xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision c819e2cf)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109 
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117 
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130 
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136 
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139 				 struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141 			    struct ubi_wl_entry *e);
142 
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151 	ubi_update_fastmap(ubi);
152 }
153 
154 /**
155  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156  *  @ubi: UBI device description object
157  *  @pnum: the to be checked PEB
158  */
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161 	int i;
162 
163 	if (!ubi->fm)
164 		return 0;
165 
166 	for (i = 0; i < ubi->fm->used_blocks; i++)
167 		if (ubi->fm->e[i]->pnum == pnum)
168 			return 1;
169 
170 	return 0;
171 }
172 #else
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175 	return 0;
176 }
177 #endif
178 
179 /**
180  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181  * @e: the wear-leveling entry to add
182  * @root: the root of the tree
183  *
184  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185  * the @ubi->used and @ubi->free RB-trees.
186  */
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189 	struct rb_node **p, *parent = NULL;
190 
191 	p = &root->rb_node;
192 	while (*p) {
193 		struct ubi_wl_entry *e1;
194 
195 		parent = *p;
196 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197 
198 		if (e->ec < e1->ec)
199 			p = &(*p)->rb_left;
200 		else if (e->ec > e1->ec)
201 			p = &(*p)->rb_right;
202 		else {
203 			ubi_assert(e->pnum != e1->pnum);
204 			if (e->pnum < e1->pnum)
205 				p = &(*p)->rb_left;
206 			else
207 				p = &(*p)->rb_right;
208 		}
209 	}
210 
211 	rb_link_node(&e->u.rb, parent, p);
212 	rb_insert_color(&e->u.rb, root);
213 }
214 
215 /**
216  * do_work - do one pending work.
217  * @ubi: UBI device description object
218  *
219  * This function returns zero in case of success and a negative error code in
220  * case of failure.
221  */
222 static int do_work(struct ubi_device *ubi)
223 {
224 	int err;
225 	struct ubi_work *wrk;
226 
227 	cond_resched();
228 
229 	/*
230 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
231 	 * it in read mode, so many of them may be doing works at a time. But
232 	 * the queue flush code has to be sure the whole queue of works is
233 	 * done, and it takes the mutex in write mode.
234 	 */
235 	down_read(&ubi->work_sem);
236 	spin_lock(&ubi->wl_lock);
237 	if (list_empty(&ubi->works)) {
238 		spin_unlock(&ubi->wl_lock);
239 		up_read(&ubi->work_sem);
240 		return 0;
241 	}
242 
243 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
244 	list_del(&wrk->list);
245 	ubi->works_count -= 1;
246 	ubi_assert(ubi->works_count >= 0);
247 	spin_unlock(&ubi->wl_lock);
248 
249 	/*
250 	 * Call the worker function. Do not touch the work structure
251 	 * after this call as it will have been freed or reused by that
252 	 * time by the worker function.
253 	 */
254 	err = wrk->func(ubi, wrk, 0);
255 	if (err)
256 		ubi_err(ubi, "work failed with error code %d", err);
257 	up_read(&ubi->work_sem);
258 
259 	return err;
260 }
261 
262 /**
263  * produce_free_peb - produce a free physical eraseblock.
264  * @ubi: UBI device description object
265  *
266  * This function tries to make a free PEB by means of synchronous execution of
267  * pending works. This may be needed if, for example the background thread is
268  * disabled. Returns zero in case of success and a negative error code in case
269  * of failure.
270  */
271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273 	int err;
274 
275 	while (!ubi->free.rb_node && ubi->works_count) {
276 		spin_unlock(&ubi->wl_lock);
277 
278 		dbg_wl("do one work synchronously");
279 		err = do_work(ubi);
280 
281 		spin_lock(&ubi->wl_lock);
282 		if (err)
283 			return err;
284 	}
285 
286 	return 0;
287 }
288 
289 /**
290  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291  * @e: the wear-leveling entry to check
292  * @root: the root of the tree
293  *
294  * This function returns non-zero if @e is in the @root RB-tree and zero if it
295  * is not.
296  */
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299 	struct rb_node *p;
300 
301 	p = root->rb_node;
302 	while (p) {
303 		struct ubi_wl_entry *e1;
304 
305 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306 
307 		if (e->pnum == e1->pnum) {
308 			ubi_assert(e == e1);
309 			return 1;
310 		}
311 
312 		if (e->ec < e1->ec)
313 			p = p->rb_left;
314 		else if (e->ec > e1->ec)
315 			p = p->rb_right;
316 		else {
317 			ubi_assert(e->pnum != e1->pnum);
318 			if (e->pnum < e1->pnum)
319 				p = p->rb_left;
320 			else
321 				p = p->rb_right;
322 		}
323 	}
324 
325 	return 0;
326 }
327 
328 /**
329  * prot_queue_add - add physical eraseblock to the protection queue.
330  * @ubi: UBI device description object
331  * @e: the physical eraseblock to add
332  *
333  * This function adds @e to the tail of the protection queue @ubi->pq, where
334  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336  * be locked.
337  */
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340 	int pq_tail = ubi->pq_head - 1;
341 
342 	if (pq_tail < 0)
343 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
344 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348 
349 /**
350  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351  * @ubi: UBI device description object
352  * @root: the RB-tree where to look for
353  * @diff: maximum possible difference from the smallest erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * min + @diff, where min is the smallest erase counter.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359 					  struct rb_root *root, int diff)
360 {
361 	struct rb_node *p;
362 	struct ubi_wl_entry *e, *prev_e = NULL;
363 	int max;
364 
365 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366 	max = e->ec + diff;
367 
368 	p = root->rb_node;
369 	while (p) {
370 		struct ubi_wl_entry *e1;
371 
372 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373 		if (e1->ec >= max)
374 			p = p->rb_left;
375 		else {
376 			p = p->rb_right;
377 			prev_e = e;
378 			e = e1;
379 		}
380 	}
381 
382 	/* If no fastmap has been written and this WL entry can be used
383 	 * as anchor PEB, hold it back and return the second best WL entry
384 	 * such that fastmap can use the anchor PEB later. */
385 	if (prev_e && !ubi->fm_disabled &&
386 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
387 		return prev_e;
388 
389 	return e;
390 }
391 
392 /**
393  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394  * @ubi: UBI device description object
395  * @root: the RB-tree where to look for
396  *
397  * This function looks for a wear leveling entry with medium erase counter,
398  * but not greater or equivalent than the lowest erase counter plus
399  * %WL_FREE_MAX_DIFF/2.
400  */
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402 					       struct rb_root *root)
403 {
404 	struct ubi_wl_entry *e, *first, *last;
405 
406 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408 
409 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411 
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413 		/* If no fastmap has been written and this WL entry can be used
414 		 * as anchor PEB, hold it back and return the second best
415 		 * WL entry such that fastmap can use the anchor PEB later. */
416 		if (e && !ubi->fm_disabled && !ubi->fm &&
417 		    e->pnum < UBI_FM_MAX_START)
418 			e = rb_entry(rb_next(root->rb_node),
419 				     struct ubi_wl_entry, u.rb);
420 #endif
421 	} else
422 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423 
424 	return e;
425 }
426 
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430  * @root: the RB-tree where to look for
431  */
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434 	struct rb_node *p;
435 	struct ubi_wl_entry *e, *victim = NULL;
436 	int max_ec = UBI_MAX_ERASECOUNTER;
437 
438 	ubi_rb_for_each_entry(p, e, root, u.rb) {
439 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440 			victim = e;
441 			max_ec = e->ec;
442 		}
443 	}
444 
445 	return victim;
446 }
447 
448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450 	struct rb_node *p;
451 	struct ubi_wl_entry *e;
452 
453 	ubi_rb_for_each_entry(p, e, root, u.rb)
454 		if (e->pnum < UBI_FM_MAX_START)
455 			return 1;
456 
457 	return 0;
458 }
459 
460 /**
461  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462  * @ubi: UBI device description object
463  * @anchor: This PEB will be used as anchor PEB by fastmap
464  *
465  * The function returns a physical erase block with a given maximal number
466  * and removes it from the wl subsystem.
