xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision b34e08d5)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109 
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117 
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130 
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136 
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139 				 struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141 			    struct ubi_wl_entry *e);
142 
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151 	ubi_update_fastmap(ubi);
152 }
153 
154 /**
155  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156  *  @ubi: UBI device description object
157  *  @pnum: the to be checked PEB
158  */
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161 	int i;
162 
163 	if (!ubi->fm)
164 		return 0;
165 
166 	for (i = 0; i < ubi->fm->used_blocks; i++)
167 		if (ubi->fm->e[i]->pnum == pnum)
168 			return 1;
169 
170 	return 0;
171 }
172 #else
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175 	return 0;
176 }
177 #endif
178 
179 /**
180  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181  * @e: the wear-leveling entry to add
182  * @root: the root of the tree
183  *
184  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185  * the @ubi->used and @ubi->free RB-trees.
186  */
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189 	struct rb_node **p, *parent = NULL;
190 
191 	p = &root->rb_node;
192 	while (*p) {
193 		struct ubi_wl_entry *e1;
194 
195 		parent = *p;
196 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197 
198 		if (e->ec < e1->ec)
199 			p = &(*p)->rb_left;
200 		else if (e->ec > e1->ec)
201 			p = &(*p)->rb_right;
202 		else {
203 			ubi_assert(e->pnum != e1->pnum);
204 			if (e->pnum < e1->pnum)
205 				p = &(*p)->rb_left;
206 			else
207 				p = &(*p)->rb_right;
208 		}
209 	}
210 
211 	rb_link_node(&e->u.rb, parent, p);
212 	rb_insert_color(&e->u.rb, root);
213 }
214 
215 /**
216  * do_work - do one pending work.
217  * @ubi: UBI device description object
218  *
219  * This function returns zero in case of success and a negative error code in
220  * case of failure.
221  */
222 static int do_work(struct ubi_device *ubi)
223 {
224 	int err;
225 	struct ubi_work *wrk;
226 
227 	cond_resched();
228 
229 	/*
230 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
231 	 * it in read mode, so many of them may be doing works at a time. But
232 	 * the queue flush code has to be sure the whole queue of works is
233 	 * done, and it takes the mutex in write mode.
234 	 */
235 	down_read(&ubi->work_sem);
236 	spin_lock(&ubi->wl_lock);
237 	if (list_empty(&ubi->works)) {
238 		spin_unlock(&ubi->wl_lock);
239 		up_read(&ubi->work_sem);
240 		return 0;
241 	}
242 
243 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
244 	list_del(&wrk->list);
245 	ubi->works_count -= 1;
246 	ubi_assert(ubi->works_count >= 0);
247 	spin_unlock(&ubi->wl_lock);
248 
249 	/*
250 	 * Call the worker function. Do not touch the work structure
251 	 * after this call as it will have been freed or reused by that
252 	 * time by the worker function.
253 	 */
254 	err = wrk->func(ubi, wrk, 0);
255 	if (err)
256 		ubi_err("work failed with error code %d", err);
257 	up_read(&ubi->work_sem);
258 
259 	return err;
260 }
261 
262 /**
263  * produce_free_peb - produce a free physical eraseblock.
264  * @ubi: UBI device description object
265  *
266  * This function tries to make a free PEB by means of synchronous execution of
267  * pending works. This may be needed if, for example the background thread is
268  * disabled. Returns zero in case of success and a negative error code in case
269  * of failure.
270  */
271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273 	int err;
274 
275 	while (!ubi->free.rb_node) {
276 		spin_unlock(&ubi->wl_lock);
277 
278 		dbg_wl("do one work synchronously");
279 		err = do_work(ubi);
280 
281 		spin_lock(&ubi->wl_lock);
282 		if (err)
283 			return err;
284 	}
285 
286 	return 0;
287 }
288 
289 /**
290  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291  * @e: the wear-leveling entry to check
292  * @root: the root of the tree
293  *
294  * This function returns non-zero if @e is in the @root RB-tree and zero if it
295  * is not.
296  */
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299 	struct rb_node *p;
300 
301 	p = root->rb_node;
302 	while (p) {
303 		struct ubi_wl_entry *e1;
304 
305 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306 
307 		if (e->pnum == e1->pnum) {
308 			ubi_assert(e == e1);
309 			return 1;
310 		}
311 
312 		if (e->ec < e1->ec)
313 			p = p->rb_left;
314 		else if (e->ec > e1->ec)
315 			p = p->rb_right;
316 		else {
317 			ubi_assert(e->pnum != e1->pnum);
318 			if (e->pnum < e1->pnum)
319 				p = p->rb_left;
320 			else
321 				p = p->rb_right;
322 		}
323 	}
324 
325 	return 0;
326 }
327 
328 /**
329  * prot_queue_add - add physical eraseblock to the protection queue.
330  * @ubi: UBI device description object
331  * @e: the physical eraseblock to add
332  *
333  * This function adds @e to the tail of the protection queue @ubi->pq, where
334  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336  * be locked.
337  */
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340 	int pq_tail = ubi->pq_head - 1;
341 
342 	if (pq_tail < 0)
343 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
344 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348 
349 /**
350  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351  * @ubi: UBI device description object
352  * @root: the RB-tree where to look for
353  * @diff: maximum possible difference from the smallest erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * min + @diff, where min is the smallest erase counter.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359 					  struct rb_root *root, int diff)
360 {
361 	struct rb_node *p;
362 	struct ubi_wl_entry *e, *prev_e = NULL;
363 	int max;
364 
365 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366 	max = e->ec + diff;
367 
368 	p = root->rb_node;
369 	while (p) {
370 		struct ubi_wl_entry *e1;
371 
372 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373 		if (e1->ec >= max)
374 			p = p->rb_left;
375 		else {
376 			p = p->rb_right;
377 			prev_e = e;
378 			e = e1;
379 		}
380 	}
381 
382 	/* If no fastmap has been written and this WL entry can be used
383 	 * as anchor PEB, hold it back and return the second best WL entry
384 	 * such that fastmap can use the anchor PEB later. */
385 	if (prev_e && !ubi->fm_disabled &&
386 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
387 		return prev_e;
388 
389 	return e;
390 }
391 
392 /**
393  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394  * @ubi: UBI device description object
395  * @root: the RB-tree where to look for
396  *
397  * This function looks for a wear leveling entry with medium erase counter,
398  * but not greater or equivalent than the lowest erase counter plus
399  * %WL_FREE_MAX_DIFF/2.
400  */
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402 					       struct rb_root *root)
403 {
404 	struct ubi_wl_entry *e, *first, *last;
405 
406 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408 
409 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411 
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413 		/* If no fastmap has been written and this WL entry can be used
414 		 * as anchor PEB, hold it back and return the second best
415 		 * WL entry such that fastmap can use the anchor PEB later. */
416 		if (e && !ubi->fm_disabled && !ubi->fm &&
417 		    e->pnum < UBI_FM_MAX_START)
418 			e = rb_entry(rb_next(root->rb_node),
419 				     struct ubi_wl_entry, u.rb);
420 #endif
421 	} else
422 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423 
424 	return e;
425 }
426 
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430  * @root: the RB-tree where to look for
431  */
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434 	struct rb_node *p;
435 	struct ubi_wl_entry *e, *victim = NULL;
436 	int max_ec = UBI_MAX_ERASECOUNTER;
437 
438 	ubi_rb_for_each_entry(p, e, root, u.rb) {
439 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440 			victim = e;
441 			max_ec = e->ec;
442 		}
443 	}
444 
445 	return victim;
446 }
447 
448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450 	struct rb_node *p;
451 	struct ubi_wl_entry *e;
452 
453 	ubi_rb_for_each_entry(p, e, root, u.rb)
454 		if (e->pnum < UBI_FM_MAX_START)
455 			return 1;
456 
457 	return 0;
458 }
459 
460 /**
461  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462  * @ubi: UBI device description object
463  * @anchor: This PEB will be used as anchor PEB by fastmap
464  *
465  * The function returns a physical erase block with a given maximal number
466  * and removes it from the wl subsystem.
