xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 8fdff1dc)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109 
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117 
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130 
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136 
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139 				 struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141 			    struct ubi_wl_entry *e);
142 
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151 	ubi_update_fastmap(ubi);
152 }
153 
154 /**
155  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156  *  @ubi: UBI device description object
157  *  @pnum: the to be checked PEB
158  */
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161 	int i;
162 
163 	if (!ubi->fm)
164 		return 0;
165 
166 	for (i = 0; i < ubi->fm->used_blocks; i++)
167 		if (ubi->fm->e[i]->pnum == pnum)
168 			return 1;
169 
170 	return 0;
171 }
172 #else
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175 	return 0;
176 }
177 #endif
178 
179 /**
180  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181  * @e: the wear-leveling entry to add
182  * @root: the root of the tree
183  *
184  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185  * the @ubi->used and @ubi->free RB-trees.
186  */
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189 	struct rb_node **p, *parent = NULL;
190 
191 	p = &root->rb_node;
192 	while (*p) {
193 		struct ubi_wl_entry *e1;
194 
195 		parent = *p;
196 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197 
198 		if (e->ec < e1->ec)
199 			p = &(*p)->rb_left;
200 		else if (e->ec > e1->ec)
201 			p = &(*p)->rb_right;
202 		else {
203 			ubi_assert(e->pnum != e1->pnum);
204 			if (e->pnum < e1->pnum)
205 				p = &(*p)->rb_left;
206 			else
207 				p = &(*p)->rb_right;
208 		}
209 	}
210 
211 	rb_link_node(&e->u.rb, parent, p);
212 	rb_insert_color(&e->u.rb, root);
213 }
214 
215 /**
216  * do_work - do one pending work.
217  * @ubi: UBI device description object
218  *
219  * This function returns zero in case of success and a negative error code in
220  * case of failure.
221  */
222 static int do_work(struct ubi_device *ubi)
223 {
224 	int err;
225 	struct ubi_work *wrk;
226 
227 	cond_resched();
228 
229 	/*
230 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
231 	 * it in read mode, so many of them may be doing works at a time. But
232 	 * the queue flush code has to be sure the whole queue of works is
233 	 * done, and it takes the mutex in write mode.
234 	 */
235 	down_read(&ubi->work_sem);
236 	spin_lock(&ubi->wl_lock);
237 	if (list_empty(&ubi->works)) {
238 		spin_unlock(&ubi->wl_lock);
239 		up_read(&ubi->work_sem);
240 		return 0;
241 	}
242 
243 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
244 	list_del(&wrk->list);
245 	ubi->works_count -= 1;
246 	ubi_assert(ubi->works_count >= 0);
247 	spin_unlock(&ubi->wl_lock);
248 
249 	/*
250 	 * Call the worker function. Do not touch the work structure
251 	 * after this call as it will have been freed or reused by that
252 	 * time by the worker function.
253 	 */
254 	err = wrk->func(ubi, wrk, 0);
255 	if (err)
256 		ubi_err("work failed with error code %d", err);
257 	up_read(&ubi->work_sem);
258 
259 	return err;
260 }
261 
262 /**
263  * produce_free_peb - produce a free physical eraseblock.
264  * @ubi: UBI device description object
265  *
266  * This function tries to make a free PEB by means of synchronous execution of
267  * pending works. This may be needed if, for example the background thread is
268  * disabled. Returns zero in case of success and a negative error code in case
269  * of failure.
270  */
271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273 	int err;
274 
275 	while (!ubi->free.rb_node) {
276 		spin_unlock(&ubi->wl_lock);
277 
278 		dbg_wl("do one work synchronously");
279 		err = do_work(ubi);
280 
281 		spin_lock(&ubi->wl_lock);
282 		if (err)
283 			return err;
284 	}
285 
286 	return 0;
287 }
288 
289 /**
290  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291  * @e: the wear-leveling entry to check
292  * @root: the root of the tree
293  *
294  * This function returns non-zero if @e is in the @root RB-tree and zero if it
295  * is not.
296  */
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299 	struct rb_node *p;
300 
301 	p = root->rb_node;
302 	while (p) {
303 		struct ubi_wl_entry *e1;
304 
305 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306 
307 		if (e->pnum == e1->pnum) {
308 			ubi_assert(e == e1);
309 			return 1;
310 		}
311 
312 		if (e->ec < e1->ec)
313 			p = p->rb_left;
314 		else if (e->ec > e1->ec)
315 			p = p->rb_right;
316 		else {
317 			ubi_assert(e->pnum != e1->pnum);
318 			if (e->pnum < e1->pnum)
319 				p = p->rb_left;
320 			else
321 				p = p->rb_right;
322 		}
323 	}
324 
325 	return 0;
326 }
327 
328 /**
329  * prot_queue_add - add physical eraseblock to the protection queue.
330  * @ubi: UBI device description object
331  * @e: the physical eraseblock to add
332  *
333  * This function adds @e to the tail of the protection queue @ubi->pq, where
334  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336  * be locked.
337  */
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340 	int pq_tail = ubi->pq_head - 1;
341 
342 	if (pq_tail < 0)
343 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
344 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348 
349 /**
350  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351  * @ubi: UBI device description object
352  * @root: the RB-tree where to look for
353  * @diff: maximum possible difference from the smallest erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * min + @diff, where min is the smallest erase counter.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359 					  struct rb_root *root, int diff)
360 {
361 	struct rb_node *p;
362 	struct ubi_wl_entry *e, *prev_e = NULL;
363 	int max;
364 
365 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366 	max = e->ec + diff;
367 
368 	p = root->rb_node;
369 	while (p) {
370 		struct ubi_wl_entry *e1;
371 
372 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373 		if (e1->ec >= max)
374 			p = p->rb_left;
375 		else {
376 			p = p->rb_right;
377 			prev_e = e;
378 			e = e1;
379 		}
380 	}
381 
382 	/* If no fastmap has been written and this WL entry can be used
383 	 * as anchor PEB, hold it back and return the second best WL entry
384 	 * such that fastmap can use the anchor PEB later. */
385 	if (prev_e && !ubi->fm_disabled &&
386 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
387 		return prev_e;
388 
389 	return e;
390 }
391 
392 /**
393  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394  * @ubi: UBI device description object
395  * @root: the RB-tree where to look for
396  *
397  * This function looks for a wear leveling entry with medium erase counter,
398  * but not greater or equivalent than the lowest erase counter plus
399  * %WL_FREE_MAX_DIFF/2.
400  */
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402 					       struct rb_root *root)
403 {
404 	struct ubi_wl_entry *e, *first, *last;
405 
406 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408 
409 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411 
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413 		/* If no fastmap has been written and this WL entry can be used
414 		 * as anchor PEB, hold it back and return the second best
415 		 * WL entry such that fastmap can use the anchor PEB later. */
416 		if (e && !ubi->fm_disabled && !ubi->fm &&
417 		    e->pnum < UBI_FM_MAX_START)
418 			e = rb_entry(rb_next(root->rb_node),
419 				     struct ubi_wl_entry, u.rb);
420 #endif
421 	} else
422 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423 
424 	return e;
425 }
426 
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430  * @root: the RB-tree where to look for
431  */
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434 	struct rb_node *p;
435 	struct ubi_wl_entry *e, *victim = NULL;
436 	int max_ec = UBI_MAX_ERASECOUNTER;
437 
438 	ubi_rb_for_each_entry(p, e, root, u.rb) {
439 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440 			victim = e;
441 			max_ec = e->ec;
442 		}
443 	}
444 
445 	return victim;
446 }
447 
448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450 	struct rb_node *p;
451 	struct ubi_wl_entry *e;
452 
453 	ubi_rb_for_each_entry(p, e, root, u.rb)
454 		if (e->pnum < UBI_FM_MAX_START)
455 			return 1;
456 
457 	return 0;
458 }
459 
460 /**
461  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462  * @ubi: UBI device description object
463  * @anchor: This PEB will be used as anchor PEB by fastmap
464  *
465  * The function returns a physical erase block with a given maximal number
466  * and removes it from the wl subsystem.
