1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 44 * bad. 45 * 46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 47 * in a physical eraseblock, it has to be moved. Technically this is the same 48 * as moving it for wear-leveling reasons. 49 * 50 * As it was said, for the UBI sub-system all physical eraseblocks are either 51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 53 * RB-trees, as well as (temporarily) in the @wl->pq queue. 54 * 55 * When the WL sub-system returns a physical eraseblock, the physical 56 * eraseblock is protected from being moved for some "time". For this reason, 57 * the physical eraseblock is not directly moved from the @wl->free tree to the 58 * @wl->used tree. There is a protection queue in between where this 59 * physical eraseblock is temporarily stored (@wl->pq). 60 * 61 * All this protection stuff is needed because: 62 * o we don't want to move physical eraseblocks just after we have given them 63 * to the user; instead, we first want to let users fill them up with data; 64 * 65 * o there is a chance that the user will put the physical eraseblock very 66 * soon, so it makes sense not to move it for some time, but wait. 67 * 68 * Physical eraseblocks stay protected only for limited time. But the "time" is 69 * measured in erase cycles in this case. This is implemented with help of the 70 * protection queue. Eraseblocks are put to the tail of this queue when they 71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 72 * head of the queue on each erase operation (for any eraseblock). So the 73 * length of the queue defines how may (global) erase cycles PEBs are protected. 74 * 75 * To put it differently, each physical eraseblock has 2 main states: free and 76 * used. The former state corresponds to the @wl->free tree. The latter state 77 * is split up on several sub-states: 78 * o the WL movement is allowed (@wl->used tree); 79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 80 * erroneous - e.g., there was a read error; 81 * o the WL movement is temporarily prohibited (@wl->pq queue); 82 * o scrubbing is needed (@wl->scrub tree). 83 * 84 * Depending on the sub-state, wear-leveling entries of the used physical 85 * eraseblocks may be kept in one of those structures. 86 * 87 * Note, in this implementation, we keep a small in-RAM object for each physical 88 * eraseblock. This is surely not a scalable solution. But it appears to be good 89 * enough for moderately large flashes and it is simple. In future, one may 90 * re-work this sub-system and make it more scalable. 91 * 92 * At the moment this sub-system does not utilize the sequence number, which 93 * was introduced relatively recently. But it would be wise to do this because 94 * the sequence number of a logical eraseblock characterizes how old is it. For 95 * example, when we move a PEB with low erase counter, and we need to pick the 96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 97 * pick target PEB with an average EC if our PEB is not very "old". This is a 98 * room for future re-works of the WL sub-system. 99 */ 100 101 #include <linux/slab.h> 102 #include <linux/crc32.h> 103 #include <linux/freezer.h> 104 #include <linux/kthread.h> 105 #include "ubi.h" 106 107 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 108 #define WL_RESERVED_PEBS 1 109 110 /* 111 * Maximum difference between two erase counters. If this threshold is 112 * exceeded, the WL sub-system starts moving data from used physical 113 * eraseblocks with low erase counter to free physical eraseblocks with high 114 * erase counter. 115 */ 116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 117 118 /* 119 * When a physical eraseblock is moved, the WL sub-system has to pick the target 120 * physical eraseblock to move to. The simplest way would be just to pick the 121 * one with the highest erase counter. But in certain workloads this could lead 122 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 123 * situation when the picked physical eraseblock is constantly erased after the 124 * data is written to it. So, we have a constant which limits the highest erase 125 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 126 * does not pick eraseblocks with erase counter greater than the lowest erase 127 * counter plus %WL_FREE_MAX_DIFF. 128 */ 129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 130 131 /* 132 * Maximum number of consecutive background thread failures which is enough to 133 * switch to read-only mode. 134 */ 135 #define WL_MAX_FAILURES 32 136 137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 138 static int self_check_in_wl_tree(const struct ubi_device *ubi, 139 struct ubi_wl_entry *e, struct rb_root *root); 140 static int self_check_in_pq(const struct ubi_device *ubi, 141 struct ubi_wl_entry *e); 142 143 #ifdef CONFIG_MTD_UBI_FASTMAP 144 /** 145 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue 146 * @wrk: the work description object 147 */ 148 static void update_fastmap_work_fn(struct work_struct *wrk) 149 { 150 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); 151 ubi_update_fastmap(ubi); 152 } 153 154 /** 155 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap. 156 * @ubi: UBI device description object 157 * @pnum: the to be checked PEB 158 */ 159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 160 { 161 int i; 162 163 if (!ubi->fm) 164 return 0; 165 166 for (i = 0; i < ubi->fm->used_blocks; i++) 167 if (ubi->fm->e[i]->pnum == pnum) 168 return 1; 169 170 return 0; 171 } 172 #else 173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 174 { 175 return 0; 176 } 177 #endif 178 179 /** 180 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 181 * @e: the wear-leveling entry to add 182 * @root: the root of the tree 183 * 184 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 185 * the @ubi->used and @ubi->free RB-trees. 186 */ 187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 188 { 189 struct rb_node **p, *parent = NULL; 190 191 p = &root->rb_node; 192 while (*p) { 193 struct ubi_wl_entry *e1; 194 195 parent = *p; 196 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 197 198 if (e->ec < e1->ec) 199 p = &(*p)->rb_left; 200 else if (e->ec > e1->ec) 201 p = &(*p)->rb_right; 202 else { 203 ubi_assert(e->pnum != e1->pnum); 204 if (e->pnum < e1->pnum) 205 p = &(*p)->rb_left; 206 else 207 p = &(*p)->rb_right; 208 } 209 } 210 211 rb_link_node(&e->u.rb, parent, p); 212 rb_insert_color(&e->u.rb, root); 213 } 214 215 /** 216 * do_work - do one pending work. 217 * @ubi: UBI device description object 218 * 219 * This function returns zero in case of success and a negative error code in 220 * case of failure. 221 */ 222 static int do_work(struct ubi_device *ubi) 223 { 224 int err; 225 struct ubi_work *wrk; 226 227 cond_resched(); 228 229 /* 230 * @ubi->work_sem is used to synchronize with the workers. Workers take 231 * it in read mode, so many of them may be doing works at a time. But 232 * the queue flush code has to be sure the whole queue of works is 233 * done, and it takes the mutex in write mode. 234 */ 235 down_read(&ubi->work_sem); 236 spin_lock(&ubi->wl_lock); 237 if (list_empty(&ubi->works)) { 238 spin_unlock(&ubi->wl_lock); 239 up_read(&ubi->work_sem); 240 return 0; 241 } 242 243 wrk = list_entry(ubi->works.next, struct ubi_work, list); 244 list_del(&wrk->list); 245 ubi->works_count -= 1; 246 ubi_assert(ubi->works_count >= 0); 247 spin_unlock(&ubi->wl_lock); 248 249 /* 250 * Call the worker function. Do not touch the work structure 251 * after this call as it will have been freed or reused by that 252 * time by the worker function. 