xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 9ffc93f2)
1 /*
2  * @ubi: UBI device description object
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20  */
21 
22 /*
23  * UBI wear-leveling sub-system.
24  *
25  * This sub-system is responsible for wear-leveling. It works in terms of
26  * physical eraseblocks and erase counters and knows nothing about logical
27  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28  * eraseblocks are of two types - used and free. Used physical eraseblocks are
29  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31  *
32  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33  * header. The rest of the physical eraseblock contains only %0xFF bytes.
34  *
35  * When physical eraseblocks are returned to the WL sub-system by means of the
36  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37  * done asynchronously in context of the per-UBI device background thread,
38  * which is also managed by the WL sub-system.
39  *
40  * The wear-leveling is ensured by means of moving the contents of used
41  * physical eraseblocks with low erase counter to free physical eraseblocks
42  * with high erase counter.
43  *
44  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
45  * an "optimal" physical eraseblock. For example, when it is known that the
46  * physical eraseblock will be "put" soon because it contains short-term data,
47  * the WL sub-system may pick a free physical eraseblock with low erase
48  * counter, and so forth.
49  *
50  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
51  * bad.
52  *
53  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
54  * in a physical eraseblock, it has to be moved. Technically this is the same
55  * as moving it for wear-leveling reasons.
56  *
57  * As it was said, for the UBI sub-system all physical eraseblocks are either
58  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
59  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
60  * RB-trees, as well as (temporarily) in the @wl->pq queue.
61  *
62  * When the WL sub-system returns a physical eraseblock, the physical
63  * eraseblock is protected from being moved for some "time". For this reason,
64  * the physical eraseblock is not directly moved from the @wl->free tree to the
65  * @wl->used tree. There is a protection queue in between where this
66  * physical eraseblock is temporarily stored (@wl->pq).
67  *
68  * All this protection stuff is needed because:
69  *  o we don't want to move physical eraseblocks just after we have given them
70  *    to the user; instead, we first want to let users fill them up with data;
71  *
72  *  o there is a chance that the user will put the physical eraseblock very
73  *    soon, so it makes sense not to move it for some time, but wait; this is
74  *    especially important in case of "short term" physical eraseblocks.
75  *
76  * Physical eraseblocks stay protected only for limited time. But the "time" is
77  * measured in erase cycles in this case. This is implemented with help of the
78  * protection queue. Eraseblocks are put to the tail of this queue when they
79  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
80  * head of the queue on each erase operation (for any eraseblock). So the
81  * length of the queue defines how may (global) erase cycles PEBs are protected.
82  *
83  * To put it differently, each physical eraseblock has 2 main states: free and
84  * used. The former state corresponds to the @wl->free tree. The latter state
85  * is split up on several sub-states:
86  * o the WL movement is allowed (@wl->used tree);
87  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
88  *   erroneous - e.g., there was a read error;
89  * o the WL movement is temporarily prohibited (@wl->pq queue);
90  * o scrubbing is needed (@wl->scrub tree).
91  *
92  * Depending on the sub-state, wear-leveling entries of the used physical
93  * eraseblocks may be kept in one of those structures.
94  *
95  * Note, in this implementation, we keep a small in-RAM object for each physical
96  * eraseblock. This is surely not a scalable solution. But it appears to be good
97  * enough for moderately large flashes and it is simple. In future, one may
98  * re-work this sub-system and make it more scalable.
99  *
100  * At the moment this sub-system does not utilize the sequence number, which
101  * was introduced relatively recently. But it would be wise to do this because
102  * the sequence number of a logical eraseblock characterizes how old is it. For
103  * example, when we move a PEB with low erase counter, and we need to pick the
104  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
105  * pick target PEB with an average EC if our PEB is not very "old". This is a
106  * room for future re-works of the WL sub-system.
107  */
108 
109 #include <linux/slab.h>
110 #include <linux/crc32.h>
111 #include <linux/freezer.h>
112 #include <linux/kthread.h>
113 #include "ubi.h"
114 
115 /* Number of physical eraseblocks reserved for wear-leveling purposes */
116 #define WL_RESERVED_PEBS 1
117 
118 /*
119  * Maximum difference between two erase counters. If this threshold is
120  * exceeded, the WL sub-system starts moving data from used physical
121  * eraseblocks with low erase counter to free physical eraseblocks with high
122  * erase counter.
123  */
124 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
125 
126 /*
127  * When a physical eraseblock is moved, the WL sub-system has to pick the target
128  * physical eraseblock to move to. The simplest way would be just to pick the
129  * one with the highest erase counter. But in certain workloads this could lead
130  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
131  * situation when the picked physical eraseblock is constantly erased after the
132  * data is written to it. So, we have a constant which limits the highest erase
133  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
134  * does not pick eraseblocks with erase counter greater than the lowest erase
135  * counter plus %WL_FREE_MAX_DIFF.
136  */
137 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
138 
139 /*
140  * Maximum number of consecutive background thread failures which is enough to
141  * switch to read-only mode.
142  */
143 #define WL_MAX_FAILURES 32
144 
145 /**
146  * struct ubi_work - UBI work description data structure.
147  * @list: a link in the list of pending works
148  * @func: worker function
149  * @e: physical eraseblock to erase
150  * @torture: if the physical eraseblock has to be tortured
151  *
152  * The @func pointer points to the worker function. If the @cancel argument is
153  * not zero, the worker has to free the resources and exit immediately. The
154  * worker has to return zero in case of success and a negative error code in
155  * case of failure.
156  */
157 struct ubi_work {
158 	struct list_head list;
159 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
160 	/* The below fields are only relevant to erasure works */
161 	struct ubi_wl_entry *e;
162 	int torture;
163 };
164 
165 #ifdef CONFIG_MTD_UBI_DEBUG
166 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
167 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
168 				     struct ubi_wl_entry *e,
169 				     struct rb_root *root);
170 static int paranoid_check_in_pq(const struct ubi_device *ubi,
171 				struct ubi_wl_entry *e);
172 #else
173 #define paranoid_check_ec(ubi, pnum, ec) 0
174 #define paranoid_check_in_wl_tree(ubi, e, root)
175 #define paranoid_check_in_pq(ubi, e) 0
176 #endif
177 
178 /**
179  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
180  * @e: the wear-leveling entry to add
181  * @root: the root of the tree
182  *
183  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
184  * the @ubi->used and @ubi->free RB-trees.