467  * Must be called with wl_lock held!
468  */
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471 	struct ubi_wl_entry *e = NULL;
472 
473 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
474 		goto out;
475 
476 	if (anchor)
477 		e = find_anchor_wl_entry(&ubi->free);
478 	else
479 		e = find_mean_wl_entry(ubi, &ubi->free);
480 
481 	if (!e)
482 		goto out;
483 
484 	self_check_in_wl_tree(ubi, e, &ubi->free);
485 
486 	/* remove it from the free list,
487 	 * the wl subsystem does no longer know this erase block */
488 	rb_erase(&e->u.rb, &ubi->free);
489 	ubi->free_count--;
490 out:
491 	return e;
492 }
493 #endif
494 
495 /**
496  * __wl_get_peb - get a physical eraseblock.
497  * @ubi: UBI device description object
498  *
499  * This function returns a physical eraseblock in case of success and a
500  * negative error code in case of failure.
501  */
502 static int __wl_get_peb(struct ubi_device *ubi)
503 {
504 	int err;
505 	struct ubi_wl_entry *e;
506 
507 retry:
508 	if (!ubi->free.rb_node) {
509 		if (ubi->works_count == 0) {
510 			ubi_err("no free eraseblocks");
511 			ubi_assert(list_empty(&ubi->works));
512 			return -ENOSPC;
513 		}
514 
515 		err = produce_free_peb(ubi);
516 		if (err < 0)
517 			return err;
518 		goto retry;
519 	}
520 
521 	e = find_mean_wl_entry(ubi, &ubi->free);
522 	if (!e) {
523 		ubi_err("no free eraseblocks");
524 		return -ENOSPC;
525 	}
526 
527 	self_check_in_wl_tree(ubi, e, &ubi->free);
528 
529 	/*
530 	 * Move the physical eraseblock to the protection queue where it will
531 	 * be protected from being moved for some time.
532 	 */
533 	rb_erase(&e->u.rb, &ubi->free);
534 	ubi->free_count--;
535 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
536 #ifndef CONFIG_MTD_UBI_FASTMAP
537 	/* We have to enqueue e only if fastmap is disabled,
538 	 * is fastmap enabled prot_queue_add() will be called by
539 	 * ubi_wl_get_peb() after removing e from the pool. */
540 	prot_queue_add(ubi, e);
541 #endif
542 	return e->pnum;
543 }
544 
545 #ifdef CONFIG_MTD_UBI_FASTMAP
546 /**
547  * return_unused_pool_pebs - returns unused PEB to the free tree.
548  * @ubi: UBI device description object
549  * @pool: fastmap pool description object
550  */
551 static void return_unused_pool_pebs(struct ubi_device *ubi,
552 				    struct ubi_fm_pool *pool)
553 {
554 	int i;
555 	struct ubi_wl_entry *e;
556 
557 	for (i = pool->used; i < pool->size; i++) {
558 		e = ubi->lookuptbl[pool->pebs[i]];
559 		wl_tree_add(e, &ubi->free);
560 		ubi->free_count++;
561 	}
562 }
563 
564 /**
565  * refill_wl_pool - refills all the fastmap pool used by the
566  * WL sub-system.
567  * @ubi: UBI device description object
568  */
569 static void refill_wl_pool(struct ubi_device *ubi)
570 {
571 	struct ubi_wl_entry *e;
572 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
573 
574 	return_unused_pool_pebs(ubi, pool);
575 
576 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
577 		if (!ubi->free.rb_node ||
578 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
579 			break;
580 
581 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
582 		self_check_in_wl_tree(ubi, e, &ubi->free);
583 		rb_erase(&e->u.rb, &ubi->free);
584 		ubi->free_count--;
585 
586 		pool->pebs[pool->size] = e->pnum;
587 	}
588 	pool->used = 0;
589 }
590 
591 /**
592  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
593  * @ubi: UBI device description object
594  */
595 static void refill_wl_user_pool(struct ubi_device *ubi)
596 {
597 	struct ubi_fm_pool *pool = &ubi->fm_pool;
598 
599 	return_unused_pool_pebs(ubi, pool);
600 
601 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
602 		if (!ubi->free.rb_node ||
603 		   (ubi->free_count - ubi->beb_rsvd_pebs < 1))
604 			break;
605 
606 		pool->pebs[pool->size] = __wl_get_peb(ubi);
607 		if (pool->pebs[pool->size] < 0)
608 			break;
609 	}
610 	pool->used = 0;
611 }
612 
613 /**
614  * ubi_refill_pools - refills all fastmap PEB pools.
615  * @ubi: UBI device description object
616  */
617 void ubi_refill_pools(struct ubi_device *ubi)
618 {
619 	spin_lock(&ubi->wl_lock);
620 	refill_wl_pool(ubi);
621 	refill_wl_user_pool(ubi);
622 	spin_unlock(&ubi->wl_lock);
623 }
624 
625 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
626  * the fastmap pool.
627  */
628 int ubi_wl_get_peb(struct ubi_device *ubi)
629 {
630 	int ret;
631 	struct ubi_fm_pool *pool = &ubi->fm_pool;
632 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
633 
634 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
635 	    wl_pool->used == wl_pool->size)
636 		ubi_update_fastmap(ubi);
637 
638 	/* we got not a single free PEB */
639 	if (!pool->size)
640 		ret = -ENOSPC;
641 	else {
642 		spin_lock(&ubi->wl_lock);
643 		ret = pool->pebs[pool->used++];
644 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
645 		spin_unlock(&ubi->wl_lock);
646 	}
647 
648 	return ret;
649 }
650 
651 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
652  *
653  * @ubi: UBI device description object
654  */
655 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
656 {
657 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
658 	int pnum;
659 
660 	if (pool->used == pool->size || !pool->size) {
661 		/* We cannot update the fastmap here because this
662 		 * function is called in atomic context.
663 		 * Let's fail here and refill/update it as soon as possible. */
664 		schedule_work(&ubi->fm_work);
665 		return NULL;
666 	} else {
667 		pnum = pool->pebs[pool->used++];
668 		return ubi->lookuptbl[pnum];
669 	}
670 }
671 #else
672 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
673 {
674 	struct ubi_wl_entry *e;
675 
676 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
677 	self_check_in_wl_tree(ubi, e, &ubi->free);
678 	rb_erase(&e->u.rb, &ubi->free);
679 
680 	return e;
681 }
682 
683 int ubi_wl_get_peb(struct ubi_device *ubi)
684 {
685 	int peb, err;
686 
687 	spin_lock(&ubi->wl_lock);
688 	peb = __wl_get_peb(ubi);
689 	spin_unlock(&ubi->wl_lock);
690 
691 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
692 				    ubi->peb_size - ubi->vid_hdr_aloffset);
693 	if (err) {
694 		ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
695 		return err;
696 	}
697 
698 	return peb;
699 }
700 #endif
701 
702 /**
703  * prot_queue_del - remove a physical eraseblock from the protection queue.
704  * @ubi: UBI device description object
705  * @pnum: the physical eraseblock to remove
706  *
707  * This function deletes PEB @pnum from the protection queue and returns zero
708  * in case of success and %-ENODEV if the PEB was not found.
709  */
710 static int prot_queue_del(struct ubi_device *ubi, int pnum)
711 {
712 	struct ubi_wl_entry *e;
713 
714 	e = ubi->lookuptbl[pnum];
715 	if (!e)
716 		return -ENODEV;
717 
718 	if (self_check_in_pq(ubi, e))
719 		return -ENODEV;
720 
721 	list_del(&e->u.list);
722 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
723 	return 0;
724 }
725 
726 /**
727  * sync_erase - synchronously erase a physical eraseblock.