253 */ 254 err = wrk->func(ubi, wrk, 0); 255 if (err) 256 ubi_err("work failed with error code %d", err); 257 up_read(&ubi->work_sem); 258 259 return err; 260 } 261 262 /** 263 * produce_free_peb - produce a free physical eraseblock. 264 * @ubi: UBI device description object 265 * 266 * This function tries to make a free PEB by means of synchronous execution of 267 * pending works. This may be needed if, for example the background thread is 268 * disabled. Returns zero in case of success and a negative error code in case 269 * of failure. 270 */ 271 static int produce_free_peb(struct ubi_device *ubi) 272 { 273 int err; 274 275 while (!ubi->free.rb_node) { 276 spin_unlock(&ubi->wl_lock); 277 278 dbg_wl("do one work synchronously"); 279 err = do_work(ubi); 280 281 spin_lock(&ubi->wl_lock); 282 if (err) 283 return err; 284 } 285 286 return 0; 287 } 288 289 /** 290 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 291 * @e: the wear-leveling entry to check 292 * @root: the root of the tree 293 * 294 * This function returns non-zero if @e is in the @root RB-tree and zero if it 295 * is not. 296 */ 297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 298 { 299 struct rb_node *p; 300 301 p = root->rb_node; 302 while (p) { 303 struct ubi_wl_entry *e1; 304 305 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 306 307 if (e->pnum == e1->pnum) { 308 ubi_assert(e == e1); 309 return 1; 310 } 311 312 if (e->ec < e1->ec) 313 p = p->rb_left; 314 else if (e->ec > e1->ec) 315 p = p->rb_right; 316 else { 317 ubi_assert(e->pnum != e1->pnum); 318 if (e->pnum < e1->pnum) 319 p = p->rb_left; 320 else 321 p = p->rb_right; 322 } 323 } 324 325 return 0; 326 } 327 328 /** 329 * prot_queue_add - add physical eraseblock to the protection queue. 330 * @ubi: UBI device description object 331 * @e: the physical eraseblock to add 332 * 333 * This function adds @e to the tail of the protection queue @ubi->pq, where 334 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 335 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 336 * be locked. 337 */ 338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 339 { 340 int pq_tail = ubi->pq_head - 1; 341 342 if (pq_tail < 0) 343 pq_tail = UBI_PROT_QUEUE_LEN - 1; 344 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 345 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 346 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 347 } 348 349 /** 350 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 351 * @ubi: UBI device description object 352 * @root: the RB-tree where to look for 353 * @diff: maximum possible difference from the smallest erase counter 354 * 355 * This function looks for a wear leveling entry with erase counter closest to 356 * min + @diff, where min is the smallest erase counter. 357 */ 358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 359 struct rb_root *root, int diff) 360 { 361 struct rb_node *p; 362 struct ubi_wl_entry *e, *prev_e = NULL; 363 int max; 364 365 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 366 max = e->ec + diff; 367 368 p = root->rb_node; 369 while (p) { 370 struct ubi_wl_entry *e1; 371 372 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 373 if (e1->ec >= max) 374 p = p->rb_left; 375 else { 376 p = p->rb_right; 377 prev_e = e; 378 e = e1; 379 } 380 } 381 382 /* If no fastmap has been written and this WL entry can be used 383 * as anchor PEB, hold it back and return the second best WL entry 384 * such that fastmap can use the anchor PEB later. */ 385 if (prev_e && !ubi->fm_disabled && 386 !ubi->fm && e->pnum < UBI_FM_MAX_START) 387 return prev_e; 388 389 return e; 390 } 391 392 /** 393 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 394 * @ubi: UBI device description object 395 * @root: the RB-tree where to look for 396 * 397 * This function looks for a wear leveling entry with medium erase counter, 398 * but not greater or equivalent than the lowest erase counter plus 399 * %WL_FREE_MAX_DIFF/2. 400 */ 401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 402 struct rb_root *root) 403 { 404 struct ubi_wl_entry *e, *first, *last; 405 406 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 407 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 408 409 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 410 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 411 412 #ifdef CONFIG_MTD_UBI_FASTMAP 413 /* If no fastmap has been written and this WL entry can be used 414 * as anchor PEB, hold it back and return the second best 415 * WL entry such that fastmap can use the anchor PEB later. */ 416 if (e && !ubi->fm_disabled && !ubi->fm && 417 e->pnum < UBI_FM_MAX_START) 418 e = rb_entry(rb_next(root->rb_node), 419 struct ubi_wl_entry, u.rb); 420 #endif 421 } else 422 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 423 424 return e; 425 } 426 427 #ifdef CONFIG_MTD_UBI_FASTMAP 428 /** 429 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. 430 * @root: the RB-tree where to look for 431 */ 432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) 433 { 434 struct rb_node *p; 435 struct ubi_wl_entry *e, *victim = NULL; 436 int max_ec = UBI_MAX_ERASECOUNTER; 437 438 ubi_rb_for_each_entry(p, e, root, u.rb) { 439 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { 440 victim = e; 441 max_ec = e->ec; 442 } 443 } 444 445 return victim; 446 } 447 448 static int anchor_pebs_avalible(struct rb_root *root) 449 { 450 struct rb_node *p; 451 struct ubi_wl_entry *e; 452 453 ubi_rb_for_each_entry(p, e, root, u.rb) 454 if (e->pnum < UBI_FM_MAX_START) 455 return 1; 456 457 return 0; 458 } 459 460 /** 461 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. 462 * @ubi: UBI device description object 463 * @anchor: This PEB will be used as anchor PEB by fastmap 464 * 465 * The function returns a physical erase block with a given maximal number 466 * and removes it from the wl subsystem. 467 * Must be called with wl_lock held! 468 */ 469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) 470 { 471 struct ubi_wl_entry *e = NULL; 472 473 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 474 goto out; 475 476 if (anchor) 477 e = find_anchor_wl_entry(&ubi->free); 478 else 479 e = find_mean_wl_entry(ubi, &ubi->free); 480 481 if (!e) 482 goto out; 483 484 self_check_in_wl_tree(ubi, e, &ubi->free); 485 486 /* remove it from the free list, 487 * the wl subsystem does no longer know this erase block */ 488 rb_erase(&e->u.rb, &ubi->free); 489 ubi->free_count--; 490 out: 491 return e; 492 } 493 #endif 494 495 /** 496 * __wl_get_peb - get a physical eraseblock. 497 * @ubi: UBI device description object 498 * 499 * This function returns a physical eraseblock in case of success and a 500 * negative error code in case of failure. 