467  * Must be called with wl_lock held!
468  */
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471 	struct ubi_wl_entry *e = NULL;
472 
473 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
474 		goto out;
475 
476 	if (anchor)
477 		e = find_anchor_wl_entry(&ubi->free);
478 	else
479 		e = find_mean_wl_entry(ubi, &ubi->free);
480 
481 	if (!e)
482 		goto out;
483 
484 	self_check_in_wl_tree(ubi, e, &ubi->free);
485 
486 	/* remove it from the free list,
487 	 * the wl subsystem does no longer know this erase block */
488 	rb_erase(&e->u.rb, &ubi->free);
489 	ubi->free_count--;
490 out:
491 	return e;
492 }
493 #endif
494 
495 /**
496  * __wl_get_peb - get a physical eraseblock.
497  * @ubi: UBI device description object
498  *
499  * This function returns a physical eraseblock in case of success and a
500  * negative error code in case of failure.
501  */
502 static int __wl_get_peb(struct ubi_device *ubi)
503 {
504 	int err;
505 	struct ubi_wl_entry *e;
506 
507 retry:
508 	if (!ubi->free.rb_node) {
509 		if (ubi->works_count == 0) {
510 			ubi_err("no free eraseblocks");
511 			ubi_assert(list_empty(&ubi->works));
512 			return -ENOSPC;
513 		}
514 
515 		err = produce_free_peb(ubi);
516 		if (err < 0)
517 			return err;
518 		goto retry;
519 	}
520 
521 	e = find_mean_wl_entry(ubi, &ubi->free);
522 	if (!e) {
523 		ubi_err("no free eraseblocks");
524 		return -ENOSPC;
525 	}
526 
527 	self_check_in_wl_tree(ubi, e, &ubi->free);
528 
529 	/*
530 	 * Move the physical eraseblock to the protection queue where it will
531 	 * be protected from being moved for some time.
532 	 */
533 	rb_erase(&e->u.rb, &ubi->free);
534 	ubi->free_count--;
535 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
536 #ifndef CONFIG_MTD_UBI_FASTMAP
537 	/* We have to enqueue e only if fastmap is disabled,
538 	 * is fastmap enabled prot_queue_add() will be called by
539 	 * ubi_wl_get_peb() after removing e from the pool. */
540 	prot_queue_add(ubi, e);
541 #endif
542 	return e->pnum;
543 }
544 
545 #ifdef CONFIG_MTD_UBI_FASTMAP
546 /**
547  * return_unused_pool_pebs - returns unused PEB to the free tree.
548  * @ubi: UBI device description object
549  * @pool: fastmap pool description object
550  */
551 static void return_unused_pool_pebs(struct ubi_device *ubi,
552 				    struct ubi_fm_pool *pool)
553 {
554 	int i;
555 	struct ubi_wl_entry *e;
556 
557 	for (i = pool->used; i < pool->size; i++) {
558 		e = ubi->lookuptbl[pool->pebs[i]];
559 		wl_tree_add(e, &ubi->free);
560 		ubi->free_count++;
561 	}
562 }
563 
564 /**
565  * refill_wl_pool - refills all the fastmap pool used by the
566  * WL sub-system.
567  * @ubi: UBI device description object
568  */
569 static void refill_wl_pool(struct ubi_device *ubi)
570 {
571 	struct ubi_wl_entry *e;
572 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
573 
574 	return_unused_pool_pebs(ubi, pool);
575 
576 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
577 		if (!ubi->free.rb_node ||
578 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
579 			break;
580 
581 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
582 		self_check_in_wl_tree(ubi, e, &ubi->free);
583 		rb_erase(&e->u.rb, &ubi->free);
584 		ubi->free_count--;
585 
586 		pool->pebs[pool->size] = e->pnum;
587 	}
588 	pool->used = 0;
589 }
590 
591 /**
592  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
593  * @ubi: UBI device description object
594  */
595 static void refill_wl_user_pool(struct ubi_device *ubi)
596 {
597 	struct ubi_fm_pool *pool = &ubi->fm_pool;
598 
599 	return_unused_pool_pebs(ubi, pool);
600 
601 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
602 		pool->pebs[pool->size] = __wl_get_peb(ubi);
603 		if (pool->pebs[pool->size] < 0)
604 			break;
605 	}
606 	pool->used = 0;
607 }
608 
609 /**
610  * ubi_refill_pools - refills all fastmap PEB pools.
611  * @ubi: UBI device description object
612  */
613 void ubi_refill_pools(struct ubi_device *ubi)
614 {
615 	spin_lock(&ubi->wl_lock);
616 	refill_wl_pool(ubi);
617 	refill_wl_user_pool(ubi);
618 	spin_unlock(&ubi->wl_lock);
619 }
620 
621 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
622  * the fastmap pool.
623  */
624 int ubi_wl_get_peb(struct ubi_device *ubi)
625 {
626 	int ret;
627 	struct ubi_fm_pool *pool = &ubi->fm_pool;
628 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
629 
630 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
631 	    wl_pool->used == wl_pool->size)
632 		ubi_update_fastmap(ubi);
633 
634 	/* we got not a single free PEB */
635 	if (!pool->size)
636 		ret = -ENOSPC;
637 	else {
638 		spin_lock(&ubi->wl_lock);
639 		ret = pool->pebs[pool->used++];
640 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
641 		spin_unlock(&ubi->wl_lock);
642 	}
643 
644 	return ret;
645 }
646 
647 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
648  *
649  * @ubi: UBI device description object
650  */
651 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
652 {
653 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
654 	int pnum;
655 
656 	if (pool->used == pool->size || !pool->size) {
657 		/* We cannot update the fastmap here because this
658 		 * function is called in atomic context.
659 		 * Let's fail here and refill/update it as soon as possible. */
660 		schedule_work(&ubi->fm_work);
661 		return NULL;
662 	} else {
663 		pnum = pool->pebs[pool->used++];
664 		return ubi->lookuptbl[pnum];
665 	}
666 }
667 #else
668 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
669 {
670 	struct ubi_wl_entry *e;
671 
672 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
673 	self_check_in_wl_tree(ubi, e, &ubi->free);
674 	rb_erase(&e->u.rb, &ubi->free);
675 
676 	return e;
677 }
678 
679 int ubi_wl_get_peb(struct ubi_device *ubi)
680 {
681 	int peb, err;
682 
683 	spin_lock(&ubi->wl_lock);
684 	peb = __wl_get_peb(ubi);
685 	spin_unlock(&ubi->wl_lock);
686 
687 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
688 				    ubi->peb_size - ubi->vid_hdr_aloffset);
689 	if (err) {
690 		ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
691 		return err;
692 	}
693 
694 	return peb;
695 }
696 #endif
697 
698 /**
699  * prot_queue_del - remove a physical eraseblock from the protection queue.
700  * @ubi: UBI device description object
701  * @pnum: the physical eraseblock to remove
702  *
703  * This function deletes PEB @pnum from the protection queue and returns zero
704  * in case of success and %-ENODEV if the PEB was not found.
705  */
706 static int prot_queue_del(struct ubi_device *ubi, int pnum)
707 {
708 	struct ubi_wl_entry *e;
709 
710 	e = ubi->lookuptbl[pnum];
711 	if (!e)
712 		return -ENODEV;
713 
714 	if (self_check_in_pq(ubi, e))
715 		return -ENODEV;
716 
717 	list_del(&e->u.list);
718 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
719 	return 0;
720 }
721 
722 /**
723  * sync_erase - synchronously erase a physical eraseblock.
