1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_tree_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188 static int do_work(struct ubi_device *ubi) 189 { 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226 } 227 228 /** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237 { 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265 } 266 267 /** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276 { 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286 } 287 288 /** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299 { 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307 } 308 309 /** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320 { 321 struct rb_node *p; 322 struct ubi_wl_entry *e, *prev_e = NULL; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 prev_e = e; 338 e = e1; 339 } 340 } 341 342 /* If no fastmap has been written and this WL entry can be used 343 * as anchor PEB, hold it back and return the second best WL entry 344 * such that fastmap can use the anchor PEB later. */ 345 if (prev_e && !ubi->fm_disabled && 346 !ubi->fm && e->pnum < UBI_FM_MAX_START) 347 return prev_e; 348 349 return e; 350 } 351 352 /** 353 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 354 * @ubi: UBI device description object 355 * @root: the RB-tree where to look for 356 * 357 * This function looks for a wear leveling entry with medium erase counter, 358 * but not greater or equivalent than the lowest erase counter plus 359 * %WL_FREE_MAX_DIFF/2. 360 */ 361 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 362 struct rb_root *root) 363 { 364 struct ubi_wl_entry *e, *first, *last; 365 366 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 367 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 368 369 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 370 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 371 372 /* If no fastmap has been written and this WL entry can be used 373 * as anchor PEB, hold it back and return the second best 374 * WL entry such that fastmap can use the anchor PEB later. */ 375 e = may_reserve_for_fm(ubi, e, root); 376 } else 377 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 378 379 return e; 380 } 381 382 /** 383 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 384 * refill_wl_user_pool(). 385 * @ubi: UBI device description object 386 * 387 * This function returns a a wear leveling entry in case of success and 388 * NULL in case of failure. 389 */ 390 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 391 { 392 struct ubi_wl_entry *e; 393 394 e = find_mean_wl_entry(ubi, &ubi->free); 395 if (!e) { 396 ubi_err(ubi, "no free eraseblocks"); 397 return NULL; 398 } 399 400 self_check_in_wl_tree(ubi, e, &ubi->free); 401 402 /* 403 * Move the physical eraseblock to the protection queue where it will 404 * be protected from being moved for some time. 405 */ 406 rb_erase(&e->u.rb, &ubi->free); 407 ubi->free_count--; 408 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 409 410 return e; 411 } 412 413 /** 414 * prot_queue_del - remove a physical eraseblock from the protection queue. 415 * @ubi: UBI device description object 416 * @pnum: the physical eraseblock to remove 417 * 418 * This function deletes PEB @pnum from the protection queue and returns zero 419 * in case of success and %-ENODEV if the PEB was not found. 420 */ 421 static int prot_queue_del(struct ubi_device *ubi, int pnum) 422 { 423 struct ubi_wl_entry *e; 424 425 e = ubi->lookuptbl[pnum]; 426 if (!e) 427 return -ENODEV; 428 429 if (self_check_in_pq(ubi, e)) 430 return -ENODEV; 431 432 list_del(&e->u.list); 433 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 434 return 0; 435 } 436 437 /** 438 * sync_erase - synchronously erase a physical eraseblock. 439 * @ubi: UBI device description object 440 * @e: the the physical eraseblock to erase 441 * @torture: if the physical eraseblock has to be tortured 442 * 443 * This function returns zero in case of success and a negative error code in 444 * case of failure. 445 */ 446 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 447 int torture) 448 { 449 int err; 450 struct ubi_ec_hdr *ec_hdr; 451 unsigned long long ec = e->ec; 452 453 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 454 455 err = self_check_ec(ubi, e->pnum, e->ec); 456 if (err) 457 return -EINVAL; 458 459 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 460 if (!ec_hdr) 461 return -ENOMEM; 462 463 err = ubi_io_sync_erase(ubi, e->pnum, torture); 464 if (err < 0) 465 goto out_free; 466 467 ec += err; 468 if (ec > UBI_MAX_ERASECOUNTER) { 469 /* 470 * Erase counter overflow. Upgrade UBI and use 64-bit 471 * erase counters internally. 472 */ 473 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 474 e->pnum, ec); 475 err = -EINVAL; 476 goto out_free; 477 } 478 479 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 480 481 ec_hdr->ec = cpu_to_be64(ec); 482 483 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 484 if (err) 485 goto out_free; 486 487 e->ec = ec; 488 spin_lock(&ubi->wl_lock); 489 if (e->ec > ubi->max_ec) 490 ubi->max_ec = e->ec; 491 spin_unlock(&ubi->wl_lock); 492 493 out_free: 494 kfree(ec_hdr); 495 return err; 496 } 497 498 /** 499 * serve_prot_queue - check if it is time to stop protecting PEBs. 500 * @ubi: UBI device description object 501 * 502 * This function is called after each erase operation and removes PEBs from the 503 * tail of the protection queue. These PEBs have been protected for long enough 504 * and should be moved to the used tree. 505 */ 506 static void serve_prot_queue(struct ubi_device *ubi) 507 { 508 struct ubi_wl_entry *e, *tmp; 509 int count; 510 511 /* 512 * There may be several protected physical eraseblock to remove, 513 * process them all. 514 */ 515 repeat: 516 count = 0; 517 spin_lock(&ubi->wl_lock); 518 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 519 dbg_wl("PEB %d EC %d protection over, move to used tree", 520 e->pnum, e->ec); 521 522 list_del(&e->u.list); 523 wl_tree_add(e, &ubi->used); 524 if (count++ > 32) { 525 /* 526 * Let's be nice and avoid holding the spinlock for 527 * too long. 528 */ 529 spin_unlock(&ubi->wl_lock); 530 cond_resched(); 531 goto repeat; 532 } 533 } 534 535 