728  * @ubi: UBI device description object
729  * @e: the the physical eraseblock to erase
730  * @torture: if the physical eraseblock has to be tortured
731  *
732  * This function returns zero in case of success and a negative error code in
733  * case of failure.
734  */
735 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
736 		      int torture)
737 {
738 	int err;
739 	struct ubi_ec_hdr *ec_hdr;
740 	unsigned long long ec = e->ec;
741 
742 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
743 
744 	err = self_check_ec(ubi, e->pnum, e->ec);
745 	if (err)
746 		return -EINVAL;
747 
748 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
749 	if (!ec_hdr)
750 		return -ENOMEM;
751 
752 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
753 	if (err < 0)
754 		goto out_free;
755 
756 	ec += err;
757 	if (ec > UBI_MAX_ERASECOUNTER) {
758 		/*
759 		 * Erase counter overflow. Upgrade UBI and use 64-bit
760 		 * erase counters internally.
761 		 */
762 		ubi_err("erase counter overflow at PEB %d, EC %llu",
763 			e->pnum, ec);
764 		err = -EINVAL;
765 		goto out_free;
766 	}
767 
768 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
769 
770 	ec_hdr->ec = cpu_to_be64(ec);
771 
772 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
773 	if (err)
774 		goto out_free;
775 
776 	e->ec = ec;
777 	spin_lock(&ubi->wl_lock);
778 	if (e->ec > ubi->max_ec)
779 		ubi->max_ec = e->ec;
780 	spin_unlock(&ubi->wl_lock);
781 
782 out_free:
783 	kfree(ec_hdr);
784 	return err;
785 }
786 
787 /**
788  * serve_prot_queue - check if it is time to stop protecting PEBs.
789  * @ubi: UBI device description object
790  *
791  * This function is called after each erase operation and removes PEBs from the
792  * tail of the protection queue. These PEBs have been protected for long enough
793  * and should be moved to the used tree.
794  */
795 static void serve_prot_queue(struct ubi_device *ubi)
796 {
797 	struct ubi_wl_entry *e, *tmp;
798 	int count;
799 
800 	/*
801 	 * There may be several protected physical eraseblock to remove,
802 	 * process them all.
803 	 */
804 repeat:
805 	count = 0;
806 	spin_lock(&ubi->wl_lock);
807 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
808 		dbg_wl("PEB %d EC %d protection over, move to used tree",
809 			e->pnum, e->ec);
810 
811 		list_del(&e->u.list);
812 		wl_tree_add(e, &ubi->used);
813 		if (count++ > 32) {
814 			/*
815 			 * Let's be nice and avoid holding the spinlock for
816 			 * too long.
817 			 */
818 			spin_unlock(&ubi->wl_lock);
819 			cond_resched();
820 			goto repeat;
821 		}
822 	}
823 
824 	ubi->pq_head += 1;
825 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
826 		ubi->pq_head = 0;
827 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
828 	spin_unlock(&ubi->wl_lock);
829 }
830 
831 /**
832  * __schedule_ubi_work - schedule a work.
833  * @ubi: UBI device description object
834  * @wrk: the work to schedule
835  *
836  * This function adds a work defined by @wrk to the tail of the pending works
837  * list. Can only be used of ubi->work_sem is already held in read mode!
838  */
839 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
840 {
841 	spin_lock(&ubi->wl_lock);
842 	list_add_tail(&wrk->list, &ubi->works);
843 	ubi_assert(ubi->works_count >= 0);
844 	ubi->works_count += 1;
845 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
846 		wake_up_process(ubi->bgt_thread);
847 	spin_unlock(&ubi->wl_lock);
848 }
849 
850 /**
851  * schedule_ubi_work - schedule a work.
852  * @ubi: UBI device description object
853  * @wrk: the work to schedule
854  *
855  * This function adds a work defined by @wrk to the tail of the pending works
856  * list.
857  */
858 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
859 {
860 	down_read(&ubi->work_sem);
861 	__schedule_ubi_work(ubi, wrk);
862 	up_read(&ubi->work_sem);
863 }
864 
865 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
866 			int cancel);
867 
868 #ifdef CONFIG_MTD_UBI_FASTMAP
869 /**
870  * ubi_is_erase_work - checks whether a work is erase work.
871  * @wrk: The work object to be checked
872  */
873 int ubi_is_erase_work(struct ubi_work *wrk)
874 {
875 	return wrk->func == erase_worker;
876 }
877 #endif
878 
879 /**
880  * schedule_erase - schedule an erase work.
881  * @ubi: UBI device description object
882  * @e: the WL entry of the physical eraseblock to erase
883  * @vol_id: the volume ID that last used this PEB
884  * @lnum: the last used logical eraseblock number for the PEB
885  * @torture: if the physical eraseblock has to be tortured
886  *
887  * This function returns zero in case of success and a %-ENOMEM in case of
888  * failure.
889  */
890 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
891 			  int vol_id, int lnum, int torture)
892 {
893 	struct ubi_work *wl_wrk;
894 
895 	ubi_assert(e);
896 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
897 
898 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
899 	       e->pnum, e->ec, torture);
900 
901 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
902 	if (!wl_wrk)
903 		return -ENOMEM;
904 
905 	wl_wrk->func = &erase_worker;
906 	wl_wrk->e = e;
907 	wl_wrk->vol_id = vol_id;
908 	wl_wrk->lnum = lnum;
909 	wl_wrk->torture = torture;
910 
911 	schedule_ubi_work(ubi, wl_wrk);
912 	return 0;
913 }
914 
915 /**
916  * do_sync_erase - run the erase worker synchronously.
917  * @ubi: UBI device description object
918  * @e: the WL entry of the physical eraseblock to erase
919  * @vol_id: the volume ID that last used this PEB
920  * @lnum: the last used logical eraseblock number for the PEB
921  * @torture: if the physical eraseblock has to be tortured
922  *
923  */
924 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
925 			 int vol_id, int lnum, int torture)
926 {
927 	struct ubi_work *wl_wrk;
928 
929 	dbg_wl("sync erase of PEB %i", e->pnum);
930 
931 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
932 	if (!wl_wrk)
933 		return -ENOMEM;
934 
935 	wl_wrk->e = e;
936 	wl_wrk->vol_id = vol_id;
937 	wl_wrk->lnum = lnum;
938 	wl_wrk->torture = torture;
939 
940 	return erase_worker(ubi, wl_wrk, 0);
941 }
942 
943 #ifdef CONFIG_MTD_UBI_FASTMAP
944 /**
945  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
946  * sub-system.
947  * see: ubi_wl_put_peb()
948  *
949  * @ubi: UBI device description object
950  * @fm_e: physical eraseblock to return
951  * @lnum: the last used logical eraseblock number for the PEB
952  * @torture: if this physical eraseblock has to be tortured
953  */
954 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
955 		      int lnum, int torture)
956 {
957 	struct ubi_wl_entry *e;
958 	int vol_id, pnum = fm_e->pnum;
959 
960 	dbg_wl("PEB %d", pnum);
961 
962 	ubi_assert(pnum >= 0);
963 	ubi_assert(pnum < ubi->peb_count);
964 
965 	spin_lock(&ubi->wl_lock);
966 	e = ubi->lookuptbl[pnum];
967 
968 	/* This can happen if we recovered from a fastmap the very
969 	 * first time and writing now a new one. In this case the wl system
970 	 * has never seen any PEB used by the original fastmap.
