1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick 44 * an "optimal" physical eraseblock. For example, when it is known that the 45 * physical eraseblock will be "put" soon because it contains short-term data, 46 * the WL sub-system may pick a free physical eraseblock with low erase 47 * counter, and so forth. 48 * 49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 50 * bad. 51 * 52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 53 * in a physical eraseblock, it has to be moved. Technically this is the same 54 * as moving it for wear-leveling reasons. 55 * 56 * As it was said, for the UBI sub-system all physical eraseblocks are either 57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 58 * used eraseblocks are kept in @wl->used or @wl->scrub RB-trees, or 59 * (temporarily) in the @wl->pq queue. 60 * 61 * When the WL sub-system returns a physical eraseblock, the physical 62 * eraseblock is protected from being moved for some "time". For this reason, 63 * the physical eraseblock is not directly moved from the @wl->free tree to the 64 * @wl->used tree. There is a protection queue in between where this 65 * physical eraseblock is temporarily stored (@wl->pq). 66 * 67 * All this protection stuff is needed because: 68 * o we don't want to move physical eraseblocks just after we have given them 69 * to the user; instead, we first want to let users fill them up with data; 70 * 71 * o there is a chance that the user will put the physical eraseblock very 72 * soon, so it makes sense not to move it for some time, but wait; this is 73 * especially important in case of "short term" physical eraseblocks. 74 * 75 * Physical eraseblocks stay protected only for limited time. But the "time" is 76 * measured in erase cycles in this case. This is implemented with help of the 77 * protection queue. Eraseblocks are put to the tail of this queue when they 78 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 79 * head of the queue on each erase operation (for any eraseblock). So the 80 * length of the queue defines how may (global) erase cycles PEBs are protected. 81 * 82 * To put it differently, each physical eraseblock has 2 main states: free and 83 * used. The former state corresponds to the @wl->free tree. The latter state 84 * is split up on several sub-states: 85 * o the WL movement is allowed (@wl->used tree); 86 * o the WL movement is temporarily prohibited (@wl->pq queue); 87 * o scrubbing is needed (@wl->scrub tree). 88 * 89 * Depending on the sub-state, wear-leveling entries of the used physical 90 * eraseblocks may be kept in one of those structures. 91 * 92 * Note, in this implementation, we keep a small in-RAM object for each physical 93 * eraseblock. This is surely not a scalable solution. But it appears to be good 94 * enough for moderately large flashes and it is simple. In future, one may 95 * re-work this sub-system and make it more scalable. 96 * 97 * At the moment this sub-system does not utilize the sequence number, which 98 * was introduced relatively recently. But it would be wise to do this because 99 * the sequence number of a logical eraseblock characterizes how old is it. For 100 * example, when we move a PEB with low erase counter, and we need to pick the 101 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 102 * pick target PEB with an average EC if our PEB is not very "old". This is a 103 * room for future re-works of the WL sub-system. 104 */ 105 106 #include <linux/slab.h> 107 #include <linux/crc32.h> 108 #include <linux/freezer.h> 109 #include <linux/kthread.h> 110 #include "ubi.h" 111 112 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 113 #define WL_RESERVED_PEBS 1 114 115 /* 116 * Maximum difference between two erase counters. If this threshold is 117 * exceeded, the WL sub-system starts moving data from used physical 118 * eraseblocks with low erase counter to free physical eraseblocks with high 119 * erase counter. 120 */ 121 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 122 123 /* 124 * When a physical eraseblock is moved, the WL sub-system has to pick the target 125 * physical eraseblock to move to. The simplest way would be just to pick the 126 * one with the highest erase counter. But in certain workloads this could lead 127 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 128 * situation when the picked physical eraseblock is constantly erased after the 129 * data is written to it. So, we have a constant which limits the highest erase 130 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 131 * does not pick eraseblocks with erase counter greater than the lowest erase 132 * counter plus %WL_FREE_MAX_DIFF. 133 */ 134 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 135 136 /* 137 * Maximum number of consecutive background thread failures which is enough to 138 * switch to read-only mode. 139 */ 140 #define WL_MAX_FAILURES 32 141 142 /** 143 * struct ubi_work - UBI work description data structure. 144 * @list: a link in the list of pending works 145 * @func: worker function 146 * @e: physical eraseblock to erase 147 * @torture: if the physical eraseblock has to be tortured 148 * 149 * The @func pointer points to the worker function. If the @cancel argument is 150 * not zero, the worker has to free the resources and exit immediately. The 151 * worker has to return zero in case of success and a negative error code in 152 * case of failure. 