xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical* eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL sub-system may pick a free physical eraseblock with low erase
47  * counter, and so forth.
48  *
49  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
50  * bad.
51  *
52  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53  * in a physical eraseblock, it has to be moved. Technically this is the same
54  * as moving it for wear-leveling reasons.
55  *
56  * As it was said, for the UBI sub-system all physical eraseblocks are either
57  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58  * used eraseblocks are kept in a set of different RB-trees: @wl->used,
59  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
60  *
61  * Note, in this implementation, we keep a small in-RAM object for each physical
62  * eraseblock. This is surely not a scalable solution. But it appears to be good
63  * enough for moderately large flashes and it is simple. In future, one may
64  * re-work this sub-system and make it more scalable.
65  *
66  * At the moment this sub-system does not utilize the sequence number, which
67  * was introduced relatively recently. But it would be wise to do this because
68  * the sequence number of a logical eraseblock characterizes how old is it. For
69  * example, when we move a PEB with low erase counter, and we need to pick the
70  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
71  * pick target PEB with an average EC if our PEB is not very "old". This is a
72  * room for future re-works of the WL sub-system.
73  *
74  * Note: the stuff with protection trees looks too complex and is difficult to
75  * understand. Should be fixed.
76  */
77 
78 #include <linux/slab.h>
79 #include <linux/crc32.h>
80 #include <linux/freezer.h>
81 #include <linux/kthread.h>
82 #include "ubi.h"
83 
84 /* Number of physical eraseblocks reserved for wear-leveling purposes */
85 #define WL_RESERVED_PEBS 1
86 
87 /*
88  * How many erase cycles are short term, unknown, and long term physical
89  * eraseblocks protected.
90  */
91 #define ST_PROTECTION 16
92 #define U_PROTECTION  10
93 #define LT_PROTECTION 4
94 
95 /*
96  * Maximum difference between two erase counters. If this threshold is
97  * exceeded, the WL sub-system starts moving data from used physical
98  * eraseblocks with low erase counter to free physical eraseblocks with high
99  * erase counter.
100  */
101 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
102 
103 /*
104  * When a physical eraseblock is moved, the WL sub-system has to pick the target
105  * physical eraseblock to move to. The simplest way would be just to pick the
106  * one with the highest erase counter. But in certain workloads this could lead
107  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
108  * situation when the picked physical eraseblock is constantly erased after the
109  * data is written to it. So, we have a constant which limits the highest erase
110  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
111  * does not pick eraseblocks with erase counter greater then the lowest erase
112  * counter plus %WL_FREE_MAX_DIFF.
113  */
114 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
115 
116 /*
117  * Maximum number of consecutive background thread failures which is enough to
118  * switch to read-only mode.
119  */
120 #define WL_MAX_FAILURES 32
121 
122 /**
123  * struct ubi_wl_prot_entry - PEB protection entry.
124  * @rb_pnum: link in the @wl->prot.pnum RB-tree
125  * @rb_aec: link in the @wl->prot.aec RB-tree
126  * @abs_ec: the absolute erase counter value when the protection ends
127  * @e: the wear-leveling entry of the physical eraseblock under protection
128  *
129  * When the WL sub-system returns a physical eraseblock, the physical
130  * eraseblock is protected from being moved for some "time". For this reason,
131  * the physical eraseblock is not directly moved from the @wl->free tree to the
132  * @wl->used tree. There is one more tree in between where this physical
133  * eraseblock is temporarily stored (@wl->prot).
134  *
135  * All this protection stuff is needed because:
136  *  o we don't want to move physical eraseblocks just after we have given them
137  *    to the user; instead, we first want to let users fill them up with data;
138  *
139  *  o there is a chance that the user will put the physical eraseblock very
140  *    soon, so it makes sense not to move it for some time, but wait; this is
141  *    especially important in case of "short term" physical eraseblocks.
142  *
143  * Physical eraseblocks stay protected only for limited time. But the "time" is
144  * measured in erase cycles in this case. This is implemented with help of the
145  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
146  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
147  * the @wl->used tree.
148  *
149  * Protected physical eraseblocks are searched by physical eraseblock number
150  * (when they are put) and by the absolute erase counter (to check if it is
151  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
152  * storing the protected physical eraseblocks: @wl->prot.pnum and
153  * @wl->prot.aec. They are referred to as the "protection" trees. The
154  * first one is indexed by the physical eraseblock number. The second one is
155  * indexed by the absolute erase counter. Both trees store
156  * &struct ubi_wl_prot_entry objects.
157  *
158  * Each physical eraseblock has 2 main states: free and used. The former state
159  * corresponds to the @wl->free tree. The latter state is split up on several
160  * sub-states:
161  * o the WL movement is allowed (@wl->used tree);
162  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
163  * @wl->prot.aec trees);
164  * o scrubbing is needed (@wl->scrub tree).
165  *
166  * Depending on the sub-state, wear-leveling entries of the used physical
167  * eraseblocks may be kept in one of those trees.
168  */
169 struct ubi_wl_prot_entry {
170 	struct rb_node rb_pnum;
171 	struct rb_node rb_aec;
172 	unsigned long long abs_ec;
173 	struct ubi_wl_entry *e;
174 };
175 
176 /**
177  * struct ubi_work - UBI work description data structure.
178  * @list: a link in the list of pending works
179  * @func: worker function
180  * @priv: private data of the worker function
181  * @e: physical eraseblock to erase
182  * @torture: if the physical eraseblock has to be tortured
183  *
184  * The @func pointer points to the worker function. If the @cancel argument is
185  * not zero, the worker has to free the resources and exit immediately. The
186  * worker has to return zero in case of success and a negative error code in
187  * case of failure.
188  */
189 struct ubi_work {
190 	struct list_head list;
191 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
192 	/* The below fields are only relevant to erasure works */
193 	struct ubi_wl_entry *e;
194 	int torture;
195 };
196 
197 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
198 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
199 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
200 				     struct rb_root *root);
201 #else
202 #define paranoid_check_ec(ubi, pnum, ec) 0
203 #define paranoid_check_in_wl_tree(e, root)
204 #endif
205 
206 /**
207  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
208  * @e: the wear-leveling entry to add
209  * @root: the root of the tree
210  *
211  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
212  * the @ubi->used and @ubi->free RB-trees.