971 	 */
972 	if (!e) {
973 		e = fm_e;
974 		ubi_assert(e->ec >= 0);
975 		ubi->lookuptbl[pnum] = e;
976 	} else {
977 		e->ec = fm_e->ec;
978 		kfree(fm_e);
979 	}
980 
981 	spin_unlock(&ubi->wl_lock);
982 
983 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
984 	return schedule_erase(ubi, e, vol_id, lnum, torture);
985 }
986 #endif
987 
988 /**
989  * wear_leveling_worker - wear-leveling worker function.
990  * @ubi: UBI device description object
991  * @wrk: the work object
992  * @cancel: non-zero if the worker has to free memory and exit
993  *
994  * This function copies a more worn out physical eraseblock to a less worn out
995  * one. Returns zero in case of success and a negative error code in case of
996  * failure.
997  */
998 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
999 				int cancel)
1000 {
1001 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1002 	int vol_id = -1, uninitialized_var(lnum);
1003 #ifdef CONFIG_MTD_UBI_FASTMAP
1004 	int anchor = wrk->anchor;
1005 #endif
1006 	struct ubi_wl_entry *e1, *e2;
1007 	struct ubi_vid_hdr *vid_hdr;
1008 
1009 	kfree(wrk);
1010 	if (cancel)
1011 		return 0;
1012 
1013 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1014 	if (!vid_hdr)
1015 		return -ENOMEM;
1016 
1017 	mutex_lock(&ubi->move_mutex);
1018 	spin_lock(&ubi->wl_lock);
1019 	ubi_assert(!ubi->move_from && !ubi->move_to);
1020 	ubi_assert(!ubi->move_to_put);
1021 
1022 	if (!ubi->free.rb_node ||
1023 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1024 		/*
1025 		 * No free physical eraseblocks? Well, they must be waiting in
1026 		 * the queue to be erased. Cancel movement - it will be
1027 		 * triggered again when a free physical eraseblock appears.
1028 		 *
1029 		 * No used physical eraseblocks? They must be temporarily
1030 		 * protected from being moved. They will be moved to the
1031 		 * @ubi->used tree later and the wear-leveling will be
1032 		 * triggered again.
1033 		 */
1034 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1035 		       !ubi->free.rb_node, !ubi->used.rb_node);
1036 		goto out_cancel;
1037 	}
1038 
1039 #ifdef CONFIG_MTD_UBI_FASTMAP
1040 	/* Check whether we need to produce an anchor PEB */
1041 	if (!anchor)
1042 		anchor = !anchor_pebs_avalible(&ubi->free);
1043 
1044 	if (anchor) {
1045 		e1 = find_anchor_wl_entry(&ubi->used);
1046 		if (!e1)
1047 			goto out_cancel;
1048 		e2 = get_peb_for_wl(ubi);
1049 		if (!e2)
1050 			goto out_cancel;
1051 
1052 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1053 		rb_erase(&e1->u.rb, &ubi->used);
1054 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1055 	} else if (!ubi->scrub.rb_node) {
1056 #else
1057 	if (!ubi->scrub.rb_node) {
1058 #endif
1059 		/*
1060 		 * Now pick the least worn-out used physical eraseblock and a
1061 		 * highly worn-out free physical eraseblock. If the erase
1062 		 * counters differ much enough, start wear-leveling.
1063 		 */
1064 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1065 		e2 = get_peb_for_wl(ubi);
1066 		if (!e2)
1067 			goto out_cancel;
1068 
1069 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1070 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1071 			       e1->ec, e2->ec);
1072 			goto out_cancel;
1073 		}
1074 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1075 		rb_erase(&e1->u.rb, &ubi->used);
1076 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1077 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1078 	} else {
1079 		/* Perform scrubbing */
1080 		scrubbing = 1;
1081 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1082 		e2 = get_peb_for_wl(ubi);
1083 		if (!e2)
1084 			goto out_cancel;
1085 
1086 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1087 		rb_erase(&e1->u.rb, &ubi->scrub);
1088 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1089 	}
1090 
1091 	ubi->move_from = e1;
1092 	ubi->move_to = e2;
1093 	spin_unlock(&ubi->wl_lock);
1094 
1095 	/*
1096 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1097 	 * We so far do not know which logical eraseblock our physical
1098 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1099 	 * header first.
1100 	 *
1101 	 * Note, we are protected from this PEB being unmapped and erased. The
1102 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1103 	 * which is being moved was unmapped.
1104 	 */
1105 
1106 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1107 	if (err && err != UBI_IO_BITFLIPS) {
1108 		if (err == UBI_IO_FF) {
1109 			/*
1110 			 * We are trying to move PEB without a VID header. UBI
1111 			 * always write VID headers shortly after the PEB was
1112 			 * given, so we have a situation when it has not yet
1113 			 * had a chance to write it, because it was preempted.
1114 			 * So add this PEB to the protection queue so far,
1115 			 * because presumably more data will be written there
1116 			 * (including the missing VID header), and then we'll
1117 			 * move it.
1118 			 */
1119 			dbg_wl("PEB %d has no VID header", e1->pnum);
1120 			protect = 1;
1121 			goto out_not_moved;
1122 		} else if (err == UBI_IO_FF_BITFLIPS) {
1123 			/*
1124 			 * The same situation as %UBI_IO_FF, but bit-flips were
1125 			 * detected. It is better to schedule this PEB for
1126 			 * scrubbing.
1127 			 */
1128 			dbg_wl("PEB %d has no VID header but has bit-flips",
1129 			       e1->pnum);
1130 			scrubbing = 1;
1131 			goto out_not_moved;
1132 		}
1133 
1134 		ubi_err("error %d while reading VID header from PEB %d",
1135 			err, e1->pnum);
1136 		goto out_error;
1137 	}
1138 
1139 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1140 	lnum = be32_to_cpu(vid_hdr->lnum);
1141 
1142 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1143 	if (err) {
1144 		if (err == MOVE_CANCEL_RACE) {
1145 			/*
1146 			 * The LEB has not been moved because the volume is
1147 			 * being deleted or the PEB has been put meanwhile. We
1148 			 * should prevent this PEB from being selected for
1149 			 * wear-leveling movement again, so put it to the
1150 			 * protection queue.
1151 			 */
1152 			protect = 1;
1153 			goto out_not_moved;
1154 		}
1155 		if (err == MOVE_RETRY) {
1156 			scrubbing = 1;
1157 			goto out_not_moved;
1158 		}
1159 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1160 		    err == MOVE_TARGET_RD_ERR) {
1161 			/*
1162 			 * Target PEB had bit-flips or write error - torture it.
1163 			 */
1164 			torture = 1;
1165 			goto out_not_moved;
1166 		}
1167 
1168 		if (err == MOVE_SOURCE_RD_ERR) {
1169 			/*
1170 			 * An error happened while reading the source PEB. Do
1171 			 * not switch to R/O mode in this case, and give the
1172 			 * upper layers a possibility to recover from this,
1173 			 * e.g. by unmapping corresponding LEB. Instead, just
1174 			 * put this PEB to the @ubi->erroneous list to prevent
1175 			 * UBI from trying to move it over and over again.
1176 			 */
1177 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1178 				ubi_err("too many erroneous eraseblocks (%d)",
1179 					ubi->erroneous_peb_count);
1180 				goto out_error;
1181 			}
1182 			erroneous = 1;
1183 			goto out_not_moved;
1184 		}
1185 
1186 		if (err < 0)
1187 			goto out_error;
1188 
1189 		ubi_assert(0);
1190 	}
1191 
1192 	/* The PEB has been successfully moved */
1193 	if (scrubbing)
1194 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1195 			e1->pnum, vol_id, lnum, e2->pnum);
1196 	ubi_free_vid_hdr(ubi, vid_hdr);
1197 
1198 	spin_lock(&ubi->wl_lock);
1199 	if (!ubi->move_to_put) {
1200 		wl_tree_add(e2, &ubi->used);
1201 		e2 = NULL;
1202 	}
1203 	ubi->move_from = ubi->move_to = NULL;
1204 	ubi->move_to_put = ubi->wl_scheduled = 0;
1205 	spin_unlock(&ubi->wl_lock);
1206 
1207 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1208 	if (err) {
1209 		kmem_cache_free(ubi_wl_entry_slab, e1);
1210 		if (e2)
1211 			kmem_cache_free(ubi_wl_entry_slab, e2);
1212 		goto out_ro;
1213 	}
1214 
1215 	if (e2) {
1216 		/*
1217 		 * Well, the target PEB was put meanwhile, schedule it for
1218 		 * erasure.