724  * @ubi: UBI device description object
725  * @e: the the physical eraseblock to erase
726  * @torture: if the physical eraseblock has to be tortured
727  *
728  * This function returns zero in case of success and a negative error code in
729  * case of failure.
730  */
731 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
732 		      int torture)
733 {
734 	int err;
735 	struct ubi_ec_hdr *ec_hdr;
736 	unsigned long long ec = e->ec;
737 
738 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
739 
740 	err = self_check_ec(ubi, e->pnum, e->ec);
741 	if (err)
742 		return -EINVAL;
743 
744 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
745 	if (!ec_hdr)
746 		return -ENOMEM;
747 
748 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
749 	if (err < 0)
750 		goto out_free;
751 
752 	ec += err;
753 	if (ec > UBI_MAX_ERASECOUNTER) {
754 		/*
755 		 * Erase counter overflow. Upgrade UBI and use 64-bit
756 		 * erase counters internally.
757 		 */
758 		ubi_err("erase counter overflow at PEB %d, EC %llu",
759 			e->pnum, ec);
760 		err = -EINVAL;
761 		goto out_free;
762 	}
763 
764 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
765 
766 	ec_hdr->ec = cpu_to_be64(ec);
767 
768 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
769 	if (err)
770 		goto out_free;
771 
772 	e->ec = ec;
773 	spin_lock(&ubi->wl_lock);
774 	if (e->ec > ubi->max_ec)
775 		ubi->max_ec = e->ec;
776 	spin_unlock(&ubi->wl_lock);
777 
778 out_free:
779 	kfree(ec_hdr);
780 	return err;
781 }
782 
783 /**
784  * serve_prot_queue - check if it is time to stop protecting PEBs.
785  * @ubi: UBI device description object
786  *
787  * This function is called after each erase operation and removes PEBs from the
788  * tail of the protection queue. These PEBs have been protected for long enough
789  * and should be moved to the used tree.
790  */
791 static void serve_prot_queue(struct ubi_device *ubi)
792 {
793 	struct ubi_wl_entry *e, *tmp;
794 	int count;
795 
796 	/*
797 	 * There may be several protected physical eraseblock to remove,
798 	 * process them all.
799 	 */
800 repeat:
801 	count = 0;
802 	spin_lock(&ubi->wl_lock);
803 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
804 		dbg_wl("PEB %d EC %d protection over, move to used tree",
805 			e->pnum, e->ec);
806 
807 		list_del(&e->u.list);
808 		wl_tree_add(e, &ubi->used);
809 		if (count++ > 32) {
810 			/*
811 			 * Let's be nice and avoid holding the spinlock for
812 			 * too long.
813 			 */
814 			spin_unlock(&ubi->wl_lock);
815 			cond_resched();
816 			goto repeat;
817 		}
818 	}
819 
820 	ubi->pq_head += 1;
821 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
822 		ubi->pq_head = 0;
823 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
824 	spin_unlock(&ubi->wl_lock);
825 }
826 
827 /**
828  * __schedule_ubi_work - schedule a work.
829  * @ubi: UBI device description object
830  * @wrk: the work to schedule
831  *
832  * This function adds a work defined by @wrk to the tail of the pending works
833  * list. Can only be used of ubi->work_sem is already held in read mode!
834  */
835 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
836 {
837 	spin_lock(&ubi->wl_lock);
838 	list_add_tail(&wrk->list, &ubi->works);
839 	ubi_assert(ubi->works_count >= 0);
840 	ubi->works_count += 1;
841 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
842 		wake_up_process(ubi->bgt_thread);
843 	spin_unlock(&ubi->wl_lock);
844 }
845 
846 /**
847  * schedule_ubi_work - schedule a work.
848  * @ubi: UBI device description object
849  * @wrk: the work to schedule
850  *
851  * This function adds a work defined by @wrk to the tail of the pending works
852  * list.
853  */
854 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
855 {
856 	down_read(&ubi->work_sem);
857 	__schedule_ubi_work(ubi, wrk);
858 	up_read(&ubi->work_sem);
859 }
860 
861 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
862 			int cancel);
863 
864 #ifdef CONFIG_MTD_UBI_FASTMAP
865 /**
866  * ubi_is_erase_work - checks whether a work is erase work.
867  * @wrk: The work object to be checked
868  */
869 int ubi_is_erase_work(struct ubi_work *wrk)
870 {
871 	return wrk->func == erase_worker;
872 }
873 #endif
874 
875 /**
876  * schedule_erase - schedule an erase work.
877  * @ubi: UBI device description object
878  * @e: the WL entry of the physical eraseblock to erase
879  * @vol_id: the volume ID that last used this PEB
880  * @lnum: the last used logical eraseblock number for the PEB
881  * @torture: if the physical eraseblock has to be tortured
882  *
883  * This function returns zero in case of success and a %-ENOMEM in case of
884  * failure.
885  */
886 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
887 			  int vol_id, int lnum, int torture)
888 {
889 	struct ubi_work *wl_wrk;
890 
891 	ubi_assert(e);
892 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
893 
894 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
895 	       e->pnum, e->ec, torture);
896 
897 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
898 	if (!wl_wrk)
899 		return -ENOMEM;
900 
901 	wl_wrk->func = &erase_worker;
902 	wl_wrk->e = e;
903 	wl_wrk->vol_id = vol_id;
904 	wl_wrk->lnum = lnum;
905 	wl_wrk->torture = torture;
906 
907 	schedule_ubi_work(ubi, wl_wrk);
908 	return 0;
909 }
910 
911 /**
912  * do_sync_erase - run the erase worker synchronously.
913  * @ubi: UBI device description object
914  * @e: the WL entry of the physical eraseblock to erase
915  * @vol_id: the volume ID that last used this PEB
916  * @lnum: the last used logical eraseblock number for the PEB
917  * @torture: if the physical eraseblock has to be tortured
918  *
919  */
920 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
921 			 int vol_id, int lnum, int torture)
922 {
923 	struct ubi_work *wl_wrk;
924 
925 	dbg_wl("sync erase of PEB %i", e->pnum);
926 
927 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
928 	if (!wl_wrk)
929 		return -ENOMEM;
930 
931 	wl_wrk->e = e;
932 	wl_wrk->vol_id = vol_id;
933 	wl_wrk->lnum = lnum;
934 	wl_wrk->torture = torture;
935 
936 	return erase_worker(ubi, wl_wrk, 0);
937 }
938 
939 #ifdef CONFIG_MTD_UBI_FASTMAP
940 /**
941  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
942  * sub-system.
943  * see: ubi_wl_put_peb()
944  *
945  * @ubi: UBI device description object
946  * @fm_e: physical eraseblock to return
947  * @lnum: the last used logical eraseblock number for the PEB
948  * @torture: if this physical eraseblock has to be tortured
949  */
950 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
951 		      int lnum, int torture)
952 {
953 	struct ubi_wl_entry *e;
954 	int vol_id, pnum = fm_e->pnum;
955 
956 	dbg_wl("PEB %d", pnum);
957 
958 	ubi_assert(pnum >= 0);
959 	ubi_assert(pnum < ubi->peb_count);
960 
961 	spin_lock(&ubi->wl_lock);
962 	e = ubi->lookuptbl[pnum];
963 
964 	/* This can happen if we recovered from a fastmap the very
965 	 * first time and writing now a new one. In this case the wl system
966 	 * has never seen any PEB used by the original fastmap.
967 	 */
968 	if (!e) {
969 		e = fm_e;
970 		ubi_assert(e->ec >= 0);
971 		ubi->lookuptbl[pnum] = e;
972 	} else {
973 		e->ec = fm_e->ec;
974 		kfree(fm_e);
975 	}
976 
977 	spin_unlock(&ubi->wl_lock);
978 
979 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
980 	return schedule_erase(ubi, e, vol_id, lnum, torture);
981 }
982 #endif
983 
984 /**
985  * wear_leveling_worker - wear-leveling worker function.