467  * Must be called with wl_lock held!
468  */
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471 	struct ubi_wl_entry *e = NULL;
472 
473 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) {
474 		ubi_warn(ubi, "Can't get peb for fastmap:anchor=%d, free_cnt=%d, reserved=%d",
475 			 anchor, ubi->free_count, ubi->beb_rsvd_pebs);
476 		goto out;
477 	}
478 
479 	if (anchor)
480 		e = find_anchor_wl_entry(&ubi->free);
481 	else
482 		e = find_mean_wl_entry(ubi, &ubi->free);
483 
484 	if (!e)
485 		goto out;
486 
487 	self_check_in_wl_tree(ubi, e, &ubi->free);
488 
489 	/* remove it from the free list,
490 	 * the wl subsystem does no longer know this erase block */
491 	rb_erase(&e->u.rb, &ubi->free);
492 	ubi->free_count--;
493 out:
494 	return e;
495 }
496 #endif
497 
498 /**
499  * __wl_get_peb - get a physical eraseblock.
500  * @ubi: UBI device description object
501  *
502  * This function returns a physical eraseblock in case of success and a
503  * negative error code in case of failure.
504  */
505 static int __wl_get_peb(struct ubi_device *ubi)
506 {
507 	int err;
508 	struct ubi_wl_entry *e;
509 
510 retry:
511 	if (!ubi->free.rb_node) {
512 		if (ubi->works_count == 0) {
513 			ubi_err(ubi, "no free eraseblocks");
514 			ubi_assert(list_empty(&ubi->works));
515 			return -ENOSPC;
516 		}
517 
518 		err = produce_free_peb(ubi);
519 		if (err < 0)
520 			return err;
521 		goto retry;
522 	}
523 
524 	e = find_mean_wl_entry(ubi, &ubi->free);
525 	if (!e) {
526 		ubi_err(ubi, "no free eraseblocks");
527 		return -ENOSPC;
528 	}
529 
530 	self_check_in_wl_tree(ubi, e, &ubi->free);
531 
532 	/*
533 	 * Move the physical eraseblock to the protection queue where it will
534 	 * be protected from being moved for some time.
535 	 */
536 	rb_erase(&e->u.rb, &ubi->free);
537 	ubi->free_count--;
538 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
539 #ifndef CONFIG_MTD_UBI_FASTMAP
540 	/* We have to enqueue e only if fastmap is disabled,
541 	 * is fastmap enabled prot_queue_add() will be called by
542 	 * ubi_wl_get_peb() after removing e from the pool. */
543 	prot_queue_add(ubi, e);
544 #endif
545 	return e->pnum;
546 }
547 
548 #ifdef CONFIG_MTD_UBI_FASTMAP
549 /**
550  * return_unused_pool_pebs - returns unused PEB to the free tree.
551  * @ubi: UBI device description object
552  * @pool: fastmap pool description object
553  */
554 static void return_unused_pool_pebs(struct ubi_device *ubi,
555 				    struct ubi_fm_pool *pool)
556 {
557 	int i;
558 	struct ubi_wl_entry *e;
559 
560 	for (i = pool->used; i < pool->size; i++) {
561 		e = ubi->lookuptbl[pool->pebs[i]];
562 		wl_tree_add(e, &ubi->free);
563 		ubi->free_count++;
564 	}
565 }
566 
567 /**
568  * refill_wl_pool - refills all the fastmap pool used by the
569  * WL sub-system.
570  * @ubi: UBI device description object
571  */
572 static void refill_wl_pool(struct ubi_device *ubi)
573 {
574 	struct ubi_wl_entry *e;
575 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
576 
577 	return_unused_pool_pebs(ubi, pool);
578 
579 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
580 		if (!ubi->free.rb_node ||
581 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
582 			break;
583 
584 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
585 		self_check_in_wl_tree(ubi, e, &ubi->free);
586 		rb_erase(&e->u.rb, &ubi->free);
587 		ubi->free_count--;
588 
589 		pool->pebs[pool->size] = e->pnum;
590 	}
591 	pool->used = 0;
592 }
593 
594 /**
595  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
596  * @ubi: UBI device description object
597  */
598 static void refill_wl_user_pool(struct ubi_device *ubi)
599 {
600 	struct ubi_fm_pool *pool = &ubi->fm_pool;
601 
602 	return_unused_pool_pebs(ubi, pool);
603 
604 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
605 		pool->pebs[pool->size] = __wl_get_peb(ubi);
606 		if (pool->pebs[pool->size] < 0)
607 			break;
608 	}
609 	pool->used = 0;
610 }
611 
612 /**
613  * ubi_refill_pools - refills all fastmap PEB pools.
614  * @ubi: UBI device description object
615  */
616 void ubi_refill_pools(struct ubi_device *ubi)
617 {
618 	spin_lock(&ubi->wl_lock);
619 	refill_wl_pool(ubi);
620 	refill_wl_user_pool(ubi);
621 	spin_unlock(&ubi->wl_lock);
622 }
623 
624 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
625  * the fastmap pool.
626  */
627 int ubi_wl_get_peb(struct ubi_device *ubi)
628 {
629 	int ret;
630 	struct ubi_fm_pool *pool = &ubi->fm_pool;
631 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
632 
633 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
634 	    wl_pool->used == wl_pool->size)
635 		ubi_update_fastmap(ubi);
636 
637 	/* we got not a single free PEB */
638 	if (!pool->size)
639 		ret = -ENOSPC;
640 	else {
641 		spin_lock(&ubi->wl_lock);
642 		ret = pool->pebs[pool->used++];
643 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
644 		spin_unlock(&ubi->wl_lock);
645 	}
646 
647 	return ret;
648 }
649 
650 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
651  *
652  * @ubi: UBI device description object
653  */
654 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
655 {
656 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
657 	int pnum;
658 
659 	if (pool->used == pool->size || !pool->size) {
660 		/* We cannot update the fastmap here because this
661 		 * function is called in atomic context.
662 		 * Let's fail here and refill/update it as soon as possible. */
663 		schedule_work(&ubi->fm_work);
664 		return NULL;
665 	} else {
666 		pnum = pool->pebs[pool->used++];
667 		return ubi->lookuptbl[pnum];
668 	}
669 }
670 #else
671 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
672 {
673 	struct ubi_wl_entry *e;
674 
675 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
676 	self_check_in_wl_tree(ubi, e, &ubi->free);
677 	ubi->free_count--;
678 	ubi_assert(ubi->free_count >= 0);
679 	rb_erase(&e->u.rb, &ubi->free);
680 
681 	return e;
682 }
683 
684 int ubi_wl_get_peb(struct ubi_device *ubi)
685 {
686 	int peb, err;
687 
688 	spin_lock(&ubi->wl_lock);
689 	peb = __wl_get_peb(ubi);
690 	spin_unlock(&ubi->wl_lock);
691 
692 	if (peb < 0)
693 		return peb;
694 
695 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
696 				    ubi->peb_size - ubi->vid_hdr_aloffset);
697 	if (err) {
698 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes",
699 			peb);
700 		return err;
701 	}
702 
703 	return peb;
704 }
705 #endif
706 
707 /**
708  * prot_queue_del - remove a physical eraseblock from the protection queue.
709  * @ubi: UBI device description object
710  * @pnum: the physical eraseblock to remove
711  *
712  * This function deletes PEB @pnum from the protection queue and returns zero
713  * in case of success and %-ENODEV if the PEB was not found.