153 */ 154 struct ubi_work { 155 struct list_head list; 156 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); 157 /* The below fields are only relevant to erasure works */ 158 struct ubi_wl_entry *e; 159 int torture; 160 }; 161 162 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 163 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); 164 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 165 struct rb_root *root); 166 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e); 167 #else 168 #define paranoid_check_ec(ubi, pnum, ec) 0 169 #define paranoid_check_in_wl_tree(e, root) 170 #define paranoid_check_in_pq(ubi, e) 0 171 #endif 172 173 /** 174 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 175 * @e: the wear-leveling entry to add 176 * @root: the root of the tree 177 * 178 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 179 * the @ubi->used and @ubi->free RB-trees. 180 */ 181 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 182 { 183 struct rb_node **p, *parent = NULL; 184 185 p = &root->rb_node; 186 while (*p) { 187 struct ubi_wl_entry *e1; 188 189 parent = *p; 190 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 191 192 if (e->ec < e1->ec) 193 p = &(*p)->rb_left; 194 else if (e->ec > e1->ec) 195 p = &(*p)->rb_right; 196 else { 197 ubi_assert(e->pnum != e1->pnum); 198 if (e->pnum < e1->pnum) 199 p = &(*p)->rb_left; 200 else 201 p = &(*p)->rb_right; 202 } 203 } 204 205 rb_link_node(&e->u.rb, parent, p); 206 rb_insert_color(&e->u.rb, root); 207 } 208 209 /** 210 * do_work - do one pending work. 211 * @ubi: UBI device description object 212 * 213 * This function returns zero in case of success and a negative error code in 214 * case of failure. 215 */ 216 static int do_work(struct ubi_device *ubi) 217 { 218 int err; 219 struct ubi_work *wrk; 220 221 cond_resched(); 222 223 /* 224 * @ubi->work_sem is used to synchronize with the workers. Workers take 225 * it in read mode, so many of them may be doing works at a time. But 226 * the queue flush code has to be sure the whole queue of works is 227 * done, and it takes the mutex in write mode. 228 */ 229 down_read(&ubi->work_sem); 230 spin_lock(&ubi->wl_lock); 231 if (list_empty(&ubi->works)) { 232 spin_unlock(&ubi->wl_lock); 233 up_read(&ubi->work_sem); 234 return 0; 235 } 236 237 wrk = list_entry(ubi->works.next, struct ubi_work, list); 238 list_del(&wrk->list); 239 ubi->works_count -= 1; 240 ubi_assert(ubi->works_count >= 0); 241 spin_unlock(&ubi->wl_lock); 242 243 /* 244 * Call the worker function. Do not touch the work structure 245 * after this call as it will have been freed or reused by that 246 * time by the worker function. 247 */ 248 err = wrk->func(ubi, wrk, 0); 249 if (err) 250 ubi_err("work failed with error code %d", err); 251 up_read(&ubi->work_sem); 252 253 return err; 254 } 255 256 /** 257 * produce_free_peb - produce a free physical eraseblock. 258 * @ubi: UBI device description object 259 * 260 * This function tries to make a free PEB by means of synchronous execution of 261 * pending works. This may be needed if, for example the background thread is 262 * disabled. Returns zero in case of success and a negative error code in case 263 * of failure. 264 */ 265 static int produce_free_peb(struct ubi_device *ubi) 266 { 267 int err; 268 269 spin_lock(&ubi->wl_lock); 270 while (!ubi->free.rb_node) { 271 spin_unlock(&ubi->wl_lock); 272 273 dbg_wl("do one work synchronously"); 274 err = do_work(ubi); 275 if (err) 276 return err; 277 278 spin_lock(&ubi->wl_lock); 279 } 280 spin_unlock(&ubi->wl_lock); 281 282 return 0; 283 } 284 285 /** 286 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 287 * @e: the wear-leveling entry to check 288 * @root: the root of the tree 289 * 290 * This function returns non-zero if @e is in the @root RB-tree and zero if it 291 * is not. 292 */ 293 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 294 { 295 struct rb_node *p; 296 297 p = root->rb_node; 298 while (p) { 299 struct ubi_wl_entry *e1; 300 301 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 302 303 if (e->pnum == e1->pnum) { 304 ubi_assert(e == e1); 305 return 1; 306 } 307 308 if (e->ec < e1->ec) 309 p = p->rb_left; 310 else if (e->ec > e1->ec) 311 p = p->rb_right; 312 else { 313 ubi_assert(e->pnum != e1->pnum); 314 if (e->pnum < e1->pnum) 315 p = p->rb_left; 316 else 317 p = p->rb_right; 318 } 319 } 320 321 return 0; 322 } 323 324 /** 325 * prot_queue_add - add physical eraseblock to the protection queue. 326 * @ubi: UBI device description object 327 * @e: the physical eraseblock to add 328 * 329 * This function adds @e to the tail of the protection queue @ubi->pq, where 330 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 331 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 332 * be locked. 333 */ 334 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 335 { 336 int pq_tail = ubi->pq_head - 1; 337 338 if (pq_tail < 0) 339 pq_tail = UBI_PROT_QUEUE_LEN - 1; 340 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 341 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 342 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 343 } 344 345 /** 346 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 347 * @root: the RB-tree where to look for 348 * @max: highest possible erase counter 349 * 350 * This function looks for a wear leveling entry with erase counter closest to 351 * @max and less then @max. 352 */ 353 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) 354 { 355 struct rb_node *p; 356 struct ubi_wl_entry *e; 357 358 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 max += e->ec; 360 361 p = root->rb_node; 362 while (p) { 363 struct ubi_wl_entry *e1; 364 365 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 366 if (e1->ec >= max) 367 p = p->rb_left; 368 else { 369 p = p->rb_right; 370 e = e1; 371 } 372 } 373 374 return e; 375 } 376 377 /** 378 * ubi_wl_get_peb - get a physical eraseblock. 