986  * @ubi: UBI device description object
987  * @wrk: the work object
988  * @cancel: non-zero if the worker has to free memory and exit
989  *
990  * This function copies a more worn out physical eraseblock to a less worn out
991  * one. Returns zero in case of success and a negative error code in case of
992  * failure.
993  */
994 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
995 				int cancel)
996 {
997 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
998 	int vol_id = -1, uninitialized_var(lnum);
999 #ifdef CONFIG_MTD_UBI_FASTMAP
1000 	int anchor = wrk->anchor;
1001 #endif
1002 	struct ubi_wl_entry *e1, *e2;
1003 	struct ubi_vid_hdr *vid_hdr;
1004 
1005 	kfree(wrk);
1006 	if (cancel)
1007 		return 0;
1008 
1009 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1010 	if (!vid_hdr)
1011 		return -ENOMEM;
1012 
1013 	mutex_lock(&ubi->move_mutex);
1014 	spin_lock(&ubi->wl_lock);
1015 	ubi_assert(!ubi->move_from && !ubi->move_to);
1016 	ubi_assert(!ubi->move_to_put);
1017 
1018 	if (!ubi->free.rb_node ||
1019 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1020 		/*
1021 		 * No free physical eraseblocks? Well, they must be waiting in
1022 		 * the queue to be erased. Cancel movement - it will be
1023 		 * triggered again when a free physical eraseblock appears.
1024 		 *
1025 		 * No used physical eraseblocks? They must be temporarily
1026 		 * protected from being moved. They will be moved to the
1027 		 * @ubi->used tree later and the wear-leveling will be
1028 		 * triggered again.
1029 		 */
1030 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1031 		       !ubi->free.rb_node, !ubi->used.rb_node);
1032 		goto out_cancel;
1033 	}
1034 
1035 #ifdef CONFIG_MTD_UBI_FASTMAP
1036 	/* Check whether we need to produce an anchor PEB */
1037 	if (!anchor)
1038 		anchor = !anchor_pebs_avalible(&ubi->free);
1039 
1040 	if (anchor) {
1041 		e1 = find_anchor_wl_entry(&ubi->used);
1042 		if (!e1)
1043 			goto out_cancel;
1044 		e2 = get_peb_for_wl(ubi);
1045 		if (!e2)
1046 			goto out_cancel;
1047 
1048 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1049 		rb_erase(&e1->u.rb, &ubi->used);
1050 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1051 	} else if (!ubi->scrub.rb_node) {
1052 #else
1053 	if (!ubi->scrub.rb_node) {
1054 #endif
1055 		/*
1056 		 * Now pick the least worn-out used physical eraseblock and a
1057 		 * highly worn-out free physical eraseblock. If the erase
1058 		 * counters differ much enough, start wear-leveling.
1059 		 */
1060 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1061 		e2 = get_peb_for_wl(ubi);
1062 		if (!e2)
1063 			goto out_cancel;
1064 
1065 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1066 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1067 			       e1->ec, e2->ec);
1068 
1069 			/* Give the unused PEB back */
1070 			wl_tree_add(e2, &ubi->free);
1071 			goto out_cancel;
1072 		}
1073 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1074 		rb_erase(&e1->u.rb, &ubi->used);
1075 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1076 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1077 	} else {
1078 		/* Perform scrubbing */
1079 		scrubbing = 1;
1080 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1081 		e2 = get_peb_for_wl(ubi);
1082 		if (!e2)
1083 			goto out_cancel;
1084 
1085 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1086 		rb_erase(&e1->u.rb, &ubi->scrub);
1087 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1088 	}
1089 
1090 	ubi->move_from = e1;
1091 	ubi->move_to = e2;
1092 	spin_unlock(&ubi->wl_lock);
1093 
1094 	/*
1095 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1096 	 * We so far do not know which logical eraseblock our physical
1097 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1098 	 * header first.
1099 	 *
1100 	 * Note, we are protected from this PEB being unmapped and erased. The
1101 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1102 	 * which is being moved was unmapped.
1103 	 */
1104 
1105 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1106 	if (err && err != UBI_IO_BITFLIPS) {
1107 		if (err == UBI_IO_FF) {
1108 			/*
1109 			 * We are trying to move PEB without a VID header. UBI
1110 			 * always write VID headers shortly after the PEB was
1111 			 * given, so we have a situation when it has not yet
1112 			 * had a chance to write it, because it was preempted.
1113 			 * So add this PEB to the protection queue so far,
1114 			 * because presumably more data will be written there
1115 			 * (including the missing VID header), and then we'll
1116 			 * move it.
1117 			 */
1118 			dbg_wl("PEB %d has no VID header", e1->pnum);
1119 			protect = 1;
1120 			goto out_not_moved;
1121 		} else if (err == UBI_IO_FF_BITFLIPS) {
1122 			/*
1123 			 * The same situation as %UBI_IO_FF, but bit-flips were
1124 			 * detected. It is better to schedule this PEB for
1125 			 * scrubbing.
1126 			 */
1127 			dbg_wl("PEB %d has no VID header but has bit-flips",
1128 			       e1->pnum);
1129 			scrubbing = 1;
1130 			goto out_not_moved;
1131 		}
1132 
1133 		ubi_err("error %d while reading VID header from PEB %d",
1134 			err, e1->pnum);
1135 		goto out_error;
1136 	}
1137 
1138 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1139 	lnum = be32_to_cpu(vid_hdr->lnum);
1140 
1141 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1142 	if (err) {
1143 		if (err == MOVE_CANCEL_RACE) {
1144 			/*
1145 			 * The LEB has not been moved because the volume is
1146 			 * being deleted or the PEB has been put meanwhile. We
1147 			 * should prevent this PEB from being selected for
1148 			 * wear-leveling movement again, so put it to the
1149 			 * protection queue.
1150 			 */
1151 			protect = 1;
1152 			goto out_not_moved;
1153 		}
1154 		if (err == MOVE_RETRY) {
1155 			scrubbing = 1;
1156 			goto out_not_moved;
1157 		}
1158 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1159 		    err == MOVE_TARGET_RD_ERR) {
1160 			/*
1161 			 * Target PEB had bit-flips or write error - torture it.
1162 			 */
1163 			torture = 1;
1164 			goto out_not_moved;
1165 		}
1166 
1167 		if (err == MOVE_SOURCE_RD_ERR) {
1168 			/*
1169 			 * An error happened while reading the source PEB. Do
1170 			 * not switch to R/O mode in this case, and give the
1171 			 * upper layers a possibility to recover from this,
1172 			 * e.g. by unmapping corresponding LEB. Instead, just
1173 			 * put this PEB to the @ubi->erroneous list to prevent
1174 			 * UBI from trying to move it over and over again.
1175 			 */
1176 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1177 				ubi_err("too many erroneous eraseblocks (%d)",
1178 					ubi->erroneous_peb_count);
1179 				goto out_error;
1180 			}
1181 			erroneous = 1;
1182 			goto out_not_moved;
1183 		}
1184 
1185 		if (err < 0)
1186 			goto out_error;
1187 
1188 		ubi_assert(0);
1189 	}
1190 
1191 	/* The PEB has been successfully moved */
1192 	if (scrubbing)
1193 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1194 			e1->pnum, vol_id, lnum, e2->pnum);
1195 	ubi_free_vid_hdr(ubi, vid_hdr);
1196 
1197 	spin_lock(&ubi->wl_lock);
1198 	if (!ubi->move_to_put) {
1199 		wl_tree_add(e2, &ubi->used);
1200 		e2 = NULL;
1201 	}
1202 	ubi->move_from = ubi->move_to = NULL;
1203 	ubi->move_to_put = ubi->wl_scheduled = 0;
1204 	spin_unlock(&ubi->wl_lock);
1205 
1206 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1207 	if (err) {
1208 		kmem_cache_free(ubi_wl_entry_slab, e1);
1209 		if (e2)
1210 			kmem_cache_free(ubi_wl_entry_slab, e2);
1211 		goto out_ro;
1212 	}
1213 
1214 	if (e2) {
1215 		/*
1216 		 * Well, the target PEB was put meanwhile, schedule it for
1217 		 * erasure.