714  */
715 static int prot_queue_del(struct ubi_device *ubi, int pnum)
716 {
717 	struct ubi_wl_entry *e;
718 
719 	e = ubi->lookuptbl[pnum];
720 	if (!e)
721 		return -ENODEV;
722 
723 	if (self_check_in_pq(ubi, e))
724 		return -ENODEV;
725 
726 	list_del(&e->u.list);
727 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
728 	return 0;
729 }
730 
731 /**
732  * sync_erase - synchronously erase a physical eraseblock.
733  * @ubi: UBI device description object
734  * @e: the the physical eraseblock to erase
735  * @torture: if the physical eraseblock has to be tortured
736  *
737  * This function returns zero in case of success and a negative error code in
738  * case of failure.
739  */
740 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
741 		      int torture)
742 {
743 	int err;
744 	struct ubi_ec_hdr *ec_hdr;
745 	unsigned long long ec = e->ec;
746 
747 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
748 
749 	err = self_check_ec(ubi, e->pnum, e->ec);
750 	if (err)
751 		return -EINVAL;
752 
753 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
754 	if (!ec_hdr)
755 		return -ENOMEM;
756 
757 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
758 	if (err < 0)
759 		goto out_free;
760 
761 	ec += err;
762 	if (ec > UBI_MAX_ERASECOUNTER) {
763 		/*
764 		 * Erase counter overflow. Upgrade UBI and use 64-bit
765 		 * erase counters internally.
766 		 */
767 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
768 			e->pnum, ec);
769 		err = -EINVAL;
770 		goto out_free;
771 	}
772 
773 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
774 
775 	ec_hdr->ec = cpu_to_be64(ec);
776 
777 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
778 	if (err)
779 		goto out_free;
780 
781 	e->ec = ec;
782 	spin_lock(&ubi->wl_lock);
783 	if (e->ec > ubi->max_ec)
784 		ubi->max_ec = e->ec;
785 	spin_unlock(&ubi->wl_lock);
786 
787 out_free:
788 	kfree(ec_hdr);
789 	return err;
790 }
791 
792 /**
793  * serve_prot_queue - check if it is time to stop protecting PEBs.
794  * @ubi: UBI device description object
795  *
796  * This function is called after each erase operation and removes PEBs from the
797  * tail of the protection queue. These PEBs have been protected for long enough
798  * and should be moved to the used tree.
799  */
800 static void serve_prot_queue(struct ubi_device *ubi)
801 {
802 	struct ubi_wl_entry *e, *tmp;
803 	int count;
804 
805 	/*
806 	 * There may be several protected physical eraseblock to remove,
807 	 * process them all.
808 	 */
809 repeat:
810 	count = 0;
811 	spin_lock(&ubi->wl_lock);
812 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
813 		dbg_wl("PEB %d EC %d protection over, move to used tree",
814 			e->pnum, e->ec);
815 
816 		list_del(&e->u.list);
817 		wl_tree_add(e, &ubi->used);
818 		if (count++ > 32) {
819 			/*
820 			 * Let's be nice and avoid holding the spinlock for
821 			 * too long.
822 			 */
823 			spin_unlock(&ubi->wl_lock);
824 			cond_resched();
825 			goto repeat;
826 		}
827 	}
828 
829 	ubi->pq_head += 1;
830 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
831 		ubi->pq_head = 0;
832 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
833 	spin_unlock(&ubi->wl_lock);
834 }
835 
836 /**
837  * __schedule_ubi_work - schedule a work.
838  * @ubi: UBI device description object
839  * @wrk: the work to schedule
840  *
841  * This function adds a work defined by @wrk to the tail of the pending works
842  * list. Can only be used if ubi->work_sem is already held in read mode!
843  */
844 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
845 {
846 	spin_lock(&ubi->wl_lock);
847 	list_add_tail(&wrk->list, &ubi->works);
848 	ubi_assert(ubi->works_count >= 0);
849 	ubi->works_count += 1;
850 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
851 		wake_up_process(ubi->bgt_thread);
852 	spin_unlock(&ubi->wl_lock);
853 }
854 
855 /**
856  * schedule_ubi_work - schedule a work.
857  * @ubi: UBI device description object
858  * @wrk: the work to schedule
859  *
860  * This function adds a work defined by @wrk to the tail of the pending works
861  * list.
862  */
863 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
864 {
865 	down_read(&ubi->work_sem);
866 	__schedule_ubi_work(ubi, wrk);
867 	up_read(&ubi->work_sem);
868 }
869 
870 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
871 			int shutdown);
872 
873 #ifdef CONFIG_MTD_UBI_FASTMAP
874 /**
875  * ubi_is_erase_work - checks whether a work is erase work.
876  * @wrk: The work object to be checked
877  */
878 int ubi_is_erase_work(struct ubi_work *wrk)
879 {
880 	return wrk->func == erase_worker;
881 }
882 #endif
883 
884 /**
885  * schedule_erase - schedule an erase work.
886  * @ubi: UBI device description object
887  * @e: the WL entry of the physical eraseblock to erase
888  * @vol_id: the volume ID that last used this PEB
889  * @lnum: the last used logical eraseblock number for the PEB
890  * @torture: if the physical eraseblock has to be tortured
891  *
892  * This function returns zero in case of success and a %-ENOMEM in case of
893  * failure.
894  */
895 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
896 			  int vol_id, int lnum, int torture)
897 {
898 	struct ubi_work *wl_wrk;
899 
900 	ubi_assert(e);
901 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
902 
903 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
904 	       e->pnum, e->ec, torture);
905 
906 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
907 	if (!wl_wrk)
908 		return -ENOMEM;
909 
910 	wl_wrk->func = &erase_worker;
911 	wl_wrk->e = e;
912 	wl_wrk->vol_id = vol_id;
913 	wl_wrk->lnum = lnum;
914 	wl_wrk->torture = torture;
915 
916 	schedule_ubi_work(ubi, wl_wrk);
917 	return 0;
918 }
919 
920 /**
921  * do_sync_erase - run the erase worker synchronously.
922  * @ubi: UBI device description object
923  * @e: the WL entry of the physical eraseblock to erase
924  * @vol_id: the volume ID that last used this PEB
925  * @lnum: the last used logical eraseblock number for the PEB
926  * @torture: if the physical eraseblock has to be tortured
927  *
928  */
929 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
930 			 int vol_id, int lnum, int torture)
931 {
932 	struct ubi_work *wl_wrk;
933 
934 	dbg_wl("sync erase of PEB %i", e->pnum);
935 
936 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
937 	if (!wl_wrk)
938 		return -ENOMEM;
939 
940 	wl_wrk->e = e;
941 	wl_wrk->vol_id = vol_id;
942 	wl_wrk->lnum = lnum;
943 	wl_wrk->torture = torture;
944 
945 	return erase_worker(ubi, wl_wrk, 0);
946 }
947 
948 #ifdef CONFIG_MTD_UBI_FASTMAP
949 /**
950  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
951  * sub-system.
952  * see: ubi_wl_put_peb()
953  *
954  * @ubi: UBI device description object
955  * @fm_e: physical eraseblock to return
956  * @lnum: the last used logical eraseblock number for the PEB
957  * @torture: if this physical eraseblock has to be tortured
958  */
959 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
960 		      int lnum, int torture)
961 {
962 	struct ubi_wl_entry *e;
963 	int vol_id, pnum = fm_e->pnum;
964 
965 	dbg_wl("PEB %d", pnum);
966 
967 	ubi_assert(pnum >= 0);
968 	ubi_assert(pnum < ubi->peb_count);
969 
970 	spin_lock(&ubi->wl_lock);
971 	e = ubi->lookuptbl[pnum];
972 
973 	/* This can happen if we recovered from a fastmap the very
974 	 * first time and writing now a new one. In this case the wl system
975 	 * has never seen any PEB used by the original fastmap.
