1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_tree_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188 static int do_work(struct ubi_device *ubi) 189 { 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226 } 227 228 /** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237 { 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265 } 266 267 /** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276 { 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286 } 287 288 /** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299 { 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307 } 308 309 /** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320 { 321 struct rb_node *p; 322 struct ubi_wl_entry *e; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 e = e1; 338 } 339 } 340 341 return e; 342 } 343 344 /** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355 { 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372 } 373 374 /** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383 { 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403 } 404 405 /** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413 static int prot_queue_del(struct ubi_device *ubi, int pnum) 414 { 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427 } 428 429 /** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440 { 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485 out_free: 486 kfree(ec_hdr); 487 return err; 488 } 489 490 /** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498 static void serve_prot_queue(struct ubi_device *ubi) 499 { 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507 repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532 } 533 534 /** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543 { 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551 } 552 553 /** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562 { 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566 } 567 568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571 /** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * @nested: denotes whether the work_sem is already held in read mode 579 * 580 * This function returns zero in case of success and a %-ENOMEM in case of 581 * failure. 582 */ 583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 584 int vol_id, int lnum, int torture, bool nested) 585 { 586 struct ubi_work *wl_wrk; 587 588 ubi_assert(e); 589 590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 591 e->pnum, e->ec, torture); 592 593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 594 if (!wl_wrk) 595 return -ENOMEM; 596 597 wl_wrk->func = &erase_worker; 598 wl_wrk->e = e; 599 wl_wrk->vol_id = vol_id; 600 wl_wrk->lnum = lnum; 601 wl_wrk->torture = torture; 602 603 if (nested) 604 __schedule_ubi_work(ubi, wl_wrk); 605 else 606 schedule_ubi_work(ubi, wl_wrk); 607 return 0; 608 } 609 610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 611 /** 612 * do_sync_erase - run the erase worker synchronously. 613 * @ubi: UBI device description object 614 * @e: the WL entry of the physical eraseblock to erase 615 * @vol_id: the volume ID that last used this PEB 616 * @lnum: the last used logical eraseblock number for the PEB 617 * @torture: if the physical eraseblock has to be tortured 618 * 619 */ 620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 621 int vol_id, int lnum, int torture) 622 { 623 struct ubi_work wl_wrk; 624 625 dbg_wl("sync erase of PEB %i", e->pnum); 626 627 wl_wrk.e = e; 628 wl_wrk.vol_id = vol_id; 629 wl_wrk.lnum = lnum; 630 wl_wrk.torture = torture; 631 632 return __erase_worker(ubi, &wl_wrk); 633 } 634 635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 636 /** 637 * wear_leveling_worker - wear-leveling worker function. 638 * @ubi: UBI device description object 639 * @wrk: the work object 640 * @shutdown: non-zero if the worker has to free memory and exit 641 * because the WL-subsystem is shutting down 642 * 643 * This function copies a more worn out physical eraseblock to a less worn out 644 * one. Returns zero in case of success and a negative error code in case of 645 * failure. 