1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 44 * bad. 45 * 46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 47 * in a physical eraseblock, it has to be moved. Technically this is the same 48 * as moving it for wear-leveling reasons. 49 * 50 * As it was said, for the UBI sub-system all physical eraseblocks are either 51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 53 * RB-trees, as well as (temporarily) in the @wl->pq queue. 54 * 55 * When the WL sub-system returns a physical eraseblock, the physical 56 * eraseblock is protected from being moved for some "time". For this reason, 57 * the physical eraseblock is not directly moved from the @wl->free tree to the 58 * @wl->used tree. There is a protection queue in between where this 59 * physical eraseblock is temporarily stored (@wl->pq). 60 * 61 * All this protection stuff is needed because: 62 * o we don't want to move physical eraseblocks just after we have given them 63 * to the user; instead, we first want to let users fill them up with data; 64 * 65 * o there is a chance that the user will put the physical eraseblock very 66 * soon, so it makes sense not to move it for some time, but wait. 67 * 68 * Physical eraseblocks stay protected only for limited time. But the "time" is 69 * measured in erase cycles in this case. This is implemented with help of the 70 * protection queue. Eraseblocks are put to the tail of this queue when they 71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 72 * head of the queue on each erase operation (for any eraseblock). So the 73 * length of the queue defines how may (global) erase cycles PEBs are protected. 74 * 75 * To put it differently, each physical eraseblock has 2 main states: free and 76 * used. The former state corresponds to the @wl->free tree. The latter state 77 * is split up on several sub-states: 78 * o the WL movement is allowed (@wl->used tree); 79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 80 * erroneous - e.g., there was a read error; 81 * o the WL movement is temporarily prohibited (@wl->pq queue); 82 * o scrubbing is needed (@wl->scrub tree). 83 * 84 * Depending on the sub-state, wear-leveling entries of the used physical 85 * eraseblocks may be kept in one of those structures. 86 * 87 * Note, in this implementation, we keep a small in-RAM object for each physical 88 * eraseblock. This is surely not a scalable solution. But it appears to be good 89 * enough for moderately large flashes and it is simple. In future, one may 90 * re-work this sub-system and make it more scalable. 91 * 92 * At the moment this sub-system does not utilize the sequence number, which 93 * was introduced relatively recently. But it would be wise to do this because 94 * the sequence number of a logical eraseblock characterizes how old is it. For 95 * example, when we move a PEB with low erase counter, and we need to pick the 96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 97 * pick target PEB with an average EC if our PEB is not very "old". This is a 98 * room for future re-works of the WL sub-system. 99 */ 100 101 #include <linux/slab.h> 102 #include <linux/crc32.h> 103 #include <linux/freezer.h> 104 #include <linux/kthread.h> 105 #include "ubi.h" 106 #include "wl.h" 107 108 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 109 #define WL_RESERVED_PEBS 1 110 111 /* 112 * Maximum difference between two erase counters. If this threshold is 113 * exceeded, the WL sub-system starts moving data from used physical 114 * eraseblocks with low erase counter to free physical eraseblocks with high 115 * erase counter. 116 */ 117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 118 119 /* 120 * When a physical eraseblock is moved, the WL sub-system has to pick the target 121 * physical eraseblock to move to. The simplest way would be just to pick the 122 * one with the highest erase counter. But in certain workloads this could lead 123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 124 * situation when the picked physical eraseblock is constantly erased after the 125 * data is written to it. So, we have a constant which limits the highest erase 126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 127 * does not pick eraseblocks with erase counter greater than the lowest erase 128 * counter plus %WL_FREE_MAX_DIFF. 129 */ 130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 131 132 /* 133 * Maximum number of consecutive background thread failures which is enough to 134 * switch to read-only mode. 135 */ 136 #define WL_MAX_FAILURES 32 137 138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 139 static int self_check_in_wl_tree(const struct ubi_device *ubi, 140 struct ubi_wl_entry *e, struct rb_root *root); 141 static int self_check_in_pq(const struct ubi_device *ubi, 142 struct ubi_wl_entry *e); 143 144 /** 145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 146 * @e: the wear-leveling entry to add 147 * @root: the root of the tree 148 * 149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 150 * the @ubi->used and @ubi->free RB-trees. 151 */ 152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 153 { 154 struct rb_node **p, *parent = NULL; 155 156 p = &root->rb_node; 157 while (*p) { 158 struct ubi_wl_entry *e1; 159 160 parent = *p; 161 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 162 163 if (e->ec < e1->ec) 164 p = &(*p)->rb_left; 165 else if (e->ec > e1->ec) 166 p = &(*p)->rb_right; 167 else { 168 ubi_assert(e->pnum != e1->pnum); 169 if (e->pnum < e1->pnum) 170 p = &(*p)->rb_left; 171 else 172 p = &(*p)->rb_right; 173 } 174 } 175 176 rb_link_node(&e->u.rb, parent, p); 177 rb_insert_color(&e->u.rb, root); 178 } 179 180 /** 181 * wl_tree_destroy - destroy a wear-leveling entry. 182 * @ubi: UBI device description object 183 * @e: the wear-leveling entry to add 184 * 185 * This function destroys a wear leveling entry and removes 186 * the reference from the lookup table. 