185  */
186 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
187 {
188 	struct rb_node **p, *parent = NULL;
189 
190 	p = &root->rb_node;
191 	while (*p) {
192 		struct ubi_wl_entry *e1;
193 
194 		parent = *p;
195 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
196 
197 		if (e->ec < e1->ec)
198 			p = &(*p)->rb_left;
199 		else if (e->ec > e1->ec)
200 			p = &(*p)->rb_right;
201 		else {
202 			ubi_assert(e->pnum != e1->pnum);
203 			if (e->pnum < e1->pnum)
204 				p = &(*p)->rb_left;
205 			else
206 				p = &(*p)->rb_right;
207 		}
208 	}
209 
210 	rb_link_node(&e->u.rb, parent, p);
211 	rb_insert_color(&e->u.rb, root);
212 }
213 
214 /**
215  * do_work - do one pending work.
216  * @ubi: UBI device description object
217  *
218  * This function returns zero in case of success and a negative error code in
219  * case of failure.
220  */
221 static int do_work(struct ubi_device *ubi)
222 {
223 	int err;
224 	struct ubi_work *wrk;
225 
226 	cond_resched();
227 
228 	/*
229 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
230 	 * it in read mode, so many of them may be doing works at a time. But
231 	 * the queue flush code has to be sure the whole queue of works is
232 	 * done, and it takes the mutex in write mode.
233 	 */
234 	down_read(&ubi->work_sem);
235 	spin_lock(&ubi->wl_lock);
236 	if (list_empty(&ubi->works)) {
237 		spin_unlock(&ubi->wl_lock);
238 		up_read(&ubi->work_sem);
239 		return 0;
240 	}
241 
242 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
243 	list_del(&wrk->list);
244 	ubi->works_count -= 1;
245 	ubi_assert(ubi->works_count >= 0);
246 	spin_unlock(&ubi->wl_lock);
247 
248 	/*
249 	 * Call the worker function. Do not touch the work structure
250 	 * after this call as it will have been freed or reused by that
251 	 * time by the worker function.
252 	 */
253 	err = wrk->func(ubi, wrk, 0);
254 	if (err)
255 		ubi_err("work failed with error code %d", err);
256 	up_read(&ubi->work_sem);
257 
258 	return err;
259 }
260 
261 /**
262  * produce_free_peb - produce a free physical eraseblock.
263  * @ubi: UBI device description object
264  *
265  * This function tries to make a free PEB by means of synchronous execution of
266  * pending works. This may be needed if, for example the background thread is
267  * disabled. Returns zero in case of success and a negative error code in case
268  * of failure.
269  */
270 static int produce_free_peb(struct ubi_device *ubi)
271 {
272 	int err;
273 
274 	spin_lock(&ubi->wl_lock);
275 	while (!ubi->free.rb_node) {
276 		spin_unlock(&ubi->wl_lock);
277 
278 		dbg_wl("do one work synchronously");
279 		err = do_work(ubi);
280 		if (err)
281 			return err;
282 
283 		spin_lock(&ubi->wl_lock);
284 	}
285 	spin_unlock(&ubi->wl_lock);
286 
287 	return 0;
288 }
289 
290 /**
291  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292  * @e: the wear-leveling entry to check
293  * @root: the root of the tree
294  *
295  * This function returns non-zero if @e is in the @root RB-tree and zero if it
296  * is not.
297  */
298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299 {
300 	struct rb_node *p;
301 
302 	p = root->rb_node;
303 	while (p) {
304 		struct ubi_wl_entry *e1;
305 
306 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307 
308 		if (e->pnum == e1->pnum) {
309 			ubi_assert(e == e1);
310 			return 1;
311 		}
312 
313 		if (e->ec < e1->ec)
314 			p = p->rb_left;
315 		else if (e->ec > e1->ec)
316 			p = p->rb_right;
317 		else {
318 			ubi_assert(e->pnum != e1->pnum);
319 			if (e->pnum < e1->pnum)
320 				p = p->rb_left;
321 			else
322 				p = p->rb_right;
323 		}
324 	}
325 
326 	return 0;
327 }
328 
329 /**
330  * prot_queue_add - add physical eraseblock to the protection queue.
331  * @ubi: UBI device description object
332  * @e: the physical eraseblock to add
333  *
334  * This function adds @e to the tail of the protection queue @ubi->pq, where
335  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337  * be locked.
338  */
339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340 {
341 	int pq_tail = ubi->pq_head - 1;
342 
343 	if (pq_tail < 0)
344 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 }
349 
350 /**
351  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352  * @root: the RB-tree where to look for
353  * @max: highest possible erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * @max and less than @max.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
359 {
360 	struct rb_node *p;
361 	struct ubi_wl_entry *e;
362 
363 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
364 	max += e->ec;
365 
366 	p = root->rb_node;
367 	while (p) {
368 		struct ubi_wl_entry *e1;
369 
370 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
371 		if (e1->ec >= max)
372 			p = p->rb_left;
373 		else {
374 			p = p->rb_right;
375 			e = e1;
376 		}
377 	}
378 
379 	return e;
380 }
381 
382 /**
383  * ubi_wl_get_peb - get a physical eraseblock.
384  * @ubi: UBI device description object
385  * @dtype: type of data which will be stored in this physical eraseblock
386  *
387  * This function returns a physical eraseblock in case of success and a
388  * negative error code in case of failure. Might sleep.
389  */
390 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
391 {
392 	int err, medium_ec;
393 	struct ubi_wl_entry *e, *first, *last;
394 
395 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
396 		   dtype == UBI_UNKNOWN);
397 
398 retry:
399 	spin_lock(&ubi->wl_lock);
400 	if (!ubi->free.rb_node) {
401 		if (ubi->works_count == 0) {
402 			ubi_assert(list_empty(&ubi->works));
403 			ubi_err("no free eraseblocks");
404 			spin_unlock(&ubi->wl_lock);
405 			return -ENOSPC;
406 		}
407 		spin_unlock(&ubi->wl_lock);
408 
409 		err = produce_free_peb(ubi);
410 		if (err < 0)
411 			return err;
412 		goto retry;
413 	}
414 
415 	switch (dtype) {
416 	case UBI_LONGTERM:
417 		/*
418 		 * For long term data we pick a physical eraseblock with high
419 		 * erase counter. But the highest erase counter we can pick is
420 		 * bounded by the the lowest erase counter plus
421 		 * %WL_FREE_MAX_DIFF.
422 		 */
423 		e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
424 		break;
425 	case UBI_UNKNOWN:
426 		/*
427 		 * For unknown data we pick a physical eraseblock with medium
428 		 * erase counter. But we by no means can pick a physical
429 		 * eraseblock with erase counter greater or equivalent than the
430 		 * lowest erase counter plus %WL_FREE_MAX_DIFF.