1219 		 */
1220 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1221 		       e2->pnum, vol_id, lnum);
1222 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1223 		if (err) {
1224 			kmem_cache_free(ubi_wl_entry_slab, e2);
1225 			goto out_ro;
1226 		}
1227 	}
1228 
1229 	dbg_wl("done");
1230 	mutex_unlock(&ubi->move_mutex);
1231 	return 0;
1232 
1233 	/*
1234 	 * For some reasons the LEB was not moved, might be an error, might be
1235 	 * something else. @e1 was not changed, so return it back. @e2 might
1236 	 * have been changed, schedule it for erasure.
1237 	 */
1238 out_not_moved:
1239 	if (vol_id != -1)
1240 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1241 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1242 	else
1243 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1244 		       e1->pnum, e2->pnum, err);
1245 	spin_lock(&ubi->wl_lock);
1246 	if (protect)
1247 		prot_queue_add(ubi, e1);
1248 	else if (erroneous) {
1249 		wl_tree_add(e1, &ubi->erroneous);
1250 		ubi->erroneous_peb_count += 1;
1251 	} else if (scrubbing)
1252 		wl_tree_add(e1, &ubi->scrub);
1253 	else
1254 		wl_tree_add(e1, &ubi->used);
1255 	ubi_assert(!ubi->move_to_put);
1256 	ubi->move_from = ubi->move_to = NULL;
1257 	ubi->wl_scheduled = 0;
1258 	spin_unlock(&ubi->wl_lock);
1259 
1260 	ubi_free_vid_hdr(ubi, vid_hdr);
1261 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1262 	if (err) {
1263 		kmem_cache_free(ubi_wl_entry_slab, e2);
1264 		goto out_ro;
1265 	}
1266 	mutex_unlock(&ubi->move_mutex);
1267 	return 0;
1268 
1269 out_error:
1270 	if (vol_id != -1)
1271 		ubi_err("error %d while moving PEB %d to PEB %d",
1272 			err, e1->pnum, e2->pnum);
1273 	else
1274 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1275 			err, e1->pnum, vol_id, lnum, e2->pnum);
1276 	spin_lock(&ubi->wl_lock);
1277 	ubi->move_from = ubi->move_to = NULL;
1278 	ubi->move_to_put = ubi->wl_scheduled = 0;
1279 	spin_unlock(&ubi->wl_lock);
1280 
1281 	ubi_free_vid_hdr(ubi, vid_hdr);
1282 	kmem_cache_free(ubi_wl_entry_slab, e1);
1283 	kmem_cache_free(ubi_wl_entry_slab, e2);
1284 
1285 out_ro:
1286 	ubi_ro_mode(ubi);
1287 	mutex_unlock(&ubi->move_mutex);
1288 	ubi_assert(err != 0);
1289 	return err < 0 ? err : -EIO;
1290 
1291 out_cancel:
1292 	ubi->wl_scheduled = 0;
1293 	spin_unlock(&ubi->wl_lock);
1294 	mutex_unlock(&ubi->move_mutex);
1295 	ubi_free_vid_hdr(ubi, vid_hdr);
1296 	return 0;
1297 }
1298 
1299 /**
1300  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1301  * @ubi: UBI device description object
1302  * @nested: set to non-zero if this function is called from UBI worker
1303  *
1304  * This function checks if it is time to start wear-leveling and schedules it
1305  * if yes. This function returns zero in case of success and a negative error
1306  * code in case of failure.
1307  */
1308 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1309 {
1310 	int err = 0;
1311 	struct ubi_wl_entry *e1;
1312 	struct ubi_wl_entry *e2;
1313 	struct ubi_work *wrk;
1314 
1315 	spin_lock(&ubi->wl_lock);
1316 	if (ubi->wl_scheduled)
1317 		/* Wear-leveling is already in the work queue */
1318 		goto out_unlock;
1319 
1320 	/*
1321 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1322 	 * the WL worker has to be scheduled anyway.
1323 	 */
1324 	if (!ubi->scrub.rb_node) {
1325 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1326 			/* No physical eraseblocks - no deal */
1327 			goto out_unlock;
1328 
1329 		/*
1330 		 * We schedule wear-leveling only if the difference between the
1331 		 * lowest erase counter of used physical eraseblocks and a high
1332 		 * erase counter of free physical eraseblocks is greater than
1333 		 * %UBI_WL_THRESHOLD.
1334 		 */
1335 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1336 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1337 
1338 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1339 			goto out_unlock;
1340 		dbg_wl("schedule wear-leveling");
1341 	} else
1342 		dbg_wl("schedule scrubbing");
1343 
1344 	ubi->wl_scheduled = 1;
1345 	spin_unlock(&ubi->wl_lock);
1346 
1347 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1348 	if (!wrk) {
1349 		err = -ENOMEM;
1350 		goto out_cancel;
1351 	}
1352 
1353 	wrk->anchor = 0;
1354 	wrk->func = &wear_leveling_worker;
1355 	if (nested)
1356 		__schedule_ubi_work(ubi, wrk);
1357 	else
1358 		schedule_ubi_work(ubi, wrk);
1359 	return err;
1360 
1361 out_cancel:
1362 	spin_lock(&ubi->wl_lock);
1363 	ubi->wl_scheduled = 0;
1364 out_unlock:
1365 	spin_unlock(&ubi->wl_lock);
1366 	return err;
1367 }
1368 
1369 #ifdef CONFIG_MTD_UBI_FASTMAP
1370 /**
1371  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1372  * @ubi: UBI device description object
1373  */
1374 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1375 {
1376 	struct ubi_work *wrk;
1377 
1378 	spin_lock(&ubi->wl_lock);
1379 	if (ubi->wl_scheduled) {
1380 		spin_unlock(&ubi->wl_lock);
1381 		return 0;
1382 	}
1383 	ubi->wl_scheduled = 1;
1384 	spin_unlock(&ubi->wl_lock);
1385 
1386 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1387 	if (!wrk) {
1388 		spin_lock(&ubi->wl_lock);
1389 		ubi->wl_scheduled = 0;
1390 		spin_unlock(&ubi->wl_lock);
1391 		return -ENOMEM;
1392 	}
1393 
1394 	wrk->anchor = 1;
1395 	wrk->func = &wear_leveling_worker;
1396 	schedule_ubi_work(ubi, wrk);
1397 	return 0;
1398 }
1399 #endif
1400 
1401 /**
1402  * erase_worker - physical eraseblock erase worker function.
1403  * @ubi: UBI device description object
1404  * @wl_wrk: the work object
1405  * @cancel: non-zero if the worker has to free memory and exit
1406  *
1407  * This function erases a physical eraseblock and perform torture testing if
1408  * needed. It also takes care about marking the physical eraseblock bad if
1409  * needed. Returns zero in case of success and a negative error code in case of
1410  * failure.
