1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical* eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick 44 * an "optimal" physical eraseblock. For example, when it is known that the 45 * physical eraseblock will be "put" soon because it contains short-term data, 46 * the WL sub-system may pick a free physical eraseblock with low erase 47 * counter, and so forth. 48 * 49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 50 * bad. 51 * 52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 53 * in a physical eraseblock, it has to be moved. Technically this is the same 54 * as moving it for wear-leveling reasons. 55 * 56 * As it was said, for the UBI sub-system all physical eraseblocks are either 57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 58 * used eraseblocks are kept in a set of different RB-trees: @wl->used, 59 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub. 60 * 61 * Note, in this implementation, we keep a small in-RAM object for each physical 62 * eraseblock. This is surely not a scalable solution. But it appears to be good 63 * enough for moderately large flashes and it is simple. In future, one may 64 * re-work this sub-system and make it more scalable. 65 * 66 * At the moment this sub-system does not utilize the sequence number, which 67 * was introduced relatively recently. But it would be wise to do this because 68 * the sequence number of a logical eraseblock characterizes how old is it. For 69 * example, when we move a PEB with low erase counter, and we need to pick the 70 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 71 * pick target PEB with an average EC if our PEB is not very "old". This is a 72 * room for future re-works of the WL sub-system. 73 * 74 * Note: the stuff with protection trees looks too complex and is difficult to 75 * understand. Should be fixed. 76 */ 77 78 #include <linux/slab.h> 79 #include <linux/crc32.h> 80 #include <linux/freezer.h> 81 #include <linux/kthread.h> 82 #include "ubi.h" 83 84 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 85 #define WL_RESERVED_PEBS 1 86 87 /* 88 * How many erase cycles are short term, unknown, and long term physical 89 * eraseblocks protected. 90 */ 91 #define ST_PROTECTION 16 92 #define U_PROTECTION 10 93 #define LT_PROTECTION 4 94 95 /* 96 * Maximum difference between two erase counters. If this threshold is 97 * exceeded, the WL sub-system starts moving data from used physical 98 * eraseblocks with low erase counter to free physical eraseblocks with high 99 * erase counter. 100 */ 101 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 102 103 /* 104 * When a physical eraseblock is moved, the WL sub-system has to pick the target 105 * physical eraseblock to move to. The simplest way would be just to pick the 106 * one with the highest erase counter. But in certain workloads this could lead 107 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 108 * situation when the picked physical eraseblock is constantly erased after the 109 * data is written to it. So, we have a constant which limits the highest erase 110 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 111 * does not pick eraseblocks with erase counter greater then the lowest erase 112 * counter plus %WL_FREE_MAX_DIFF. 113 */ 114 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 115 116 /* 117 * Maximum number of consecutive background thread failures which is enough to 118 * switch to read-only mode. 119 */ 120 #define WL_MAX_FAILURES 32 121 122 /** 123 * struct ubi_wl_prot_entry - PEB protection entry. 124 * @rb_pnum: link in the @wl->prot.pnum RB-tree 125 * @rb_aec: link in the @wl->prot.aec RB-tree 126 * @abs_ec: the absolute erase counter value when the protection ends 127 * @e: the wear-leveling entry of the physical eraseblock under protection 128 * 129 * When the WL sub-system returns a physical eraseblock, the physical 130 * eraseblock is protected from being moved for some "time". For this reason, 131 * the physical eraseblock is not directly moved from the @wl->free tree to the 132 * @wl->used tree. There is one more tree in between where this physical 133 * eraseblock is temporarily stored (@wl->prot). 134 * 135 * All this protection stuff is needed because: 136 * o we don't want to move physical eraseblocks just after we have given them 137 * to the user; instead, we first want to let users fill them up with data; 138 * 139 * o there is a chance that the user will put the physical eraseblock very 140 * soon, so it makes sense not to move it for some time, but wait; this is 141 * especially important in case of "short term" physical eraseblocks. 142 * 143 * Physical eraseblocks stay protected only for limited time. But the "time" is 144 * measured in erase cycles in this case. This is implemented with help of the 145 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the 146 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to 147 * the @wl->used tree. 148 * 149 * Protected physical eraseblocks are searched by physical eraseblock number 150 * (when they are put) and by the absolute erase counter (to check if it is 151 * time to move them to the @wl->used tree). So there are actually 2 RB-trees 152 * storing the protected physical eraseblocks: @wl->prot.pnum and 153 * @wl->prot.aec. They are referred to as the "protection" trees. The 154 * first one is indexed by the physical eraseblock number. The second one is 155 * indexed by the absolute erase counter. Both trees store 156 * &struct ubi_wl_prot_entry objects. 157 * 158 * Each physical eraseblock has 2 main states: free and used. The former state 159 * corresponds to the @wl->free tree. The latter state is split up on several 160 * sub-states: 161 * o the WL movement is allowed (@wl->used tree); 162 * o the WL movement is temporarily prohibited (@wl->prot.pnum and 163 * @wl->prot.aec trees); 164 * o scrubbing is needed (@wl->scrub tree). 