xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision b627b4ed)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL sub-system may pick a free physical eraseblock with low erase
47  * counter, and so forth.
48  *
49  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
50  * bad.
51  *
52  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53  * in a physical eraseblock, it has to be moved. Technically this is the same
54  * as moving it for wear-leveling reasons.
55  *
56  * As it was said, for the UBI sub-system all physical eraseblocks are either
57  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58  * used eraseblocks are kept in @wl->used or @wl->scrub RB-trees, or
59  * (temporarily) in the @wl->pq queue.
60  *
61  * When the WL sub-system returns a physical eraseblock, the physical
62  * eraseblock is protected from being moved for some "time". For this reason,
63  * the physical eraseblock is not directly moved from the @wl->free tree to the
64  * @wl->used tree. There is a protection queue in between where this
65  * physical eraseblock is temporarily stored (@wl->pq).
66  *
67  * All this protection stuff is needed because:
68  *  o we don't want to move physical eraseblocks just after we have given them
69  *    to the user; instead, we first want to let users fill them up with data;
70  *
71  *  o there is a chance that the user will put the physical eraseblock very
72  *    soon, so it makes sense not to move it for some time, but wait; this is
73  *    especially important in case of "short term" physical eraseblocks.
74  *
75  * Physical eraseblocks stay protected only for limited time. But the "time" is
76  * measured in erase cycles in this case. This is implemented with help of the
77  * protection queue. Eraseblocks are put to the tail of this queue when they
78  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
79  * head of the queue on each erase operation (for any eraseblock). So the
80  * length of the queue defines how may (global) erase cycles PEBs are protected.
81  *
82  * To put it differently, each physical eraseblock has 2 main states: free and
83  * used. The former state corresponds to the @wl->free tree. The latter state
84  * is split up on several sub-states:
85  * o the WL movement is allowed (@wl->used tree);
86  * o the WL movement is temporarily prohibited (@wl->pq queue);
87  * o scrubbing is needed (@wl->scrub tree).
88  *
89  * Depending on the sub-state, wear-leveling entries of the used physical
90  * eraseblocks may be kept in one of those structures.
91  *
92  * Note, in this implementation, we keep a small in-RAM object for each physical
93  * eraseblock. This is surely not a scalable solution. But it appears to be good
94  * enough for moderately large flashes and it is simple. In future, one may
95  * re-work this sub-system and make it more scalable.
96  *
97  * At the moment this sub-system does not utilize the sequence number, which
98  * was introduced relatively recently. But it would be wise to do this because
99  * the sequence number of a logical eraseblock characterizes how old is it. For
100  * example, when we move a PEB with low erase counter, and we need to pick the
101  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
102  * pick target PEB with an average EC if our PEB is not very "old". This is a
103  * room for future re-works of the WL sub-system.
104  */
105 
106 #include <linux/slab.h>
107 #include <linux/crc32.h>
108 #include <linux/freezer.h>
109 #include <linux/kthread.h>
110 #include "ubi.h"
111 
112 /* Number of physical eraseblocks reserved for wear-leveling purposes */
113 #define WL_RESERVED_PEBS 1
114 
115 /*
116  * Maximum difference between two erase counters. If this threshold is
117  * exceeded, the WL sub-system starts moving data from used physical
118  * eraseblocks with low erase counter to free physical eraseblocks with high
119  * erase counter.
120  */
121 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
122 
123 /*
124  * When a physical eraseblock is moved, the WL sub-system has to pick the target
125  * physical eraseblock to move to. The simplest way would be just to pick the
126  * one with the highest erase counter. But in certain workloads this could lead
127  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
128  * situation when the picked physical eraseblock is constantly erased after the
129  * data is written to it. So, we have a constant which limits the highest erase
130  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
131  * does not pick eraseblocks with erase counter greater than the lowest erase
132  * counter plus %WL_FREE_MAX_DIFF.
133  */
134 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
135 
136 /*
137  * Maximum number of consecutive background thread failures which is enough to
138  * switch to read-only mode.
139  */
140 #define WL_MAX_FAILURES 32
141 
142 /**
143  * struct ubi_work - UBI work description data structure.
144  * @list: a link in the list of pending works
145  * @func: worker function
146  * @e: physical eraseblock to erase
147  * @torture: if the physical eraseblock has to be tortured
148  *
149  * The @func pointer points to the worker function. If the @cancel argument is
150  * not zero, the worker has to free the resources and exit immediately. The
151  * worker has to return zero in case of success and a negative error code in
152  * case of failure.
153  */
154 struct ubi_work {
155 	struct list_head list;
156 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
157 	/* The below fields are only relevant to erasure works */
158 	struct ubi_wl_entry *e;
159 	int torture;
160 };
161 
162 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
163 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
164 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
165 				     struct rb_root *root);
166 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e);
167 #else
168 #define paranoid_check_ec(ubi, pnum, ec) 0
169 #define paranoid_check_in_wl_tree(e, root)
170 #define paranoid_check_in_pq(ubi, e) 0
171 #endif
172 
173 /**
174  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
175  * @e: the wear-leveling entry to add
176  * @root: the root of the tree
177  *
178  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
179  * the @ubi->used and @ubi->free RB-trees.
180  */
181 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
182 {
183 	struct rb_node **p, *parent = NULL;
184 
185 	p = &root->rb_node;
186 	while (*p) {
187 		struct ubi_wl_entry *e1;
188 
189 		parent = *p;
190 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
191 
192 		if (e->ec < e1->ec)
193 			p = &(*p)->rb_left;
194 		else if (e->ec > e1->ec)
195 			p = &(*p)->rb_right;
196 		else {
197 			ubi_assert(e->pnum != e1->pnum);
198 			if (e->pnum < e1->pnum)
199 				p = &(*p)->rb_left;
200 			else
201 				p = &(*p)->rb_right;
202 		}
203 	}
204 
205 	rb_link_node(&e->u.rb, parent, p);
206 	rb_insert_color(&e->u.rb, root);
207 }
208 
209 /**
210  * do_work - do one pending work.
211  * @ubi: UBI device description object
212  *
213  * This function returns zero in case of success and a negative error code in
214  * case of failure.
