xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision a1e58bbd)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling unit.
23  *
24  * This unit is responsible for wear-leveling. It works in terms of physical
25  * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26  * volumes, etc. From this unit's perspective all physical eraseblocks are of
27  * two types - used and free. Used physical eraseblocks are those that were
28  * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29  * those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only 0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL unit by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL unit.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL unit may pick a free physical eraseblock with low erase counter, and
47  * so forth.
48  *
49  * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
50  *
51  * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52  * physical eraseblock, it has to be moved. Technically this is the same as
53  * moving it for wear-leveling reasons.
54  *
55  * As it was said, for the UBI unit all physical eraseblocks are either "free"
56  * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57  * eraseblocks are kept in a set of different RB-trees: @wl->used,
58  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
59  *
60  * Note, in this implementation, we keep a small in-RAM object for each physical
61  * eraseblock. This is surely not a scalable solution. But it appears to be good
62  * enough for moderately large flashes and it is simple. In future, one may
63  * re-work this unit and make it more scalable.
64  *
65  * At the moment this unit does not utilize the sequence number, which was
66  * introduced relatively recently. But it would be wise to do this because the
67  * sequence number of a logical eraseblock characterizes how old is it. For
68  * example, when we move a PEB with low erase counter, and we need to pick the
69  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70  * pick target PEB with an average EC if our PEB is not very "old". This is a
71  * room for future re-works of the WL unit.
72  *
73  * FIXME: looks too complex, should be simplified (later).
74  */
75 
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/freezer.h>
79 #include <linux/kthread.h>
80 #include "ubi.h"
81 
82 /* Number of physical eraseblocks reserved for wear-leveling purposes */
83 #define WL_RESERVED_PEBS 1
84 
85 /*
86  * How many erase cycles are short term, unknown, and long term physical
87  * eraseblocks protected.
88  */
89 #define ST_PROTECTION 16
90 #define U_PROTECTION  10
91 #define LT_PROTECTION 4
92 
93 /*
94  * Maximum difference between two erase counters. If this threshold is
95  * exceeded, the WL unit starts moving data from used physical eraseblocks with
96  * low erase counter to free physical eraseblocks with high erase counter.
97  */
98 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
99 
100 /*
101  * When a physical eraseblock is moved, the WL unit has to pick the target
102  * physical eraseblock to move to. The simplest way would be just to pick the
103  * one with the highest erase counter. But in certain workloads this could lead
104  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
105  * situation when the picked physical eraseblock is constantly erased after the
106  * data is written to it. So, we have a constant which limits the highest erase
107  * counter of the free physical eraseblock to pick. Namely, the WL unit does
108  * not pick eraseblocks with erase counter greater then the lowest erase
109  * counter plus %WL_FREE_MAX_DIFF.
110  */
111 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
112 
113 /*
114  * Maximum number of consecutive background thread failures which is enough to
115  * switch to read-only mode.
116  */
117 #define WL_MAX_FAILURES 32
118 
119 /**
120  * struct ubi_wl_prot_entry - PEB protection entry.
121  * @rb_pnum: link in the @wl->prot.pnum RB-tree
122  * @rb_aec: link in the @wl->prot.aec RB-tree
123  * @abs_ec: the absolute erase counter value when the protection ends
124  * @e: the wear-leveling entry of the physical eraseblock under protection
125  *
126  * When the WL unit returns a physical eraseblock, the physical eraseblock is
127  * protected from being moved for some "time". For this reason, the physical
128  * eraseblock is not directly moved from the @wl->free tree to the @wl->used
129  * tree. There is one more tree in between where this physical eraseblock is
130  * temporarily stored (@wl->prot).
131  *
132  * All this protection stuff is needed because:
133  *  o we don't want to move physical eraseblocks just after we have given them
134  *    to the user; instead, we first want to let users fill them up with data;
135  *
136  *  o there is a chance that the user will put the physical eraseblock very
137  *    soon, so it makes sense not to move it for some time, but wait; this is
138  *    especially important in case of "short term" physical eraseblocks.
139  *
140  * Physical eraseblocks stay protected only for limited time. But the "time" is
141  * measured in erase cycles in this case. This is implemented with help of the
142  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
143  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
144  * the @wl->used tree.
145  *
146  * Protected physical eraseblocks are searched by physical eraseblock number
147  * (when they are put) and by the absolute erase counter (to check if it is
148  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
149  * storing the protected physical eraseblocks: @wl->prot.pnum and
150  * @wl->prot.aec. They are referred to as the "protection" trees. The
151  * first one is indexed by the physical eraseblock number. The second one is
152  * indexed by the absolute erase counter. Both trees store
153  * &struct ubi_wl_prot_entry objects.
154  *
155  * Each physical eraseblock has 2 main states: free and used. The former state
156  * corresponds to the @wl->free tree. The latter state is split up on several
157  * sub-states:
158  * o the WL movement is allowed (@wl->used tree);
159  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
160  * @wl->prot.aec trees);
161  * o scrubbing is needed (@wl->scrub tree).
162  *
163  * Depending on the sub-state, wear-leveling entries of the used physical
164  * eraseblocks may be kept in one of those trees.
165  */
166 struct ubi_wl_prot_entry {
167 	struct rb_node rb_pnum;
168 	struct rb_node rb_aec;
169 	unsigned long long abs_ec;
170 	struct ubi_wl_entry *e;
171 };
172 
173 /**
174  * struct ubi_work - UBI work description data structure.
175  * @list: a link in the list of pending works
176  * @func: worker function
177  * @priv: private data of the worker function
178  *
179  * @e: physical eraseblock to erase
180  * @torture: if the physical eraseblock has to be tortured
181  *
182  * The @func pointer points to the worker function. If the @cancel argument is
183  * not zero, the worker has to free the resources and exit immediately. The
184  * worker has to return zero in case of success and a negative error code in
185  * case of failure.
186  */
187 struct ubi_work {
188 	struct list_head list;
189 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
190 	/* The below fields are only relevant to erasure works */
191 	struct ubi_wl_entry *e;
192 	int torture;
193 };
194 
195 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
196 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
197 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
198 				     struct rb_root *root);
199 #else
200 #define paranoid_check_ec(ubi, pnum, ec) 0
201 #define paranoid_check_in_wl_tree(e, root)
202 #endif
203 
204 /**
205  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
206  * @e: the wear-leveling entry to add
207  * @root: the root of the tree
208  *
209  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
210  * the @ubi->used and @ubi->free RB-trees.