431 		 */
432 		first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
433 					u.rb);
434 		last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
435 
436 		if (last->ec - first->ec < WL_FREE_MAX_DIFF)
437 			e = rb_entry(ubi->free.rb_node,
438 					struct ubi_wl_entry, u.rb);
439 		else {
440 			medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
441 			e = find_wl_entry(&ubi->free, medium_ec);
442 		}
443 		break;
444 	case UBI_SHORTTERM:
445 		/*
446 		 * For short term data we pick a physical eraseblock with the
447 		 * lowest erase counter as we expect it will be erased soon.
448 		 */
449 		e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
450 		break;
451 	default:
452 		BUG();
453 	}
454 
455 	paranoid_check_in_wl_tree(ubi, e, &ubi->free);
456 
457 	/*
458 	 * Move the physical eraseblock to the protection queue where it will
459 	 * be protected from being moved for some time.
460 	 */
461 	rb_erase(&e->u.rb, &ubi->free);
462 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
463 	prot_queue_add(ubi, e);
464 	spin_unlock(&ubi->wl_lock);
465 
466 	err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
467 				   ubi->peb_size - ubi->vid_hdr_aloffset);
468 	if (err) {
469 		ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
470 		return err;
471 	}
472 
473 	return e->pnum;
474 }
475 
476 /**
477  * prot_queue_del - remove a physical eraseblock from the protection queue.
478  * @ubi: UBI device description object
479  * @pnum: the physical eraseblock to remove
480  *
481  * This function deletes PEB @pnum from the protection queue and returns zero
482  * in case of success and %-ENODEV if the PEB was not found.
483  */
484 static int prot_queue_del(struct ubi_device *ubi, int pnum)
485 {
486 	struct ubi_wl_entry *e;
487 
488 	e = ubi->lookuptbl[pnum];
489 	if (!e)
490 		return -ENODEV;
491 
492 	if (paranoid_check_in_pq(ubi, e))
493 		return -ENODEV;
494 
495 	list_del(&e->u.list);
496 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
497 	return 0;
498 }
499 
500 /**
501  * sync_erase - synchronously erase a physical eraseblock.
502  * @ubi: UBI device description object
503  * @e: the the physical eraseblock to erase
504  * @torture: if the physical eraseblock has to be tortured
505  *
506  * This function returns zero in case of success and a negative error code in
507  * case of failure.
508  */
509 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
510 		      int torture)
511 {
512 	int err;
513 	struct ubi_ec_hdr *ec_hdr;
514 	unsigned long long ec = e->ec;
515 
516 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
517 
518 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
519 	if (err)
520 		return -EINVAL;
521 
522 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
523 	if (!ec_hdr)
524 		return -ENOMEM;
525 
526 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
527 	if (err < 0)
528 		goto out_free;
529 
530 	ec += err;
531 	if (ec > UBI_MAX_ERASECOUNTER) {
532 		/*
533 		 * Erase counter overflow. Upgrade UBI and use 64-bit
534 		 * erase counters internally.
535 		 */
536 		ubi_err("erase counter overflow at PEB %d, EC %llu",
537 			e->pnum, ec);
538 		err = -EINVAL;
539 		goto out_free;
540 	}
541 
542 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
543 
544 	ec_hdr->ec = cpu_to_be64(ec);
545 
546 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
547 	if (err)
548 		goto out_free;
549 
550 	e->ec = ec;
551 	spin_lock(&ubi->wl_lock);
552 	if (e->ec > ubi->max_ec)
553 		ubi->max_ec = e->ec;
554 	spin_unlock(&ubi->wl_lock);
555 
556 out_free:
557 	kfree(ec_hdr);
558 	return err;
559 }
560 
561 /**
562  * serve_prot_queue - check if it is time to stop protecting PEBs.
563  * @ubi: UBI device description object
564  *
565  * This function is called after each erase operation and removes PEBs from the
566  * tail of the protection queue. These PEBs have been protected for long enough
567  * and should be moved to the used tree.
568  */
569 static void serve_prot_queue(struct ubi_device *ubi)
570 {
571 	struct ubi_wl_entry *e, *tmp;
572 	int count;
573 
574 	/*
575 	 * There may be several protected physical eraseblock to remove,
576 	 * process them all.
577 	 */
578 repeat:
579 	count = 0;
580 	spin_lock(&ubi->wl_lock);
581 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
582 		dbg_wl("PEB %d EC %d protection over, move to used tree",
583 			e->pnum, e->ec);
584 
585 		list_del(&e->u.list);
586 		wl_tree_add(e, &ubi->used);
587 		if (count++ > 32) {
588 			/*
589 			 * Let's be nice and avoid holding the spinlock for
590 			 * too long.
591 			 */
592 			spin_unlock(&ubi->wl_lock);
593 			cond_resched();
594 			goto repeat;
595 		}
596 	}
597 
598 	ubi->pq_head += 1;
599 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
600 		ubi->pq_head = 0;
601 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
602 	spin_unlock(&ubi->wl_lock);
603 }
604 
605 /**
606  * schedule_ubi_work - schedule a work.
607  * @ubi: UBI device description object
608  * @wrk: the work to schedule
609  *
610  * This function adds a work defined by @wrk to the tail of the pending works
611  * list.
612  */
613 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
614 {
615 	spin_lock(&ubi->wl_lock);
616 	list_add_tail(&wrk->list, &ubi->works);
617 	ubi_assert(ubi->works_count >= 0);
618 	ubi->works_count += 1;
619 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
620 		wake_up_process(ubi->bgt_thread);
621 	spin_unlock(&ubi->wl_lock);
622 }
623 
624 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
625 			int cancel);
626 
627 /**
628  * schedule_erase - schedule an erase work.
629  * @ubi: UBI device description object
630  * @e: the WL entry of the physical eraseblock to erase
631  * @torture: if the physical eraseblock has to be tortured
632  *
633  * This function returns zero in case of success and a %-ENOMEM in case of
634  * failure.
635  */
636 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
637 			  int torture)
638 {
639 	struct ubi_work *wl_wrk;
640 
641 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
642 	       e->pnum, e->ec, torture);
643 
644 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
645 	if (!wl_wrk)
646 		return -ENOMEM;
647 
648 	wl_wrk->func = &erase_worker;
649 	wl_wrk->e = e;
650 	wl_wrk->torture = torture;
651 
652 	schedule_ubi_work(ubi, wl_wrk);
653 	return 0;
654 }
655 
656 /**
657  * wear_leveling_worker - wear-leveling worker function.
658  * @ubi: UBI device description object
659  * @wrk: the work object
660  * @cancel: non-zero if the worker has to free memory and exit
661  *
662  * This function copies a more worn out physical eraseblock to a less worn out
663  * one. Returns zero in case of success and a negative error code in case of
664  * failure.