ubi->pq_head += 1; 536 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 537 ubi->pq_head = 0; 538 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 539 spin_unlock(&ubi->wl_lock); 540 } 541 542 /** 543 * __schedule_ubi_work - schedule a work. 544 * @ubi: UBI device description object 545 * @wrk: the work to schedule 546 * 547 * This function adds a work defined by @wrk to the tail of the pending works 548 * list. Can only be used if ubi->work_sem is already held in read mode! 549 */ 550 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 551 { 552 spin_lock(&ubi->wl_lock); 553 list_add_tail(&wrk->list, &ubi->works); 554 ubi_assert(ubi->works_count >= 0); 555 ubi->works_count += 1; 556 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 557 wake_up_process(ubi->bgt_thread); 558 spin_unlock(&ubi->wl_lock); 559 } 560 561 /** 562 * schedule_ubi_work - schedule a work. 563 * @ubi: UBI device description object 564 * @wrk: the work to schedule 565 * 566 * This function adds a work defined by @wrk to the tail of the pending works 567 * list. 568 */ 569 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 570 { 571 down_read(&ubi->work_sem); 572 __schedule_ubi_work(ubi, wrk); 573 up_read(&ubi->work_sem); 574 } 575 576 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 577 int shutdown); 578 579 /** 580 * schedule_erase - schedule an erase work. 581 * @ubi: UBI device description object 582 * @e: the WL entry of the physical eraseblock to erase 583 * @vol_id: the volume ID that last used this PEB 584 * @lnum: the last used logical eraseblock number for the PEB 585 * @torture: if the physical eraseblock has to be tortured 586 * 587 * This function returns zero in case of success and a %-ENOMEM in case of 588 * failure. 589 */ 590 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 591 int vol_id, int lnum, int torture, bool nested) 592 { 593 struct ubi_work *wl_wrk; 594 595 ubi_assert(e); 596 597 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 598 e->pnum, e->ec, torture); 599 600 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 601 if (!wl_wrk) 602 return -ENOMEM; 603 604 wl_wrk->func = &erase_worker; 605 wl_wrk->e = e; 606 wl_wrk->vol_id = vol_id; 607 wl_wrk->lnum = lnum; 608 wl_wrk->torture = torture; 609 610 if (nested) 611 __schedule_ubi_work(ubi, wl_wrk); 612 else 613 schedule_ubi_work(ubi, wl_wrk); 614 return 0; 615 } 616 617 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 618 /** 619 * do_sync_erase - run the erase worker synchronously. 620 * @ubi: UBI device description object 621 * @e: the WL entry of the physical eraseblock to erase 622 * @vol_id: the volume ID that last used this PEB 623 * @lnum: the last used logical eraseblock number for the PEB 624 * @torture: if the physical eraseblock has to be tortured 625 * 626 */ 627 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 628 int vol_id, int lnum, int torture) 629 { 630 struct ubi_work wl_wrk; 631 632 dbg_wl("sync erase of PEB %i", e->pnum); 633 634 wl_wrk.e = e; 635 wl_wrk.vol_id = vol_id; 636 wl_wrk.lnum = lnum; 637 wl_wrk.torture = torture; 638 639 return __erase_worker(ubi, &wl_wrk); 640 } 641 642 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 643 /** 644 * wear_leveling_worker - wear-leveling worker function. 645 * @ubi: UBI device description object 646 * @wrk: the work object 647 * @shutdown: non-zero if the worker has to free memory and exit 648 * because the WL-subsystem is shutting down 649 * 650 * This function copies a more worn out physical eraseblock to a less worn out 651 * one. Returns zero in case of success and a negative error code in case of 652 * failure. 653 */ 654 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 655 int shutdown) 656 { 657 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 658 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 659 #ifdef CONFIG_MTD_UBI_FASTMAP 660 int anchor = wrk->anchor; 661 #endif 662 struct ubi_wl_entry *e1, *e2; 663 struct ubi_vid_io_buf *vidb; 664 struct ubi_vid_hdr *vid_hdr; 665 int dst_leb_clean = 0; 666 667 kfree(wrk); 668 if (shutdown) 669 return 0; 670 671 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 672 if (!vidb) 673 return -ENOMEM; 674 675 vid_hdr = ubi_get_vid_hdr(vidb); 676 677 down_read(&ubi->fm_eba_sem); 678 mutex_lock(&ubi->move_mutex); 679 spin_lock(&ubi->wl_lock); 680 ubi_assert(!ubi->move_from && !ubi->move_to); 681 ubi_assert(!ubi->move_to_put); 682 683 if (!ubi->free.rb_node || 684 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 685 /* 686 * No free physical eraseblocks? Well, they must be waiting in 687 * the queue to be erased. Cancel movement - it will be 688 * triggered again when a free physical eraseblock appears. 689 * 690 * No used physical eraseblocks? They must be temporarily 691 * protected from being moved. They will be moved to the 692 * @ubi->used tree later and the wear-leveling will be 693 * triggered again. 694 */ 695 dbg_wl("cancel WL, a list is empty: free %d, used %d", 696 !ubi->free.rb_node, !ubi->used.rb_node); 697 goto out_cancel; 698 } 699 700 #ifdef CONFIG_MTD_UBI_FASTMAP 701 /* Check whether we need to produce an anchor PEB */ 702 if (!anchor) 703 anchor = !anchor_pebs_available(&ubi->free); 704 705 if (anchor) { 706 e1 = find_anchor_wl_entry(&ubi->used); 707 if (!e1) 708 goto out_cancel; 709 e2 = get_peb_for_wl(ubi); 710 if (!e2) 711 goto out_cancel; 712 713 self_check_in_wl_tree(ubi, e1, &ubi->used); 714 rb_erase(&e1->u.rb, &ubi->used); 715 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 716 } else if (!ubi->scrub.rb_node) { 717 #else 718 if (!ubi->scrub.rb_node) { 719 #endif 720 /* 721 * Now pick the least worn-out used physical eraseblock and a 722 * highly worn-out free physical eraseblock. If the erase 723 * counters differ much enough, start wear-leveling. 