646 */ 647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 648 int shutdown) 649 { 650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 651 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 652 struct ubi_wl_entry *e1, *e2; 653 struct ubi_vid_io_buf *vidb; 654 struct ubi_vid_hdr *vid_hdr; 655 int dst_leb_clean = 0; 656 657 kfree(wrk); 658 if (shutdown) 659 return 0; 660 661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 662 if (!vidb) 663 return -ENOMEM; 664 665 vid_hdr = ubi_get_vid_hdr(vidb); 666 667 down_read(&ubi->fm_eba_sem); 668 mutex_lock(&ubi->move_mutex); 669 spin_lock(&ubi->wl_lock); 670 ubi_assert(!ubi->move_from && !ubi->move_to); 671 ubi_assert(!ubi->move_to_put); 672 673 if (!ubi->free.rb_node || 674 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 675 /* 676 * No free physical eraseblocks? Well, they must be waiting in 677 * the queue to be erased. Cancel movement - it will be 678 * triggered again when a free physical eraseblock appears. 679 * 680 * No used physical eraseblocks? They must be temporarily 681 * protected from being moved. They will be moved to the 682 * @ubi->used tree later and the wear-leveling will be 683 * triggered again. 684 */ 685 dbg_wl("cancel WL, a list is empty: free %d, used %d", 686 !ubi->free.rb_node, !ubi->used.rb_node); 687 goto out_cancel; 688 } 689 690 #ifdef CONFIG_MTD_UBI_FASTMAP 691 e1 = find_anchor_wl_entry(&ubi->used); 692 if (e1 && ubi->fm_next_anchor && 693 (ubi->fm_next_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) { 694 ubi->fm_do_produce_anchor = 1; 695 /* fm_next_anchor is no longer considered a good anchor 696 * candidate. 697 * NULL assignment also prevents multiple wear level checks 698 * of this PEB. 699 */ 700 wl_tree_add(ubi->fm_next_anchor, &ubi->free); 701 ubi->fm_next_anchor = NULL; 702 ubi->free_count++; 703 } 704 705 if (ubi->fm_do_produce_anchor) { 706 if (!e1) 707 goto out_cancel; 708 e2 = get_peb_for_wl(ubi); 709 if (!e2) 710 goto out_cancel; 711 712 self_check_in_wl_tree(ubi, e1, &ubi->used); 713 rb_erase(&e1->u.rb, &ubi->used); 714 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 715 ubi->fm_do_produce_anchor = 0; 716 } else if (!ubi->scrub.rb_node) { 717 #else 718 if (!ubi->scrub.rb_node) { 719 #endif 720 /* 721 * Now pick the least worn-out used physical eraseblock and a 722 * highly worn-out free physical eraseblock. If the erase 723 * counters differ much enough, start wear-leveling. 724 */ 725 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 726 e2 = get_peb_for_wl(ubi); 727 if (!e2) 728 goto out_cancel; 729 730 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 731 dbg_wl("no WL needed: min used EC %d, max free EC %d", 732 e1->ec, e2->ec); 733 734 /* Give the unused PEB back */ 735 wl_tree_add(e2, &ubi->free); 736 ubi->free_count++; 737 goto out_cancel; 738 } 739 self_check_in_wl_tree(ubi, e1, &ubi->used); 740 rb_erase(&e1->u.rb, &ubi->used); 741 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 742 e1->pnum, e1->ec, e2->pnum, e2->ec); 743 } else { 744 /* Perform scrubbing */ 745 scrubbing = 1; 746 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 747 e2 = get_peb_for_wl(ubi); 748 if (!e2) 749 goto out_cancel; 750 751 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 752 rb_erase(&e1->u.rb, &ubi->scrub); 753 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 754 } 755 756 ubi->move_from = e1; 757 ubi->move_to = e2; 758 spin_unlock(&ubi->wl_lock); 759 760 /* 761 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 762 * We so far do not know which logical eraseblock our physical 763 * eraseblock (@e1) belongs to. We have to read the volume identifier 764 * header first. 765 * 766 * Note, we are protected from this PEB being unmapped and erased. The 767 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 768 * which is being moved was unmapped. 769 */ 770 771 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 772 if (err && err != UBI_IO_BITFLIPS) { 773 dst_leb_clean = 1; 774 if (err == UBI_IO_FF) { 775 /* 776 * We are trying to move PEB without a VID header. UBI 777 * always write VID headers shortly after the PEB was 778 * given, so we have a situation when it has not yet 779 * had a chance to write it, because it was preempted. 