187 */ 188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 189 { 190 ubi->lookuptbl[e->pnum] = NULL; 191 kmem_cache_free(ubi_wl_entry_slab, e); 192 } 193 194 /** 195 * do_work - do one pending work. 196 * @ubi: UBI device description object 197 * 198 * This function returns zero in case of success and a negative error code in 199 * case of failure. 200 */ 201 static int do_work(struct ubi_device *ubi) 202 { 203 int err; 204 struct ubi_work *wrk; 205 206 cond_resched(); 207 208 /* 209 * @ubi->work_sem is used to synchronize with the workers. Workers take 210 * it in read mode, so many of them may be doing works at a time. But 211 * the queue flush code has to be sure the whole queue of works is 212 * done, and it takes the mutex in write mode. 213 */ 214 down_read(&ubi->work_sem); 215 spin_lock(&ubi->wl_lock); 216 if (list_empty(&ubi->works)) { 217 spin_unlock(&ubi->wl_lock); 218 up_read(&ubi->work_sem); 219 return 0; 220 } 221 222 wrk = list_entry(ubi->works.next, struct ubi_work, list); 223 list_del(&wrk->list); 224 ubi->works_count -= 1; 225 ubi_assert(ubi->works_count >= 0); 226 spin_unlock(&ubi->wl_lock); 227 228 /* 229 * Call the worker function. Do not touch the work structure 230 * after this call as it will have been freed or reused by that 231 * time by the worker function. 232 */ 233 err = wrk->func(ubi, wrk, 0); 234 if (err) 235 ubi_err(ubi, "work failed with error code %d", err); 236 up_read(&ubi->work_sem); 237 238 return err; 239 } 240 241 /** 242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 243 * @e: the wear-leveling entry to check 244 * @root: the root of the tree 245 * 246 * This function returns non-zero if @e is in the @root RB-tree and zero if it 247 * is not. 248 */ 249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 250 { 251 struct rb_node *p; 252 253 p = root->rb_node; 254 while (p) { 255 struct ubi_wl_entry *e1; 256 257 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 258 259 if (e->pnum == e1->pnum) { 260 ubi_assert(e == e1); 261 return 1; 262 } 263 264 if (e->ec < e1->ec) 265 p = p->rb_left; 266 else if (e->ec > e1->ec) 267 p = p->rb_right; 268 else { 269 ubi_assert(e->pnum != e1->pnum); 270 if (e->pnum < e1->pnum) 271 p = p->rb_left; 272 else 273 p = p->rb_right; 274 } 275 } 276 277 return 0; 278 } 279 280 /** 281 * prot_queue_add - add physical eraseblock to the protection queue. 282 * @ubi: UBI device description object 283 * @e: the physical eraseblock to add 284 * 285 * This function adds @e to the tail of the protection queue @ubi->pq, where 286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 288 * be locked. 289 */ 290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 291 { 292 int pq_tail = ubi->pq_head - 1; 293 294 if (pq_tail < 0) 295 pq_tail = UBI_PROT_QUEUE_LEN - 1; 296 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 297 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 298 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 299 } 300 301 /** 302 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 303 * @ubi: UBI device description object 304 * @root: the RB-tree where to look for 305 * @diff: maximum possible difference from the smallest erase counter 306 * 307 * This function looks for a wear leveling entry with erase counter closest to 308 * min + @diff, where min is the smallest erase counter. 309 */ 310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 311 struct rb_root *root, int diff) 312 { 313 struct rb_node *p; 314 struct ubi_wl_entry *e, *prev_e = NULL; 315 int max; 316 317 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 318 max = e->ec + diff; 319 320 p = root->rb_node; 321 while (p) { 322 struct ubi_wl_entry *e1; 323 324 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 325 if (e1->ec >= max) 326 p = p->rb_left; 327 else { 328 p = p->rb_right; 329 prev_e = e; 330 e = e1; 331 } 332 } 333 334 /* If no fastmap has been written and this WL entry can be used 335 * as anchor PEB, hold it back and return the second best WL entry 336 * such that fastmap can use the anchor PEB later. */ 337 if (prev_e && !ubi->fm_disabled && 338 !ubi->fm && e->pnum < UBI_FM_MAX_START) 339 return prev_e; 340 341 return e; 342 } 343 344 /** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355 { 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372 } 373 374 /** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383 { 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403 } 404 405 /** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413 static int prot_queue_del(struct ubi_device *ubi, int pnum) 414 { 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427 } 428 429 /** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440 { 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485 out_free: 486 kfree(ec_hdr); 487 return err; 488 } 489 490 /** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498 static void serve_prot_queue(struct ubi_device *ubi) 499 { 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507 repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532 } 533 534 /** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543 { 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551 } 552 553 /** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562 { 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566 } 567 568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571 /** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * 579 * This function returns zero in case of success and a %-ENOMEM in case of 580 * failure. 