1 /* 2 * @ubi: UBI device description object 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 20 */ 21 22 /* 23 * UBI wear-leveling sub-system. 24 * 25 * This sub-system is responsible for wear-leveling. It works in terms of 26 * physical eraseblocks and erase counters and knows nothing about logical 27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 28 * eraseblocks are of two types - used and free. Used physical eraseblocks are 29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 31 * 32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 33 * header. The rest of the physical eraseblock contains only %0xFF bytes. 34 * 35 * When physical eraseblocks are returned to the WL sub-system by means of the 36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 37 * done asynchronously in context of the per-UBI device background thread, 38 * which is also managed by the WL sub-system. 39 * 40 * The wear-leveling is ensured by means of moving the contents of used 41 * physical eraseblocks with low erase counter to free physical eraseblocks 42 * with high erase counter. 43 * 44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick 45 * an "optimal" physical eraseblock. For example, when it is known that the 46 * physical eraseblock will be "put" soon because it contains short-term data, 47 * the WL sub-system may pick a free physical eraseblock with low erase 48 * counter, and so forth. 49 * 50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 51 * bad. 52 * 53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 54 * in a physical eraseblock, it has to be moved. Technically this is the same 55 * as moving it for wear-leveling reasons. 56 * 57 * As it was said, for the UBI sub-system all physical eraseblocks are either 58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 60 * RB-trees, as well as (temporarily) in the @wl->pq queue. 61 * 62 * When the WL sub-system returns a physical eraseblock, the physical 63 * eraseblock is protected from being moved for some "time". For this reason, 64 * the physical eraseblock is not directly moved from the @wl->free tree to the 65 * @wl->used tree. There is a protection queue in between where this 66 * physical eraseblock is temporarily stored (@wl->pq). 67 * 68 * All this protection stuff is needed because: 69 * o we don't want to move physical eraseblocks just after we have given them 70 * to the user; instead, we first want to let users fill them up with data; 71 * 72 * o there is a chance that the user will put the physical eraseblock very 73 * soon, so it makes sense not to move it for some time, but wait; this is 74 * especially important in case of "short term" physical eraseblocks. 75 * 76 * Physical eraseblocks stay protected only for limited time. But the "time" is 77 * measured in erase cycles in this case. This is implemented with help of the 78 * protection queue. Eraseblocks are put to the tail of this queue when they 79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 80 * head of the queue on each erase operation (for any eraseblock). So the 81 * length of the queue defines how may (global) erase cycles PEBs are protected. 82 * 83 * To put it differently, each physical eraseblock has 2 main states: free and 84 * used. The former state corresponds to the @wl->free tree. The latter state 85 * is split up on several sub-states: 86 * o the WL movement is allowed (@wl->used tree); 87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 88 * erroneous - e.g., there was a read error; 89 * o the WL movement is temporarily prohibited (@wl->pq queue); 90 * o scrubbing is needed (@wl->scrub tree). 91 * 92 * Depending on the sub-state, wear-leveling entries of the used physical 93 * eraseblocks may be kept in one of those structures. 94 * 95 * Note, in this implementation, we keep a small in-RAM object for each physical 96 * eraseblock. This is surely not a scalable solution. But it appears to be good 97 * enough for moderately large flashes and it is simple. In future, one may 98 * re-work this sub-system and make it more scalable. 99 * 100 * At the moment this sub-system does not utilize the sequence number, which 101 * was introduced relatively recently. But it would be wise to do this because 102 * the sequence number of a logical eraseblock characterizes how old is it. For 103 * example, when we move a PEB with low erase counter, and we need to pick the 104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 105 * pick target PEB with an average EC if our PEB is not very "old". This is a 106 * room for future re-works of the WL sub-system. 107 */ 108 109 #include <linux/slab.h> 110 #include <linux/crc32.h> 111 #include <linux/freezer.h> 112 #include <linux/kthread.h> 113 #include "ubi.h" 114 115 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 116 #define WL_RESERVED_PEBS 1 117 118 /* 119 * Maximum difference between two erase counters. If this threshold is 120 * exceeded, the WL sub-system starts moving data from used physical 121 * eraseblocks with low erase counter to free physical eraseblocks with high 122 * erase counter. 123 */ 124 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 125 126 /* 127 * When a physical eraseblock is moved, the WL sub-system has to pick the target 128 * physical eraseblock to move to. The simplest way would be just to pick the 129 * one with the highest erase counter. But in certain workloads this could lead 130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 131 * situation when the picked physical eraseblock is constantly erased after the 132 * data is written to it. So, we have a constant which limits the highest erase 133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 134 * does not pick eraseblocks with erase counter greater than the lowest erase 135 * counter plus %WL_FREE_MAX_DIFF. 136 */ 137 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 138 139 /* 140 * Maximum number of consecutive background thread failures which is enough to 141 * switch to read-only mode. 142 */ 143 #define WL_MAX_FAILURES 32 144 145 /** 146 * struct ubi_work - UBI work description data structure. 