211  */
212 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
213 {
214 	struct rb_node **p, *parent = NULL;
215 
216 	p = &root->rb_node;
217 	while (*p) {
218 		struct ubi_wl_entry *e1;
219 
220 		parent = *p;
221 		e1 = rb_entry(parent, struct ubi_wl_entry, rb);
222 
223 		if (e->ec < e1->ec)
224 			p = &(*p)->rb_left;
225 		else if (e->ec > e1->ec)
226 			p = &(*p)->rb_right;
227 		else {
228 			ubi_assert(e->pnum != e1->pnum);
229 			if (e->pnum < e1->pnum)
230 				p = &(*p)->rb_left;
231 			else
232 				p = &(*p)->rb_right;
233 		}
234 	}
235 
236 	rb_link_node(&e->rb, parent, p);
237 	rb_insert_color(&e->rb, root);
238 }
239 
240 /**
241  * do_work - do one pending work.
242  * @ubi: UBI device description object
243  *
244  * This function returns zero in case of success and a negative error code in
245  * case of failure.
246  */
247 static int do_work(struct ubi_device *ubi)
248 {
249 	int err;
250 	struct ubi_work *wrk;
251 
252 	cond_resched();
253 
254 	/*
255 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
256 	 * it in read mode, so many of them may be doing works at a time. But
257 	 * the queue flush code has to be sure the whole queue of works is
258 	 * done, and it takes the mutex in write mode.
259 	 */
260 	down_read(&ubi->work_sem);
261 	spin_lock(&ubi->wl_lock);
262 	if (list_empty(&ubi->works)) {
263 		spin_unlock(&ubi->wl_lock);
264 		up_read(&ubi->work_sem);
265 		return 0;
266 	}
267 
268 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
269 	list_del(&wrk->list);
270 	ubi->works_count -= 1;
271 	ubi_assert(ubi->works_count >= 0);
272 	spin_unlock(&ubi->wl_lock);
273 
274 	/*
275 	 * Call the worker function. Do not touch the work structure
276 	 * after this call as it will have been freed or reused by that
277 	 * time by the worker function.
278 	 */
279 	err = wrk->func(ubi, wrk, 0);
280 	if (err)
281 		ubi_err("work failed with error code %d", err);
282 	up_read(&ubi->work_sem);
283 
284 	return err;
285 }
286 
287 /**
288  * produce_free_peb - produce a free physical eraseblock.
289  * @ubi: UBI device description object
290  *
291  * This function tries to make a free PEB by means of synchronous execution of
292  * pending works. This may be needed if, for example the background thread is
293  * disabled. Returns zero in case of success and a negative error code in case
294  * of failure.
295  */
296 static int produce_free_peb(struct ubi_device *ubi)
297 {
298 	int err;
299 
300 	spin_lock(&ubi->wl_lock);
301 	while (!ubi->free.rb_node) {
302 		spin_unlock(&ubi->wl_lock);
303 
304 		dbg_wl("do one work synchronously");
305 		err = do_work(ubi);
306 		if (err)
307 			return err;
308 
309 		spin_lock(&ubi->wl_lock);
310 	}
311 	spin_unlock(&ubi->wl_lock);
312 
313 	return 0;
314 }
315 
316 /**
317  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
318  * @e: the wear-leveling entry to check
319  * @root: the root of the tree
320  *
321  * This function returns non-zero if @e is in the @root RB-tree and zero if it
322  * is not.
323  */
324 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
325 {
326 	struct rb_node *p;
327 
328 	p = root->rb_node;
329 	while (p) {
330 		struct ubi_wl_entry *e1;
331 
332 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
333 
334 		if (e->pnum == e1->pnum) {
335 			ubi_assert(e == e1);
336 			return 1;
337 		}
338 
339 		if (e->ec < e1->ec)
340 			p = p->rb_left;
341 		else if (e->ec > e1->ec)
342 			p = p->rb_right;
343 		else {
344 			ubi_assert(e->pnum != e1->pnum);
345 			if (e->pnum < e1->pnum)
346 				p = p->rb_left;
347 			else
348 				p = p->rb_right;
349 		}
350 	}
351 
352 	return 0;
353 }
354 
355 /**
356  * prot_tree_add - add physical eraseblock to protection trees.
357  * @ubi: UBI device description object
358  * @e: the physical eraseblock to add
359  * @pe: protection entry object to use
360  * @abs_ec: absolute erase counter value when this physical eraseblock has
361  * to be removed from the protection trees.
362  *
363  * @wl->lock has to be locked.
364  */
365 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
366 			  struct ubi_wl_prot_entry *pe, int abs_ec)
367 {
368 	struct rb_node **p, *parent = NULL;
369 	struct ubi_wl_prot_entry *pe1;
370 
371 	pe->e = e;
372 	pe->abs_ec = ubi->abs_ec + abs_ec;
373 
374 	p = &ubi->prot.pnum.rb_node;
375 	while (*p) {
376 		parent = *p;
377 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
378 
379 		if (e->pnum < pe1->e->pnum)
380 			p = &(*p)->rb_left;
381 		else
382 			p = &(*p)->rb_right;
383 	}
384 	rb_link_node(&pe->rb_pnum, parent, p);
385 	rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
386 
387 	p = &ubi->prot.aec.rb_node;
388 	parent = NULL;
389 	while (*p) {
390 		parent = *p;
391 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
392 
393 		if (pe->abs_ec < pe1->abs_ec)
394 			p = &(*p)->rb_left;
395 		else
396 			p = &(*p)->rb_right;
397 	}
398 	rb_link_node(&pe->rb_aec, parent, p);
399 	rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
400 }
401 
402 /**
403  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
404  * @root: the RB-tree where to look for
405  * @max: highest possible erase counter
406  *
407  * This function looks for a wear leveling entry with erase counter closest to
408  * @max and less then @max.
409  */
410 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
411 {
412 	struct rb_node *p;
413 	struct ubi_wl_entry *e;
414 
415 	e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
416 	max += e->ec;
417 
418 	p = root->rb_node;
419 	while (p) {
420 		struct ubi_wl_entry *e1;
421 
422 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
423 		if (e1->ec >= max)
424 			p = p->rb_left;
425 		else {
426 			p = p->rb_right;
427 			e = e1;
428 		}
429 	}
430 
431 	return e;
432 }
433 
434 /**
435  * ubi_wl_get_peb - get a physical eraseblock.
436  * @ubi: UBI device description object
437  * @dtype: type of data which will be stored in this physical eraseblock
438  *
439  * This function returns a physical eraseblock in case of success and a
440  * negative error code in case of failure. Might sleep.