215  */
216 static int do_work(struct ubi_device *ubi)
217 {
218 	int err;
219 	struct ubi_work *wrk;
220 
221 	cond_resched();
222 
223 	/*
224 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
225 	 * it in read mode, so many of them may be doing works at a time. But
226 	 * the queue flush code has to be sure the whole queue of works is
227 	 * done, and it takes the mutex in write mode.
228 	 */
229 	down_read(&ubi->work_sem);
230 	spin_lock(&ubi->wl_lock);
231 	if (list_empty(&ubi->works)) {
232 		spin_unlock(&ubi->wl_lock);
233 		up_read(&ubi->work_sem);
234 		return 0;
235 	}
236 
237 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
238 	list_del(&wrk->list);
239 	ubi->works_count -= 1;
240 	ubi_assert(ubi->works_count >= 0);
241 	spin_unlock(&ubi->wl_lock);
242 
243 	/*
244 	 * Call the worker function. Do not touch the work structure
245 	 * after this call as it will have been freed or reused by that
246 	 * time by the worker function.
247 	 */
248 	err = wrk->func(ubi, wrk, 0);
249 	if (err)
250 		ubi_err("work failed with error code %d", err);
251 	up_read(&ubi->work_sem);
252 
253 	return err;
254 }
255 
256 /**
257  * produce_free_peb - produce a free physical eraseblock.
258  * @ubi: UBI device description object
259  *
260  * This function tries to make a free PEB by means of synchronous execution of
261  * pending works. This may be needed if, for example the background thread is
262  * disabled. Returns zero in case of success and a negative error code in case
263  * of failure.
264  */
265 static int produce_free_peb(struct ubi_device *ubi)
266 {
267 	int err;
268 
269 	spin_lock(&ubi->wl_lock);
270 	while (!ubi->free.rb_node) {
271 		spin_unlock(&ubi->wl_lock);
272 
273 		dbg_wl("do one work synchronously");
274 		err = do_work(ubi);
275 		if (err)
276 			return err;
277 
278 		spin_lock(&ubi->wl_lock);
279 	}
280 	spin_unlock(&ubi->wl_lock);
281 
282 	return 0;
283 }
284 
285 /**
286  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
287  * @e: the wear-leveling entry to check
288  * @root: the root of the tree
289  *
290  * This function returns non-zero if @e is in the @root RB-tree and zero if it
291  * is not.
292  */
293 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
294 {
295 	struct rb_node *p;
296 
297 	p = root->rb_node;
298 	while (p) {
299 		struct ubi_wl_entry *e1;
300 
301 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
302 
303 		if (e->pnum == e1->pnum) {
304 			ubi_assert(e == e1);
305 			return 1;
306 		}
307 
308 		if (e->ec < e1->ec)
309 			p = p->rb_left;
310 		else if (e->ec > e1->ec)
311 			p = p->rb_right;
312 		else {
313 			ubi_assert(e->pnum != e1->pnum);
314 			if (e->pnum < e1->pnum)
315 				p = p->rb_left;
316 			else
317 				p = p->rb_right;
318 		}
319 	}
320 
321 	return 0;
322 }
323 
324 /**
325  * prot_queue_add - add physical eraseblock to the protection queue.
326  * @ubi: UBI device description object
327  * @e: the physical eraseblock to add
328  *
329  * This function adds @e to the tail of the protection queue @ubi->pq, where
330  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
331  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
332  * be locked.
333  */
334 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
335 {
336 	int pq_tail = ubi->pq_head - 1;
337 
338 	if (pq_tail < 0)
339 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
340 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
341 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
342 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
343 }
344 
345 /**
346  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
347  * @root: the RB-tree where to look for
348  * @max: highest possible erase counter
349  *
350  * This function looks for a wear leveling entry with erase counter closest to
351  * @max and less then @max.
352  */
353 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
354 {
355 	struct rb_node *p;
356 	struct ubi_wl_entry *e;
357 
358 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 	max += e->ec;
360 
361 	p = root->rb_node;
362 	while (p) {
363 		struct ubi_wl_entry *e1;
364 
365 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
366 		if (e1->ec >= max)
367 			p = p->rb_left;
368 		else {
369 			p = p->rb_right;
370 			e = e1;
371 		}
372 	}
373 
374 	return e;
375 }
376 
377 /**
378  * ubi_wl_get_peb - get a physical eraseblock.
379  * @ubi: UBI device description object
380  * @dtype: type of data which will be stored in this physical eraseblock
381  *
382  * This function returns a physical eraseblock in case of success and a
383  * negative error code in case of failure. Might sleep.
384  */
385 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
386 {
387 	int err, medium_ec;
388 	struct ubi_wl_entry *e, *first, *last;
389 
390 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
391 		   dtype == UBI_UNKNOWN);
392 
393 retry:
394 	spin_lock(&ubi->wl_lock);
395 	if (!ubi->free.rb_node) {
396 		if (ubi->works_count == 0) {
397 			ubi_assert(list_empty(&ubi->works));
398 			ubi_err("no free eraseblocks");
399 			spin_unlock(&ubi->wl_lock);
400 			return -ENOSPC;
401 		}
402 		spin_unlock(&ubi->wl_lock);
403 
404 		err = produce_free_peb(ubi);
405 		if (err < 0)
406 			return err;
407 		goto retry;
408 	}
409 
410 	switch (dtype) {
411 	case UBI_LONGTERM:
412 		/*
413 		 * For long term data we pick a physical eraseblock with high
414 		 * erase counter. But the highest erase counter we can pick is
415 		 * bounded by the the lowest erase counter plus
416 		 * %WL_FREE_MAX_DIFF.
417 		 */
418 		e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
419 		break;
420 	case UBI_UNKNOWN:
421 		/*
422 		 * For unknown data we pick a physical eraseblock with medium
423 		 * erase counter. But we by no means can pick a physical
424 		 * eraseblock with erase counter greater or equivalent than the
425 		 * lowest erase counter plus %WL_FREE_MAX_DIFF.
426 		 */
427 		first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
428 					u.rb);
429 		last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
430 
431 		if (last->ec - first->ec < WL_FREE_MAX_DIFF)
432 			e = rb_entry(ubi->free.rb_node,
433 					struct ubi_wl_entry, u.rb);
434 		else {
435 			medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
436 			e = find_wl_entry(&ubi->free, medium_ec);
437 		}
438 		break;
439 	case UBI_SHORTTERM:
440 		/*
441 		 * For short term data we pick a physical eraseblock with the
442 		 * lowest erase counter as we expect it will be erased soon.