147 * @list: a link in the list of pending works 148 * @func: worker function 149 * @e: physical eraseblock to erase 150 * @torture: if the physical eraseblock has to be tortured 151 * 152 * The @func pointer points to the worker function. If the @cancel argument is 153 * not zero, the worker has to free the resources and exit immediately. The 154 * worker has to return zero in case of success and a negative error code in 155 * case of failure. 156 */ 157 struct ubi_work { 158 struct list_head list; 159 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); 160 /* The below fields are only relevant to erasure works */ 161 struct ubi_wl_entry *e; 162 int torture; 163 }; 164 165 #ifdef CONFIG_MTD_UBI_DEBUG 166 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); 167 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi, 168 struct ubi_wl_entry *e, 169 struct rb_root *root); 170 static int paranoid_check_in_pq(const struct ubi_device *ubi, 171 struct ubi_wl_entry *e); 172 #else 173 #define paranoid_check_ec(ubi, pnum, ec) 0 174 #define paranoid_check_in_wl_tree(ubi, e, root) 175 #define paranoid_check_in_pq(ubi, e) 0 176 #endif 177 178 /** 179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 180 * @e: the wear-leveling entry to add 181 * @root: the root of the tree 182 * 183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 184 * the @ubi->used and @ubi->free RB-trees. 185 */ 186 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 187 { 188 struct rb_node **p, *parent = NULL; 189 190 p = &root->rb_node; 191 while (*p) { 192 struct ubi_wl_entry *e1; 193 194 parent = *p; 195 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 196 197 if (e->ec < e1->ec) 198 p = &(*p)->rb_left; 199 else if (e->ec > e1->ec) 200 p = &(*p)->rb_right; 201 else { 202 ubi_assert(e->pnum != e1->pnum); 203 if (e->pnum < e1->pnum) 204 p = &(*p)->rb_left; 205 else 206 p = &(*p)->rb_right; 207 } 208 } 209 210 rb_link_node(&e->u.rb, parent, p); 211 rb_insert_color(&e->u.rb, root); 212 } 213 214 /** 215 * do_work - do one pending work. 216 * @ubi: UBI device description object 217 * 218 * This function returns zero in case of success and a negative error code in 219 * case of failure. 220 */ 221 static int do_work(struct ubi_device *ubi) 222 { 223 int err; 224 struct ubi_work *wrk; 225 226 cond_resched(); 227 228 /* 229 * @ubi->work_sem is used to synchronize with the workers. Workers take 230 * it in read mode, so many of them may be doing works at a time. But 231 * the queue flush code has to be sure the whole queue of works is 232 * done, and it takes the mutex in write mode. 233 */ 234 down_read(&ubi->work_sem); 235 spin_lock(&ubi->wl_lock); 236 if (list_empty(&ubi->works)) { 237 spin_unlock(&ubi->wl_lock); 238 up_read(&ubi->work_sem); 239 return 0; 240 } 241 242 wrk = list_entry(ubi->works.next, struct ubi_work, list); 243 list_del(&wrk->list); 244 ubi->works_count -= 1; 245 ubi_assert(ubi->works_count >= 0); 246 spin_unlock(&ubi->wl_lock); 247 248 /* 249 * Call the worker function. Do not touch the work structure 250 * after this call as it will have been freed or reused by that 251 * time by the worker function. 252 */ 253 err = wrk->func(ubi, wrk, 0); 254 if (err) 255 ubi_err("work failed with error code %d", err); 256 up_read(&ubi->work_sem); 257 258 return err; 259 } 260 261 /** 262 * produce_free_peb - produce a free physical eraseblock. 263 * @ubi: UBI device description object 264 * 265 * This function tries to make a free PEB by means of synchronous execution of 266 * pending works. This may be needed if, for example the background thread is 267 * disabled. Returns zero in case of success and a negative error code in case 268 * of failure. 269 */ 270 static int produce_free_peb(struct ubi_device *ubi) 271 { 272 int err; 273 274 spin_lock(&ubi->wl_lock); 275 while (!ubi->free.rb_node) { 276 spin_unlock(&ubi->wl_lock); 277 278 dbg_wl("do one work synchronously"); 279 err = do_work(ubi); 280 if (err) 281 return err; 282 283 spin_lock(&ubi->wl_lock); 284 } 285 spin_unlock(&ubi->wl_lock); 286 287 return 0; 288 } 289 290 /** 291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 292 * @e: the wear-leveling entry to check 293 * @root: the root of the tree 294 * 295 * This function returns non-zero if @e is in the @root RB-tree and zero if it 296 * is not. 297 */ 298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 299 { 300 struct rb_node *p; 301 302 p = root->rb_node; 303 while (p) { 304 struct ubi_wl_entry *e1; 305 306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 307 308 if (e->pnum == e1->pnum) { 309 ubi_assert(e == e1); 310 return 1; 311 } 312 313 if (e->ec < e1->ec) 314 p = p->rb_left; 315 else if (e->ec > e1->ec) 316 p = p->rb_right; 317 else { 318 ubi_assert(e->pnum != e1->pnum); 319 if (e->pnum < e1->pnum) 320 p = p->rb_left; 321 else 322 p = p->rb_right; 323 } 324 } 325 326 return 0; 327 } 328 329 /** 330 * prot_queue_add - add physical eraseblock to the protection queue. 331 * @ubi: UBI device description object 332 * @e: the physical eraseblock to add 333 * 334 * This function adds @e to the tail of the protection queue @ubi->pq, where 335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 337 * be locked. 338 */ 339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 340 { 341 int pq_tail = ubi->pq_head - 1; 342 343 if (pq_tail < 0) 344 pq_tail = UBI_PROT_QUEUE_LEN - 1; 345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 348 } 349 350 /** 351 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 352 * @root: the RB-tree where to look for 353 * @max: highest possible erase counter 354 * 355 * This function looks for a wear leveling entry with erase counter closest to 356 * @max and less than @max. 357 */ 358 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) 359 { 360 struct rb_node *p; 361 struct ubi_wl_entry *e; 362 363 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 364 max += e->ec; 365 366 p = root->rb_node; 367 while (p) { 368 struct ubi_wl_entry *e1; 369 370 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 371 if (e1->ec >= max) 372 p = p->rb_left; 373 else { 374 p = p->rb_right; 375 e = e1; 376 } 377 } 378 379 return e; 380 } 381 382 /** 383 * ubi_wl_get_peb - get a physical eraseblock. 