441  */
442 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
443 {
444 	int err, protect, medium_ec;
445 	struct ubi_wl_entry *e, *first, *last;
446 	struct ubi_wl_prot_entry *pe;
447 
448 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
449 		   dtype == UBI_UNKNOWN);
450 
451 	pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
452 	if (!pe)
453 		return -ENOMEM;
454 
455 retry:
456 	spin_lock(&ubi->wl_lock);
457 	if (!ubi->free.rb_node) {
458 		if (ubi->works_count == 0) {
459 			ubi_assert(list_empty(&ubi->works));
460 			ubi_err("no free eraseblocks");
461 			spin_unlock(&ubi->wl_lock);
462 			kfree(pe);
463 			return -ENOSPC;
464 		}
465 		spin_unlock(&ubi->wl_lock);
466 
467 		err = produce_free_peb(ubi);
468 		if (err < 0) {
469 			kfree(pe);
470 			return err;
471 		}
472 		goto retry;
473 	}
474 
475 	switch (dtype) {
476 		case UBI_LONGTERM:
477 			/*
478 			 * For long term data we pick a physical eraseblock
479 			 * with high erase counter. But the highest erase
480 			 * counter we can pick is bounded by the the lowest
481 			 * erase counter plus %WL_FREE_MAX_DIFF.
482 			 */
483 			e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
484 			protect = LT_PROTECTION;
485 			break;
486 		case UBI_UNKNOWN:
487 			/*
488 			 * For unknown data we pick a physical eraseblock with
489 			 * medium erase counter. But we by no means can pick a
490 			 * physical eraseblock with erase counter greater or
491 			 * equivalent than the lowest erase counter plus
492 			 * %WL_FREE_MAX_DIFF.
493 			 */
494 			first = rb_entry(rb_first(&ubi->free),
495 					 struct ubi_wl_entry, rb);
496 			last = rb_entry(rb_last(&ubi->free),
497 					struct ubi_wl_entry, rb);
498 
499 			if (last->ec - first->ec < WL_FREE_MAX_DIFF)
500 				e = rb_entry(ubi->free.rb_node,
501 						struct ubi_wl_entry, rb);
502 			else {
503 				medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
504 				e = find_wl_entry(&ubi->free, medium_ec);
505 			}
506 			protect = U_PROTECTION;
507 			break;
508 		case UBI_SHORTTERM:
509 			/*
510 			 * For short term data we pick a physical eraseblock
511 			 * with the lowest erase counter as we expect it will
512 			 * be erased soon.
513 			 */
514 			e = rb_entry(rb_first(&ubi->free),
515 				     struct ubi_wl_entry, rb);
516 			protect = ST_PROTECTION;
517 			break;
518 		default:
519 			protect = 0;
520 			e = NULL;
521 			BUG();
522 	}
523 
524 	/*
525 	 * Move the physical eraseblock to the protection trees where it will
526 	 * be protected from being moved for some time.
527 	 */
528 	paranoid_check_in_wl_tree(e, &ubi->free);
529 	rb_erase(&e->rb, &ubi->free);
530 	prot_tree_add(ubi, e, pe, protect);
531 
532 	dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
533 	spin_unlock(&ubi->wl_lock);
534 
535 	return e->pnum;
536 }
537 
538 /**
539  * prot_tree_del - remove a physical eraseblock from the protection trees
540  * @ubi: UBI device description object
541  * @pnum: the physical eraseblock to remove
542  *
543  * This function returns PEB @pnum from the protection trees and returns zero
544  * in case of success and %-ENODEV if the PEB was not found in the protection
545  * trees.
546  */
547 static int prot_tree_del(struct ubi_device *ubi, int pnum)
548 {
549 	struct rb_node *p;
550 	struct ubi_wl_prot_entry *pe = NULL;
551 
552 	p = ubi->prot.pnum.rb_node;
553 	while (p) {
554 
555 		pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
556 
557 		if (pnum == pe->e->pnum)
558 			goto found;
559 
560 		if (pnum < pe->e->pnum)
561 			p = p->rb_left;
562 		else
563 			p = p->rb_right;
564 	}
565 
566 	return -ENODEV;
567 
568 found:
569 	ubi_assert(pe->e->pnum == pnum);
570 	rb_erase(&pe->rb_aec, &ubi->prot.aec);
571 	rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
572 	kfree(pe);
573 	return 0;
574 }
575 
576 /**
577  * sync_erase - synchronously erase a physical eraseblock.
578  * @ubi: UBI device description object
579  * @e: the the physical eraseblock to erase
580  * @torture: if the physical eraseblock has to be tortured
581  *
582  * This function returns zero in case of success and a negative error code in
583  * case of failure.
584  */
585 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
586 {
587 	int err;
588 	struct ubi_ec_hdr *ec_hdr;
589 	unsigned long long ec = e->ec;
590 
591 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
592 
593 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
594 	if (err > 0)
595 		return -EINVAL;
596 
597 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
598 	if (!ec_hdr)
599 		return -ENOMEM;
600 
601 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
602 	if (err < 0)
603 		goto out_free;
604 
605 	ec += err;
606 	if (ec > UBI_MAX_ERASECOUNTER) {
607 		/*
608 		 * Erase counter overflow. Upgrade UBI and use 64-bit
609 		 * erase counters internally.
610 		 */
611 		ubi_err("erase counter overflow at PEB %d, EC %llu",
612 			e->pnum, ec);
613 		err = -EINVAL;
614 		goto out_free;
615 	}
616 
617 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
618 
619 	ec_hdr->ec = cpu_to_be64(ec);
620 
621 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
622 	if (err)
623 		goto out_free;
624 
625 	e->ec = ec;
626 	spin_lock(&ubi->wl_lock);
627 	if (e->ec > ubi->max_ec)
628 		ubi->max_ec = e->ec;
629 	spin_unlock(&ubi->wl_lock);
630 
631 out_free:
632 	kfree(ec_hdr);
633 	return err;
634 }
635 
636 /**
637  * check_protection_over - check if it is time to stop protecting some
638  * physical eraseblocks.
639  * @ubi: UBI device description object
640  *
641  * This function is called after each erase operation, when the absolute erase
642  * counter is incremented, to check if some physical eraseblock  have not to be
643  * protected any longer. These physical eraseblocks are moved from the
644  * protection trees to the used tree.
645  */
646 static void check_protection_over(struct ubi_device *ubi)
647 {
648 	struct ubi_wl_prot_entry *pe;
649 
650 	/*
651 	 * There may be several protected physical eraseblock to remove,
652 	 * process them all.