213  */
214 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
215 {
216 	struct rb_node **p, *parent = NULL;
217 
218 	p = &root->rb_node;
219 	while (*p) {
220 		struct ubi_wl_entry *e1;
221 
222 		parent = *p;
223 		e1 = rb_entry(parent, struct ubi_wl_entry, rb);
224 
225 		if (e->ec < e1->ec)
226 			p = &(*p)->rb_left;
227 		else if (e->ec > e1->ec)
228 			p = &(*p)->rb_right;
229 		else {
230 			ubi_assert(e->pnum != e1->pnum);
231 			if (e->pnum < e1->pnum)
232 				p = &(*p)->rb_left;
233 			else
234 				p = &(*p)->rb_right;
235 		}
236 	}
237 
238 	rb_link_node(&e->rb, parent, p);
239 	rb_insert_color(&e->rb, root);
240 }
241 
242 /**
243  * do_work - do one pending work.
244  * @ubi: UBI device description object
245  *
246  * This function returns zero in case of success and a negative error code in
247  * case of failure.
248  */
249 static int do_work(struct ubi_device *ubi)
250 {
251 	int err;
252 	struct ubi_work *wrk;
253 
254 	cond_resched();
255 
256 	/*
257 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
258 	 * it in read mode, so many of them may be doing works at a time. But
259 	 * the queue flush code has to be sure the whole queue of works is
260 	 * done, and it takes the mutex in write mode.
261 	 */
262 	down_read(&ubi->work_sem);
263 	spin_lock(&ubi->wl_lock);
264 	if (list_empty(&ubi->works)) {
265 		spin_unlock(&ubi->wl_lock);
266 		up_read(&ubi->work_sem);
267 		return 0;
268 	}
269 
270 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
271 	list_del(&wrk->list);
272 	ubi->works_count -= 1;
273 	ubi_assert(ubi->works_count >= 0);
274 	spin_unlock(&ubi->wl_lock);
275 
276 	/*
277 	 * Call the worker function. Do not touch the work structure
278 	 * after this call as it will have been freed or reused by that
279 	 * time by the worker function.
280 	 */
281 	err = wrk->func(ubi, wrk, 0);
282 	if (err)
283 		ubi_err("work failed with error code %d", err);
284 	up_read(&ubi->work_sem);
285 
286 	return err;
287 }
288 
289 /**
290  * produce_free_peb - produce a free physical eraseblock.
291  * @ubi: UBI device description object
292  *
293  * This function tries to make a free PEB by means of synchronous execution of
294  * pending works. This may be needed if, for example the background thread is
295  * disabled. Returns zero in case of success and a negative error code in case
296  * of failure.
297  */
298 static int produce_free_peb(struct ubi_device *ubi)
299 {
300 	int err;
301 
302 	spin_lock(&ubi->wl_lock);
303 	while (!ubi->free.rb_node) {
304 		spin_unlock(&ubi->wl_lock);
305 
306 		dbg_wl("do one work synchronously");
307 		err = do_work(ubi);
308 		if (err)
309 			return err;
310 
311 		spin_lock(&ubi->wl_lock);
312 	}
313 	spin_unlock(&ubi->wl_lock);
314 
315 	return 0;
316 }
317 
318 /**
319  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
320  * @e: the wear-leveling entry to check
321  * @root: the root of the tree
322  *
323  * This function returns non-zero if @e is in the @root RB-tree and zero if it
324  * is not.
325  */
326 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
327 {
328 	struct rb_node *p;
329 
330 	p = root->rb_node;
331 	while (p) {
332 		struct ubi_wl_entry *e1;
333 
334 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
335 
336 		if (e->pnum == e1->pnum) {
337 			ubi_assert(e == e1);
338 			return 1;
339 		}
340 
341 		if (e->ec < e1->ec)
342 			p = p->rb_left;
343 		else if (e->ec > e1->ec)
344 			p = p->rb_right;
345 		else {
346 			ubi_assert(e->pnum != e1->pnum);
347 			if (e->pnum < e1->pnum)
348 				p = p->rb_left;
349 			else
350 				p = p->rb_right;
351 		}
352 	}
353 
354 	return 0;
355 }
356 
357 /**
358  * prot_tree_add - add physical eraseblock to protection trees.
359  * @ubi: UBI device description object
360  * @e: the physical eraseblock to add
361  * @pe: protection entry object to use
362  * @abs_ec: absolute erase counter value when this physical eraseblock has
363  * to be removed from the protection trees.
364  *
365  * @wl->lock has to be locked.
366  */
367 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
368 			  struct ubi_wl_prot_entry *pe, int abs_ec)
369 {
370 	struct rb_node **p, *parent = NULL;
371 	struct ubi_wl_prot_entry *pe1;
372 
373 	pe->e = e;
374 	pe->abs_ec = ubi->abs_ec + abs_ec;
375 
376 	p = &ubi->prot.pnum.rb_node;
377 	while (*p) {
378 		parent = *p;
379 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
380 
381 		if (e->pnum < pe1->e->pnum)
382 			p = &(*p)->rb_left;
383 		else
384 			p = &(*p)->rb_right;
385 	}
386 	rb_link_node(&pe->rb_pnum, parent, p);
387 	rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
388 
389 	p = &ubi->prot.aec.rb_node;
390 	parent = NULL;
391 	while (*p) {
392 		parent = *p;
393 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
394 
395 		if (pe->abs_ec < pe1->abs_ec)
396 			p = &(*p)->rb_left;
397 		else
398 			p = &(*p)->rb_right;
399 	}
400 	rb_link_node(&pe->rb_aec, parent, p);
401 	rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
402 }
403 
404 /**
405  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
406  * @root: the RB-tree where to look for
407  * @max: highest possible erase counter
408  *
409  * This function looks for a wear leveling entry with erase counter closest to
410  * @max and less then @max.
411  */
412 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
413 {
414 	struct rb_node *p;
415 	struct ubi_wl_entry *e;
416 
417 	e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
418 	max += e->ec;
419 
420 	p = root->rb_node;
421 	while (p) {
422 		struct ubi_wl_entry *e1;
423 
424 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
425 		if (e1->ec >= max)
426 			p = p->rb_left;
427 		else {
428 			p = p->rb_right;
429 			e = e1;
430 		}
431 	}
432 
433 	return e;
434 }
435 
436 /**
437  * ubi_wl_get_peb - get a physical eraseblock.
438  * @ubi: UBI device description object
439  * @dtype: type of data which will be stored in this physical eraseblock
440  *
441  * This function returns a physical eraseblock in case of success and a
442  * negative error code in case of failure. Might sleep.