1218 		 */
1219 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1220 		       e2->pnum, vol_id, lnum);
1221 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1222 		if (err) {
1223 			kmem_cache_free(ubi_wl_entry_slab, e2);
1224 			goto out_ro;
1225 		}
1226 	}
1227 
1228 	dbg_wl("done");
1229 	mutex_unlock(&ubi->move_mutex);
1230 	return 0;
1231 
1232 	/*
1233 	 * For some reasons the LEB was not moved, might be an error, might be
1234 	 * something else. @e1 was not changed, so return it back. @e2 might
1235 	 * have been changed, schedule it for erasure.
1236 	 */
1237 out_not_moved:
1238 	if (vol_id != -1)
1239 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1240 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1241 	else
1242 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1243 		       e1->pnum, e2->pnum, err);
1244 	spin_lock(&ubi->wl_lock);
1245 	if (protect)
1246 		prot_queue_add(ubi, e1);
1247 	else if (erroneous) {
1248 		wl_tree_add(e1, &ubi->erroneous);
1249 		ubi->erroneous_peb_count += 1;
1250 	} else if (scrubbing)
1251 		wl_tree_add(e1, &ubi->scrub);
1252 	else
1253 		wl_tree_add(e1, &ubi->used);
1254 	ubi_assert(!ubi->move_to_put);
1255 	ubi->move_from = ubi->move_to = NULL;
1256 	ubi->wl_scheduled = 0;
1257 	spin_unlock(&ubi->wl_lock);
1258 
1259 	ubi_free_vid_hdr(ubi, vid_hdr);
1260 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1261 	if (err) {
1262 		kmem_cache_free(ubi_wl_entry_slab, e2);
1263 		goto out_ro;
1264 	}
1265 	mutex_unlock(&ubi->move_mutex);
1266 	return 0;
1267 
1268 out_error:
1269 	if (vol_id != -1)
1270 		ubi_err("error %d while moving PEB %d to PEB %d",
1271 			err, e1->pnum, e2->pnum);
1272 	else
1273 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1274 			err, e1->pnum, vol_id, lnum, e2->pnum);
1275 	spin_lock(&ubi->wl_lock);
1276 	ubi->move_from = ubi->move_to = NULL;
1277 	ubi->move_to_put = ubi->wl_scheduled = 0;
1278 	spin_unlock(&ubi->wl_lock);
1279 
1280 	ubi_free_vid_hdr(ubi, vid_hdr);
1281 	kmem_cache_free(ubi_wl_entry_slab, e1);
1282 	kmem_cache_free(ubi_wl_entry_slab, e2);
1283 
1284 out_ro:
1285 	ubi_ro_mode(ubi);
1286 	mutex_unlock(&ubi->move_mutex);
1287 	ubi_assert(err != 0);
1288 	return err < 0 ? err : -EIO;
1289 
1290 out_cancel:
1291 	ubi->wl_scheduled = 0;
1292 	spin_unlock(&ubi->wl_lock);
1293 	mutex_unlock(&ubi->move_mutex);
1294 	ubi_free_vid_hdr(ubi, vid_hdr);
1295 	return 0;
1296 }
1297 
1298 /**
1299  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1300  * @ubi: UBI device description object
1301  * @nested: set to non-zero if this function is called from UBI worker
1302  *
1303  * This function checks if it is time to start wear-leveling and schedules it
1304  * if yes. This function returns zero in case of success and a negative error
1305  * code in case of failure.
1306  */
1307 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1308 {
1309 	int err = 0;
1310 	struct ubi_wl_entry *e1;
1311 	struct ubi_wl_entry *e2;
1312 	struct ubi_work *wrk;
1313 
1314 	spin_lock(&ubi->wl_lock);
1315 	if (ubi->wl_scheduled)
1316 		/* Wear-leveling is already in the work queue */
1317 		goto out_unlock;
1318 
1319 	/*
1320 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1321 	 * the WL worker has to be scheduled anyway.
1322 	 */
1323 	if (!ubi->scrub.rb_node) {
1324 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1325 			/* No physical eraseblocks - no deal */
1326 			goto out_unlock;
1327 
1328 		/*
1329 		 * We schedule wear-leveling only if the difference between the
1330 		 * lowest erase counter of used physical eraseblocks and a high
1331 		 * erase counter of free physical eraseblocks is greater than
1332 		 * %UBI_WL_THRESHOLD.
1333 		 */
1334 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1335 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1336 
1337 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1338 			goto out_unlock;
1339 		dbg_wl("schedule wear-leveling");
1340 	} else
1341 		dbg_wl("schedule scrubbing");
1342 
1343 	ubi->wl_scheduled = 1;
1344 	spin_unlock(&ubi->wl_lock);
1345 
1346 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1347 	if (!wrk) {
1348 		err = -ENOMEM;
1349 		goto out_cancel;
1350 	}
1351 
1352 	wrk->anchor = 0;
1353 	wrk->func = &wear_leveling_worker;
1354 	if (nested)
1355 		__schedule_ubi_work(ubi, wrk);
1356 	else
1357 		schedule_ubi_work(ubi, wrk);
1358 	return err;
1359 
1360 out_cancel:
1361 	spin_lock(&ubi->wl_lock);
1362 	ubi->wl_scheduled = 0;
1363 out_unlock:
1364 	spin_unlock(&ubi->wl_lock);
1365 	return err;
1366 }
1367 
1368 #ifdef CONFIG_MTD_UBI_FASTMAP
1369 /**
1370  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1371  * @ubi: UBI device description object
1372  */
1373 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1374 {
1375 	struct ubi_work *wrk;
1376 
1377 	spin_lock(&ubi->wl_lock);
1378 	if (ubi->wl_scheduled) {
1379 		spin_unlock(&ubi->wl_lock);
1380 		return 0;
1381 	}
1382 	ubi->wl_scheduled = 1;
1383 	spin_unlock(&ubi->wl_lock);
1384 
1385 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1386 	if (!wrk) {
1387 		spin_lock(&ubi->wl_lock);
1388 		ubi->wl_scheduled = 0;
1389 		spin_unlock(&ubi->wl_lock);
1390 		return -ENOMEM;
1391 	}
1392 
1393 	wrk->anchor = 1;
1394 	wrk->func = &wear_leveling_worker;
1395 	schedule_ubi_work(ubi, wrk);
1396 	return 0;
1397 }
1398 #endif
1399 
1400 /**
1401  * erase_worker - physical eraseblock erase worker function.
1402  * @ubi: UBI device description object
1403  * @wl_wrk: the work object
1404  * @cancel: non-zero if the worker has to free memory and exit
1405  *
1406  * This function erases a physical eraseblock and perform torture testing if
1407  * needed. It also takes care about marking the physical eraseblock bad if
1408  * needed. Returns zero in case of success and a negative error code in case of
1409  * failure.