665  */
666 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
667 				int cancel)
668 {
669 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
670 	int vol_id = -1, uninitialized_var(lnum);
671 	struct ubi_wl_entry *e1, *e2;
672 	struct ubi_vid_hdr *vid_hdr;
673 
674 	kfree(wrk);
675 	if (cancel)
676 		return 0;
677 
678 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
679 	if (!vid_hdr)
680 		return -ENOMEM;
681 
682 	mutex_lock(&ubi->move_mutex);
683 	spin_lock(&ubi->wl_lock);
684 	ubi_assert(!ubi->move_from && !ubi->move_to);
685 	ubi_assert(!ubi->move_to_put);
686 
687 	if (!ubi->free.rb_node ||
688 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
689 		/*
690 		 * No free physical eraseblocks? Well, they must be waiting in
691 		 * the queue to be erased. Cancel movement - it will be
692 		 * triggered again when a free physical eraseblock appears.
693 		 *
694 		 * No used physical eraseblocks? They must be temporarily
695 		 * protected from being moved. They will be moved to the
696 		 * @ubi->used tree later and the wear-leveling will be
697 		 * triggered again.
698 		 */
699 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
700 		       !ubi->free.rb_node, !ubi->used.rb_node);
701 		goto out_cancel;
702 	}
703 
704 	if (!ubi->scrub.rb_node) {
705 		/*
706 		 * Now pick the least worn-out used physical eraseblock and a
707 		 * highly worn-out free physical eraseblock. If the erase
708 		 * counters differ much enough, start wear-leveling.
709 		 */
710 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
711 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
712 
713 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
714 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
715 			       e1->ec, e2->ec);
716 			goto out_cancel;
717 		}
718 		paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
719 		rb_erase(&e1->u.rb, &ubi->used);
720 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
721 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
722 	} else {
723 		/* Perform scrubbing */
724 		scrubbing = 1;
725 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
726 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
727 		paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
728 		rb_erase(&e1->u.rb, &ubi->scrub);
729 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
730 	}
731 
732 	paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
733 	rb_erase(&e2->u.rb, &ubi->free);
734 	ubi->move_from = e1;
735 	ubi->move_to = e2;
736 	spin_unlock(&ubi->wl_lock);
737 
738 	/*
739 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
740 	 * We so far do not know which logical eraseblock our physical
741 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
742 	 * header first.
743 	 *
744 	 * Note, we are protected from this PEB being unmapped and erased. The
745 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
746 	 * which is being moved was unmapped.
747 	 */
748 
749 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
750 	if (err && err != UBI_IO_BITFLIPS) {
751 		if (err == UBI_IO_FF) {
752 			/*
753 			 * We are trying to move PEB without a VID header. UBI
754 			 * always write VID headers shortly after the PEB was
755 			 * given, so we have a situation when it has not yet
756 			 * had a chance to write it, because it was preempted.
757 			 * So add this PEB to the protection queue so far,
758 			 * because presumably more data will be written there
759 			 * (including the missing VID header), and then we'll
760 			 * move it.
761 			 */
762 			dbg_wl("PEB %d has no VID header", e1->pnum);
763 			protect = 1;
764 			goto out_not_moved;
765 		} else if (err == UBI_IO_FF_BITFLIPS) {
766 			/*
767 			 * The same situation as %UBI_IO_FF, but bit-flips were
768 			 * detected. It is better to schedule this PEB for
769 			 * scrubbing.
770 			 */
771 			dbg_wl("PEB %d has no VID header but has bit-flips",
772 			       e1->pnum);
773 			scrubbing = 1;
774 			goto out_not_moved;
775 		}
776 
777 		ubi_err("error %d while reading VID header from PEB %d",
778 			err, e1->pnum);
779 		goto out_error;
780 	}
781 
782 	vol_id = be32_to_cpu(vid_hdr->vol_id);
783 	lnum = be32_to_cpu(vid_hdr->lnum);
784 
785 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
786 	if (err) {
787 		if (err == MOVE_CANCEL_RACE) {
788 			/*
789 			 * The LEB has not been moved because the volume is
790 			 * being deleted or the PEB has been put meanwhile. We
791 			 * should prevent this PEB from being selected for
792 			 * wear-leveling movement again, so put it to the
793 			 * protection queue.
794 			 */
795 			protect = 1;
796 			goto out_not_moved;
797 		}
798 		if (err == MOVE_RETRY) {
799 			scrubbing = 1;
800 			goto out_not_moved;
801 		}
802 		if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
803 		    err == MOVE_TARGET_RD_ERR) {
804 			/*
805 			 * Target PEB had bit-flips or write error - torture it.
806 			 */
807 			torture = 1;
808 			goto out_not_moved;
809 		}
810 
811 		if (err == MOVE_SOURCE_RD_ERR) {
812 			/*
813 			 * An error happened while reading the source PEB. Do
814 			 * not switch to R/O mode in this case, and give the
815 			 * upper layers a possibility to recover from this,
816 			 * e.g. by unmapping corresponding LEB. Instead, just
817 			 * put this PEB to the @ubi->erroneous list to prevent
818 			 * UBI from trying to move it over and over again.
819 			 */
820 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
821 				ubi_err("too many erroneous eraseblocks (%d)",
822 					ubi->erroneous_peb_count);
823 				goto out_error;
824 			}
825 			erroneous = 1;
826 			goto out_not_moved;
827 		}
828 
829 		if (err < 0)
830 			goto out_error;
831 
832 		ubi_assert(0);
833 	}
834 
835 	/* The PEB has been successfully moved */
836 	if (scrubbing)
837 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
838 			e1->pnum, vol_id, lnum, e2->pnum);
839 	ubi_free_vid_hdr(ubi, vid_hdr);
840 
841 	spin_lock(&ubi->wl_lock);
842 	if (!ubi->move_to_put) {
843 		wl_tree_add(e2, &ubi->used);
844 		e2 = NULL;
845 	}
846 	ubi->move_from = ubi->move_to = NULL;
847 	ubi->move_to_put = ubi->wl_scheduled = 0;
848 	spin_unlock(&ubi->wl_lock);
849 
850 	err = schedule_erase(ubi, e1, 0);
851 	if (err) {
852 		kmem_cache_free(ubi_wl_entry_slab, e1);
853 		if (e2)
854 			kmem_cache_free(ubi_wl_entry_slab, e2);
855 		goto out_ro;
856 	}
857 
858 	if (e2) {
859 		/*
860 		 * Well, the target PEB was put meanwhile, schedule it for
861 		 * erasure.