443  */
444 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
445 {
446 	int err, protect, medium_ec;
447 	struct ubi_wl_entry *e, *first, *last;
448 	struct ubi_wl_prot_entry *pe;
449 
450 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
451 		   dtype == UBI_UNKNOWN);
452 
453 	pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
454 	if (!pe)
455 		return -ENOMEM;
456 
457 retry:
458 	spin_lock(&ubi->wl_lock);
459 	if (!ubi->free.rb_node) {
460 		if (ubi->works_count == 0) {
461 			ubi_assert(list_empty(&ubi->works));
462 			ubi_err("no free eraseblocks");
463 			spin_unlock(&ubi->wl_lock);
464 			kfree(pe);
465 			return -ENOSPC;
466 		}
467 		spin_unlock(&ubi->wl_lock);
468 
469 		err = produce_free_peb(ubi);
470 		if (err < 0) {
471 			kfree(pe);
472 			return err;
473 		}
474 		goto retry;
475 	}
476 
477 	switch (dtype) {
478 	case UBI_LONGTERM:
479 		/*
480 		 * For long term data we pick a physical eraseblock with high
481 		 * erase counter. But the highest erase counter we can pick is
482 		 * bounded by the the lowest erase counter plus
483 		 * %WL_FREE_MAX_DIFF.
484 		 */
485 		e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
486 		protect = LT_PROTECTION;
487 		break;
488 	case UBI_UNKNOWN:
489 		/*
490 		 * For unknown data we pick a physical eraseblock with medium
491 		 * erase counter. But we by no means can pick a physical
492 		 * eraseblock with erase counter greater or equivalent than the
493 		 * lowest erase counter plus %WL_FREE_MAX_DIFF.
494 		 */
495 		first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb);
496 		last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, rb);
497 
498 		if (last->ec - first->ec < WL_FREE_MAX_DIFF)
499 			e = rb_entry(ubi->free.rb_node,
500 					struct ubi_wl_entry, rb);
501 		else {
502 			medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
503 			e = find_wl_entry(&ubi->free, medium_ec);
504 		}
505 		protect = U_PROTECTION;
506 		break;
507 	case UBI_SHORTTERM:
508 		/*
509 		 * For short term data we pick a physical eraseblock with the
510 		 * lowest erase counter as we expect it will be erased soon.
511 		 */
512 		e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb);
513 		protect = ST_PROTECTION;
514 		break;
515 	default:
516 		protect = 0;
517 		e = NULL;
518 		BUG();
519 	}
520 
521 	/*
522 	 * Move the physical eraseblock to the protection trees where it will
523 	 * be protected from being moved for some time.
524 	 */
525 	paranoid_check_in_wl_tree(e, &ubi->free);
526 	rb_erase(&e->rb, &ubi->free);
527 	prot_tree_add(ubi, e, pe, protect);
528 
529 	dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
530 	spin_unlock(&ubi->wl_lock);
531 
532 	return e->pnum;
533 }
534 
535 /**
536  * prot_tree_del - remove a physical eraseblock from the protection trees
537  * @ubi: UBI device description object
538  * @pnum: the physical eraseblock to remove
539  *
540  * This function returns PEB @pnum from the protection trees and returns zero
541  * in case of success and %-ENODEV if the PEB was not found in the protection
542  * trees.
543  */
544 static int prot_tree_del(struct ubi_device *ubi, int pnum)
545 {
546 	struct rb_node *p;
547 	struct ubi_wl_prot_entry *pe = NULL;
548 
549 	p = ubi->prot.pnum.rb_node;
550 	while (p) {
551 
552 		pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
553 
554 		if (pnum == pe->e->pnum)
555 			goto found;
556 
557 		if (pnum < pe->e->pnum)
558 			p = p->rb_left;
559 		else
560 			p = p->rb_right;
561 	}
562 
563 	return -ENODEV;
564 
565 found:
566 	ubi_assert(pe->e->pnum == pnum);
567 	rb_erase(&pe->rb_aec, &ubi->prot.aec);
568 	rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
569 	kfree(pe);
570 	return 0;
571 }
572 
573 /**
574  * sync_erase - synchronously erase a physical eraseblock.
575  * @ubi: UBI device description object
576  * @e: the the physical eraseblock to erase
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a negative error code in
580  * case of failure.
581  */
582 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 		      int torture)
584 {
585 	int err;
586 	struct ubi_ec_hdr *ec_hdr;
587 	unsigned long long ec = e->ec;
588 
589 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
590 
591 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
592 	if (err > 0)
593 		return -EINVAL;
594 
595 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
596 	if (!ec_hdr)
597 		return -ENOMEM;
598 
599 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
600 	if (err < 0)
601 		goto out_free;
602 
603 	ec += err;
604 	if (ec > UBI_MAX_ERASECOUNTER) {
605 		/*
606 		 * Erase counter overflow. Upgrade UBI and use 64-bit
607 		 * erase counters internally.
608 		 */
609 		ubi_err("erase counter overflow at PEB %d, EC %llu",
610 			e->pnum, ec);
611 		err = -EINVAL;
612 		goto out_free;
613 	}
614 
615 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
616 
617 	ec_hdr->ec = cpu_to_be64(ec);
618 
619 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
620 	if (err)
621 		goto out_free;
622 
623 	e->ec = ec;
624 	spin_lock(&ubi->wl_lock);
625 	if (e->ec > ubi->max_ec)
626 		ubi->max_ec = e->ec;
627 	spin_unlock(&ubi->wl_lock);
628 
629 out_free:
630 	kfree(ec_hdr);
631 	return err;
632 }
633 
634 /**
635  * check_protection_over - check if it is time to stop protecting some PEBs.
636  * @ubi: UBI device description object
637  *
638  * This function is called after each erase operation, when the absolute erase
639  * counter is incremented, to check if some physical eraseblock  have not to be
640  * protected any longer. These physical eraseblocks are moved from the
641  * protection trees to the used tree.
642  */
643 static void check_protection_over(struct ubi_device *ubi)
644 {
645 	struct ubi_wl_prot_entry *pe;
646 
647 	/*
648 	 * There may be several protected physical eraseblock to remove,
649 	 * process them all.
650 	 */
651 	while (1) {
652 		spin_lock(&ubi->wl_lock);
653 		if (!ubi->prot.aec.rb_node) {
654 			spin_unlock(&ubi->wl_lock);
655 			break;
656 		}
657 
658 		pe = rb_entry(rb_first(&ubi->prot.aec),
659 			      struct ubi_wl_prot_entry, rb_aec);
660 
661 		if (pe->abs_ec > ubi->abs_ec) {
662 			spin_unlock(&ubi->wl_lock);
663 			break;
664 		}
665 
666 		dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
667 		       pe->e->pnum, ubi->abs_ec, pe->abs_ec);
668 		rb_erase(&pe->rb_aec, &ubi->prot.aec);
669 		rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
670 		wl_tree_add(pe->e, &ubi->used);
671 		spin_unlock(&ubi->wl_lock);
672 
673 		kfree(pe);
674 		cond_resched();
675 	}
676 }
677 
678 /**
679  * schedule_ubi_work - schedule a work.
