0; 1176 } 1177 ubi->beb_rsvd_pebs -= 1; 1178 } 1179 ubi->bad_peb_count += 1; 1180 ubi->good_peb_count -= 1; 1181 ubi_calculate_reserved(ubi); 1182 if (available_consumed) 1183 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1184 else if (ubi->beb_rsvd_pebs) 1185 ubi_msg(ubi, "%d PEBs left in the reserve", 1186 ubi->beb_rsvd_pebs); 1187 else 1188 ubi_warn(ubi, "last PEB from the reserve was used"); 1189 spin_unlock(&ubi->volumes_lock); 1190 1191 return err; 1192 1193 out_ro: 1194 if (available_consumed) { 1195 spin_lock(&ubi->volumes_lock); 1196 ubi->avail_pebs += 1; 1197 spin_unlock(&ubi->volumes_lock); 1198 } 1199 ubi_ro_mode(ubi); 1200 return err; 1201 } 1202 1203 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1204 int shutdown) 1205 { 1206 int ret; 1207 1208 if (shutdown) { 1209 struct ubi_wl_entry *e = wl_wrk->e; 1210 1211 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1212 kfree(wl_wrk); 1213 wl_entry_destroy(ubi, e); 1214 return 0; 1215 } 1216 1217 ret = __erase_worker(ubi, wl_wrk); 1218 kfree(wl_wrk); 1219 return ret; 1220 } 1221 1222 /** 1223 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1224 * @ubi: UBI device description object 1225 * @vol_id: the volume ID that last used this PEB 1226 * @lnum: the last used logical eraseblock number for the PEB 1227 * @pnum: physical eraseblock to return 1228 * @torture: if this physical eraseblock has to be tortured 1229 * 1230 * This function is called to return physical eraseblock @pnum to the pool of 1231 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1232 * occurred to this @pnum and it has to be tested. This function returns zero 1233 * in case of success, and a negative error code in case of failure. 1234 */ 1235 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1236 int pnum, int torture) 1237 { 1238 int err; 1239 struct ubi_wl_entry *e; 1240 1241 dbg_wl("PEB %d", pnum); 1242 ubi_assert(pnum >= 0); 1243 ubi_assert(pnum < ubi->peb_count); 1244 1245 down_read(&ubi->fm_protect); 1246 1247 retry: 1248 spin_lock(&ubi->wl_lock); 1249 e = ubi->lookuptbl[pnum]; 1250 if (e == ubi->move_from) { 1251 /* 1252 * User is putting the physical eraseblock which was selected to 1253 * be moved. It will be scheduled for erasure in the 1254 * wear-leveling worker. 1255 */ 1256 dbg_wl("PEB %d is being moved, wait", pnum); 1257 spin_unlock(&ubi->wl_lock); 1258 1259 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1260 mutex_lock(&ubi->move_mutex); 1261 mutex_unlock(&ubi->move_mutex); 1262 goto retry; 1263 } else if (e == ubi->move_to) { 1264 /* 1265 * User is putting the physical eraseblock which was selected 1266 * as the target the data is moved to. It may happen if the EBA 1267 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1268 * but the WL sub-system has not put the PEB to the "used" tree 1269 * yet, but it is about to do this. So we just set a flag which 1270 * will tell the WL worker that the PEB is not needed anymore 1271 * and should be scheduled for erasure. 1272 */ 1273 dbg_wl("PEB %d is the target of data moving", pnum); 1274 ubi_assert(!ubi->move_to_put); 1275 ubi->move_to_put = 1; 1276 spin_unlock(&ubi->wl_lock); 1277 up_read(&ubi->fm_protect); 1278 return 0; 1279 } else { 1280 if (in_wl_tree(e, &ubi->used)) { 1281 self_check_in_wl_tree(ubi, e, &ubi->used); 1282 rb_erase(&e->u.rb, &ubi->used); 1283 } else if (in_wl_tree(e, &ubi->scrub)) { 1284 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1285 rb_erase(&e->u.rb, &ubi->scrub); 1286 } else if (in_wl_tree(e, &ubi->erroneous)) { 1287 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1288 