379 * @ubi: UBI device description object 380 * @dtype: type of data which will be stored in this physical eraseblock 381 * 382 * This function returns a physical eraseblock in case of success and a 383 * negative error code in case of failure. Might sleep. 384 */ 385 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) 386 { 387 int err, medium_ec; 388 struct ubi_wl_entry *e, *first, *last; 389 390 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || 391 dtype == UBI_UNKNOWN); 392 393 retry: 394 spin_lock(&ubi->wl_lock); 395 if (!ubi->free.rb_node) { 396 if (ubi->works_count == 0) { 397 ubi_assert(list_empty(&ubi->works)); 398 ubi_err("no free eraseblocks"); 399 spin_unlock(&ubi->wl_lock); 400 return -ENOSPC; 401 } 402 spin_unlock(&ubi->wl_lock); 403 404 err = produce_free_peb(ubi); 405 if (err < 0) 406 return err; 407 goto retry; 408 } 409 410 switch (dtype) { 411 case UBI_LONGTERM: 412 /* 413 * For long term data we pick a physical eraseblock with high 414 * erase counter. But the highest erase counter we can pick is 415 * bounded by the the lowest erase counter plus 416 * %WL_FREE_MAX_DIFF. 417 */ 418 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 419 break; 420 case UBI_UNKNOWN: 421 /* 422 * For unknown data we pick a physical eraseblock with medium 423 * erase counter. But we by no means can pick a physical 424 * eraseblock with erase counter greater or equivalent than the 425 * lowest erase counter plus %WL_FREE_MAX_DIFF. 426 */ 427 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, 428 u.rb); 429 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb); 430 431 if (last->ec - first->ec < WL_FREE_MAX_DIFF) 432 e = rb_entry(ubi->free.rb_node, 433 struct ubi_wl_entry, u.rb); 434 else { 435 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; 436 e = find_wl_entry(&ubi->free, medium_ec); 437 } 438 break; 439 case UBI_SHORTTERM: 440 /* 441 * For short term data we pick a physical eraseblock with the 442 * lowest erase counter as we expect it will be erased soon. 443 */ 444 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb); 445 break; 446 default: 447 BUG(); 448 } 449 450 paranoid_check_in_wl_tree(e, &ubi->free); 451 452 /* 453 * Move the physical eraseblock to the protection queue where it will 454 * be protected from being moved for some time. 455 */ 456 rb_erase(&e->u.rb, &ubi->free); 457 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 458 prot_queue_add(ubi, e); 459 spin_unlock(&ubi->wl_lock); 460 return e->pnum; 461 } 462 463 /** 464 * prot_queue_del - remove a physical eraseblock from the protection queue. 465 * @ubi: UBI device description object 466 * @pnum: the physical eraseblock to remove 467 * 468 * This function deletes PEB @pnum from the protection queue and returns zero 469 * in case of success and %-ENODEV if the PEB was not found. 470 */ 471 static int prot_queue_del(struct ubi_device *ubi, int pnum) 472 { 473 struct ubi_wl_entry *e; 474 475 e = ubi->lookuptbl[pnum]; 476 if (!e) 477 return -ENODEV; 478 479 if (paranoid_check_in_pq(ubi, e)) 480 return -ENODEV; 481 482 list_del(&e->u.list); 483 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 484 return 0; 485 } 486 487 /** 488 * sync_erase - synchronously erase a physical eraseblock. 489 * @ubi: UBI device description object 490 * @e: the the physical eraseblock to erase 491 * @torture: if the physical eraseblock has to be tortured 492 * 493 * This function returns zero in case of success and a negative error code in 494 * case of failure. 495 */ 496 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 497 int torture) 498 { 499 int err; 500 struct ubi_ec_hdr *ec_hdr; 501 unsigned long long ec = e->ec; 502 503 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 504 505 err = paranoid_check_ec(ubi, e->pnum, e->ec); 506 if (err > 0) 507 return -EINVAL; 508 509 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 510 if (!ec_hdr) 511 return -ENOMEM; 512 513 err = ubi_io_sync_erase(ubi, e->pnum, torture); 514 if (err < 0) 515 goto out_free; 516 517 ec += err; 518 if (ec > UBI_MAX_ERASECOUNTER) { 519 /* 520 * Erase counter overflow. Upgrade UBI and use 64-bit 521 * erase counters internally. 522 */ 523 ubi_err("erase counter overflow at PEB %d, EC %llu", 524 e->pnum, ec); 525 err = -EINVAL; 526 goto out_free; 527 } 528 529 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 530 531 ec_hdr->ec = cpu_to_be64(ec); 532 533 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 534 if (err) 535 goto out_free; 536 537 e->ec = ec; 538 spin_lock(&ubi->wl_lock); 539 if (e->ec > ubi->max_ec) 540 ubi->max_ec = e->ec; 541 spin_unlock(&ubi->wl_lock); 542 543 out_free: 544 kfree(ec_hdr); 545 return err; 546 } 547 548 /** 549 * serve_prot_queue - check if it is time to stop protecting PEBs. 550 * @ubi: UBI device description object 551 * 552 * This function is called after each erase operation and removes PEBs from the 553 * tail of the protection queue. These PEBs have been protected for long enough 554 * and should be moved to the used tree. 555 */ 556 static void serve_prot_queue(struct ubi_device *ubi) 557 { 558 struct ubi_wl_entry *e, *tmp; 559 int count; 560 561 /* 562 * There may be several protected physical eraseblock to remove, 563 * process them all. 564 */ 565 repeat: 566 count = 0; 567 spin_lock(&ubi->wl_lock); 568 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 569 dbg_wl("PEB %d EC %d protection over, move to used tree", 570 e->pnum, e->ec); 571 572 list_del(&e->u.list); 573 wl_tree_add(e, &ubi->used); 574 if (count++ > 32) { 575 /* 576 * Let's be nice and avoid holding the spinlock for 577 * too long. 578 */ 579 spin_unlock(&ubi->wl_lock); 580 cond_resched(); 