653 	 */
654 	while (1) {
655 		spin_lock(&ubi->wl_lock);
656 		if (!ubi->prot.aec.rb_node) {
657 			spin_unlock(&ubi->wl_lock);
658 			break;
659 		}
660 
661 		pe = rb_entry(rb_first(&ubi->prot.aec),
662 			      struct ubi_wl_prot_entry, rb_aec);
663 
664 		if (pe->abs_ec > ubi->abs_ec) {
665 			spin_unlock(&ubi->wl_lock);
666 			break;
667 		}
668 
669 		dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
670 		       pe->e->pnum, ubi->abs_ec, pe->abs_ec);
671 		rb_erase(&pe->rb_aec, &ubi->prot.aec);
672 		rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
673 		wl_tree_add(pe->e, &ubi->used);
674 		spin_unlock(&ubi->wl_lock);
675 
676 		kfree(pe);
677 		cond_resched();
678 	}
679 }
680 
681 /**
682  * schedule_ubi_work - schedule a work.
683  * @ubi: UBI device description object
684  * @wrk: the work to schedule
685  *
686  * This function enqueues a work defined by @wrk to the tail of the pending
687  * works list.
688  */
689 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
690 {
691 	spin_lock(&ubi->wl_lock);
692 	list_add_tail(&wrk->list, &ubi->works);
693 	ubi_assert(ubi->works_count >= 0);
694 	ubi->works_count += 1;
695 	if (ubi->thread_enabled)
696 		wake_up_process(ubi->bgt_thread);
697 	spin_unlock(&ubi->wl_lock);
698 }
699 
700 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
701 			int cancel);
702 
703 /**
704  * schedule_erase - schedule an erase work.
705  * @ubi: UBI device description object
706  * @e: the WL entry of the physical eraseblock to erase
707  * @torture: if the physical eraseblock has to be tortured
708  *
709  * This function returns zero in case of success and a %-ENOMEM in case of
710  * failure.
711  */
712 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
713 			  int torture)
714 {
715 	struct ubi_work *wl_wrk;
716 
717 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
718 	       e->pnum, e->ec, torture);
719 
720 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
721 	if (!wl_wrk)
722 		return -ENOMEM;
723 
724 	wl_wrk->func = &erase_worker;
725 	wl_wrk->e = e;
726 	wl_wrk->torture = torture;
727 
728 	schedule_ubi_work(ubi, wl_wrk);
729 	return 0;
730 }
731 
732 /**
733  * wear_leveling_worker - wear-leveling worker function.
734  * @ubi: UBI device description object
735  * @wrk: the work object
736  * @cancel: non-zero if the worker has to free memory and exit
737  *
738  * This function copies a more worn out physical eraseblock to a less worn out
739  * one. Returns zero in case of success and a negative error code in case of
740  * failure.
741  */
742 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
743 				int cancel)
744 {
745 	int err, put = 0, scrubbing = 0, protect = 0;
746 	struct ubi_wl_prot_entry *uninitialized_var(pe);
747 	struct ubi_wl_entry *e1, *e2;
748 	struct ubi_vid_hdr *vid_hdr;
749 
750 	kfree(wrk);
751 
752 	if (cancel)
753 		return 0;
754 
755 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
756 	if (!vid_hdr)
757 		return -ENOMEM;
758 
759 	mutex_lock(&ubi->move_mutex);
760 	spin_lock(&ubi->wl_lock);
761 	ubi_assert(!ubi->move_from && !ubi->move_to);
762 	ubi_assert(!ubi->move_to_put);
763 
764 	if (!ubi->free.rb_node ||
765 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
766 		/*
767 		 * No free physical eraseblocks? Well, they must be waiting in
768 		 * the queue to be erased. Cancel movement - it will be
769 		 * triggered again when a free physical eraseblock appears.
770 		 *
771 		 * No used physical eraseblocks? They must be temporarily
772 		 * protected from being moved. They will be moved to the
773 		 * @ubi->used tree later and the wear-leveling will be
774 		 * triggered again.
775 		 */
776 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
777 		       !ubi->free.rb_node, !ubi->used.rb_node);
778 		goto out_cancel;
779 	}
780 
781 	if (!ubi->scrub.rb_node) {
782 		/*
783 		 * Now pick the least worn-out used physical eraseblock and a
784 		 * highly worn-out free physical eraseblock. If the erase
785 		 * counters differ much enough, start wear-leveling.
786 		 */
787 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
788 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
789 
790 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
791 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
792 			       e1->ec, e2->ec);
793 			goto out_cancel;
794 		}
795 		paranoid_check_in_wl_tree(e1, &ubi->used);
796 		rb_erase(&e1->rb, &ubi->used);
797 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
798 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
799 	} else {
800 		/* Perform scrubbing */
801 		scrubbing = 1;
802 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
803 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
804 		paranoid_check_in_wl_tree(e1, &ubi->scrub);
805 		rb_erase(&e1->rb, &ubi->scrub);
806 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
807 	}
808 
809 	paranoid_check_in_wl_tree(e2, &ubi->free);
810 	rb_erase(&e2->rb, &ubi->free);
811 	ubi->move_from = e1;
812 	ubi->move_to = e2;
813 	spin_unlock(&ubi->wl_lock);
814 
815 	/*
816 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
817 	 * We so far do not know which logical eraseblock our physical
818 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
819 	 * header first.
820 	 *
821 	 * Note, we are protected from this PEB being unmapped and erased. The
822 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
823 	 * which is being moved was unmapped.
824 	 */
825 
826 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
827 	if (err && err != UBI_IO_BITFLIPS) {
828 		if (err == UBI_IO_PEB_FREE) {
829 			/*
830 			 * We are trying to move PEB without a VID header. UBI
831 			 * always write VID headers shortly after the PEB was
832 			 * given, so we have a situation when it did not have
833 			 * chance to write it down because it was preempted.
834 			 * Just re-schedule the work, so that next time it will
835 			 * likely have the VID header in place.
836 			 */
837 			dbg_wl("PEB %d has no VID header", e1->pnum);
838 			goto out_not_moved;
839 		}
840 
841 		ubi_err("error %d while reading VID header from PEB %d",
842 			err, e1->pnum);
843 		if (err > 0)
844 			err = -EIO;
845 		goto out_error;
846 	}
847 
848 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
849 	if (err) {
850 
851 		if (err < 0)
852 			goto out_error;
853 		if (err == 1)
854 			goto out_not_moved;
855 
856 		/*
857 		 * For some reason the LEB was not moved - it might be because
858 		 * the volume is being deleted. We should prevent this PEB from
859 		 * being selected for wear-levelling movement for some "time",
860 		 * so put it to the protection tree.