384 * @ubi: UBI device description object 385 * @dtype: type of data which will be stored in this physical eraseblock 386 * 387 * This function returns a physical eraseblock in case of success and a 388 * negative error code in case of failure. Might sleep. 389 */ 390 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) 391 { 392 int err, medium_ec; 393 struct ubi_wl_entry *e, *first, *last; 394 395 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || 396 dtype == UBI_UNKNOWN); 397 398 retry: 399 spin_lock(&ubi->wl_lock); 400 if (!ubi->free.rb_node) { 401 if (ubi->works_count == 0) { 402 ubi_assert(list_empty(&ubi->works)); 403 ubi_err("no free eraseblocks"); 404 spin_unlock(&ubi->wl_lock); 405 return -ENOSPC; 406 } 407 spin_unlock(&ubi->wl_lock); 408 409 err = produce_free_peb(ubi); 410 if (err < 0) 411 return err; 412 goto retry; 413 } 414 415 switch (dtype) { 416 case UBI_LONGTERM: 417 /* 418 * For long term data we pick a physical eraseblock with high 419 * erase counter. But the highest erase counter we can pick is 420 * bounded by the the lowest erase counter plus 421 * %WL_FREE_MAX_DIFF. 422 */ 423 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 424 break; 425 case UBI_UNKNOWN: 426 /* 427 * For unknown data we pick a physical eraseblock with medium 428 * erase counter. But we by no means can pick a physical 429 * eraseblock with erase counter greater or equivalent than the 430 * lowest erase counter plus %WL_FREE_MAX_DIFF. 431 */ 432 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, 433 u.rb); 434 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb); 435 436 if (last->ec - first->ec < WL_FREE_MAX_DIFF) 437 e = rb_entry(ubi->free.rb_node, 438 struct ubi_wl_entry, u.rb); 439 else { 440 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; 441 e = find_wl_entry(&ubi->free, medium_ec); 442 } 443 break; 444 case UBI_SHORTTERM: 445 /* 446 * For short term data we pick a physical eraseblock with the 447 * lowest erase counter as we expect it will be erased soon. 448 */ 449 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb); 450 break; 451 default: 452 BUG(); 453 } 454 455 paranoid_check_in_wl_tree(ubi, e, &ubi->free); 456 457 /* 458 * Move the physical eraseblock to the protection queue where it will 459 * be protected from being moved for some time. 460 */ 461 rb_erase(&e->u.rb, &ubi->free); 462 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 463 prot_queue_add(ubi, e); 464 spin_unlock(&ubi->wl_lock); 465 466 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 467 ubi->peb_size - ubi->vid_hdr_aloffset); 468 if (err) { 469 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum); 470 return err; 471 } 472 473 return e->pnum; 474 } 475 476 /** 477 * prot_queue_del - remove a physical eraseblock from the protection queue. 478 * @ubi: UBI device description object 479 * @pnum: the physical eraseblock to remove 480 * 481 * This function deletes PEB @pnum from the protection queue and returns zero 482 * in case of success and %-ENODEV if the PEB was not found. 483 */ 484 static int prot_queue_del(struct ubi_device *ubi, int pnum) 485 { 486 struct ubi_wl_entry *e; 487 488 e = ubi->lookuptbl[pnum]; 489 if (!e) 490 return -ENODEV; 491 492 if (paranoid_check_in_pq(ubi, e)) 493 return -ENODEV; 494 495 list_del(&e->u.list); 496 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 497 return 0; 498 } 499 500 /** 501 * sync_erase - synchronously erase a physical eraseblock. 502 * @ubi: UBI device description object 503 * @e: the the physical eraseblock to erase 504 * @torture: if the physical eraseblock has to be tortured 505 * 506 * This function returns zero in case of success and a negative error code in 507 * case of failure. 508 */ 509 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 510 int torture) 511 { 512 int err; 513 struct ubi_ec_hdr *ec_hdr; 514 unsigned long long ec = e->ec; 515 516 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 517 518 err = paranoid_check_ec(ubi, e->pnum, e->ec); 519 if (err) 520 return -EINVAL; 521 522 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 523 if (!ec_hdr) 524 return -ENOMEM; 525 526 err = ubi_io_sync_erase(ubi, e->pnum, torture); 527 if (err < 0) 528 goto out_free; 529 530 ec += err; 531 if (ec > UBI_MAX_ERASECOUNTER) { 532 /* 533 * Erase counter overflow. Upgrade UBI and use 64-bit 534 * erase counters internally. 535 */ 536 ubi_err("erase counter overflow at PEB %d, EC %llu", 537 e->pnum, ec); 538 err = -EINVAL; 539 goto out_free; 540 } 541 542 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 543 544 ec_hdr->ec = cpu_to_be64(ec); 545 546 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 547 if (err) 548 goto out_free; 549 550 e->ec = ec; 551 spin_lock(&ubi->wl_lock); 552 if (e->ec > ubi->max_ec) 553 ubi->max_ec = e->ec; 554 spin_unlock(&ubi->wl_lock); 555 556 out_free: 557 kfree(ec_hdr); 558 return err; 559 } 560 561 /** 562 * serve_prot_queue - check if it is time to stop protecting PEBs. 563 * @ubi: UBI device description object 564 * 565 * This function is called after each erase operation and removes PEBs from the 566 * tail of the protection queue. These PEBs have been protected for long enough 567 * and should be moved to the used tree. 568 */ 569 static void serve_prot_queue(struct ubi_device *ubi) 570 { 571 struct ubi_wl_entry *e, *tmp; 572 int count; 573 574 /* 575 * There may be several protected physical eraseblock to remove, 576 * process them all. 577 */ 578 repeat: 579 count = 0; 580 spin_lock(&ubi->wl_lock); 581 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 582 dbg_wl("PEB %d EC %d protection over, move to used tree", 583 e->pnum, e->ec); 584 585 list_del(&e->u.list); 586 wl_tree_add(e, &ubi->used); 587 if (count++ > 32) { 588 /* 589 * Let's be nice and avoid holding the spinlock for 590 * too long. 591 */ 592 spin_unlock(&ubi->wl_lock); 593 cond_resched(); 594 