rb_erase(&e->u.rb, &ubi->erroneous); 1289 ubi->erroneous_peb_count -= 1; 1290 ubi_assert(ubi->erroneous_peb_count >= 0); 1291 /* Erroneous PEBs should be tortured */ 1292 torture = 1; 1293 } else { 1294 err = prot_queue_del(ubi, e->pnum); 1295 if (err) { 1296 ubi_err(ubi, "PEB %d not found", pnum); 1297 ubi_ro_mode(ubi); 1298 spin_unlock(&ubi->wl_lock); 1299 up_read(&ubi->fm_protect); 1300 return err; 1301 } 1302 } 1303 } 1304 spin_unlock(&ubi->wl_lock); 1305 1306 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1307 if (err) { 1308 spin_lock(&ubi->wl_lock); 1309 wl_tree_add(e, &ubi->used); 1310 spin_unlock(&ubi->wl_lock); 1311 } 1312 1313 up_read(&ubi->fm_protect); 1314 return err; 1315 } 1316 1317 /** 1318 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1319 * @ubi: UBI device description object 1320 * @pnum: the physical eraseblock to schedule 1321 * 1322 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1323 * needs scrubbing. This function schedules a physical eraseblock for 1324 * scrubbing which is done in background. This function returns zero in case of 1325 * success and a negative error code in case of failure. 1326 */ 1327 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1328 { 1329 struct ubi_wl_entry *e; 1330 1331 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1332 1333 retry: 1334 spin_lock(&ubi->wl_lock); 1335 e = ubi->lookuptbl[pnum]; 1336 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1337 in_wl_tree(e, &ubi->erroneous)) { 1338 spin_unlock(&ubi->wl_lock); 1339 return 0; 1340 } 1341 1342 if (e == ubi->move_to) { 1343 /* 1344 * This physical eraseblock was used to move data to. The data 1345 * was moved but the PEB was not yet inserted to the proper 1346 * tree. We should just wait a little and let the WL worker 1347 * proceed. 1348 */ 1349 spin_unlock(&ubi->wl_lock); 1350 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1351 yield(); 1352 goto retry; 1353 } 1354 1355 if (in_wl_tree(e, &ubi->used)) { 1356 self_check_in_wl_tree(ubi, e, &ubi->used); 1357 rb_erase(&e->u.rb, &ubi->used); 1358 } else { 1359 int err; 1360 1361 err = prot_queue_del(ubi, e->pnum); 1362 if (err) { 1363 ubi_err(ubi, "PEB %d not found", pnum); 1364 ubi_ro_mode(ubi); 1365 spin_unlock(&ubi->wl_lock); 1366 return err; 1367 } 1368 } 1369 1370 wl_tree_add(e, &ubi->scrub); 1371 spin_unlock(&ubi->wl_lock); 1372 1373 /* 1374 * Technically scrubbing is the same as wear-leveling, so it is done 1375 * by the WL worker. 1376 */ 1377 return ensure_wear_leveling(ubi, 0); 1378 } 1379 1380 /** 1381 * ubi_wl_flush - flush all pending works. 1382 * @ubi: UBI device description object 1383 * @vol_id: the volume id to flush for 1384 * @lnum: the logical eraseblock number to flush for 1385 * 1386 * This function executes all pending works for a particular volume id / 1387 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1388 * acts as a wildcard for all of the corresponding volume numbers or logical 1389 * eraseblock numbers. It returns zero in case of success and a negative error 1390 * code in case of failure. 1391 */ 1392 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1393 { 1394 int err = 0; 1395 int found = 1; 1396 1397 /* 1398 * Erase while the pending works queue is not empty, but not more than 1399 * the number of currently pending works. 