581 goto repeat; 582 } 583 } 584 585 ubi->pq_head += 1; 586 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 587 ubi->pq_head = 0; 588 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 589 spin_unlock(&ubi->wl_lock); 590 } 591 592 /** 593 * schedule_ubi_work - schedule a work. 594 * @ubi: UBI device description object 595 * @wrk: the work to schedule 596 * 597 * This function adds a work defined by @wrk to the tail of the pending works 598 * list. 599 */ 600 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 601 { 602 spin_lock(&ubi->wl_lock); 603 list_add_tail(&wrk->list, &ubi->works); 604 ubi_assert(ubi->works_count >= 0); 605 ubi->works_count += 1; 606 if (ubi->thread_enabled) 607 wake_up_process(ubi->bgt_thread); 608 spin_unlock(&ubi->wl_lock); 609 } 610 611 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 612 int cancel); 613 614 /** 615 * schedule_erase - schedule an erase work. 616 * @ubi: UBI device description object 617 * @e: the WL entry of the physical eraseblock to erase 618 * @torture: if the physical eraseblock has to be tortured 619 * 620 * This function returns zero in case of success and a %-ENOMEM in case of 621 * failure. 622 */ 623 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 624 int torture) 625 { 626 struct ubi_work *wl_wrk; 627 628 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 629 e->pnum, e->ec, torture); 630 631 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 632 if (!wl_wrk) 633 return -ENOMEM; 634 635 wl_wrk->func = &erase_worker; 636 wl_wrk->e = e; 637 wl_wrk->torture = torture; 638 639 schedule_ubi_work(ubi, wl_wrk); 640 return 0; 641 } 642 643 /** 644 * wear_leveling_worker - wear-leveling worker function. 645 * @ubi: UBI device description object 646 * @wrk: the work object 647 * @cancel: non-zero if the worker has to free memory and exit 648 * 649 * This function copies a more worn out physical eraseblock to a less worn out 650 * one. Returns zero in case of success and a negative error code in case of 651 * failure. 652 */ 653 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 654 int cancel) 655 { 656 int err, scrubbing = 0, torture = 0; 657 struct ubi_wl_entry *e1, *e2; 658 struct ubi_vid_hdr *vid_hdr; 659 660 kfree(wrk); 661 if (cancel) 662 return 0; 663 664 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 665 if (!vid_hdr) 666 return -ENOMEM; 667 668 mutex_lock(&ubi->move_mutex); 669 spin_lock(&ubi->wl_lock); 670 ubi_assert(!ubi->move_from && !ubi->move_to); 671 ubi_assert(!ubi->move_to_put); 672 673 if (!ubi->free.rb_node || 674 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 675 /* 676 * No free physical eraseblocks? Well, they must be waiting in 677 * the queue to be erased. Cancel movement - it will be 678 * triggered again when a free physical eraseblock appears. 679 * 680 * No used physical eraseblocks? They must be temporarily 681 * protected from being moved. They will be moved to the 682 * @ubi->used tree later and the wear-leveling will be 683 * triggered again. 684 */ 685 dbg_wl("cancel WL, a list is empty: free %d, used %d", 686 !ubi->free.rb_node, !ubi->used.rb_node); 687 goto out_cancel; 688 } 689 690 if (!ubi->scrub.rb_node) { 691 /* 692 * Now pick the least worn-out used physical eraseblock and a 693 * highly worn-out free physical eraseblock. If the erase 694 * counters differ much enough, start wear-leveling. 695 */ 696 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 697 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 698 699 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 700 dbg_wl("no WL needed: min used EC %d, max free EC %d", 701 e1->ec, e2->ec); 702 goto out_cancel; 703 } 704 paranoid_check_in_wl_tree(e1, &ubi->used); 705 rb_erase(&e1->u.rb, &ubi->used); 706 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 707 e1->pnum, e1->ec, e2->pnum, e2->ec); 708 } else { 709 /* Perform scrubbing */ 710 scrubbing = 1; 711 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 712 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 713 paranoid_check_in_wl_tree(e1, &ubi->scrub); 714 rb_erase(&e1->u.rb, &ubi->scrub); 715 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 716 } 717 718 paranoid_check_in_wl_tree(e2, &ubi->free); 719 rb_erase(&e2->u.rb, &ubi->free); 720 ubi->move_from = e1; 721 ubi->move_to = e2; 722 spin_unlock(&ubi->wl_lock); 723 724 /* 725 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 726 * We so far do not know which logical eraseblock our physical 727 * eraseblock (@e1) belongs to. We have to read the volume identifier 728 * header first. 729 * 730 * Note, we are protected from this PEB being unmapped and erased. The 731 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 732 * which is being moved was unmapped. 733 */ 734 735 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 736 if (err && err != UBI_IO_BITFLIPS) { 737 if (err == UBI_IO_PEB_FREE) { 738 /* 739 * We are trying to move PEB without a VID header. UBI 740 * always write VID headers shortly after the PEB was 741 * given, so we have a situation when it did not have 742 * chance to write it down because it was preempted. 743 * Just re-schedule the work, so that next time it will 744 * likely have the VID header in place. 745 */ 746 dbg_wl("PEB %d has no VID header", e1->pnum); 747 goto out_not_moved; 748 } 749 750 ubi_err("error %d while reading VID header from PEB %d", 751 err, e1->pnum); 752 if (err > 0) 753 err = -EIO; 754 goto out_error; 755 } 756 757 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 758 if (err) { 759 if (err == -EAGAIN) 760 goto out_not_moved; 761 if (err < 0) 762 goto out_error; 763 if (err == 2) { 764 /* Target PEB write error, torture it */ 765 torture = 1; 766 goto out_not_moved; 767 } 768 769 /* 770 * The LEB has not been moved because the volume is being 771 * deleted or the PEB has been put meanwhile. We should prevent 772 * this PEB from being selected for wear-leveling movement 773 * again, so put it to the protection queue. 