goto repeat; 595 } 596 } 597 598 ubi->pq_head += 1; 599 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 600 ubi->pq_head = 0; 601 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 602 spin_unlock(&ubi->wl_lock); 603 } 604 605 /** 606 * schedule_ubi_work - schedule a work. 607 * @ubi: UBI device description object 608 * @wrk: the work to schedule 609 * 610 * This function adds a work defined by @wrk to the tail of the pending works 611 * list. 612 */ 613 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 614 { 615 spin_lock(&ubi->wl_lock); 616 list_add_tail(&wrk->list, &ubi->works); 617 ubi_assert(ubi->works_count >= 0); 618 ubi->works_count += 1; 619 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 620 wake_up_process(ubi->bgt_thread); 621 spin_unlock(&ubi->wl_lock); 622 } 623 624 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 625 int cancel); 626 627 /** 628 * schedule_erase - schedule an erase work. 629 * @ubi: UBI device description object 630 * @e: the WL entry of the physical eraseblock to erase 631 * @torture: if the physical eraseblock has to be tortured 632 * 633 * This function returns zero in case of success and a %-ENOMEM in case of 634 * failure. 635 */ 636 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 637 int torture) 638 { 639 struct ubi_work *wl_wrk; 640 641 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 642 e->pnum, e->ec, torture); 643 644 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 645 if (!wl_wrk) 646 return -ENOMEM; 647 648 wl_wrk->func = &erase_worker; 649 wl_wrk->e = e; 650 wl_wrk->torture = torture; 651 652 schedule_ubi_work(ubi, wl_wrk); 653 return 0; 654 } 655 656 /** 657 * wear_leveling_worker - wear-leveling worker function. 658 * @ubi: UBI device description object 659 * @wrk: the work object 660 * @cancel: non-zero if the worker has to free memory and exit 661 * 662 * This function copies a more worn out physical eraseblock to a less worn out 663 * one. Returns zero in case of success and a negative error code in case of 664 * failure. 665 */ 666 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 667 int cancel) 668 { 669 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 670 int vol_id = -1, uninitialized_var(lnum); 671 struct ubi_wl_entry *e1, *e2; 672 struct ubi_vid_hdr *vid_hdr; 673 674 kfree(wrk); 675 if (cancel) 676 return 0; 677 678 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 679 if (!vid_hdr) 680 return -ENOMEM; 681 682 mutex_lock(&ubi->move_mutex); 683 spin_lock(&ubi->wl_lock); 684 ubi_assert(!ubi->move_from && !ubi->move_to); 685 ubi_assert(!ubi->move_to_put); 686 687 if (!ubi->free.rb_node || 688 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 689 /* 690 * No free physical eraseblocks? Well, they must be waiting in 691 * the queue to be erased. Cancel movement - it will be 692 * triggered again when a free physical eraseblock appears. 693 * 694 * No used physical eraseblocks? They must be temporarily 695 * protected from being moved. They will be moved to the 696 * @ubi->used tree later and the wear-leveling will be 697 * triggered again. 698 */ 699 dbg_wl("cancel WL, a list is empty: free %d, used %d", 700 !ubi->free.rb_node, !ubi->used.rb_node); 701 goto out_cancel; 702 } 703 704 if (!ubi->scrub.rb_node) { 705 /* 706 * Now pick the least worn-out used physical eraseblock and a 707 * highly worn-out free physical eraseblock. If the erase 708 * counters differ much enough, start wear-leveling. 709 */ 710 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 711 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 712 713 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 714 dbg_wl("no WL needed: min used EC %d, max free EC %d", 715 e1->ec, e2->ec); 716 goto out_cancel; 717 } 718 paranoid_check_in_wl_tree(ubi, e1, &ubi->used); 719 rb_erase(&e1->u.rb, &ubi->used); 720 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 721 e1->pnum, e1->ec, e2->pnum, e2->ec); 722 } else { 723 /* Perform scrubbing */ 724 scrubbing = 1; 725 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 726 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 727 paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub); 728 rb_erase(&e1->u.rb, &ubi->scrub); 729 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 730 } 731 732 paranoid_check_in_wl_tree(ubi, e2, &ubi->free); 733 rb_erase(&e2->u.rb, &ubi->free); 734 ubi->move_from = e1; 735 ubi->move_to = e2; 736 spin_unlock(&ubi->wl_lock); 737 738 /* 739 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 740 * We so far do not know which logical eraseblock our physical 741 * eraseblock (@e1) belongs to. We have to read the volume identifier 742 * header first. 743 * 744 * Note, we are protected from this PEB being unmapped and erased. The 745 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 746 * which is being moved was unmapped. 747 */ 748 749 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 750 if (err && err != UBI_IO_BITFLIPS) { 751 if (err == UBI_IO_FF) { 752 /* 753 * We are trying to move PEB without a VID header. UBI 754 * always write VID headers shortly after the PEB was 755 * given, so we have a situation when it has not yet 756 * had a chance to write it, because it was preempted. 757 * So add this PEB to the protection queue so far, 758 * because presumably more data will be written there 759 * (including the missing VID header), and then we'll 760 * move it. 761 */ 762 dbg_wl("PEB %d has no VID header", e1->pnum); 763 protect = 1; 764 goto out_not_moved; 765 } else if (err == UBI_IO_FF_BITFLIPS) { 766 /* 767 * The same situation as %UBI_IO_FF, but bit-flips were 768 * detected. It is better to schedule this PEB for 769 * scrubbing. 770 */ 771 dbg_wl("PEB %d has no VID header but has bit-flips", 772 e1->pnum); 773 scrubbing = 1; 774 goto out_not_moved; 775 } 776 777 ubi_err("error %d while reading VID header from PEB %d", 778 err, e1->pnum); 779 goto out_error; 780 } 781 782 vol_id = be32_to_cpu(vid_hdr->vol_id); 783 lnum = be32_to_cpu(vid_hdr->lnum); 784 785 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 786 if (err) { 787 if (err == MOVE_CANCEL_RACE) { 788 /* 789 * The LEB has not been moved because the volume is 790 * being deleted or the PEB has been put meanwhile. We 791 * should prevent this PEB from being selected for 792 * wear-leveling movement again, so put it to the 793 * protection queue. 