724 */ 725 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 726 e2 = get_peb_for_wl(ubi); 727 if (!e2) 728 goto out_cancel; 729 730 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 731 dbg_wl("no WL needed: min used EC %d, max free EC %d", 732 e1->ec, e2->ec); 733 734 /* Give the unused PEB back */ 735 wl_tree_add(e2, &ubi->free); 736 ubi->free_count++; 737 goto out_cancel; 738 } 739 self_check_in_wl_tree(ubi, e1, &ubi->used); 740 rb_erase(&e1->u.rb, &ubi->used); 741 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 742 e1->pnum, e1->ec, e2->pnum, e2->ec); 743 } else { 744 /* Perform scrubbing */ 745 scrubbing = 1; 746 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 747 e2 = get_peb_for_wl(ubi); 748 if (!e2) 749 goto out_cancel; 750 751 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 752 rb_erase(&e1->u.rb, &ubi->scrub); 753 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 754 } 755 756 ubi->move_from = e1; 757 ubi->move_to = e2; 758 spin_unlock(&ubi->wl_lock); 759 760 /* 761 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 762 * We so far do not know which logical eraseblock our physical 763 * eraseblock (@e1) belongs to. We have to read the volume identifier 764 * header first. 765 * 766 * Note, we are protected from this PEB being unmapped and erased. The 767 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 768 * which is being moved was unmapped. 769 */ 770 771 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 772 if (err && err != UBI_IO_BITFLIPS) { 773 dst_leb_clean = 1; 774 if (err == UBI_IO_FF) { 775 /* 776 * We are trying to move PEB without a VID header. UBI 777 * always write VID headers shortly after the PEB was 778 * given, so we have a situation when it has not yet 779 * had a chance to write it, because it was preempted. 780 * So add this PEB to the protection queue so far, 781 * because presumably more data will be written there 782 * (including the missing VID header), and then we'll 783 * move it. 784 */ 785 dbg_wl("PEB %d has no VID header", e1->pnum); 786 protect = 1; 787 goto out_not_moved; 788 } else if (err == UBI_IO_FF_BITFLIPS) { 789 /* 790 * The same situation as %UBI_IO_FF, but bit-flips were 791 * detected. It is better to schedule this PEB for 792 * scrubbing. 793 */ 794 dbg_wl("PEB %d has no VID header but has bit-flips", 795 e1->pnum); 796 scrubbing = 1; 797 goto out_not_moved; 798 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 799 /* 800 * While a full scan would detect interrupted erasures 801 * at attach time we can face them here when attached from 802 * Fastmap. 803 */ 804 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 805 e1->pnum); 806 erase = 1; 807 goto out_not_moved; 808 } 809 810 ubi_err(ubi, "error %d while reading VID header from PEB %d", 811 err, e1->pnum); 812 goto out_error; 813 } 814 815 vol_id = be32_to_cpu(vid_hdr->vol_id); 816 lnum = be32_to_cpu(vid_hdr->lnum); 817 818 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 819 if (err) { 820 if (err == MOVE_CANCEL_RACE) { 821 /* 822 * The LEB has not been moved because the volume is 823 * being deleted or the PEB has been put meanwhile. We 824 * should prevent this PEB from being selected for 825 * wear-leveling movement again, so put it to the 826 * protection queue. 827 */ 828 protect = 1; 829 dst_leb_clean = 1; 830 goto out_not_moved; 831 } 832 if (err == MOVE_RETRY) { 833 scrubbing = 1; 834 dst_leb_clean = 1; 835 goto out_not_moved; 836 } 837 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 838 err == MOVE_TARGET_RD_ERR) { 839 /* 840 * Target PEB had bit-flips or write error - torture it. 841 */ 842 torture = 1; 843 keep = 1; 844 goto out_not_moved; 845 } 846 847 if (err == MOVE_SOURCE_RD_ERR) { 848 /* 849 * An error happened while reading the source PEB. Do 850 * not switch to R/O mode in this case, and give the 851 * upper layers a possibility to recover from this, 852 * e.g. by unmapping corresponding LEB. Instead, just 853 * put this PEB to the @ubi->erroneous list to prevent 854 * UBI from trying to move it over and over again. 855 */ 856 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 857 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 858 ubi->erroneous_peb_count); 859 goto out_error; 860 } 861 dst_leb_clean = 1; 862 erroneous = 1; 863 goto out_not_moved; 864 } 865 866 if (err < 0) 867 goto out_error; 868 869 ubi_assert(0); 870 } 871 872 /* The PEB has been successfully moved */ 873 if (scrubbing) 874 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 875 e1->pnum, vol_id, lnum, e2->pnum); 876 ubi_free_vid_buf(vidb); 877 878 spin_lock(&ubi->wl_lock); 879 if (!ubi->move_to_put) { 880 wl_tree_add(e2, &ubi->used); 881 e2 = NULL; 882 } 883 ubi->move_from = ubi->move_to = NULL; 884 ubi->move_to_put = ubi->wl_scheduled = 0; 885 spin_unlock(&ubi->wl_lock); 886 887 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 888 if (err) { 889 if (e2) 890 wl_entry_destroy(ubi, e2); 891 goto out_ro; 892 } 893 894 if (e2) { 895 /* 896 * Well, the target PEB was put meanwhile, schedule it for 897 * erasure. 898 */ 899 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 900 e2->pnum, vol_id, lnum); 901 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 902 if (err) 903 goto out_ro; 904 } 905 906 dbg_wl("done"); 907 mutex_unlock(&ubi->move_mutex); 908 up_read(&ubi->fm_eba_sem); 909 return 0; 910 911 /* 912 * For some reasons the LEB was not moved, might be an error, might be 913 * something else. @e1 was not changed, so return it back. @e2 might 914 * have been changed, schedule it for erasure. 915 */ 916 out_not_moved: 917 if (vol_id != -1) 918 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 919 e1->pnum, vol_id, lnum, e2->pnum, err); 920 else 921 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 922 e1->pnum, e2->pnum, err); 923 spin_lock(&ubi->wl_lock); 924 if (protect) 925 prot_queue_add(ubi, e1); 926 else if (erroneous) { 927 wl_tree_add(e1, &ubi->erroneous); 928 ubi->erroneous_peb_count += 1; 929 } else if (scrubbing) 930 wl_tree_add(e1, &ubi->scrub); 931 else if (keep) 932 wl_tree_add(e1, &ubi->used); 933 if (dst_leb_clean) { 934 wl_tree_add(e2, &ubi->free); 935 ubi->free_count++; 936 } 937 938 ubi_assert(!ubi->move_to_put); 939 ubi->move_from = ubi->move_to = NULL; 940 ubi->wl_scheduled = 0; 941 spin_unlock(&ubi->wl_lock); 942 943 ubi_free_vid_buf(vidb); 944 if (dst_leb_clean) { 945 ensure_wear_leveling(ubi, 1); 946 } else { 947 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 948 if (err) 949 goto out_ro; 950 } 951 952 if (erase) { 953 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 954 if (err) 955 goto out_ro; 956 } 957 958 