581 */ 582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 583 int vol_id, int lnum, int torture) 584 { 585 struct ubi_work *wl_wrk; 586 587 ubi_assert(e); 588 589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 590 e->pnum, e->ec, torture); 591 592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 593 if (!wl_wrk) 594 return -ENOMEM; 595 596 wl_wrk->func = &erase_worker; 597 wl_wrk->e = e; 598 wl_wrk->vol_id = vol_id; 599 wl_wrk->lnum = lnum; 600 wl_wrk->torture = torture; 601 602 schedule_ubi_work(ubi, wl_wrk); 603 return 0; 604 } 605 606 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 607 /** 608 * do_sync_erase - run the erase worker synchronously. 609 * @ubi: UBI device description object 610 * @e: the WL entry of the physical eraseblock to erase 611 * @vol_id: the volume ID that last used this PEB 612 * @lnum: the last used logical eraseblock number for the PEB 613 * @torture: if the physical eraseblock has to be tortured 614 * 615 */ 616 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 617 int vol_id, int lnum, int torture) 618 { 619 struct ubi_work wl_wrk; 620 621 dbg_wl("sync erase of PEB %i", e->pnum); 622 623 wl_wrk.e = e; 624 wl_wrk.vol_id = vol_id; 625 wl_wrk.lnum = lnum; 626 wl_wrk.torture = torture; 627 628 return __erase_worker(ubi, &wl_wrk); 629 } 630 631 /** 632 * wear_leveling_worker - wear-leveling worker function. 633 * @ubi: UBI device description object 634 * @wrk: the work object 635 * @shutdown: non-zero if the worker has to free memory and exit 636 * because the WL-subsystem is shutting down 637 * 638 * This function copies a more worn out physical eraseblock to a less worn out 639 * one. Returns zero in case of success and a negative error code in case of 640 * failure. 641 */ 642 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 643 int shutdown) 644 { 645 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 646 int vol_id = -1, lnum = -1; 647 #ifdef CONFIG_MTD_UBI_FASTMAP 648 int anchor = wrk->anchor; 649 #endif 650 struct ubi_wl_entry *e1, *e2; 651 struct ubi_vid_hdr *vid_hdr; 652 653 kfree(wrk); 654 if (shutdown) 655 return 0; 656 657 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 658 if (!vid_hdr) 659 return -ENOMEM; 660 661 mutex_lock(&ubi->move_mutex); 662 spin_lock(&ubi->wl_lock); 663 ubi_assert(!ubi->move_from && !ubi->move_to); 664 ubi_assert(!ubi->move_to_put); 665 666 if (!ubi->free.rb_node || 667 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 668 /* 669 * No free physical eraseblocks? Well, they must be waiting in 670 * the queue to be erased. Cancel movement - it will be 671 * triggered again when a free physical eraseblock appears. 672 * 673 * No used physical eraseblocks? They must be temporarily 674 * protected from being moved. They will be moved to the 675 * @ubi->used tree later and the wear-leveling will be 676 * triggered again. 677 */ 678 dbg_wl("cancel WL, a list is empty: free %d, used %d", 679 !ubi->free.rb_node, !ubi->used.rb_node); 680 goto out_cancel; 681 } 682 683 #ifdef CONFIG_MTD_UBI_FASTMAP 684 /* Check whether we need to produce an anchor PEB */ 685 if (!anchor) 686 anchor = !anchor_pebs_avalible(&ubi->free); 687 688 if (anchor) { 689 e1 = find_anchor_wl_entry(&ubi->used); 690 if (!e1) 691 goto out_cancel; 692 e2 = get_peb_for_wl(ubi); 693 if (!e2) 694 goto out_cancel; 695 696 self_check_in_wl_tree(ubi, e1, &ubi->used); 697 rb_erase(&e1->u.rb, &ubi->used); 698 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 699 } else if (!ubi->scrub.rb_node) { 700 #else 701 if (!ubi->scrub.rb_node) { 702 #endif 703 /* 704 * Now pick the least worn-out used physical eraseblock and a 705 * highly worn-out free physical eraseblock. If the erase 706 * counters differ much enough, start wear-leveling. 707 */ 708 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 709 e2 = get_peb_for_wl(ubi); 710 if (!e2) 711 goto out_cancel; 712 713 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 714 dbg_wl("no WL needed: min used EC %d, max free EC %d", 715 e1->ec, e2->ec); 716 717 /* Give the unused PEB back */ 718 wl_tree_add(e2, &ubi->free); 719 ubi->free_count++; 720 goto out_cancel; 721 } 722 self_check_in_wl_tree(ubi, e1, &ubi->used); 723 rb_erase(&e1->u.rb, &ubi->used); 724 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 725 e1->pnum, e1->ec, e2->pnum, e2->ec); 726 } else { 727 /* Perform scrubbing */ 728 scrubbing = 1; 729 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 730 e2 = get_peb_for_wl(ubi); 731 if (!e2) 732 goto out_cancel; 733 734 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 735 rb_erase(&e1->u.rb, &ubi->scrub); 736 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 737 } 738 739 ubi->move_from = e1; 740 ubi->move_to = e2; 741 spin_unlock(&ubi->wl_lock); 742 743 /* 744 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 745 * We so far do not know which logical eraseblock our physical 746 * eraseblock (@e1) belongs to. We have to read the volume identifier 747 * header first. 748 * 749 * Note, we are protected from this PEB being unmapped and erased. The 750 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 751 * which is being moved was unmapped. 752 */ 753 754 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 755 if (err && err != UBI_IO_BITFLIPS) { 756 if (err == UBI_IO_FF) { 757 /* 758 * We are trying to move PEB without a VID header. UBI 759 * always write VID headers shortly after the PEB was 760 * given, so we have a situation when it has not yet 761 * had a chance to write it, because it was preempted. 762 * So add this PEB to the protection queue so far, 763 * because presumably more data will be written there 764 * (including the missing VID header), and then we'll 765 * move it. 766 */ 767 dbg_wl("PEB %d has no VID header", e1->pnum); 768 protect = 1; 769 goto out_not_moved; 770 } else if (err == UBI_IO_FF_BITFLIPS) { 771 /* 772 * The same situation as %UBI_IO_FF, but bit-flips were 773 * detected. It is better to schedule this PEB for 774 * scrubbing. 