861 		 */
862 
863 		dbg_wl("cancelled moving PEB %d", e1->pnum);
864 		pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
865 		if (!pe) {
866 			err = -ENOMEM;
867 			goto out_error;
868 		}
869 
870 		protect = 1;
871 	}
872 
873 	ubi_free_vid_hdr(ubi, vid_hdr);
874 	spin_lock(&ubi->wl_lock);
875 	if (protect)
876 		prot_tree_add(ubi, e1, pe, protect);
877 	if (!ubi->move_to_put)
878 		wl_tree_add(e2, &ubi->used);
879 	else
880 		put = 1;
881 	ubi->move_from = ubi->move_to = NULL;
882 	ubi->move_to_put = ubi->wl_scheduled = 0;
883 	spin_unlock(&ubi->wl_lock);
884 
885 	if (put) {
886 		/*
887 		 * Well, the target PEB was put meanwhile, schedule it for
888 		 * erasure.
889 		 */
890 		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
891 		err = schedule_erase(ubi, e2, 0);
892 		if (err)
893 			goto out_error;
894 	}
895 
896 	if (!protect) {
897 		err = schedule_erase(ubi, e1, 0);
898 		if (err)
899 			goto out_error;
900 	}
901 
902 
903 	dbg_wl("done");
904 	mutex_unlock(&ubi->move_mutex);
905 	return 0;
906 
907 	/*
908 	 * For some reasons the LEB was not moved, might be an error, might be
909 	 * something else. @e1 was not changed, so return it back. @e2 might
910 	 * be changed, schedule it for erasure.
911 	 */
912 out_not_moved:
913 	ubi_free_vid_hdr(ubi, vid_hdr);
914 	spin_lock(&ubi->wl_lock);
915 	if (scrubbing)
916 		wl_tree_add(e1, &ubi->scrub);
917 	else
918 		wl_tree_add(e1, &ubi->used);
919 	ubi->move_from = ubi->move_to = NULL;
920 	ubi->move_to_put = ubi->wl_scheduled = 0;
921 	spin_unlock(&ubi->wl_lock);
922 
923 	err = schedule_erase(ubi, e2, 0);
924 	if (err)
925 		goto out_error;
926 
927 	mutex_unlock(&ubi->move_mutex);
928 	return 0;
929 
930 out_error:
931 	ubi_err("error %d while moving PEB %d to PEB %d",
932 		err, e1->pnum, e2->pnum);
933 
934 	ubi_free_vid_hdr(ubi, vid_hdr);
935 	spin_lock(&ubi->wl_lock);
936 	ubi->move_from = ubi->move_to = NULL;
937 	ubi->move_to_put = ubi->wl_scheduled = 0;
938 	spin_unlock(&ubi->wl_lock);
939 
940 	kmem_cache_free(ubi_wl_entry_slab, e1);
941 	kmem_cache_free(ubi_wl_entry_slab, e2);
942 	ubi_ro_mode(ubi);
943 
944 	mutex_unlock(&ubi->move_mutex);
945 	return err;
946 
947 out_cancel:
948 	ubi->wl_scheduled = 0;
949 	spin_unlock(&ubi->wl_lock);
950 	mutex_unlock(&ubi->move_mutex);
951 	ubi_free_vid_hdr(ubi, vid_hdr);
952 	return 0;
953 }
954 
955 /**
956  * ensure_wear_leveling - schedule wear-leveling if it is needed.
957  * @ubi: UBI device description object
958  *
959  * This function checks if it is time to start wear-leveling and schedules it
960  * if yes. This function returns zero in case of success and a negative error
961  * code in case of failure.
962  */
963 static int ensure_wear_leveling(struct ubi_device *ubi)
964 {
965 	int err = 0;
966 	struct ubi_wl_entry *e1;
967 	struct ubi_wl_entry *e2;
968 	struct ubi_work *wrk;
969 
970 	spin_lock(&ubi->wl_lock);
971 	if (ubi->wl_scheduled)
972 		/* Wear-leveling is already in the work queue */
973 		goto out_unlock;
974 
975 	/*
976 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
977 	 * the WL worker has to be scheduled anyway.
978 	 */
979 	if (!ubi->scrub.rb_node) {
980 		if (!ubi->used.rb_node || !ubi->free.rb_node)
981 			/* No physical eraseblocks - no deal */
982 			goto out_unlock;
983 
984 		/*
985 		 * We schedule wear-leveling only if the difference between the
986 		 * lowest erase counter of used physical eraseblocks and a high
987 		 * erase counter of free physical eraseblocks is greater then
988 		 * %UBI_WL_THRESHOLD.
989 		 */
990 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
991 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
992 
993 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
994 			goto out_unlock;
995 		dbg_wl("schedule wear-leveling");
996 	} else
997 		dbg_wl("schedule scrubbing");
998 
999 	ubi->wl_scheduled = 1;
1000 	spin_unlock(&ubi->wl_lock);
1001 
1002 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1003 	if (!wrk) {
1004 		err = -ENOMEM;
1005 		goto out_cancel;
1006 	}
1007 
1008 	wrk->func = &wear_leveling_worker;
1009 	schedule_ubi_work(ubi, wrk);
1010 	return err;
1011 
1012 out_cancel:
1013 	spin_lock(&ubi->wl_lock);
1014 	ubi->wl_scheduled = 0;
1015 out_unlock:
1016 	spin_unlock(&ubi->wl_lock);
1017 	return err;
1018 }
1019 
1020 /**
1021  * erase_worker - physical eraseblock erase worker function.
1022  * @ubi: UBI device description object
1023  * @wl_wrk: the work object
1024  * @cancel: non-zero if the worker has to free memory and exit
1025  *
1026  * This function erases a physical eraseblock and perform torture testing if
1027  * needed. It also takes care about marking the physical eraseblock bad if
1028  * needed. Returns zero in case of success and a negative error code in case of
1029  * failure.
1030  */
1031 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1032 			int cancel)
1033 {
1034 	struct ubi_wl_entry *e = wl_wrk->e;
1035 	int pnum = e->pnum, err, need;
1036 
1037 	if (cancel) {
1038 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1039 		kfree(wl_wrk);
1040 		kmem_cache_free(ubi_wl_entry_slab, e);
1041 		return 0;
1042 	}
1043 
1044 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1045 
1046 	err = sync_erase(ubi, e, wl_wrk->torture);
1047 	if (!err) {
1048 		/* Fine, we've erased it successfully */
1049 		kfree(wl_wrk);
1050 
1051 		spin_lock(&ubi->wl_lock);
1052 		ubi->abs_ec += 1;
1053 		wl_tree_add(e, &ubi->free);
1054 		spin_unlock(&ubi->wl_lock);
1055 
1056 		/*
1057 		 * One more erase operation has happened, take care about protected
1058 		 * physical eraseblocks.