443 		 */
444 		e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
445 		break;
446 	default:
447 		BUG();
448 	}
449 
450 	paranoid_check_in_wl_tree(e, &ubi->free);
451 
452 	/*
453 	 * Move the physical eraseblock to the protection queue where it will
454 	 * be protected from being moved for some time.
455 	 */
456 	rb_erase(&e->u.rb, &ubi->free);
457 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
458 	prot_queue_add(ubi, e);
459 	spin_unlock(&ubi->wl_lock);
460 	return e->pnum;
461 }
462 
463 /**
464  * prot_queue_del - remove a physical eraseblock from the protection queue.
465  * @ubi: UBI device description object
466  * @pnum: the physical eraseblock to remove
467  *
468  * This function deletes PEB @pnum from the protection queue and returns zero
469  * in case of success and %-ENODEV if the PEB was not found.
470  */
471 static int prot_queue_del(struct ubi_device *ubi, int pnum)
472 {
473 	struct ubi_wl_entry *e;
474 
475 	e = ubi->lookuptbl[pnum];
476 	if (!e)
477 		return -ENODEV;
478 
479 	if (paranoid_check_in_pq(ubi, e))
480 		return -ENODEV;
481 
482 	list_del(&e->u.list);
483 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
484 	return 0;
485 }
486 
487 /**
488  * sync_erase - synchronously erase a physical eraseblock.
489  * @ubi: UBI device description object
490  * @e: the the physical eraseblock to erase
491  * @torture: if the physical eraseblock has to be tortured
492  *
493  * This function returns zero in case of success and a negative error code in
494  * case of failure.
495  */
496 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
497 		      int torture)
498 {
499 	int err;
500 	struct ubi_ec_hdr *ec_hdr;
501 	unsigned long long ec = e->ec;
502 
503 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
504 
505 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
506 	if (err > 0)
507 		return -EINVAL;
508 
509 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
510 	if (!ec_hdr)
511 		return -ENOMEM;
512 
513 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
514 	if (err < 0)
515 		goto out_free;
516 
517 	ec += err;
518 	if (ec > UBI_MAX_ERASECOUNTER) {
519 		/*
520 		 * Erase counter overflow. Upgrade UBI and use 64-bit
521 		 * erase counters internally.
522 		 */
523 		ubi_err("erase counter overflow at PEB %d, EC %llu",
524 			e->pnum, ec);
525 		err = -EINVAL;
526 		goto out_free;
527 	}
528 
529 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
530 
531 	ec_hdr->ec = cpu_to_be64(ec);
532 
533 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
534 	if (err)
535 		goto out_free;
536 
537 	e->ec = ec;
538 	spin_lock(&ubi->wl_lock);
539 	if (e->ec > ubi->max_ec)
540 		ubi->max_ec = e->ec;
541 	spin_unlock(&ubi->wl_lock);
542 
543 out_free:
544 	kfree(ec_hdr);
545 	return err;
546 }
547 
548 /**
549  * serve_prot_queue - check if it is time to stop protecting PEBs.
550  * @ubi: UBI device description object
551  *
552  * This function is called after each erase operation and removes PEBs from the
553  * tail of the protection queue. These PEBs have been protected for long enough
554  * and should be moved to the used tree.
555  */
556 static void serve_prot_queue(struct ubi_device *ubi)
557 {
558 	struct ubi_wl_entry *e, *tmp;
559 	int count;
560 
561 	/*
562 	 * There may be several protected physical eraseblock to remove,
563 	 * process them all.
564 	 */
565 repeat:
566 	count = 0;
567 	spin_lock(&ubi->wl_lock);
568 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
569 		dbg_wl("PEB %d EC %d protection over, move to used tree",
570 			e->pnum, e->ec);
571 
572 		list_del(&e->u.list);
573 		wl_tree_add(e, &ubi->used);
574 		if (count++ > 32) {
575 			/*
576 			 * Let's be nice and avoid holding the spinlock for
577 			 * too long.
578 			 */
579 			spin_unlock(&ubi->wl_lock);
580 			cond_resched();
581 			goto repeat;
582 		}
583 	}
584 
585 	ubi->pq_head += 1;
586 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
587 		ubi->pq_head = 0;
588 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
589 	spin_unlock(&ubi->wl_lock);
590 }
591 
592 /**
593  * schedule_ubi_work - schedule a work.
594  * @ubi: UBI device description object
595  * @wrk: the work to schedule
596  *
597  * This function adds a work defined by @wrk to the tail of the pending works
598  * list.
599  */
600 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
601 {
602 	spin_lock(&ubi->wl_lock);
603 	list_add_tail(&wrk->list, &ubi->works);
604 	ubi_assert(ubi->works_count >= 0);
605 	ubi->works_count += 1;
606 	if (ubi->thread_enabled)
607 		wake_up_process(ubi->bgt_thread);
608 	spin_unlock(&ubi->wl_lock);
609 }
610 
611 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
612 			int cancel);
613 
614 /**
615  * schedule_erase - schedule an erase work.
616  * @ubi: UBI device description object
617  * @e: the WL entry of the physical eraseblock to erase
618  * @torture: if the physical eraseblock has to be tortured
619  *
620  * This function returns zero in case of success and a %-ENOMEM in case of
621  * failure.
622  */
623 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
624 			  int torture)
625 {
626 	struct ubi_work *wl_wrk;
627 
628 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
629 	       e->pnum, e->ec, torture);
630 
631 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
632 	if (!wl_wrk)
633 		return -ENOMEM;
634 
635 	wl_wrk->func = &erase_worker;
636 	wl_wrk->e = e;
637 	wl_wrk->torture = torture;
638 
639 	schedule_ubi_work(ubi, wl_wrk);
640 	return 0;
641 }
642 
643 /**
644  * wear_leveling_worker - wear-leveling worker function.
645  * @ubi: UBI device description object
646  * @wrk: the work object
647  * @cancel: non-zero if the worker has to free memory and exit
648  *
649  * This function copies a more worn out physical eraseblock to a less worn out
650  * one. Returns zero in case of success and a negative error code in case of
651  * failure.