976 	 */
977 	if (!e) {
978 		e = fm_e;
979 		ubi_assert(e->ec >= 0);
980 		ubi->lookuptbl[pnum] = e;
981 	} else {
982 		e->ec = fm_e->ec;
983 		kfree(fm_e);
984 	}
985 
986 	spin_unlock(&ubi->wl_lock);
987 
988 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
989 	return schedule_erase(ubi, e, vol_id, lnum, torture);
990 }
991 #endif
992 
993 /**
994  * wear_leveling_worker - wear-leveling worker function.
995  * @ubi: UBI device description object
996  * @wrk: the work object
997  * @shutdown: non-zero if the worker has to free memory and exit
998  * because the WL-subsystem is shutting down
999  *
1000  * This function copies a more worn out physical eraseblock to a less worn out
1001  * one. Returns zero in case of success and a negative error code in case of
1002  * failure.
1003  */
1004 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1005 				int shutdown)
1006 {
1007 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1008 	int vol_id = -1, uninitialized_var(lnum);
1009 #ifdef CONFIG_MTD_UBI_FASTMAP
1010 	int anchor = wrk->anchor;
1011 #endif
1012 	struct ubi_wl_entry *e1, *e2;
1013 	struct ubi_vid_hdr *vid_hdr;
1014 
1015 	kfree(wrk);
1016 	if (shutdown)
1017 		return 0;
1018 
1019 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1020 	if (!vid_hdr)
1021 		return -ENOMEM;
1022 
1023 	mutex_lock(&ubi->move_mutex);
1024 	spin_lock(&ubi->wl_lock);
1025 	ubi_assert(!ubi->move_from && !ubi->move_to);
1026 	ubi_assert(!ubi->move_to_put);
1027 
1028 	if (!ubi->free.rb_node ||
1029 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1030 		/*
1031 		 * No free physical eraseblocks? Well, they must be waiting in
1032 		 * the queue to be erased. Cancel movement - it will be
1033 		 * triggered again when a free physical eraseblock appears.
1034 		 *
1035 		 * No used physical eraseblocks? They must be temporarily
1036 		 * protected from being moved. They will be moved to the
1037 		 * @ubi->used tree later and the wear-leveling will be
1038 		 * triggered again.
1039 		 */
1040 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1041 		       !ubi->free.rb_node, !ubi->used.rb_node);
1042 		goto out_cancel;
1043 	}
1044 
1045 #ifdef CONFIG_MTD_UBI_FASTMAP
1046 	/* Check whether we need to produce an anchor PEB */
1047 	if (!anchor)
1048 		anchor = !anchor_pebs_avalible(&ubi->free);
1049 
1050 	if (anchor) {
1051 		e1 = find_anchor_wl_entry(&ubi->used);
1052 		if (!e1)
1053 			goto out_cancel;
1054 		e2 = get_peb_for_wl(ubi);
1055 		if (!e2)
1056 			goto out_cancel;
1057 
1058 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1059 		rb_erase(&e1->u.rb, &ubi->used);
1060 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1061 	} else if (!ubi->scrub.rb_node) {
1062 #else
1063 	if (!ubi->scrub.rb_node) {
1064 #endif
1065 		/*
1066 		 * Now pick the least worn-out used physical eraseblock and a
1067 		 * highly worn-out free physical eraseblock. If the erase
1068 		 * counters differ much enough, start wear-leveling.
1069 		 */
1070 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1071 		e2 = get_peb_for_wl(ubi);
1072 		if (!e2)
1073 			goto out_cancel;
1074 
1075 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1076 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1077 			       e1->ec, e2->ec);
1078 
1079 			/* Give the unused PEB back */
1080 			wl_tree_add(e2, &ubi->free);
1081 			ubi->free_count++;
1082 			goto out_cancel;
1083 		}
1084 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1085 		rb_erase(&e1->u.rb, &ubi->used);
1086 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1087 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1088 	} else {
1089 		/* Perform scrubbing */
1090 		scrubbing = 1;
1091 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1092 		e2 = get_peb_for_wl(ubi);
1093 		if (!e2)
1094 			goto out_cancel;
1095 
1096 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1097 		rb_erase(&e1->u.rb, &ubi->scrub);
1098 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1099 	}
1100 
1101 	ubi->move_from = e1;
1102 	ubi->move_to = e2;
1103 	spin_unlock(&ubi->wl_lock);
1104 
1105 	/*
1106 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1107 	 * We so far do not know which logical eraseblock our physical
1108 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1109 	 * header first.
1110 	 *
1111 	 * Note, we are protected from this PEB being unmapped and erased. The
1112 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1113 	 * which is being moved was unmapped.
1114 	 */
1115 
1116 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1117 	if (err && err != UBI_IO_BITFLIPS) {
1118 		if (err == UBI_IO_FF) {
1119 			/*
1120 			 * We are trying to move PEB without a VID header. UBI
1121 			 * always write VID headers shortly after the PEB was
1122 			 * given, so we have a situation when it has not yet
1123 			 * had a chance to write it, because it was preempted.
1124 			 * So add this PEB to the protection queue so far,
1125 			 * because presumably more data will be written there
1126 			 * (including the missing VID header), and then we'll
1127 			 * move it.
1128 			 */
1129 			dbg_wl("PEB %d has no VID header", e1->pnum);
1130 			protect = 1;
1131 			goto out_not_moved;
1132 		} else if (err == UBI_IO_FF_BITFLIPS) {
1133 			/*
1134 			 * The same situation as %UBI_IO_FF, but bit-flips were
1135 			 * detected. It is better to schedule this PEB for
1136 			 * scrubbing.
1137 			 */
1138 			dbg_wl("PEB %d has no VID header but has bit-flips",
1139 			       e1->pnum);
1140 			scrubbing = 1;
1141 			goto out_not_moved;
1142 		}
1143 
1144 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
1145 			err, e1->pnum);
1146 		goto out_error;
1147 	}
1148 
1149 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1150 	lnum = be32_to_cpu(vid_hdr->lnum);
1151 
1152 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1153 	if (err) {
1154 		if (err == MOVE_CANCEL_RACE) {
1155 			/*
1156 			 * The LEB has not been moved because the volume is
1157 			 * being deleted or the PEB has been put meanwhile. We
1158 			 * should prevent this PEB from being selected for
1159 			 * wear-leveling movement again, so put it to the
1160 			 * protection queue.
1161 			 */
1162 			protect = 1;
1163 			goto out_not_moved;
1164 		}
1165 		if (err == MOVE_RETRY) {
1166 			scrubbing = 1;
1167 			goto out_not_moved;
1168 		}
1169 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1170 		    err == MOVE_TARGET_RD_ERR) {
1171 			/*
1172 			 * Target PEB had bit-flips or write error - torture it.
1173 			 */
1174 			torture = 1;
1175 			goto out_not_moved;
1176 		}
1177 
1178 		if (err == MOVE_SOURCE_RD_ERR) {
1179 			/*
1180 			 * An error happened while reading the source PEB. Do
1181 			 * not switch to R/O mode in this case, and give the
1182 			 * upper layers a possibility to recover from this,
1183 			 * e.g. by unmapping corresponding LEB. Instead, just
1184 			 * put this PEB to the @ubi->erroneous list to prevent
1185 			 * UBI from trying to move it over and over again.