680  * @ubi: UBI device description object
681  * @wrk: the work to schedule
682  *
683  * This function enqueues a work defined by @wrk to the tail of the pending
684  * works list.
685  */
686 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
687 {
688 	spin_lock(&ubi->wl_lock);
689 	list_add_tail(&wrk->list, &ubi->works);
690 	ubi_assert(ubi->works_count >= 0);
691 	ubi->works_count += 1;
692 	if (ubi->thread_enabled)
693 		wake_up_process(ubi->bgt_thread);
694 	spin_unlock(&ubi->wl_lock);
695 }
696 
697 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
698 			int cancel);
699 
700 /**
701  * schedule_erase - schedule an erase work.
702  * @ubi: UBI device description object
703  * @e: the WL entry of the physical eraseblock to erase
704  * @torture: if the physical eraseblock has to be tortured
705  *
706  * This function returns zero in case of success and a %-ENOMEM in case of
707  * failure.
708  */
709 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
710 			  int torture)
711 {
712 	struct ubi_work *wl_wrk;
713 
714 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
715 	       e->pnum, e->ec, torture);
716 
717 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
718 	if (!wl_wrk)
719 		return -ENOMEM;
720 
721 	wl_wrk->func = &erase_worker;
722 	wl_wrk->e = e;
723 	wl_wrk->torture = torture;
724 
725 	schedule_ubi_work(ubi, wl_wrk);
726 	return 0;
727 }
728 
729 /**
730  * wear_leveling_worker - wear-leveling worker function.
731  * @ubi: UBI device description object
732  * @wrk: the work object
733  * @cancel: non-zero if the worker has to free memory and exit
734  *
735  * This function copies a more worn out physical eraseblock to a less worn out
736  * one. Returns zero in case of success and a negative error code in case of
737  * failure.
738  */
739 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
740 				int cancel)
741 {
742 	int err, put = 0, scrubbing = 0, protect = 0;
743 	struct ubi_wl_prot_entry *uninitialized_var(pe);
744 	struct ubi_wl_entry *e1, *e2;
745 	struct ubi_vid_hdr *vid_hdr;
746 
747 	kfree(wrk);
748 
749 	if (cancel)
750 		return 0;
751 
752 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
753 	if (!vid_hdr)
754 		return -ENOMEM;
755 
756 	mutex_lock(&ubi->move_mutex);
757 	spin_lock(&ubi->wl_lock);
758 	ubi_assert(!ubi->move_from && !ubi->move_to);
759 	ubi_assert(!ubi->move_to_put);
760 
761 	if (!ubi->free.rb_node ||
762 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
763 		/*
764 		 * No free physical eraseblocks? Well, they must be waiting in
765 		 * the queue to be erased. Cancel movement - it will be
766 		 * triggered again when a free physical eraseblock appears.
767 		 *
768 		 * No used physical eraseblocks? They must be temporarily
769 		 * protected from being moved. They will be moved to the
770 		 * @ubi->used tree later and the wear-leveling will be
771 		 * triggered again.
772 		 */
773 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
774 		       !ubi->free.rb_node, !ubi->used.rb_node);
775 		goto out_cancel;
776 	}
777 
778 	if (!ubi->scrub.rb_node) {
779 		/*
780 		 * Now pick the least worn-out used physical eraseblock and a
781 		 * highly worn-out free physical eraseblock. If the erase
782 		 * counters differ much enough, start wear-leveling.
783 		 */
784 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
785 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
786 
787 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
788 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
789 			       e1->ec, e2->ec);
790 			goto out_cancel;
791 		}
792 		paranoid_check_in_wl_tree(e1, &ubi->used);
793 		rb_erase(&e1->rb, &ubi->used);
794 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
795 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
796 	} else {
797 		/* Perform scrubbing */
798 		scrubbing = 1;
799 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
800 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
801 		paranoid_check_in_wl_tree(e1, &ubi->scrub);
802 		rb_erase(&e1->rb, &ubi->scrub);
803 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
804 	}
805 
806 	paranoid_check_in_wl_tree(e2, &ubi->free);
807 	rb_erase(&e2->rb, &ubi->free);
808 	ubi->move_from = e1;
809 	ubi->move_to = e2;
810 	spin_unlock(&ubi->wl_lock);
811 
812 	/*
813 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
814 	 * We so far do not know which logical eraseblock our physical
815 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
816 	 * header first.
817 	 *
818 	 * Note, we are protected from this PEB being unmapped and erased. The
819 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
820 	 * which is being moved was unmapped.
821 	 */
822 
823 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
824 	if (err && err != UBI_IO_BITFLIPS) {
825 		if (err == UBI_IO_PEB_FREE) {
826 			/*
827 			 * We are trying to move PEB without a VID header. UBI
828 			 * always write VID headers shortly after the PEB was
829 			 * given, so we have a situation when it did not have
830 			 * chance to write it down because it was preempted.
831 			 * Just re-schedule the work, so that next time it will
832 			 * likely have the VID header in place.
833 			 */
834 			dbg_wl("PEB %d has no VID header", e1->pnum);
835 			goto out_not_moved;
836 		}
837 
838 		ubi_err("error %d while reading VID header from PEB %d",
839 			err, e1->pnum);
840 		if (err > 0)
841 			err = -EIO;
842 		goto out_error;
843 	}
844 
845 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
846 	if (err) {
847 
848 		if (err < 0)
849 			goto out_error;
850 		if (err == 1)
851 			goto out_not_moved;
852 
853 		/*
854 		 * For some reason the LEB was not moved - it might be because
855 		 * the volume is being deleted. We should prevent this PEB from
856 		 * being selected for wear-levelling movement for some "time",
857 		 * so put it to the protection tree.