1400 */ 1401 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1402 vol_id, lnum, ubi->works_count); 1403 1404 while (found) { 1405 struct ubi_work *wrk, *tmp; 1406 found = 0; 1407 1408 down_read(&ubi->work_sem); 1409 spin_lock(&ubi->wl_lock); 1410 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1411 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1412 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1413 list_del(&wrk->list); 1414 ubi->works_count -= 1; 1415 ubi_assert(ubi->works_count >= 0); 1416 spin_unlock(&ubi->wl_lock); 1417 1418 err = wrk->func(ubi, wrk, 0); 1419 if (err) { 1420 up_read(&ubi->work_sem); 1421 return err; 1422 } 1423 1424 spin_lock(&ubi->wl_lock); 1425 found = 1; 1426 break; 1427 } 1428 } 1429 spin_unlock(&ubi->wl_lock); 1430 up_read(&ubi->work_sem); 1431 } 1432 1433 /* 1434 * Make sure all the works which have been done in parallel are 1435 * finished. 1436 */ 1437 down_write(&ubi->work_sem); 1438 up_write(&ubi->work_sem); 1439 1440 return err; 1441 } 1442 1443 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1444 { 1445 if (in_wl_tree(e, &ubi->scrub)) 1446 return false; 1447 else if (in_wl_tree(e, &ubi->erroneous)) 1448 return false; 1449 else if (ubi->move_from == e) 1450 return false; 1451 else if (ubi->move_to == e) 1452 return false; 1453 1454 return true; 1455 } 1456 1457 /** 1458 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1459 * @ubi: UBI device description object 1460 * @pnum: the physical eraseblock to schedule 1461 * @force: dont't read the block, assume bitflips happened and take action. 1462 * 1463 * This function reads the given eraseblock and checks if bitflips occured. 1464 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1465 * If scrubbing is forced with @force, the eraseblock is not read, 1466 * but scheduled for scrubbing right away. 1467 * 1468 * Returns: 1469 * %EINVAL, PEB is out of range 1470 * %ENOENT, PEB is no longer used by UBI 1471 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1472 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1473 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1474 * %0, no bit flips detected 1475 */ 1476 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1477 { 1478 int err; 1479 struct ubi_wl_entry *e; 1480 1481 if (pnum < 0 || pnum >= ubi->peb_count) { 1482 err = -EINVAL; 1483 goto out; 1484 } 1485 1486 /* 1487 * Pause all parallel work, otherwise it can happen that the 1488 * erase worker frees a wl entry under us. 1489 */ 1490 down_write(&ubi->work_sem); 1491 1492 /* 1493 * Make sure that the wl entry does not change state while 1494 * inspecting it. 1495 */ 1496 spin_lock(&ubi->wl_lock); 1497 e = ubi->lookuptbl[pnum]; 1498 if (!e) { 1499 spin_unlock(&ubi->wl_lock); 1500 err = -ENOENT; 1501 goto out_resume; 1502 } 1503 1504 /* 1505 * Does it make sense to check this PEB? 1506 */ 1507 if (!scrub_possible(ubi, e)) { 1508 spin_unlock(&ubi->wl_lock); 1509 err = -EBUSY; 1510 goto out_resume; 1511 } 1512 spin_unlock(&ubi->wl_lock); 1513 1514 if (!force) { 1515 mutex_lock(&ubi->buf_mutex); 1516 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1517 mutex_unlock(&ubi->buf_mutex); 1518 } 1519 1520 if (force || err == UBI_IO_BITFLIPS) { 1521 /* 1522 * Okay, bit flip happened, let's figure out what we can do. 1523 */ 1524 spin_lock(&ubi->wl_lock); 1525 1526 /* 1527 * Recheck. We released wl_lock, UBI might have killed the 1528 * wl entry under us. 1529 */ 1530 e = ubi->lookuptbl[pnum]; 1531 if (!e) { 1532 spin_unlock(&ubi->wl_lock); 1533 err = -ENOENT; 1534 goto out_resume; 1535 } 1536 1537 /* 1538 * Need to re-check state 1539 */ 1540 if (!scrub_possible(ubi, e)) { 1541 spin_unlock(&ubi->wl_lock); 1542 err = -EBUSY; 1543 goto out_resume; 1544 } 1545 1546 if (in_pq(ubi, e)) { 1547 prot_queue_del(ubi, e->pnum); 1548 wl_tree_add(e, &ubi->scrub); 1549 spin_unlock(&ubi->wl_lock); 1550 1551 err = ensure_wear_leveling(ubi, 1); 1552 } else if (in_wl_tree(e, &ubi->used)) { 1553 rb_erase(&e->u.rb, &ubi->used); 1554 wl_tree_add(e, &ubi->scrub); 1555 spin_unlock(&ubi->wl_lock); 1556 1557 err = ensure_wear_leveling(ubi, 1); 1558 } else if (in_wl_tree(e, &ubi->free)) { 1559 rb_erase(&e->u.rb, &ubi->free); 1560 ubi->free_count--; 1561 spin_unlock(&ubi->wl_lock); 1562 1563 /* 1564 * This PEB is empty we can schedule it for 1565 * erasure right away. No wear leveling needed. 