165 * 166 * Depending on the sub-state, wear-leveling entries of the used physical 167 * eraseblocks may be kept in one of those trees. 168 */ 169 struct ubi_wl_prot_entry { 170 struct rb_node rb_pnum; 171 struct rb_node rb_aec; 172 unsigned long long abs_ec; 173 struct ubi_wl_entry *e; 174 }; 175 176 /** 177 * struct ubi_work - UBI work description data structure. 178 * @list: a link in the list of pending works 179 * @func: worker function 180 * @priv: private data of the worker function 181 * @e: physical eraseblock to erase 182 * @torture: if the physical eraseblock has to be tortured 183 * 184 * The @func pointer points to the worker function. If the @cancel argument is 185 * not zero, the worker has to free the resources and exit immediately. The 186 * worker has to return zero in case of success and a negative error code in 187 * case of failure. 188 */ 189 struct ubi_work { 190 struct list_head list; 191 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); 192 /* The below fields are only relevant to erasure works */ 193 struct ubi_wl_entry *e; 194 int torture; 195 }; 196 197 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 198 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); 199 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 200 struct rb_root *root); 201 #else 202 #define paranoid_check_ec(ubi, pnum, ec) 0 203 #define paranoid_check_in_wl_tree(e, root) 204 #endif 205 206 /** 207 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 208 * @e: the wear-leveling entry to add 209 * @root: the root of the tree 210 * 211 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 212 * the @ubi->used and @ubi->free RB-trees. 213 */ 214 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 215 { 216 struct rb_node **p, *parent = NULL; 217 218 p = &root->rb_node; 219 while (*p) { 220 struct ubi_wl_entry *e1; 221 222 parent = *p; 223 e1 = rb_entry(parent, struct ubi_wl_entry, rb); 224 225 if (e->ec < e1->ec) 226 p = &(*p)->rb_left; 227 else if (e->ec > e1->ec) 228 p = &(*p)->rb_right; 229 else { 230 ubi_assert(e->pnum != e1->pnum); 231 if (e->pnum < e1->pnum) 232 p = &(*p)->rb_left; 233 else 234 p = &(*p)->rb_right; 235 } 236 } 237 238 rb_link_node(&e->rb, parent, p); 239 rb_insert_color(&e->rb, root); 240 } 241 242 /** 243 * do_work - do one pending work. 244 * @ubi: UBI device description object 245 * 246 * This function returns zero in case of success and a negative error code in 247 * case of failure. 248 */ 249 static int do_work(struct ubi_device *ubi) 250 { 251 int err; 252 struct ubi_work *wrk; 253 254 cond_resched(); 255 256 /* 257 * @ubi->work_sem is used to synchronize with the workers. Workers take 258 * it in read mode, so many of them may be doing works at a time. But 259 * the queue flush code has to be sure the whole queue of works is 260 * done, and it takes the mutex in write mode. 261 */ 262 down_read(&ubi->work_sem); 263 spin_lock(&ubi->wl_lock); 264 if (list_empty(&ubi->works)) { 265 spin_unlock(&ubi->wl_lock); 266 up_read(&ubi->work_sem); 267 return 0; 268 } 269 270 wrk = list_entry(ubi->works.next, struct ubi_work, list); 271 list_del(&wrk->list); 272 ubi->works_count -= 1; 273 ubi_assert(ubi->works_count >= 0); 274 spin_unlock(&ubi->wl_lock); 275 276 /* 277 * Call the worker function. Do not touch the work structure 278 * after this call as it will have been freed or reused by that 279 * time by the worker function. 280 */ 281 err = wrk->func(ubi, wrk, 0); 282 if (err) 283 ubi_err("work failed with error code %d", err); 284 up_read(&ubi->work_sem); 285 286 return err; 287 } 288 289 /** 290 * produce_free_peb - produce a free physical eraseblock. 291 * @ubi: UBI device description object 292 * 293 * This function tries to make a free PEB by means of synchronous execution of 294 * pending works. This may be needed if, for example the background thread is 295 * disabled. Returns zero in case of success and a negative error code in case 296 * of failure. 297 */ 298 static int produce_free_peb(struct ubi_device *ubi) 299 { 300 int err; 301 302 spin_lock(&ubi->wl_lock); 303 while (!ubi->free.rb_node) { 304 spin_unlock(&ubi->wl_lock); 305 306 dbg_wl("do one work synchronously"); 307 err = do_work(ubi); 308 if (err) 309 return err; 310 311 spin_lock(&ubi->wl_lock); 312 } 313 spin_unlock(&ubi->wl_lock); 314 315 return 0; 316 } 317 318 /** 319 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 320 * @e: the wear-leveling entry to check 321 * @root: the root of the tree 322 * 323 * This function returns non-zero if @e is in the @root RB-tree and zero if it 324 * is not. 325 */ 326 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 327 { 328 struct rb_node *p; 329 330 p = root->rb_node; 331 while (p) { 332 struct ubi_wl_entry *e1; 333 334 e1 = rb_entry(p, struct ubi_wl_entry, rb); 335 336 if (e->pnum == e1->pnum) { 337 ubi_assert(e == e1); 338 return 1; 339 } 340 341 if (e->ec < e1->ec) 342 p = p->rb_left; 343 else if (e->ec > e1->ec) 344 p = p->rb_right; 345 else { 346 ubi_assert(e->pnum != e1->pnum); 347 if (e->pnum < e1->pnum) 348 p = p->rb_left; 349 else 350 p = p->rb_right; 351 } 352 } 353 354 return 0; 355 } 356 357 /** 358 * prot_tree_add - add physical eraseblock to protection trees. 359 * @ubi: UBI device description object 360 * @e: the physical eraseblock to add 361 * @pe: protection entry object to use 362 * @abs_ec: absolute erase counter value when this physical eraseblock has 363 * to be removed from the protection trees. 364 * 365 * @wl->lock has to be locked. 