780 * So add this PEB to the protection queue so far, 781 * because presumably more data will be written there 782 * (including the missing VID header), and then we'll 783 * move it. 784 */ 785 dbg_wl("PEB %d has no VID header", e1->pnum); 786 protect = 1; 787 goto out_not_moved; 788 } else if (err == UBI_IO_FF_BITFLIPS) { 789 /* 790 * The same situation as %UBI_IO_FF, but bit-flips were 791 * detected. It is better to schedule this PEB for 792 * scrubbing. 793 */ 794 dbg_wl("PEB %d has no VID header but has bit-flips", 795 e1->pnum); 796 scrubbing = 1; 797 goto out_not_moved; 798 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 799 /* 800 * While a full scan would detect interrupted erasures 801 * at attach time we can face them here when attached from 802 * Fastmap. 803 */ 804 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 805 e1->pnum); 806 erase = 1; 807 goto out_not_moved; 808 } 809 810 ubi_err(ubi, "error %d while reading VID header from PEB %d", 811 err, e1->pnum); 812 goto out_error; 813 } 814 815 vol_id = be32_to_cpu(vid_hdr->vol_id); 816 lnum = be32_to_cpu(vid_hdr->lnum); 817 818 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 819 if (err) { 820 if (err == MOVE_CANCEL_RACE) { 821 /* 822 * The LEB has not been moved because the volume is 823 * being deleted or the PEB has been put meanwhile. We 824 * should prevent this PEB from being selected for 825 * wear-leveling movement again, so put it to the 826 * protection queue. 827 */ 828 protect = 1; 829 dst_leb_clean = 1; 830 goto out_not_moved; 831 } 832 if (err == MOVE_RETRY) { 833 scrubbing = 1; 834 dst_leb_clean = 1; 835 goto out_not_moved; 836 } 837 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 838 err == MOVE_TARGET_RD_ERR) { 839 /* 840 * Target PEB had bit-flips or write error - torture it. 841 */ 842 torture = 1; 843 keep = 1; 844 goto out_not_moved; 845 } 846 847 if (err == MOVE_SOURCE_RD_ERR) { 848 /* 849 * An error happened while reading the source PEB. Do 850 * not switch to R/O mode in this case, and give the 851 * upper layers a possibility to recover from this, 852 * e.g. by unmapping corresponding LEB. Instead, just 853 * put this PEB to the @ubi->erroneous list to prevent 854 * UBI from trying to move it over and over again. 855 */ 856 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 857 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 858 ubi->erroneous_peb_count); 859 goto out_error; 860 } 861 dst_leb_clean = 1; 862 erroneous = 1; 863 goto out_not_moved; 864 } 865 866 if (err < 0) 867 goto out_error; 868 869 ubi_assert(0); 870 } 871 872 /* The PEB has been successfully moved */ 873 if (scrubbing) 874 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 875 e1->pnum, vol_id, lnum, e2->pnum); 876 ubi_free_vid_buf(vidb); 877 878 spin_lock(&ubi->wl_lock); 879 if (!ubi->move_to_put) { 880 wl_tree_add(e2, &ubi->used); 881 e2 = NULL; 882 } 883 ubi->move_from = ubi->move_to = NULL; 884 ubi->move_to_put = ubi->wl_scheduled = 0; 885 spin_unlock(&ubi->wl_lock); 886 887 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 888 if (err) { 889 if (e2) 890 wl_entry_destroy(ubi, e2); 891 goto out_ro; 892 } 893 894 if (e2) { 895 /* 896 * Well, the target PEB was put meanwhile, schedule it for 897 * erasure. 898 */ 899 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 900 e2->pnum, vol_id, lnum); 901 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 902 if (err) 903 goto out_ro; 904 } 905 906 dbg_wl("done"); 907 mutex_unlock(&ubi->move_mutex); 908 up_read(&ubi->fm_eba_sem); 909 return 0; 910 911 /* 912 * For some reasons the LEB was not moved, might be an error, might be 913 * something else. @e1 was not changed, so return it back. @e2 might 914 * have been changed, schedule it for erasure. 