1566 */ 1567 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1568 force ? 0 : 1, true); 1569 } else { 1570 spin_unlock(&ubi->wl_lock); 1571 err = -EAGAIN; 1572 } 1573 1574 if (!err && !force) 1575 err = -EUCLEAN; 1576 } else { 1577 err = 0; 1578 } 1579 1580 out_resume: 1581 up_write(&ubi->work_sem); 1582 out: 1583 1584 return err; 1585 } 1586 1587 /** 1588 * tree_destroy - destroy an RB-tree. 1589 * @ubi: UBI device description object 1590 * @root: the root of the tree to destroy 1591 */ 1592 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1593 { 1594 struct rb_node *rb; 1595 struct ubi_wl_entry *e; 1596 1597 rb = root->rb_node; 1598 while (rb) { 1599 if (rb->rb_left) 1600 rb = rb->rb_left; 1601 else if (rb->rb_right) 1602 rb = rb->rb_right; 1603 else { 1604 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1605 1606 rb = rb_parent(rb); 1607 if (rb) { 1608 if (rb->rb_left == &e->u.rb) 1609 rb->rb_left = NULL; 1610 else 1611 rb->rb_right = NULL; 1612 } 1613 1614 wl_entry_destroy(ubi, e); 1615 } 1616 } 1617 } 1618 1619 /** 1620 * ubi_thread - UBI background thread. 1621 * @u: the UBI device description object pointer 1622 */ 1623 int ubi_thread(void *u) 1624 { 1625 int failures = 0; 1626 struct ubi_device *ubi = u; 1627 1628 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1629 ubi->bgt_name, task_pid_nr(current)); 1630 1631 set_freezable(); 1632 for (;;) { 1633 int err; 1634 1635 if (kthread_should_stop()) 1636 break; 1637 1638 if (try_to_freeze()) 1639 continue; 1640 1641 spin_lock(&ubi->wl_lock); 1642 if (list_empty(&ubi->works) || ubi->ro_mode || 1643 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1644 set_current_state(TASK_INTERRUPTIBLE); 1645 spin_unlock(&ubi->wl_lock); 1646 schedule(); 1647 continue; 1648 } 1649 spin_unlock(&ubi->wl_lock); 1650 1651 err = do_work(ubi); 1652 if (err) { 1653 ubi_err(ubi, "%s: work failed with error code %d", 1654 ubi->bgt_name, err); 1655 if (failures++ > WL_MAX_FAILURES) { 1656 /* 1657 * Too many failures, disable the thread and 1658 * switch to read-only mode. 1659 */ 1660 ubi_msg(ubi, "%s: %d consecutive failures", 1661 ubi->bgt_name, WL_MAX_FAILURES); 1662 ubi_ro_mode(ubi); 1663 ubi->thread_enabled = 0; 1664 continue; 1665 } 1666 } else 1667 failures = 0; 1668 1669 cond_resched(); 1670 } 1671 1672 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1673 ubi->thread_enabled = 0; 1674 return 0; 1675 } 1676 1677 /** 1678 * shutdown_work - shutdown all pending works. 1679 * @ubi: UBI device description object 1680 */ 1681 static void shutdown_work(struct ubi_device *ubi) 1682 { 1683 while (!list_empty(&ubi->works)) { 1684 struct ubi_work *wrk; 1685 1686 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1687 list_del(&wrk->list); 1688 wrk->func(ubi, wrk, 1); 1689 ubi->works_count -= 1; 1690 ubi_assert(ubi->works_count >= 0); 1691 } 1692 } 1693 1694 /** 1695 * erase_aeb - erase a PEB given in UBI attach info PEB 1696 * @ubi: UBI device description object 1697 * @aeb: UBI attach info PEB 1698 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1699 */ 1700 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1701 { 1702 struct ubi_wl_entry *e; 1703 int err; 1704 1705 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1706 if (!e) 1707 return -ENOMEM; 1708 1709 e->pnum = aeb->pnum; 1710 e->ec = aeb->ec; 1711 ubi->lookuptbl[e->pnum] = e; 1712 1713 if (sync) { 1714 err = sync_erase(ubi, e, false); 1715 if (err) 1716 goto out_free; 1717 1718 wl_tree_add(e, &ubi->free); 1719 ubi->free_count++; 1720 } else { 1721 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1722 if (err) 1723 goto out_free; 1724 } 1725 1726 return 0; 1727 1728 out_free: 1729 wl_entry_destroy(ubi, e); 1730 1731 return err; 1732 } 1733 1734 /** 1735 * ubi_wl_init - initialize the WL sub-system using attaching information. 1736 * @ubi: UBI device description object 1737 * @ai: attaching information 1738 * 1739 * This function returns zero in case of success, and a negative error code in 1740 * case of failure. 1741 */ 1742 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1743 { 1744 int err, i, reserved_pebs, found_pebs = 0; 1745 struct rb_node *rb1, *rb2; 1746 struct ubi_ainf_volume *av; 1747 struct ubi_ainf_peb *aeb, *tmp; 1748 struct ubi_wl_entry *e; 1749 1750 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1751 spin_lock_init(&ubi->wl_lock); 1752 mutex_init(&ubi->move_mutex); 1753 init_rwsem(&ubi->work_sem); 1754 ubi->max_ec = ai->max_ec; 1755 INIT_LIST_HEAD(&ubi->works); 1756 1757 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1758 1759 err = -ENOMEM; 1760 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1761 if (!ubi->lookuptbl) 1762 return err; 1763 1764 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1765 INIT_LIST_HEAD(&ubi->pq[i]); 1766 ubi->pq_head = 0; 1767 1768 ubi->free_count = 0; 1769 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1770 cond_resched(); 1771 1772 err = erase_aeb(ubi, aeb, false); 1773 if (err) 1774 goto out_free; 1775 1776 found_pebs++; 1777 } 1778 1779 list_for_each_entry(aeb, &ai->free, u.list) { 1780 cond_resched(); 1781 1782 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1783 if (!e) { 1784 err = -ENOMEM; 1785 goto out_free; 1786 } 1787 1788 e->pnum = aeb->pnum; 1789 e->ec = aeb->ec; 1790 ubi_assert(e->ec >= 0); 1791 1792 wl_tree_add(e, &ubi->free); 1793 ubi->free_count++; 1794 1795 ubi->lookuptbl[e->pnum] = e; 1796 1797 found_pebs++; 1798 } 1799 1800 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1801 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1802 cond_resched(); 1803 1804 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1805 if (!e) { 1806 err = -ENOMEM; 1807 goto out_free; 1808 } 1809 1810 e->pnum = aeb->pnum; 1811 e->ec = aeb->ec; 1812 ubi->lookuptbl[e->pnum] = e; 1813 1814 if (!aeb->scrub) { 1815 dbg_wl("add PEB %d EC %d to the used tree", 1816 e->pnum, e->ec); 1817 wl_tree_add(e, &ubi->used); 1818 } else { 1819 dbg_wl("add PEB %d EC %d to the scrub tree", 1820 e->pnum, e->ec); 1821 wl_tree_add(e, &ubi->scrub); 1822 } 1823 1824 found_pebs++; 1825 } 1826 } 1827 1828 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1829 cond_resched(); 1830 1831 e = ubi_find_fm_block(ubi, aeb->pnum); 1832 1833 if (e) { 1834 ubi_assert(!ubi->lookuptbl[e->pnum]); 1835 ubi->lookuptbl[e->pnum] = e; 1836 } else { 1837 bool sync = false; 1838 1839 /* 1840 * Usually old Fastmap PEBs are scheduled for erasure 1841 * and we don't have to care about them but if we face 1842 * an power cut before scheduling them we need to 1843 * take care of them here. 1844 */ 1845 if (ubi->lookuptbl[aeb->pnum]) 1846 continue; 1847 1848 /* 1849 * The fastmap update code might not find a free PEB for 1850 * writing the fastmap anchor to and then reuses the 