mutex_unlock(&ubi->move_mutex); 959 up_read(&ubi->fm_eba_sem); 960 return 0; 961 962 out_error: 963 if (vol_id != -1) 964 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 965 err, e1->pnum, e2->pnum); 966 else 967 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 968 err, e1->pnum, vol_id, lnum, e2->pnum); 969 spin_lock(&ubi->wl_lock); 970 ubi->move_from = ubi->move_to = NULL; 971 ubi->move_to_put = ubi->wl_scheduled = 0; 972 spin_unlock(&ubi->wl_lock); 973 974 ubi_free_vid_buf(vidb); 975 wl_entry_destroy(ubi, e1); 976 wl_entry_destroy(ubi, e2); 977 978 out_ro: 979 ubi_ro_mode(ubi); 980 mutex_unlock(&ubi->move_mutex); 981 up_read(&ubi->fm_eba_sem); 982 ubi_assert(err != 0); 983 return err < 0 ? err : -EIO; 984 985 out_cancel: 986 ubi->wl_scheduled = 0; 987 spin_unlock(&ubi->wl_lock); 988 mutex_unlock(&ubi->move_mutex); 989 up_read(&ubi->fm_eba_sem); 990 ubi_free_vid_buf(vidb); 991 return 0; 992 } 993 994 /** 995 * ensure_wear_leveling - schedule wear-leveling if it is needed. 996 * @ubi: UBI device description object 997 * @nested: set to non-zero if this function is called from UBI worker 998 * 999 * This function checks if it is time to start wear-leveling and schedules it 1000 * if yes. This function returns zero in case of success and a negative error 1001 * code in case of failure. 1002 */ 1003 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1004 { 1005 int err = 0; 1006 struct ubi_wl_entry *e1; 1007 struct ubi_wl_entry *e2; 1008 struct ubi_work *wrk; 1009 1010 spin_lock(&ubi->wl_lock); 1011 if (ubi->wl_scheduled) 1012 /* Wear-leveling is already in the work queue */ 1013 goto out_unlock; 1014 1015 /* 1016 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1017 * the WL worker has to be scheduled anyway. 1018 */ 1019 if (!ubi->scrub.rb_node) { 1020 if (!ubi->used.rb_node || !ubi->free.rb_node) 1021 /* No physical eraseblocks - no deal */ 1022 goto out_unlock; 1023 1024 /* 1025 * We schedule wear-leveling only if the difference between the 1026 * lowest erase counter of used physical eraseblocks and a high 1027 * erase counter of free physical eraseblocks is greater than 1028 * %UBI_WL_THRESHOLD. 1029 */ 1030 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1031 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1032 1033 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1034 goto out_unlock; 1035 dbg_wl("schedule wear-leveling"); 1036 } else 1037 dbg_wl("schedule scrubbing"); 1038 1039 ubi->wl_scheduled = 1; 1040 spin_unlock(&ubi->wl_lock); 1041 1042 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1043 if (!wrk) { 1044 err = -ENOMEM; 1045 goto out_cancel; 1046 } 1047 1048 wrk->anchor = 0; 1049 wrk->func = &wear_leveling_worker; 1050 if (nested) 1051 __schedule_ubi_work(ubi, wrk); 1052 else 1053 schedule_ubi_work(ubi, wrk); 1054 return err; 1055 1056 out_cancel: 1057 spin_lock(&ubi->wl_lock); 1058 ubi->wl_scheduled = 0; 1059 out_unlock: 1060 spin_unlock(&ubi->wl_lock); 1061 return err; 1062 } 1063 1064 /** 1065 * __erase_worker - physical eraseblock erase worker function. 1066 * @ubi: UBI device description object 1067 * @wl_wrk: the work object 1068 * @shutdown: non-zero if the worker has to free memory and exit 1069 * because the WL sub-system is shutting down 1070 * 1071 * This function erases a physical eraseblock and perform torture testing if 1072 * needed. It also takes care about marking the physical eraseblock bad if 1073 * needed. Returns zero in case of success and a negative error code in case of 1074 * failure. 1075 */ 1076 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1077 { 1078 struct ubi_wl_entry *e = wl_wrk->e; 1079 int pnum = e->pnum; 1080 int vol_id = wl_wrk->vol_id; 1081 int lnum = wl_wrk->lnum; 1082 int err, available_consumed = 0; 1083 1084 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1085 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1086 1087 err = sync_erase(ubi, e, wl_wrk->torture); 1088 if (!err) { 1089 spin_lock(&ubi->wl_lock); 1090 wl_tree_add(e, &ubi->free); 1091 ubi->free_count++; 1092 spin_unlock(&ubi->wl_lock); 1093 1094 /* 1095 * One more erase operation has happened, take care about 1096 * protected physical eraseblocks. 1097 */ 1098 serve_prot_queue(ubi); 1099 1100 /* And take care about wear-leveling */ 1101 err = ensure_wear_leveling(ubi, 1); 1102 return err; 1103 } 1104 1105 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1106 1107 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1108 err == -EBUSY) { 1109 int err1; 1110 1111 /* Re-schedule the LEB for erasure */ 1112 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1113 if (err1) { 1114 wl_entry_destroy(ubi, e); 1115 err = err1; 1116 goto out_ro; 1117 } 1118 return err; 1119 } 1120 1121 wl_entry_destroy(ubi, e); 1122 if (err != -EIO) 1123 /* 1124 * If this is not %-EIO, we have no idea what to do. Scheduling 1125 * this physical eraseblock for erasure again would cause 1126 * errors again and again. Well, lets switch to R/O mode. 1127 */ 1128 goto out_ro; 1129 1130 /* It is %-EIO, the PEB went bad */ 1131 1132 if (!ubi->bad_allowed) { 1133 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1134 goto out_ro; 1135 } 1136 1137 spin_lock(&ubi->volumes_lock); 1138 if (ubi->beb_rsvd_pebs == 0) { 1139 if (ubi->avail_pebs == 0) { 1140 spin_unlock(&ubi->volumes_lock); 1141 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1142 goto out_ro; 1143 } 1144 ubi->avail_pebs -= 1; 1145 available_consumed = 1; 1146 } 1147 spin_unlock(&ubi->volumes_lock); 1148 1149 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1150 err = ubi_io_mark_bad(ubi, pnum); 1151 if (err) 1152 goto out_ro; 1153 1154 spin_lock(&ubi->volumes_lock); 1155 if (ubi->beb_rsvd_pebs > 0) { 1156 if (available_consumed) { 1157 /* 1158 * The amount of reserved PEBs increased since we last 1159 * checked. 