1411  */
1412 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1413 			int cancel)
1414 {
1415 	struct ubi_wl_entry *e = wl_wrk->e;
1416 	int pnum = e->pnum;
1417 	int vol_id = wl_wrk->vol_id;
1418 	int lnum = wl_wrk->lnum;
1419 	int err, available_consumed = 0;
1420 
1421 	if (cancel) {
1422 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1423 		kfree(wl_wrk);
1424 		kmem_cache_free(ubi_wl_entry_slab, e);
1425 		return 0;
1426 	}
1427 
1428 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1429 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1430 
1431 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1432 
1433 	err = sync_erase(ubi, e, wl_wrk->torture);
1434 	if (!err) {
1435 		/* Fine, we've erased it successfully */
1436 		kfree(wl_wrk);
1437 
1438 		spin_lock(&ubi->wl_lock);
1439 		wl_tree_add(e, &ubi->free);
1440 		ubi->free_count++;
1441 		spin_unlock(&ubi->wl_lock);
1442 
1443 		/*
1444 		 * One more erase operation has happened, take care about
1445 		 * protected physical eraseblocks.
1446 		 */
1447 		serve_prot_queue(ubi);
1448 
1449 		/* And take care about wear-leveling */
1450 		err = ensure_wear_leveling(ubi, 1);
1451 		return err;
1452 	}
1453 
1454 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1455 	kfree(wl_wrk);
1456 
1457 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1458 	    err == -EBUSY) {
1459 		int err1;
1460 
1461 		/* Re-schedule the LEB for erasure */
1462 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1463 		if (err1) {
1464 			err = err1;
1465 			goto out_ro;
1466 		}
1467 		return err;
1468 	}
1469 
1470 	kmem_cache_free(ubi_wl_entry_slab, e);
1471 	if (err != -EIO)
1472 		/*
1473 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1474 		 * this physical eraseblock for erasure again would cause
1475 		 * errors again and again. Well, lets switch to R/O mode.
1476 		 */
1477 		goto out_ro;
1478 
1479 	/* It is %-EIO, the PEB went bad */
1480 
1481 	if (!ubi->bad_allowed) {
1482 		ubi_err("bad physical eraseblock %d detected", pnum);
1483 		goto out_ro;
1484 	}
1485 
1486 	spin_lock(&ubi->volumes_lock);
1487 	if (ubi->beb_rsvd_pebs == 0) {
1488 		if (ubi->avail_pebs == 0) {
1489 			spin_unlock(&ubi->volumes_lock);
1490 			ubi_err("no reserved/available physical eraseblocks");
1491 			goto out_ro;
1492 		}
1493 		ubi->avail_pebs -= 1;
1494 		available_consumed = 1;
1495 	}
1496 	spin_unlock(&ubi->volumes_lock);
1497 
1498 	ubi_msg("mark PEB %d as bad", pnum);
1499 	err = ubi_io_mark_bad(ubi, pnum);
1500 	if (err)
1501 		goto out_ro;
1502 
1503 	spin_lock(&ubi->volumes_lock);
1504 	if (ubi->beb_rsvd_pebs > 0) {
1505 		if (available_consumed) {
1506 			/*
1507 			 * The amount of reserved PEBs increased since we last
1508 			 * checked.
1509 			 */
1510 			ubi->avail_pebs += 1;
1511 			available_consumed = 0;
1512 		}
1513 		ubi->beb_rsvd_pebs -= 1;
1514 	}
1515 	ubi->bad_peb_count += 1;
1516 	ubi->good_peb_count -= 1;
1517 	ubi_calculate_reserved(ubi);
1518 	if (available_consumed)
1519 		ubi_warn("no PEBs in the reserved pool, used an available PEB");
1520 	else if (ubi->beb_rsvd_pebs)
1521 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1522 	else
1523 		ubi_warn("last PEB from the reserve was used");
1524 	spin_unlock(&ubi->volumes_lock);
1525 
1526 	return err;
1527 
1528 out_ro:
1529 	if (available_consumed) {
1530 		spin_lock(&ubi->volumes_lock);
1531 		ubi->avail_pebs += 1;
1532 		spin_unlock(&ubi->volumes_lock);
1533 	}
1534 	ubi_ro_mode(ubi);
1535 	return err;
1536 }
1537 
1538 /**
1539  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1540  * @ubi: UBI device description object
1541  * @vol_id: the volume ID that last used this PEB
1542  * @lnum: the last used logical eraseblock number for the PEB
1543  * @pnum: physical eraseblock to return
1544  * @torture: if this physical eraseblock has to be tortured
1545  *
1546  * This function is called to return physical eraseblock @pnum to the pool of
1547  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1548  * occurred to this @pnum and it has to be tested. This function returns zero
1549  * in case of success, and a negative error code in case of failure.
1550  */
1551 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1552 		   int pnum, int torture)
1553 {
1554 	int err;
1555 	struct ubi_wl_entry *e;
1556 
1557 	dbg_wl("PEB %d", pnum);
1558 	ubi_assert(pnum >= 0);
1559 	ubi_assert(pnum < ubi->peb_count);
1560 
1561 retry:
1562 	spin_lock(&ubi->wl_lock);
1563 	e = ubi->lookuptbl[pnum];
1564 	if (e == ubi->move_from) {
1565 		/*
1566 		 * User is putting the physical eraseblock which was selected to
1567 		 * be moved. It will be scheduled for erasure in the
1568 		 * wear-leveling worker.
1569 		 */
1570 		dbg_wl("PEB %d is being moved, wait", pnum);
1571 		spin_unlock(&ubi->wl_lock);
1572 
1573 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1574 		mutex_lock(&ubi->move_mutex);
1575 		mutex_unlock(&ubi->move_mutex);
1576 		goto retry;
1577 	} else if (e == ubi->move_to) {
1578 		/*
1579 		 * User is putting the physical eraseblock which was selected
1580 		 * as the target the data is moved to. It may happen if the EBA
1581 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1582 		 * but the WL sub-system has not put the PEB to the "used" tree
1583 		 * yet, but it is about to do this. So we just set a flag which
1584 		 * will tell the WL worker that the PEB is not needed anymore
1585 		 * and should be scheduled for erasure.
1586 		 */
1587 		dbg_wl("PEB %d is the target of data moving", pnum);
1588 		ubi_assert(!ubi->move_to_put);
1589 		ubi->move_to_put = 1;
1590 		spin_unlock(&ubi->wl_lock);
1591 		return 0;
1592 	} else {
1593 		if (in_wl_tree(e, &ubi->used)) {
1594 			self_check_in_wl_tree(ubi, e, &ubi->used);
1595 			rb_erase(&e->u.rb, &ubi->used);
1596 		} else if (in_wl_tree(e, &ubi->scrub)) {
1597 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1598 			rb_erase(&e->u.rb, &ubi->scrub);
1599 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1600 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1601 			rb_erase(&e->u.rb, &ubi->erroneous);
1602 			ubi->erroneous_peb_count -= 1;
1603 			ubi_assert(ubi->erroneous_peb_count >= 0);
1604 			/* Erroneous PEBs should be tortured */
1605 			torture = 1;
1606 		} else {
1607 			err = prot_queue_del(ubi, e->pnum);
1608 			if (err) {
1609 				ubi_err("PEB %d not found", pnum);
1610 				ubi_ro_mode(ubi);
1611 				spin_unlock(&ubi->wl_lock);
1612 				return err;
1613 			}
1614 		}
1615 	}
1616 	spin_unlock(&ubi->wl_lock);
1617 
1618 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1619 	if (err) {
1620 		spin_lock(&ubi->wl_lock);
1621 		wl_tree_add(e, &ubi->used);
1622 		spin_unlock(&ubi->wl_lock);
1623 	}
1624 
1625 	return err;
1626 }
1627 
1628 /**
1629  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1630  * @ubi: UBI device description object
1631  * @pnum: the physical eraseblock to schedule
1632  *
1633  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1634  * needs scrubbing. This function schedules a physical eraseblock for
1635  * scrubbing which is done in background. This function returns zero in case of
1636  * success and a negative error code in case of failure.