1410  */
1411 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1412 			int cancel)
1413 {
1414 	struct ubi_wl_entry *e = wl_wrk->e;
1415 	int pnum = e->pnum;
1416 	int vol_id = wl_wrk->vol_id;
1417 	int lnum = wl_wrk->lnum;
1418 	int err, available_consumed = 0;
1419 
1420 	if (cancel) {
1421 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1422 		kfree(wl_wrk);
1423 		kmem_cache_free(ubi_wl_entry_slab, e);
1424 		return 0;
1425 	}
1426 
1427 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1428 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1429 
1430 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1431 
1432 	err = sync_erase(ubi, e, wl_wrk->torture);
1433 	if (!err) {
1434 		/* Fine, we've erased it successfully */
1435 		kfree(wl_wrk);
1436 
1437 		spin_lock(&ubi->wl_lock);
1438 		wl_tree_add(e, &ubi->free);
1439 		ubi->free_count++;
1440 		spin_unlock(&ubi->wl_lock);
1441 
1442 		/*
1443 		 * One more erase operation has happened, take care about
1444 		 * protected physical eraseblocks.
1445 		 */
1446 		serve_prot_queue(ubi);
1447 
1448 		/* And take care about wear-leveling */
1449 		err = ensure_wear_leveling(ubi, 1);
1450 		return err;
1451 	}
1452 
1453 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1454 	kfree(wl_wrk);
1455 
1456 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1457 	    err == -EBUSY) {
1458 		int err1;
1459 
1460 		/* Re-schedule the LEB for erasure */
1461 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1462 		if (err1) {
1463 			err = err1;
1464 			goto out_ro;
1465 		}
1466 		return err;
1467 	}
1468 
1469 	kmem_cache_free(ubi_wl_entry_slab, e);
1470 	if (err != -EIO)
1471 		/*
1472 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1473 		 * this physical eraseblock for erasure again would cause
1474 		 * errors again and again. Well, lets switch to R/O mode.
1475 		 */
1476 		goto out_ro;
1477 
1478 	/* It is %-EIO, the PEB went bad */
1479 
1480 	if (!ubi->bad_allowed) {
1481 		ubi_err("bad physical eraseblock %d detected", pnum);
1482 		goto out_ro;
1483 	}
1484 
1485 	spin_lock(&ubi->volumes_lock);
1486 	if (ubi->beb_rsvd_pebs == 0) {
1487 		if (ubi->avail_pebs == 0) {
1488 			spin_unlock(&ubi->volumes_lock);
1489 			ubi_err("no reserved/available physical eraseblocks");
1490 			goto out_ro;
1491 		}
1492 		ubi->avail_pebs -= 1;
1493 		available_consumed = 1;
1494 	}
1495 	spin_unlock(&ubi->volumes_lock);
1496 
1497 	ubi_msg("mark PEB %d as bad", pnum);
1498 	err = ubi_io_mark_bad(ubi, pnum);
1499 	if (err)
1500 		goto out_ro;
1501 
1502 	spin_lock(&ubi->volumes_lock);
1503 	if (ubi->beb_rsvd_pebs > 0) {
1504 		if (available_consumed) {
1505 			/*
1506 			 * The amount of reserved PEBs increased since we last
1507 			 * checked.
1508 			 */
1509 			ubi->avail_pebs += 1;
1510 			available_consumed = 0;
1511 		}
1512 		ubi->beb_rsvd_pebs -= 1;
1513 	}
1514 	ubi->bad_peb_count += 1;
1515 	ubi->good_peb_count -= 1;
1516 	ubi_calculate_reserved(ubi);
1517 	if (available_consumed)
1518 		ubi_warn("no PEBs in the reserved pool, used an available PEB");
1519 	else if (ubi->beb_rsvd_pebs)
1520 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1521 	else
1522 		ubi_warn("last PEB from the reserve was used");
1523 	spin_unlock(&ubi->volumes_lock);
1524 
1525 	return err;
1526 
1527 out_ro:
1528 	if (available_consumed) {
1529 		spin_lock(&ubi->volumes_lock);
1530 		ubi->avail_pebs += 1;
1531 		spin_unlock(&ubi->volumes_lock);
1532 	}
1533 	ubi_ro_mode(ubi);
1534 	return err;
1535 }
1536 
1537 /**
1538  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1539  * @ubi: UBI device description object
1540  * @vol_id: the volume ID that last used this PEB
1541  * @lnum: the last used logical eraseblock number for the PEB
1542  * @pnum: physical eraseblock to return
1543  * @torture: if this physical eraseblock has to be tortured
1544  *
1545  * This function is called to return physical eraseblock @pnum to the pool of
1546  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1547  * occurred to this @pnum and it has to be tested. This function returns zero
1548  * in case of success, and a negative error code in case of failure.
1549  */
1550 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1551 		   int pnum, int torture)
1552 {
1553 	int err;
1554 	struct ubi_wl_entry *e;
1555 
1556 	dbg_wl("PEB %d", pnum);
1557 	ubi_assert(pnum >= 0);
1558 	ubi_assert(pnum < ubi->peb_count);
1559 
1560 retry:
1561 	spin_lock(&ubi->wl_lock);
1562 	e = ubi->lookuptbl[pnum];
1563 	if (e == ubi->move_from) {
1564 		/*
1565 		 * User is putting the physical eraseblock which was selected to
1566 		 * be moved. It will be scheduled for erasure in the
1567 		 * wear-leveling worker.
1568 		 */
1569 		dbg_wl("PEB %d is being moved, wait", pnum);
1570 		spin_unlock(&ubi->wl_lock);
1571 
1572 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1573 		mutex_lock(&ubi->move_mutex);
1574 		mutex_unlock(&ubi->move_mutex);
1575 		goto retry;
1576 	} else if (e == ubi->move_to) {
1577 		/*
1578 		 * User is putting the physical eraseblock which was selected
1579 		 * as the target the data is moved to. It may happen if the EBA
1580 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1581 		 * but the WL sub-system has not put the PEB to the "used" tree
1582 		 * yet, but it is about to do this. So we just set a flag which
1583 		 * will tell the WL worker that the PEB is not needed anymore
1584 		 * and should be scheduled for erasure.
1585 		 */
1586 		dbg_wl("PEB %d is the target of data moving", pnum);
1587 		ubi_assert(!ubi->move_to_put);
1588 		ubi->move_to_put = 1;
1589 		spin_unlock(&ubi->wl_lock);
1590 		return 0;
1591 	} else {
1592 		if (in_wl_tree(e, &ubi->used)) {
1593 			self_check_in_wl_tree(ubi, e, &ubi->used);
1594 			rb_erase(&e->u.rb, &ubi->used);
1595 		} else if (in_wl_tree(e, &ubi->scrub)) {
1596 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1597 			rb_erase(&e->u.rb, &ubi->scrub);
1598 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1599 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1600 			rb_erase(&e->u.rb, &ubi->erroneous);
1601 			ubi->erroneous_peb_count -= 1;
1602 			ubi_assert(ubi->erroneous_peb_count >= 0);
1603 			/* Erroneous PEBs should be tortured */
1604 			torture = 1;
1605 		} else {
1606 			err = prot_queue_del(ubi, e->pnum);
1607 			if (err) {
1608 				ubi_err("PEB %d not found", pnum);
1609 				ubi_ro_mode(ubi);
1610 				spin_unlock(&ubi->wl_lock);
1611 				return err;
1612 			}
1613 		}
1614 	}
1615 	spin_unlock(&ubi->wl_lock);
1616 
1617 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1618 	if (err) {
1619 		spin_lock(&ubi->wl_lock);
1620 		wl_tree_add(e, &ubi->used);
1621 		spin_unlock(&ubi->wl_lock);
1622 	}
1623 
1624 	return err;
1625 }
1626 
1627 /**
1628  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1629  * @ubi: UBI device description object
1630  * @pnum: the physical eraseblock to schedule
1631  *
1632  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1633  * needs scrubbing. This function schedules a physical eraseblock for
1634  * scrubbing which is done in background. This function returns zero in case of
1635  * success and a negative error code in case of failure.