366 */ 367 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e, 368 struct ubi_wl_prot_entry *pe, int abs_ec) 369 { 370 struct rb_node **p, *parent = NULL; 371 struct ubi_wl_prot_entry *pe1; 372 373 pe->e = e; 374 pe->abs_ec = ubi->abs_ec + abs_ec; 375 376 p = &ubi->prot.pnum.rb_node; 377 while (*p) { 378 parent = *p; 379 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum); 380 381 if (e->pnum < pe1->e->pnum) 382 p = &(*p)->rb_left; 383 else 384 p = &(*p)->rb_right; 385 } 386 rb_link_node(&pe->rb_pnum, parent, p); 387 rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum); 388 389 p = &ubi->prot.aec.rb_node; 390 parent = NULL; 391 while (*p) { 392 parent = *p; 393 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec); 394 395 if (pe->abs_ec < pe1->abs_ec) 396 p = &(*p)->rb_left; 397 else 398 p = &(*p)->rb_right; 399 } 400 rb_link_node(&pe->rb_aec, parent, p); 401 rb_insert_color(&pe->rb_aec, &ubi->prot.aec); 402 } 403 404 /** 405 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 406 * @root: the RB-tree where to look for 407 * @max: highest possible erase counter 408 * 409 * This function looks for a wear leveling entry with erase counter closest to 410 * @max and less then @max. 411 */ 412 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) 413 { 414 struct rb_node *p; 415 struct ubi_wl_entry *e; 416 417 e = rb_entry(rb_first(root), struct ubi_wl_entry, rb); 418 max += e->ec; 419 420 p = root->rb_node; 421 while (p) { 422 struct ubi_wl_entry *e1; 423 424 e1 = rb_entry(p, struct ubi_wl_entry, rb); 425 if (e1->ec >= max) 426 p = p->rb_left; 427 else { 428 p = p->rb_right; 429 e = e1; 430 } 431 } 432 433 return e; 434 } 435 436 /** 437 * ubi_wl_get_peb - get a physical eraseblock. 438 * @ubi: UBI device description object 439 * @dtype: type of data which will be stored in this physical eraseblock 440 * 441 * This function returns a physical eraseblock in case of success and a 442 * negative error code in case of failure. Might sleep. 443 */ 444 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) 445 { 446 int err, protect, medium_ec; 447 struct ubi_wl_entry *e, *first, *last; 448 struct ubi_wl_prot_entry *pe; 449 450 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || 451 dtype == UBI_UNKNOWN); 452 453 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS); 454 if (!pe) 455 return -ENOMEM; 456 457 retry: 458 spin_lock(&ubi->wl_lock); 459 if (!ubi->free.rb_node) { 460 if (ubi->works_count == 0) { 461 ubi_assert(list_empty(&ubi->works)); 462 ubi_err("no free eraseblocks"); 463 spin_unlock(&ubi->wl_lock); 464 kfree(pe); 465 return -ENOSPC; 466 } 467 spin_unlock(&ubi->wl_lock); 468 469 err = produce_free_peb(ubi); 470 if (err < 0) { 471 kfree(pe); 472 return err; 473 } 474 goto retry; 475 } 476 477 switch (dtype) { 478 case UBI_LONGTERM: 479 /* 480 * For long term data we pick a physical eraseblock with high 481 * erase counter. But the highest erase counter we can pick is 482 * bounded by the the lowest erase counter plus 483 * %WL_FREE_MAX_DIFF. 484 */ 485 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 486 protect = LT_PROTECTION; 487 break; 488 case UBI_UNKNOWN: 489 /* 490 * For unknown data we pick a physical eraseblock with medium 491 * erase counter. But we by no means can pick a physical 492 * eraseblock with erase counter greater or equivalent than the 493 * lowest erase counter plus %WL_FREE_MAX_DIFF. 494 */ 495 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb); 496 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, rb); 497 498 if (last->ec - first->ec < WL_FREE_MAX_DIFF) 499 e = rb_entry(ubi->free.rb_node, 500 struct ubi_wl_entry, rb); 501 else { 502 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; 503 e = find_wl_entry(&ubi->free, medium_ec); 504 } 505 protect = U_PROTECTION; 506 break; 507 case UBI_SHORTTERM: 508 /* 509 * For short term data we pick a physical eraseblock with the 510 * lowest erase counter as we expect it will be erased soon. 511 */ 512 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb); 513 protect = ST_PROTECTION; 514 break; 515 default: 516 protect = 0; 517 e = NULL; 518 BUG(); 519 } 520 521 /* 522 * Move the physical eraseblock to the protection trees where it will 523 * be protected from being moved for some time. 524 */ 525 paranoid_check_in_wl_tree(e, &ubi->free); 526 rb_erase(&e->rb, &ubi->free); 527 prot_tree_add(ubi, e, pe, protect); 528 529 dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect); 530 spin_unlock(&ubi->wl_lock); 531 532 return e->pnum; 533 } 534 535 /** 536 * prot_tree_del - remove a physical eraseblock from the protection trees 537 * @ubi: UBI device description object 538 * @pnum: the physical eraseblock to remove 539 * 540 * This function returns PEB @pnum from the protection trees and returns zero 541 * in case of success and %-ENODEV if the PEB was not found in the protection 542 * trees. 543 */ 544 static int prot_tree_del(struct ubi_device *ubi, int pnum) 545 { 546 struct rb_node *p; 547 struct ubi_wl_prot_entry *pe = NULL; 548 549 p = ubi->prot.pnum.rb_node; 550 while (p) { 551 552 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum); 553 554 if (pnum == pe->e->pnum) 555 goto found; 556 557 if (pnum < pe->e->pnum) 558 p = p->rb_left; 559 else 560 p = p->rb_right; 561 } 562 563 return -ENODEV; 564 565 found: 566 ubi_assert(pe->e->pnum == pnum); 567 rb_erase(&pe->rb_aec, &ubi->prot.aec); 568 rb_erase(&pe->rb_pnum, &ubi->prot.pnum); 569 kfree(pe); 570 return 0; 571 } 572 573 /** 574 * sync_erase - synchronously erase a physical eraseblock. 575 * @ubi: UBI device description object 576 * @e: the the physical eraseblock to erase 577 * @torture: if the physical eraseblock has to be tortured 578 * 579 * This function returns zero in case of success and a negative error code in 580 * case of failure. 581 */ 582 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 583 int torture) 584 { 585 int err; 586 struct ubi_ec_hdr *ec_hdr; 587 unsigned long long ec = e->ec; 588 589 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 590 591 err = paranoid_check_ec(ubi, e->pnum, e->ec); 592 if (err > 0) 593 return -EINVAL; 594 595 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 596 if (!ec_hdr) 597 return -ENOMEM; 598 599 err = ubi_io_sync_erase(ubi, e->pnum, torture); 600 if (err < 0) 601 goto out_free; 602 603 ec += err; 604 if (ec > UBI_MAX_ERASECOUNTER) { 605 /* 606 * Erase counter overflow. Upgrade UBI and use 64-bit 607 * erase counters internally. 