1637  */
1638 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1639 {
1640 	struct ubi_wl_entry *e;
1641 
1642 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1643 
1644 retry:
1645 	spin_lock(&ubi->wl_lock);
1646 	e = ubi->lookuptbl[pnum];
1647 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1648 				   in_wl_tree(e, &ubi->erroneous)) {
1649 		spin_unlock(&ubi->wl_lock);
1650 		return 0;
1651 	}
1652 
1653 	if (e == ubi->move_to) {
1654 		/*
1655 		 * This physical eraseblock was used to move data to. The data
1656 		 * was moved but the PEB was not yet inserted to the proper
1657 		 * tree. We should just wait a little and let the WL worker
1658 		 * proceed.
1659 		 */
1660 		spin_unlock(&ubi->wl_lock);
1661 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1662 		yield();
1663 		goto retry;
1664 	}
1665 
1666 	if (in_wl_tree(e, &ubi->used)) {
1667 		self_check_in_wl_tree(ubi, e, &ubi->used);
1668 		rb_erase(&e->u.rb, &ubi->used);
1669 	} else {
1670 		int err;
1671 
1672 		err = prot_queue_del(ubi, e->pnum);
1673 		if (err) {
1674 			ubi_err("PEB %d not found", pnum);
1675 			ubi_ro_mode(ubi);
1676 			spin_unlock(&ubi->wl_lock);
1677 			return err;
1678 		}
1679 	}
1680 
1681 	wl_tree_add(e, &ubi->scrub);
1682 	spin_unlock(&ubi->wl_lock);
1683 
1684 	/*
1685 	 * Technically scrubbing is the same as wear-leveling, so it is done
1686 	 * by the WL worker.
1687 	 */
1688 	return ensure_wear_leveling(ubi, 0);
1689 }
1690 
1691 /**
1692  * ubi_wl_flush - flush all pending works.
1693  * @ubi: UBI device description object
1694  * @vol_id: the volume id to flush for
1695  * @lnum: the logical eraseblock number to flush for
1696  *
1697  * This function executes all pending works for a particular volume id /
1698  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1699  * acts as a wildcard for all of the corresponding volume numbers or logical
1700  * eraseblock numbers. It returns zero in case of success and a negative error
1701  * code in case of failure.
1702  */
1703 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1704 {
1705 	int err = 0;
1706 	int found = 1;
1707 
1708 	/*
1709 	 * Erase while the pending works queue is not empty, but not more than
1710 	 * the number of currently pending works.
1711 	 */
1712 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1713 	       vol_id, lnum, ubi->works_count);
1714 
1715 	while (found) {
1716 		struct ubi_work *wrk;
1717 		found = 0;
1718 
1719 		down_read(&ubi->work_sem);
1720 		spin_lock(&ubi->wl_lock);
1721 		list_for_each_entry(wrk, &ubi->works, list) {
1722 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1723 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1724 				list_del(&wrk->list);
1725 				ubi->works_count -= 1;
1726 				ubi_assert(ubi->works_count >= 0);
1727 				spin_unlock(&ubi->wl_lock);
1728 
1729 				err = wrk->func(ubi, wrk, 0);
1730 				if (err) {
1731 					up_read(&ubi->work_sem);
1732 					return err;
1733 				}
1734 
1735 				spin_lock(&ubi->wl_lock);
1736 				found = 1;
1737 				break;
1738 			}
1739 		}
1740 		spin_unlock(&ubi->wl_lock);
1741 		up_read(&ubi->work_sem);
1742 	}
1743 
1744 	/*
1745 	 * Make sure all the works which have been done in parallel are
1746 	 * finished.
1747 	 */
1748 	down_write(&ubi->work_sem);
1749 	up_write(&ubi->work_sem);
1750 
1751 	return err;
1752 }
1753 
1754 /**
1755  * tree_destroy - destroy an RB-tree.
1756  * @root: the root of the tree to destroy
1757  */
1758 static void tree_destroy(struct rb_root *root)
1759 {
1760 	struct rb_node *rb;
1761 	struct ubi_wl_entry *e;
1762 
1763 	rb = root->rb_node;
1764 	while (rb) {
1765 		if (rb->rb_left)
1766 			rb = rb->rb_left;
1767 		else if (rb->rb_right)
1768 			rb = rb->rb_right;
1769 		else {
1770 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1771 
1772 			rb = rb_parent(rb);
1773 			if (rb) {
1774 				if (rb->rb_left == &e->u.rb)
1775 					rb->rb_left = NULL;
1776 				else
1777 					rb->rb_right = NULL;
1778 			}
1779 
1780 			kmem_cache_free(ubi_wl_entry_slab, e);
1781 		}
1782 	}
1783 }
1784 
1785 /**
1786  * ubi_thread - UBI background thread.
1787  * @u: the UBI device description object pointer
1788  */
1789 int ubi_thread(void *u)
1790 {
1791 	int failures = 0;
1792 	struct ubi_device *ubi = u;
1793 
1794 	ubi_msg("background thread \"%s\" started, PID %d",
1795 		ubi->bgt_name, task_pid_nr(current));
1796 
1797 	set_freezable();
1798 	for (;;) {
1799 		int err;
1800 
1801 		if (kthread_should_stop())
1802 			break;
1803 
1804 		if (try_to_freeze())
1805 			continue;
1806 
1807 		spin_lock(&ubi->wl_lock);
1808 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1809 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1810 			set_current_state(TASK_INTERRUPTIBLE);
1811 			spin_unlock(&ubi->wl_lock);
1812 			schedule();
1813 			continue;
1814 		}
1815 		spin_unlock(&ubi->wl_lock);
1816 
1817 		err = do_work(ubi);
1818 		if (err) {
1819 			ubi_err("%s: work failed with error code %d",
1820 				ubi->bgt_name, err);
1821 			if (failures++ > WL_MAX_FAILURES) {
1822 				/*
1823 				 * Too many failures, disable the thread and
1824 				 * switch to read-only mode.
1825 				 */
1826 				ubi_msg("%s: %d consecutive failures",
1827 					ubi->bgt_name, WL_MAX_FAILURES);
1828 				ubi_ro_mode(ubi);
1829 				ubi->thread_enabled = 0;
1830 				continue;
1831 			}
1832 		} else
1833 			failures = 0;
1834 
1835 		cond_resched();
1836 	}
1837 
1838 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1839 	return 0;
1840 }
1841 
1842 /**
1843  * cancel_pending - cancel all pending works.
1844  * @ubi: UBI device description object
1845  */
1846 static void cancel_pending(struct ubi_device *ubi)
1847 {
1848 	while (!list_empty(&ubi->works)) {
1849 		struct ubi_work *wrk;
1850 
1851 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1852 		list_del(&wrk->list);
1853 		wrk->func(ubi, wrk, 1);
1854 		ubi->works_count -= 1;
1855 		ubi_assert(ubi->works_count >= 0);
1856 	}
1857 }
1858 
1859 /**
1860  * ubi_wl_init - initialize the WL sub-system using attaching information.
1861  * @ubi: UBI device description object
1862  * @ai: attaching information
1863  *
1864  * This function returns zero in case of success, and a negative error code in
1865  * case of failure.