1059 		 */
1060 		check_protection_over(ubi);
1061 
1062 		/* And take care about wear-leveling */
1063 		err = ensure_wear_leveling(ubi);
1064 		return err;
1065 	}
1066 
1067 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1068 	kfree(wl_wrk);
1069 	kmem_cache_free(ubi_wl_entry_slab, e);
1070 
1071 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1072 	    err == -EBUSY) {
1073 		int err1;
1074 
1075 		/* Re-schedule the LEB for erasure */
1076 		err1 = schedule_erase(ubi, e, 0);
1077 		if (err1) {
1078 			err = err1;
1079 			goto out_ro;
1080 		}
1081 		return err;
1082 	} else if (err != -EIO) {
1083 		/*
1084 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1085 		 * this physical eraseblock for erasure again would cause
1086 		 * errors again and again. Well, lets switch to RO mode.
1087 		 */
1088 		goto out_ro;
1089 	}
1090 
1091 	/* It is %-EIO, the PEB went bad */
1092 
1093 	if (!ubi->bad_allowed) {
1094 		ubi_err("bad physical eraseblock %d detected", pnum);
1095 		goto out_ro;
1096 	}
1097 
1098 	spin_lock(&ubi->volumes_lock);
1099 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1100 	if (need > 0) {
1101 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1102 		ubi->avail_pebs -= need;
1103 		ubi->rsvd_pebs += need;
1104 		ubi->beb_rsvd_pebs += need;
1105 		if (need > 0)
1106 			ubi_msg("reserve more %d PEBs", need);
1107 	}
1108 
1109 	if (ubi->beb_rsvd_pebs == 0) {
1110 		spin_unlock(&ubi->volumes_lock);
1111 		ubi_err("no reserved physical eraseblocks");
1112 		goto out_ro;
1113 	}
1114 
1115 	spin_unlock(&ubi->volumes_lock);
1116 	ubi_msg("mark PEB %d as bad", pnum);
1117 
1118 	err = ubi_io_mark_bad(ubi, pnum);
1119 	if (err)
1120 		goto out_ro;
1121 
1122 	spin_lock(&ubi->volumes_lock);
1123 	ubi->beb_rsvd_pebs -= 1;
1124 	ubi->bad_peb_count += 1;
1125 	ubi->good_peb_count -= 1;
1126 	ubi_calculate_reserved(ubi);
1127 	if (ubi->beb_rsvd_pebs == 0)
1128 		ubi_warn("last PEB from the reserved pool was used");
1129 	spin_unlock(&ubi->volumes_lock);
1130 
1131 	return err;
1132 
1133 out_ro:
1134 	ubi_ro_mode(ubi);
1135 	return err;
1136 }
1137 
1138 /**
1139  * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
1140  * @ubi: UBI device description object
1141  * @pnum: physical eraseblock to return
1142  * @torture: if this physical eraseblock has to be tortured
1143  *
1144  * This function is called to return physical eraseblock @pnum to the pool of
1145  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1146  * occurred to this @pnum and it has to be tested. This function returns zero
1147  * in case of success, and a negative error code in case of failure.
1148  */
1149 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1150 {
1151 	int err;
1152 	struct ubi_wl_entry *e;
1153 
1154 	dbg_wl("PEB %d", pnum);
1155 	ubi_assert(pnum >= 0);
1156 	ubi_assert(pnum < ubi->peb_count);
1157 
1158 retry:
1159 	spin_lock(&ubi->wl_lock);
1160 	e = ubi->lookuptbl[pnum];
1161 	if (e == ubi->move_from) {
1162 		/*
1163 		 * User is putting the physical eraseblock which was selected to
1164 		 * be moved. It will be scheduled for erasure in the
1165 		 * wear-leveling worker.
1166 		 */
1167 		dbg_wl("PEB %d is being moved, wait", pnum);
1168 		spin_unlock(&ubi->wl_lock);
1169 
1170 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1171 		mutex_lock(&ubi->move_mutex);
1172 		mutex_unlock(&ubi->move_mutex);
1173 		goto retry;
1174 	} else if (e == ubi->move_to) {
1175 		/*
1176 		 * User is putting the physical eraseblock which was selected
1177 		 * as the target the data is moved to. It may happen if the EBA
1178 		 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
1179 		 * the WL unit has not put the PEB to the "used" tree yet, but
1180 		 * it is about to do this. So we just set a flag which will
1181 		 * tell the WL worker that the PEB is not needed anymore and
1182 		 * should be scheduled for erasure.
1183 		 */
1184 		dbg_wl("PEB %d is the target of data moving", pnum);
1185 		ubi_assert(!ubi->move_to_put);
1186 		ubi->move_to_put = 1;
1187 		spin_unlock(&ubi->wl_lock);
1188 		return 0;
1189 	} else {
1190 		if (in_wl_tree(e, &ubi->used)) {
1191 			paranoid_check_in_wl_tree(e, &ubi->used);
1192 			rb_erase(&e->rb, &ubi->used);
1193 		} else if (in_wl_tree(e, &ubi->scrub)) {
1194 			paranoid_check_in_wl_tree(e, &ubi->scrub);
1195 			rb_erase(&e->rb, &ubi->scrub);
1196 		} else {
1197 			err = prot_tree_del(ubi, e->pnum);
1198 			if (err) {
1199 				ubi_err("PEB %d not found", pnum);
1200 				ubi_ro_mode(ubi);
1201 				spin_unlock(&ubi->wl_lock);
1202 				return err;
1203 			}
1204 		}
1205 	}
1206 	spin_unlock(&ubi->wl_lock);
1207 
1208 	err = schedule_erase(ubi, e, torture);
1209 	if (err) {
1210 		spin_lock(&ubi->wl_lock);
1211 		wl_tree_add(e, &ubi->used);
1212 		spin_unlock(&ubi->wl_lock);
1213 	}
1214 
1215 	return err;
1216 }
1217 
1218 /**
1219  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1220  * @ubi: UBI device description object
1221  * @pnum: the physical eraseblock to schedule
1222  *
1223  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1224  * needs scrubbing. This function schedules a physical eraseblock for
1225  * scrubbing which is done in background. This function returns zero in case of
1226  * success and a negative error code in case of failure.