1636  */
1637 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1638 {
1639 	struct ubi_wl_entry *e;
1640 
1641 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1642 
1643 retry:
1644 	spin_lock(&ubi->wl_lock);
1645 	e = ubi->lookuptbl[pnum];
1646 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1647 				   in_wl_tree(e, &ubi->erroneous)) {
1648 		spin_unlock(&ubi->wl_lock);
1649 		return 0;
1650 	}
1651 
1652 	if (e == ubi->move_to) {
1653 		/*
1654 		 * This physical eraseblock was used to move data to. The data
1655 		 * was moved but the PEB was not yet inserted to the proper
1656 		 * tree. We should just wait a little and let the WL worker
1657 		 * proceed.
1658 		 */
1659 		spin_unlock(&ubi->wl_lock);
1660 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1661 		yield();
1662 		goto retry;
1663 	}
1664 
1665 	if (in_wl_tree(e, &ubi->used)) {
1666 		self_check_in_wl_tree(ubi, e, &ubi->used);
1667 		rb_erase(&e->u.rb, &ubi->used);
1668 	} else {
1669 		int err;
1670 
1671 		err = prot_queue_del(ubi, e->pnum);
1672 		if (err) {
1673 			ubi_err("PEB %d not found", pnum);
1674 			ubi_ro_mode(ubi);
1675 			spin_unlock(&ubi->wl_lock);
1676 			return err;
1677 		}
1678 	}
1679 
1680 	wl_tree_add(e, &ubi->scrub);
1681 	spin_unlock(&ubi->wl_lock);
1682 
1683 	/*
1684 	 * Technically scrubbing is the same as wear-leveling, so it is done
1685 	 * by the WL worker.
1686 	 */
1687 	return ensure_wear_leveling(ubi, 0);
1688 }
1689 
1690 /**
1691  * ubi_wl_flush - flush all pending works.
1692  * @ubi: UBI device description object
1693  * @vol_id: the volume id to flush for
1694  * @lnum: the logical eraseblock number to flush for
1695  *
1696  * This function executes all pending works for a particular volume id /
1697  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1698  * acts as a wildcard for all of the corresponding volume numbers or logical
1699  * eraseblock numbers. It returns zero in case of success and a negative error
1700  * code in case of failure.
1701  */
1702 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1703 {
1704 	int err = 0;
1705 	int found = 1;
1706 
1707 	/*
1708 	 * Erase while the pending works queue is not empty, but not more than
1709 	 * the number of currently pending works.
1710 	 */
1711 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1712 	       vol_id, lnum, ubi->works_count);
1713 
1714 	while (found) {
1715 		struct ubi_work *wrk;
1716 		found = 0;
1717 
1718 		down_read(&ubi->work_sem);
1719 		spin_lock(&ubi->wl_lock);
1720 		list_for_each_entry(wrk, &ubi->works, list) {
1721 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1722 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1723 				list_del(&wrk->list);
1724 				ubi->works_count -= 1;
1725 				ubi_assert(ubi->works_count >= 0);
1726 				spin_unlock(&ubi->wl_lock);
1727 
1728 				err = wrk->func(ubi, wrk, 0);
1729 				if (err) {
1730 					up_read(&ubi->work_sem);
1731 					return err;
1732 				}
1733 
1734 				spin_lock(&ubi->wl_lock);
1735 				found = 1;
1736 				break;
1737 			}
1738 		}
1739 		spin_unlock(&ubi->wl_lock);
1740 		up_read(&ubi->work_sem);
1741 	}
1742 
1743 	/*
1744 	 * Make sure all the works which have been done in parallel are
1745 	 * finished.
1746 	 */
1747 	down_write(&ubi->work_sem);
1748 	up_write(&ubi->work_sem);
1749 
1750 	return err;
1751 }
1752 
1753 /**
1754  * tree_destroy - destroy an RB-tree.
1755  * @root: the root of the tree to destroy
1756  */
1757 static void tree_destroy(struct rb_root *root)
1758 {
1759 	struct rb_node *rb;
1760 	struct ubi_wl_entry *e;
1761 
1762 	rb = root->rb_node;
1763 	while (rb) {
1764 		if (rb->rb_left)
1765 			rb = rb->rb_left;
1766 		else if (rb->rb_right)
1767 			rb = rb->rb_right;
1768 		else {
1769 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1770 
1771 			rb = rb_parent(rb);
1772 			if (rb) {
1773 				if (rb->rb_left == &e->u.rb)
1774 					rb->rb_left = NULL;
1775 				else
1776 					rb->rb_right = NULL;
1777 			}
1778 
1779 			kmem_cache_free(ubi_wl_entry_slab, e);
1780 		}
1781 	}
1782 }
1783 
1784 /**
1785  * ubi_thread - UBI background thread.
1786  * @u: the UBI device description object pointer
1787  */
1788 int ubi_thread(void *u)
1789 {
1790 	int failures = 0;
1791 	struct ubi_device *ubi = u;
1792 
1793 	ubi_msg("background thread \"%s\" started, PID %d",
1794 		ubi->bgt_name, task_pid_nr(current));
1795 
1796 	set_freezable();
1797 	for (;;) {
1798 		int err;
1799 
1800 		if (kthread_should_stop())
1801 			break;
1802 
1803 		if (try_to_freeze())
1804 			continue;
1805 
1806 		spin_lock(&ubi->wl_lock);
1807 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1808 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1809 			set_current_state(TASK_INTERRUPTIBLE);
1810 			spin_unlock(&ubi->wl_lock);
1811 			schedule();
1812 			continue;
1813 		}
1814 		spin_unlock(&ubi->wl_lock);
1815 
1816 		err = do_work(ubi);
1817 		if (err) {
1818 			ubi_err("%s: work failed with error code %d",
1819 				ubi->bgt_name, err);
1820 			if (failures++ > WL_MAX_FAILURES) {
1821 				/*
1822 				 * Too many failures, disable the thread and
1823 				 * switch to read-only mode.
1824 				 */
1825 				ubi_msg("%s: %d consecutive failures",
1826 					ubi->bgt_name, WL_MAX_FAILURES);
1827 				ubi_ro_mode(ubi);
1828 				ubi->thread_enabled = 0;
1829 				continue;
1830 			}
1831 		} else
1832 			failures = 0;
1833 
1834 		cond_resched();
1835 	}
1836 
1837 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1838 	return 0;
1839 }
1840 
1841 /**
1842  * cancel_pending - cancel all pending works.
1843  * @ubi: UBI device description object
1844  */
1845 static void cancel_pending(struct ubi_device *ubi)
1846 {
1847 	while (!list_empty(&ubi->works)) {
1848 		struct ubi_work *wrk;
1849 
1850 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1851 		list_del(&wrk->list);
1852 		wrk->func(ubi, wrk, 1);
1853 		ubi->works_count -= 1;
1854 		ubi_assert(ubi->works_count >= 0);
1855 	}
1856 }
1857 
1858 /**
1859  * ubi_wl_init - initialize the WL sub-system using attaching information.
1860  * @ubi: UBI device description object
1861  * @ai: attaching information
1862  *
1863  * This function returns zero in case of success, and a negative error code in
1864  * case of failure.