915 */ 916 out_not_moved: 917 if (vol_id != -1) 918 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 919 e1->pnum, vol_id, lnum, e2->pnum, err); 920 else 921 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 922 e1->pnum, e2->pnum, err); 923 spin_lock(&ubi->wl_lock); 924 if (protect) 925 prot_queue_add(ubi, e1); 926 else if (erroneous) { 927 wl_tree_add(e1, &ubi->erroneous); 928 ubi->erroneous_peb_count += 1; 929 } else if (scrubbing) 930 wl_tree_add(e1, &ubi->scrub); 931 else if (keep) 932 wl_tree_add(e1, &ubi->used); 933 if (dst_leb_clean) { 934 wl_tree_add(e2, &ubi->free); 935 ubi->free_count++; 936 } 937 938 ubi_assert(!ubi->move_to_put); 939 ubi->move_from = ubi->move_to = NULL; 940 ubi->wl_scheduled = 0; 941 spin_unlock(&ubi->wl_lock); 942 943 ubi_free_vid_buf(vidb); 944 if (dst_leb_clean) { 945 ensure_wear_leveling(ubi, 1); 946 } else { 947 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 948 if (err) 949 goto out_ro; 950 } 951 952 if (erase) { 953 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 954 if (err) 955 goto out_ro; 956 } 957 958 mutex_unlock(&ubi->move_mutex); 959 up_read(&ubi->fm_eba_sem); 960 return 0; 961 962 out_error: 963 if (vol_id != -1) 964 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 965 err, e1->pnum, e2->pnum); 966 else 967 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 968 err, e1->pnum, vol_id, lnum, e2->pnum); 969 spin_lock(&ubi->wl_lock); 970 ubi->move_from = ubi->move_to = NULL; 971 ubi->move_to_put = ubi->wl_scheduled = 0; 972 spin_unlock(&ubi->wl_lock); 973 974 ubi_free_vid_buf(vidb); 975 wl_entry_destroy(ubi, e1); 976 wl_entry_destroy(ubi, e2); 977 978 out_ro: 979 ubi_ro_mode(ubi); 980 mutex_unlock(&ubi->move_mutex); 981 up_read(&ubi->fm_eba_sem); 982 ubi_assert(err != 0); 983 return err < 0 ? err : -EIO; 984 985 out_cancel: 986 ubi->wl_scheduled = 0; 987 spin_unlock(&ubi->wl_lock); 988 mutex_unlock(&ubi->move_mutex); 989 up_read(&ubi->fm_eba_sem); 990 ubi_free_vid_buf(vidb); 991 return 0; 992 } 993 994 /** 995 * ensure_wear_leveling - schedule wear-leveling if it is needed. 996 * @ubi: UBI device description object 997 * @nested: set to non-zero if this function is called from UBI worker 998 * 999 * This function checks if it is time to start wear-leveling and schedules it 1000 * if yes. This function returns zero in case of success and a negative error 1001 * code in case of failure. 1002 */ 1003 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1004 { 1005 int err = 0; 1006 struct ubi_wl_entry *e1; 1007 struct ubi_wl_entry *e2; 1008 struct ubi_work *wrk; 1009 1010 spin_lock(&ubi->wl_lock); 1011 if (ubi->wl_scheduled) 1012 /* Wear-leveling is already in the work queue */ 1013 goto out_unlock; 1014 1015 /* 1016 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1017 * the WL worker has to be scheduled anyway. 1018 */ 1019 if (!ubi->scrub.rb_node) { 1020 if (!ubi->used.rb_node || !ubi->free.rb_node) 1021 /* No physical eraseblocks - no deal */ 1022 goto out_unlock; 1023 1024 /* 1025 * We schedule wear-leveling only if the difference between the 1026 * lowest erase counter of used physical eraseblocks and a high 1027 * erase counter of free physical eraseblocks is greater than 1028 * %UBI_WL_THRESHOLD. 1029 */ 1030 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1031 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1032 1033 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1034 goto out_unlock; 1035 dbg_wl("schedule wear-leveling"); 1036 } else 1037 dbg_wl("schedule scrubbing"); 1038 1039 ubi->wl_scheduled = 1; 1040 spin_unlock(&ubi->wl_lock); 1041 1042 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1043 if (!wrk) { 1044 err = -ENOMEM; 1045 goto out_cancel; 1046 } 1047 1048 wrk->func = &wear_leveling_worker; 1049 if (nested) 1050 __schedule_ubi_work(ubi, wrk); 1051 else 1052 schedule_ubi_work(ubi, wrk); 1053 return err; 1054 1055 out_cancel: 1056 spin_lock(&ubi->wl_lock); 1057 ubi->wl_scheduled = 0; 1058 out_unlock: 1059 spin_unlock(&ubi->wl_lock); 1060 return err; 1061 } 1062 1063 /** 1064 * __erase_worker - physical eraseblock erase worker function. 1065 * @ubi: UBI device description object 1066 * @wl_wrk: the work object 1067 * 1068 * This function erases a physical eraseblock and perform torture testing if 1069 * needed. It also takes care about marking the physical eraseblock bad if 1070 * needed. Returns zero in case of success and a negative error code in case of 1071 * failure. 