1866  */
1867 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1868 {
1869 	int err, i, reserved_pebs, found_pebs = 0;
1870 	struct rb_node *rb1, *rb2;
1871 	struct ubi_ainf_volume *av;
1872 	struct ubi_ainf_peb *aeb, *tmp;
1873 	struct ubi_wl_entry *e;
1874 
1875 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1876 	spin_lock_init(&ubi->wl_lock);
1877 	mutex_init(&ubi->move_mutex);
1878 	init_rwsem(&ubi->work_sem);
1879 	ubi->max_ec = ai->max_ec;
1880 	INIT_LIST_HEAD(&ubi->works);
1881 #ifdef CONFIG_MTD_UBI_FASTMAP
1882 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1883 #endif
1884 
1885 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1886 
1887 	err = -ENOMEM;
1888 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1889 	if (!ubi->lookuptbl)
1890 		return err;
1891 
1892 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1893 		INIT_LIST_HEAD(&ubi->pq[i]);
1894 	ubi->pq_head = 0;
1895 
1896 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1897 		cond_resched();
1898 
1899 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1900 		if (!e)
1901 			goto out_free;
1902 
1903 		e->pnum = aeb->pnum;
1904 		e->ec = aeb->ec;
1905 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1906 		ubi->lookuptbl[e->pnum] = e;
1907 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1908 			kmem_cache_free(ubi_wl_entry_slab, e);
1909 			goto out_free;
1910 		}
1911 
1912 		found_pebs++;
1913 	}
1914 
1915 	ubi->free_count = 0;
1916 	list_for_each_entry(aeb, &ai->free, u.list) {
1917 		cond_resched();
1918 
1919 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1920 		if (!e)
1921 			goto out_free;
1922 
1923 		e->pnum = aeb->pnum;
1924 		e->ec = aeb->ec;
1925 		ubi_assert(e->ec >= 0);
1926 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1927 
1928 		wl_tree_add(e, &ubi->free);
1929 		ubi->free_count++;
1930 
1931 		ubi->lookuptbl[e->pnum] = e;
1932 
1933 		found_pebs++;
1934 	}
1935 
1936 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1937 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1938 			cond_resched();
1939 
1940 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1941 			if (!e)
1942 				goto out_free;
1943 
1944 			e->pnum = aeb->pnum;
1945 			e->ec = aeb->ec;
1946 			ubi->lookuptbl[e->pnum] = e;
1947 
1948 			if (!aeb->scrub) {
1949 				dbg_wl("add PEB %d EC %d to the used tree",
1950 				       e->pnum, e->ec);
1951 				wl_tree_add(e, &ubi->used);
1952 			} else {
1953 				dbg_wl("add PEB %d EC %d to the scrub tree",
1954 				       e->pnum, e->ec);
1955 				wl_tree_add(e, &ubi->scrub);
1956 			}
1957 
1958 			found_pebs++;
1959 		}
1960 	}
1961 
1962 	dbg_wl("found %i PEBs", found_pebs);
1963 
1964 	if (ubi->fm)
1965 		ubi_assert(ubi->good_peb_count == \
1966 			   found_pebs + ubi->fm->used_blocks);
1967 	else
1968 		ubi_assert(ubi->good_peb_count == found_pebs);
1969 
1970 	reserved_pebs = WL_RESERVED_PEBS;
1971 #ifdef CONFIG_MTD_UBI_FASTMAP
1972 	/* Reserve enough LEBs to store two fastmaps. */
1973 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1974 #endif
1975 
1976 	if (ubi->avail_pebs < reserved_pebs) {
1977 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1978 			ubi->avail_pebs, reserved_pebs);
1979 		if (ubi->corr_peb_count)
1980 			ubi_err("%d PEBs are corrupted and not used",
1981 				ubi->corr_peb_count);
1982 		goto out_free;
1983 	}
1984 	ubi->avail_pebs -= reserved_pebs;
1985 	ubi->rsvd_pebs += reserved_pebs;
1986 
1987 	/* Schedule wear-leveling if needed */
1988 	err = ensure_wear_leveling(ubi, 0);
1989 	if (err)
1990 		goto out_free;
1991 
1992 	return 0;
1993 
1994 out_free:
1995 	cancel_pending(ubi);
1996 	tree_destroy(&ubi->used);
1997 	tree_destroy(&ubi->free);
1998 	tree_destroy(&ubi->scrub);
1999 	kfree(ubi->lookuptbl);
2000 	return err;
2001 }
2002 
2003 /**
2004  * protection_queue_destroy - destroy the protection queue.
2005  * @ubi: UBI device description object
2006  */
2007 static void protection_queue_destroy(struct ubi_device *ubi)
2008 {
2009 	int i;
2010 	struct ubi_wl_entry *e, *tmp;
2011 
2012 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2013 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2014 			list_del(&e->u.list);
2015 			kmem_cache_free(ubi_wl_entry_slab, e);
2016 		}
2017 	}
2018 }
2019 
2020 /**
2021  * ubi_wl_close - close the wear-leveling sub-system.
2022  * @ubi: UBI device description object
2023  */
2024 void ubi_wl_close(struct ubi_device *ubi)
2025 {
2026 	dbg_wl("close the WL sub-system");
2027 	cancel_pending(ubi);
2028 	protection_queue_destroy(ubi);
2029 	tree_destroy(&ubi->used);
2030 	tree_destroy(&ubi->erroneous);
2031 	tree_destroy(&ubi->free);
2032 	tree_destroy(&ubi->scrub);
2033 	kfree(ubi->lookuptbl);
2034 }
2035 
2036 /**
2037  * self_check_ec - make sure that the erase counter of a PEB is correct.
2038  * @ubi: UBI device description object
2039  * @pnum: the physical eraseblock number to check
2040  * @ec: the erase counter to check
2041  *
2042  * This function returns zero if the erase counter of physical eraseblock @pnum
2043  * is equivalent to @ec, and a negative error code if not or if an error
2044  * occurred.
2045  */
2046 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2047 {
2048 	int err;
2049 	long long read_ec;
2050 	struct ubi_ec_hdr *ec_hdr;
2051 
2052 	if (!ubi_dbg_chk_gen(ubi))
2053 		return 0;
2054 
2055 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2056 	if (!ec_hdr)
2057 		return -ENOMEM;
2058 
2059 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2060 	if (err && err != UBI_IO_BITFLIPS) {
2061 		/* The header does not have to exist */
2062 		err = 0;
2063 		goto out_free;
2064 	}
2065 
2066 	read_ec = be64_to_cpu(ec_hdr->ec);
2067 	if (ec != read_ec && read_ec - ec > 1) {
2068 		ubi_err("self-check failed for PEB %d", pnum);
2069 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
2070 		dump_stack();
2071 		err = 1;
2072 	} else
2073 		err = 0;
2074 
2075 out_free:
2076 	kfree(ec_hdr);
2077 	return err;
2078 }
2079 
2080 /**
2081  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2082  * @ubi: UBI device description object
2083  * @e: the wear-leveling entry to check
2084  * @root: the root of the tree
2085  *
2086  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2087  * is not.
2088  */
2089 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2090 				 struct ubi_wl_entry *e, struct rb_root *root)
2091 {
2092 	if (!ubi_dbg_chk_gen(ubi))
2093 		return 0;
2094 
2095 	if (in_wl_tree(e, root))
2096 		return 0;
2097 
2098 	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2099 		e->pnum, e->ec, root);
2100 	dump_stack();
2101 	return -EINVAL;
2102 }
2103 
2104 /**
2105  * self_check_in_pq - check if wear-leveling entry is in the protection
2106  *                        queue.
2107  * @ubi: UBI device description object
2108  * @e: the wear-leveling entry to check
2109  *
2110  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2111  */
2112 static int self_check_in_pq(const struct ubi_device *ubi,
2113 			    struct ubi_wl_entry *e)
2114 {
2115 	struct ubi_wl_entry *p;
2116 	int i;
2117 
2118 	if (!ubi_dbg_chk_gen(ubi))
2119 		return 0;
2120 
2121 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2122 		list_for_each_entry(p, &ubi->pq[i], u.list)
2123 			if (p == e)
2124 				return 0;
2125 
2126 	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2127 		e->pnum, e->ec);
2128 	dump_stack();
2129 	return -EINVAL;
2130 }
2131