1851 * current fastmap anchor PEB. When this PEB gets erased 1852 * and a power cut happens before it is written again we 1853 * must make sure that the fastmap attach code doesn't 1854 * find any outdated fastmap anchors, hence we erase the 1855 * outdated fastmap anchor PEBs synchronously here. 1856 */ 1857 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1858 sync = true; 1859 1860 err = erase_aeb(ubi, aeb, sync); 1861 if (err) 1862 goto out_free; 1863 } 1864 1865 found_pebs++; 1866 } 1867 1868 dbg_wl("found %i PEBs", found_pebs); 1869 1870 ubi_assert(ubi->good_peb_count == found_pebs); 1871 1872 reserved_pebs = WL_RESERVED_PEBS; 1873 ubi_fastmap_init(ubi, &reserved_pebs); 1874 1875 if (ubi->avail_pebs < reserved_pebs) { 1876 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1877 ubi->avail_pebs, reserved_pebs); 1878 if (ubi->corr_peb_count) 1879 ubi_err(ubi, "%d PEBs are corrupted and not used", 1880 ubi->corr_peb_count); 1881 err = -ENOSPC; 1882 goto out_free; 1883 } 1884 ubi->avail_pebs -= reserved_pebs; 1885 ubi->rsvd_pebs += reserved_pebs; 1886 1887 /* Schedule wear-leveling if needed */ 1888 err = ensure_wear_leveling(ubi, 0); 1889 if (err) 1890 goto out_free; 1891 1892 return 0; 1893 1894 out_free: 1895 shutdown_work(ubi); 1896 tree_destroy(ubi, &ubi->used); 1897 tree_destroy(ubi, &ubi->free); 1898 tree_destroy(ubi, &ubi->scrub); 1899 kfree(ubi->lookuptbl); 1900 return err; 1901 } 1902 1903 /** 1904 * protection_queue_destroy - destroy the protection queue. 1905 * @ubi: UBI device description object 1906 */ 1907 static void protection_queue_destroy(struct ubi_device *ubi) 1908 { 1909 int i; 1910 struct ubi_wl_entry *e, *tmp; 1911 1912 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1913 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1914 list_del(&e->u.list); 1915 wl_entry_destroy(ubi, e); 1916 } 1917 } 1918 } 1919 1920 /** 1921 * ubi_wl_close - close the wear-leveling sub-system. 1922 * @ubi: UBI device description object 1923 */ 1924 void ubi_wl_close(struct ubi_device *ubi) 1925 { 1926 dbg_wl("close the WL sub-system"); 1927 ubi_fastmap_close(ubi); 1928 shutdown_work(ubi); 1929 protection_queue_destroy(ubi); 1930 tree_destroy(ubi, &ubi->used); 1931 tree_destroy(ubi, &ubi->erroneous); 1932 tree_destroy(ubi, &ubi->free); 1933 tree_destroy(ubi, &ubi->scrub); 1934 kfree(ubi->lookuptbl); 1935 } 1936 1937 /** 1938 * self_check_ec - make sure that the erase counter of a PEB is correct. 1939 * @ubi: UBI device description object 1940 * @pnum: the physical eraseblock number to check 1941 * @ec: the erase counter to check 1942 * 1943 * This function returns zero if the erase counter of physical eraseblock @pnum 1944 * is equivalent to @ec, and a negative error code if not or if an error 1945 * occurred. 1946 */ 1947 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1948 { 1949 int err; 1950 long long read_ec; 1951 struct ubi_ec_hdr *ec_hdr; 1952 1953 if (!ubi_dbg_chk_gen(ubi)) 1954 return 0; 1955 1956 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1957 if (!ec_hdr) 1958 return -ENOMEM; 1959 1960 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1961 if (err && err != UBI_IO_BITFLIPS) { 1962 /* The header does not have to exist */ 1963 err = 0; 1964 goto out_free; 1965 } 1966 1967 read_ec = be64_to_cpu(ec_hdr->ec); 1968 if (ec != read_ec && read_ec - ec > 1) { 1969 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1970 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1971 dump_stack(); 1972 err = 1; 1973 } else 1974 err = 0; 1975 1976 out_free: 1977 kfree(ec_hdr); 1978 return err; 1979 } 1980 1981 /** 1982 