775 */ 776 dbg_wl("PEB %d has no VID header but has bit-flips", 777 e1->pnum); 778 scrubbing = 1; 779 goto out_not_moved; 780 } 781 782 ubi_err(ubi, "error %d while reading VID header from PEB %d", 783 err, e1->pnum); 784 goto out_error; 785 } 786 787 vol_id = be32_to_cpu(vid_hdr->vol_id); 788 lnum = be32_to_cpu(vid_hdr->lnum); 789 790 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 791 if (err) { 792 if (err == MOVE_CANCEL_RACE) { 793 /* 794 * The LEB has not been moved because the volume is 795 * being deleted or the PEB has been put meanwhile. We 796 * should prevent this PEB from being selected for 797 * wear-leveling movement again, so put it to the 798 * protection queue. 799 */ 800 protect = 1; 801 goto out_not_moved; 802 } 803 if (err == MOVE_RETRY) { 804 scrubbing = 1; 805 goto out_not_moved; 806 } 807 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 808 err == MOVE_TARGET_RD_ERR) { 809 /* 810 * Target PEB had bit-flips or write error - torture it. 811 */ 812 torture = 1; 813 goto out_not_moved; 814 } 815 816 if (err == MOVE_SOURCE_RD_ERR) { 817 /* 818 * An error happened while reading the source PEB. Do 819 * not switch to R/O mode in this case, and give the 820 * upper layers a possibility to recover from this, 821 * e.g. by unmapping corresponding LEB. Instead, just 822 * put this PEB to the @ubi->erroneous list to prevent 823 * UBI from trying to move it over and over again. 824 */ 825 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 826 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 827 ubi->erroneous_peb_count); 828 goto out_error; 829 } 830 erroneous = 1; 831 goto out_not_moved; 832 } 833 834 if (err < 0) 835 goto out_error; 836 837 ubi_assert(0); 838 } 839 840 /* The PEB has been successfully moved */ 841 if (scrubbing) 842 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 843 e1->pnum, vol_id, lnum, e2->pnum); 844 ubi_free_vid_hdr(ubi, vid_hdr); 845 846 spin_lock(&ubi->wl_lock); 847 if (!ubi->move_to_put) { 848 wl_tree_add(e2, &ubi->used); 849 e2 = NULL; 850 } 851 ubi->move_from = ubi->move_to = NULL; 852 ubi->move_to_put = ubi->wl_scheduled = 0; 853 spin_unlock(&ubi->wl_lock); 854 855 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 856 if (err) { 857 if (e2) 858 wl_entry_destroy(ubi, e2); 859 goto out_ro; 860 } 861 862 if (e2) { 863 /* 864 * Well, the target PEB was put meanwhile, schedule it for 865 * erasure. 866 */ 867 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 868 e2->pnum, vol_id, lnum); 869 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 870 if (err) 871 goto out_ro; 872 } 873 874 dbg_wl("done"); 875 mutex_unlock(&ubi->move_mutex); 876 return 0; 877 878 /* 879 * For some reasons the LEB was not moved, might be an error, might be 880 * something else. @e1 was not changed, so return it back. @e2 might 881 * have been changed, schedule it for erasure. 882 */ 883 out_not_moved: 884 if (vol_id != -1) 885 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 886 e1->pnum, vol_id, lnum, e2->pnum, err); 887 else 888 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 889 e1->pnum, e2->pnum, err); 890 spin_lock(&ubi->wl_lock); 891 if (protect) 892 prot_queue_add(ubi, e1); 893 else if (erroneous) { 894 wl_tree_add(e1, &ubi->erroneous); 895 ubi->erroneous_peb_count += 1; 896 } else if (scrubbing) 897 wl_tree_add(e1, &ubi->scrub); 898 else 899 wl_tree_add(e1, &ubi->used); 900 ubi_assert(!ubi->move_to_put); 901 ubi->move_from = ubi->move_to = NULL; 902 ubi->wl_scheduled = 0; 903 spin_unlock(&ubi->wl_lock); 904 905 ubi_free_vid_hdr(ubi, vid_hdr); 906 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 907 if (err) 908 goto out_ro; 909 910 mutex_unlock(&ubi->move_mutex); 911 return 0; 912 913 out_error: 914 if (vol_id != -1) 915 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 916 err, e1->pnum, e2->pnum); 917 else 918 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 919 err, e1->pnum, vol_id, lnum, e2->pnum); 920 spin_lock(&ubi->wl_lock); 921 ubi->move_from = ubi->move_to = NULL; 922 ubi->move_to_put = ubi->wl_scheduled = 0; 923 spin_unlock(&ubi->wl_lock); 924 925 ubi_free_vid_hdr(ubi, vid_hdr); 926 wl_entry_destroy(ubi, e1); 927 wl_entry_destroy(ubi, e2); 928 929 out_ro: 930 ubi_ro_mode(ubi); 931 mutex_unlock(&ubi->move_mutex); 932 ubi_assert(err != 0); 933 return err < 0 ? err : -EIO; 934 935 out_cancel: 936 ubi->wl_scheduled = 0; 937 spin_unlock(&ubi->wl_lock); 938 mutex_unlock(&ubi->move_mutex); 939 ubi_free_vid_hdr(ubi, vid_hdr); 940 return 0; 941 } 942 943 /** 944 * ensure_wear_leveling - schedule wear-leveling if it is needed. 945 * @ubi: UBI device description object 946 * @nested: set to non-zero if this function is called from UBI worker 947 * 948 * This function checks if it is time to start wear-leveling and schedules it 949 * if yes. This function returns zero in case of success and a negative error 950 * code in case of failure. 951 */ 952 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 953 { 954 int err = 0; 955 struct ubi_wl_entry *e1; 956 struct ubi_wl_entry *e2; 957 struct ubi_work *wrk; 958 959 spin_lock(&ubi->wl_lock); 960 if (ubi->wl_scheduled) 961 /* Wear-leveling is already in the work queue */ 962 goto out_unlock; 963 964 /* 965 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 966 * the WL worker has to be scheduled anyway. 967 */ 968 if (!ubi->scrub.rb_node) { 969 if (!ubi->used.rb_node || !ubi->free.rb_node) 970 /* No physical eraseblocks - no deal */ 971 goto out_unlock; 972 973 /* 974 * We schedule wear-leveling only if the difference between the 975 * lowest erase counter of used physical eraseblocks and a high 976 * erase counter of free physical eraseblocks is greater than 977 * %UBI_WL_THRESHOLD. 