501 */ 502 static int __wl_get_peb(struct ubi_device *ubi) 503 { 504 int err; 505 struct ubi_wl_entry *e; 506 507 retry: 508 if (!ubi->free.rb_node) { 509 if (ubi->works_count == 0) { 510 ubi_err("no free eraseblocks"); 511 ubi_assert(list_empty(&ubi->works)); 512 return -ENOSPC; 513 } 514 515 err = produce_free_peb(ubi); 516 if (err < 0) 517 return err; 518 goto retry; 519 } 520 521 e = find_mean_wl_entry(ubi, &ubi->free); 522 if (!e) { 523 ubi_err("no free eraseblocks"); 524 return -ENOSPC; 525 } 526 527 self_check_in_wl_tree(ubi, e, &ubi->free); 528 529 /* 530 * Move the physical eraseblock to the protection queue where it will 531 * be protected from being moved for some time. 532 */ 533 rb_erase(&e->u.rb, &ubi->free); 534 ubi->free_count--; 535 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 536 #ifndef CONFIG_MTD_UBI_FASTMAP 537 /* We have to enqueue e only if fastmap is disabled, 538 * is fastmap enabled prot_queue_add() will be called by 539 * ubi_wl_get_peb() after removing e from the pool. */ 540 prot_queue_add(ubi, e); 541 #endif 542 return e->pnum; 543 } 544 545 #ifdef CONFIG_MTD_UBI_FASTMAP 546 /** 547 * return_unused_pool_pebs - returns unused PEB to the free tree. 548 * @ubi: UBI device description object 549 * @pool: fastmap pool description object 550 */ 551 static void return_unused_pool_pebs(struct ubi_device *ubi, 552 struct ubi_fm_pool *pool) 553 { 554 int i; 555 struct ubi_wl_entry *e; 556 557 for (i = pool->used; i < pool->size; i++) { 558 e = ubi->lookuptbl[pool->pebs[i]]; 559 wl_tree_add(e, &ubi->free); 560 ubi->free_count++; 561 } 562 } 563 564 /** 565 * refill_wl_pool - refills all the fastmap pool used by the 566 * WL sub-system. 567 * @ubi: UBI device description object 568 */ 569 static void refill_wl_pool(struct ubi_device *ubi) 570 { 571 struct ubi_wl_entry *e; 572 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 573 574 return_unused_pool_pebs(ubi, pool); 575 576 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 577 if (!ubi->free.rb_node || 578 (ubi->free_count - ubi->beb_rsvd_pebs < 5)) 579 break; 580 581 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 582 self_check_in_wl_tree(ubi, e, &ubi->free); 583 rb_erase(&e->u.rb, &ubi->free); 584 ubi->free_count--; 585 586 pool->pebs[pool->size] = e->pnum; 587 } 588 pool->used = 0; 589 } 590 591 /** 592 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb. 593 * @ubi: UBI device description object 594 */ 595 static void refill_wl_user_pool(struct ubi_device *ubi) 596 { 597 struct ubi_fm_pool *pool = &ubi->fm_pool; 598 599 return_unused_pool_pebs(ubi, pool); 600 601 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 602 if (!ubi->free.rb_node || 603 (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 604 break; 605 606 pool->pebs[pool->size] = __wl_get_peb(ubi); 607 if (pool->pebs[pool->size] < 0) 608 break; 609 } 610 pool->used = 0; 611 } 612 613 /** 614 * ubi_refill_pools - refills all fastmap PEB pools. 615 * @ubi: UBI device description object 616 */ 617 void ubi_refill_pools(struct ubi_device *ubi) 618 { 619 spin_lock(&ubi->wl_lock); 620 refill_wl_pool(ubi); 621 refill_wl_user_pool(ubi); 622 spin_unlock(&ubi->wl_lock); 623 } 624 625 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of 626 * the fastmap pool. 627 */ 628 int ubi_wl_get_peb(struct ubi_device *ubi) 629 { 630 int ret; 631 struct ubi_fm_pool *pool = &ubi->fm_pool; 632 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; 633 634 if (!pool->size || !wl_pool->size || pool->used == pool->size || 635 wl_pool->used == wl_pool->size) 636 ubi_update_fastmap(ubi); 637 638 /* we got not a single free PEB */ 639 if (!pool->size) 640 ret = -ENOSPC; 641 else { 642 spin_lock(&ubi->wl_lock); 643 ret = pool->pebs[pool->used++]; 644 prot_queue_add(ubi, ubi->lookuptbl[ret]); 645 spin_unlock(&ubi->wl_lock); 646 } 647 648 return ret; 649 } 650 651 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. 652 * 653 * @ubi: UBI device description object 654 */ 655 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 656 { 657 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 658 int pnum; 659 660 if (pool->used == pool->size || !pool->size) { 661 /* We cannot update the fastmap here because this 662 * function is called in atomic context. 663 * Let's fail here and refill/update it as soon as possible. */ 664 schedule_work(&ubi->fm_work); 665 return NULL; 666 } else { 667 pnum = pool->pebs[pool->used++]; 668 return ubi->lookuptbl[pnum]; 669 } 670 } 671 #else 672 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 673 { 674 struct ubi_wl_entry *e; 675 676 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 677 self_check_in_wl_tree(ubi, e, &ubi->free); 678 rb_erase(&e->u.rb, &ubi->free); 679 680 return e; 681 } 682 683 int ubi_wl_get_peb(struct ubi_device *ubi) 684 { 685 int peb, err; 686 687 spin_lock(&ubi->wl_lock); 688 peb = __wl_get_peb(ubi); 689 spin_unlock(&ubi->wl_lock); 690 691 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset, 692 ubi->peb_size - ubi->vid_hdr_aloffset); 693 if (err) { 694 ubi_err("new PEB %d does not contain all 0xFF bytes", peb); 695 return err; 696 } 697 698 return peb; 699 } 700 #endif 701 702 /** 703 * prot_queue_del - remove a physical eraseblock from the protection queue. 704 * @ubi: UBI device description object 705 * @pnum: the physical eraseblock to remove 706 * 707 * This function deletes PEB @pnum from the protection queue and returns zero 708 * in case of success and %-ENODEV if the PEB was not found. 709 */ 710 static int prot_queue_del(struct ubi_device *ubi, int pnum) 711 { 712 struct ubi_wl_entry *e; 713 714 e = ubi->lookuptbl[pnum]; 715 if (!e) 716 return -ENODEV; 717 718 if (self_check_in_pq(ubi, e)) 719 return -ENODEV; 720 721 list_del(&e->u.list); 722 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 723 return 0; 724 } 725 726 /** 727 * sync_erase - synchronously erase a physical eraseblock. 728 * @ubi: UBI device description object 729 * @e: the the physical eraseblock to erase 730 * @torture: if the physical eraseblock has to be tortured 731 * 732 * This function returns zero in case of success and a negative error code in 733 * case of failure. 734 */ 735 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 736 int torture) 737 { 738 int err; 739 struct ubi_ec_hdr *ec_hdr; 740 unsigned long long ec = e->ec; 741 742 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 743 744 err = self_check_ec(ubi, e->pnum, e->ec); 745 if (err) 746 return -EINVAL; 747 748 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 749 if (!ec_hdr) 750 return -ENOMEM; 751 752 err = ubi_io_sync_erase(ubi, e->pnum, torture); 753 if (err < 0) 754 goto out_free; 755 756 ec += err; 757 if (ec > UBI_MAX_ERASECOUNTER) { 758 /* 759 * Erase counter overflow. Upgrade UBI and use 64-bit 760 * erase counters internally. 761 */ 762 ubi_err("erase counter overflow at PEB %d, EC %llu", 763 e->pnum, ec); 764 err = -EINVAL; 765 goto out_free; 766 } 767 768 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 769 770 ec_hdr->ec = cpu_to_be64(ec); 771 772 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 773 if (err) 774 goto out_free; 775 776 e->ec = ec; 777 spin_lock(&ubi->wl_lock); 778 if (e->ec > ubi->max_ec) 779 ubi->max_ec = e->ec; 780 spin_unlock(&ubi->wl_lock); 781 782 out_free: 783 kfree(ec_hdr); 784 return err; 785 } 786 787 /** 788 * serve_prot_queue - check if it is time to stop protecting PEBs. 789 * @ubi: UBI device description object 790 * 791 * This function is called after each erase operation and removes PEBs from the 792 * tail of the protection queue. These PEBs have been protected for long enough 793 * and should be moved to the used tree. 794 */ 795 static void serve_prot_queue(struct ubi_device *ubi) 796 { 797 struct ubi_wl_entry *e, *tmp; 798 int count; 799 800 /* 801 * There may be several protected physical eraseblock to remove, 802 * process them all. 803 */ 804 repeat: 805 count = 0; 806 spin_lock(&ubi->wl_lock); 807 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 808 dbg_wl("PEB %d EC %d protection over, move to used tree", 809 e->pnum, e->ec); 810 811 list_del(&e->u.list); 812 wl_tree_add(e, &ubi->used); 