774 */ 775 776 dbg_wl("canceled moving PEB %d", e1->pnum); 777 ubi_assert(err == 1); 778 779 ubi_free_vid_hdr(ubi, vid_hdr); 780 vid_hdr = NULL; 781 782 spin_lock(&ubi->wl_lock); 783 prot_queue_add(ubi, e1); 784 ubi_assert(!ubi->move_to_put); 785 ubi->move_from = ubi->move_to = NULL; 786 ubi->wl_scheduled = 0; 787 spin_unlock(&ubi->wl_lock); 788 789 e1 = NULL; 790 err = schedule_erase(ubi, e2, 0); 791 if (err) 792 goto out_error; 793 mutex_unlock(&ubi->move_mutex); 794 return 0; 795 } 796 797 /* The PEB has been successfully moved */ 798 ubi_free_vid_hdr(ubi, vid_hdr); 799 vid_hdr = NULL; 800 if (scrubbing) 801 ubi_msg("scrubbed PEB %d, data moved to PEB %d", 802 e1->pnum, e2->pnum); 803 804 spin_lock(&ubi->wl_lock); 805 if (!ubi->move_to_put) { 806 wl_tree_add(e2, &ubi->used); 807 e2 = NULL; 808 } 809 ubi->move_from = ubi->move_to = NULL; 810 ubi->move_to_put = ubi->wl_scheduled = 0; 811 spin_unlock(&ubi->wl_lock); 812 813 err = schedule_erase(ubi, e1, 0); 814 if (err) { 815 e1 = NULL; 816 goto out_error; 817 } 818 819 if (e2) { 820 /* 821 * Well, the target PEB was put meanwhile, schedule it for 822 * erasure. 823 */ 824 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum); 825 err = schedule_erase(ubi, e2, 0); 826 if (err) 827 goto out_error; 828 } 829 830 dbg_wl("done"); 831 mutex_unlock(&ubi->move_mutex); 832 return 0; 833 834 /* 835 * For some reasons the LEB was not moved, might be an error, might be 836 * something else. @e1 was not changed, so return it back. @e2 might 837 * have been changed, schedule it for erasure. 838 */ 839 out_not_moved: 840 dbg_wl("canceled moving PEB %d", e1->pnum); 841 ubi_free_vid_hdr(ubi, vid_hdr); 842 vid_hdr = NULL; 843 spin_lock(&ubi->wl_lock); 844 if (scrubbing) 845 wl_tree_add(e1, &ubi->scrub); 846 else 847 wl_tree_add(e1, &ubi->used); 848 ubi_assert(!ubi->move_to_put); 849 ubi->move_from = ubi->move_to = NULL; 850 ubi->wl_scheduled = 0; 851 spin_unlock(&ubi->wl_lock); 852 853 e1 = NULL; 854 err = schedule_erase(ubi, e2, torture); 855 if (err) 856 goto out_error; 857 858 mutex_unlock(&ubi->move_mutex); 859 return 0; 860 861 out_error: 862 ubi_err("error %d while moving PEB %d to PEB %d", 863 err, e1->pnum, e2->pnum); 864 865 ubi_free_vid_hdr(ubi, vid_hdr); 866 spin_lock(&ubi->wl_lock); 867 ubi->move_from = ubi->move_to = NULL; 868 ubi->move_to_put = ubi->wl_scheduled = 0; 869 spin_unlock(&ubi->wl_lock); 870 871 if (e1) 872 kmem_cache_free(ubi_wl_entry_slab, e1); 873 if (e2) 874 kmem_cache_free(ubi_wl_entry_slab, e2); 875 ubi_ro_mode(ubi); 876 877 mutex_unlock(&ubi->move_mutex); 878 return err; 879 880 out_cancel: 881 ubi->wl_scheduled = 0; 882 spin_unlock(&ubi->wl_lock); 883 mutex_unlock(&ubi->move_mutex); 884 ubi_free_vid_hdr(ubi, vid_hdr); 885 return 0; 886 } 887 888 /** 889 * ensure_wear_leveling - schedule wear-leveling if it is needed. 890 * @ubi: UBI device description object 891 * 892 * This function checks if it is time to start wear-leveling and schedules it 893 * if yes. This function returns zero in case of success and a negative error 894 * code in case of failure. 895 */ 896 static int ensure_wear_leveling(struct ubi_device *ubi) 897 { 898 int err = 0; 899 struct ubi_wl_entry *e1; 900 struct ubi_wl_entry *e2; 901 struct ubi_work *wrk; 902 903 spin_lock(&ubi->wl_lock); 904 if (ubi->wl_scheduled) 905 /* Wear-leveling is already in the work queue */ 906 goto out_unlock; 907 908 /* 909 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 910 * the WL worker has to be scheduled anyway. 911 */ 912 if (!ubi->scrub.rb_node) { 913 if (!ubi->used.rb_node || !ubi->free.rb_node) 914 /* No physical eraseblocks - no deal */ 915 goto out_unlock; 916 917 /* 918 * We schedule wear-leveling only if the difference between the 919 * lowest erase counter of used physical eraseblocks and a high 920 * erase counter of free physical eraseblocks is greater than 921 * %UBI_WL_THRESHOLD. 922 */ 923 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 924 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 925 926 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 927 goto out_unlock; 928 dbg_wl("schedule wear-leveling"); 929 } else 930 dbg_wl("schedule scrubbing"); 931 932 ubi->wl_scheduled = 1; 933 spin_unlock(&ubi->wl_lock); 934 935 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 936 if (!wrk) { 937 err = -ENOMEM; 938 goto out_cancel; 939 } 940 941 wrk->func = &wear_leveling_worker; 942 schedule_ubi_work(ubi, wrk); 943 return err; 944 945 out_cancel: 946 spin_lock(&ubi->wl_lock); 947 ubi->wl_scheduled = 0; 948 out_unlock: 949 spin_unlock(&ubi->wl_lock); 950 return err; 951 } 952 953 /** 954 * erase_worker - physical eraseblock erase worker function. 955 * @ubi: UBI device description object 956 * @wl_wrk: the work object 957 * @cancel: non-zero if the worker has to free memory and exit 958 * 959 * This function erases a physical eraseblock and perform torture testing if 960 * needed. It also takes care about marking the physical eraseblock bad if 961 * needed. Returns zero in case of success and a negative error code in case of 962 * failure. 