652  */
653 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
654 				int cancel)
655 {
656 	int err, scrubbing = 0, torture = 0;
657 	struct ubi_wl_entry *e1, *e2;
658 	struct ubi_vid_hdr *vid_hdr;
659 
660 	kfree(wrk);
661 	if (cancel)
662 		return 0;
663 
664 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
665 	if (!vid_hdr)
666 		return -ENOMEM;
667 
668 	mutex_lock(&ubi->move_mutex);
669 	spin_lock(&ubi->wl_lock);
670 	ubi_assert(!ubi->move_from && !ubi->move_to);
671 	ubi_assert(!ubi->move_to_put);
672 
673 	if (!ubi->free.rb_node ||
674 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
675 		/*
676 		 * No free physical eraseblocks? Well, they must be waiting in
677 		 * the queue to be erased. Cancel movement - it will be
678 		 * triggered again when a free physical eraseblock appears.
679 		 *
680 		 * No used physical eraseblocks? They must be temporarily
681 		 * protected from being moved. They will be moved to the
682 		 * @ubi->used tree later and the wear-leveling will be
683 		 * triggered again.
684 		 */
685 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
686 		       !ubi->free.rb_node, !ubi->used.rb_node);
687 		goto out_cancel;
688 	}
689 
690 	if (!ubi->scrub.rb_node) {
691 		/*
692 		 * Now pick the least worn-out used physical eraseblock and a
693 		 * highly worn-out free physical eraseblock. If the erase
694 		 * counters differ much enough, start wear-leveling.
695 		 */
696 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
697 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
698 
699 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
700 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
701 			       e1->ec, e2->ec);
702 			goto out_cancel;
703 		}
704 		paranoid_check_in_wl_tree(e1, &ubi->used);
705 		rb_erase(&e1->u.rb, &ubi->used);
706 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
707 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
708 	} else {
709 		/* Perform scrubbing */
710 		scrubbing = 1;
711 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
712 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
713 		paranoid_check_in_wl_tree(e1, &ubi->scrub);
714 		rb_erase(&e1->u.rb, &ubi->scrub);
715 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
716 	}
717 
718 	paranoid_check_in_wl_tree(e2, &ubi->free);
719 	rb_erase(&e2->u.rb, &ubi->free);
720 	ubi->move_from = e1;
721 	ubi->move_to = e2;
722 	spin_unlock(&ubi->wl_lock);
723 
724 	/*
725 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
726 	 * We so far do not know which logical eraseblock our physical
727 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
728 	 * header first.
729 	 *
730 	 * Note, we are protected from this PEB being unmapped and erased. The
731 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
732 	 * which is being moved was unmapped.
733 	 */
734 
735 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
736 	if (err && err != UBI_IO_BITFLIPS) {
737 		if (err == UBI_IO_PEB_FREE) {
738 			/*
739 			 * We are trying to move PEB without a VID header. UBI
740 			 * always write VID headers shortly after the PEB was
741 			 * given, so we have a situation when it did not have
742 			 * chance to write it down because it was preempted.
743 			 * Just re-schedule the work, so that next time it will
744 			 * likely have the VID header in place.
745 			 */
746 			dbg_wl("PEB %d has no VID header", e1->pnum);
747 			goto out_not_moved;
748 		}
749 
750 		ubi_err("error %d while reading VID header from PEB %d",
751 			err, e1->pnum);
752 		if (err > 0)
753 			err = -EIO;
754 		goto out_error;
755 	}
756 
757 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
758 	if (err) {
759 		if (err == -EAGAIN)
760 			goto out_not_moved;
761 		if (err < 0)
762 			goto out_error;
763 		if (err == 2) {
764 			/* Target PEB write error, torture it */
765 			torture = 1;
766 			goto out_not_moved;
767 		}
768 
769 		/*
770 		 * The LEB has not been moved because the volume is being
771 		 * deleted or the PEB has been put meanwhile. We should prevent
772 		 * this PEB from being selected for wear-leveling movement
773 		 * again, so put it to the protection queue.
774 		 */
775 
776 		dbg_wl("canceled moving PEB %d", e1->pnum);
777 		ubi_assert(err == 1);
778 
779 		ubi_free_vid_hdr(ubi, vid_hdr);
780 		vid_hdr = NULL;
781 
782 		spin_lock(&ubi->wl_lock);
783 		prot_queue_add(ubi, e1);
784 		ubi_assert(!ubi->move_to_put);
785 		ubi->move_from = ubi->move_to = NULL;
786 		ubi->wl_scheduled = 0;
787 		spin_unlock(&ubi->wl_lock);
788 
789 		e1 = NULL;
790 		err = schedule_erase(ubi, e2, 0);
791 		if (err)
792 			goto out_error;
793 		mutex_unlock(&ubi->move_mutex);
794 		return 0;
795 	}
796 
797 	/* The PEB has been successfully moved */
798 	ubi_free_vid_hdr(ubi, vid_hdr);
799 	vid_hdr = NULL;
800 	if (scrubbing)
801 		ubi_msg("scrubbed PEB %d, data moved to PEB %d",
802 			e1->pnum, e2->pnum);
803 
804 	spin_lock(&ubi->wl_lock);
805 	if (!ubi->move_to_put) {
806 		wl_tree_add(e2, &ubi->used);
807 		e2 = NULL;
808 	}
809 	ubi->move_from = ubi->move_to = NULL;
810 	ubi->move_to_put = ubi->wl_scheduled = 0;
811 	spin_unlock(&ubi->wl_lock);
812 
813 	err = schedule_erase(ubi, e1, 0);
814 	if (err) {
815 		e1 = NULL;
816 		goto out_error;
817 	}
818 
819 	if (e2) {
820 		/*
821 		 * Well, the target PEB was put meanwhile, schedule it for
822 		 * erasure.
823 		 */
824 		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
825 		err = schedule_erase(ubi, e2, 0);
826 		if (err)
827 			goto out_error;
828 	}
829 
830 	dbg_wl("done");
831 	mutex_unlock(&ubi->move_mutex);
832 	return 0;
833 
834 	/*
835 	 * For some reasons the LEB was not moved, might be an error, might be
836 	 * something else. @e1 was not changed, so return it back. @e2 might
837 	 * have been changed, schedule it for erasure.