978 */ 979 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 980 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 981 982 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 983 goto out_unlock; 984 dbg_wl("schedule wear-leveling"); 985 } else 986 dbg_wl("schedule scrubbing"); 987 988 ubi->wl_scheduled = 1; 989 spin_unlock(&ubi->wl_lock); 990 991 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 992 if (!wrk) { 993 err = -ENOMEM; 994 goto out_cancel; 995 } 996 997 wrk->anchor = 0; 998 wrk->func = &wear_leveling_worker; 999 if (nested) 1000 __schedule_ubi_work(ubi, wrk); 1001 else 1002 schedule_ubi_work(ubi, wrk); 1003 return err; 1004 1005 out_cancel: 1006 spin_lock(&ubi->wl_lock); 1007 ubi->wl_scheduled = 0; 1008 out_unlock: 1009 spin_unlock(&ubi->wl_lock); 1010 return err; 1011 } 1012 1013 /** 1014 * __erase_worker - physical eraseblock erase worker function. 1015 * @ubi: UBI device description object 1016 * @wl_wrk: the work object 1017 * @shutdown: non-zero if the worker has to free memory and exit 1018 * because the WL sub-system is shutting down 1019 * 1020 * This function erases a physical eraseblock and perform torture testing if 1021 * needed. It also takes care about marking the physical eraseblock bad if 1022 * needed. Returns zero in case of success and a negative error code in case of 1023 * failure. 1024 */ 1025 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1026 { 1027 struct ubi_wl_entry *e = wl_wrk->e; 1028 int pnum = e->pnum; 1029 int vol_id = wl_wrk->vol_id; 1030 int lnum = wl_wrk->lnum; 1031 int err, available_consumed = 0; 1032 1033 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1034 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1035 1036 err = sync_erase(ubi, e, wl_wrk->torture); 1037 if (!err) { 1038 spin_lock(&ubi->wl_lock); 1039 wl_tree_add(e, &ubi->free); 1040 ubi->free_count++; 1041 spin_unlock(&ubi->wl_lock); 1042 1043 /* 1044 * One more erase operation has happened, take care about 1045 * protected physical eraseblocks. 1046 */ 1047 serve_prot_queue(ubi); 1048 1049 /* And take care about wear-leveling */ 1050 err = ensure_wear_leveling(ubi, 1); 1051 return err; 1052 } 1053 1054 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1055 1056 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1057 err == -EBUSY) { 1058 int err1; 1059 1060 /* Re-schedule the LEB for erasure */ 1061 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1062 if (err1) { 1063 wl_entry_destroy(ubi, e); 1064 err = err1; 1065 goto out_ro; 1066 } 1067 return err; 1068 } 1069 1070 wl_entry_destroy(ubi, e); 1071 if (err != -EIO) 1072 /* 1073 * If this is not %-EIO, we have no idea what to do. Scheduling 1074 * this physical eraseblock for erasure again would cause 1075 * errors again and again. Well, lets switch to R/O mode. 1076 */ 1077 goto out_ro; 1078 1079 /* It is %-EIO, the PEB went bad */ 1080 1081 if (!ubi->bad_allowed) { 1082 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1083 goto out_ro; 1084 } 1085 1086 spin_lock(&ubi->volumes_lock); 1087 if (ubi->beb_rsvd_pebs == 0) { 1088 if (ubi->avail_pebs == 0) { 1089 spin_unlock(&ubi->volumes_lock); 1090 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1091 goto out_ro; 1092 } 1093 ubi->avail_pebs -= 1; 1094 available_consumed = 1; 1095 } 1096 spin_unlock(&ubi->volumes_lock); 1097 1098 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1099 err = ubi_io_mark_bad(ubi, pnum); 1100 if (err) 1101 goto out_ro; 1102 1103 spin_lock(&ubi->volumes_lock); 1104 if (ubi->beb_rsvd_pebs > 0) { 1105 if (available_consumed) { 1106 /* 1107 * The amount of reserved PEBs increased since we last 1108 * checked. 1109 */ 1110 ubi->avail_pebs += 1; 1111 available_consumed = 0; 1112 } 1113 ubi->beb_rsvd_pebs -= 1; 1114 } 1115 ubi->bad_peb_count += 1; 1116 ubi->good_peb_count -= 1; 1117 ubi_calculate_reserved(ubi); 1118 if (available_consumed) 1119 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1120 else if (ubi->beb_rsvd_pebs) 1121 ubi_msg(ubi, "%d PEBs left in the reserve", 1122 ubi->beb_rsvd_pebs); 1123 else 1124 ubi_warn(ubi, "last PEB from the reserve was used"); 1125 spin_unlock(&ubi->volumes_lock); 1126 1127 return err; 1128 1129 out_ro: 1130 if (available_consumed) { 1131 spin_lock(&ubi->volumes_lock); 1132 ubi->avail_pebs += 1; 1133 spin_unlock(&ubi->volumes_lock); 1134 } 1135 ubi_ro_mode(ubi); 1136 return err; 1137 } 1138 1139 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1140 int shutdown) 1141 { 1142 int ret; 1143 1144 if (shutdown) { 1145 struct ubi_wl_entry *e = wl_wrk->e; 1146 1147 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1148 kfree(wl_wrk); 1149 wl_entry_destroy(ubi, e); 1150 return 0; 1151 } 1152 1153 ret = __erase_worker(ubi, wl_wrk); 1154 kfree(wl_wrk); 1155 return ret; 1156 } 1157 1158 /** 1159 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1160 * @ubi: UBI device description object 1161 * @vol_id: the volume ID that last used this PEB 1162 * @lnum: the last used logical eraseblock number for the PEB 1163 * @pnum: physical eraseblock to return 1164 * @torture: if this physical eraseblock has to be tortured 1165 * 1166 * This function is called to return physical eraseblock @pnum to the pool of 1167 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1168 * occurred to this @pnum and it has to be tested. This function returns zero 1169 * in case of success, and a negative error code in case of failure. 1170 */ 1171 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1172 int pnum, int torture) 1173 { 1174 int err; 1175 struct ubi_wl_entry *e; 1176 1177 dbg_wl("PEB %d", pnum); 1178 ubi_assert(pnum >= 0); 1179 ubi_assert(pnum < ubi->peb_count); 1180 1181 down_read(&ubi->fm_protect); 1182 1183 retry: 1184 spin_lock(&ubi->wl_lock); 1185 e = ubi->lookuptbl[pnum]; 1186 if (e == ubi->move_from) { 1187 /* 1188 * User is putting the physical eraseblock which was selected to 1189 * be moved. It will be scheduled for erasure in the 1190 * wear-leveling worker. 