794 */ 795 protect = 1; 796 goto out_not_moved; 797 } 798 if (err == MOVE_RETRY) { 799 scrubbing = 1; 800 goto out_not_moved; 801 } 802 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR || 803 err == MOVE_TARGET_RD_ERR) { 804 /* 805 * Target PEB had bit-flips or write error - torture it. 806 */ 807 torture = 1; 808 goto out_not_moved; 809 } 810 811 if (err == MOVE_SOURCE_RD_ERR) { 812 /* 813 * An error happened while reading the source PEB. Do 814 * not switch to R/O mode in this case, and give the 815 * upper layers a possibility to recover from this, 816 * e.g. by unmapping corresponding LEB. Instead, just 817 * put this PEB to the @ubi->erroneous list to prevent 818 * UBI from trying to move it over and over again. 819 */ 820 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 821 ubi_err("too many erroneous eraseblocks (%d)", 822 ubi->erroneous_peb_count); 823 goto out_error; 824 } 825 erroneous = 1; 826 goto out_not_moved; 827 } 828 829 if (err < 0) 830 goto out_error; 831 832 ubi_assert(0); 833 } 834 835 /* The PEB has been successfully moved */ 836 if (scrubbing) 837 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 838 e1->pnum, vol_id, lnum, e2->pnum); 839 ubi_free_vid_hdr(ubi, vid_hdr); 840 841 spin_lock(&ubi->wl_lock); 842 if (!ubi->move_to_put) { 843 wl_tree_add(e2, &ubi->used); 844 e2 = NULL; 845 } 846 ubi->move_from = ubi->move_to = NULL; 847 ubi->move_to_put = ubi->wl_scheduled = 0; 848 spin_unlock(&ubi->wl_lock); 849 850 err = schedule_erase(ubi, e1, 0); 851 if (err) { 852 kmem_cache_free(ubi_wl_entry_slab, e1); 853 if (e2) 854 kmem_cache_free(ubi_wl_entry_slab, e2); 855 goto out_ro; 856 } 857 858 if (e2) { 859 /* 860 * Well, the target PEB was put meanwhile, schedule it for 861 * erasure. 862 */ 863 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 864 e2->pnum, vol_id, lnum); 865 err = schedule_erase(ubi, e2, 0); 866 if (err) { 867 kmem_cache_free(ubi_wl_entry_slab, e2); 868 goto out_ro; 869 } 870 } 871 872 dbg_wl("done"); 873 mutex_unlock(&ubi->move_mutex); 874 return 0; 875 876 /* 877 * For some reasons the LEB was not moved, might be an error, might be 878 * something else. @e1 was not changed, so return it back. @e2 might 879 * have been changed, schedule it for erasure. 880 */ 881 out_not_moved: 882 if (vol_id != -1) 883 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 884 e1->pnum, vol_id, lnum, e2->pnum, err); 885 else 886 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 887 e1->pnum, e2->pnum, err); 888 spin_lock(&ubi->wl_lock); 889 if (protect) 890 prot_queue_add(ubi, e1); 891 else if (erroneous) { 892 wl_tree_add(e1, &ubi->erroneous); 893 ubi->erroneous_peb_count += 1; 894 } else if (scrubbing) 895 wl_tree_add(e1, &ubi->scrub); 896 else 897 wl_tree_add(e1, &ubi->used); 898 ubi_assert(!ubi->move_to_put); 899 ubi->move_from = ubi->move_to = NULL; 900 ubi->wl_scheduled = 0; 901 spin_unlock(&ubi->wl_lock); 902 903 ubi_free_vid_hdr(ubi, vid_hdr); 904 err = schedule_erase(ubi, e2, torture); 905 if (err) { 906 kmem_cache_free(ubi_wl_entry_slab, e2); 907 goto out_ro; 908 } 909 mutex_unlock(&ubi->move_mutex); 910 return 0; 911 912 out_error: 913 if (vol_id != -1) 914 ubi_err("error %d while moving PEB %d to PEB %d", 915 err, e1->pnum, e2->pnum); 916 else 917 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 918 err, e1->pnum, vol_id, lnum, e2->pnum); 919 spin_lock(&ubi->wl_lock); 920 ubi->move_from = ubi->move_to = NULL; 921 ubi->move_to_put = ubi->wl_scheduled = 0; 922 spin_unlock(&ubi->wl_lock); 923 924 ubi_free_vid_hdr(ubi, vid_hdr); 925 kmem_cache_free(ubi_wl_entry_slab, e1); 926 kmem_cache_free(ubi_wl_entry_slab, e2); 927 928 out_ro: 929 ubi_ro_mode(ubi); 930 mutex_unlock(&ubi->move_mutex); 931 ubi_assert(err != 0); 932 return err < 0 ? err : -EIO; 933 934 out_cancel: 935 ubi->wl_scheduled = 0; 936 spin_unlock(&ubi->wl_lock); 937 mutex_unlock(&ubi->move_mutex); 938 ubi_free_vid_hdr(ubi, vid_hdr); 939 return 0; 940 } 941 942 /** 943 * ensure_wear_leveling - schedule wear-leveling if it is needed. 944 * @ubi: UBI device description object 945 * 946 * This function checks if it is time to start wear-leveling and schedules it 947 * if yes. This function returns zero in case of success and a negative error 948 * code in case of failure. 949 */ 950 static int ensure_wear_leveling(struct ubi_device *ubi) 951 { 952 int err = 0; 953 struct ubi_wl_entry *e1; 954 struct ubi_wl_entry *e2; 955 struct ubi_work *wrk; 956 957 spin_lock(&ubi->wl_lock); 958 if (ubi->wl_scheduled) 959 /* Wear-leveling is already in the work queue */ 960 goto out_unlock; 961 962 /* 963 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 964 * the WL worker has to be scheduled anyway. 965 */ 966 if (!ubi->scrub.rb_node) { 967 if (!ubi->used.rb_node || !ubi->free.rb_node) 968 /* No physical eraseblocks - no deal */ 969 goto out_unlock; 970 971 /* 972 * We schedule wear-leveling only if the difference between the 973 * lowest erase counter of used physical eraseblocks and a high 974 * erase counter of free physical eraseblocks is greater than 975 * %UBI_WL_THRESHOLD. 976 */ 977 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 978 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 979 980 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 981 goto out_unlock; 982 dbg_wl("schedule wear-leveling"); 983 } else 984 dbg_wl("schedule scrubbing"); 985 986 ubi->wl_scheduled = 1; 987 spin_unlock(&ubi->wl_lock); 988 989 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 990 if (!wrk) { 991 err = -ENOMEM; 992 goto out_cancel; 993 } 994 995 wrk->func = &wear_leveling_worker; 996 schedule_ubi_work(ubi, wrk); 997 return err; 998 999 out_cancel: 1000 spin_lock(&ubi->wl_lock); 1001 ubi->wl_scheduled = 0; 1002 out_unlock: 1003 spin_unlock(&ubi->wl_lock); 1004 return err; 1005 } 1006 1007 /** 1008 * erase_worker - physical eraseblock erase worker function. 