838 	 */
839 out_not_moved:
840 	dbg_wl("canceled moving PEB %d", e1->pnum);
841 	ubi_free_vid_hdr(ubi, vid_hdr);
842 	vid_hdr = NULL;
843 	spin_lock(&ubi->wl_lock);
844 	if (scrubbing)
845 		wl_tree_add(e1, &ubi->scrub);
846 	else
847 		wl_tree_add(e1, &ubi->used);
848 	ubi_assert(!ubi->move_to_put);
849 	ubi->move_from = ubi->move_to = NULL;
850 	ubi->wl_scheduled = 0;
851 	spin_unlock(&ubi->wl_lock);
852 
853 	e1 = NULL;
854 	err = schedule_erase(ubi, e2, torture);
855 	if (err)
856 		goto out_error;
857 
858 	mutex_unlock(&ubi->move_mutex);
859 	return 0;
860 
861 out_error:
862 	ubi_err("error %d while moving PEB %d to PEB %d",
863 		err, e1->pnum, e2->pnum);
864 
865 	ubi_free_vid_hdr(ubi, vid_hdr);
866 	spin_lock(&ubi->wl_lock);
867 	ubi->move_from = ubi->move_to = NULL;
868 	ubi->move_to_put = ubi->wl_scheduled = 0;
869 	spin_unlock(&ubi->wl_lock);
870 
871 	if (e1)
872 		kmem_cache_free(ubi_wl_entry_slab, e1);
873 	if (e2)
874 		kmem_cache_free(ubi_wl_entry_slab, e2);
875 	ubi_ro_mode(ubi);
876 
877 	mutex_unlock(&ubi->move_mutex);
878 	return err;
879 
880 out_cancel:
881 	ubi->wl_scheduled = 0;
882 	spin_unlock(&ubi->wl_lock);
883 	mutex_unlock(&ubi->move_mutex);
884 	ubi_free_vid_hdr(ubi, vid_hdr);
885 	return 0;
886 }
887 
888 /**
889  * ensure_wear_leveling - schedule wear-leveling if it is needed.
890  * @ubi: UBI device description object
891  *
892  * This function checks if it is time to start wear-leveling and schedules it
893  * if yes. This function returns zero in case of success and a negative error
894  * code in case of failure.
895  */
896 static int ensure_wear_leveling(struct ubi_device *ubi)
897 {
898 	int err = 0;
899 	struct ubi_wl_entry *e1;
900 	struct ubi_wl_entry *e2;
901 	struct ubi_work *wrk;
902 
903 	spin_lock(&ubi->wl_lock);
904 	if (ubi->wl_scheduled)
905 		/* Wear-leveling is already in the work queue */
906 		goto out_unlock;
907 
908 	/*
909 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
910 	 * the WL worker has to be scheduled anyway.
911 	 */
912 	if (!ubi->scrub.rb_node) {
913 		if (!ubi->used.rb_node || !ubi->free.rb_node)
914 			/* No physical eraseblocks - no deal */
915 			goto out_unlock;
916 
917 		/*
918 		 * We schedule wear-leveling only if the difference between the
919 		 * lowest erase counter of used physical eraseblocks and a high
920 		 * erase counter of free physical eraseblocks is greater than
921 		 * %UBI_WL_THRESHOLD.
922 		 */
923 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
924 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
925 
926 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
927 			goto out_unlock;
928 		dbg_wl("schedule wear-leveling");
929 	} else
930 		dbg_wl("schedule scrubbing");
931 
932 	ubi->wl_scheduled = 1;
933 	spin_unlock(&ubi->wl_lock);
934 
935 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
936 	if (!wrk) {
937 		err = -ENOMEM;
938 		goto out_cancel;
939 	}
940 
941 	wrk->func = &wear_leveling_worker;
942 	schedule_ubi_work(ubi, wrk);
943 	return err;
944 
945 out_cancel:
946 	spin_lock(&ubi->wl_lock);
947 	ubi->wl_scheduled = 0;
948 out_unlock:
949 	spin_unlock(&ubi->wl_lock);
950 	return err;
951 }
952 
953 /**
954  * erase_worker - physical eraseblock erase worker function.
955  * @ubi: UBI device description object
956  * @wl_wrk: the work object
957  * @cancel: non-zero if the worker has to free memory and exit
958  *
959  * This function erases a physical eraseblock and perform torture testing if
960  * needed. It also takes care about marking the physical eraseblock bad if
961  * needed. Returns zero in case of success and a negative error code in case of
962  * failure.
963  */
964 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
965 			int cancel)
966 {
967 	struct ubi_wl_entry *e = wl_wrk->e;
968 	int pnum = e->pnum, err, need;
969 
970 	if (cancel) {
971 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
972 		kfree(wl_wrk);
973 		kmem_cache_free(ubi_wl_entry_slab, e);
974 		return 0;
975 	}
976 
977 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
978 
979 	err = sync_erase(ubi, e, wl_wrk->torture);
980 	if (!err) {
981 		/* Fine, we've erased it successfully */
982 		kfree(wl_wrk);
983 
984 		spin_lock(&ubi->wl_lock);
985 		wl_tree_add(e, &ubi->free);
986 		spin_unlock(&ubi->wl_lock);
987 
988 		/*
989 		 * One more erase operation has happened, take care about
990 		 * protected physical eraseblocks.
991 		 */
992 		serve_prot_queue(ubi);
993 
994 		/* And take care about wear-leveling */
995 		err = ensure_wear_leveling(ubi);
996 		return err;
997 	}
998 
999 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1000 	kfree(wl_wrk);
1001 	kmem_cache_free(ubi_wl_entry_slab, e);
1002 
1003 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1004 	    err == -EBUSY) {
1005 		int err1;
1006 
1007 		/* Re-schedule the LEB for erasure */
1008 		err1 = schedule_erase(ubi, e, 0);
1009 		if (err1) {
1010 			err = err1;
1011 			goto out_ro;
1012 		}
1013 		return err;
1014 	} else if (err != -EIO) {
1015 		/*
1016 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1017 		 * this physical eraseblock for erasure again would cause
1018 		 * errors again and again. Well, lets switch to RO mode.