1191 */ 1192 dbg_wl("PEB %d is being moved, wait", pnum); 1193 spin_unlock(&ubi->wl_lock); 1194 1195 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1196 mutex_lock(&ubi->move_mutex); 1197 mutex_unlock(&ubi->move_mutex); 1198 goto retry; 1199 } else if (e == ubi->move_to) { 1200 /* 1201 * User is putting the physical eraseblock which was selected 1202 * as the target the data is moved to. It may happen if the EBA 1203 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1204 * but the WL sub-system has not put the PEB to the "used" tree 1205 * yet, but it is about to do this. So we just set a flag which 1206 * will tell the WL worker that the PEB is not needed anymore 1207 * and should be scheduled for erasure. 1208 */ 1209 dbg_wl("PEB %d is the target of data moving", pnum); 1210 ubi_assert(!ubi->move_to_put); 1211 ubi->move_to_put = 1; 1212 spin_unlock(&ubi->wl_lock); 1213 up_read(&ubi->fm_protect); 1214 return 0; 1215 } else { 1216 if (in_wl_tree(e, &ubi->used)) { 1217 self_check_in_wl_tree(ubi, e, &ubi->used); 1218 rb_erase(&e->u.rb, &ubi->used); 1219 } else if (in_wl_tree(e, &ubi->scrub)) { 1220 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1221 rb_erase(&e->u.rb, &ubi->scrub); 1222 } else if (in_wl_tree(e, &ubi->erroneous)) { 1223 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1224 rb_erase(&e->u.rb, &ubi->erroneous); 1225 ubi->erroneous_peb_count -= 1; 1226 ubi_assert(ubi->erroneous_peb_count >= 0); 1227 /* Erroneous PEBs should be tortured */ 1228 torture = 1; 1229 } else { 1230 err = prot_queue_del(ubi, e->pnum); 1231 if (err) { 1232 ubi_err(ubi, "PEB %d not found", pnum); 1233 ubi_ro_mode(ubi); 1234 spin_unlock(&ubi->wl_lock); 1235 up_read(&ubi->fm_protect); 1236 return err; 1237 } 1238 } 1239 } 1240 spin_unlock(&ubi->wl_lock); 1241 1242 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1243 if (err) { 1244 spin_lock(&ubi->wl_lock); 1245 wl_tree_add(e, &ubi->used); 1246 spin_unlock(&ubi->wl_lock); 1247 } 1248 1249 up_read(&ubi->fm_protect); 1250 return err; 1251 } 1252 1253 /** 1254 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1255 * @ubi: UBI device description object 1256 * @pnum: the physical eraseblock to schedule 1257 * 1258 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1259 * needs scrubbing. This function schedules a physical eraseblock for 1260 * scrubbing which is done in background. This function returns zero in case of 1261 * success and a negative error code in case of failure. 1262 */ 1263 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1264 { 1265 struct ubi_wl_entry *e; 1266 1267 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1268 1269 retry: 1270 spin_lock(&ubi->wl_lock); 1271 e = ubi->lookuptbl[pnum]; 1272 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1273 in_wl_tree(e, &ubi->erroneous)) { 1274 spin_unlock(&ubi->wl_lock); 1275 return 0; 1276 } 1277 1278 if (e == ubi->move_to) { 1279 /* 1280 * This physical eraseblock was used to move data to. The data 1281 * was moved but the PEB was not yet inserted to the proper 1282 * tree. We should just wait a little and let the WL worker 1283 * proceed. 1284 */ 1285 spin_unlock(&ubi->wl_lock); 1286 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1287 yield(); 1288 goto retry; 1289 } 1290 1291 if (in_wl_tree(e, &ubi->used)) { 1292 self_check_in_wl_tree(ubi, e, &ubi->used); 1293 rb_erase(&e->u.rb, &ubi->used); 1294 } else { 1295 int err; 1296 1297 err = prot_queue_del(ubi, e->pnum); 1298 if (err) { 1299 ubi_err(ubi, "PEB %d not found", pnum); 1300 ubi_ro_mode(ubi); 1301 spin_unlock(&ubi->wl_lock); 1302 return err; 1303 } 1304 } 1305 1306 wl_tree_add(e, &ubi->scrub); 1307 spin_unlock(&ubi->wl_lock); 1308 1309 /* 1310 * Technically scrubbing is the same as wear-leveling, so it is done 1311 * by the WL worker. 1312 */ 1313 return ensure_wear_leveling(ubi, 0); 1314 } 1315 1316 /** 1317 * ubi_wl_flush - flush all pending works. 1318 * @ubi: UBI device description object 1319 * @vol_id: the volume id to flush for 1320 * @lnum: the logical eraseblock number to flush for 1321 * 1322 * This function executes all pending works for a particular volume id / 1323 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1324 * acts as a wildcard for all of the corresponding volume numbers or logical 1325 * eraseblock numbers. It returns zero in case of success and a negative error 1326 * code in case of failure. 1327 */ 1328 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1329 { 1330 int err = 0; 1331 int found = 1; 1332 1333 /* 1334 * Erase while the pending works queue is not empty, but not more than 1335 * the number of currently pending works. 1336 */ 1337 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1338 vol_id, lnum, ubi->works_count); 1339 1340 while (found) { 1341 struct ubi_work *wrk, *tmp; 1342 found = 0; 1343 1344 down_read(&ubi->work_sem); 1345 spin_lock(&ubi->wl_lock); 1346 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1347 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1348 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1349 list_del(&wrk->list); 1350 ubi->works_count -= 1; 1351 ubi_assert(ubi->works_count >= 0); 1352 spin_unlock(&ubi->wl_lock); 1353 1354 err = wrk->func(ubi, wrk, 0); 1355 if (err) { 1356 up_read(&ubi->work_sem); 1357 return err; 1358 } 1359 1360 spin_lock(&ubi->wl_lock); 1361 found = 1; 1362 break; 1363 } 1364 } 1365 spin_unlock(&ubi->wl_lock); 1366 up_read(&ubi->work_sem); 1367 } 1368 1369 /* 1370 * Make sure all the works which have been done in parallel are 1371 * finished. 1372 */ 1373 down_write(&ubi->work_sem); 1374 up_write(&ubi->work_sem); 1375 1376 return err; 1377 } 1378 1379 /** 1380 * tree_destroy - destroy an RB-tree. 1381 * @ubi: UBI device description object 1382 * @root: the root of the tree to destroy 1383 */ 1384 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1385 { 1386 struct rb_node *rb; 1387 struct ubi_wl_entry *e; 1388 1389 rb = root->rb_node; 1390 while (rb) { 1391 if (rb->rb_left) 1392 rb = rb->rb_left; 1393 else if (rb->rb_right) 1394 rb = rb->rb_right; 1395 else { 1396 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1397 1398 rb = rb_parent(rb); 1399 if (rb) { 1400 if (rb->rb_left == &e->u.rb) 1401 rb->rb_left = NULL; 1402 else 1403 rb->rb_right = NULL; 1404 } 1405 1406 wl_entry_destroy(ubi, e); 1407 } 1408 } 1409 } 1410 1411 /** 1412 * ubi_thread - UBI background thread. 