813 if (count++ > 32) { 814 /* 815 * Let's be nice and avoid holding the spinlock for 816 * too long. 817 */ 818 spin_unlock(&ubi->wl_lock); 819 cond_resched(); 820 goto repeat; 821 } 822 } 823 824 ubi->pq_head += 1; 825 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 826 ubi->pq_head = 0; 827 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 828 spin_unlock(&ubi->wl_lock); 829 } 830 831 /** 832 * __schedule_ubi_work - schedule a work. 833 * @ubi: UBI device description object 834 * @wrk: the work to schedule 835 * 836 * This function adds a work defined by @wrk to the tail of the pending works 837 * list. Can only be used of ubi->work_sem is already held in read mode! 838 */ 839 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 840 { 841 spin_lock(&ubi->wl_lock); 842 list_add_tail(&wrk->list, &ubi->works); 843 ubi_assert(ubi->works_count >= 0); 844 ubi->works_count += 1; 845 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 846 wake_up_process(ubi->bgt_thread); 847 spin_unlock(&ubi->wl_lock); 848 } 849 850 /** 851 * schedule_ubi_work - schedule a work. 852 * @ubi: UBI device description object 853 * @wrk: the work to schedule 854 * 855 * This function adds a work defined by @wrk to the tail of the pending works 856 * list. 857 */ 858 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 859 { 860 down_read(&ubi->work_sem); 861 __schedule_ubi_work(ubi, wrk); 862 up_read(&ubi->work_sem); 863 } 864 865 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 866 int cancel); 867 868 #ifdef CONFIG_MTD_UBI_FASTMAP 869 /** 870 * ubi_is_erase_work - checks whether a work is erase work. 871 * @wrk: The work object to be checked 872 */ 873 int ubi_is_erase_work(struct ubi_work *wrk) 874 { 875 return wrk->func == erase_worker; 876 } 877 #endif 878 879 /** 880 * schedule_erase - schedule an erase work. 881 * @ubi: UBI device description object 882 * @e: the WL entry of the physical eraseblock to erase 883 * @vol_id: the volume ID that last used this PEB 884 * @lnum: the last used logical eraseblock number for the PEB 885 * @torture: if the physical eraseblock has to be tortured 886 * 887 * This function returns zero in case of success and a %-ENOMEM in case of 888 * failure. 889 */ 890 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 891 int vol_id, int lnum, int torture) 892 { 893 struct ubi_work *wl_wrk; 894 895 ubi_assert(e); 896 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 897 898 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 899 e->pnum, e->ec, torture); 900 901 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 902 if (!wl_wrk) 903 return -ENOMEM; 904 905 wl_wrk->func = &erase_worker; 906 wl_wrk->e = e; 907 wl_wrk->vol_id = vol_id; 908 wl_wrk->lnum = lnum; 909 wl_wrk->torture = torture; 910 911 schedule_ubi_work(ubi, wl_wrk); 912 return 0; 913 } 914 915 /** 916 * do_sync_erase - run the erase worker synchronously. 917 * @ubi: UBI device description object 918 * @e: the WL entry of the physical eraseblock to erase 919 * @vol_id: the volume ID that last used this PEB 920 * @lnum: the last used logical eraseblock number for the PEB 921 * @torture: if the physical eraseblock has to be tortured 922 * 923 */ 924 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 925 int vol_id, int lnum, int torture) 926 { 927 struct ubi_work *wl_wrk; 928 929 dbg_wl("sync erase of PEB %i", e->pnum); 930 931 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 932 if (!wl_wrk) 933 return -ENOMEM; 934 935 wl_wrk->e = e; 936 wl_wrk->vol_id = vol_id; 937 wl_wrk->lnum = lnum; 938 wl_wrk->torture = torture; 939 940 return erase_worker(ubi, wl_wrk, 0); 941 } 942 943 #ifdef CONFIG_MTD_UBI_FASTMAP 944 /** 945 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling 946 * sub-system. 947 * see: ubi_wl_put_peb() 948 * 949 * @ubi: UBI device description object 950 * @fm_e: physical eraseblock to return 951 * @lnum: the last used logical eraseblock number for the PEB 952 * @torture: if this physical eraseblock has to be tortured 953 */ 954 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, 955 int lnum, int torture) 956 { 957 struct ubi_wl_entry *e; 958 int vol_id, pnum = fm_e->pnum; 959 960 dbg_wl("PEB %d", pnum); 961 962 ubi_assert(pnum >= 0); 963 ubi_assert(pnum < ubi->peb_count); 964 965 spin_lock(&ubi->wl_lock); 966 e = ubi->lookuptbl[pnum]; 967 968 /* This can happen if we recovered from a fastmap the very 969 * first time and writing now a new one. In this case the wl system 970 * has never seen any PEB used by the original fastmap. 971 */ 972 if (!e) { 973 e = fm_e; 974 ubi_assert(e->ec >= 0); 975 ubi->lookuptbl[pnum] = e; 976 } else { 977 e->ec = fm_e->ec; 978 kfree(fm_e); 979 } 980 981 spin_unlock(&ubi->wl_lock); 982 983 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; 984 return schedule_erase(ubi, e, vol_id, lnum, torture); 985 } 986 #endif 987 988 /** 989 * wear_leveling_worker - wear-leveling worker function. 990 * @ubi: UBI device description object 991 * @wrk: the work object 992 * @cancel: non-zero if the worker has to free memory and exit 993 * 994 * This function copies a more worn out physical eraseblock to a less worn out 995 * one. Returns zero in case of success and a negative error code in case of 996 * failure. 997 */ 998 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 999 int cancel) 1000 { 1001 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 1002 int vol_id = -1, uninitialized_var(lnum); 1003 #ifdef CONFIG_MTD_UBI_FASTMAP 1004 int anchor = wrk->anchor; 1005 #endif 1006 struct ubi_wl_entry *e1, *e2; 1007 struct ubi_vid_hdr *vid_hdr; 1008 1009 kfree(wrk); 1010 if (cancel) 1011 return 0; 1012 1013 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1014 if (!vid_hdr) 1015 return -ENOMEM; 1016 1017 mutex_lock(&ubi->move_mutex); 1018 spin_lock(&ubi->wl_lock); 1019 ubi_assert(!ubi->move_from && !ubi->move_to); 1020 ubi_assert(!ubi->move_to_put); 1021 1022 if (!ubi->free.rb_node || 1023 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 1024 /* 1025 * No free physical eraseblocks? Well, they must be waiting in 1026 * the queue to be erased. Cancel movement - it will be 1027 * triggered again when a free physical eraseblock appears. 1028 * 1029 * No used physical eraseblocks? They must be temporarily 1030 * protected from being moved. They will be moved to the 1031 * @ubi->used tree later and the wear-leveling will be 1032 * triggered again. 1033 */ 1034 dbg_wl("cancel WL, a list is empty: free %d, used %d", 1035 !ubi->free.rb_node, !ubi->used.rb_node); 1036 goto out_cancel; 1037 } 1038 1039 #ifdef CONFIG_MTD_UBI_FASTMAP 1040 /* Check whether we need to produce an anchor PEB */ 1041 if (!anchor) 1042 anchor = !anchor_pebs_avalible(&ubi->free); 1043 1044 if (anchor) { 1045 e1 = find_anchor_wl_entry(&ubi->used); 1046 if (!e1) 1047 goto out_cancel; 1048 e2 = get_peb_for_wl(ubi); 1049 if (!e2) 1050 goto out_cancel; 1051 1052 self_check_in_wl_tree(ubi, e1, &ubi->used); 1053 rb_erase(&e1->u.rb, &ubi->used); 1054 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 1055 } else if (!ubi->scrub.rb_node) { 1056 #else 1057 if (!ubi->scrub.rb_node) { 1058 #endif 1059 /* 1060 * Now pick the least worn-out used physical eraseblock and a 1061 * highly worn-out free physical eraseblock. If the erase 1062 * counters differ much enough, start wear-leveling. 