1186 			 */
1187 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1188 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
1189 					ubi->erroneous_peb_count);
1190 				goto out_error;
1191 			}
1192 			erroneous = 1;
1193 			goto out_not_moved;
1194 		}
1195 
1196 		if (err < 0)
1197 			goto out_error;
1198 
1199 		ubi_assert(0);
1200 	}
1201 
1202 	/* The PEB has been successfully moved */
1203 	if (scrubbing)
1204 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1205 			e1->pnum, vol_id, lnum, e2->pnum);
1206 	ubi_free_vid_hdr(ubi, vid_hdr);
1207 
1208 	spin_lock(&ubi->wl_lock);
1209 	if (!ubi->move_to_put) {
1210 		wl_tree_add(e2, &ubi->used);
1211 		e2 = NULL;
1212 	}
1213 	ubi->move_from = ubi->move_to = NULL;
1214 	ubi->move_to_put = ubi->wl_scheduled = 0;
1215 	spin_unlock(&ubi->wl_lock);
1216 
1217 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1218 	if (err) {
1219 		if (e2)
1220 			kmem_cache_free(ubi_wl_entry_slab, e2);
1221 		goto out_ro;
1222 	}
1223 
1224 	if (e2) {
1225 		/*
1226 		 * Well, the target PEB was put meanwhile, schedule it for
1227 		 * erasure.
1228 		 */
1229 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1230 		       e2->pnum, vol_id, lnum);
1231 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1232 		if (err)
1233 			goto out_ro;
1234 	}
1235 
1236 	dbg_wl("done");
1237 	mutex_unlock(&ubi->move_mutex);
1238 	return 0;
1239 
1240 	/*
1241 	 * For some reasons the LEB was not moved, might be an error, might be
1242 	 * something else. @e1 was not changed, so return it back. @e2 might
1243 	 * have been changed, schedule it for erasure.
1244 	 */
1245 out_not_moved:
1246 	if (vol_id != -1)
1247 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1248 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1249 	else
1250 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1251 		       e1->pnum, e2->pnum, err);
1252 	spin_lock(&ubi->wl_lock);
1253 	if (protect)
1254 		prot_queue_add(ubi, e1);
1255 	else if (erroneous) {
1256 		wl_tree_add(e1, &ubi->erroneous);
1257 		ubi->erroneous_peb_count += 1;
1258 	} else if (scrubbing)
1259 		wl_tree_add(e1, &ubi->scrub);
1260 	else
1261 		wl_tree_add(e1, &ubi->used);
1262 	ubi_assert(!ubi->move_to_put);
1263 	ubi->move_from = ubi->move_to = NULL;
1264 	ubi->wl_scheduled = 0;
1265 	spin_unlock(&ubi->wl_lock);
1266 
1267 	ubi_free_vid_hdr(ubi, vid_hdr);
1268 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1269 	if (err)
1270 		goto out_ro;
1271 
1272 	mutex_unlock(&ubi->move_mutex);
1273 	return 0;
1274 
1275 out_error:
1276 	if (vol_id != -1)
1277 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
1278 			err, e1->pnum, e2->pnum);
1279 	else
1280 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1281 			err, e1->pnum, vol_id, lnum, e2->pnum);
1282 	spin_lock(&ubi->wl_lock);
1283 	ubi->move_from = ubi->move_to = NULL;
1284 	ubi->move_to_put = ubi->wl_scheduled = 0;
1285 	spin_unlock(&ubi->wl_lock);
1286 
1287 	ubi_free_vid_hdr(ubi, vid_hdr);
1288 	kmem_cache_free(ubi_wl_entry_slab, e1);
1289 	kmem_cache_free(ubi_wl_entry_slab, e2);
1290 
1291 out_ro:
1292 	ubi_ro_mode(ubi);
1293 	mutex_unlock(&ubi->move_mutex);
1294 	ubi_assert(err != 0);
1295 	return err < 0 ? err : -EIO;
1296 
1297 out_cancel:
1298 	ubi->wl_scheduled = 0;
1299 	spin_unlock(&ubi->wl_lock);
1300 	mutex_unlock(&ubi->move_mutex);
1301 	ubi_free_vid_hdr(ubi, vid_hdr);
1302 	return 0;
1303 }
1304 
1305 /**
1306  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1307  * @ubi: UBI device description object
1308  * @nested: set to non-zero if this function is called from UBI worker
1309  *
1310  * This function checks if it is time to start wear-leveling and schedules it
1311  * if yes. This function returns zero in case of success and a negative error
1312  * code in case of failure.
1313  */
1314 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1315 {
1316 	int err = 0;
1317 	struct ubi_wl_entry *e1;
1318 	struct ubi_wl_entry *e2;
1319 	struct ubi_work *wrk;
1320 
1321 	spin_lock(&ubi->wl_lock);
1322 	if (ubi->wl_scheduled)
1323 		/* Wear-leveling is already in the work queue */
1324 		goto out_unlock;
1325 
1326 	/*
1327 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1328 	 * the WL worker has to be scheduled anyway.
1329 	 */
1330 	if (!ubi->scrub.rb_node) {
1331 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1332 			/* No physical eraseblocks - no deal */
1333 			goto out_unlock;
1334 
1335 		/*
1336 		 * We schedule wear-leveling only if the difference between the
1337 		 * lowest erase counter of used physical eraseblocks and a high
1338 		 * erase counter of free physical eraseblocks is greater than
1339 		 * %UBI_WL_THRESHOLD.
1340 		 */
1341 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1342 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1343 
1344 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1345 			goto out_unlock;
1346 		dbg_wl("schedule wear-leveling");
1347 	} else
1348 		dbg_wl("schedule scrubbing");
1349 
1350 	ubi->wl_scheduled = 1;
1351 	spin_unlock(&ubi->wl_lock);
1352 
1353 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1354 	if (!wrk) {
1355 		err = -ENOMEM;
1356 		goto out_cancel;
1357 	}
1358 
1359 	wrk->anchor = 0;
1360 	wrk->func = &wear_leveling_worker;
1361 	if (nested)
1362 		__schedule_ubi_work(ubi, wrk);
1363 	else
1364 		schedule_ubi_work(ubi, wrk);
1365 	return err;
1366 
1367 out_cancel:
1368 	spin_lock(&ubi->wl_lock);
1369 	ubi->wl_scheduled = 0;
1370 out_unlock:
1371 	spin_unlock(&ubi->wl_lock);
1372 	return err;
1373 }
1374 
1375 #ifdef CONFIG_MTD_UBI_FASTMAP
1376 /**
1377  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1378  * @ubi: UBI device description object
1379  */
1380 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1381 {
1382 	struct ubi_work *wrk;
1383 
1384 	spin_lock(&ubi->wl_lock);
1385 	if (ubi->wl_scheduled) {
1386 		spin_unlock(&ubi->wl_lock);
1387 		return 0;
1388 	}
1389 	ubi->wl_scheduled = 1;
1390 	spin_unlock(&ubi->wl_lock);
1391 
1392 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1393 	if (!wrk) {
1394 		spin_lock(&ubi->wl_lock);
1395 		ubi->wl_scheduled = 0;
1396 		spin_unlock(&ubi->wl_lock);
1397 		return -ENOMEM;
1398 	}
1399 
1400 	wrk->anchor = 1;
1401 	wrk->func = &wear_leveling_worker;
1402 	schedule_ubi_work(ubi, wrk);
1403 	return 0;
1404 }
1405 #endif
1406 
1407 /**
1408  * erase_worker - physical eraseblock erase worker function.
1409  * @ubi: UBI device description object
1410  * @wl_wrk: the work object
1411  * @shutdown: non-zero if the worker has to free memory and exit
1412  * because the WL sub-system is shutting down
1413  *
1414  * This function erases a physical eraseblock and perform torture testing if
1415  * needed. It also takes care about marking the physical eraseblock bad if
1416  * needed. Returns zero in case of success and a negative error code in case of
1417  * failure.