963 */ 964 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 965 int cancel) 966 { 967 struct ubi_wl_entry *e = wl_wrk->e; 968 int pnum = e->pnum, err, need; 969 970 if (cancel) { 971 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 972 kfree(wl_wrk); 973 kmem_cache_free(ubi_wl_entry_slab, e); 974 return 0; 975 } 976 977 dbg_wl("erase PEB %d EC %d", pnum, e->ec); 978 979 err = sync_erase(ubi, e, wl_wrk->torture); 980 if (!err) { 981 /* Fine, we've erased it successfully */ 982 kfree(wl_wrk); 983 984 spin_lock(&ubi->wl_lock); 985 wl_tree_add(e, &ubi->free); 986 spin_unlock(&ubi->wl_lock); 987 988 /* 989 * One more erase operation has happened, take care about 990 * protected physical eraseblocks. 991 */ 992 serve_prot_queue(ubi); 993 994 /* And take care about wear-leveling */ 995 err = ensure_wear_leveling(ubi); 996 return err; 997 } 998 999 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1000 kfree(wl_wrk); 1001 kmem_cache_free(ubi_wl_entry_slab, e); 1002 1003 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1004 err == -EBUSY) { 1005 int err1; 1006 1007 /* Re-schedule the LEB for erasure */ 1008 err1 = schedule_erase(ubi, e, 0); 1009 if (err1) { 1010 err = err1; 1011 goto out_ro; 1012 } 1013 return err; 1014 } else if (err != -EIO) { 1015 /* 1016 * If this is not %-EIO, we have no idea what to do. Scheduling 1017 * this physical eraseblock for erasure again would cause 1018 * errors again and again. Well, lets switch to RO mode. 1019 */ 1020 goto out_ro; 1021 } 1022 1023 /* It is %-EIO, the PEB went bad */ 1024 1025 if (!ubi->bad_allowed) { 1026 ubi_err("bad physical eraseblock %d detected", pnum); 1027 goto out_ro; 1028 } 1029 1030 spin_lock(&ubi->volumes_lock); 1031 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; 1032 if (need > 0) { 1033 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; 1034 ubi->avail_pebs -= need; 1035 ubi->rsvd_pebs += need; 1036 ubi->beb_rsvd_pebs += need; 1037 if (need > 0) 1038 ubi_msg("reserve more %d PEBs", need); 1039 } 1040 1041 if (ubi->beb_rsvd_pebs == 0) { 1042 spin_unlock(&ubi->volumes_lock); 1043 ubi_err("no reserved physical eraseblocks"); 1044 goto out_ro; 1045 } 1046 1047 spin_unlock(&ubi->volumes_lock); 1048 ubi_msg("mark PEB %d as bad", pnum); 1049 1050 err = ubi_io_mark_bad(ubi, pnum); 1051 if (err) 1052 goto out_ro; 1053 1054 spin_lock(&ubi->volumes_lock); 1055 ubi->beb_rsvd_pebs -= 1; 1056 ubi->bad_peb_count += 1; 1057 ubi->good_peb_count -= 1; 1058 ubi_calculate_reserved(ubi); 1059 if (ubi->beb_rsvd_pebs == 0) 1060 ubi_warn("last PEB from the reserved pool was used"); 1061 spin_unlock(&ubi->volumes_lock); 1062 1063 return err; 1064 1065 out_ro: 1066 ubi_ro_mode(ubi); 1067 return err; 1068 } 1069 1070 /** 1071 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1072 * @ubi: UBI device description object 1073 * @pnum: physical eraseblock to return 1074 * @torture: if this physical eraseblock has to be tortured 1075 * 1076 * This function is called to return physical eraseblock @pnum to the pool of 1077 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1078 * occurred to this @pnum and it has to be tested. This function returns zero 1079 * in case of success, and a negative error code in case of failure. 1080 */ 1081 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) 1082 { 1083 int err; 1084 struct ubi_wl_entry *e; 1085 1086 dbg_wl("PEB %d", pnum); 1087 ubi_assert(pnum >= 0); 1088 ubi_assert(pnum < ubi->peb_count); 1089 1090 retry: 1091 spin_lock(&ubi->wl_lock); 1092 e = ubi->lookuptbl[pnum]; 1093 if (e == ubi->move_from) { 1094 /* 1095 * User is putting the physical eraseblock which was selected to 1096 * be moved. It will be scheduled for erasure in the 1097 * wear-leveling worker. 1098 */ 1099 dbg_wl("PEB %d is being moved, wait", pnum); 1100 spin_unlock(&ubi->wl_lock); 1101 1102 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1103 mutex_lock(&ubi->move_mutex); 1104 mutex_unlock(&ubi->move_mutex); 1105 goto retry; 1106 } else if (e == ubi->move_to) { 1107 /* 1108 * User is putting the physical eraseblock which was selected 1109 * as the target the data is moved to. It may happen if the EBA 1110 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1111 * but the WL sub-system has not put the PEB to the "used" tree 1112 * yet, but it is about to do this. So we just set a flag which 1113 * will tell the WL worker that the PEB is not needed anymore 1114 * and should be scheduled for erasure. 1115 */ 1116 dbg_wl("PEB %d is the target of data moving", pnum); 1117 ubi_assert(!ubi->move_to_put); 1118 ubi->move_to_put = 1; 1119 spin_unlock(&ubi->wl_lock); 1120 return 0; 1121 } else { 1122 if (in_wl_tree(e, &ubi->used)) { 1123 paranoid_check_in_wl_tree(e, &ubi->used); 1124 rb_erase(&e->u.rb, &ubi->used); 1125 } else if (in_wl_tree(e, &ubi->scrub)) { 1126 paranoid_check_in_wl_tree(e, &ubi->scrub); 1127 rb_erase(&e->u.rb, &ubi->scrub); 1128 } else { 1129 err = prot_queue_del(ubi, e->pnum); 1130 if (err) { 1131 ubi_err("PEB %d not found", pnum); 1132 ubi_ro_mode(ubi); 1133 spin_unlock(&ubi->wl_lock); 1134 return err; 1135 } 1136 } 1137 } 1138 spin_unlock(&ubi->wl_lock); 1139 1140 err = schedule_erase(ubi, e, torture); 1141 if (err) { 1142 spin_lock(&ubi->wl_lock); 1143 wl_tree_add(e, &ubi->used); 1144 spin_unlock(&ubi->wl_lock); 1145 } 1146 1147 return err; 1148 } 1149 1150 /** 1151 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1152 * @ubi: UBI device description object 1153 * @pnum: the physical eraseblock to schedule 1154 * 1155 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1156 * needs scrubbing. This function schedules a physical eraseblock for 1157 * scrubbing which is done in background. This function returns zero in case of 1158 * success and a negative error code in case of failure. 