1019 		 */
1020 		goto out_ro;
1021 	}
1022 
1023 	/* It is %-EIO, the PEB went bad */
1024 
1025 	if (!ubi->bad_allowed) {
1026 		ubi_err("bad physical eraseblock %d detected", pnum);
1027 		goto out_ro;
1028 	}
1029 
1030 	spin_lock(&ubi->volumes_lock);
1031 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1032 	if (need > 0) {
1033 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1034 		ubi->avail_pebs -= need;
1035 		ubi->rsvd_pebs += need;
1036 		ubi->beb_rsvd_pebs += need;
1037 		if (need > 0)
1038 			ubi_msg("reserve more %d PEBs", need);
1039 	}
1040 
1041 	if (ubi->beb_rsvd_pebs == 0) {
1042 		spin_unlock(&ubi->volumes_lock);
1043 		ubi_err("no reserved physical eraseblocks");
1044 		goto out_ro;
1045 	}
1046 
1047 	spin_unlock(&ubi->volumes_lock);
1048 	ubi_msg("mark PEB %d as bad", pnum);
1049 
1050 	err = ubi_io_mark_bad(ubi, pnum);
1051 	if (err)
1052 		goto out_ro;
1053 
1054 	spin_lock(&ubi->volumes_lock);
1055 	ubi->beb_rsvd_pebs -= 1;
1056 	ubi->bad_peb_count += 1;
1057 	ubi->good_peb_count -= 1;
1058 	ubi_calculate_reserved(ubi);
1059 	if (ubi->beb_rsvd_pebs == 0)
1060 		ubi_warn("last PEB from the reserved pool was used");
1061 	spin_unlock(&ubi->volumes_lock);
1062 
1063 	return err;
1064 
1065 out_ro:
1066 	ubi_ro_mode(ubi);
1067 	return err;
1068 }
1069 
1070 /**
1071  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1072  * @ubi: UBI device description object
1073  * @pnum: physical eraseblock to return
1074  * @torture: if this physical eraseblock has to be tortured
1075  *
1076  * This function is called to return physical eraseblock @pnum to the pool of
1077  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1078  * occurred to this @pnum and it has to be tested. This function returns zero
1079  * in case of success, and a negative error code in case of failure.
1080  */
1081 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1082 {
1083 	int err;
1084 	struct ubi_wl_entry *e;
1085 
1086 	dbg_wl("PEB %d", pnum);
1087 	ubi_assert(pnum >= 0);
1088 	ubi_assert(pnum < ubi->peb_count);
1089 
1090 retry:
1091 	spin_lock(&ubi->wl_lock);
1092 	e = ubi->lookuptbl[pnum];
1093 	if (e == ubi->move_from) {
1094 		/*
1095 		 * User is putting the physical eraseblock which was selected to
1096 		 * be moved. It will be scheduled for erasure in the
1097 		 * wear-leveling worker.
1098 		 */
1099 		dbg_wl("PEB %d is being moved, wait", pnum);
1100 		spin_unlock(&ubi->wl_lock);
1101 
1102 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1103 		mutex_lock(&ubi->move_mutex);
1104 		mutex_unlock(&ubi->move_mutex);
1105 		goto retry;
1106 	} else if (e == ubi->move_to) {
1107 		/*
1108 		 * User is putting the physical eraseblock which was selected
1109 		 * as the target the data is moved to. It may happen if the EBA
1110 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1111 		 * but the WL sub-system has not put the PEB to the "used" tree
1112 		 * yet, but it is about to do this. So we just set a flag which
1113 		 * will tell the WL worker that the PEB is not needed anymore
1114 		 * and should be scheduled for erasure.
1115 		 */
1116 		dbg_wl("PEB %d is the target of data moving", pnum);
1117 		ubi_assert(!ubi->move_to_put);
1118 		ubi->move_to_put = 1;
1119 		spin_unlock(&ubi->wl_lock);
1120 		return 0;
1121 	} else {
1122 		if (in_wl_tree(e, &ubi->used)) {
1123 			paranoid_check_in_wl_tree(e, &ubi->used);
1124 			rb_erase(&e->u.rb, &ubi->used);
1125 		} else if (in_wl_tree(e, &ubi->scrub)) {
1126 			paranoid_check_in_wl_tree(e, &ubi->scrub);
1127 			rb_erase(&e->u.rb, &ubi->scrub);
1128 		} else {
1129 			err = prot_queue_del(ubi, e->pnum);
1130 			if (err) {
1131 				ubi_err("PEB %d not found", pnum);
1132 				ubi_ro_mode(ubi);
1133 				spin_unlock(&ubi->wl_lock);
1134 				return err;
1135 			}
1136 		}
1137 	}
1138 	spin_unlock(&ubi->wl_lock);
1139 
1140 	err = schedule_erase(ubi, e, torture);
1141 	if (err) {
1142 		spin_lock(&ubi->wl_lock);
1143 		wl_tree_add(e, &ubi->used);
1144 		spin_unlock(&ubi->wl_lock);
1145 	}
1146 
1147 	return err;
1148 }
1149 
1150 /**
1151  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1152  * @ubi: UBI device description object
1153  * @pnum: the physical eraseblock to schedule
1154  *
1155  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1156  * needs scrubbing. This function schedules a physical eraseblock for
1157  * scrubbing which is done in background. This function returns zero in case of
1158  * success and a negative error code in case of failure.
1159  */
1160 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1161 {
1162 	struct ubi_wl_entry *e;
1163 
1164 	dbg_msg("schedule PEB %d for scrubbing", pnum);
1165 
1166 retry:
1167 	spin_lock(&ubi->wl_lock);
1168 	e = ubi->lookuptbl[pnum];
1169 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1170 		spin_unlock(&ubi->wl_lock);
1171 		return 0;
1172 	}
1173 
1174 	if (e == ubi->move_to) {
1175 		/*
1176 		 * This physical eraseblock was used to move data to. The data
1177 		 * was moved but the PEB was not yet inserted to the proper
1178 		 * tree. We should just wait a little and let the WL worker
1179 		 * proceed.