858 		 */
859 
860 		dbg_wl("cancelled moving PEB %d", e1->pnum);
861 		pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
862 		if (!pe) {
863 			err = -ENOMEM;
864 			goto out_error;
865 		}
866 
867 		protect = 1;
868 	}
869 
870 	ubi_free_vid_hdr(ubi, vid_hdr);
871 	if (scrubbing && !protect)
872 		ubi_msg("scrubbed PEB %d, data moved to PEB %d",
873 			e1->pnum, e2->pnum);
874 
875 	spin_lock(&ubi->wl_lock);
876 	if (protect)
877 		prot_tree_add(ubi, e1, pe, protect);
878 	if (!ubi->move_to_put)
879 		wl_tree_add(e2, &ubi->used);
880 	else
881 		put = 1;
882 	ubi->move_from = ubi->move_to = NULL;
883 	ubi->move_to_put = ubi->wl_scheduled = 0;
884 	spin_unlock(&ubi->wl_lock);
885 
886 	if (put) {
887 		/*
888 		 * Well, the target PEB was put meanwhile, schedule it for
889 		 * erasure.
890 		 */
891 		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
892 		err = schedule_erase(ubi, e2, 0);
893 		if (err)
894 			goto out_error;
895 	}
896 
897 	if (!protect) {
898 		err = schedule_erase(ubi, e1, 0);
899 		if (err)
900 			goto out_error;
901 	}
902 
903 
904 	dbg_wl("done");
905 	mutex_unlock(&ubi->move_mutex);
906 	return 0;
907 
908 	/*
909 	 * For some reasons the LEB was not moved, might be an error, might be
910 	 * something else. @e1 was not changed, so return it back. @e2 might
911 	 * be changed, schedule it for erasure.
912 	 */
913 out_not_moved:
914 	ubi_free_vid_hdr(ubi, vid_hdr);
915 	spin_lock(&ubi->wl_lock);
916 	if (scrubbing)
917 		wl_tree_add(e1, &ubi->scrub);
918 	else
919 		wl_tree_add(e1, &ubi->used);
920 	ubi->move_from = ubi->move_to = NULL;
921 	ubi->move_to_put = ubi->wl_scheduled = 0;
922 	spin_unlock(&ubi->wl_lock);
923 
924 	err = schedule_erase(ubi, e2, 0);
925 	if (err)
926 		goto out_error;
927 
928 	mutex_unlock(&ubi->move_mutex);
929 	return 0;
930 
931 out_error:
932 	ubi_err("error %d while moving PEB %d to PEB %d",
933 		err, e1->pnum, e2->pnum);
934 
935 	ubi_free_vid_hdr(ubi, vid_hdr);
936 	spin_lock(&ubi->wl_lock);
937 	ubi->move_from = ubi->move_to = NULL;
938 	ubi->move_to_put = ubi->wl_scheduled = 0;
939 	spin_unlock(&ubi->wl_lock);
940 
941 	kmem_cache_free(ubi_wl_entry_slab, e1);
942 	kmem_cache_free(ubi_wl_entry_slab, e2);
943 	ubi_ro_mode(ubi);
944 
945 	mutex_unlock(&ubi->move_mutex);
946 	return err;
947 
948 out_cancel:
949 	ubi->wl_scheduled = 0;
950 	spin_unlock(&ubi->wl_lock);
951 	mutex_unlock(&ubi->move_mutex);
952 	ubi_free_vid_hdr(ubi, vid_hdr);
953 	return 0;
954 }
955 
956 /**
957  * ensure_wear_leveling - schedule wear-leveling if it is needed.
958  * @ubi: UBI device description object
959  *
960  * This function checks if it is time to start wear-leveling and schedules it
961  * if yes. This function returns zero in case of success and a negative error
962  * code in case of failure.
963  */
964 static int ensure_wear_leveling(struct ubi_device *ubi)
965 {
966 	int err = 0;
967 	struct ubi_wl_entry *e1;
968 	struct ubi_wl_entry *e2;
969 	struct ubi_work *wrk;
970 
971 	spin_lock(&ubi->wl_lock);
972 	if (ubi->wl_scheduled)
973 		/* Wear-leveling is already in the work queue */
974 		goto out_unlock;
975 
976 	/*
977 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
978 	 * the WL worker has to be scheduled anyway.
979 	 */
980 	if (!ubi->scrub.rb_node) {
981 		if (!ubi->used.rb_node || !ubi->free.rb_node)
982 			/* No physical eraseblocks - no deal */
983 			goto out_unlock;
984 
985 		/*
986 		 * We schedule wear-leveling only if the difference between the
987 		 * lowest erase counter of used physical eraseblocks and a high
988 		 * erase counter of free physical eraseblocks is greater then
989 		 * %UBI_WL_THRESHOLD.
990 		 */
991 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
992 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
993 
994 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
995 			goto out_unlock;
996 		dbg_wl("schedule wear-leveling");
997 	} else
998 		dbg_wl("schedule scrubbing");
999 
1000 	ubi->wl_scheduled = 1;
1001 	spin_unlock(&ubi->wl_lock);
1002 
1003 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1004 	if (!wrk) {
1005 		err = -ENOMEM;
1006 		goto out_cancel;
1007 	}
1008 
1009 	wrk->func = &wear_leveling_worker;
1010 	schedule_ubi_work(ubi, wrk);
1011 	return err;
1012 
1013 out_cancel:
1014 	spin_lock(&ubi->wl_lock);
1015 	ubi->wl_scheduled = 0;
1016 out_unlock:
1017 	spin_unlock(&ubi->wl_lock);
1018 	return err;
1019 }
1020 
1021 /**
1022  * erase_worker - physical eraseblock erase worker function.
1023  * @ubi: UBI device description object
1024  * @wl_wrk: the work object
1025  * @cancel: non-zero if the worker has to free memory and exit
1026  *
1027  * This function erases a physical eraseblock and perform torture testing if
1028  * needed. It also takes care about marking the physical eraseblock bad if
1029  * needed. Returns zero in case of success and a negative error code in case of
1030  * failure.
1031  */
1032 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1033 			int cancel)
1034 {
1035 	struct ubi_wl_entry *e = wl_wrk->e;
1036 	int pnum = e->pnum, err, need;
1037 
1038 	if (cancel) {
1039 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1040 		kfree(wl_wrk);
1041 		kmem_cache_free(ubi_wl_entry_slab, e);
1042 		return 0;
1043 	}
1044 
1045 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1046 
1047 	err = sync_erase(ubi, e, wl_wrk->torture);
1048 	if (!err) {
1049 		/* Fine, we've erased it successfully */
1050 		kfree(wl_wrk);
1051 
1052 		spin_lock(&ubi->wl_lock);
1053 		ubi->abs_ec += 1;
1054 		wl_tree_add(e, &ubi->free);
1055 		spin_unlock(&ubi->wl_lock);
1056 
1057 		/*
1058 		 * One more erase operation has happened, take care about
1059 		 * protected physical eraseblocks.