1009 * @ubi: UBI device description object 1010 * @wl_wrk: the work object 1011 * @cancel: non-zero if the worker has to free memory and exit 1012 * 1013 * This function erases a physical eraseblock and perform torture testing if 1014 * needed. It also takes care about marking the physical eraseblock bad if 1015 * needed. Returns zero in case of success and a negative error code in case of 1016 * failure. 1017 */ 1018 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1019 int cancel) 1020 { 1021 struct ubi_wl_entry *e = wl_wrk->e; 1022 int pnum = e->pnum, err, need; 1023 1024 if (cancel) { 1025 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1026 kfree(wl_wrk); 1027 kmem_cache_free(ubi_wl_entry_slab, e); 1028 return 0; 1029 } 1030 1031 dbg_wl("erase PEB %d EC %d", pnum, e->ec); 1032 1033 err = sync_erase(ubi, e, wl_wrk->torture); 1034 if (!err) { 1035 /* Fine, we've erased it successfully */ 1036 kfree(wl_wrk); 1037 1038 spin_lock(&ubi->wl_lock); 1039 wl_tree_add(e, &ubi->free); 1040 spin_unlock(&ubi->wl_lock); 1041 1042 /* 1043 * One more erase operation has happened, take care about 1044 * protected physical eraseblocks. 1045 */ 1046 serve_prot_queue(ubi); 1047 1048 /* And take care about wear-leveling */ 1049 err = ensure_wear_leveling(ubi); 1050 return err; 1051 } 1052 1053 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1054 kfree(wl_wrk); 1055 1056 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1057 err == -EBUSY) { 1058 int err1; 1059 1060 /* Re-schedule the LEB for erasure */ 1061 err1 = schedule_erase(ubi, e, 0); 1062 if (err1) { 1063 err = err1; 1064 goto out_ro; 1065 } 1066 return err; 1067 } 1068 1069 kmem_cache_free(ubi_wl_entry_slab, e); 1070 if (err != -EIO) 1071 /* 1072 * If this is not %-EIO, we have no idea what to do. Scheduling 1073 * this physical eraseblock for erasure again would cause 1074 * errors again and again. Well, lets switch to R/O mode. 1075 */ 1076 goto out_ro; 1077 1078 /* It is %-EIO, the PEB went bad */ 1079 1080 if (!ubi->bad_allowed) { 1081 ubi_err("bad physical eraseblock %d detected", pnum); 1082 goto out_ro; 1083 } 1084 1085 spin_lock(&ubi->volumes_lock); 1086 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; 1087 if (need > 0) { 1088 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; 1089 ubi->avail_pebs -= need; 1090 ubi->rsvd_pebs += need; 1091 ubi->beb_rsvd_pebs += need; 1092 if (need > 0) 1093 ubi_msg("reserve more %d PEBs", need); 1094 } 1095 1096 if (ubi->beb_rsvd_pebs == 0) { 1097 spin_unlock(&ubi->volumes_lock); 1098 ubi_err("no reserved physical eraseblocks"); 1099 goto out_ro; 1100 } 1101 spin_unlock(&ubi->volumes_lock); 1102 1103 ubi_msg("mark PEB %d as bad", pnum); 1104 err = ubi_io_mark_bad(ubi, pnum); 1105 if (err) 1106 goto out_ro; 1107 1108 spin_lock(&ubi->volumes_lock); 1109 ubi->beb_rsvd_pebs -= 1; 1110 ubi->bad_peb_count += 1; 1111 ubi->good_peb_count -= 1; 1112 ubi_calculate_reserved(ubi); 1113 if (ubi->beb_rsvd_pebs) 1114 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1115 else 1116 ubi_warn("last PEB from the reserved pool was used"); 1117 spin_unlock(&ubi->volumes_lock); 1118 1119 return err; 1120 1121 out_ro: 1122 ubi_ro_mode(ubi); 1123 return err; 1124 } 1125 1126 /** 1127 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1128 * @ubi: UBI device description object 1129 * @pnum: physical eraseblock to return 1130 * @torture: if this physical eraseblock has to be tortured 1131 * 1132 * This function is called to return physical eraseblock @pnum to the pool of 1133 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1134 * occurred to this @pnum and it has to be tested. This function returns zero 1135 * in case of success, and a negative error code in case of failure. 1136 */ 1137 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) 1138 { 1139 int err; 1140 struct ubi_wl_entry *e; 1141 1142 dbg_wl("PEB %d", pnum); 1143 ubi_assert(pnum >= 0); 1144 ubi_assert(pnum < ubi->peb_count); 1145 1146 retry: 1147 spin_lock(&ubi->wl_lock); 1148 e = ubi->lookuptbl[pnum]; 1149 if (e == ubi->move_from) { 1150 /* 1151 * User is putting the physical eraseblock which was selected to 1152 * be moved. It will be scheduled for erasure in the 1153 * wear-leveling worker. 1154 */ 1155 dbg_wl("PEB %d is being moved, wait", pnum); 1156 spin_unlock(&ubi->wl_lock); 1157 1158 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1159 mutex_lock(&ubi->move_mutex); 1160 mutex_unlock(&ubi->move_mutex); 1161 goto retry; 1162 } else if (e == ubi->move_to) { 1163 /* 1164 * User is putting the physical eraseblock which was selected 1165 * as the target the data is moved to. It may happen if the EBA 1166 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1167 * but the WL sub-system has not put the PEB to the "used" tree 1168 * yet, but it is about to do this. So we just set a flag which 1169 * will tell the WL worker that the PEB is not needed anymore 1170 * and should be scheduled for erasure. 1171 */ 1172 dbg_wl("PEB %d is the target of data moving", pnum); 1173 ubi_assert(!ubi->move_to_put); 1174 ubi->move_to_put = 1; 1175 spin_unlock(&ubi->wl_lock); 1176 return 0; 1177 } else { 1178 if (in_wl_tree(e, &ubi->used)) { 1179 paranoid_check_in_wl_tree(ubi, e, &ubi->used); 1180 rb_erase(&e->u.rb, &ubi->used); 1181 } else if (in_wl_tree(e, &ubi->scrub)) { 1182 paranoid_check_in_wl_tree(ubi, e, &ubi->scrub); 1183 rb_erase(&e->u.rb, &ubi->scrub); 1184 } else if (in_wl_tree(e, &ubi->erroneous)) { 1185 paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous); 1186 rb_erase(&e->u.rb, &ubi->erroneous); 1187 ubi->erroneous_peb_count -= 1; 1188 ubi_assert(ubi->erroneous_peb_count >= 0); 1189 /* Erroneous PEBs should be tortured */ 1190 torture = 1; 1191 } else { 1192 err = prot_queue_del(ubi, e->pnum); 1193 if (err) { 1194 ubi_err("PEB %d not found", pnum); 1195 ubi_ro_mode(ubi); 1196 spin_unlock(&ubi->wl_lock); 1197 return err; 1198 } 1199 } 1200 } 1201 spin_unlock(&ubi->wl_lock); 1202 1203 err = schedule_erase(ubi, e, torture); 1204 if (err) { 1205 spin_lock(&ubi->wl_lock); 1206 wl_tree_add(e, &ubi->used); 1207 spin_unlock(&ubi->wl_lock); 1208 } 1209 1210 return err; 1211 } 1212 1213 /** 1214 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1215 * @ubi: UBI device description object 1216 * @pnum: the physical eraseblock to schedule 1217 * 1218 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1219 * needs scrubbing. This function schedules a physical eraseblock for 1220 * scrubbing which is done in background. This function returns zero in case of 1221 * success and a negative error code in case of failure. 