1159 */ 1160 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1161 { 1162 struct ubi_wl_entry *e; 1163 1164 dbg_msg("schedule PEB %d for scrubbing", pnum); 1165 1166 retry: 1167 spin_lock(&ubi->wl_lock); 1168 e = ubi->lookuptbl[pnum]; 1169 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { 1170 spin_unlock(&ubi->wl_lock); 1171 return 0; 1172 } 1173 1174 if (e == ubi->move_to) { 1175 /* 1176 * This physical eraseblock was used to move data to. The data 1177 * was moved but the PEB was not yet inserted to the proper 1178 * tree. We should just wait a little and let the WL worker 1179 * proceed. 1180 */ 1181 spin_unlock(&ubi->wl_lock); 1182 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1183 yield(); 1184 goto retry; 1185 } 1186 1187 if (in_wl_tree(e, &ubi->used)) { 1188 paranoid_check_in_wl_tree(e, &ubi->used); 1189 rb_erase(&e->u.rb, &ubi->used); 1190 } else { 1191 int err; 1192 1193 err = prot_queue_del(ubi, e->pnum); 1194 if (err) { 1195 ubi_err("PEB %d not found", pnum); 1196 ubi_ro_mode(ubi); 1197 spin_unlock(&ubi->wl_lock); 1198 return err; 1199 } 1200 } 1201 1202 wl_tree_add(e, &ubi->scrub); 1203 spin_unlock(&ubi->wl_lock); 1204 1205 /* 1206 * Technically scrubbing is the same as wear-leveling, so it is done 1207 * by the WL worker. 1208 */ 1209 return ensure_wear_leveling(ubi); 1210 } 1211 1212 /** 1213 * ubi_wl_flush - flush all pending works. 1214 * @ubi: UBI device description object 1215 * 1216 * This function returns zero in case of success and a negative error code in 1217 * case of failure. 1218 */ 1219 int ubi_wl_flush(struct ubi_device *ubi) 1220 { 1221 int err; 1222 1223 /* 1224 * Erase while the pending works queue is not empty, but not more than 1225 * the number of currently pending works. 1226 */ 1227 dbg_wl("flush (%d pending works)", ubi->works_count); 1228 while (ubi->works_count) { 1229 err = do_work(ubi); 1230 if (err) 1231 return err; 1232 } 1233 1234 /* 1235 * Make sure all the works which have been done in parallel are 1236 * finished. 1237 */ 1238 down_write(&ubi->work_sem); 1239 up_write(&ubi->work_sem); 1240 1241 /* 1242 * And in case last was the WL worker and it canceled the LEB 1243 * movement, flush again. 1244 */ 1245 while (ubi->works_count) { 1246 dbg_wl("flush more (%d pending works)", ubi->works_count); 1247 err = do_work(ubi); 1248 if (err) 1249 return err; 1250 } 1251 1252 return 0; 1253 } 1254 1255 /** 1256 * tree_destroy - destroy an RB-tree. 1257 * @root: the root of the tree to destroy 1258 */ 1259 static void tree_destroy(struct rb_root *root) 1260 { 1261 struct rb_node *rb; 1262 struct ubi_wl_entry *e; 1263 1264 rb = root->rb_node; 1265 while (rb) { 1266 if (rb->rb_left) 1267 rb = rb->rb_left; 1268 else if (rb->rb_right) 1269 rb = rb->rb_right; 1270 else { 1271 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1272 1273 rb = rb_parent(rb); 1274 if (rb) { 1275 if (rb->rb_left == &e->u.rb) 1276 rb->rb_left = NULL; 1277 else 1278 rb->rb_right = NULL; 1279 } 1280 1281 kmem_cache_free(ubi_wl_entry_slab, e); 1282 } 1283 } 1284 } 1285 1286 /** 1287 * ubi_thread - UBI background thread. 1288 * @u: the UBI device description object pointer 1289 */ 1290 int ubi_thread(void *u) 1291 { 1292 int failures = 0; 1293 struct ubi_device *ubi = u; 1294 1295 ubi_msg("background thread \"%s\" started, PID %d", 1296 ubi->bgt_name, task_pid_nr(current)); 1297 1298 set_freezable(); 1299 for (;;) { 1300 int err; 1301 1302 if (kthread_should_stop()) 1303 break; 1304 1305 if (try_to_freeze()) 1306 continue; 1307 1308 spin_lock(&ubi->wl_lock); 1309 if (list_empty(&ubi->works) || ubi->ro_mode || 1310 !ubi->thread_enabled) { 1311 set_current_state(TASK_INTERRUPTIBLE); 1312 spin_unlock(&ubi->wl_lock); 1313 schedule(); 1314 continue; 1315 } 1316 spin_unlock(&ubi->wl_lock); 1317 1318 err = do_work(ubi); 1319 if (err) { 1320 ubi_err("%s: work failed with error code %d", 1321 ubi->bgt_name, err); 1322 if (failures++ > WL_MAX_FAILURES) { 1323 /* 1324 * Too many failures, disable the thread and 1325 * switch to read-only mode. 1326 */ 1327 ubi_msg("%s: %d consecutive failures", 1328 ubi->bgt_name, WL_MAX_FAILURES); 1329 ubi_ro_mode(ubi); 1330 ubi->thread_enabled = 0; 1331 continue; 1332 } 1333 } else 1334 failures = 0; 1335 1336 cond_resched(); 1337 } 1338 1339 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1340 return 0; 1341 } 1342 1343 /** 1344 * cancel_pending - cancel all pending works. 1345 * @ubi: UBI device description object 1346 */ 1347 static void cancel_pending(struct ubi_device *ubi) 1348 { 1349 while (!list_empty(&ubi->works)) { 1350 struct ubi_work *wrk; 1351 1352 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1353 list_del(&wrk->list); 1354 wrk->func(ubi, wrk, 1); 1355 ubi->works_count -= 1; 1356 ubi_assert(ubi->works_count >= 0); 1357 } 1358 } 1359 1360 /** 1361 * ubi_wl_init_scan - initialize the WL sub-system using scanning information. 1362 * @ubi: UBI device description object 1363 * @si: scanning information 1364 * 1365 * This function returns zero in case of success, and a negative error code in 1366 * case of failure. 