608 */ 609 ubi_err("erase counter overflow at PEB %d, EC %llu", 610 e->pnum, ec); 611 err = -EINVAL; 612 goto out_free; 613 } 614 615 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 616 617 ec_hdr->ec = cpu_to_be64(ec); 618 619 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 620 if (err) 621 goto out_free; 622 623 e->ec = ec; 624 spin_lock(&ubi->wl_lock); 625 if (e->ec > ubi->max_ec) 626 ubi->max_ec = e->ec; 627 spin_unlock(&ubi->wl_lock); 628 629 out_free: 630 kfree(ec_hdr); 631 return err; 632 } 633 634 /** 635 * check_protection_over - check if it is time to stop protecting some PEBs. 636 * @ubi: UBI device description object 637 * 638 * This function is called after each erase operation, when the absolute erase 639 * counter is incremented, to check if some physical eraseblock have not to be 640 * protected any longer. These physical eraseblocks are moved from the 641 * protection trees to the used tree. 642 */ 643 static void check_protection_over(struct ubi_device *ubi) 644 { 645 struct ubi_wl_prot_entry *pe; 646 647 /* 648 * There may be several protected physical eraseblock to remove, 649 * process them all. 650 */ 651 while (1) { 652 spin_lock(&ubi->wl_lock); 653 if (!ubi->prot.aec.rb_node) { 654 spin_unlock(&ubi->wl_lock); 655 break; 656 } 657 658 pe = rb_entry(rb_first(&ubi->prot.aec), 659 struct ubi_wl_prot_entry, rb_aec); 660 661 if (pe->abs_ec > ubi->abs_ec) { 662 spin_unlock(&ubi->wl_lock); 663 break; 664 } 665 666 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu", 667 pe->e->pnum, ubi->abs_ec, pe->abs_ec); 668 rb_erase(&pe->rb_aec, &ubi->prot.aec); 669 rb_erase(&pe->rb_pnum, &ubi->prot.pnum); 670 wl_tree_add(pe->e, &ubi->used); 671 spin_unlock(&ubi->wl_lock); 672 673 kfree(pe); 674 cond_resched(); 675 } 676 } 677 678 /** 679 * schedule_ubi_work - schedule a work. 680 * @ubi: UBI device description object 681 * @wrk: the work to schedule 682 * 683 * This function enqueues a work defined by @wrk to the tail of the pending 684 * works list. 685 */ 686 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 687 { 688 spin_lock(&ubi->wl_lock); 689 list_add_tail(&wrk->list, &ubi->works); 690 ubi_assert(ubi->works_count >= 0); 691 ubi->works_count += 1; 692 if (ubi->thread_enabled) 693 wake_up_process(ubi->bgt_thread); 694 spin_unlock(&ubi->wl_lock); 695 } 696 697 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 698 int cancel); 699 700 /** 701 * schedule_erase - schedule an erase work. 702 * @ubi: UBI device description object 703 * @e: the WL entry of the physical eraseblock to erase 704 * @torture: if the physical eraseblock has to be tortured 705 * 706 * This function returns zero in case of success and a %-ENOMEM in case of 707 * failure. 708 */ 709 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 710 int torture) 711 { 712 struct ubi_work *wl_wrk; 713 714 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 715 e->pnum, e->ec, torture); 716 717 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 718 if (!wl_wrk) 719 return -ENOMEM; 720 721 wl_wrk->func = &erase_worker; 722 wl_wrk->e = e; 723 wl_wrk->torture = torture; 724 725 schedule_ubi_work(ubi, wl_wrk); 726 return 0; 727 } 728 729 /** 730 * wear_leveling_worker - wear-leveling worker function. 731 * @ubi: UBI device description object 732 * @wrk: the work object 733 * @cancel: non-zero if the worker has to free memory and exit 734 * 735 * This function copies a more worn out physical eraseblock to a less worn out 736 * one. Returns zero in case of success and a negative error code in case of 737 * failure. 738 */ 739 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 740 int cancel) 741 { 742 int err, put = 0, scrubbing = 0, protect = 0; 743 struct ubi_wl_prot_entry *uninitialized_var(pe); 744 struct ubi_wl_entry *e1, *e2; 745 struct ubi_vid_hdr *vid_hdr; 746 747 kfree(wrk); 748 749 if (cancel) 750 return 0; 751 752 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 753 if (!vid_hdr) 754 return -ENOMEM; 755 756 mutex_lock(&ubi->move_mutex); 757 spin_lock(&ubi->wl_lock); 758 ubi_assert(!ubi->move_from && !ubi->move_to); 759 ubi_assert(!ubi->move_to_put); 760 761 if (!ubi->free.rb_node || 762 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 763 /* 764 * No free physical eraseblocks? Well, they must be waiting in 765 * the queue to be erased. Cancel movement - it will be 766 * triggered again when a free physical eraseblock appears. 767 * 768 * No used physical eraseblocks? They must be temporarily 769 * protected from being moved. They will be moved to the 770 * @ubi->used tree later and the wear-leveling will be 771 * triggered again. 772 */ 773 dbg_wl("cancel WL, a list is empty: free %d, used %d", 774 !ubi->free.rb_node, !ubi->used.rb_node); 775 goto out_cancel; 776 } 777 778 if (!ubi->scrub.rb_node) { 779 /* 780 * Now pick the least worn-out used physical eraseblock and a 781 * highly worn-out free physical eraseblock. If the erase 782 * counters differ much enough, start wear-leveling. 