1160 */ 1161 ubi->avail_pebs += 1; 1162 available_consumed = 0; 1163 } 1164 ubi->beb_rsvd_pebs -= 1; 1165 } 1166 ubi->bad_peb_count += 1; 1167 ubi->good_peb_count -= 1; 1168 ubi_calculate_reserved(ubi); 1169 if (available_consumed) 1170 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1171 else if (ubi->beb_rsvd_pebs) 1172 ubi_msg(ubi, "%d PEBs left in the reserve", 1173 ubi->beb_rsvd_pebs); 1174 else 1175 ubi_warn(ubi, "last PEB from the reserve was used"); 1176 spin_unlock(&ubi->volumes_lock); 1177 1178 return err; 1179 1180 out_ro: 1181 if (available_consumed) { 1182 spin_lock(&ubi->volumes_lock); 1183 ubi->avail_pebs += 1; 1184 spin_unlock(&ubi->volumes_lock); 1185 } 1186 ubi_ro_mode(ubi); 1187 return err; 1188 } 1189 1190 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1191 int shutdown) 1192 { 1193 int ret; 1194 1195 if (shutdown) { 1196 struct ubi_wl_entry *e = wl_wrk->e; 1197 1198 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1199 kfree(wl_wrk); 1200 wl_entry_destroy(ubi, e); 1201 return 0; 1202 } 1203 1204 ret = __erase_worker(ubi, wl_wrk); 1205 kfree(wl_wrk); 1206 return ret; 1207 } 1208 1209 /** 1210 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1211 * @ubi: UBI device description object 1212 * @vol_id: the volume ID that last used this PEB 1213 * @lnum: the last used logical eraseblock number for the PEB 1214 * @pnum: physical eraseblock to return 1215 * @torture: if this physical eraseblock has to be tortured 1216 * 1217 * This function is called to return physical eraseblock @pnum to the pool of 1218 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1219 * occurred to this @pnum and it has to be tested. This function returns zero 1220 * in case of success, and a negative error code in case of failure. 1221 */ 1222 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1223 int pnum, int torture) 1224 { 1225 int err; 1226 struct ubi_wl_entry *e; 1227 1228 dbg_wl("PEB %d", pnum); 1229 ubi_assert(pnum >= 0); 1230 ubi_assert(pnum < ubi->peb_count); 1231 1232 down_read(&ubi->fm_protect); 1233 1234 retry: 1235 spin_lock(&ubi->wl_lock); 1236 e = ubi->lookuptbl[pnum]; 1237 if (e == ubi->move_from) { 1238 /* 1239 * User is putting the physical eraseblock which was selected to 1240 * be moved. It will be scheduled for erasure in the 1241 * wear-leveling worker. 1242 */ 1243 dbg_wl("PEB %d is being moved, wait", pnum); 1244 spin_unlock(&ubi->wl_lock); 1245 1246 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1247 mutex_lock(&ubi->move_mutex); 1248 mutex_unlock(&ubi->move_mutex); 1249 goto retry; 1250 } else if (e == ubi->move_to) { 1251 /* 1252 * User is putting the physical eraseblock which was selected 1253 * as the target the data is moved to. It may happen if the EBA 1254 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1255 * but the WL sub-system has not put the PEB to the "used" tree 1256 * yet, but it is about to do this. So we just set a flag which 1257 * will tell the WL worker that the PEB is not needed anymore 1258 * and should be scheduled for erasure. 1259 */ 1260 dbg_wl("PEB %d is the target of data moving", pnum); 1261 ubi_assert(!ubi->move_to_put); 1262 ubi->move_to_put = 1; 1263 spin_unlock(&ubi->wl_lock); 1264 up_read(&ubi->fm_protect); 1265 return 0; 1266 } else { 1267 if (in_wl_tree(e, &ubi->used)) { 1268 self_check_in_wl_tree(ubi, e, &ubi->used); 1269 rb_erase(&e->u.rb, &ubi->used); 1270 } else if (in_wl_tree(e, &ubi->scrub)) { 1271 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1272 rb_erase(&e->u.rb, &ubi->scrub); 1273 } else if (in_wl_tree(e, &ubi->erroneous)) { 1274 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1275 rb_erase(&e->u.rb, &ubi->erroneous); 1276 ubi->erroneous_peb_count -= 1; 1277 ubi_assert(ubi->erroneous_peb_count >= 0); 1278 /* Erroneous PEBs should be tortured */ 1279 torture = 1; 1280 } else { 1281 err = prot_queue_del(ubi, e->pnum); 1282 if (err) { 1283 ubi_err(ubi, "PEB %d not found", pnum); 1284 ubi_ro_mode(ubi); 1285 spin_unlock(&ubi->wl_lock); 1286 up_read(&ubi->fm_protect); 1287 return err; 1288 } 1289 } 1290 } 1291 spin_unlock(&ubi->wl_lock); 1292 1293 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1294 if (err) { 1295 spin_lock(&ubi->wl_lock); 1296 wl_tree_add(e, &ubi->used); 1297 spin_unlock(&ubi->wl_lock); 1298 } 1299 1300 up_read(&ubi->fm_protect); 1301 return err; 1302 } 1303 1304 /** 1305 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1306 * @ubi: UBI device description object 1307 * @pnum: the physical eraseblock to schedule 1308 * 1309 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1310 * needs scrubbing. This function schedules a physical eraseblock for 1311 * scrubbing which is done in background. This function returns zero in case of 1312 * success and a negative error code in case of failure. 1313 */ 1314 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1315 { 1316 struct ubi_wl_entry *e; 1317 1318 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1319 1320 retry: 1321 spin_lock(&ubi->wl_lock); 1322 e = ubi->lookuptbl[pnum]; 1323 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1324 in_wl_tree(e, &ubi->erroneous)) { 1325 spin_unlock(&ubi->wl_lock); 1326 return 0; 1327 } 1328 1329 if (e == ubi->move_to) { 1330 /* 1331 * This physical eraseblock was used to move data to. The data 1332 * was moved but the PEB was not yet inserted to the proper 1333 * tree. We should just wait a little and let the WL worker 1334 * proceed. 1335 */ 1336 spin_unlock(&ubi->wl_lock); 1337 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1338 yield(); 1339 goto retry; 1340 } 1341 1342 if (in_wl_tree(e, &ubi->used)) { 1343 self_check_in_wl_tree(ubi, e, &ubi->used); 1344 rb_erase(&e->u.rb, &ubi->used); 1345 } else { 1346 int err; 1347 1348 err = prot_queue_del(ubi, e->pnum); 1349 if (err) { 1350 ubi_err(ubi, "PEB %d not found", pnum); 1351 ubi_ro_mode(ubi); 1352 spin_unlock(&ubi->wl_lock); 1353 return err; 1354 } 1355 } 1356 1357 wl_tree_add(e, &ubi->scrub); 1358 spin_unlock(&ubi->wl_lock); 1359 1360 /* 1361 * Technically scrubbing is the same as wear-leveling, so it is done 1362 * by the WL worker. 1363 */ 1364 return ensure_wear_leveling(ubi, 0); 1365 } 1366 1367 /** 1368 * ubi_wl_flush - flush all pending works. 1369 * @ubi: UBI device description object 1370 * @vol_id: the volume id to flush for 1371 * @lnum: the logical eraseblock number to flush for 1372 * 1373 * This function executes all pending works for a particular volume id / 1374 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1375 * acts as a wildcard for all of the corresponding volume numbers or logical 1376 * eraseblock numbers. It returns zero in case of success and a negative error 1377 * code in case of failure. 