862 		 */
863 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
864 		       e2->pnum, vol_id, lnum);
865 		err = schedule_erase(ubi, e2, 0);
866 		if (err) {
867 			kmem_cache_free(ubi_wl_entry_slab, e2);
868 			goto out_ro;
869 		}
870 	}
871 
872 	dbg_wl("done");
873 	mutex_unlock(&ubi->move_mutex);
874 	return 0;
875 
876 	/*
877 	 * For some reasons the LEB was not moved, might be an error, might be
878 	 * something else. @e1 was not changed, so return it back. @e2 might
879 	 * have been changed, schedule it for erasure.
880 	 */
881 out_not_moved:
882 	if (vol_id != -1)
883 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
884 		       e1->pnum, vol_id, lnum, e2->pnum, err);
885 	else
886 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
887 		       e1->pnum, e2->pnum, err);
888 	spin_lock(&ubi->wl_lock);
889 	if (protect)
890 		prot_queue_add(ubi, e1);
891 	else if (erroneous) {
892 		wl_tree_add(e1, &ubi->erroneous);
893 		ubi->erroneous_peb_count += 1;
894 	} else if (scrubbing)
895 		wl_tree_add(e1, &ubi->scrub);
896 	else
897 		wl_tree_add(e1, &ubi->used);
898 	ubi_assert(!ubi->move_to_put);
899 	ubi->move_from = ubi->move_to = NULL;
900 	ubi->wl_scheduled = 0;
901 	spin_unlock(&ubi->wl_lock);
902 
903 	ubi_free_vid_hdr(ubi, vid_hdr);
904 	err = schedule_erase(ubi, e2, torture);
905 	if (err) {
906 		kmem_cache_free(ubi_wl_entry_slab, e2);
907 		goto out_ro;
908 	}
909 	mutex_unlock(&ubi->move_mutex);
910 	return 0;
911 
912 out_error:
913 	if (vol_id != -1)
914 		ubi_err("error %d while moving PEB %d to PEB %d",
915 			err, e1->pnum, e2->pnum);
916 	else
917 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
918 			err, e1->pnum, vol_id, lnum, e2->pnum);
919 	spin_lock(&ubi->wl_lock);
920 	ubi->move_from = ubi->move_to = NULL;
921 	ubi->move_to_put = ubi->wl_scheduled = 0;
922 	spin_unlock(&ubi->wl_lock);
923 
924 	ubi_free_vid_hdr(ubi, vid_hdr);
925 	kmem_cache_free(ubi_wl_entry_slab, e1);
926 	kmem_cache_free(ubi_wl_entry_slab, e2);
927 
928 out_ro:
929 	ubi_ro_mode(ubi);
930 	mutex_unlock(&ubi->move_mutex);
931 	ubi_assert(err != 0);
932 	return err < 0 ? err : -EIO;
933 
934 out_cancel:
935 	ubi->wl_scheduled = 0;
936 	spin_unlock(&ubi->wl_lock);
937 	mutex_unlock(&ubi->move_mutex);
938 	ubi_free_vid_hdr(ubi, vid_hdr);
939 	return 0;
940 }
941 
942 /**
943  * ensure_wear_leveling - schedule wear-leveling if it is needed.
944  * @ubi: UBI device description object
945  *
946  * This function checks if it is time to start wear-leveling and schedules it
947  * if yes. This function returns zero in case of success and a negative error
948  * code in case of failure.
949  */
950 static int ensure_wear_leveling(struct ubi_device *ubi)
951 {
952 	int err = 0;
953 	struct ubi_wl_entry *e1;
954 	struct ubi_wl_entry *e2;
955 	struct ubi_work *wrk;
956 
957 	spin_lock(&ubi->wl_lock);
958 	if (ubi->wl_scheduled)
959 		/* Wear-leveling is already in the work queue */
960 		goto out_unlock;
961 
962 	/*
963 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
964 	 * the WL worker has to be scheduled anyway.
965 	 */
966 	if (!ubi->scrub.rb_node) {
967 		if (!ubi->used.rb_node || !ubi->free.rb_node)
968 			/* No physical eraseblocks - no deal */
969 			goto out_unlock;
970 
971 		/*
972 		 * We schedule wear-leveling only if the difference between the
973 		 * lowest erase counter of used physical eraseblocks and a high
974 		 * erase counter of free physical eraseblocks is greater than
975 		 * %UBI_WL_THRESHOLD.
976 		 */
977 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
978 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
979 
980 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
981 			goto out_unlock;
982 		dbg_wl("schedule wear-leveling");
983 	} else
984 		dbg_wl("schedule scrubbing");
985 
986 	ubi->wl_scheduled = 1;
987 	spin_unlock(&ubi->wl_lock);
988 
989 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
990 	if (!wrk) {
991 		err = -ENOMEM;
992 		goto out_cancel;
993 	}
994 
995 	wrk->func = &wear_leveling_worker;
996 	schedule_ubi_work(ubi, wrk);
997 	return err;
998 
999 out_cancel:
1000 	spin_lock(&ubi->wl_lock);
1001 	ubi->wl_scheduled = 0;
1002 out_unlock:
1003 	spin_unlock(&ubi->wl_lock);
1004 	return err;
1005 }
1006 
1007 /**
1008  * erase_worker - physical eraseblock erase worker function.
1009  * @ubi: UBI device description object
1010  * @wl_wrk: the work object
1011  * @cancel: non-zero if the worker has to free memory and exit
1012  *
1013  * This function erases a physical eraseblock and perform torture testing if
1014  * needed. It also takes care about marking the physical eraseblock bad if
1015  * needed. Returns zero in case of success and a negative error code in case of
1016  * failure.
1017  */
1018 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1019 			int cancel)
1020 {
1021 	struct ubi_wl_entry *e = wl_wrk->e;
1022 	int pnum = e->pnum, err, need;
1023 
1024 	if (cancel) {
1025 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1026 		kfree(wl_wrk);
1027 		kmem_cache_free(ubi_wl_entry_slab, e);
1028 		return 0;
1029 	}
1030 
1031 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1032 
1033 	err = sync_erase(ubi, e, wl_wrk->torture);
1034 	if (!err) {
1035 		/* Fine, we've erased it successfully */
1036 		kfree(wl_wrk);
1037 
1038 		spin_lock(&ubi->wl_lock);
1039 		wl_tree_add(e, &ubi->free);
1040 		spin_unlock(&ubi->wl_lock);
1041 
1042 		/*
1043 		 * One more erase operation has happened, take care about
1044 		 * protected physical eraseblocks.