1222 */ 1223 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1224 { 1225 struct ubi_wl_entry *e; 1226 1227 dbg_msg("schedule PEB %d for scrubbing", pnum); 1228 1229 retry: 1230 spin_lock(&ubi->wl_lock); 1231 e = ubi->lookuptbl[pnum]; 1232 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1233 in_wl_tree(e, &ubi->erroneous)) { 1234 spin_unlock(&ubi->wl_lock); 1235 return 0; 1236 } 1237 1238 if (e == ubi->move_to) { 1239 /* 1240 * This physical eraseblock was used to move data to. The data 1241 * was moved but the PEB was not yet inserted to the proper 1242 * tree. We should just wait a little and let the WL worker 1243 * proceed. 1244 */ 1245 spin_unlock(&ubi->wl_lock); 1246 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1247 yield(); 1248 goto retry; 1249 } 1250 1251 if (in_wl_tree(e, &ubi->used)) { 1252 paranoid_check_in_wl_tree(ubi, e, &ubi->used); 1253 rb_erase(&e->u.rb, &ubi->used); 1254 } else { 1255 int err; 1256 1257 err = prot_queue_del(ubi, e->pnum); 1258 if (err) { 1259 ubi_err("PEB %d not found", pnum); 1260 ubi_ro_mode(ubi); 1261 spin_unlock(&ubi->wl_lock); 1262 return err; 1263 } 1264 } 1265 1266 wl_tree_add(e, &ubi->scrub); 1267 spin_unlock(&ubi->wl_lock); 1268 1269 /* 1270 * Technically scrubbing is the same as wear-leveling, so it is done 1271 * by the WL worker. 1272 */ 1273 return ensure_wear_leveling(ubi); 1274 } 1275 1276 /** 1277 * ubi_wl_flush - flush all pending works. 1278 * @ubi: UBI device description object 1279 * 1280 * This function returns zero in case of success and a negative error code in 1281 * case of failure. 1282 */ 1283 int ubi_wl_flush(struct ubi_device *ubi) 1284 { 1285 int err; 1286 1287 /* 1288 * Erase while the pending works queue is not empty, but not more than 1289 * the number of currently pending works. 1290 */ 1291 dbg_wl("flush (%d pending works)", ubi->works_count); 1292 while (ubi->works_count) { 1293 err = do_work(ubi); 1294 if (err) 1295 return err; 1296 } 1297 1298 /* 1299 * Make sure all the works which have been done in parallel are 1300 * finished. 1301 */ 1302 down_write(&ubi->work_sem); 1303 up_write(&ubi->work_sem); 1304 1305 /* 1306 * And in case last was the WL worker and it canceled the LEB 1307 * movement, flush again. 1308 */ 1309 while (ubi->works_count) { 1310 dbg_wl("flush more (%d pending works)", ubi->works_count); 1311 err = do_work(ubi); 1312 if (err) 1313 return err; 1314 } 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * tree_destroy - destroy an RB-tree. 1321 * @root: the root of the tree to destroy 1322 */ 1323 static void tree_destroy(struct rb_root *root) 1324 { 1325 struct rb_node *rb; 1326 struct ubi_wl_entry *e; 1327 1328 rb = root->rb_node; 1329 while (rb) { 1330 if (rb->rb_left) 1331 rb = rb->rb_left; 1332 else if (rb->rb_right) 1333 rb = rb->rb_right; 1334 else { 1335 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1336 1337 rb = rb_parent(rb); 1338 if (rb) { 1339 if (rb->rb_left == &e->u.rb) 1340 rb->rb_left = NULL; 1341 else 1342 rb->rb_right = NULL; 1343 } 1344 1345 kmem_cache_free(ubi_wl_entry_slab, e); 1346 } 1347 } 1348 } 1349 1350 /** 1351 * ubi_thread - UBI background thread. 1352 * @u: the UBI device description object pointer 1353 */ 1354 int ubi_thread(void *u) 1355 { 1356 int failures = 0; 1357 struct ubi_device *ubi = u; 1358 1359 ubi_msg("background thread \"%s\" started, PID %d", 1360 ubi->bgt_name, task_pid_nr(current)); 1361 1362 set_freezable(); 1363 for (;;) { 1364 int err; 1365 1366 if (kthread_should_stop()) 1367 break; 1368 1369 if (try_to_freeze()) 1370 continue; 1371 1372 spin_lock(&ubi->wl_lock); 1373 if (list_empty(&ubi->works) || ubi->ro_mode || 1374 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1375 set_current_state(TASK_INTERRUPTIBLE); 1376 spin_unlock(&ubi->wl_lock); 1377 schedule(); 1378 continue; 1379 } 1380 spin_unlock(&ubi->wl_lock); 1381 1382 err = do_work(ubi); 1383 if (err) { 1384 ubi_err("%s: work failed with error code %d", 1385 ubi->bgt_name, err); 1386 if (failures++ > WL_MAX_FAILURES) { 1387 /* 1388 * Too many failures, disable the thread and 1389 * switch to read-only mode. 1390 */ 1391 ubi_msg("%s: %d consecutive failures", 1392 ubi->bgt_name, WL_MAX_FAILURES); 1393 ubi_ro_mode(ubi); 1394 ubi->thread_enabled = 0; 1395 continue; 1396 } 1397 } else 1398 failures = 0; 1399 1400 cond_resched(); 1401 } 1402 1403 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1404 return 0; 1405 } 1406 1407 /** 1408 * cancel_pending - cancel all pending works. 1409 * @ubi: UBI device description object 1410 */ 1411 static void cancel_pending(struct ubi_device *ubi) 1412 { 1413 while (!list_empty(&ubi->works)) { 1414 struct ubi_work *wrk; 1415 1416 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1417 list_del(&wrk->list); 1418 wrk->func(ubi, wrk, 1); 1419 ubi->works_count -= 1; 1420 ubi_assert(ubi->works_count >= 0); 1421 } 1422 } 1423 1424 /** 1425 * ubi_wl_init_scan - initialize the WL sub-system using scanning information. 1426 * @ubi: UBI device description object 1427 * @si: scanning information 1428 * 1429 * This function returns zero in case of success, and a negative error code in 1430 * case of failure. 