1060 		 */
1061 		check_protection_over(ubi);
1062 
1063 		/* And take care about wear-leveling */
1064 		err = ensure_wear_leveling(ubi);
1065 		return err;
1066 	}
1067 
1068 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1069 	kfree(wl_wrk);
1070 	kmem_cache_free(ubi_wl_entry_slab, e);
1071 
1072 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1073 	    err == -EBUSY) {
1074 		int err1;
1075 
1076 		/* Re-schedule the LEB for erasure */
1077 		err1 = schedule_erase(ubi, e, 0);
1078 		if (err1) {
1079 			err = err1;
1080 			goto out_ro;
1081 		}
1082 		return err;
1083 	} else if (err != -EIO) {
1084 		/*
1085 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1086 		 * this physical eraseblock for erasure again would cause
1087 		 * errors again and again. Well, lets switch to RO mode.
1088 		 */
1089 		goto out_ro;
1090 	}
1091 
1092 	/* It is %-EIO, the PEB went bad */
1093 
1094 	if (!ubi->bad_allowed) {
1095 		ubi_err("bad physical eraseblock %d detected", pnum);
1096 		goto out_ro;
1097 	}
1098 
1099 	spin_lock(&ubi->volumes_lock);
1100 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1101 	if (need > 0) {
1102 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1103 		ubi->avail_pebs -= need;
1104 		ubi->rsvd_pebs += need;
1105 		ubi->beb_rsvd_pebs += need;
1106 		if (need > 0)
1107 			ubi_msg("reserve more %d PEBs", need);
1108 	}
1109 
1110 	if (ubi->beb_rsvd_pebs == 0) {
1111 		spin_unlock(&ubi->volumes_lock);
1112 		ubi_err("no reserved physical eraseblocks");
1113 		goto out_ro;
1114 	}
1115 
1116 	spin_unlock(&ubi->volumes_lock);
1117 	ubi_msg("mark PEB %d as bad", pnum);
1118 
1119 	err = ubi_io_mark_bad(ubi, pnum);
1120 	if (err)
1121 		goto out_ro;
1122 
1123 	spin_lock(&ubi->volumes_lock);
1124 	ubi->beb_rsvd_pebs -= 1;
1125 	ubi->bad_peb_count += 1;
1126 	ubi->good_peb_count -= 1;
1127 	ubi_calculate_reserved(ubi);
1128 	if (ubi->beb_rsvd_pebs == 0)
1129 		ubi_warn("last PEB from the reserved pool was used");
1130 	spin_unlock(&ubi->volumes_lock);
1131 
1132 	return err;
1133 
1134 out_ro:
1135 	ubi_ro_mode(ubi);
1136 	return err;
1137 }
1138 
1139 /**
1140  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1141  * @ubi: UBI device description object
1142  * @pnum: physical eraseblock to return
1143  * @torture: if this physical eraseblock has to be tortured
1144  *
1145  * This function is called to return physical eraseblock @pnum to the pool of
1146  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1147  * occurred to this @pnum and it has to be tested. This function returns zero
1148  * in case of success, and a negative error code in case of failure.
1149  */
1150 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1151 {
1152 	int err;
1153 	struct ubi_wl_entry *e;
1154 
1155 	dbg_wl("PEB %d", pnum);
1156 	ubi_assert(pnum >= 0);
1157 	ubi_assert(pnum < ubi->peb_count);
1158 
1159 retry:
1160 	spin_lock(&ubi->wl_lock);
1161 	e = ubi->lookuptbl[pnum];
1162 	if (e == ubi->move_from) {
1163 		/*
1164 		 * User is putting the physical eraseblock which was selected to
1165 		 * be moved. It will be scheduled for erasure in the
1166 		 * wear-leveling worker.
1167 		 */
1168 		dbg_wl("PEB %d is being moved, wait", pnum);
1169 		spin_unlock(&ubi->wl_lock);
1170 
1171 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1172 		mutex_lock(&ubi->move_mutex);
1173 		mutex_unlock(&ubi->move_mutex);
1174 		goto retry;
1175 	} else if (e == ubi->move_to) {
1176 		/*
1177 		 * User is putting the physical eraseblock which was selected
1178 		 * as the target the data is moved to. It may happen if the EBA
1179 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1180 		 * but the WL sub-system has not put the PEB to the "used" tree
1181 		 * yet, but it is about to do this. So we just set a flag which
1182 		 * will tell the WL worker that the PEB is not needed anymore
1183 		 * and should be scheduled for erasure.
1184 		 */
1185 		dbg_wl("PEB %d is the target of data moving", pnum);
1186 		ubi_assert(!ubi->move_to_put);
1187 		ubi->move_to_put = 1;
1188 		spin_unlock(&ubi->wl_lock);
1189 		return 0;
1190 	} else {
1191 		if (in_wl_tree(e, &ubi->used)) {
1192 			paranoid_check_in_wl_tree(e, &ubi->used);
1193 			rb_erase(&e->rb, &ubi->used);
1194 		} else if (in_wl_tree(e, &ubi->scrub)) {
1195 			paranoid_check_in_wl_tree(e, &ubi->scrub);
1196 			rb_erase(&e->rb, &ubi->scrub);
1197 		} else {
1198 			err = prot_tree_del(ubi, e->pnum);
1199 			if (err) {
1200 				ubi_err("PEB %d not found", pnum);
1201 				ubi_ro_mode(ubi);
1202 				spin_unlock(&ubi->wl_lock);
1203 				return err;
1204 			}
1205 		}
1206 	}
1207 	spin_unlock(&ubi->wl_lock);
1208 
1209 	err = schedule_erase(ubi, e, torture);
1210 	if (err) {
1211 		spin_lock(&ubi->wl_lock);
1212 		wl_tree_add(e, &ubi->used);
1213 		spin_unlock(&ubi->wl_lock);
1214 	}
1215 
1216 	return err;
1217 }
1218 
1219 /**
1220  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1221  * @ubi: UBI device description object
1222  * @pnum: the physical eraseblock to schedule
1223  *
1224  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1225  * needs scrubbing. This function schedules a physical eraseblock for
1226  * scrubbing which is done in background. This function returns zero in case of
1227  * success and a negative error code in case of failure.