1865  */
1866 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1867 {
1868 	int err, i, reserved_pebs, found_pebs = 0;
1869 	struct rb_node *rb1, *rb2;
1870 	struct ubi_ainf_volume *av;
1871 	struct ubi_ainf_peb *aeb, *tmp;
1872 	struct ubi_wl_entry *e;
1873 
1874 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1875 	spin_lock_init(&ubi->wl_lock);
1876 	mutex_init(&ubi->move_mutex);
1877 	init_rwsem(&ubi->work_sem);
1878 	ubi->max_ec = ai->max_ec;
1879 	INIT_LIST_HEAD(&ubi->works);
1880 #ifdef CONFIG_MTD_UBI_FASTMAP
1881 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1882 #endif
1883 
1884 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1885 
1886 	err = -ENOMEM;
1887 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1888 	if (!ubi->lookuptbl)
1889 		return err;
1890 
1891 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1892 		INIT_LIST_HEAD(&ubi->pq[i]);
1893 	ubi->pq_head = 0;
1894 
1895 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1896 		cond_resched();
1897 
1898 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1899 		if (!e)
1900 			goto out_free;
1901 
1902 		e->pnum = aeb->pnum;
1903 		e->ec = aeb->ec;
1904 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1905 		ubi->lookuptbl[e->pnum] = e;
1906 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1907 			kmem_cache_free(ubi_wl_entry_slab, e);
1908 			goto out_free;
1909 		}
1910 
1911 		found_pebs++;
1912 	}
1913 
1914 	ubi->free_count = 0;
1915 	list_for_each_entry(aeb, &ai->free, u.list) {
1916 		cond_resched();
1917 
1918 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1919 		if (!e)
1920 			goto out_free;
1921 
1922 		e->pnum = aeb->pnum;
1923 		e->ec = aeb->ec;
1924 		ubi_assert(e->ec >= 0);
1925 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1926 
1927 		wl_tree_add(e, &ubi->free);
1928 		ubi->free_count++;
1929 
1930 		ubi->lookuptbl[e->pnum] = e;
1931 
1932 		found_pebs++;
1933 	}
1934 
1935 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1936 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1937 			cond_resched();
1938 
1939 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1940 			if (!e)
1941 				goto out_free;
1942 
1943 			e->pnum = aeb->pnum;
1944 			e->ec = aeb->ec;
1945 			ubi->lookuptbl[e->pnum] = e;
1946 
1947 			if (!aeb->scrub) {
1948 				dbg_wl("add PEB %d EC %d to the used tree",
1949 				       e->pnum, e->ec);
1950 				wl_tree_add(e, &ubi->used);
1951 			} else {
1952 				dbg_wl("add PEB %d EC %d to the scrub tree",
1953 				       e->pnum, e->ec);
1954 				wl_tree_add(e, &ubi->scrub);
1955 			}
1956 
1957 			found_pebs++;
1958 		}
1959 	}
1960 
1961 	dbg_wl("found %i PEBs", found_pebs);
1962 
1963 	if (ubi->fm)
1964 		ubi_assert(ubi->good_peb_count == \
1965 			   found_pebs + ubi->fm->used_blocks);
1966 	else
1967 		ubi_assert(ubi->good_peb_count == found_pebs);
1968 
1969 	reserved_pebs = WL_RESERVED_PEBS;
1970 #ifdef CONFIG_MTD_UBI_FASTMAP
1971 	/* Reserve enough LEBs to store two fastmaps. */
1972 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1973 #endif
1974 
1975 	if (ubi->avail_pebs < reserved_pebs) {
1976 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1977 			ubi->avail_pebs, reserved_pebs);
1978 		if (ubi->corr_peb_count)
1979 			ubi_err("%d PEBs are corrupted and not used",
1980 				ubi->corr_peb_count);
1981 		goto out_free;
1982 	}
1983 	ubi->avail_pebs -= reserved_pebs;
1984 	ubi->rsvd_pebs += reserved_pebs;
1985 
1986 	/* Schedule wear-leveling if needed */
1987 	err = ensure_wear_leveling(ubi, 0);
1988 	if (err)
1989 		goto out_free;
1990 
1991 	return 0;
1992 
1993 out_free:
1994 	cancel_pending(ubi);
1995 	tree_destroy(&ubi->used);
1996 	tree_destroy(&ubi->free);
1997 	tree_destroy(&ubi->scrub);
1998 	kfree(ubi->lookuptbl);
1999 	return err;
2000 }
2001 
2002 /**
2003  * protection_queue_destroy - destroy the protection queue.
2004  * @ubi: UBI device description object
2005  */
2006 static void protection_queue_destroy(struct ubi_device *ubi)
2007 {
2008 	int i;
2009 	struct ubi_wl_entry *e, *tmp;
2010 
2011 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2012 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2013 			list_del(&e->u.list);
2014 			kmem_cache_free(ubi_wl_entry_slab, e);
2015 		}
2016 	}
2017 }
2018 
2019 /**
2020  * ubi_wl_close - close the wear-leveling sub-system.
2021  * @ubi: UBI device description object
2022  */
2023 void ubi_wl_close(struct ubi_device *ubi)
2024 {
2025 	dbg_wl("close the WL sub-system");
2026 	cancel_pending(ubi);
2027 	protection_queue_destroy(ubi);
2028 	tree_destroy(&ubi->used);
2029 	tree_destroy(&ubi->erroneous);
2030 	tree_destroy(&ubi->free);
2031 	tree_destroy(&ubi->scrub);
2032 	kfree(ubi->lookuptbl);
2033 }
2034 
2035 /**
2036  * self_check_ec - make sure that the erase counter of a PEB is correct.
2037  * @ubi: UBI device description object
2038  * @pnum: the physical eraseblock number to check
2039  * @ec: the erase counter to check
2040  *
2041  * This function returns zero if the erase counter of physical eraseblock @pnum
2042  * is equivalent to @ec, and a negative error code if not or if an error
2043  * occurred.
2044  */
2045 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2046 {
2047 	int err;
2048 	long long read_ec;
2049 	struct ubi_ec_hdr *ec_hdr;
2050 
2051 	if (!ubi_dbg_chk_gen(ubi))
2052 		return 0;
2053 
2054 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2055 	if (!ec_hdr)
2056 		return -ENOMEM;
2057 
2058 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2059 	if (err && err != UBI_IO_BITFLIPS) {
2060 		/* The header does not have to exist */
2061 		err = 0;
2062 		goto out_free;
2063 	}
2064 
2065 	read_ec = be64_to_cpu(ec_hdr->ec);
2066 	if (ec != read_ec && read_ec - ec > 1) {
2067 		ubi_err("self-check failed for PEB %d", pnum);
2068 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
2069 		dump_stack();
2070 		err = 1;
2071 	} else
2072 		err = 0;
2073 
2074 out_free:
2075 	kfree(ec_hdr);
2076 	return err;
2077 }
2078 
2079 /**
2080  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2081  * @ubi: UBI device description object
2082  * @e: the wear-leveling entry to check
2083  * @root: the root of the tree
2084  *
2085  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2086  * is not.
2087  */
2088 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2089 				 struct ubi_wl_entry *e, struct rb_root *root)
2090 {
2091 	if (!ubi_dbg_chk_gen(ubi))
2092 		return 0;
2093 
2094 	if (in_wl_tree(e, root))
2095 		return 0;
2096 
2097 	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2098 		e->pnum, e->ec, root);
2099 	dump_stack();
2100 	return -EINVAL;
2101 }
2102 
2103 /**
2104  * self_check_in_pq - check if wear-leveling entry is in the protection
2105  *                        queue.
2106  * @ubi: UBI device description object
2107  * @e: the wear-leveling entry to check
2108  *
2109  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2110  */
2111 static int self_check_in_pq(const struct ubi_device *ubi,
2112 			    struct ubi_wl_entry *e)
2113 {
2114 	struct ubi_wl_entry *p;
2115 	int i;
2116 
2117 	if (!ubi_dbg_chk_gen(ubi))
2118 		return 0;
2119 
2120 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2121 		list_for_each_entry(p, &ubi->pq[i], u.list)
2122 			if (p == e)
2123 				return 0;
2124 
2125 	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2126 		e->pnum, e->ec);
2127 	dump_stack();
2128 	return -EINVAL;
2129 }
2130