1418  */
1419 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1420 			int shutdown)
1421 {
1422 	struct ubi_wl_entry *e = wl_wrk->e;
1423 	int pnum = e->pnum;
1424 	int vol_id = wl_wrk->vol_id;
1425 	int lnum = wl_wrk->lnum;
1426 	int err, available_consumed = 0;
1427 
1428 	if (shutdown) {
1429 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1430 		kfree(wl_wrk);
1431 		kmem_cache_free(ubi_wl_entry_slab, e);
1432 		return 0;
1433 	}
1434 
1435 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1436 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1437 
1438 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1439 
1440 	err = sync_erase(ubi, e, wl_wrk->torture);
1441 	if (!err) {
1442 		/* Fine, we've erased it successfully */
1443 		kfree(wl_wrk);
1444 
1445 		spin_lock(&ubi->wl_lock);
1446 		wl_tree_add(e, &ubi->free);
1447 		ubi->free_count++;
1448 		spin_unlock(&ubi->wl_lock);
1449 
1450 		/*
1451 		 * One more erase operation has happened, take care about
1452 		 * protected physical eraseblocks.
1453 		 */
1454 		serve_prot_queue(ubi);
1455 
1456 		/* And take care about wear-leveling */
1457 		err = ensure_wear_leveling(ubi, 1);
1458 		return err;
1459 	}
1460 
1461 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1462 	kfree(wl_wrk);
1463 
1464 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1465 	    err == -EBUSY) {
1466 		int err1;
1467 
1468 		/* Re-schedule the LEB for erasure */
1469 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1470 		if (err1) {
1471 			err = err1;
1472 			goto out_ro;
1473 		}
1474 		return err;
1475 	}
1476 
1477 	kmem_cache_free(ubi_wl_entry_slab, e);
1478 	if (err != -EIO)
1479 		/*
1480 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1481 		 * this physical eraseblock for erasure again would cause
1482 		 * errors again and again. Well, lets switch to R/O mode.
1483 		 */
1484 		goto out_ro;
1485 
1486 	/* It is %-EIO, the PEB went bad */
1487 
1488 	if (!ubi->bad_allowed) {
1489 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1490 		goto out_ro;
1491 	}
1492 
1493 	spin_lock(&ubi->volumes_lock);
1494 	if (ubi->beb_rsvd_pebs == 0) {
1495 		if (ubi->avail_pebs == 0) {
1496 			spin_unlock(&ubi->volumes_lock);
1497 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1498 			goto out_ro;
1499 		}
1500 		ubi->avail_pebs -= 1;
1501 		available_consumed = 1;
1502 	}
1503 	spin_unlock(&ubi->volumes_lock);
1504 
1505 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1506 	err = ubi_io_mark_bad(ubi, pnum);
1507 	if (err)
1508 		goto out_ro;
1509 
1510 	spin_lock(&ubi->volumes_lock);
1511 	if (ubi->beb_rsvd_pebs > 0) {
1512 		if (available_consumed) {
1513 			/*
1514 			 * The amount of reserved PEBs increased since we last
1515 			 * checked.
1516 			 */
1517 			ubi->avail_pebs += 1;
1518 			available_consumed = 0;
1519 		}
1520 		ubi->beb_rsvd_pebs -= 1;
1521 	}
1522 	ubi->bad_peb_count += 1;
1523 	ubi->good_peb_count -= 1;
1524 	ubi_calculate_reserved(ubi);
1525 	if (available_consumed)
1526 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1527 	else if (ubi->beb_rsvd_pebs)
1528 		ubi_msg(ubi, "%d PEBs left in the reserve",
1529 			ubi->beb_rsvd_pebs);
1530 	else
1531 		ubi_warn(ubi, "last PEB from the reserve was used");
1532 	spin_unlock(&ubi->volumes_lock);
1533 
1534 	return err;
1535 
1536 out_ro:
1537 	if (available_consumed) {
1538 		spin_lock(&ubi->volumes_lock);
1539 		ubi->avail_pebs += 1;
1540 		spin_unlock(&ubi->volumes_lock);
1541 	}
1542 	ubi_ro_mode(ubi);
1543 	return err;
1544 }
1545 
1546 /**
1547  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1548  * @ubi: UBI device description object
1549  * @vol_id: the volume ID that last used this PEB
1550  * @lnum: the last used logical eraseblock number for the PEB
1551  * @pnum: physical eraseblock to return
1552  * @torture: if this physical eraseblock has to be tortured
1553  *
1554  * This function is called to return physical eraseblock @pnum to the pool of
1555  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1556  * occurred to this @pnum and it has to be tested. This function returns zero
1557  * in case of success, and a negative error code in case of failure.
1558  */
1559 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1560 		   int pnum, int torture)
1561 {
1562 	int err;
1563 	struct ubi_wl_entry *e;
1564 
1565 	dbg_wl("PEB %d", pnum);
1566 	ubi_assert(pnum >= 0);
1567 	ubi_assert(pnum < ubi->peb_count);
1568 
1569 retry:
1570 	spin_lock(&ubi->wl_lock);
1571 	e = ubi->lookuptbl[pnum];
1572 	if (e == ubi->move_from) {
1573 		/*
1574 		 * User is putting the physical eraseblock which was selected to
1575 		 * be moved. It will be scheduled for erasure in the
1576 		 * wear-leveling worker.
1577 		 */
1578 		dbg_wl("PEB %d is being moved, wait", pnum);
1579 		spin_unlock(&ubi->wl_lock);
1580 
1581 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1582 		mutex_lock(&ubi->move_mutex);
1583 		mutex_unlock(&ubi->move_mutex);
1584 		goto retry;
1585 	} else if (e == ubi->move_to) {
1586 		/*
1587 		 * User is putting the physical eraseblock which was selected
1588 		 * as the target the data is moved to. It may happen if the EBA
1589 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1590 		 * but the WL sub-system has not put the PEB to the "used" tree
1591 		 * yet, but it is about to do this. So we just set a flag which
1592 		 * will tell the WL worker that the PEB is not needed anymore
1593 		 * and should be scheduled for erasure.
1594 		 */
1595 		dbg_wl("PEB %d is the target of data moving", pnum);
1596 		ubi_assert(!ubi->move_to_put);
1597 		ubi->move_to_put = 1;
1598 		spin_unlock(&ubi->wl_lock);
1599 		return 0;
1600 	} else {
1601 		if (in_wl_tree(e, &ubi->used)) {
1602 			self_check_in_wl_tree(ubi, e, &ubi->used);
1603 			rb_erase(&e->u.rb, &ubi->used);
1604 		} else if (in_wl_tree(e, &ubi->scrub)) {
1605 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1606 			rb_erase(&e->u.rb, &ubi->scrub);
1607 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1608 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1609 			rb_erase(&e->u.rb, &ubi->erroneous);
1610 			ubi->erroneous_peb_count -= 1;
1611 			ubi_assert(ubi->erroneous_peb_count >= 0);
1612 			/* Erroneous PEBs should be tortured */
1613 			torture = 1;
1614 		} else {
1615 			err = prot_queue_del(ubi, e->pnum);
1616 			if (err) {
1617 				ubi_err(ubi, "PEB %d not found", pnum);
1618 				ubi_ro_mode(ubi);
1619 				spin_unlock(&ubi->wl_lock);
1620 				return err;
1621 			}
1622 		}
1623 	}
1624 	spin_unlock(&ubi->wl_lock);
1625 
1626 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1627 	if (err) {
1628 		spin_lock(&ubi->wl_lock);
1629 		wl_tree_add(e, &ubi->used);
1630 		spin_unlock(&ubi->wl_lock);
1631 	}
1632 
1633 	return err;
1634 }
1635 
1636 /**
1637  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1638  * @ubi: UBI device description object
1639  * @pnum: the physical eraseblock to schedule
1640  *
1641  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1642  * needs scrubbing. This function schedules a physical eraseblock for
1643  * scrubbing which is done in background. This function returns zero in case of
1644  * success and a negative error code in case of failure.