1063 */ 1064 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1065 e2 = get_peb_for_wl(ubi); 1066 if (!e2) 1067 goto out_cancel; 1068 1069 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 1070 dbg_wl("no WL needed: min used EC %d, max free EC %d", 1071 e1->ec, e2->ec); 1072 goto out_cancel; 1073 } 1074 self_check_in_wl_tree(ubi, e1, &ubi->used); 1075 rb_erase(&e1->u.rb, &ubi->used); 1076 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 1077 e1->pnum, e1->ec, e2->pnum, e2->ec); 1078 } else { 1079 /* Perform scrubbing */ 1080 scrubbing = 1; 1081 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 1082 e2 = get_peb_for_wl(ubi); 1083 if (!e2) 1084 goto out_cancel; 1085 1086 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 1087 rb_erase(&e1->u.rb, &ubi->scrub); 1088 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 1089 } 1090 1091 ubi->move_from = e1; 1092 ubi->move_to = e2; 1093 spin_unlock(&ubi->wl_lock); 1094 1095 /* 1096 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 1097 * We so far do not know which logical eraseblock our physical 1098 * eraseblock (@e1) belongs to. We have to read the volume identifier 1099 * header first. 1100 * 1101 * Note, we are protected from this PEB being unmapped and erased. The 1102 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 1103 * which is being moved was unmapped. 1104 */ 1105 1106 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 1107 if (err && err != UBI_IO_BITFLIPS) { 1108 if (err == UBI_IO_FF) { 1109 /* 1110 * We are trying to move PEB without a VID header. UBI 1111 * always write VID headers shortly after the PEB was 1112 * given, so we have a situation when it has not yet 1113 * had a chance to write it, because it was preempted. 1114 * So add this PEB to the protection queue so far, 1115 * because presumably more data will be written there 1116 * (including the missing VID header), and then we'll 1117 * move it. 1118 */ 1119 dbg_wl("PEB %d has no VID header", e1->pnum); 1120 protect = 1; 1121 goto out_not_moved; 1122 } else if (err == UBI_IO_FF_BITFLIPS) { 1123 /* 1124 * The same situation as %UBI_IO_FF, but bit-flips were 1125 * detected. It is better to schedule this PEB for 1126 * scrubbing. 1127 */ 1128 dbg_wl("PEB %d has no VID header but has bit-flips", 1129 e1->pnum); 1130 scrubbing = 1; 1131 goto out_not_moved; 1132 } 1133 1134 ubi_err("error %d while reading VID header from PEB %d", 1135 err, e1->pnum); 1136 goto out_error; 1137 } 1138 1139 vol_id = be32_to_cpu(vid_hdr->vol_id); 1140 lnum = be32_to_cpu(vid_hdr->lnum); 1141 1142 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 1143 if (err) { 1144 if (err == MOVE_CANCEL_RACE) { 1145 /* 1146 * The LEB has not been moved because the volume is 1147 * being deleted or the PEB has been put meanwhile. We 1148 * should prevent this PEB from being selected for 1149 * wear-leveling movement again, so put it to the 1150 * protection queue. 1151 */ 1152 protect = 1; 1153 goto out_not_moved; 1154 } 1155 if (err == MOVE_RETRY) { 1156 scrubbing = 1; 1157 goto out_not_moved; 1158 } 1159 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 1160 err == MOVE_TARGET_RD_ERR) { 1161 /* 1162 * Target PEB had bit-flips or write error - torture it. 1163 */ 1164 torture = 1; 1165 goto out_not_moved; 1166 } 1167 1168 if (err == MOVE_SOURCE_RD_ERR) { 1169 /* 1170 * An error happened while reading the source PEB. Do 1171 * not switch to R/O mode in this case, and give the 1172 * upper layers a possibility to recover from this, 1173 * e.g. by unmapping corresponding LEB. Instead, just 1174 * put this PEB to the @ubi->erroneous list to prevent 1175 * UBI from trying to move it over and over again. 1176 */ 1177 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 1178 ubi_err("too many erroneous eraseblocks (%d)", 1179 ubi->erroneous_peb_count); 1180 goto out_error; 1181 } 1182 erroneous = 1; 1183 goto out_not_moved; 1184 } 1185 1186 if (err < 0) 1187 goto out_error; 1188 1189 ubi_assert(0); 1190 } 1191 1192 /* The PEB has been successfully moved */ 1193 if (scrubbing) 1194 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 1195 e1->pnum, vol_id, lnum, e2->pnum); 1196 ubi_free_vid_hdr(ubi, vid_hdr); 1197 1198 spin_lock(&ubi->wl_lock); 1199 if (!ubi->move_to_put) { 1200 wl_tree_add(e2, &ubi->used); 1201 e2 = NULL; 1202 } 1203 ubi->move_from = ubi->move_to = NULL; 1204 ubi->move_to_put = ubi->wl_scheduled = 0; 1205 spin_unlock(&ubi->wl_lock); 1206 1207 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 1208 if (err) { 1209 kmem_cache_free(ubi_wl_entry_slab, e1); 1210 if (e2) 1211 kmem_cache_free(ubi_wl_entry_slab, e2); 1212 goto out_ro; 1213 } 1214 1215 if (e2) { 1216 /* 1217 * Well, the target PEB was put meanwhile, schedule it for 1218 * erasure. 1219 */ 1220 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 1221 e2->pnum, vol_id, lnum); 1222 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 1223 if (err) { 1224 kmem_cache_free(ubi_wl_entry_slab, e2); 1225 goto out_ro; 1226 } 1227 } 1228 1229 dbg_wl("done"); 1230 mutex_unlock(&ubi->move_mutex); 1231 return 0; 1232 1233 /* 1234 * For some reasons the LEB was not moved, might be an error, might be 1235 * something else. @e1 was not changed, so return it back. @e2 might 1236 * have been changed, schedule it for erasure. 1237 */ 1238 out_not_moved: 1239 if (vol_id != -1) 1240 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 1241 e1->pnum, vol_id, lnum, e2->pnum, err); 1242 else 1243 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 1244 e1->pnum, e2->pnum, err); 1245 spin_lock(&ubi->wl_lock); 1246 if (protect) 1247 prot_queue_add(ubi, e1); 1248 else if (erroneous) { 1249 wl_tree_add(e1, &ubi->erroneous); 1250 ubi->erroneous_peb_count += 1; 1251 } else if (scrubbing) 1252 wl_tree_add(e1, &ubi->scrub); 1253 else 1254 wl_tree_add(e1, &ubi->used); 1255 ubi_assert(!ubi->move_to_put); 1256 ubi->move_from = ubi->move_to = NULL; 1257 ubi->wl_scheduled = 0; 1258 spin_unlock(&ubi->wl_lock); 1259 1260 ubi_free_vid_hdr(ubi, vid_hdr); 1261 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 1262 if (err) { 1263 kmem_cache_free(ubi_wl_entry_slab, e2); 1264 goto out_ro; 1265 } 1266 mutex_unlock(&ubi->move_mutex); 1267 return 0; 1268 1269 out_error: 1270 if (vol_id != -1) 1271 ubi_err("error %d while moving PEB %d to PEB %d", 1272 err, e1->pnum, e2->pnum); 1273 else 1274 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 1275 err, e1->pnum, vol_id, lnum, e2->pnum); 1276 spin_lock(&ubi->wl_lock); 1277 ubi->move_from = ubi->move_to = NULL; 1278 ubi->move_to_put = ubi->wl_scheduled = 0; 1279 spin_unlock(&ubi->wl_lock); 1280 1281 ubi_free_vid_hdr(ubi, vid_hdr); 1282 kmem_cache_free(ubi_wl_entry_slab, e1); 1283 kmem_cache_free(ubi_wl_entry_slab, e2); 1284 1285 out_ro: 1286 ubi_ro_mode(ubi); 1287 mutex_unlock(&ubi->move_mutex); 1288 ubi_assert(err != 0); 1289 return err < 0 ? err : -EIO; 1290 1291 out_cancel: 1292 ubi->wl_scheduled = 0; 1293 spin_unlock(&ubi->wl_lock); 1294 mutex_unlock(&ubi->move_mutex); 1295 ubi_free_vid_hdr(ubi, vid_hdr); 1296 return 0; 1297 } 1298 1299 /** 1300 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1301 * @ubi: UBI device description object 1302 * @nested: set to non-zero if this function is called from UBI worker 1303 * 1304 * This function checks if it is time to start wear-leveling and schedules it 1305 * if yes. This function returns zero in case of success and a negative error 1306 * code in case of failure. 1307 */ 1308 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1309 { 1310 int err = 0; 1311 struct ubi_wl_entry *e1; 1312 struct ubi_wl_entry *e2; 1313 struct ubi_work *wrk; 1314 1315 spin_lock(&ubi->wl_lock); 1316 if (ubi->wl_scheduled) 1317 /* Wear-leveling is already in the work queue */ 1318 goto out_unlock; 1319 1320 /* 1321 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1322 * the WL worker has to be scheduled anyway. 