1227  */
1228 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1229 {
1230 	struct ubi_wl_entry *e;
1231 
1232 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1233 
1234 retry:
1235 	spin_lock(&ubi->wl_lock);
1236 	e = ubi->lookuptbl[pnum];
1237 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1238 		spin_unlock(&ubi->wl_lock);
1239 		return 0;
1240 	}
1241 
1242 	if (e == ubi->move_to) {
1243 		/*
1244 		 * This physical eraseblock was used to move data to. The data
1245 		 * was moved but the PEB was not yet inserted to the proper
1246 		 * tree. We should just wait a little and let the WL worker
1247 		 * proceed.
1248 		 */
1249 		spin_unlock(&ubi->wl_lock);
1250 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1251 		yield();
1252 		goto retry;
1253 	}
1254 
1255 	if (in_wl_tree(e, &ubi->used)) {
1256 		paranoid_check_in_wl_tree(e, &ubi->used);
1257 		rb_erase(&e->rb, &ubi->used);
1258 	} else {
1259 		int err;
1260 
1261 		err = prot_tree_del(ubi, e->pnum);
1262 		if (err) {
1263 			ubi_err("PEB %d not found", pnum);
1264 			ubi_ro_mode(ubi);
1265 			spin_unlock(&ubi->wl_lock);
1266 			return err;
1267 		}
1268 	}
1269 
1270 	wl_tree_add(e, &ubi->scrub);
1271 	spin_unlock(&ubi->wl_lock);
1272 
1273 	/*
1274 	 * Technically scrubbing is the same as wear-leveling, so it is done
1275 	 * by the WL worker.
1276 	 */
1277 	return ensure_wear_leveling(ubi);
1278 }
1279 
1280 /**
1281  * ubi_wl_flush - flush all pending works.
1282  * @ubi: UBI device description object
1283  *
1284  * This function returns zero in case of success and a negative error code in
1285  * case of failure.
1286  */
1287 int ubi_wl_flush(struct ubi_device *ubi)
1288 {
1289 	int err;
1290 
1291 	/*
1292 	 * Erase while the pending works queue is not empty, but not more then
1293 	 * the number of currently pending works.
1294 	 */
1295 	dbg_wl("flush (%d pending works)", ubi->works_count);
1296 	while (ubi->works_count) {
1297 		err = do_work(ubi);
1298 		if (err)
1299 			return err;
1300 	}
1301 
1302 	/*
1303 	 * Make sure all the works which have been done in parallel are
1304 	 * finished.
1305 	 */
1306 	down_write(&ubi->work_sem);
1307 	up_write(&ubi->work_sem);
1308 
1309 	/*
1310 	 * And in case last was the WL worker and it cancelled the LEB
1311 	 * movement, flush again.
1312 	 */
1313 	while (ubi->works_count) {
1314 		dbg_wl("flush more (%d pending works)", ubi->works_count);
1315 		err = do_work(ubi);
1316 		if (err)
1317 			return err;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 /**
1324  * tree_destroy - destroy an RB-tree.
1325  * @root: the root of the tree to destroy
1326  */
1327 static void tree_destroy(struct rb_root *root)
1328 {
1329 	struct rb_node *rb;
1330 	struct ubi_wl_entry *e;
1331 
1332 	rb = root->rb_node;
1333 	while (rb) {
1334 		if (rb->rb_left)
1335 			rb = rb->rb_left;
1336 		else if (rb->rb_right)
1337 			rb = rb->rb_right;
1338 		else {
1339 			e = rb_entry(rb, struct ubi_wl_entry, rb);
1340 
1341 			rb = rb_parent(rb);
1342 			if (rb) {
1343 				if (rb->rb_left == &e->rb)
1344 					rb->rb_left = NULL;
1345 				else
1346 					rb->rb_right = NULL;
1347 			}
1348 
1349 			kmem_cache_free(ubi_wl_entry_slab, e);
1350 		}
1351 	}
1352 }
1353 
1354 /**
1355  * ubi_thread - UBI background thread.
1356  * @u: the UBI device description object pointer
1357  */
1358 int ubi_thread(void *u)
1359 {
1360 	int failures = 0;
1361 	struct ubi_device *ubi = u;
1362 
1363 	ubi_msg("background thread \"%s\" started, PID %d",
1364 		ubi->bgt_name, task_pid_nr(current));
1365 
1366 	set_freezable();
1367 	for (;;) {
1368 		int err;
1369 
1370 		if (kthread_should_stop())
1371 			goto out;
1372 
1373 		if (try_to_freeze())
1374 			continue;
1375 
1376 		spin_lock(&ubi->wl_lock);
1377 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1378 			       !ubi->thread_enabled) {
1379 			set_current_state(TASK_INTERRUPTIBLE);
1380 			spin_unlock(&ubi->wl_lock);
1381 			schedule();
1382 			continue;
1383 		}
1384 		spin_unlock(&ubi->wl_lock);
1385 
1386 		err = do_work(ubi);
1387 		if (err) {
1388 			ubi_err("%s: work failed with error code %d",
1389 				ubi->bgt_name, err);
1390 			if (failures++ > WL_MAX_FAILURES) {
1391 				/*
1392 				 * Too many failures, disable the thread and
1393 				 * switch to read-only mode.
1394 				 */
1395 				ubi_msg("%s: %d consecutive failures",
1396 					ubi->bgt_name, WL_MAX_FAILURES);
1397 				ubi_ro_mode(ubi);
1398 				break;
1399 			}
1400 		} else
1401 			failures = 0;
1402 
1403 		cond_resched();
1404 	}
1405 
1406 out:
1407 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1408 	return 0;
1409 }
1410 
1411 /**
1412  * cancel_pending - cancel all pending works.
1413  * @ubi: UBI device description object
1414  */
1415 static void cancel_pending(struct ubi_device *ubi)
1416 {
1417 	while (!list_empty(&ubi->works)) {
1418 		struct ubi_work *wrk;
1419 
1420 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1421 		list_del(&wrk->list);
1422 		wrk->func(ubi, wrk, 1);
1423 		ubi->works_count -= 1;
1424 		ubi_assert(ubi->works_count >= 0);
1425 	}
1426 }
1427 
1428 /**
1429  * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1430  * information.
1431  * @ubi: UBI device description object
1432  * @si: scanning information
1433  *
1434  * This function returns zero in case of success, and a negative error code in
1435  * case of failure.