1228  */
1229 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1230 {
1231 	struct ubi_wl_entry *e;
1232 
1233 	dbg_msg("schedule PEB %d for scrubbing", pnum);
1234 
1235 retry:
1236 	spin_lock(&ubi->wl_lock);
1237 	e = ubi->lookuptbl[pnum];
1238 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1239 		spin_unlock(&ubi->wl_lock);
1240 		return 0;
1241 	}
1242 
1243 	if (e == ubi->move_to) {
1244 		/*
1245 		 * This physical eraseblock was used to move data to. The data
1246 		 * was moved but the PEB was not yet inserted to the proper
1247 		 * tree. We should just wait a little and let the WL worker
1248 		 * proceed.
1249 		 */
1250 		spin_unlock(&ubi->wl_lock);
1251 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1252 		yield();
1253 		goto retry;
1254 	}
1255 
1256 	if (in_wl_tree(e, &ubi->used)) {
1257 		paranoid_check_in_wl_tree(e, &ubi->used);
1258 		rb_erase(&e->rb, &ubi->used);
1259 	} else {
1260 		int err;
1261 
1262 		err = prot_tree_del(ubi, e->pnum);
1263 		if (err) {
1264 			ubi_err("PEB %d not found", pnum);
1265 			ubi_ro_mode(ubi);
1266 			spin_unlock(&ubi->wl_lock);
1267 			return err;
1268 		}
1269 	}
1270 
1271 	wl_tree_add(e, &ubi->scrub);
1272 	spin_unlock(&ubi->wl_lock);
1273 
1274 	/*
1275 	 * Technically scrubbing is the same as wear-leveling, so it is done
1276 	 * by the WL worker.
1277 	 */
1278 	return ensure_wear_leveling(ubi);
1279 }
1280 
1281 /**
1282  * ubi_wl_flush - flush all pending works.
1283  * @ubi: UBI device description object
1284  *
1285  * This function returns zero in case of success and a negative error code in
1286  * case of failure.
1287  */
1288 int ubi_wl_flush(struct ubi_device *ubi)
1289 {
1290 	int err;
1291 
1292 	/*
1293 	 * Erase while the pending works queue is not empty, but not more then
1294 	 * the number of currently pending works.
1295 	 */
1296 	dbg_wl("flush (%d pending works)", ubi->works_count);
1297 	while (ubi->works_count) {
1298 		err = do_work(ubi);
1299 		if (err)
1300 			return err;
1301 	}
1302 
1303 	/*
1304 	 * Make sure all the works which have been done in parallel are
1305 	 * finished.
1306 	 */
1307 	down_write(&ubi->work_sem);
1308 	up_write(&ubi->work_sem);
1309 
1310 	/*
1311 	 * And in case last was the WL worker and it cancelled the LEB
1312 	 * movement, flush again.
1313 	 */
1314 	while (ubi->works_count) {
1315 		dbg_wl("flush more (%d pending works)", ubi->works_count);
1316 		err = do_work(ubi);
1317 		if (err)
1318 			return err;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  * tree_destroy - destroy an RB-tree.
1326  * @root: the root of the tree to destroy
1327  */
1328 static void tree_destroy(struct rb_root *root)
1329 {
1330 	struct rb_node *rb;
1331 	struct ubi_wl_entry *e;
1332 
1333 	rb = root->rb_node;
1334 	while (rb) {
1335 		if (rb->rb_left)
1336 			rb = rb->rb_left;
1337 		else if (rb->rb_right)
1338 			rb = rb->rb_right;
1339 		else {
1340 			e = rb_entry(rb, struct ubi_wl_entry, rb);
1341 
1342 			rb = rb_parent(rb);
1343 			if (rb) {
1344 				if (rb->rb_left == &e->rb)
1345 					rb->rb_left = NULL;
1346 				else
1347 					rb->rb_right = NULL;
1348 			}
1349 
1350 			kmem_cache_free(ubi_wl_entry_slab, e);
1351 		}
1352 	}
1353 }
1354 
1355 /**
1356  * ubi_thread - UBI background thread.
1357  * @u: the UBI device description object pointer
1358  */
1359 int ubi_thread(void *u)
1360 {
1361 	int failures = 0;
1362 	struct ubi_device *ubi = u;
1363 
1364 	ubi_msg("background thread \"%s\" started, PID %d",
1365 		ubi->bgt_name, task_pid_nr(current));
1366 
1367 	set_freezable();
1368 	for (;;) {
1369 		int err;
1370 
1371 		if (kthread_should_stop())
1372 			break;
1373 
1374 		if (try_to_freeze())
1375 			continue;
1376 
1377 		spin_lock(&ubi->wl_lock);
1378 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1379 			       !ubi->thread_enabled) {
1380 			set_current_state(TASK_INTERRUPTIBLE);
1381 			spin_unlock(&ubi->wl_lock);
1382 			schedule();
1383 			continue;
1384 		}
1385 		spin_unlock(&ubi->wl_lock);
1386 
1387 		err = do_work(ubi);
1388 		if (err) {
1389 			ubi_err("%s: work failed with error code %d",
1390 				ubi->bgt_name, err);
1391 			if (failures++ > WL_MAX_FAILURES) {
1392 				/*
1393 				 * Too many failures, disable the thread and
1394 				 * switch to read-only mode.
1395 				 */
1396 				ubi_msg("%s: %d consecutive failures",
1397 					ubi->bgt_name, WL_MAX_FAILURES);
1398 				ubi_ro_mode(ubi);
1399 				break;
1400 			}
1401 		} else
1402 			failures = 0;
1403 
1404 		cond_resched();
1405 	}
1406 
1407 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1408 	return 0;
1409 }
1410 
1411 /**
1412  * cancel_pending - cancel all pending works.
1413  * @ubi: UBI device description object
1414  */
1415 static void cancel_pending(struct ubi_device *ubi)
1416 {
1417 	while (!list_empty(&ubi->works)) {
1418 		struct ubi_work *wrk;
1419 
1420 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1421 		list_del(&wrk->list);
1422 		wrk->func(ubi, wrk, 1);
1423 		ubi->works_count -= 1;
1424 		ubi_assert(ubi->works_count >= 0);
1425 	}
1426 }
1427 
1428 /**
1429  * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1430  * @ubi: UBI device description object
1431  * @si: scanning information
1432  *
1433  * This function returns zero in case of success, and a negative error code in
1434  * case of failure.