1378 */ 1379 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1380 { 1381 int err = 0; 1382 int found = 1; 1383 1384 /* 1385 * Erase while the pending works queue is not empty, but not more than 1386 * the number of currently pending works. 1387 */ 1388 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1389 vol_id, lnum, ubi->works_count); 1390 1391 while (found) { 1392 struct ubi_work *wrk, *tmp; 1393 found = 0; 1394 1395 down_read(&ubi->work_sem); 1396 spin_lock(&ubi->wl_lock); 1397 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1398 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1399 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1400 list_del(&wrk->list); 1401 ubi->works_count -= 1; 1402 ubi_assert(ubi->works_count >= 0); 1403 spin_unlock(&ubi->wl_lock); 1404 1405 err = wrk->func(ubi, wrk, 0); 1406 if (err) { 1407 up_read(&ubi->work_sem); 1408 return err; 1409 } 1410 1411 spin_lock(&ubi->wl_lock); 1412 found = 1; 1413 break; 1414 } 1415 } 1416 spin_unlock(&ubi->wl_lock); 1417 up_read(&ubi->work_sem); 1418 } 1419 1420 /* 1421 * Make sure all the works which have been done in parallel are 1422 * finished. 1423 */ 1424 down_write(&ubi->work_sem); 1425 up_write(&ubi->work_sem); 1426 1427 return err; 1428 } 1429 1430 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1431 { 1432 if (in_wl_tree(e, &ubi->scrub)) 1433 return false; 1434 else if (in_wl_tree(e, &ubi->erroneous)) 1435 return false; 1436 else if (ubi->move_from == e) 1437 return false; 1438 else if (ubi->move_to == e) 1439 return false; 1440 1441 return true; 1442 } 1443 1444 /** 1445 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1446 * @ubi: UBI device description object 1447 * @pnum: the physical eraseblock to schedule 1448 * @force: dont't read the block, assume bitflips happened and take action. 1449 * 1450 * This function reads the given eraseblock and checks if bitflips occured. 1451 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1452 * If scrubbing is forced with @force, the eraseblock is not read, 1453 * but scheduled for scrubbing right away. 1454 * 1455 * Returns: 1456 * %EINVAL, PEB is out of range 1457 * %ENOENT, PEB is no longer used by UBI 1458 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1459 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1460 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1461 * %0, no bit flips detected 1462 */ 1463 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1464 { 1465 int err = 0; 1466 struct ubi_wl_entry *e; 1467 1468 if (pnum < 0 || pnum >= ubi->peb_count) { 1469 err = -EINVAL; 1470 goto out; 1471 } 1472 1473 /* 1474 * Pause all parallel work, otherwise it can happen that the 1475 * erase worker frees a wl entry under us. 1476 */ 1477 down_write(&ubi->work_sem); 1478 1479 /* 1480 * Make sure that the wl entry does not change state while 1481 * inspecting it. 1482 */ 1483 spin_lock(&ubi->wl_lock); 1484 e = ubi->lookuptbl[pnum]; 1485 if (!e) { 1486 spin_unlock(&ubi->wl_lock); 1487 err = -ENOENT; 1488 goto out_resume; 1489 } 1490 1491 /* 1492 * Does it make sense to check this PEB? 1493 */ 1494 if (!scrub_possible(ubi, e)) { 1495 spin_unlock(&ubi->wl_lock); 1496 err = -EBUSY; 1497 goto out_resume; 1498 } 1499 spin_unlock(&ubi->wl_lock); 1500 1501 if (!force) { 1502 mutex_lock(&ubi->buf_mutex); 1503 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1504 mutex_unlock(&ubi->buf_mutex); 1505 } 1506 1507 if (force || err == UBI_IO_BITFLIPS) { 1508 /* 1509 * Okay, bit flip happened, let's figure out what we can do. 1510 */ 1511 spin_lock(&ubi->wl_lock); 1512 1513 /* 1514 * Recheck. We released wl_lock, UBI might have killed the 1515 * wl entry under us. 1516 */ 1517 e = ubi->lookuptbl[pnum]; 1518 if (!e) { 1519 spin_unlock(&ubi->wl_lock); 1520 err = -ENOENT; 1521 goto out_resume; 1522 } 1523 1524 /* 1525 * Need to re-check state 1526 */ 1527 if (!scrub_possible(ubi, e)) { 1528 spin_unlock(&ubi->wl_lock); 1529 err = -EBUSY; 1530 goto out_resume; 1531 } 1532 1533 if (in_pq(ubi, e)) { 1534 prot_queue_del(ubi, e->pnum); 1535 wl_tree_add(e, &ubi->scrub); 1536 spin_unlock(&ubi->wl_lock); 1537 1538 err = ensure_wear_leveling(ubi, 1); 1539 } else if (in_wl_tree(e, &ubi->used)) { 1540 rb_erase(&e->u.rb, &ubi->used); 1541 wl_tree_add(e, &ubi->scrub); 1542 spin_unlock(&ubi->wl_lock); 1543 1544 err = ensure_wear_leveling(ubi, 1); 1545 } else if (in_wl_tree(e, &ubi->free)) { 1546 rb_erase(&e->u.rb, &ubi->free); 1547 ubi->free_count--; 1548 spin_unlock(&ubi->wl_lock); 1549 1550 /* 1551 * This PEB is empty we can schedule it for 1552 * erasure right away. No wear leveling needed. 1553 */ 1554 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1555 force ? 0 : 1, true); 1556 } else { 1557 spin_unlock(&ubi->wl_lock); 1558 err = -EAGAIN; 1559 } 1560 1561 if (!err && !force) 1562 err = -EUCLEAN; 1563 } else { 1564 err = 0; 1565 } 1566 1567 out_resume: 1568 up_write(&ubi->work_sem); 1569 out: 1570 1571 return err; 1572 } 1573 1574 /** 1575 * tree_destroy - destroy an RB-tree. 1576 * @ubi: UBI device description object 1577 * @root: the root of the tree to destroy 1578 */ 1579 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1580 { 1581 struct rb_node *rb; 1582 struct ubi_wl_entry *e; 1583 1584 rb = root->rb_node; 1585 while (rb) { 1586 if (rb->rb_left) 1587 rb = rb->rb_left; 1588 else if (rb->rb_right) 1589 rb = rb->rb_right; 1590 else { 1591 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1592 1593 rb = rb_parent(rb); 1594 if (rb) { 1595 if (rb->rb_left == &e->u.rb) 1596 rb->rb_left = NULL; 1597 else 1598 rb->rb_right = NULL; 1599 } 1600 1601 wl_entry_destroy(ubi, e); 1602 } 1603 } 1604 } 1605 1606 /** 1607 * ubi_thread - UBI background thread. 