1323 */ 1324 if (!ubi->scrub.rb_node) { 1325 if (!ubi->used.rb_node || !ubi->free.rb_node) 1326 /* No physical eraseblocks - no deal */ 1327 goto out_unlock; 1328 1329 /* 1330 * We schedule wear-leveling only if the difference between the 1331 * lowest erase counter of used physical eraseblocks and a high 1332 * erase counter of free physical eraseblocks is greater than 1333 * %UBI_WL_THRESHOLD. 1334 */ 1335 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1336 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1337 1338 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1339 goto out_unlock; 1340 dbg_wl("schedule wear-leveling"); 1341 } else 1342 dbg_wl("schedule scrubbing"); 1343 1344 ubi->wl_scheduled = 1; 1345 spin_unlock(&ubi->wl_lock); 1346 1347 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1348 if (!wrk) { 1349 err = -ENOMEM; 1350 goto out_cancel; 1351 } 1352 1353 wrk->anchor = 0; 1354 wrk->func = &wear_leveling_worker; 1355 if (nested) 1356 __schedule_ubi_work(ubi, wrk); 1357 else 1358 schedule_ubi_work(ubi, wrk); 1359 return err; 1360 1361 out_cancel: 1362 spin_lock(&ubi->wl_lock); 1363 ubi->wl_scheduled = 0; 1364 out_unlock: 1365 spin_unlock(&ubi->wl_lock); 1366 return err; 1367 } 1368 1369 #ifdef CONFIG_MTD_UBI_FASTMAP 1370 /** 1371 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. 1372 * @ubi: UBI device description object 1373 */ 1374 int ubi_ensure_anchor_pebs(struct ubi_device *ubi) 1375 { 1376 struct ubi_work *wrk; 1377 1378 spin_lock(&ubi->wl_lock); 1379 if (ubi->wl_scheduled) { 1380 spin_unlock(&ubi->wl_lock); 1381 return 0; 1382 } 1383 ubi->wl_scheduled = 1; 1384 spin_unlock(&ubi->wl_lock); 1385 1386 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1387 if (!wrk) { 1388 spin_lock(&ubi->wl_lock); 1389 ubi->wl_scheduled = 0; 1390 spin_unlock(&ubi->wl_lock); 1391 return -ENOMEM; 1392 } 1393 1394 wrk->anchor = 1; 1395 wrk->func = &wear_leveling_worker; 1396 schedule_ubi_work(ubi, wrk); 1397 return 0; 1398 } 1399 #endif 1400 1401 /** 1402 * erase_worker - physical eraseblock erase worker function. 1403 * @ubi: UBI device description object 1404 * @wl_wrk: the work object 1405 * @cancel: non-zero if the worker has to free memory and exit 1406 * 1407 * This function erases a physical eraseblock and perform torture testing if 1408 * needed. It also takes care about marking the physical eraseblock bad if 1409 * needed. Returns zero in case of success and a negative error code in case of 1410 * failure. 1411 */ 1412 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1413 int cancel) 1414 { 1415 struct ubi_wl_entry *e = wl_wrk->e; 1416 int pnum = e->pnum; 1417 int vol_id = wl_wrk->vol_id; 1418 int lnum = wl_wrk->lnum; 1419 int err, available_consumed = 0; 1420 1421 if (cancel) { 1422 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1423 kfree(wl_wrk); 1424 kmem_cache_free(ubi_wl_entry_slab, e); 1425 return 0; 1426 } 1427 1428 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1429 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1430 1431 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1432 1433 err = sync_erase(ubi, e, wl_wrk->torture); 1434 if (!err) { 1435 /* Fine, we've erased it successfully */ 1436 kfree(wl_wrk); 1437 1438 spin_lock(&ubi->wl_lock); 1439 wl_tree_add(e, &ubi->free); 1440 ubi->free_count++; 1441 spin_unlock(&ubi->wl_lock); 1442 1443 /* 1444 * One more erase operation has happened, take care about 1445 * protected physical eraseblocks. 1446 */ 1447 serve_prot_queue(ubi); 1448 1449 /* And take care about wear-leveling */ 1450 err = ensure_wear_leveling(ubi, 1); 1451 return err; 1452 } 1453 1454 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1455 kfree(wl_wrk); 1456 1457 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1458 err == -EBUSY) { 1459 int err1; 1460 1461 /* Re-schedule the LEB for erasure */ 1462 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1463 if (err1) { 1464 err = err1; 1465 goto out_ro; 1466 } 1467 return err; 1468 } 1469 1470 kmem_cache_free(ubi_wl_entry_slab, e); 1471 if (err != -EIO) 1472 /* 1473 * If this is not %-EIO, we have no idea what to do. Scheduling 1474 * this physical eraseblock for erasure again would cause 1475 * errors again and again. Well, lets switch to R/O mode. 1476 */ 1477 goto out_ro; 1478 1479 /* It is %-EIO, the PEB went bad */ 1480 1481 if (!ubi->bad_allowed) { 1482 ubi_err("bad physical eraseblock %d detected", pnum); 1483 goto out_ro; 1484 } 1485 1486 spin_lock(&ubi->volumes_lock); 1487 if (ubi->beb_rsvd_pebs == 0) { 1488 if (ubi->avail_pebs == 0) { 1489 spin_unlock(&ubi->volumes_lock); 1490 ubi_err("no reserved/available physical eraseblocks"); 1491 goto out_ro; 1492 } 1493 ubi->avail_pebs -= 1; 1494 available_consumed = 1; 1495 } 1496 spin_unlock(&ubi->volumes_lock); 1497 1498 ubi_msg("mark PEB %d as bad", pnum); 1499 err = ubi_io_mark_bad(ubi, pnum); 1500 if (err) 1501 goto out_ro; 1502 1503 spin_lock(&ubi->volumes_lock); 1504 if (ubi->beb_rsvd_pebs > 0) { 1505 if (available_consumed) { 1506 /* 1507 * The amount of reserved PEBs increased since we last 1508 * checked. 1509 */ 1510 ubi->avail_pebs += 1; 1511 available_consumed = 0; 1512 } 1513 ubi->beb_rsvd_pebs -= 1; 1514 } 1515 ubi->bad_peb_count += 1; 1516 ubi->good_peb_count -= 1; 1517 ubi_calculate_reserved(ubi); 1518 if (available_consumed) 1519 ubi_warn("no PEBs in the reserved pool, used an available PEB"); 1520 else if (ubi->beb_rsvd_pebs) 1521 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1522 else 1523 ubi_warn("last PEB from the reserve was used"); 1524 spin_unlock(&ubi->volumes_lock); 1525 1526 return err; 1527 1528 out_ro: 1529 if (available_consumed) { 1530 spin_lock(&ubi->volumes_lock); 1531 ubi->avail_pebs += 1; 1532 spin_unlock(&ubi->volumes_lock); 1533 } 1534 ubi_ro_mode(ubi); 1535 return err; 1536 } 1537 1538 /** 1539 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1540 * @ubi: UBI device description object 1541 * @vol_id: the volume ID that last used this PEB 1542 * @lnum: the last used logical eraseblock number for the PEB 1543 * @pnum: physical eraseblock to return 1544 * @torture: if this physical eraseblock has to be tortured 1545 * 1546 * This function is called to return physical eraseblock @pnum to the pool of 1547 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1548 * occurred to this @pnum and it has to be tested. This function returns zero 1549 * in case of success, and a negative error code in case of failure. 1550 */ 1551 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1552 int pnum, int torture) 1553 { 1554 int err; 1555 struct ubi_wl_entry *e; 1556 1557 dbg_wl("PEB %d", pnum); 1558 ubi_assert(pnum >= 0); 1559 ubi_assert(pnum < ubi->peb_count); 1560 1561 retry: 1562 spin_lock(&ubi->wl_lock); 1563 e = ubi->lookuptbl[pnum]; 1564 if (e == ubi->move_from) { 1565 /* 1566 * User is putting the physical eraseblock which was selected to 1567 * be moved. It will be scheduled for erasure in the 1568 * wear-leveling worker. 