783 */ 784 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); 785 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 786 787 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 788 dbg_wl("no WL needed: min used EC %d, max free EC %d", 789 e1->ec, e2->ec); 790 goto out_cancel; 791 } 792 paranoid_check_in_wl_tree(e1, &ubi->used); 793 rb_erase(&e1->rb, &ubi->used); 794 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 795 e1->pnum, e1->ec, e2->pnum, e2->ec); 796 } else { 797 /* Perform scrubbing */ 798 scrubbing = 1; 799 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb); 800 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 801 paranoid_check_in_wl_tree(e1, &ubi->scrub); 802 rb_erase(&e1->rb, &ubi->scrub); 803 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 804 } 805 806 paranoid_check_in_wl_tree(e2, &ubi->free); 807 rb_erase(&e2->rb, &ubi->free); 808 ubi->move_from = e1; 809 ubi->move_to = e2; 810 spin_unlock(&ubi->wl_lock); 811 812 /* 813 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 814 * We so far do not know which logical eraseblock our physical 815 * eraseblock (@e1) belongs to. We have to read the volume identifier 816 * header first. 817 * 818 * Note, we are protected from this PEB being unmapped and erased. The 819 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 820 * which is being moved was unmapped. 821 */ 822 823 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 824 if (err && err != UBI_IO_BITFLIPS) { 825 if (err == UBI_IO_PEB_FREE) { 826 /* 827 * We are trying to move PEB without a VID header. UBI 828 * always write VID headers shortly after the PEB was 829 * given, so we have a situation when it did not have 830 * chance to write it down because it was preempted. 831 * Just re-schedule the work, so that next time it will 832 * likely have the VID header in place. 833 */ 834 dbg_wl("PEB %d has no VID header", e1->pnum); 835 goto out_not_moved; 836 } 837 838 ubi_err("error %d while reading VID header from PEB %d", 839 err, e1->pnum); 840 if (err > 0) 841 err = -EIO; 842 goto out_error; 843 } 844 845 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 846 if (err) { 847 848 if (err < 0) 849 goto out_error; 850 if (err == 1) 851 goto out_not_moved; 852 853 /* 854 * For some reason the LEB was not moved - it might be because 855 * the volume is being deleted. We should prevent this PEB from 856 * being selected for wear-levelling movement for some "time", 857 * so put it to the protection tree. 858 */ 859 860 dbg_wl("cancelled moving PEB %d", e1->pnum); 861 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS); 862 if (!pe) { 863 err = -ENOMEM; 864 goto out_error; 865 } 866 867 protect = 1; 868 } 869 870 ubi_free_vid_hdr(ubi, vid_hdr); 871 if (scrubbing && !protect) 872 ubi_msg("scrubbed PEB %d, data moved to PEB %d", 873 e1->pnum, e2->pnum); 874 875 spin_lock(&ubi->wl_lock); 876 if (protect) 877 prot_tree_add(ubi, e1, pe, protect); 878 if (!ubi->move_to_put) 879 wl_tree_add(e2, &ubi->used); 880 else 881 put = 1; 882 ubi->move_from = ubi->move_to = NULL; 883 ubi->move_to_put = ubi->wl_scheduled = 0; 884 spin_unlock(&ubi->wl_lock); 885 886 if (put) { 887 /* 888 * Well, the target PEB was put meanwhile, schedule it for 889 * erasure. 890 */ 891 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum); 892 err = schedule_erase(ubi, e2, 0); 893 if (err) 894 goto out_error; 895 } 896 897 if (!protect) { 898 err = schedule_erase(ubi, e1, 0); 899 if (err) 900 goto out_error; 901 } 902 903 904 dbg_wl("done"); 905 mutex_unlock(&ubi->move_mutex); 906 return 0; 907 908 /* 909 * For some reasons the LEB was not moved, might be an error, might be 910 * something else. @e1 was not changed, so return it back. @e2 might 911 * be changed, schedule it for erasure. 912 */ 913 out_not_moved: 914 ubi_free_vid_hdr(ubi, vid_hdr); 915 spin_lock(&ubi->wl_lock); 916 if (scrubbing) 917 wl_tree_add(e1, &ubi->scrub); 918 else 919 wl_tree_add(e1, &ubi->used); 920 ubi->move_from = ubi->move_to = NULL; 921 ubi->move_to_put = ubi->wl_scheduled = 0; 922 spin_unlock(&ubi->wl_lock); 923 924 err = schedule_erase(ubi, e2, 0); 925 if (err) 926 goto out_error; 927 928 mutex_unlock(&ubi->move_mutex); 929 return 0; 930 931 out_error: 932 ubi_err("error %d while moving PEB %d to PEB %d", 933 err, e1->pnum, e2->pnum); 934 935 ubi_free_vid_hdr(ubi, vid_hdr); 936 spin_lock(&ubi->wl_lock); 937 ubi->move_from = ubi->move_to = NULL; 938 ubi->move_to_put = ubi->wl_scheduled = 0; 939 spin_unlock(&ubi->wl_lock); 940 941 kmem_cache_free(ubi_wl_entry_slab, e1); 942 kmem_cache_free(ubi_wl_entry_slab, e2); 943 ubi_ro_mode(ubi); 944 945 mutex_unlock(&ubi->move_mutex); 946 return err; 947 948 out_cancel: 949 ubi->wl_scheduled = 0; 950 spin_unlock(&ubi->wl_lock); 951 mutex_unlock(&ubi->move_mutex); 952 ubi_free_vid_hdr(ubi, vid_hdr); 953 return 0; 954 } 955 956 /** 957 * ensure_wear_leveling - schedule wear-leveling if it is needed. 958 * @ubi: UBI device description object 959 * 960 * This function checks if it is time to start wear-leveling and schedules it 961 * if yes. This function returns zero in case of success and a negative error 962 * code in case of failure. 963 */ 964 static int ensure_wear_leveling(struct ubi_device *ubi) 965 { 966 int err = 0; 967 struct ubi_wl_entry *e1; 968 struct ubi_wl_entry *e2; 969 struct ubi_work *wrk; 970 971 spin_lock(&ubi->wl_lock); 972 if (ubi->wl_scheduled) 973 /* Wear-leveling is already in the work queue */ 974 goto out_unlock; 975 976 /* 977 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 978 * the WL worker has to be scheduled anyway. 979 */ 980 if (!ubi->scrub.rb_node) { 981 if (!ubi->used.rb_node || !ubi->free.rb_node) 982 /* No physical eraseblocks - no deal */ 983 goto out_unlock; 984 985 /* 986 * We schedule wear-leveling only if the difference between the 987 * lowest erase counter of used physical eraseblocks and a high 988 * erase counter of free physical eraseblocks is greater then 989 * %UBI_WL_THRESHOLD. 990 */ 991 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); 992 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 993 994 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 995 goto out_unlock; 996 dbg_wl("schedule wear-leveling"); 997 } else 998 dbg_wl("schedule scrubbing"); 999 1000 ubi->wl_scheduled = 1; 1001 spin_unlock(&ubi->wl_lock); 1002 1003 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1004 if (!wrk) { 1005 err = -ENOMEM; 1006 goto out_cancel; 1007 } 1008 1009 wrk->func = &wear_leveling_worker; 1010 schedule_ubi_work(ubi, wrk); 1011 return err; 1012 1013 out_cancel: 1014 spin_lock(&ubi->wl_lock); 1015 ubi->wl_scheduled = 0; 1016 out_unlock: 1017 spin_unlock(&ubi->wl_lock); 1018 return err; 1019 } 1020 1021 /** 1022 * erase_worker - physical eraseblock erase worker function. 