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1983 * @ubi: UBI device description object 1984 * @e: the wear-leveling entry to check 1985 * @root: the root of the tree 1986 * 1987 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1988 * is not. 1989 */ 1990 static int self_check_in_wl_tree(const struct ubi_device *ubi, 1991 struct ubi_wl_entry *e, struct rb_root *root) 1992 { 1993 if (!ubi_dbg_chk_gen(ubi)) 1994 return 0; 1995 1996 if (in_wl_tree(e, root)) 1997 return 0; 1998 1999 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 2000 e->pnum, e->ec, root); 2001 dump_stack(); 2002 return -EINVAL; 2003 } 2004 2005 /** 2006 * self_check_in_pq - check if wear-leveling entry is in the protection 2007 * queue. 2008 * @ubi: UBI device description object 2009 * @e: the wear-leveling entry to check 2010 * 2011 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2012 */ 2013 static int self_check_in_pq(const struct ubi_device *ubi, 2014 struct ubi_wl_entry *e) 2015 { 2016 if (!ubi_dbg_chk_gen(ubi)) 2017 return 0; 2018 2019 if (in_pq(ubi, e)) 2020 return 0; 2021 2022 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2023 e->pnum, e->ec); 2024 dump_stack(); 2025 return -EINVAL; 2026 } 2027 #ifndef CONFIG_MTD_UBI_FASTMAP 2028 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2029 { 2030 struct ubi_wl_entry *e; 2031 2032 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2033 self_check_in_wl_tree(ubi, e, &ubi->free); 2034 ubi->free_count--; 2035 ubi_assert(ubi->free_count >= 0); 2036 rb_erase(&e->u.rb, &ubi->free); 2037 2038 return e; 2039 } 2040 2041 /** 2042 * produce_free_peb - produce a free physical eraseblock. 2043 * @ubi: UBI device description object 2044 * 2045 * This function tries to make a free PEB by means of synchronous execution of 2046 * pending works. This may be needed if, for example the background thread is 2047 * disabled. Returns zero in case of success and a negative error code in case 2048 * of failure. 2049 */ 2050 static int produce_free_peb(struct ubi_device *ubi) 2051 { 2052 int err; 2053 2054 while (!ubi->free.rb_node && ubi->works_count) { 2055 spin_unlock(&ubi->wl_lock); 2056 2057 dbg_wl("do one work synchronously"); 2058 err = do_work(ubi); 2059 2060 spin_lock(&ubi->wl_lock); 2061 if (err) 2062 return err; 2063 } 2064 2065 return 0; 2066 } 2067 2068 /** 2069 * ubi_wl_get_peb - get a physical eraseblock. 2070 * @ubi: UBI device description object 2071 * 2072 * This function returns a physical eraseblock in case of success and a 2073 * negative error code in case of failure. 2074 * Returns with ubi->fm_eba_sem held in read mode! 2075 */ 2076 int ubi_wl_get_peb(struct ubi_device *ubi) 2077 { 2078 int err; 2079 struct ubi_wl_entry *e; 2080 2081 retry: 2082 down_read(&ubi->fm_eba_sem); 2083 spin_lock(&ubi->wl_lock); 2084 if (!ubi->free.rb_node) { 2085 if (ubi->works_count == 0) { 2086 ubi_err(ubi, "no free eraseblocks"); 2087 ubi_assert(list_empty(&ubi->works)); 2088 spin_unlock(&ubi->wl_lock); 2089 return -ENOSPC; 2090 } 2091 2092 err = produce_free_peb(ubi); 2093 if (err < 0) { 2094 spin_unlock(&ubi->wl_lock); 2095 return err; 2096 } 2097 spin_unlock(&ubi->wl_lock); 2098 up_read(&ubi->fm_eba_sem); 2099 goto retry; 2100 2101 } 2102 e = wl_get_wle(ubi); 2103 prot_queue_add(ubi, e); 2104 spin_unlock(&ubi->wl_lock); 2105 2106 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2107 ubi->peb_size - ubi->vid_hdr_aloffset); 2108 if (err) { 2109 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2110 return err; 2111 } 2112 2113 return e->pnum; 2114 } 2115 #else 2116 #include "fastmap-wl.c" 2117 #endif 2118