1608 * @u: the UBI device description object pointer 1609 */ 1610 int ubi_thread(void *u) 1611 { 1612 int failures = 0; 1613 struct ubi_device *ubi = u; 1614 1615 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1616 ubi->bgt_name, task_pid_nr(current)); 1617 1618 set_freezable(); 1619 for (;;) { 1620 int err; 1621 1622 if (kthread_should_stop()) 1623 break; 1624 1625 if (try_to_freeze()) 1626 continue; 1627 1628 spin_lock(&ubi->wl_lock); 1629 if (list_empty(&ubi->works) || ubi->ro_mode || 1630 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1631 set_current_state(TASK_INTERRUPTIBLE); 1632 spin_unlock(&ubi->wl_lock); 1633 schedule(); 1634 continue; 1635 } 1636 spin_unlock(&ubi->wl_lock); 1637 1638 err = do_work(ubi); 1639 if (err) { 1640 ubi_err(ubi, "%s: work failed with error code %d", 1641 ubi->bgt_name, err); 1642 if (failures++ > WL_MAX_FAILURES) { 1643 /* 1644 * Too many failures, disable the thread and 1645 * switch to read-only mode. 1646 */ 1647 ubi_msg(ubi, "%s: %d consecutive failures", 1648 ubi->bgt_name, WL_MAX_FAILURES); 1649 ubi_ro_mode(ubi); 1650 ubi->thread_enabled = 0; 1651 continue; 1652 } 1653 } else 1654 failures = 0; 1655 1656 cond_resched(); 1657 } 1658 1659 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1660 ubi->thread_enabled = 0; 1661 return 0; 1662 } 1663 1664 /** 1665 * shutdown_work - shutdown all pending works. 1666 * @ubi: UBI device description object 1667 */ 1668 static void shutdown_work(struct ubi_device *ubi) 1669 { 1670 while (!list_empty(&ubi->works)) { 1671 struct ubi_work *wrk; 1672 1673 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1674 list_del(&wrk->list); 1675 wrk->func(ubi, wrk, 1); 1676 ubi->works_count -= 1; 1677 ubi_assert(ubi->works_count >= 0); 1678 } 1679 } 1680 1681 /** 1682 * erase_aeb - erase a PEB given in UBI attach info PEB 1683 * @ubi: UBI device description object 1684 * @aeb: UBI attach info PEB 1685 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1686 */ 1687 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1688 { 1689 struct ubi_wl_entry *e; 1690 int err; 1691 1692 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1693 if (!e) 1694 return -ENOMEM; 1695 1696 e->pnum = aeb->pnum; 1697 e->ec = aeb->ec; 1698 ubi->lookuptbl[e->pnum] = e; 1699 1700 if (sync) { 1701 err = sync_erase(ubi, e, false); 1702 if (err) 1703 goto out_free; 1704 1705 wl_tree_add(e, &ubi->free); 1706 ubi->free_count++; 1707 } else { 1708 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1709 if (err) 1710 goto out_free; 1711 } 1712 1713 return 0; 1714 1715 out_free: 1716 wl_entry_destroy(ubi, e); 1717 1718 return err; 1719 } 1720 1721 /** 1722 * ubi_wl_init - initialize the WL sub-system using attaching information. 1723 * @ubi: UBI device description object 1724 * @ai: attaching information 1725 * 1726 * This function returns zero in case of success, and a negative error code in 1727 * case of failure. 1728 */ 1729 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1730 { 1731 int err, i, reserved_pebs, found_pebs = 0; 1732 struct rb_node *rb1, *rb2; 1733 struct ubi_ainf_volume *av; 1734 struct ubi_ainf_peb *aeb, *tmp; 1735 struct ubi_wl_entry *e; 1736 1737 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1738 spin_lock_init(&ubi->wl_lock); 1739 mutex_init(&ubi->move_mutex); 1740 init_rwsem(&ubi->work_sem); 1741 ubi->max_ec = ai->max_ec; 1742 INIT_LIST_HEAD(&ubi->works); 1743 1744 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1745 1746 err = -ENOMEM; 1747 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1748 if (!ubi->lookuptbl) 1749 return err; 1750 1751 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1752 INIT_LIST_HEAD(&ubi->pq[i]); 1753 ubi->pq_head = 0; 1754 1755 ubi->free_count = 0; 1756 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1757 cond_resched(); 1758 1759 err = erase_aeb(ubi, aeb, false); 1760 if (err) 1761 goto out_free; 1762 1763 found_pebs++; 1764 } 1765 1766 list_for_each_entry(aeb, &ai->free, u.list) { 1767 cond_resched(); 1768 1769 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1770 if (!e) { 1771 err = -ENOMEM; 1772 goto out_free; 1773 } 1774 1775 e->pnum = aeb->pnum; 1776 e->ec = aeb->ec; 1777 ubi_assert(e->ec >= 0); 1778 1779 wl_tree_add(e, &ubi->free); 1780 ubi->free_count++; 1781 1782 ubi->lookuptbl[e->pnum] = e; 1783 1784 found_pebs++; 1785 } 1786 1787 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1788 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1789 cond_resched(); 1790 1791 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1792 if (!e) { 1793 err = -ENOMEM; 1794 goto out_free; 1795 } 1796 1797 e->pnum = aeb->pnum; 1798 e->ec = aeb->ec; 1799 ubi->lookuptbl[e->pnum] = e; 1800 1801 if (!aeb->scrub) { 1802 dbg_wl("add PEB %d EC %d to the used tree", 1803 e->pnum, e->ec); 1804 wl_tree_add(e, &ubi->used); 1805 } else { 1806 dbg_wl("add PEB %d EC %d to the scrub tree", 1807 e->pnum, e->ec); 1808 wl_tree_add(e, &ubi->scrub); 1809 } 1810 1811 found_pebs++; 1812 } 1813 } 1814 1815 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1816 cond_resched(); 1817 1818 e = ubi_find_fm_block(ubi, aeb->pnum); 1819 1820 if (e) { 1821 ubi_assert(!ubi->lookuptbl[e->pnum]); 1822 ubi->lookuptbl[e->pnum] = e; 1823 } else { 1824 bool sync = false; 1825 1826 /* 1827 * Usually old Fastmap PEBs are scheduled for erasure 1828 * and we don't have to care about them but if we face 1829 * an power cut before scheduling them we need to 1830 * take care of them here. 1831 */ 1832 if (ubi->lookuptbl[aeb->pnum]) 1833 continue; 1834 1835 /* 1836 * The fastmap update code might not find a free PEB for 1837 * writing the fastmap anchor to and then reuses the 1838 * current fastmap anchor PEB. When this PEB gets erased 1839 * and a power cut happens before it is written again we 1840 * must make sure that the fastmap attach code doesn't 1841 * find any outdated fastmap anchors, hence we erase the 1842 * outdated fastmap anchor PEBs synchronously here. 1843 */ 1844 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1845 sync = true; 1846 1847 err = erase_aeb(ubi, aeb, sync); 1848 if (err) 1849 goto out_free; 1850 } 1851 1852 found_pebs++; 1853 } 1854 1855 dbg_wl("found %i PEBs", found_pebs); 1856 1857 ubi_assert(ubi->good_peb_count == found_pebs); 1858 1859 reserved_pebs = WL_RESERVED_PEBS; 1860 ubi_fastmap_init(ubi, &reserved_pebs); 1861 1862 if (ubi->avail_pebs < reserved_pebs) { 1863 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1864 ubi->avail_pebs, reserved_pebs); 1865 if (ubi->corr_peb_count) 1866 ubi_err(ubi, "%d PEBs are corrupted and not used", 1867 ubi->corr_peb_count); 1868 err = -ENOSPC; 1869 goto out_free; 1870 } 1871 ubi->avail_pebs -= reserved_pebs; 1872 ubi->rsvd_pebs += reserved_pebs; 1873 1874 /* Schedule wear-leveling if needed */ 1875 err = ensure_wear_leveling(ubi, 0); 1876 if (err) 1877 goto out_free; 1878 1879 return 0; 1880 1881 out_free: 1882 shutdown_work(ubi); 1883 tree_destroy(ubi, &ubi->used); 1884 tree_destroy(ubi, &ubi->free); 1885 tree_destroy(ubi, &ubi->scrub); 1886 kfree(ubi->lookuptbl); 1887 return err; 1888 } 1889 1890 /** 1891 * protection_queue_destroy - destroy the protection queue. 