1645  */
1646 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1647 {
1648 	struct ubi_wl_entry *e;
1649 
1650 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1651 
1652 retry:
1653 	spin_lock(&ubi->wl_lock);
1654 	e = ubi->lookuptbl[pnum];
1655 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1656 				   in_wl_tree(e, &ubi->erroneous)) {
1657 		spin_unlock(&ubi->wl_lock);
1658 		return 0;
1659 	}
1660 
1661 	if (e == ubi->move_to) {
1662 		/*
1663 		 * This physical eraseblock was used to move data to. The data
1664 		 * was moved but the PEB was not yet inserted to the proper
1665 		 * tree. We should just wait a little and let the WL worker
1666 		 * proceed.
1667 		 */
1668 		spin_unlock(&ubi->wl_lock);
1669 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1670 		yield();
1671 		goto retry;
1672 	}
1673 
1674 	if (in_wl_tree(e, &ubi->used)) {
1675 		self_check_in_wl_tree(ubi, e, &ubi->used);
1676 		rb_erase(&e->u.rb, &ubi->used);
1677 	} else {
1678 		int err;
1679 
1680 		err = prot_queue_del(ubi, e->pnum);
1681 		if (err) {
1682 			ubi_err(ubi, "PEB %d not found", pnum);
1683 			ubi_ro_mode(ubi);
1684 			spin_unlock(&ubi->wl_lock);
1685 			return err;
1686 		}
1687 	}
1688 
1689 	wl_tree_add(e, &ubi->scrub);
1690 	spin_unlock(&ubi->wl_lock);
1691 
1692 	/*
1693 	 * Technically scrubbing is the same as wear-leveling, so it is done
1694 	 * by the WL worker.
1695 	 */
1696 	return ensure_wear_leveling(ubi, 0);
1697 }
1698 
1699 /**
1700  * ubi_wl_flush - flush all pending works.
1701  * @ubi: UBI device description object
1702  * @vol_id: the volume id to flush for
1703  * @lnum: the logical eraseblock number to flush for
1704  *
1705  * This function executes all pending works for a particular volume id /
1706  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1707  * acts as a wildcard for all of the corresponding volume numbers or logical
1708  * eraseblock numbers. It returns zero in case of success and a negative error
1709  * code in case of failure.
1710  */
1711 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1712 {
1713 	int err = 0;
1714 	int found = 1;
1715 
1716 	/*
1717 	 * Erase while the pending works queue is not empty, but not more than
1718 	 * the number of currently pending works.
1719 	 */
1720 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1721 	       vol_id, lnum, ubi->works_count);
1722 
1723 	while (found) {
1724 		struct ubi_work *wrk, *tmp;
1725 		found = 0;
1726 
1727 		down_read(&ubi->work_sem);
1728 		spin_lock(&ubi->wl_lock);
1729 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1730 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1731 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1732 				list_del(&wrk->list);
1733 				ubi->works_count -= 1;
1734 				ubi_assert(ubi->works_count >= 0);
1735 				spin_unlock(&ubi->wl_lock);
1736 
1737 				err = wrk->func(ubi, wrk, 0);
1738 				if (err) {
1739 					up_read(&ubi->work_sem);
1740 					return err;
1741 				}
1742 
1743 				spin_lock(&ubi->wl_lock);
1744 				found = 1;
1745 				break;
1746 			}
1747 		}
1748 		spin_unlock(&ubi->wl_lock);
1749 		up_read(&ubi->work_sem);
1750 	}
1751 
1752 	/*
1753 	 * Make sure all the works which have been done in parallel are
1754 	 * finished.
1755 	 */
1756 	down_write(&ubi->work_sem);
1757 	up_write(&ubi->work_sem);
1758 
1759 	return err;
1760 }
1761 
1762 /**
1763  * tree_destroy - destroy an RB-tree.
1764  * @root: the root of the tree to destroy
1765  */
1766 static void tree_destroy(struct rb_root *root)
1767 {
1768 	struct rb_node *rb;
1769 	struct ubi_wl_entry *e;
1770 
1771 	rb = root->rb_node;
1772 	while (rb) {
1773 		if (rb->rb_left)
1774 			rb = rb->rb_left;
1775 		else if (rb->rb_right)
1776 			rb = rb->rb_right;
1777 		else {
1778 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1779 
1780 			rb = rb_parent(rb);
1781 			if (rb) {
1782 				if (rb->rb_left == &e->u.rb)
1783 					rb->rb_left = NULL;
1784 				else
1785 					rb->rb_right = NULL;
1786 			}
1787 
1788 			kmem_cache_free(ubi_wl_entry_slab, e);
1789 		}
1790 	}
1791 }
1792 
1793 /**
1794  * ubi_thread - UBI background thread.
1795  * @u: the UBI device description object pointer
1796  */
1797 int ubi_thread(void *u)
1798 {
1799 	int failures = 0;
1800 	struct ubi_device *ubi = u;
1801 
1802 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1803 		ubi->bgt_name, task_pid_nr(current));
1804 
1805 	set_freezable();
1806 	for (;;) {
1807 		int err;
1808 
1809 		if (kthread_should_stop()) {
1810 			ubi_msg(ubi, "background thread \"%s\" should stop, PID %d",
1811 				ubi->bgt_name, task_pid_nr(current));
1812 			break;
1813 		}
1814 
1815 		if (try_to_freeze())
1816 			continue;
1817 
1818 		spin_lock(&ubi->wl_lock);
1819 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1820 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1821 			set_current_state(TASK_INTERRUPTIBLE);
1822 			spin_unlock(&ubi->wl_lock);
1823 			schedule();
1824 			continue;
1825 		}
1826 		spin_unlock(&ubi->wl_lock);
1827 
1828 		err = do_work(ubi);
1829 		if (err) {
1830 			ubi_err(ubi, "%s: work failed with error code %d",
1831 				ubi->bgt_name, err);
1832 			if (failures++ > WL_MAX_FAILURES) {
1833 				/*
1834 				 * Too many failures, disable the thread and
1835 				 * switch to read-only mode.
1836 				 */
1837 				ubi_msg(ubi, "%s: %d consecutive failures",
1838 					ubi->bgt_name, WL_MAX_FAILURES);
1839 				ubi_ro_mode(ubi);
1840 				ubi->thread_enabled = 0;
1841 				continue;
1842 			}
1843 		} else
1844 			failures = 0;
1845 
1846 		cond_resched();
1847 	}
1848 
1849 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1850 	return 0;
1851 }
1852 
1853 /**
1854  * shutdown_work - shutdown all pending works.
1855  * @ubi: UBI device description object
1856  */
1857 static void shutdown_work(struct ubi_device *ubi)
1858 {
1859 	while (!list_empty(&ubi->works)) {
1860 		struct ubi_work *wrk;
1861 
1862 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1863 		list_del(&wrk->list);
1864 		wrk->func(ubi, wrk, 1);
1865 		ubi->works_count -= 1;
1866 		ubi_assert(ubi->works_count >= 0);
1867 	}
1868 }
1869 
1870 /**
1871  * ubi_wl_init - initialize the WL sub-system using attaching information.
1872  * @ubi: UBI device description object
1873  * @ai: attaching information
1874  *
1875  * This function returns zero in case of success, and a negative error code in
1876  * case of failure.