1023 * @ubi: UBI device description object 1024 * @wl_wrk: the work object 1025 * @cancel: non-zero if the worker has to free memory and exit 1026 * 1027 * This function erases a physical eraseblock and perform torture testing if 1028 * needed. It also takes care about marking the physical eraseblock bad if 1029 * needed. Returns zero in case of success and a negative error code in case of 1030 * failure. 1031 */ 1032 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1033 int cancel) 1034 { 1035 struct ubi_wl_entry *e = wl_wrk->e; 1036 int pnum = e->pnum, err, need; 1037 1038 if (cancel) { 1039 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1040 kfree(wl_wrk); 1041 kmem_cache_free(ubi_wl_entry_slab, e); 1042 return 0; 1043 } 1044 1045 dbg_wl("erase PEB %d EC %d", pnum, e->ec); 1046 1047 err = sync_erase(ubi, e, wl_wrk->torture); 1048 if (!err) { 1049 /* Fine, we've erased it successfully */ 1050 kfree(wl_wrk); 1051 1052 spin_lock(&ubi->wl_lock); 1053 ubi->abs_ec += 1; 1054 wl_tree_add(e, &ubi->free); 1055 spin_unlock(&ubi->wl_lock); 1056 1057 /* 1058 * One more erase operation has happened, take care about 1059 * protected physical eraseblocks. 1060 */ 1061 check_protection_over(ubi); 1062 1063 /* And take care about wear-leveling */ 1064 err = ensure_wear_leveling(ubi); 1065 return err; 1066 } 1067 1068 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1069 kfree(wl_wrk); 1070 kmem_cache_free(ubi_wl_entry_slab, e); 1071 1072 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1073 err == -EBUSY) { 1074 int err1; 1075 1076 /* Re-schedule the LEB for erasure */ 1077 err1 = schedule_erase(ubi, e, 0); 1078 if (err1) { 1079 err = err1; 1080 goto out_ro; 1081 } 1082 return err; 1083 } else if (err != -EIO) { 1084 /* 1085 * If this is not %-EIO, we have no idea what to do. Scheduling 1086 * this physical eraseblock for erasure again would cause 1087 * errors again and again. Well, lets switch to RO mode. 1088 */ 1089 goto out_ro; 1090 } 1091 1092 /* It is %-EIO, the PEB went bad */ 1093 1094 if (!ubi->bad_allowed) { 1095 ubi_err("bad physical eraseblock %d detected", pnum); 1096 goto out_ro; 1097 } 1098 1099 spin_lock(&ubi->volumes_lock); 1100 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; 1101 if (need > 0) { 1102 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; 1103 ubi->avail_pebs -= need; 1104 ubi->rsvd_pebs += need; 1105 ubi->beb_rsvd_pebs += need; 1106 if (need > 0) 1107 ubi_msg("reserve more %d PEBs", need); 1108 } 1109 1110 if (ubi->beb_rsvd_pebs == 0) { 1111 spin_unlock(&ubi->volumes_lock); 1112 ubi_err("no reserved physical eraseblocks"); 1113 goto out_ro; 1114 } 1115 1116 spin_unlock(&ubi->volumes_lock); 1117 ubi_msg("mark PEB %d as bad", pnum); 1118 1119 err = ubi_io_mark_bad(ubi, pnum); 1120 if (err) 1121 goto out_ro; 1122 1123 spin_lock(&ubi->volumes_lock); 1124 ubi->beb_rsvd_pebs -= 1; 1125 ubi->bad_peb_count += 1; 1126 ubi->good_peb_count -= 1; 1127 ubi_calculate_reserved(ubi); 1128 if (ubi->beb_rsvd_pebs == 0) 1129 ubi_warn("last PEB from the reserved pool was used"); 1130 spin_unlock(&ubi->volumes_lock); 1131 1132 return err; 1133 1134 out_ro: 1135 ubi_ro_mode(ubi); 1136 return err; 1137 } 1138 1139 /** 1140 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1141 * @ubi: UBI device description object 1142 * @pnum: physical eraseblock to return 1143 * @torture: if this physical eraseblock has to be tortured 1144 * 1145 * This function is called to return physical eraseblock @pnum to the pool of 1146 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1147 * occurred to this @pnum and it has to be tested. This function returns zero 1148 * in case of success, and a negative error code in case of failure. 1149 */ 1150 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) 1151 { 1152 int err; 1153 struct ubi_wl_entry *e; 1154 1155 dbg_wl("PEB %d", pnum); 1156 ubi_assert(pnum >= 0); 1157 ubi_assert(pnum < ubi->peb_count); 1158 1159 retry: 1160 spin_lock(&ubi->wl_lock); 1161 e = ubi->lookuptbl[pnum]; 1162 if (e == ubi->move_from) { 1163 /* 1164 * User is putting the physical eraseblock which was selected to 1165 * be moved. It will be scheduled for erasure in the 1166 * wear-leveling worker. 1167 */ 1168 dbg_wl("PEB %d is being moved, wait", pnum); 1169 spin_unlock(&ubi->wl_lock); 1170 1171 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1172 mutex_lock(&ubi->move_mutex); 1173 mutex_unlock(&ubi->move_mutex); 1174 goto retry; 1175 } else if (e == ubi->move_to) { 1176 /* 1177 * User is putting the physical eraseblock which was selected 1178 * as the target the data is moved to. It may happen if the EBA 1179 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1180 * but the WL sub-system has not put the PEB to the "used" tree 1181 * yet, but it is about to do this. So we just set a flag which 1182 * will tell the WL worker that the PEB is not needed anymore 1183 * and should be scheduled for erasure. 