1431 */ 1432 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1433 { 1434 int err, i; 1435 struct rb_node *rb1, *rb2; 1436 struct ubi_scan_volume *sv; 1437 struct ubi_scan_leb *seb, *tmp; 1438 struct ubi_wl_entry *e; 1439 1440 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1441 spin_lock_init(&ubi->wl_lock); 1442 mutex_init(&ubi->move_mutex); 1443 init_rwsem(&ubi->work_sem); 1444 ubi->max_ec = si->max_ec; 1445 INIT_LIST_HEAD(&ubi->works); 1446 1447 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1448 1449 err = -ENOMEM; 1450 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1451 if (!ubi->lookuptbl) 1452 return err; 1453 1454 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1455 INIT_LIST_HEAD(&ubi->pq[i]); 1456 ubi->pq_head = 0; 1457 1458 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { 1459 cond_resched(); 1460 1461 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1462 if (!e) 1463 goto out_free; 1464 1465 e->pnum = seb->pnum; 1466 e->ec = seb->ec; 1467 ubi->lookuptbl[e->pnum] = e; 1468 if (schedule_erase(ubi, e, 0)) { 1469 kmem_cache_free(ubi_wl_entry_slab, e); 1470 goto out_free; 1471 } 1472 } 1473 1474 list_for_each_entry(seb, &si->free, u.list) { 1475 cond_resched(); 1476 1477 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1478 if (!e) 1479 goto out_free; 1480 1481 e->pnum = seb->pnum; 1482 e->ec = seb->ec; 1483 ubi_assert(e->ec >= 0); 1484 wl_tree_add(e, &ubi->free); 1485 ubi->lookuptbl[e->pnum] = e; 1486 } 1487 1488 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1489 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1490 cond_resched(); 1491 1492 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1493 if (!e) 1494 goto out_free; 1495 1496 e->pnum = seb->pnum; 1497 e->ec = seb->ec; 1498 ubi->lookuptbl[e->pnum] = e; 1499 if (!seb->scrub) { 1500 dbg_wl("add PEB %d EC %d to the used tree", 1501 e->pnum, e->ec); 1502 wl_tree_add(e, &ubi->used); 1503 } else { 1504 dbg_wl("add PEB %d EC %d to the scrub tree", 1505 e->pnum, e->ec); 1506 wl_tree_add(e, &ubi->scrub); 1507 } 1508 } 1509 } 1510 1511 if (ubi->avail_pebs < WL_RESERVED_PEBS) { 1512 ubi_err("no enough physical eraseblocks (%d, need %d)", 1513 ubi->avail_pebs, WL_RESERVED_PEBS); 1514 if (ubi->corr_peb_count) 1515 ubi_err("%d PEBs are corrupted and not used", 1516 ubi->corr_peb_count); 1517 goto out_free; 1518 } 1519 ubi->avail_pebs -= WL_RESERVED_PEBS; 1520 ubi->rsvd_pebs += WL_RESERVED_PEBS; 1521 1522 /* Schedule wear-leveling if needed */ 1523 err = ensure_wear_leveling(ubi); 1524 if (err) 1525 goto out_free; 1526 1527 return 0; 1528 1529 out_free: 1530 cancel_pending(ubi); 1531 tree_destroy(&ubi->used); 1532 tree_destroy(&ubi->free); 1533 tree_destroy(&ubi->scrub); 1534 kfree(ubi->lookuptbl); 1535 return err; 1536 } 1537 1538 /** 1539 * protection_queue_destroy - destroy the protection queue. 1540 * @ubi: UBI device description object 1541 */ 1542 static void protection_queue_destroy(struct ubi_device *ubi) 1543 { 1544 int i; 1545 struct ubi_wl_entry *e, *tmp; 1546 1547 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1548 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1549 list_del(&e->u.list); 1550 kmem_cache_free(ubi_wl_entry_slab, e); 1551 } 1552 } 1553 } 1554 1555 /** 1556 * ubi_wl_close - close the wear-leveling sub-system. 1557 * @ubi: UBI device description object 1558 */ 1559 void ubi_wl_close(struct ubi_device *ubi) 1560 { 1561 dbg_wl("close the WL sub-system"); 1562 cancel_pending(ubi); 1563 protection_queue_destroy(ubi); 1564 tree_destroy(&ubi->used); 1565 tree_destroy(&ubi->erroneous); 1566 tree_destroy(&ubi->free); 1567 tree_destroy(&ubi->scrub); 1568 kfree(ubi->lookuptbl); 1569 } 1570 1571 #ifdef CONFIG_MTD_UBI_DEBUG 1572 1573 /** 1574 * paranoid_check_ec - make sure that the erase counter of a PEB is correct. 1575 * @ubi: UBI device description object 1576 * @pnum: the physical eraseblock number to check 1577 * @ec: the erase counter to check 1578 * 1579 * This function returns zero if the erase counter of physical eraseblock @pnum 1580 * is equivalent to @ec, and a negative error code if not or if an error 1581 * occurred. 1582 */ 1583 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) 1584 { 1585 int err; 1586 long long read_ec; 1587 struct ubi_ec_hdr *ec_hdr; 1588 1589 if (!ubi->dbg->chk_gen) 1590 return 0; 1591 1592 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1593 if (!ec_hdr) 1594 return -ENOMEM; 1595 1596 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1597 if (err && err != UBI_IO_BITFLIPS) { 1598 /* The header does not have to exist */ 1599 err = 0; 1600 goto out_free; 1601 } 1602 1603 read_ec = be64_to_cpu(ec_hdr->ec); 1604 if (ec != read_ec) { 1605 ubi_err("paranoid check failed for PEB %d", pnum); 1606 ubi_err("read EC is %lld, should be %d", read_ec, ec); 1607 ubi_dbg_dump_stack(); 1608 err = 1; 1609 } else 1610 err = 0; 1611 1612 out_free: 1613 kfree(ec_hdr); 1614 return err; 1615 } 1616 1617 /** 1618 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1619 * @ubi: UBI device description object 1620 * @e: the wear-leveling entry to check 1621 * @root: the root of the tree 1622 * 1623 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1624 * is not. 1625 */ 1626 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi, 1627 struct ubi_wl_entry *e, 1628 struct rb_root *root) 1629 { 1630 if (!ubi->dbg->chk_gen) 1631 return 0; 1632 1633 if (in_wl_tree(e, root)) 1634 return 0; 1635 1636 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", 1637 e->pnum, e->ec, root); 1638 ubi_dbg_dump_stack(); 1639 return -EINVAL; 1640 } 1641 1642 /** 1643 * paranoid_check_in_pq - check if wear-leveling entry is in the protection 1644 * queue. 1645 * @ubi: UBI device description object 1646 * @e: the wear-leveling entry to check 1647 * 1648 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 1649 */ 1650 static int paranoid_check_in_pq(const struct ubi_device *ubi, 1651 struct ubi_wl_entry *e) 1652 { 1653 struct ubi_wl_entry *p; 1654 int i; 1655 1656 if (!ubi->dbg->chk_gen) 1657 return 0; 1658 1659 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 1660 list_for_each_entry(p, &ubi->pq[i], u.list) 1661 if (p == e) 1662 return 0; 1663 1664 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue", 1665 e->pnum, e->ec); 1666 ubi_dbg_dump_stack(); 1667 return -EINVAL; 1668 } 1669 1670 #endif /* CONFIG_MTD_UBI_DEBUG */ 1671