1180 		 */
1181 		spin_unlock(&ubi->wl_lock);
1182 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1183 		yield();
1184 		goto retry;
1185 	}
1186 
1187 	if (in_wl_tree(e, &ubi->used)) {
1188 		paranoid_check_in_wl_tree(e, &ubi->used);
1189 		rb_erase(&e->u.rb, &ubi->used);
1190 	} else {
1191 		int err;
1192 
1193 		err = prot_queue_del(ubi, e->pnum);
1194 		if (err) {
1195 			ubi_err("PEB %d not found", pnum);
1196 			ubi_ro_mode(ubi);
1197 			spin_unlock(&ubi->wl_lock);
1198 			return err;
1199 		}
1200 	}
1201 
1202 	wl_tree_add(e, &ubi->scrub);
1203 	spin_unlock(&ubi->wl_lock);
1204 
1205 	/*
1206 	 * Technically scrubbing is the same as wear-leveling, so it is done
1207 	 * by the WL worker.
1208 	 */
1209 	return ensure_wear_leveling(ubi);
1210 }
1211 
1212 /**
1213  * ubi_wl_flush - flush all pending works.
1214  * @ubi: UBI device description object
1215  *
1216  * This function returns zero in case of success and a negative error code in
1217  * case of failure.
1218  */
1219 int ubi_wl_flush(struct ubi_device *ubi)
1220 {
1221 	int err;
1222 
1223 	/*
1224 	 * Erase while the pending works queue is not empty, but not more than
1225 	 * the number of currently pending works.
1226 	 */
1227 	dbg_wl("flush (%d pending works)", ubi->works_count);
1228 	while (ubi->works_count) {
1229 		err = do_work(ubi);
1230 		if (err)
1231 			return err;
1232 	}
1233 
1234 	/*
1235 	 * Make sure all the works which have been done in parallel are
1236 	 * finished.
1237 	 */
1238 	down_write(&ubi->work_sem);
1239 	up_write(&ubi->work_sem);
1240 
1241 	/*
1242 	 * And in case last was the WL worker and it canceled the LEB
1243 	 * movement, flush again.
1244 	 */
1245 	while (ubi->works_count) {
1246 		dbg_wl("flush more (%d pending works)", ubi->works_count);
1247 		err = do_work(ubi);
1248 		if (err)
1249 			return err;
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 /**
1256  * tree_destroy - destroy an RB-tree.
1257  * @root: the root of the tree to destroy
1258  */
1259 static void tree_destroy(struct rb_root *root)
1260 {
1261 	struct rb_node *rb;
1262 	struct ubi_wl_entry *e;
1263 
1264 	rb = root->rb_node;
1265 	while (rb) {
1266 		if (rb->rb_left)
1267 			rb = rb->rb_left;
1268 		else if (rb->rb_right)
1269 			rb = rb->rb_right;
1270 		else {
1271 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1272 
1273 			rb = rb_parent(rb);
1274 			if (rb) {
1275 				if (rb->rb_left == &e->u.rb)
1276 					rb->rb_left = NULL;
1277 				else
1278 					rb->rb_right = NULL;
1279 			}
1280 
1281 			kmem_cache_free(ubi_wl_entry_slab, e);
1282 		}
1283 	}
1284 }
1285 
1286 /**
1287  * ubi_thread - UBI background thread.
1288  * @u: the UBI device description object pointer
1289  */
1290 int ubi_thread(void *u)
1291 {
1292 	int failures = 0;
1293 	struct ubi_device *ubi = u;
1294 
1295 	ubi_msg("background thread \"%s\" started, PID %d",
1296 		ubi->bgt_name, task_pid_nr(current));
1297 
1298 	set_freezable();
1299 	for (;;) {
1300 		int err;
1301 
1302 		if (kthread_should_stop())
1303 			break;
1304 
1305 		if (try_to_freeze())
1306 			continue;
1307 
1308 		spin_lock(&ubi->wl_lock);
1309 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1310 			       !ubi->thread_enabled) {
1311 			set_current_state(TASK_INTERRUPTIBLE);
1312 			spin_unlock(&ubi->wl_lock);
1313 			schedule();
1314 			continue;
1315 		}
1316 		spin_unlock(&ubi->wl_lock);
1317 
1318 		err = do_work(ubi);
1319 		if (err) {
1320 			ubi_err("%s: work failed with error code %d",
1321 				ubi->bgt_name, err);
1322 			if (failures++ > WL_MAX_FAILURES) {
1323 				/*
1324 				 * Too many failures, disable the thread and
1325 				 * switch to read-only mode.
1326 				 */
1327 				ubi_msg("%s: %d consecutive failures",
1328 					ubi->bgt_name, WL_MAX_FAILURES);
1329 				ubi_ro_mode(ubi);
1330 				ubi->thread_enabled = 0;
1331 				continue;
1332 			}
1333 		} else
1334 			failures = 0;
1335 
1336 		cond_resched();
1337 	}
1338 
1339 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1340 	return 0;
1341 }
1342 
1343 /**
1344  * cancel_pending - cancel all pending works.
1345  * @ubi: UBI device description object
1346  */
1347 static void cancel_pending(struct ubi_device *ubi)
1348 {
1349 	while (!list_empty(&ubi->works)) {
1350 		struct ubi_work *wrk;
1351 
1352 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1353 		list_del(&wrk->list);
1354 		wrk->func(ubi, wrk, 1);
1355 		ubi->works_count -= 1;
1356 		ubi_assert(ubi->works_count >= 0);
1357 	}
1358 }
1359 
1360 /**
1361  * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1362  * @ubi: UBI device description object
1363  * @si: scanning information
1364  *
1365  * This function returns zero in case of success, and a negative error code in
1366  * case of failure.