1045 		 */
1046 		serve_prot_queue(ubi);
1047 
1048 		/* And take care about wear-leveling */
1049 		err = ensure_wear_leveling(ubi);
1050 		return err;
1051 	}
1052 
1053 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1054 	kfree(wl_wrk);
1055 
1056 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1057 	    err == -EBUSY) {
1058 		int err1;
1059 
1060 		/* Re-schedule the LEB for erasure */
1061 		err1 = schedule_erase(ubi, e, 0);
1062 		if (err1) {
1063 			err = err1;
1064 			goto out_ro;
1065 		}
1066 		return err;
1067 	}
1068 
1069 	kmem_cache_free(ubi_wl_entry_slab, e);
1070 	if (err != -EIO)
1071 		/*
1072 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1073 		 * this physical eraseblock for erasure again would cause
1074 		 * errors again and again. Well, lets switch to R/O mode.
1075 		 */
1076 		goto out_ro;
1077 
1078 	/* It is %-EIO, the PEB went bad */
1079 
1080 	if (!ubi->bad_allowed) {
1081 		ubi_err("bad physical eraseblock %d detected", pnum);
1082 		goto out_ro;
1083 	}
1084 
1085 	spin_lock(&ubi->volumes_lock);
1086 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1087 	if (need > 0) {
1088 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1089 		ubi->avail_pebs -= need;
1090 		ubi->rsvd_pebs += need;
1091 		ubi->beb_rsvd_pebs += need;
1092 		if (need > 0)
1093 			ubi_msg("reserve more %d PEBs", need);
1094 	}
1095 
1096 	if (ubi->beb_rsvd_pebs == 0) {
1097 		spin_unlock(&ubi->volumes_lock);
1098 		ubi_err("no reserved physical eraseblocks");
1099 		goto out_ro;
1100 	}
1101 	spin_unlock(&ubi->volumes_lock);
1102 
1103 	ubi_msg("mark PEB %d as bad", pnum);
1104 	err = ubi_io_mark_bad(ubi, pnum);
1105 	if (err)
1106 		goto out_ro;
1107 
1108 	spin_lock(&ubi->volumes_lock);
1109 	ubi->beb_rsvd_pebs -= 1;
1110 	ubi->bad_peb_count += 1;
1111 	ubi->good_peb_count -= 1;
1112 	ubi_calculate_reserved(ubi);
1113 	if (ubi->beb_rsvd_pebs)
1114 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1115 	else
1116 		ubi_warn("last PEB from the reserved pool was used");
1117 	spin_unlock(&ubi->volumes_lock);
1118 
1119 	return err;
1120 
1121 out_ro:
1122 	ubi_ro_mode(ubi);
1123 	return err;
1124 }
1125 
1126 /**
1127  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1128  * @ubi: UBI device description object
1129  * @pnum: physical eraseblock to return
1130  * @torture: if this physical eraseblock has to be tortured
1131  *
1132  * This function is called to return physical eraseblock @pnum to the pool of
1133  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1134  * occurred to this @pnum and it has to be tested. This function returns zero
1135  * in case of success, and a negative error code in case of failure.
1136  */
1137 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1138 {
1139 	int err;
1140 	struct ubi_wl_entry *e;
1141 
1142 	dbg_wl("PEB %d", pnum);
1143 	ubi_assert(pnum >= 0);
1144 	ubi_assert(pnum < ubi->peb_count);
1145 
1146 retry:
1147 	spin_lock(&ubi->wl_lock);
1148 	e = ubi->lookuptbl[pnum];
1149 	if (e == ubi->move_from) {
1150 		/*
1151 		 * User is putting the physical eraseblock which was selected to
1152 		 * be moved. It will be scheduled for erasure in the
1153 		 * wear-leveling worker.
1154 		 */
1155 		dbg_wl("PEB %d is being moved, wait", pnum);
1156 		spin_unlock(&ubi->wl_lock);
1157 
1158 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1159 		mutex_lock(&ubi->move_mutex);
1160 		mutex_unlock(&ubi->move_mutex);
1161 		goto retry;
1162 	} else if (e == ubi->move_to) {
1163 		/*
1164 		 * User is putting the physical eraseblock which was selected
1165 		 * as the target the data is moved to. It may happen if the EBA
1166 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1167 		 * but the WL sub-system has not put the PEB to the "used" tree
1168 		 * yet, but it is about to do this. So we just set a flag which
1169 		 * will tell the WL worker that the PEB is not needed anymore
1170 		 * and should be scheduled for erasure.
1171 		 */
1172 		dbg_wl("PEB %d is the target of data moving", pnum);
1173 		ubi_assert(!ubi->move_to_put);
1174 		ubi->move_to_put = 1;
1175 		spin_unlock(&ubi->wl_lock);
1176 		return 0;
1177 	} else {
1178 		if (in_wl_tree(e, &ubi->used)) {
1179 			paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1180 			rb_erase(&e->u.rb, &ubi->used);
1181 		} else if (in_wl_tree(e, &ubi->scrub)) {
1182 			paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1183 			rb_erase(&e->u.rb, &ubi->scrub);
1184 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1185 			paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1186 			rb_erase(&e->u.rb, &ubi->erroneous);
1187 			ubi->erroneous_peb_count -= 1;
1188 			ubi_assert(ubi->erroneous_peb_count >= 0);
1189 			/* Erroneous PEBs should be tortured */
1190 			torture = 1;
1191 		} else {
1192 			err = prot_queue_del(ubi, e->pnum);
1193 			if (err) {
1194 				ubi_err("PEB %d not found", pnum);
1195 				ubi_ro_mode(ubi);
1196 				spin_unlock(&ubi->wl_lock);
1197 				return err;
1198 			}
1199 		}
1200 	}
1201 	spin_unlock(&ubi->wl_lock);
1202 
1203 	err = schedule_erase(ubi, e, torture);
1204 	if (err) {
1205 		spin_lock(&ubi->wl_lock);
1206 		wl_tree_add(e, &ubi->used);
1207 		spin_unlock(&ubi->wl_lock);
1208 	}
1209 
1210 	return err;
1211 }
1212 
1213 /**
1214  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1215  * @ubi: UBI device description object
1216  * @pnum: the physical eraseblock to schedule
1217  *
1218  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1219  * needs scrubbing. This function schedules a physical eraseblock for
1220  * scrubbing which is done in background. This function returns zero in case of
1221  * success and a negative error code in case of failure.
1222  */
1223 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1224 {
1225 	struct ubi_wl_entry *e;
1226 
1227 	dbg_msg("schedule PEB %d for scrubbing", pnum);
1228 
1229 retry:
1230 	spin_lock(&ubi->wl_lock);
1231 	e = ubi->lookuptbl[pnum];
1232 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1233 				   in_wl_tree(e, &ubi->erroneous)) {
1234 		spin_unlock(&ubi->wl_lock);
1235 		return 0;
1236 	}
1237 
1238 	if (e == ubi->move_to) {
1239 		/*
1240 		 * This physical eraseblock was used to move data to. The data
1241 		 * was moved but the PEB was not yet inserted to the proper
1242 		 * tree. We should just wait a little and let the WL worker
1243 		 * proceed.