1184 */ 1185 dbg_wl("PEB %d is the target of data moving", pnum); 1186 ubi_assert(!ubi->move_to_put); 1187 ubi->move_to_put = 1; 1188 spin_unlock(&ubi->wl_lock); 1189 return 0; 1190 } else { 1191 if (in_wl_tree(e, &ubi->used)) { 1192 paranoid_check_in_wl_tree(e, &ubi->used); 1193 rb_erase(&e->rb, &ubi->used); 1194 } else if (in_wl_tree(e, &ubi->scrub)) { 1195 paranoid_check_in_wl_tree(e, &ubi->scrub); 1196 rb_erase(&e->rb, &ubi->scrub); 1197 } else { 1198 err = prot_tree_del(ubi, e->pnum); 1199 if (err) { 1200 ubi_err("PEB %d not found", pnum); 1201 ubi_ro_mode(ubi); 1202 spin_unlock(&ubi->wl_lock); 1203 return err; 1204 } 1205 } 1206 } 1207 spin_unlock(&ubi->wl_lock); 1208 1209 err = schedule_erase(ubi, e, torture); 1210 if (err) { 1211 spin_lock(&ubi->wl_lock); 1212 wl_tree_add(e, &ubi->used); 1213 spin_unlock(&ubi->wl_lock); 1214 } 1215 1216 return err; 1217 } 1218 1219 /** 1220 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1221 * @ubi: UBI device description object 1222 * @pnum: the physical eraseblock to schedule 1223 * 1224 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1225 * needs scrubbing. This function schedules a physical eraseblock for 1226 * scrubbing which is done in background. This function returns zero in case of 1227 * success and a negative error code in case of failure. 1228 */ 1229 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1230 { 1231 struct ubi_wl_entry *e; 1232 1233 dbg_msg("schedule PEB %d for scrubbing", pnum); 1234 1235 retry: 1236 spin_lock(&ubi->wl_lock); 1237 e = ubi->lookuptbl[pnum]; 1238 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { 1239 spin_unlock(&ubi->wl_lock); 1240 return 0; 1241 } 1242 1243 if (e == ubi->move_to) { 1244 /* 1245 * This physical eraseblock was used to move data to. The data 1246 * was moved but the PEB was not yet inserted to the proper 1247 * tree. We should just wait a little and let the WL worker 1248 * proceed. 1249 */ 1250 spin_unlock(&ubi->wl_lock); 1251 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1252 yield(); 1253 goto retry; 1254 } 1255 1256 if (in_wl_tree(e, &ubi->used)) { 1257 paranoid_check_in_wl_tree(e, &ubi->used); 1258 rb_erase(&e->rb, &ubi->used); 1259 } else { 1260 int err; 1261 1262 err = prot_tree_del(ubi, e->pnum); 1263 if (err) { 1264 ubi_err("PEB %d not found", pnum); 1265 ubi_ro_mode(ubi); 1266 spin_unlock(&ubi->wl_lock); 1267 return err; 1268 } 1269 } 1270 1271 wl_tree_add(e, &ubi->scrub); 1272 spin_unlock(&ubi->wl_lock); 1273 1274 /* 1275 * Technically scrubbing is the same as wear-leveling, so it is done 1276 * by the WL worker. 1277 */ 1278 return ensure_wear_leveling(ubi); 1279 } 1280 1281 /** 1282 * ubi_wl_flush - flush all pending works. 1283 * @ubi: UBI device description object 1284 * 1285 * This function returns zero in case of success and a negative error code in 1286 * case of failure. 1287 */ 1288 int ubi_wl_flush(struct ubi_device *ubi) 1289 { 1290 int err; 1291 1292 /* 1293 * Erase while the pending works queue is not empty, but not more then 1294 * the number of currently pending works. 1295 */ 1296 dbg_wl("flush (%d pending works)", ubi->works_count); 1297 while (ubi->works_count) { 1298 err = do_work(ubi); 1299 if (err) 1300 return err; 1301 } 1302 1303 /* 1304 * Make sure all the works which have been done in parallel are 1305 * finished. 1306 */ 1307 down_write(&ubi->work_sem); 1308 up_write(&ubi->work_sem); 1309 1310 /* 1311 * And in case last was the WL worker and it cancelled the LEB 1312 * movement, flush again. 1313 */ 1314 while (ubi->works_count) { 1315 dbg_wl("flush more (%d pending works)", ubi->works_count); 1316 err = do_work(ubi); 1317 if (err) 1318 return err; 1319 } 1320 1321 return 0; 1322 } 1323 1324 /** 1325 * tree_destroy - destroy an RB-tree. 1326 * @root: the root of the tree to destroy 1327 */ 1328 static void tree_destroy(struct rb_root *root) 1329 { 1330 struct rb_node *rb; 1331 struct ubi_wl_entry *e; 1332 1333 rb = root->rb_node; 1334 while (rb) { 1335 if (rb->rb_left) 1336 rb = rb->rb_left; 1337 else if (rb->rb_right) 1338 rb = rb->rb_right; 1339 else { 1340 e = rb_entry(rb, struct ubi_wl_entry, rb); 1341 1342 rb = rb_parent(rb); 1343 if (rb) { 1344 if (rb->rb_left == &e->rb) 1345 rb->rb_left = NULL; 1346 else 1347 rb->rb_right = NULL; 1348 } 1349 1350 kmem_cache_free(ubi_wl_entry_slab, e); 1351 } 1352 } 1353 } 1354 1355 /** 1356 * ubi_thread - UBI background thread. 1357 * @u: the UBI device description object pointer 1358 */ 1359 int ubi_thread(void *u) 1360 { 1361 int failures = 0; 1362 struct ubi_device *ubi = u; 1363 1364 ubi_msg("background thread \"%s\" started, PID %d", 1365 ubi->bgt_name, task_pid_nr(current)); 1366 1367 set_freezable(); 1368 for (;;) { 1369 int err; 1370 1371 if (kthread_should_stop()) 1372 break; 1373 1374 if (try_to_freeze()) 1375 continue; 1376 1377 spin_lock(&ubi->wl_lock); 1378 if (list_empty(&ubi->works) || ubi->ro_mode || 1379 !ubi->thread_enabled) { 1380 set_current_state(TASK_INTERRUPTIBLE); 1381 spin_unlock(&ubi->wl_lock); 1382 schedule(); 1383 continue; 1384 } 1385 spin_unlock(&ubi->wl_lock); 1386 1387 err = do_work(ubi); 1388 if (err) { 1389 ubi_err("%s: work failed with error code %d", 1390 ubi->bgt_name, err); 1391 if (failures++ > WL_MAX_FAILURES) { 1392 /* 1393 * Too many failures, disable the thread and 1394 * switch to read-only mode. 1395 */ 1396 ubi_msg("%s: %d consecutive failures", 1397 ubi->bgt_name, WL_MAX_FAILURES); 1398 ubi_ro_mode(ubi); 1399 break; 1400 } 1401 } else 1402 failures = 0; 1403 1404 cond_resched(); 1405 } 1406 1407 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1408 return 0; 1409 } 1410 1411 /** 1412 * cancel_pending - cancel all pending works. 1413 * @ubi: UBI device description object 1414 */ 1415 static void cancel_pending(struct ubi_device *ubi) 1416 { 1417 while (!list_empty(&ubi->works)) { 1418 struct ubi_work *wrk; 1419 1420 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1421 list_del(&wrk->list); 1422 wrk->func(ubi, wrk, 1); 1423 ubi->works_count -= 1; 1424 ubi_assert(ubi->works_count >= 0); 1425 } 1426 } 1427 1428 /** 1429 * ubi_wl_init_scan - initialize the WL sub-system using scanning information. 1430 * @ubi: UBI device description object 1431 * @si: scanning information 1432 * 1433 * This function returns zero in case of success, and a negative error code in 1434 * case of failure. 