1569 */ 1570 dbg_wl("PEB %d is being moved, wait", pnum); 1571 spin_unlock(&ubi->wl_lock); 1572 1573 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1574 mutex_lock(&ubi->move_mutex); 1575 mutex_unlock(&ubi->move_mutex); 1576 goto retry; 1577 } else if (e == ubi->move_to) { 1578 /* 1579 * User is putting the physical eraseblock which was selected 1580 * as the target the data is moved to. It may happen if the EBA 1581 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1582 * but the WL sub-system has not put the PEB to the "used" tree 1583 * yet, but it is about to do this. So we just set a flag which 1584 * will tell the WL worker that the PEB is not needed anymore 1585 * and should be scheduled for erasure. 1586 */ 1587 dbg_wl("PEB %d is the target of data moving", pnum); 1588 ubi_assert(!ubi->move_to_put); 1589 ubi->move_to_put = 1; 1590 spin_unlock(&ubi->wl_lock); 1591 return 0; 1592 } else { 1593 if (in_wl_tree(e, &ubi->used)) { 1594 self_check_in_wl_tree(ubi, e, &ubi->used); 1595 rb_erase(&e->u.rb, &ubi->used); 1596 } else if (in_wl_tree(e, &ubi->scrub)) { 1597 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1598 rb_erase(&e->u.rb, &ubi->scrub); 1599 } else if (in_wl_tree(e, &ubi->erroneous)) { 1600 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1601 rb_erase(&e->u.rb, &ubi->erroneous); 1602 ubi->erroneous_peb_count -= 1; 1603 ubi_assert(ubi->erroneous_peb_count >= 0); 1604 /* Erroneous PEBs should be tortured */ 1605 torture = 1; 1606 } else { 1607 err = prot_queue_del(ubi, e->pnum); 1608 if (err) { 1609 ubi_err("PEB %d not found", pnum); 1610 ubi_ro_mode(ubi); 1611 spin_unlock(&ubi->wl_lock); 1612 return err; 1613 } 1614 } 1615 } 1616 spin_unlock(&ubi->wl_lock); 1617 1618 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1619 if (err) { 1620 spin_lock(&ubi->wl_lock); 1621 wl_tree_add(e, &ubi->used); 1622 spin_unlock(&ubi->wl_lock); 1623 } 1624 1625 return err; 1626 } 1627 1628 /** 1629 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1630 * @ubi: UBI device description object 1631 * @pnum: the physical eraseblock to schedule 1632 * 1633 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1634 * needs scrubbing. This function schedules a physical eraseblock for 1635 * scrubbing which is done in background. This function returns zero in case of 1636 * success and a negative error code in case of failure. 1637 */ 1638 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1639 { 1640 struct ubi_wl_entry *e; 1641 1642 ubi_msg("schedule PEB %d for scrubbing", pnum); 1643 1644 retry: 1645 spin_lock(&ubi->wl_lock); 1646 e = ubi->lookuptbl[pnum]; 1647 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1648 in_wl_tree(e, &ubi->erroneous)) { 1649 spin_unlock(&ubi->wl_lock); 1650 return 0; 1651 } 1652 1653 if (e == ubi->move_to) { 1654 /* 1655 * This physical eraseblock was used to move data to. The data 1656 * was moved but the PEB was not yet inserted to the proper 1657 * tree. We should just wait a little and let the WL worker 1658 * proceed. 1659 */ 1660 spin_unlock(&ubi->wl_lock); 1661 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1662 yield(); 1663 goto retry; 1664 } 1665 1666 if (in_wl_tree(e, &ubi->used)) { 1667 self_check_in_wl_tree(ubi, e, &ubi->used); 1668 rb_erase(&e->u.rb, &ubi->used); 1669 } else { 1670 int err; 1671 1672 err = prot_queue_del(ubi, e->pnum); 1673 if (err) { 1674 ubi_err("PEB %d not found", pnum); 1675 ubi_ro_mode(ubi); 1676 spin_unlock(&ubi->wl_lock); 1677 return err; 1678 } 1679 } 1680 1681 wl_tree_add(e, &ubi->scrub); 1682 spin_unlock(&ubi->wl_lock); 1683 1684 /* 1685 * Technically scrubbing is the same as wear-leveling, so it is done 1686 * by the WL worker. 1687 */ 1688 return ensure_wear_leveling(ubi, 0); 1689 } 1690 1691 /** 1692 * ubi_wl_flush - flush all pending works. 1693 * @ubi: UBI device description object 1694 * @vol_id: the volume id to flush for 1695 * @lnum: the logical eraseblock number to flush for 1696 * 1697 * This function executes all pending works for a particular volume id / 1698 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1699 * acts as a wildcard for all of the corresponding volume numbers or logical 1700 * eraseblock numbers. It returns zero in case of success and a negative error 1701 * code in case of failure. 1702 */ 1703 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1704 { 1705 int err = 0; 1706 int found = 1; 1707 1708 /* 1709 * Erase while the pending works queue is not empty, but not more than 1710 * the number of currently pending works. 1711 */ 1712 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1713 vol_id, lnum, ubi->works_count); 1714 1715 while (found) { 1716 struct ubi_work *wrk; 1717 found = 0; 1718 1719 down_read(&ubi->work_sem); 1720 spin_lock(&ubi->wl_lock); 1721 list_for_each_entry(wrk, &ubi->works, list) { 1722 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1723 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1724 list_del(&wrk->list); 1725 ubi->works_count -= 1; 1726 ubi_assert(ubi->works_count >= 0); 1727 spin_unlock(&ubi->wl_lock); 1728 1729 err = wrk->func(ubi, wrk, 0); 1730 if (err) { 1731 up_read(&ubi->work_sem); 1732 return err; 1733 } 1734 1735 spin_lock(&ubi->wl_lock); 1736 found = 1; 1737 break; 1738 } 1739 } 1740 spin_unlock(&ubi->wl_lock); 1741 up_read(&ubi->work_sem); 1742 } 1743 1744 /* 1745 * Make sure all the works which have been done in parallel are 1746 * finished. 1747 */ 1748 down_write(&ubi->work_sem); 1749 up_write(&ubi->work_sem); 1750 1751 return err; 1752 } 1753 1754 /** 1755 * tree_destroy - destroy an RB-tree. 1756 * @root: the root of the tree to destroy 1757 */ 1758 static void tree_destroy(struct rb_root *root) 1759 { 1760 struct rb_node *rb; 1761 struct ubi_wl_entry *e; 1762 1763 rb = root->rb_node; 1764 while (rb) { 1765 if (rb->rb_left) 1766 rb = rb->rb_left; 1767 else if (rb->rb_right) 1768 rb = rb->rb_right; 1769 else { 1770 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1771 1772 rb = rb_parent(rb); 1773 if (rb) { 1774 if (rb->rb_left == &e->u.rb) 1775 rb->rb_left = NULL; 1776 else 1777 rb->rb_right = NULL; 1778 } 1779 1780 kmem_cache_free(ubi_wl_entry_slab, e); 1781 } 1782 } 1783 } 1784 1785 /** 1786 * ubi_thread - UBI background thread. 1787 * @u: the UBI device description object pointer 1788 */ 1789 int ubi_thread(void *u) 1790 { 1791 int failures = 0; 1792 struct ubi_device *ubi = u; 1793 1794 ubi_msg("background thread \"%s\" started, PID %d", 1795 ubi->bgt_name, task_pid_nr(current)); 1796 1797 set_freezable(); 1798 for (;;) { 1799 int err; 1800 1801 if (kthread_should_stop()) 1802 break; 1803 1804 if (try_to_freeze()) 1805 continue; 1806 1807 spin_lock(&ubi->wl_lock); 1808 if (list_empty(&ubi->works) || ubi->ro_mode || 1809 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1810 set_current_state(TASK_INTERRUPTIBLE); 1811 spin_unlock(&ubi->wl_lock); 1812 schedule(); 1813 continue; 1814 } 1815 spin_unlock(&ubi->wl_lock); 1816 1817 err = do_work(ubi); 1818 if (err) { 1819 ubi_err("%s: work failed with error code %d", 1820 ubi->bgt_name, err); 1821 if (failures++ > WL_MAX_FAILURES) { 1822 /* 1823 * Too many failures, disable the thread and 1824 * switch to read-only mode. 1825 */ 1826 ubi_msg("%s: %d consecutive failures", 1827 ubi->bgt_name, WL_MAX_FAILURES); 1828 ubi_ro_mode(ubi); 1829 ubi->thread_enabled = 0; 1830 continue; 1831 } 1832 } else 1833 failures = 0; 1834 1835 cond_resched(); 1836 } 1837 1838 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1839 return 0; 1840 } 1841 1842 /** 1843 * cancel_pending - cancel all pending works. 1844 * @ubi: UBI device description object 1845 */ 1846 static void cancel_pending(struct ubi_device *ubi) 1847 { 1848 while (!list_empty(&ubi->works)) { 1849 struct ubi_work *wrk; 1850 1851 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1852 list_del(&wrk->list); 1853 wrk->func(ubi, wrk, 1); 1854 ubi->works_count -= 1; 1855 ubi_assert(ubi->works_count >= 0); 1856 } 1857 } 1858 1859 /** 1860 * ubi_wl_init - initialize the WL sub-system using attaching information. 