1244 		 */
1245 		spin_unlock(&ubi->wl_lock);
1246 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1247 		yield();
1248 		goto retry;
1249 	}
1250 
1251 	if (in_wl_tree(e, &ubi->used)) {
1252 		paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1253 		rb_erase(&e->u.rb, &ubi->used);
1254 	} else {
1255 		int err;
1256 
1257 		err = prot_queue_del(ubi, e->pnum);
1258 		if (err) {
1259 			ubi_err("PEB %d not found", pnum);
1260 			ubi_ro_mode(ubi);
1261 			spin_unlock(&ubi->wl_lock);
1262 			return err;
1263 		}
1264 	}
1265 
1266 	wl_tree_add(e, &ubi->scrub);
1267 	spin_unlock(&ubi->wl_lock);
1268 
1269 	/*
1270 	 * Technically scrubbing is the same as wear-leveling, so it is done
1271 	 * by the WL worker.
1272 	 */
1273 	return ensure_wear_leveling(ubi);
1274 }
1275 
1276 /**
1277  * ubi_wl_flush - flush all pending works.
1278  * @ubi: UBI device description object
1279  *
1280  * This function returns zero in case of success and a negative error code in
1281  * case of failure.
1282  */
1283 int ubi_wl_flush(struct ubi_device *ubi)
1284 {
1285 	int err;
1286 
1287 	/*
1288 	 * Erase while the pending works queue is not empty, but not more than
1289 	 * the number of currently pending works.
1290 	 */
1291 	dbg_wl("flush (%d pending works)", ubi->works_count);
1292 	while (ubi->works_count) {
1293 		err = do_work(ubi);
1294 		if (err)
1295 			return err;
1296 	}
1297 
1298 	/*
1299 	 * Make sure all the works which have been done in parallel are
1300 	 * finished.
1301 	 */
1302 	down_write(&ubi->work_sem);
1303 	up_write(&ubi->work_sem);
1304 
1305 	/*
1306 	 * And in case last was the WL worker and it canceled the LEB
1307 	 * movement, flush again.
1308 	 */
1309 	while (ubi->works_count) {
1310 		dbg_wl("flush more (%d pending works)", ubi->works_count);
1311 		err = do_work(ubi);
1312 		if (err)
1313 			return err;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  * tree_destroy - destroy an RB-tree.
1321  * @root: the root of the tree to destroy
1322  */
1323 static void tree_destroy(struct rb_root *root)
1324 {
1325 	struct rb_node *rb;
1326 	struct ubi_wl_entry *e;
1327 
1328 	rb = root->rb_node;
1329 	while (rb) {
1330 		if (rb->rb_left)
1331 			rb = rb->rb_left;
1332 		else if (rb->rb_right)
1333 			rb = rb->rb_right;
1334 		else {
1335 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1336 
1337 			rb = rb_parent(rb);
1338 			if (rb) {
1339 				if (rb->rb_left == &e->u.rb)
1340 					rb->rb_left = NULL;
1341 				else
1342 					rb->rb_right = NULL;
1343 			}
1344 
1345 			kmem_cache_free(ubi_wl_entry_slab, e);
1346 		}
1347 	}
1348 }
1349 
1350 /**
1351  * ubi_thread - UBI background thread.
1352  * @u: the UBI device description object pointer
1353  */
1354 int ubi_thread(void *u)
1355 {
1356 	int failures = 0;
1357 	struct ubi_device *ubi = u;
1358 
1359 	ubi_msg("background thread \"%s\" started, PID %d",
1360 		ubi->bgt_name, task_pid_nr(current));
1361 
1362 	set_freezable();
1363 	for (;;) {
1364 		int err;
1365 
1366 		if (kthread_should_stop())
1367 			break;
1368 
1369 		if (try_to_freeze())
1370 			continue;
1371 
1372 		spin_lock(&ubi->wl_lock);
1373 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1374 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1375 			set_current_state(TASK_INTERRUPTIBLE);
1376 			spin_unlock(&ubi->wl_lock);
1377 			schedule();
1378 			continue;
1379 		}
1380 		spin_unlock(&ubi->wl_lock);
1381 
1382 		err = do_work(ubi);
1383 		if (err) {
1384 			ubi_err("%s: work failed with error code %d",
1385 				ubi->bgt_name, err);
1386 			if (failures++ > WL_MAX_FAILURES) {
1387 				/*
1388 				 * Too many failures, disable the thread and
1389 				 * switch to read-only mode.
1390 				 */
1391 				ubi_msg("%s: %d consecutive failures",
1392 					ubi->bgt_name, WL_MAX_FAILURES);
1393 				ubi_ro_mode(ubi);
1394 				ubi->thread_enabled = 0;
1395 				continue;
1396 			}
1397 		} else
1398 			failures = 0;
1399 
1400 		cond_resched();
1401 	}
1402 
1403 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1404 	return 0;
1405 }
1406 
1407 /**
1408  * cancel_pending - cancel all pending works.
1409  * @ubi: UBI device description object
1410  */
1411 static void cancel_pending(struct ubi_device *ubi)
1412 {
1413 	while (!list_empty(&ubi->works)) {
1414 		struct ubi_work *wrk;
1415 
1416 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1417 		list_del(&wrk->list);
1418 		wrk->func(ubi, wrk, 1);
1419 		ubi->works_count -= 1;
1420 		ubi_assert(ubi->works_count >= 0);
1421 	}
1422 }
1423 
1424 /**
1425  * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1426  * @ubi: UBI device description object
1427  * @si: scanning information
1428  *
1429  * This function returns zero in case of success, and a negative error code in
1430  * case of failure.