1413 * @u: the UBI device description object pointer 1414 */ 1415 int ubi_thread(void *u) 1416 { 1417 int failures = 0; 1418 struct ubi_device *ubi = u; 1419 1420 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1421 ubi->bgt_name, task_pid_nr(current)); 1422 1423 set_freezable(); 1424 for (;;) { 1425 int err; 1426 1427 if (kthread_should_stop()) 1428 break; 1429 1430 if (try_to_freeze()) 1431 continue; 1432 1433 spin_lock(&ubi->wl_lock); 1434 if (list_empty(&ubi->works) || ubi->ro_mode || 1435 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1436 set_current_state(TASK_INTERRUPTIBLE); 1437 spin_unlock(&ubi->wl_lock); 1438 schedule(); 1439 continue; 1440 } 1441 spin_unlock(&ubi->wl_lock); 1442 1443 err = do_work(ubi); 1444 if (err) { 1445 ubi_err(ubi, "%s: work failed with error code %d", 1446 ubi->bgt_name, err); 1447 if (failures++ > WL_MAX_FAILURES) { 1448 /* 1449 * Too many failures, disable the thread and 1450 * switch to read-only mode. 1451 */ 1452 ubi_msg(ubi, "%s: %d consecutive failures", 1453 ubi->bgt_name, WL_MAX_FAILURES); 1454 ubi_ro_mode(ubi); 1455 ubi->thread_enabled = 0; 1456 continue; 1457 } 1458 } else 1459 failures = 0; 1460 1461 cond_resched(); 1462 } 1463 1464 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1465 return 0; 1466 } 1467 1468 /** 1469 * shutdown_work - shutdown all pending works. 1470 * @ubi: UBI device description object 1471 */ 1472 static void shutdown_work(struct ubi_device *ubi) 1473 { 1474 #ifdef CONFIG_MTD_UBI_FASTMAP 1475 flush_work(&ubi->fm_work); 1476 #endif 1477 while (!list_empty(&ubi->works)) { 1478 struct ubi_work *wrk; 1479 1480 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1481 list_del(&wrk->list); 1482 wrk->func(ubi, wrk, 1); 1483 ubi->works_count -= 1; 1484 ubi_assert(ubi->works_count >= 0); 1485 } 1486 } 1487 1488 /** 1489 * ubi_wl_init - initialize the WL sub-system using attaching information. 1490 * @ubi: UBI device description object 1491 * @ai: attaching information 1492 * 1493 * This function returns zero in case of success, and a negative error code in 1494 * case of failure. 1495 */ 1496 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1497 { 1498 int err, i, reserved_pebs, found_pebs = 0; 1499 struct rb_node *rb1, *rb2; 1500 struct ubi_ainf_volume *av; 1501 struct ubi_ainf_peb *aeb, *tmp; 1502 struct ubi_wl_entry *e; 1503 1504 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1505 spin_lock_init(&ubi->wl_lock); 1506 mutex_init(&ubi->move_mutex); 1507 init_rwsem(&ubi->work_sem); 1508 ubi->max_ec = ai->max_ec; 1509 INIT_LIST_HEAD(&ubi->works); 1510 1511 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1512 1513 err = -ENOMEM; 1514 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1515 if (!ubi->lookuptbl) 1516 return err; 1517 1518 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1519 INIT_LIST_HEAD(&ubi->pq[i]); 1520 ubi->pq_head = 0; 1521 1522 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1523 cond_resched(); 1524 1525 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1526 if (!e) 1527 goto out_free; 1528 1529 e->pnum = aeb->pnum; 1530 e->ec = aeb->ec; 1531 ubi->lookuptbl[e->pnum] = e; 1532 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1533 wl_entry_destroy(ubi, e); 1534 goto out_free; 1535 } 1536 1537 found_pebs++; 1538 } 1539 1540 ubi->free_count = 0; 1541 list_for_each_entry(aeb, &ai->free, u.list) { 1542 cond_resched(); 1543 1544 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1545 if (!e) 1546 goto out_free; 1547 1548 e->pnum = aeb->pnum; 1549 e->ec = aeb->ec; 1550 ubi_assert(e->ec >= 0); 1551 1552 wl_tree_add(e, &ubi->free); 1553 ubi->free_count++; 1554 1555 ubi->lookuptbl[e->pnum] = e; 1556 1557 found_pebs++; 1558 } 1559 1560 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1561 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1562 cond_resched(); 1563 1564 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1565 if (!e) 1566 goto out_free; 1567 1568 e->pnum = aeb->pnum; 1569 e->ec = aeb->ec; 1570 ubi->lookuptbl[e->pnum] = e; 1571 1572 if (!aeb->scrub) { 1573 dbg_wl("add PEB %d EC %d to the used tree", 1574 e->pnum, e->ec); 1575 wl_tree_add(e, &ubi->used); 1576 } else { 1577 dbg_wl("add PEB %d EC %d to the scrub tree", 1578 e->pnum, e->ec); 1579 wl_tree_add(e, &ubi->scrub); 1580 } 1581 1582 found_pebs++; 1583 } 1584 } 1585 1586 dbg_wl("found %i PEBs", found_pebs); 1587 1588 if (ubi->fm) { 1589 ubi_assert(ubi->good_peb_count == 1590 found_pebs + ubi->fm->used_blocks); 1591 1592 for (i = 0; i < ubi->fm->used_blocks; i++) { 1593 e = ubi->fm->e[i]; 1594 ubi->lookuptbl[e->pnum] = e; 1595 } 1596 } 1597 else 1598 ubi_assert(ubi->good_peb_count == found_pebs); 1599 1600 reserved_pebs = WL_RESERVED_PEBS; 1601 ubi_fastmap_init(ubi, &reserved_pebs); 1602 1603 if (ubi->avail_pebs < reserved_pebs) { 1604 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1605 ubi->avail_pebs, reserved_pebs); 1606 if (ubi->corr_peb_count) 1607 ubi_err(ubi, "%d PEBs are corrupted and not used", 1608 ubi->corr_peb_count); 1609 err = -ENOSPC; 1610 goto out_free; 1611 } 1612 ubi->avail_pebs -= reserved_pebs; 1613 ubi->rsvd_pebs += reserved_pebs; 1614 1615 /* Schedule wear-leveling if needed */ 1616 err = ensure_wear_leveling(ubi, 0); 1617 if (err) 1618 goto out_free; 1619 1620 return 0; 1621 1622 out_free: 1623 shutdown_work(ubi); 1624 tree_destroy(ubi, &ubi->used); 1625 tree_destroy(ubi, &ubi->free); 1626 tree_destroy(ubi, &ubi->scrub); 1627 kfree(ubi->lookuptbl); 1628 return err; 1629 } 1630 1631 /** 1632 * protection_queue_destroy - destroy the protection queue. 