1877  */
1878 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1879 {
1880 	int err, i, reserved_pebs, found_pebs = 0;
1881 	struct rb_node *rb1, *rb2;
1882 	struct ubi_ainf_volume *av;
1883 	struct ubi_ainf_peb *aeb, *tmp;
1884 	struct ubi_wl_entry *e;
1885 
1886 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1887 	spin_lock_init(&ubi->wl_lock);
1888 	mutex_init(&ubi->move_mutex);
1889 	init_rwsem(&ubi->work_sem);
1890 	ubi->max_ec = ai->max_ec;
1891 	INIT_LIST_HEAD(&ubi->works);
1892 #ifdef CONFIG_MTD_UBI_FASTMAP
1893 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1894 #endif
1895 
1896 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1897 
1898 	err = -ENOMEM;
1899 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1900 	if (!ubi->lookuptbl)
1901 		return err;
1902 
1903 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1904 		INIT_LIST_HEAD(&ubi->pq[i]);
1905 	ubi->pq_head = 0;
1906 
1907 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1908 		cond_resched();
1909 
1910 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1911 		if (!e)
1912 			goto out_free;
1913 
1914 		e->pnum = aeb->pnum;
1915 		e->ec = aeb->ec;
1916 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1917 		ubi->lookuptbl[e->pnum] = e;
1918 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1919 			kmem_cache_free(ubi_wl_entry_slab, e);
1920 			goto out_free;
1921 		}
1922 
1923 		found_pebs++;
1924 	}
1925 
1926 	ubi->free_count = 0;
1927 	list_for_each_entry(aeb, &ai->free, u.list) {
1928 		cond_resched();
1929 
1930 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1931 		if (!e)
1932 			goto out_free;
1933 
1934 		e->pnum = aeb->pnum;
1935 		e->ec = aeb->ec;
1936 		ubi_assert(e->ec >= 0);
1937 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1938 
1939 		wl_tree_add(e, &ubi->free);
1940 		ubi->free_count++;
1941 
1942 		ubi->lookuptbl[e->pnum] = e;
1943 
1944 		found_pebs++;
1945 	}
1946 
1947 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1948 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1949 			cond_resched();
1950 
1951 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1952 			if (!e)
1953 				goto out_free;
1954 
1955 			e->pnum = aeb->pnum;
1956 			e->ec = aeb->ec;
1957 			ubi->lookuptbl[e->pnum] = e;
1958 
1959 			if (!aeb->scrub) {
1960 				dbg_wl("add PEB %d EC %d to the used tree",
1961 				       e->pnum, e->ec);
1962 				wl_tree_add(e, &ubi->used);
1963 			} else {
1964 				dbg_wl("add PEB %d EC %d to the scrub tree",
1965 				       e->pnum, e->ec);
1966 				wl_tree_add(e, &ubi->scrub);
1967 			}
1968 
1969 			found_pebs++;
1970 		}
1971 	}
1972 
1973 	dbg_wl("found %i PEBs", found_pebs);
1974 
1975 	if (ubi->fm)
1976 		ubi_assert(ubi->good_peb_count == \
1977 			   found_pebs + ubi->fm->used_blocks);
1978 	else
1979 		ubi_assert(ubi->good_peb_count == found_pebs);
1980 
1981 	reserved_pebs = WL_RESERVED_PEBS;
1982 #ifdef CONFIG_MTD_UBI_FASTMAP
1983 	/* Reserve enough LEBs to store two fastmaps. */
1984 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1985 #endif
1986 
1987 	if (ubi->avail_pebs < reserved_pebs) {
1988 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1989 			ubi->avail_pebs, reserved_pebs);
1990 		if (ubi->corr_peb_count)
1991 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1992 				ubi->corr_peb_count);
1993 		goto out_free;
1994 	}
1995 	ubi->avail_pebs -= reserved_pebs;
1996 	ubi->rsvd_pebs += reserved_pebs;
1997 
1998 	/* Schedule wear-leveling if needed */
1999 	err = ensure_wear_leveling(ubi, 0);
2000 	if (err)
2001 		goto out_free;
2002 
2003 	return 0;
2004 
2005 out_free:
2006 	shutdown_work(ubi);
2007 	tree_destroy(&ubi->used);
2008 	tree_destroy(&ubi->free);
2009 	tree_destroy(&ubi->scrub);
2010 	kfree(ubi->lookuptbl);
2011 	return err;
2012 }
2013 
2014 /**
2015  * protection_queue_destroy - destroy the protection queue.
2016  * @ubi: UBI device description object
2017  */
2018 static void protection_queue_destroy(struct ubi_device *ubi)
2019 {
2020 	int i;
2021 	struct ubi_wl_entry *e, *tmp;
2022 
2023 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2024 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2025 			list_del(&e->u.list);
2026 			kmem_cache_free(ubi_wl_entry_slab, e);
2027 		}
2028 	}
2029 }
2030 
2031 /**
2032  * ubi_wl_close - close the wear-leveling sub-system.
2033  * @ubi: UBI device description object
2034  */
2035 void ubi_wl_close(struct ubi_device *ubi)
2036 {
2037 	dbg_wl("close the WL sub-system");
2038 	shutdown_work(ubi);
2039 	protection_queue_destroy(ubi);
2040 	tree_destroy(&ubi->used);
2041 	tree_destroy(&ubi->erroneous);
2042 	tree_destroy(&ubi->free);
2043 	tree_destroy(&ubi->scrub);
2044 	kfree(ubi->lookuptbl);
2045 }
2046 
2047 /**
2048  * self_check_ec - make sure that the erase counter of a PEB is correct.
2049  * @ubi: UBI device description object
2050  * @pnum: the physical eraseblock number to check
2051  * @ec: the erase counter to check
2052  *
2053  * This function returns zero if the erase counter of physical eraseblock @pnum
2054  * is equivalent to @ec, and a negative error code if not or if an error
2055  * occurred.
2056  */
2057 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2058 {
2059 	int err;
2060 	long long read_ec;
2061 	struct ubi_ec_hdr *ec_hdr;
2062 
2063 	if (!ubi_dbg_chk_gen(ubi))
2064 		return 0;
2065 
2066 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2067 	if (!ec_hdr)
2068 		return -ENOMEM;
2069 
2070 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2071 	if (err && err != UBI_IO_BITFLIPS) {
2072 		/* The header does not have to exist */
2073 		err = 0;
2074 		goto out_free;
2075 	}
2076 
2077 	read_ec = be64_to_cpu(ec_hdr->ec);
2078 	if (ec != read_ec && read_ec - ec > 1) {
2079 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2080 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2081 		dump_stack();
2082 		err = 1;
2083 	} else
2084 		err = 0;
2085 
2086 out_free:
2087 	kfree(ec_hdr);
2088 	return err;
2089 }
2090 
2091 /**
2092  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2093  * @ubi: UBI device description object
2094  * @e: the wear-leveling entry to check
2095  * @root: the root of the tree
2096  *
2097  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2098  * is not.
2099  */
2100 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2101 				 struct ubi_wl_entry *e, struct rb_root *root)
2102 {
2103 	if (!ubi_dbg_chk_gen(ubi))
2104 		return 0;
2105 
2106 	if (in_wl_tree(e, root))
2107 		return 0;
2108 
2109 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2110 		e->pnum, e->ec, root);
2111 	dump_stack();
2112 	return -EINVAL;
2113 }
2114 
2115 /**
2116  * self_check_in_pq - check if wear-leveling entry is in the protection
2117  *                        queue.
2118  * @ubi: UBI device description object
2119  * @e: the wear-leveling entry to check
2120  *
2121  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2122  */
2123 static int self_check_in_pq(const struct ubi_device *ubi,
2124 			    struct ubi_wl_entry *e)
2125 {
2126 	struct ubi_wl_entry *p;
2127 	int i;
2128 
2129 	if (!ubi_dbg_chk_gen(ubi))
2130 		return 0;
2131 
2132 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2133 		list_for_each_entry(p, &ubi->pq[i], u.list)
2134 			if (p == e)
2135 				return 0;
2136 
2137 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2138 		e->pnum, e->ec);
2139 	dump_stack();
2140 	return -EINVAL;
2141 }
2142