1892 * @ubi: UBI device description object 1893 */ 1894 static void protection_queue_destroy(struct ubi_device *ubi) 1895 { 1896 int i; 1897 struct ubi_wl_entry *e, *tmp; 1898 1899 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1900 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1901 list_del(&e->u.list); 1902 wl_entry_destroy(ubi, e); 1903 } 1904 } 1905 } 1906 1907 /** 1908 * ubi_wl_close - close the wear-leveling sub-system. 1909 * @ubi: UBI device description object 1910 */ 1911 void ubi_wl_close(struct ubi_device *ubi) 1912 { 1913 dbg_wl("close the WL sub-system"); 1914 ubi_fastmap_close(ubi); 1915 shutdown_work(ubi); 1916 protection_queue_destroy(ubi); 1917 tree_destroy(ubi, &ubi->used); 1918 tree_destroy(ubi, &ubi->erroneous); 1919 tree_destroy(ubi, &ubi->free); 1920 tree_destroy(ubi, &ubi->scrub); 1921 kfree(ubi->lookuptbl); 1922 } 1923 1924 /** 1925 * self_check_ec - make sure that the erase counter of a PEB is correct. 1926 * @ubi: UBI device description object 1927 * @pnum: the physical eraseblock number to check 1928 * @ec: the erase counter to check 1929 * 1930 * This function returns zero if the erase counter of physical eraseblock @pnum 1931 * is equivalent to @ec, and a negative error code if not or if an error 1932 * occurred. 1933 */ 1934 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1935 { 1936 int err; 1937 long long read_ec; 1938 struct ubi_ec_hdr *ec_hdr; 1939 1940 if (!ubi_dbg_chk_gen(ubi)) 1941 return 0; 1942 1943 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1944 if (!ec_hdr) 1945 return -ENOMEM; 1946 1947 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1948 if (err && err != UBI_IO_BITFLIPS) { 1949 /* The header does not have to exist */ 1950 err = 0; 1951 goto out_free; 1952 } 1953 1954 read_ec = be64_to_cpu(ec_hdr->ec); 1955 if (ec != read_ec && read_ec - ec > 1) { 1956 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1957 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1958 dump_stack(); 1959 err = 1; 1960 } else 1961 err = 0; 1962 1963 out_free: 1964 kfree(ec_hdr); 1965 return err; 1966 } 1967 1968 /** 1969 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1970 * @ubi: UBI device description object 1971 * @e: the wear-leveling entry to check 1972 * @root: the root of the tree 1973 * 1974 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1975 * is not. 1976 */ 1977 static int self_check_in_wl_tree(const struct ubi_device *ubi, 1978 struct ubi_wl_entry *e, struct rb_root *root) 1979 { 1980 if (!ubi_dbg_chk_gen(ubi)) 1981 return 0; 1982 1983 if (in_wl_tree(e, root)) 1984 return 0; 1985 1986 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 1987 e->pnum, e->ec, root); 1988 dump_stack(); 1989 return -EINVAL; 1990 } 1991 1992 /** 1993 * self_check_in_pq - check if wear-leveling entry is in the protection 1994 * queue. 1995 * @ubi: UBI device description object 1996 * @e: the wear-leveling entry to check 1997 * 1998 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 1999 */ 2000 static int self_check_in_pq(const struct ubi_device *ubi, 2001 struct ubi_wl_entry *e) 2002 { 2003 if (!ubi_dbg_chk_gen(ubi)) 2004 return 0; 2005 2006 if (in_pq(ubi, e)) 2007 return 0; 2008 2009 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2010 e->pnum, e->ec); 2011 dump_stack(); 2012 return -EINVAL; 2013 } 2014 #ifndef CONFIG_MTD_UBI_FASTMAP 2015 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2016 { 2017 struct ubi_wl_entry *e; 2018 2019 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2020 self_check_in_wl_tree(ubi, e, &ubi->free); 2021 ubi->free_count--; 2022 ubi_assert(ubi->free_count >= 0); 2023 rb_erase(&e->u.rb, &ubi->free); 2024 2025 return e; 2026 } 2027 2028 /** 2029 * produce_free_peb - produce a free physical eraseblock. 2030 * @ubi: UBI device description object 2031 * 2032 * This function tries to make a free PEB by means of synchronous execution of 2033 * pending works. This may be needed if, for example the background thread is 2034 * disabled. Returns zero in case of success and a negative error code in case 2035 * of failure. 2036 */ 2037 static int produce_free_peb(struct ubi_device *ubi) 2038 { 2039 int err; 2040 2041 while (!ubi->free.rb_node && ubi->works_count) { 2042 spin_unlock(&ubi->wl_lock); 2043 2044 dbg_wl("do one work synchronously"); 2045 err = do_work(ubi); 2046 2047 spin_lock(&ubi->wl_lock); 2048 if (err) 2049 return err; 2050 } 2051 2052 return 0; 2053 } 2054 2055 /** 2056 * ubi_wl_get_peb - get a physical eraseblock. 2057 * @ubi: UBI device description object 2058 * 2059 * This function returns a physical eraseblock in case of success and a 2060 * negative error code in case of failure. 2061 * Returns with ubi->fm_eba_sem held in read mode! 2062 */ 2063 int ubi_wl_get_peb(struct ubi_device *ubi) 2064 { 2065 int err; 2066 struct ubi_wl_entry *e; 2067 2068 retry: 2069 down_read(&ubi->fm_eba_sem); 2070 spin_lock(&ubi->wl_lock); 2071 if (!ubi->free.rb_node) { 2072 if (ubi->works_count == 0) { 2073 ubi_err(ubi, "no free eraseblocks"); 2074 ubi_assert(list_empty(&ubi->works)); 2075 spin_unlock(&ubi->wl_lock); 2076 return -ENOSPC; 2077 } 2078 2079 err = produce_free_peb(ubi); 2080 if (err < 0) { 2081 spin_unlock(&ubi->wl_lock); 2082 return err; 2083 } 2084 spin_unlock(&ubi->wl_lock); 2085 up_read(&ubi->fm_eba_sem); 2086 goto retry; 2087 2088 } 2089 e = wl_get_wle(ubi); 2090 prot_queue_add(ubi, e); 2091 spin_unlock(&ubi->wl_lock); 2092 2093 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2094 ubi->peb_size - ubi->vid_hdr_aloffset); 2095 if (err) { 2096 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2097 return err; 2098 } 2099 2100 return e->pnum; 2101 } 2102 #else 2103 #include "fastmap-wl.c" 2104 #endif 2105