1633 * @ubi: UBI device description object 1634 */ 1635 static void protection_queue_destroy(struct ubi_device *ubi) 1636 { 1637 int i; 1638 struct ubi_wl_entry *e, *tmp; 1639 1640 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1641 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1642 list_del(&e->u.list); 1643 wl_entry_destroy(ubi, e); 1644 } 1645 } 1646 } 1647 1648 /** 1649 * ubi_wl_close - close the wear-leveling sub-system. 1650 * @ubi: UBI device description object 1651 */ 1652 void ubi_wl_close(struct ubi_device *ubi) 1653 { 1654 dbg_wl("close the WL sub-system"); 1655 ubi_fastmap_close(ubi); 1656 shutdown_work(ubi); 1657 protection_queue_destroy(ubi); 1658 tree_destroy(ubi, &ubi->used); 1659 tree_destroy(ubi, &ubi->erroneous); 1660 tree_destroy(ubi, &ubi->free); 1661 tree_destroy(ubi, &ubi->scrub); 1662 kfree(ubi->lookuptbl); 1663 } 1664 1665 /** 1666 * self_check_ec - make sure that the erase counter of a PEB is correct. 1667 * @ubi: UBI device description object 1668 * @pnum: the physical eraseblock number to check 1669 * @ec: the erase counter to check 1670 * 1671 * This function returns zero if the erase counter of physical eraseblock @pnum 1672 * is equivalent to @ec, and a negative error code if not or if an error 1673 * occurred. 1674 */ 1675 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1676 { 1677 int err; 1678 long long read_ec; 1679 struct ubi_ec_hdr *ec_hdr; 1680 1681 if (!ubi_dbg_chk_gen(ubi)) 1682 return 0; 1683 1684 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1685 if (!ec_hdr) 1686 return -ENOMEM; 1687 1688 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1689 if (err && err != UBI_IO_BITFLIPS) { 1690 /* The header does not have to exist */ 1691 err = 0; 1692 goto out_free; 1693 } 1694 1695 read_ec = be64_to_cpu(ec_hdr->ec); 1696 if (ec != read_ec && read_ec - ec > 1) { 1697 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1698 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1699 dump_stack(); 1700 err = 1; 1701 } else 1702 err = 0; 1703 1704 out_free: 1705 kfree(ec_hdr); 1706 return err; 1707 } 1708 1709 /** 1710 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1711 * @ubi: UBI device description object 1712 * @e: the wear-leveling entry to check 1713 * @root: the root of the tree 1714 * 1715 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1716 * is not. 1717 */ 1718 static int self_check_in_wl_tree(const struct ubi_device *ubi, 1719 struct ubi_wl_entry *e, struct rb_root *root) 1720 { 1721 if (!ubi_dbg_chk_gen(ubi)) 1722 return 0; 1723 1724 if (in_wl_tree(e, root)) 1725 return 0; 1726 1727 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 1728 e->pnum, e->ec, root); 1729 dump_stack(); 1730 return -EINVAL; 1731 } 1732 1733 /** 1734 * self_check_in_pq - check if wear-leveling entry is in the protection 1735 * queue. 1736 * @ubi: UBI device description object 1737 * @e: the wear-leveling entry to check 1738 * 1739 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 1740 */ 1741 static int self_check_in_pq(const struct ubi_device *ubi, 1742 struct ubi_wl_entry *e) 1743 { 1744 struct ubi_wl_entry *p; 1745 int i; 1746 1747 if (!ubi_dbg_chk_gen(ubi)) 1748 return 0; 1749 1750 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 1751 list_for_each_entry(p, &ubi->pq[i], u.list) 1752 if (p == e) 1753 return 0; 1754 1755 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 1756 e->pnum, e->ec); 1757 dump_stack(); 1758 return -EINVAL; 1759 } 1760 #ifndef CONFIG_MTD_UBI_FASTMAP 1761 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 1762 { 1763 struct ubi_wl_entry *e; 1764 1765 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1766 self_check_in_wl_tree(ubi, e, &ubi->free); 1767 ubi->free_count--; 1768 ubi_assert(ubi->free_count >= 0); 1769 rb_erase(&e->u.rb, &ubi->free); 1770 1771 return e; 1772 } 1773 1774 /** 1775 * produce_free_peb - produce a free physical eraseblock. 1776 * @ubi: UBI device description object 1777 * 1778 * This function tries to make a free PEB by means of synchronous execution of 1779 * pending works. This may be needed if, for example the background thread is 1780 * disabled. Returns zero in case of success and a negative error code in case 1781 * of failure. 1782 */ 1783 static int produce_free_peb(struct ubi_device *ubi) 1784 { 1785 int err; 1786 1787 while (!ubi->free.rb_node && ubi->works_count) { 1788 spin_unlock(&ubi->wl_lock); 1789 1790 dbg_wl("do one work synchronously"); 1791 err = do_work(ubi); 1792 1793 spin_lock(&ubi->wl_lock); 1794 if (err) 1795 return err; 1796 } 1797 1798 return 0; 1799 } 1800 1801 /** 1802 * ubi_wl_get_peb - get a physical eraseblock. 1803 * @ubi: UBI device description object 1804 * 1805 * This function returns a physical eraseblock in case of success and a 1806 * negative error code in case of failure. 1807 * Returns with ubi->fm_eba_sem held in read mode! 1808 */ 1809 int ubi_wl_get_peb(struct ubi_device *ubi) 1810 { 1811 int err; 1812 struct ubi_wl_entry *e; 1813 1814 retry: 1815 down_read(&ubi->fm_eba_sem); 1816 spin_lock(&ubi->wl_lock); 1817 if (!ubi->free.rb_node) { 1818 if (ubi->works_count == 0) { 1819 ubi_err(ubi, "no free eraseblocks"); 1820 ubi_assert(list_empty(&ubi->works)); 1821 spin_unlock(&ubi->wl_lock); 1822 return -ENOSPC; 1823 } 1824 1825 err = produce_free_peb(ubi); 1826 if (err < 0) { 1827 spin_unlock(&ubi->wl_lock); 1828 return err; 1829 } 1830 spin_unlock(&ubi->wl_lock); 1831 up_read(&ubi->fm_eba_sem); 1832 goto retry; 1833 1834 } 1835 e = wl_get_wle(ubi); 1836 prot_queue_add(ubi, e); 1837 spin_unlock(&ubi->wl_lock); 1838 1839 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 1840 ubi->peb_size - ubi->vid_hdr_aloffset); 1841 if (err) { 1842 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 1843 return err; 1844 } 1845 1846 return e->pnum; 1847 } 1848 #else 1849 #include "fastmap-wl.c" 1850 #endif 1851