1436  */
1437 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1438 {
1439 	int err;
1440 	struct rb_node *rb1, *rb2;
1441 	struct ubi_scan_volume *sv;
1442 	struct ubi_scan_leb *seb, *tmp;
1443 	struct ubi_wl_entry *e;
1444 
1445 
1446 	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1447 	ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1448 	spin_lock_init(&ubi->wl_lock);
1449 	mutex_init(&ubi->move_mutex);
1450 	init_rwsem(&ubi->work_sem);
1451 	ubi->max_ec = si->max_ec;
1452 	INIT_LIST_HEAD(&ubi->works);
1453 
1454 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1455 
1456 	err = -ENOMEM;
1457 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1458 	if (!ubi->lookuptbl)
1459 		return err;
1460 
1461 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1462 		cond_resched();
1463 
1464 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1465 		if (!e)
1466 			goto out_free;
1467 
1468 		e->pnum = seb->pnum;
1469 		e->ec = seb->ec;
1470 		ubi->lookuptbl[e->pnum] = e;
1471 		if (schedule_erase(ubi, e, 0)) {
1472 			kmem_cache_free(ubi_wl_entry_slab, e);
1473 			goto out_free;
1474 		}
1475 	}
1476 
1477 	list_for_each_entry(seb, &si->free, u.list) {
1478 		cond_resched();
1479 
1480 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1481 		if (!e)
1482 			goto out_free;
1483 
1484 		e->pnum = seb->pnum;
1485 		e->ec = seb->ec;
1486 		ubi_assert(e->ec >= 0);
1487 		wl_tree_add(e, &ubi->free);
1488 		ubi->lookuptbl[e->pnum] = e;
1489 	}
1490 
1491 	list_for_each_entry(seb, &si->corr, u.list) {
1492 		cond_resched();
1493 
1494 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1495 		if (!e)
1496 			goto out_free;
1497 
1498 		e->pnum = seb->pnum;
1499 		e->ec = seb->ec;
1500 		ubi->lookuptbl[e->pnum] = e;
1501 		if (schedule_erase(ubi, e, 0)) {
1502 			kmem_cache_free(ubi_wl_entry_slab, e);
1503 			goto out_free;
1504 		}
1505 	}
1506 
1507 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1508 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1509 			cond_resched();
1510 
1511 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1512 			if (!e)
1513 				goto out_free;
1514 
1515 			e->pnum = seb->pnum;
1516 			e->ec = seb->ec;
1517 			ubi->lookuptbl[e->pnum] = e;
1518 			if (!seb->scrub) {
1519 				dbg_wl("add PEB %d EC %d to the used tree",
1520 				       e->pnum, e->ec);
1521 				wl_tree_add(e, &ubi->used);
1522 			} else {
1523 				dbg_wl("add PEB %d EC %d to the scrub tree",
1524 				       e->pnum, e->ec);
1525 				wl_tree_add(e, &ubi->scrub);
1526 			}
1527 		}
1528 	}
1529 
1530 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1531 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1532 			ubi->avail_pebs, WL_RESERVED_PEBS);
1533 		goto out_free;
1534 	}
1535 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1536 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1537 
1538 	/* Schedule wear-leveling if needed */
1539 	err = ensure_wear_leveling(ubi);
1540 	if (err)
1541 		goto out_free;
1542 
1543 	return 0;
1544 
1545 out_free:
1546 	cancel_pending(ubi);
1547 	tree_destroy(&ubi->used);
1548 	tree_destroy(&ubi->free);
1549 	tree_destroy(&ubi->scrub);
1550 	kfree(ubi->lookuptbl);
1551 	return err;
1552 }
1553 
1554 /**
1555  * protection_trees_destroy - destroy the protection RB-trees.
1556  * @ubi: UBI device description object
1557  */
1558 static void protection_trees_destroy(struct ubi_device *ubi)
1559 {
1560 	struct rb_node *rb;
1561 	struct ubi_wl_prot_entry *pe;
1562 
1563 	rb = ubi->prot.aec.rb_node;
1564 	while (rb) {
1565 		if (rb->rb_left)
1566 			rb = rb->rb_left;
1567 		else if (rb->rb_right)
1568 			rb = rb->rb_right;
1569 		else {
1570 			pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1571 
1572 			rb = rb_parent(rb);
1573 			if (rb) {
1574 				if (rb->rb_left == &pe->rb_aec)
1575 					rb->rb_left = NULL;
1576 				else
1577 					rb->rb_right = NULL;
1578 			}
1579 
1580 			kmem_cache_free(ubi_wl_entry_slab, pe->e);
1581 			kfree(pe);
1582 		}
1583 	}
1584 }
1585 
1586 /**
1587  * ubi_wl_close - close the wear-leveling unit.
1588  * @ubi: UBI device description object
1589  */
1590 void ubi_wl_close(struct ubi_device *ubi)
1591 {
1592 	dbg_wl("close the UBI wear-leveling unit");
1593 
1594 	cancel_pending(ubi);
1595 	protection_trees_destroy(ubi);
1596 	tree_destroy(&ubi->used);
1597 	tree_destroy(&ubi->free);
1598 	tree_destroy(&ubi->scrub);
1599 	kfree(ubi->lookuptbl);
1600 }
1601 
1602 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1603 
1604 /**
1605  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1606  * is correct.
1607  * @ubi: UBI device description object
1608  * @pnum: the physical eraseblock number to check
1609  * @ec: the erase counter to check
1610  *
1611  * This function returns zero if the erase counter of physical eraseblock @pnum
1612  * is equivalent to @ec, %1 if not, and a negative error code if an error
1613  * occurred.
1614  */
1615 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1616 {
1617 	int err;
1618 	long long read_ec;
1619 	struct ubi_ec_hdr *ec_hdr;
1620 
1621 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1622 	if (!ec_hdr)
1623 		return -ENOMEM;
1624 
1625 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1626 	if (err && err != UBI_IO_BITFLIPS) {
1627 		/* The header does not have to exist */
1628 		err = 0;
1629 		goto out_free;
1630 	}
1631 
1632 	read_ec = be64_to_cpu(ec_hdr->ec);
1633 	if (ec != read_ec) {
1634 		ubi_err("paranoid check failed for PEB %d", pnum);
1635 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1636 		ubi_dbg_dump_stack();
1637 		err = 1;
1638 	} else
1639 		err = 0;
1640 
1641 out_free:
1642 	kfree(ec_hdr);
1643 	return err;
1644 }
1645 
1646 /**
1647  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1648  * in a WL RB-tree.
1649  * @e: the wear-leveling entry to check
1650  * @root: the root of the tree
1651  *
1652  * This function returns zero if @e is in the @root RB-tree and %1 if it
1653  * is not.
1654  */
1655 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1656 				     struct rb_root *root)
1657 {
1658 	if (in_wl_tree(e, root))
1659 		return 0;
1660 
1661 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1662 		e->pnum, e->ec, root);
1663 	ubi_dbg_dump_stack();
1664 	return 1;
1665 }
1666 
1667 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1668