1431  */
1432 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1433 {
1434 	int err, i;
1435 	struct rb_node *rb1, *rb2;
1436 	struct ubi_scan_volume *sv;
1437 	struct ubi_scan_leb *seb, *tmp;
1438 	struct ubi_wl_entry *e;
1439 
1440 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1441 	spin_lock_init(&ubi->wl_lock);
1442 	mutex_init(&ubi->move_mutex);
1443 	init_rwsem(&ubi->work_sem);
1444 	ubi->max_ec = si->max_ec;
1445 	INIT_LIST_HEAD(&ubi->works);
1446 
1447 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1448 
1449 	err = -ENOMEM;
1450 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1451 	if (!ubi->lookuptbl)
1452 		return err;
1453 
1454 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1455 		INIT_LIST_HEAD(&ubi->pq[i]);
1456 	ubi->pq_head = 0;
1457 
1458 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1459 		cond_resched();
1460 
1461 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1462 		if (!e)
1463 			goto out_free;
1464 
1465 		e->pnum = seb->pnum;
1466 		e->ec = seb->ec;
1467 		ubi->lookuptbl[e->pnum] = e;
1468 		if (schedule_erase(ubi, e, 0)) {
1469 			kmem_cache_free(ubi_wl_entry_slab, e);
1470 			goto out_free;
1471 		}
1472 	}
1473 
1474 	list_for_each_entry(seb, &si->free, u.list) {
1475 		cond_resched();
1476 
1477 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1478 		if (!e)
1479 			goto out_free;
1480 
1481 		e->pnum = seb->pnum;
1482 		e->ec = seb->ec;
1483 		ubi_assert(e->ec >= 0);
1484 		wl_tree_add(e, &ubi->free);
1485 		ubi->lookuptbl[e->pnum] = e;
1486 	}
1487 
1488 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1489 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1490 			cond_resched();
1491 
1492 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1493 			if (!e)
1494 				goto out_free;
1495 
1496 			e->pnum = seb->pnum;
1497 			e->ec = seb->ec;
1498 			ubi->lookuptbl[e->pnum] = e;
1499 			if (!seb->scrub) {
1500 				dbg_wl("add PEB %d EC %d to the used tree",
1501 				       e->pnum, e->ec);
1502 				wl_tree_add(e, &ubi->used);
1503 			} else {
1504 				dbg_wl("add PEB %d EC %d to the scrub tree",
1505 				       e->pnum, e->ec);
1506 				wl_tree_add(e, &ubi->scrub);
1507 			}
1508 		}
1509 	}
1510 
1511 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1512 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1513 			ubi->avail_pebs, WL_RESERVED_PEBS);
1514 		if (ubi->corr_peb_count)
1515 			ubi_err("%d PEBs are corrupted and not used",
1516 				ubi->corr_peb_count);
1517 		goto out_free;
1518 	}
1519 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1520 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1521 
1522 	/* Schedule wear-leveling if needed */
1523 	err = ensure_wear_leveling(ubi);
1524 	if (err)
1525 		goto out_free;
1526 
1527 	return 0;
1528 
1529 out_free:
1530 	cancel_pending(ubi);
1531 	tree_destroy(&ubi->used);
1532 	tree_destroy(&ubi->free);
1533 	tree_destroy(&ubi->scrub);
1534 	kfree(ubi->lookuptbl);
1535 	return err;
1536 }
1537 
1538 /**
1539  * protection_queue_destroy - destroy the protection queue.
1540  * @ubi: UBI device description object
1541  */
1542 static void protection_queue_destroy(struct ubi_device *ubi)
1543 {
1544 	int i;
1545 	struct ubi_wl_entry *e, *tmp;
1546 
1547 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1548 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1549 			list_del(&e->u.list);
1550 			kmem_cache_free(ubi_wl_entry_slab, e);
1551 		}
1552 	}
1553 }
1554 
1555 /**
1556  * ubi_wl_close - close the wear-leveling sub-system.
1557  * @ubi: UBI device description object
1558  */
1559 void ubi_wl_close(struct ubi_device *ubi)
1560 {
1561 	dbg_wl("close the WL sub-system");
1562 	cancel_pending(ubi);
1563 	protection_queue_destroy(ubi);
1564 	tree_destroy(&ubi->used);
1565 	tree_destroy(&ubi->erroneous);
1566 	tree_destroy(&ubi->free);
1567 	tree_destroy(&ubi->scrub);
1568 	kfree(ubi->lookuptbl);
1569 }
1570 
1571 #ifdef CONFIG_MTD_UBI_DEBUG
1572 
1573 /**
1574  * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1575  * @ubi: UBI device description object
1576  * @pnum: the physical eraseblock number to check
1577  * @ec: the erase counter to check
1578  *
1579  * This function returns zero if the erase counter of physical eraseblock @pnum
1580  * is equivalent to @ec, and a negative error code if not or if an error
1581  * occurred.
1582  */
1583 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1584 {
1585 	int err;
1586 	long long read_ec;
1587 	struct ubi_ec_hdr *ec_hdr;
1588 
1589 	if (!ubi->dbg->chk_gen)
1590 		return 0;
1591 
1592 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1593 	if (!ec_hdr)
1594 		return -ENOMEM;
1595 
1596 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1597 	if (err && err != UBI_IO_BITFLIPS) {
1598 		/* The header does not have to exist */
1599 		err = 0;
1600 		goto out_free;
1601 	}
1602 
1603 	read_ec = be64_to_cpu(ec_hdr->ec);
1604 	if (ec != read_ec) {
1605 		ubi_err("paranoid check failed for PEB %d", pnum);
1606 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1607 		ubi_dbg_dump_stack();
1608 		err = 1;
1609 	} else
1610 		err = 0;
1611 
1612 out_free:
1613 	kfree(ec_hdr);
1614 	return err;
1615 }
1616 
1617 /**
1618  * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1619  * @ubi: UBI device description object
1620  * @e: the wear-leveling entry to check
1621  * @root: the root of the tree
1622  *
1623  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1624  * is not.
1625  */
1626 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1627 				     struct ubi_wl_entry *e,
1628 				     struct rb_root *root)
1629 {
1630 	if (!ubi->dbg->chk_gen)
1631 		return 0;
1632 
1633 	if (in_wl_tree(e, root))
1634 		return 0;
1635 
1636 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1637 		e->pnum, e->ec, root);
1638 	ubi_dbg_dump_stack();
1639 	return -EINVAL;
1640 }
1641 
1642 /**
1643  * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1644  *                        queue.
1645  * @ubi: UBI device description object
1646  * @e: the wear-leveling entry to check
1647  *
1648  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1649  */
1650 static int paranoid_check_in_pq(const struct ubi_device *ubi,
1651 				struct ubi_wl_entry *e)
1652 {
1653 	struct ubi_wl_entry *p;
1654 	int i;
1655 
1656 	if (!ubi->dbg->chk_gen)
1657 		return 0;
1658 
1659 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1660 		list_for_each_entry(p, &ubi->pq[i], u.list)
1661 			if (p == e)
1662 				return 0;
1663 
1664 	ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1665 		e->pnum, e->ec);
1666 	ubi_dbg_dump_stack();
1667 	return -EINVAL;
1668 }
1669 
1670 #endif /* CONFIG_MTD_UBI_DEBUG */
1671