1367 */ 1368 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1369 { 1370 int err, i; 1371 struct rb_node *rb1, *rb2; 1372 struct ubi_scan_volume *sv; 1373 struct ubi_scan_leb *seb, *tmp; 1374 struct ubi_wl_entry *e; 1375 1376 ubi->used = ubi->free = ubi->scrub = RB_ROOT; 1377 spin_lock_init(&ubi->wl_lock); 1378 mutex_init(&ubi->move_mutex); 1379 init_rwsem(&ubi->work_sem); 1380 ubi->max_ec = si->max_ec; 1381 INIT_LIST_HEAD(&ubi->works); 1382 1383 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1384 1385 err = -ENOMEM; 1386 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1387 if (!ubi->lookuptbl) 1388 return err; 1389 1390 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1391 INIT_LIST_HEAD(&ubi->pq[i]); 1392 ubi->pq_head = 0; 1393 1394 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { 1395 cond_resched(); 1396 1397 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1398 if (!e) 1399 goto out_free; 1400 1401 e->pnum = seb->pnum; 1402 e->ec = seb->ec; 1403 ubi->lookuptbl[e->pnum] = e; 1404 if (schedule_erase(ubi, e, 0)) { 1405 kmem_cache_free(ubi_wl_entry_slab, e); 1406 goto out_free; 1407 } 1408 } 1409 1410 list_for_each_entry(seb, &si->free, u.list) { 1411 cond_resched(); 1412 1413 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1414 if (!e) 1415 goto out_free; 1416 1417 e->pnum = seb->pnum; 1418 e->ec = seb->ec; 1419 ubi_assert(e->ec >= 0); 1420 wl_tree_add(e, &ubi->free); 1421 ubi->lookuptbl[e->pnum] = e; 1422 } 1423 1424 list_for_each_entry(seb, &si->corr, u.list) { 1425 cond_resched(); 1426 1427 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1428 if (!e) 1429 goto out_free; 1430 1431 e->pnum = seb->pnum; 1432 e->ec = seb->ec; 1433 ubi->lookuptbl[e->pnum] = e; 1434 if (schedule_erase(ubi, e, 0)) { 1435 kmem_cache_free(ubi_wl_entry_slab, e); 1436 goto out_free; 1437 } 1438 } 1439 1440 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1441 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1442 cond_resched(); 1443 1444 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1445 if (!e) 1446 goto out_free; 1447 1448 e->pnum = seb->pnum; 1449 e->ec = seb->ec; 1450 ubi->lookuptbl[e->pnum] = e; 1451 if (!seb->scrub) { 1452 dbg_wl("add PEB %d EC %d to the used tree", 1453 e->pnum, e->ec); 1454 wl_tree_add(e, &ubi->used); 1455 } else { 1456 dbg_wl("add PEB %d EC %d to the scrub tree", 1457 e->pnum, e->ec); 1458 wl_tree_add(e, &ubi->scrub); 1459 } 1460 } 1461 } 1462 1463 if (ubi->avail_pebs < WL_RESERVED_PEBS) { 1464 ubi_err("no enough physical eraseblocks (%d, need %d)", 1465 ubi->avail_pebs, WL_RESERVED_PEBS); 1466 goto out_free; 1467 } 1468 ubi->avail_pebs -= WL_RESERVED_PEBS; 1469 ubi->rsvd_pebs += WL_RESERVED_PEBS; 1470 1471 /* Schedule wear-leveling if needed */ 1472 err = ensure_wear_leveling(ubi); 1473 if (err) 1474 goto out_free; 1475 1476 return 0; 1477 1478 out_free: 1479 cancel_pending(ubi); 1480 tree_destroy(&ubi->used); 1481 tree_destroy(&ubi->free); 1482 tree_destroy(&ubi->scrub); 1483 kfree(ubi->lookuptbl); 1484 return err; 1485 } 1486 1487 /** 1488 * protection_queue_destroy - destroy the protection queue. 1489 * @ubi: UBI device description object 1490 */ 1491 static void protection_queue_destroy(struct ubi_device *ubi) 1492 { 1493 int i; 1494 struct ubi_wl_entry *e, *tmp; 1495 1496 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1497 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1498 list_del(&e->u.list); 1499 kmem_cache_free(ubi_wl_entry_slab, e); 1500 } 1501 } 1502 } 1503 1504 /** 1505 * ubi_wl_close - close the wear-leveling sub-system. 1506 * @ubi: UBI device description object 1507 */ 1508 void ubi_wl_close(struct ubi_device *ubi) 1509 { 1510 dbg_wl("close the WL sub-system"); 1511 cancel_pending(ubi); 1512 protection_queue_destroy(ubi); 1513 tree_destroy(&ubi->used); 1514 tree_destroy(&ubi->free); 1515 tree_destroy(&ubi->scrub); 1516 kfree(ubi->lookuptbl); 1517 } 1518 1519 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1520 1521 /** 1522 * paranoid_check_ec - make sure that the erase counter of a PEB is correct. 1523 * @ubi: UBI device description object 1524 * @pnum: the physical eraseblock number to check 1525 * @ec: the erase counter to check 1526 * 1527 * This function returns zero if the erase counter of physical eraseblock @pnum 1528 * is equivalent to @ec, %1 if not, and a negative error code if an error 1529 * occurred. 1530 */ 1531 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) 1532 { 1533 int err; 1534 long long read_ec; 1535 struct ubi_ec_hdr *ec_hdr; 1536 1537 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1538 if (!ec_hdr) 1539 return -ENOMEM; 1540 1541 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1542 if (err && err != UBI_IO_BITFLIPS) { 1543 /* The header does not have to exist */ 1544 err = 0; 1545 goto out_free; 1546 } 1547 1548 read_ec = be64_to_cpu(ec_hdr->ec); 1549 if (ec != read_ec) { 1550 ubi_err("paranoid check failed for PEB %d", pnum); 1551 ubi_err("read EC is %lld, should be %d", read_ec, ec); 1552 ubi_dbg_dump_stack(); 1553 err = 1; 1554 } else 1555 err = 0; 1556 1557 out_free: 1558 kfree(ec_hdr); 1559 return err; 1560 } 1561 1562 /** 1563 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1564 * @e: the wear-leveling entry to check 1565 * @root: the root of the tree 1566 * 1567 * This function returns zero if @e is in the @root RB-tree and %1 if it is 1568 * not. 1569 */ 1570 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 1571 struct rb_root *root) 1572 { 1573 if (in_wl_tree(e, root)) 1574 return 0; 1575 1576 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", 1577 e->pnum, e->ec, root); 1578 ubi_dbg_dump_stack(); 1579 return 1; 1580 } 1581 1582 /** 1583 * paranoid_check_in_pq - check if wear-leveling entry is in the protection 1584 * queue. 1585 * @ubi: UBI device description object 1586 * @e: the wear-leveling entry to check 1587 * 1588 * This function returns zero if @e is in @ubi->pq and %1 if it is not. 1589 */ 1590 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e) 1591 { 1592 struct ubi_wl_entry *p; 1593 int i; 1594 1595 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 1596 list_for_each_entry(p, &ubi->pq[i], u.list) 1597 if (p == e) 1598 return 0; 1599 1600 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue", 1601 e->pnum, e->ec); 1602 ubi_dbg_dump_stack(); 1603 return 1; 1604 } 1605 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1606