1367  */
1368 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1369 {
1370 	int err, i;
1371 	struct rb_node *rb1, *rb2;
1372 	struct ubi_scan_volume *sv;
1373 	struct ubi_scan_leb *seb, *tmp;
1374 	struct ubi_wl_entry *e;
1375 
1376 	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1377 	spin_lock_init(&ubi->wl_lock);
1378 	mutex_init(&ubi->move_mutex);
1379 	init_rwsem(&ubi->work_sem);
1380 	ubi->max_ec = si->max_ec;
1381 	INIT_LIST_HEAD(&ubi->works);
1382 
1383 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1384 
1385 	err = -ENOMEM;
1386 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1387 	if (!ubi->lookuptbl)
1388 		return err;
1389 
1390 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1391 		INIT_LIST_HEAD(&ubi->pq[i]);
1392 	ubi->pq_head = 0;
1393 
1394 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1395 		cond_resched();
1396 
1397 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1398 		if (!e)
1399 			goto out_free;
1400 
1401 		e->pnum = seb->pnum;
1402 		e->ec = seb->ec;
1403 		ubi->lookuptbl[e->pnum] = e;
1404 		if (schedule_erase(ubi, e, 0)) {
1405 			kmem_cache_free(ubi_wl_entry_slab, e);
1406 			goto out_free;
1407 		}
1408 	}
1409 
1410 	list_for_each_entry(seb, &si->free, u.list) {
1411 		cond_resched();
1412 
1413 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1414 		if (!e)
1415 			goto out_free;
1416 
1417 		e->pnum = seb->pnum;
1418 		e->ec = seb->ec;
1419 		ubi_assert(e->ec >= 0);
1420 		wl_tree_add(e, &ubi->free);
1421 		ubi->lookuptbl[e->pnum] = e;
1422 	}
1423 
1424 	list_for_each_entry(seb, &si->corr, u.list) {
1425 		cond_resched();
1426 
1427 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1428 		if (!e)
1429 			goto out_free;
1430 
1431 		e->pnum = seb->pnum;
1432 		e->ec = seb->ec;
1433 		ubi->lookuptbl[e->pnum] = e;
1434 		if (schedule_erase(ubi, e, 0)) {
1435 			kmem_cache_free(ubi_wl_entry_slab, e);
1436 			goto out_free;
1437 		}
1438 	}
1439 
1440 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1441 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1442 			cond_resched();
1443 
1444 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1445 			if (!e)
1446 				goto out_free;
1447 
1448 			e->pnum = seb->pnum;
1449 			e->ec = seb->ec;
1450 			ubi->lookuptbl[e->pnum] = e;
1451 			if (!seb->scrub) {
1452 				dbg_wl("add PEB %d EC %d to the used tree",
1453 				       e->pnum, e->ec);
1454 				wl_tree_add(e, &ubi->used);
1455 			} else {
1456 				dbg_wl("add PEB %d EC %d to the scrub tree",
1457 				       e->pnum, e->ec);
1458 				wl_tree_add(e, &ubi->scrub);
1459 			}
1460 		}
1461 	}
1462 
1463 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1464 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1465 			ubi->avail_pebs, WL_RESERVED_PEBS);
1466 		goto out_free;
1467 	}
1468 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1469 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1470 
1471 	/* Schedule wear-leveling if needed */
1472 	err = ensure_wear_leveling(ubi);
1473 	if (err)
1474 		goto out_free;
1475 
1476 	return 0;
1477 
1478 out_free:
1479 	cancel_pending(ubi);
1480 	tree_destroy(&ubi->used);
1481 	tree_destroy(&ubi->free);
1482 	tree_destroy(&ubi->scrub);
1483 	kfree(ubi->lookuptbl);
1484 	return err;
1485 }
1486 
1487 /**
1488  * protection_queue_destroy - destroy the protection queue.
1489  * @ubi: UBI device description object
1490  */
1491 static void protection_queue_destroy(struct ubi_device *ubi)
1492 {
1493 	int i;
1494 	struct ubi_wl_entry *e, *tmp;
1495 
1496 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1497 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1498 			list_del(&e->u.list);
1499 			kmem_cache_free(ubi_wl_entry_slab, e);
1500 		}
1501 	}
1502 }
1503 
1504 /**
1505  * ubi_wl_close - close the wear-leveling sub-system.
1506  * @ubi: UBI device description object
1507  */
1508 void ubi_wl_close(struct ubi_device *ubi)
1509 {
1510 	dbg_wl("close the WL sub-system");
1511 	cancel_pending(ubi);
1512 	protection_queue_destroy(ubi);
1513 	tree_destroy(&ubi->used);
1514 	tree_destroy(&ubi->free);
1515 	tree_destroy(&ubi->scrub);
1516 	kfree(ubi->lookuptbl);
1517 }
1518 
1519 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1520 
1521 /**
1522  * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1523  * @ubi: UBI device description object
1524  * @pnum: the physical eraseblock number to check
1525  * @ec: the erase counter to check
1526  *
1527  * This function returns zero if the erase counter of physical eraseblock @pnum
1528  * is equivalent to @ec, %1 if not, and a negative error code if an error
1529  * occurred.
1530  */
1531 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1532 {
1533 	int err;
1534 	long long read_ec;
1535 	struct ubi_ec_hdr *ec_hdr;
1536 
1537 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1538 	if (!ec_hdr)
1539 		return -ENOMEM;
1540 
1541 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1542 	if (err && err != UBI_IO_BITFLIPS) {
1543 		/* The header does not have to exist */
1544 		err = 0;
1545 		goto out_free;
1546 	}
1547 
1548 	read_ec = be64_to_cpu(ec_hdr->ec);
1549 	if (ec != read_ec) {
1550 		ubi_err("paranoid check failed for PEB %d", pnum);
1551 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1552 		ubi_dbg_dump_stack();
1553 		err = 1;
1554 	} else
1555 		err = 0;
1556 
1557 out_free:
1558 	kfree(ec_hdr);
1559 	return err;
1560 }
1561 
1562 /**
1563  * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1564  * @e: the wear-leveling entry to check
1565  * @root: the root of the tree
1566  *
1567  * This function returns zero if @e is in the @root RB-tree and %1 if it is
1568  * not.
1569  */
1570 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1571 				     struct rb_root *root)
1572 {
1573 	if (in_wl_tree(e, root))
1574 		return 0;
1575 
1576 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1577 		e->pnum, e->ec, root);
1578 	ubi_dbg_dump_stack();
1579 	return 1;
1580 }
1581 
1582 /**
1583  * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1584  *                        queue.
1585  * @ubi: UBI device description object
1586  * @e: the wear-leveling entry to check
1587  *
1588  * This function returns zero if @e is in @ubi->pq and %1 if it is not.
1589  */
1590 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e)
1591 {
1592 	struct ubi_wl_entry *p;
1593 	int i;
1594 
1595 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1596 		list_for_each_entry(p, &ubi->pq[i], u.list)
1597 			if (p == e)
1598 				return 0;
1599 
1600 	ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1601 		e->pnum, e->ec);
1602 	ubi_dbg_dump_stack();
1603 	return 1;
1604 }
1605 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1606