1861 * @ubi: UBI device description object 1862 * @ai: attaching information 1863 * 1864 * This function returns zero in case of success, and a negative error code in 1865 * case of failure. 1866 */ 1867 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1868 { 1869 int err, i, reserved_pebs, found_pebs = 0; 1870 struct rb_node *rb1, *rb2; 1871 struct ubi_ainf_volume *av; 1872 struct ubi_ainf_peb *aeb, *tmp; 1873 struct ubi_wl_entry *e; 1874 1875 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1876 spin_lock_init(&ubi->wl_lock); 1877 mutex_init(&ubi->move_mutex); 1878 init_rwsem(&ubi->work_sem); 1879 ubi->max_ec = ai->max_ec; 1880 INIT_LIST_HEAD(&ubi->works); 1881 #ifdef CONFIG_MTD_UBI_FASTMAP 1882 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); 1883 #endif 1884 1885 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1886 1887 err = -ENOMEM; 1888 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1889 if (!ubi->lookuptbl) 1890 return err; 1891 1892 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1893 INIT_LIST_HEAD(&ubi->pq[i]); 1894 ubi->pq_head = 0; 1895 1896 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1897 cond_resched(); 1898 1899 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1900 if (!e) 1901 goto out_free; 1902 1903 e->pnum = aeb->pnum; 1904 e->ec = aeb->ec; 1905 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1906 ubi->lookuptbl[e->pnum] = e; 1907 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1908 kmem_cache_free(ubi_wl_entry_slab, e); 1909 goto out_free; 1910 } 1911 1912 found_pebs++; 1913 } 1914 1915 ubi->free_count = 0; 1916 list_for_each_entry(aeb, &ai->free, u.list) { 1917 cond_resched(); 1918 1919 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1920 if (!e) 1921 goto out_free; 1922 1923 e->pnum = aeb->pnum; 1924 e->ec = aeb->ec; 1925 ubi_assert(e->ec >= 0); 1926 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1927 1928 wl_tree_add(e, &ubi->free); 1929 ubi->free_count++; 1930 1931 ubi->lookuptbl[e->pnum] = e; 1932 1933 found_pebs++; 1934 } 1935 1936 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1937 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1938 cond_resched(); 1939 1940 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1941 if (!e) 1942 goto out_free; 1943 1944 e->pnum = aeb->pnum; 1945 e->ec = aeb->ec; 1946 ubi->lookuptbl[e->pnum] = e; 1947 1948 if (!aeb->scrub) { 1949 dbg_wl("add PEB %d EC %d to the used tree", 1950 e->pnum, e->ec); 1951 wl_tree_add(e, &ubi->used); 1952 } else { 1953 dbg_wl("add PEB %d EC %d to the scrub tree", 1954 e->pnum, e->ec); 1955 wl_tree_add(e, &ubi->scrub); 1956 } 1957 1958 found_pebs++; 1959 } 1960 } 1961 1962 dbg_wl("found %i PEBs", found_pebs); 1963 1964 if (ubi->fm) 1965 ubi_assert(ubi->good_peb_count == \ 1966 found_pebs + ubi->fm->used_blocks); 1967 else 1968 ubi_assert(ubi->good_peb_count == found_pebs); 1969 1970 reserved_pebs = WL_RESERVED_PEBS; 1971 #ifdef CONFIG_MTD_UBI_FASTMAP 1972 /* Reserve enough LEBs to store two fastmaps. */ 1973 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2; 1974 #endif 1975 1976 if (ubi->avail_pebs < reserved_pebs) { 1977 ubi_err("no enough physical eraseblocks (%d, need %d)", 1978 ubi->avail_pebs, reserved_pebs); 1979 if (ubi->corr_peb_count) 1980 ubi_err("%d PEBs are corrupted and not used", 1981 ubi->corr_peb_count); 1982 goto out_free; 1983 } 1984 ubi->avail_pebs -= reserved_pebs; 1985 ubi->rsvd_pebs += reserved_pebs; 1986 1987 /* Schedule wear-leveling if needed */ 1988 err = ensure_wear_leveling(ubi, 0); 1989 if (err) 1990 goto out_free; 1991 1992 return 0; 1993 1994 out_free: 1995 cancel_pending(ubi); 1996 tree_destroy(&ubi->used); 1997 tree_destroy(&ubi->free); 1998 tree_destroy(&ubi->scrub); 1999 kfree(ubi->lookuptbl); 2000 return err; 2001 } 2002 2003 /** 2004 * protection_queue_destroy - destroy the protection queue. 2005 * @ubi: UBI device description object 2006 */ 2007 static void protection_queue_destroy(struct ubi_device *ubi) 2008 { 2009 int i; 2010 struct ubi_wl_entry *e, *tmp; 2011 2012 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 2013 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 2014 list_del(&e->u.list); 2015 kmem_cache_free(ubi_wl_entry_slab, e); 2016 } 2017 } 2018 } 2019 2020 /** 2021 * ubi_wl_close - close the wear-leveling sub-system. 2022 * @ubi: UBI device description object 2023 */ 2024 void ubi_wl_close(struct ubi_device *ubi) 2025 { 2026 dbg_wl("close the WL sub-system"); 2027 cancel_pending(ubi); 2028 protection_queue_destroy(ubi); 2029 tree_destroy(&ubi->used); 2030 tree_destroy(&ubi->erroneous); 2031 tree_destroy(&ubi->free); 2032 tree_destroy(&ubi->scrub); 2033 kfree(ubi->lookuptbl); 2034 } 2035 2036 /** 2037 * self_check_ec - make sure that the erase counter of a PEB is correct. 2038 * @ubi: UBI device description object 2039 * @pnum: the physical eraseblock number to check 2040 * @ec: the erase counter to check 2041 * 2042 * This function returns zero if the erase counter of physical eraseblock @pnum 2043 * is equivalent to @ec, and a negative error code if not or if an error 2044 * occurred. 2045 */ 2046 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 2047 { 2048 int err; 2049 long long read_ec; 2050 struct ubi_ec_hdr *ec_hdr; 2051 2052 if (!ubi_dbg_chk_gen(ubi)) 2053 return 0; 2054 2055 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2056 if (!ec_hdr) 2057 return -ENOMEM; 2058 2059 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2060 if (err && err != UBI_IO_BITFLIPS) { 2061 /* The header does not have to exist */ 2062 err = 0; 2063 goto out_free; 2064 } 2065 2066 read_ec = be64_to_cpu(ec_hdr->ec); 2067 if (ec != read_ec && read_ec - ec > 1) { 2068 ubi_err("self-check failed for PEB %d", pnum); 2069 ubi_err("read EC is %lld, should be %d", read_ec, ec); 2070 dump_stack(); 2071 err = 1; 2072 } else 2073 err = 0; 2074 2075 out_free: 2076 kfree(ec_hdr); 2077 return err; 2078 } 2079 2080 /** 2081 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2082 * @ubi: UBI device description object 2083 * @e: the wear-leveling entry to check 2084 * @root: the root of the tree 2085 * 2086 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2087 * is not. 2088 */ 2089 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2090 struct ubi_wl_entry *e, struct rb_root *root) 2091 { 2092 if (!ubi_dbg_chk_gen(ubi)) 2093 return 0; 2094 2095 if (in_wl_tree(e, root)) 2096 return 0; 2097 2098 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ", 2099 e->pnum, e->ec, root); 2100 dump_stack(); 2101 return -EINVAL; 2102 } 2103 2104 /** 2105 * self_check_in_pq - check if wear-leveling entry is in the protection 2106 * queue. 2107 * @ubi: UBI device description object 2108 * @e: the wear-leveling entry to check 2109 * 2110 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2111 */ 2112 static int self_check_in_pq(const struct ubi_device *ubi, 2113 struct ubi_wl_entry *e) 2114 { 2115 struct ubi_wl_entry *p; 2116 int i; 2117 2118 if (!ubi_dbg_chk_gen(ubi)) 2119 return 0; 2120 2121 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 2122 list_for_each_entry(p, &ubi->pq[i], u.list) 2123 if (p == e) 2124 return 0; 2125 2126 ubi_err("self-check failed for PEB %d, EC %d, Protect queue", 2127 e->pnum, e->ec); 2128 dump_stack(); 2129 return -EINVAL; 2130 } 2131