1435 */ 1436 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1437 { 1438 int err; 1439 struct rb_node *rb1, *rb2; 1440 struct ubi_scan_volume *sv; 1441 struct ubi_scan_leb *seb, *tmp; 1442 struct ubi_wl_entry *e; 1443 1444 1445 ubi->used = ubi->free = ubi->scrub = RB_ROOT; 1446 ubi->prot.pnum = ubi->prot.aec = RB_ROOT; 1447 spin_lock_init(&ubi->wl_lock); 1448 mutex_init(&ubi->move_mutex); 1449 init_rwsem(&ubi->work_sem); 1450 ubi->max_ec = si->max_ec; 1451 INIT_LIST_HEAD(&ubi->works); 1452 1453 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1454 1455 err = -ENOMEM; 1456 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1457 if (!ubi->lookuptbl) 1458 return err; 1459 1460 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { 1461 cond_resched(); 1462 1463 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1464 if (!e) 1465 goto out_free; 1466 1467 e->pnum = seb->pnum; 1468 e->ec = seb->ec; 1469 ubi->lookuptbl[e->pnum] = e; 1470 if (schedule_erase(ubi, e, 0)) { 1471 kmem_cache_free(ubi_wl_entry_slab, e); 1472 goto out_free; 1473 } 1474 } 1475 1476 list_for_each_entry(seb, &si->free, u.list) { 1477 cond_resched(); 1478 1479 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1480 if (!e) 1481 goto out_free; 1482 1483 e->pnum = seb->pnum; 1484 e->ec = seb->ec; 1485 ubi_assert(e->ec >= 0); 1486 wl_tree_add(e, &ubi->free); 1487 ubi->lookuptbl[e->pnum] = e; 1488 } 1489 1490 list_for_each_entry(seb, &si->corr, u.list) { 1491 cond_resched(); 1492 1493 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1494 if (!e) 1495 goto out_free; 1496 1497 e->pnum = seb->pnum; 1498 e->ec = seb->ec; 1499 ubi->lookuptbl[e->pnum] = e; 1500 if (schedule_erase(ubi, e, 0)) { 1501 kmem_cache_free(ubi_wl_entry_slab, e); 1502 goto out_free; 1503 } 1504 } 1505 1506 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1507 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1508 cond_resched(); 1509 1510 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1511 if (!e) 1512 goto out_free; 1513 1514 e->pnum = seb->pnum; 1515 e->ec = seb->ec; 1516 ubi->lookuptbl[e->pnum] = e; 1517 if (!seb->scrub) { 1518 dbg_wl("add PEB %d EC %d to the used tree", 1519 e->pnum, e->ec); 1520 wl_tree_add(e, &ubi->used); 1521 } else { 1522 dbg_wl("add PEB %d EC %d to the scrub tree", 1523 e->pnum, e->ec); 1524 wl_tree_add(e, &ubi->scrub); 1525 } 1526 } 1527 } 1528 1529 if (ubi->avail_pebs < WL_RESERVED_PEBS) { 1530 ubi_err("no enough physical eraseblocks (%d, need %d)", 1531 ubi->avail_pebs, WL_RESERVED_PEBS); 1532 goto out_free; 1533 } 1534 ubi->avail_pebs -= WL_RESERVED_PEBS; 1535 ubi->rsvd_pebs += WL_RESERVED_PEBS; 1536 1537 /* Schedule wear-leveling if needed */ 1538 err = ensure_wear_leveling(ubi); 1539 if (err) 1540 goto out_free; 1541 1542 return 0; 1543 1544 out_free: 1545 cancel_pending(ubi); 1546 tree_destroy(&ubi->used); 1547 tree_destroy(&ubi->free); 1548 tree_destroy(&ubi->scrub); 1549 kfree(ubi->lookuptbl); 1550 return err; 1551 } 1552 1553 /** 1554 * protection_trees_destroy - destroy the protection RB-trees. 1555 * @ubi: UBI device description object 1556 */ 1557 static void protection_trees_destroy(struct ubi_device *ubi) 1558 { 1559 struct rb_node *rb; 1560 struct ubi_wl_prot_entry *pe; 1561 1562 rb = ubi->prot.aec.rb_node; 1563 while (rb) { 1564 if (rb->rb_left) 1565 rb = rb->rb_left; 1566 else if (rb->rb_right) 1567 rb = rb->rb_right; 1568 else { 1569 pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec); 1570 1571 rb = rb_parent(rb); 1572 if (rb) { 1573 if (rb->rb_left == &pe->rb_aec) 1574 rb->rb_left = NULL; 1575 else 1576 rb->rb_right = NULL; 1577 } 1578 1579 kmem_cache_free(ubi_wl_entry_slab, pe->e); 1580 kfree(pe); 1581 } 1582 } 1583 } 1584 1585 /** 1586 * ubi_wl_close - close the wear-leveling sub-system. 1587 * @ubi: UBI device description object 1588 */ 1589 void ubi_wl_close(struct ubi_device *ubi) 1590 { 1591 dbg_wl("close the WL sub-system"); 1592 cancel_pending(ubi); 1593 protection_trees_destroy(ubi); 1594 tree_destroy(&ubi->used); 1595 tree_destroy(&ubi->free); 1596 tree_destroy(&ubi->scrub); 1597 kfree(ubi->lookuptbl); 1598 } 1599 1600 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1601 1602 /** 1603 * paranoid_check_ec - make sure that the erase counter of a PEB is correct. 1604 * @ubi: UBI device description object 1605 * @pnum: the physical eraseblock number to check 1606 * @ec: the erase counter to check 1607 * 1608 * This function returns zero if the erase counter of physical eraseblock @pnum 1609 * is equivalent to @ec, %1 if not, and a negative error code if an error 1610 * occurred. 1611 */ 1612 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) 1613 { 1614 int err; 1615 long long read_ec; 1616 struct ubi_ec_hdr *ec_hdr; 1617 1618 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1619 if (!ec_hdr) 1620 return -ENOMEM; 1621 1622 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1623 if (err && err != UBI_IO_BITFLIPS) { 1624 /* The header does not have to exist */ 1625 err = 0; 1626 goto out_free; 1627 } 1628 1629 read_ec = be64_to_cpu(ec_hdr->ec); 1630 if (ec != read_ec) { 1631 ubi_err("paranoid check failed for PEB %d", pnum); 1632 ubi_err("read EC is %lld, should be %d", read_ec, ec); 1633 ubi_dbg_dump_stack(); 1634 err = 1; 1635 } else 1636 err = 0; 1637 1638 out_free: 1639 kfree(ec_hdr); 1640 return err; 1641 } 1642 1643 /** 1644 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1645 * @e: the wear-leveling entry to check 1646 * @root: the root of the tree 1647 * 1648 * This function returns zero if @e is in the @root RB-tree and %1 if it is 1649 * not. 1650 */ 1651 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 1652 struct rb_root *root) 1653 { 1654 if (in_wl_tree(e, root)) 1655 return 0; 1656 1657 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", 1658 e->pnum, e->ec, root); 1659 ubi_dbg_dump_stack(); 1660 return 1; 1661 } 1662 1663 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1664