1435  */
1436 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1437 {
1438 	int err;
1439 	struct rb_node *rb1, *rb2;
1440 	struct ubi_scan_volume *sv;
1441 	struct ubi_scan_leb *seb, *tmp;
1442 	struct ubi_wl_entry *e;
1443 
1444 
1445 	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1446 	ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1447 	spin_lock_init(&ubi->wl_lock);
1448 	mutex_init(&ubi->move_mutex);
1449 	init_rwsem(&ubi->work_sem);
1450 	ubi->max_ec = si->max_ec;
1451 	INIT_LIST_HEAD(&ubi->works);
1452 
1453 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1454 
1455 	err = -ENOMEM;
1456 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1457 	if (!ubi->lookuptbl)
1458 		return err;
1459 
1460 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1461 		cond_resched();
1462 
1463 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1464 		if (!e)
1465 			goto out_free;
1466 
1467 		e->pnum = seb->pnum;
1468 		e->ec = seb->ec;
1469 		ubi->lookuptbl[e->pnum] = e;
1470 		if (schedule_erase(ubi, e, 0)) {
1471 			kmem_cache_free(ubi_wl_entry_slab, e);
1472 			goto out_free;
1473 		}
1474 	}
1475 
1476 	list_for_each_entry(seb, &si->free, u.list) {
1477 		cond_resched();
1478 
1479 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1480 		if (!e)
1481 			goto out_free;
1482 
1483 		e->pnum = seb->pnum;
1484 		e->ec = seb->ec;
1485 		ubi_assert(e->ec >= 0);
1486 		wl_tree_add(e, &ubi->free);
1487 		ubi->lookuptbl[e->pnum] = e;
1488 	}
1489 
1490 	list_for_each_entry(seb, &si->corr, u.list) {
1491 		cond_resched();
1492 
1493 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1494 		if (!e)
1495 			goto out_free;
1496 
1497 		e->pnum = seb->pnum;
1498 		e->ec = seb->ec;
1499 		ubi->lookuptbl[e->pnum] = e;
1500 		if (schedule_erase(ubi, e, 0)) {
1501 			kmem_cache_free(ubi_wl_entry_slab, e);
1502 			goto out_free;
1503 		}
1504 	}
1505 
1506 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1507 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1508 			cond_resched();
1509 
1510 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1511 			if (!e)
1512 				goto out_free;
1513 
1514 			e->pnum = seb->pnum;
1515 			e->ec = seb->ec;
1516 			ubi->lookuptbl[e->pnum] = e;
1517 			if (!seb->scrub) {
1518 				dbg_wl("add PEB %d EC %d to the used tree",
1519 				       e->pnum, e->ec);
1520 				wl_tree_add(e, &ubi->used);
1521 			} else {
1522 				dbg_wl("add PEB %d EC %d to the scrub tree",
1523 				       e->pnum, e->ec);
1524 				wl_tree_add(e, &ubi->scrub);
1525 			}
1526 		}
1527 	}
1528 
1529 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1530 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1531 			ubi->avail_pebs, WL_RESERVED_PEBS);
1532 		goto out_free;
1533 	}
1534 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1535 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1536 
1537 	/* Schedule wear-leveling if needed */
1538 	err = ensure_wear_leveling(ubi);
1539 	if (err)
1540 		goto out_free;
1541 
1542 	return 0;
1543 
1544 out_free:
1545 	cancel_pending(ubi);
1546 	tree_destroy(&ubi->used);
1547 	tree_destroy(&ubi->free);
1548 	tree_destroy(&ubi->scrub);
1549 	kfree(ubi->lookuptbl);
1550 	return err;
1551 }
1552 
1553 /**
1554  * protection_trees_destroy - destroy the protection RB-trees.
1555  * @ubi: UBI device description object
1556  */
1557 static void protection_trees_destroy(struct ubi_device *ubi)
1558 {
1559 	struct rb_node *rb;
1560 	struct ubi_wl_prot_entry *pe;
1561 
1562 	rb = ubi->prot.aec.rb_node;
1563 	while (rb) {
1564 		if (rb->rb_left)
1565 			rb = rb->rb_left;
1566 		else if (rb->rb_right)
1567 			rb = rb->rb_right;
1568 		else {
1569 			pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1570 
1571 			rb = rb_parent(rb);
1572 			if (rb) {
1573 				if (rb->rb_left == &pe->rb_aec)
1574 					rb->rb_left = NULL;
1575 				else
1576 					rb->rb_right = NULL;
1577 			}
1578 
1579 			kmem_cache_free(ubi_wl_entry_slab, pe->e);
1580 			kfree(pe);
1581 		}
1582 	}
1583 }
1584 
1585 /**
1586  * ubi_wl_close - close the wear-leveling sub-system.
1587  * @ubi: UBI device description object
1588  */
1589 void ubi_wl_close(struct ubi_device *ubi)
1590 {
1591 	dbg_wl("close the WL sub-system");
1592 	cancel_pending(ubi);
1593 	protection_trees_destroy(ubi);
1594 	tree_destroy(&ubi->used);
1595 	tree_destroy(&ubi->free);
1596 	tree_destroy(&ubi->scrub);
1597 	kfree(ubi->lookuptbl);
1598 }
1599 
1600 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1601 
1602 /**
1603  * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1604  * @ubi: UBI device description object
1605  * @pnum: the physical eraseblock number to check
1606  * @ec: the erase counter to check
1607  *
1608  * This function returns zero if the erase counter of physical eraseblock @pnum
1609  * is equivalent to @ec, %1 if not, and a negative error code if an error
1610  * occurred.
1611  */
1612 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1613 {
1614 	int err;
1615 	long long read_ec;
1616 	struct ubi_ec_hdr *ec_hdr;
1617 
1618 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1619 	if (!ec_hdr)
1620 		return -ENOMEM;
1621 
1622 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1623 	if (err && err != UBI_IO_BITFLIPS) {
1624 		/* The header does not have to exist */
1625 		err = 0;
1626 		goto out_free;
1627 	}
1628 
1629 	read_ec = be64_to_cpu(ec_hdr->ec);
1630 	if (ec != read_ec) {
1631 		ubi_err("paranoid check failed for PEB %d", pnum);
1632 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1633 		ubi_dbg_dump_stack();
1634 		err = 1;
1635 	} else
1636 		err = 0;
1637 
1638 out_free:
1639 	kfree(ec_hdr);
1640 	return err;
1641 }
1642 
1643 /**
1644  * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1645  * @e: the wear-leveling entry to check
1646  * @root: the root of the tree
1647  *
1648  * This function returns zero if @e is in the @root RB-tree and %1 if it is
1649  * not.
1650  */
1651 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1652 				     struct rb_root *root)
1653 {
1654 	if (in_wl_tree(e, root))
1655 		return 0;
1656 
1657 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1658 		e->pnum, e->ec, root);
1659 	ubi_dbg_dump_stack();
1660 	return 1;
1661 }
1662 
1663 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1664