1072 */ 1073 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1074 { 1075 struct ubi_wl_entry *e = wl_wrk->e; 1076 int pnum = e->pnum; 1077 int vol_id = wl_wrk->vol_id; 1078 int lnum = wl_wrk->lnum; 1079 int err, available_consumed = 0; 1080 1081 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1082 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1083 1084 err = sync_erase(ubi, e, wl_wrk->torture); 1085 if (!err) { 1086 spin_lock(&ubi->wl_lock); 1087 1088 if (!ubi->fm_disabled && !ubi->fm_next_anchor && 1089 e->pnum < UBI_FM_MAX_START) { 1090 /* Abort anchor production, if needed it will be 1091 * enabled again in the wear leveling started below. 1092 */ 1093 ubi->fm_next_anchor = e; 1094 ubi->fm_do_produce_anchor = 0; 1095 } else { 1096 wl_tree_add(e, &ubi->free); 1097 ubi->free_count++; 1098 } 1099 1100 spin_unlock(&ubi->wl_lock); 1101 1102 /* 1103 * One more erase operation has happened, take care about 1104 * protected physical eraseblocks. 1105 */ 1106 serve_prot_queue(ubi); 1107 1108 /* And take care about wear-leveling */ 1109 err = ensure_wear_leveling(ubi, 1); 1110 return err; 1111 } 1112 1113 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1114 1115 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1116 err == -EBUSY) { 1117 int err1; 1118 1119 /* Re-schedule the LEB for erasure */ 1120 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1121 if (err1) { 1122 wl_entry_destroy(ubi, e); 1123 err = err1; 1124 goto out_ro; 1125 } 1126 return err; 1127 } 1128 1129 wl_entry_destroy(ubi, e); 1130 if (err != -EIO) 1131 /* 1132 * If this is not %-EIO, we have no idea what to do. Scheduling 1133 * this physical eraseblock for erasure again would cause 1134 * errors again and again. Well, lets switch to R/O mode. 1135 */ 1136 goto out_ro; 1137 1138 /* It is %-EIO, the PEB went bad */ 1139 1140 if (!ubi->bad_allowed) { 1141 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1142 goto out_ro; 1143 } 1144 1145 spin_lock(&ubi->volumes_lock); 1146 if (ubi->beb_rsvd_pebs == 0) { 1147 if (ubi->avail_pebs == 0) { 1148 spin_unlock(&ubi->volumes_lock); 1149 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1150 goto out_ro; 1151 } 1152 ubi->avail_pebs -= 1; 1153 available_consumed = 1; 1154 } 1155 spin_unlock(&ubi->volumes_lock); 1156 1157 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1158 err = ubi_io_mark_bad(ubi, pnum); 1159 if (err) 1160 goto out_ro; 1161 1162 spin_lock(&ubi->volumes_lock); 1163 if (ubi->beb_rsvd_pebs > 0) { 1164 if (available_consumed) { 1165 /* 1166 * The amount of reserved PEBs increased since we last 1167 * checked. 1168 */ 1169 ubi->avail_pebs += 1; 1170 available_consumed = 0; 1171 } 1172 ubi->beb_rsvd_pebs -= 1; 1173 } 1174 ubi->bad_peb_count += 1; 1175 ubi->good_peb_count -= 1; 1176 ubi_calculate_reserved(ubi); 1177 if (available_consumed) 1178 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1179 else if (ubi->beb_rsvd_pebs) 1180 ubi_msg(ubi, "%d PEBs left in the reserve", 1181 ubi->beb_rsvd_pebs); 1182 else 1183 ubi_warn(ubi, "last PEB from the reserve was used"); 1184 spin_unlock(&ubi->volumes_lock); 1185 1186 return err; 1187 1188 out_ro: 1189 if (available_consumed) { 1190 spin_lock(&ubi->volumes_lock); 1191 ubi->avail_pebs += 1; 1192 spin_unlock(&ubi->volumes_lock); 1193 } 1194 ubi_ro_mode(ubi); 1195 return err; 1196 } 1197 1198 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1199 int shutdown) 1200 { 1201 int ret; 1202 1203 if (shutdown) { 1204 struct ubi_wl_entry *e = wl_wrk->e; 1205 1206 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1207 kfree(wl_wrk); 1208 wl_entry_destroy(ubi, e); 1209 return 0; 1210 } 1211 1212 ret = __erase_worker(ubi, wl_wrk); 1213 kfree(wl_wrk); 1214 return ret; 1215 } 1216 1217 /** 1218 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1219 * @ubi: UBI device description object 1220 * @vol_id: the volume ID that last used this PEB 1221 * @lnum: the last used logical eraseblock number for the PEB 1222 * @pnum: physical eraseblock to return 1223 * @torture: if this physical eraseblock has to be tortured 1224 * 1225 * This function is called to return physical eraseblock @pnum to the pool of 1226 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1227 * occurred to this @pnum and it has to be tested. This function returns zero 1228 * in case of success, and a negative error code in case of failure. 1229 */ 1230 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1231 int pnum, int torture) 1232 { 1233 int err; 1234 struct ubi_wl_entry *e; 1235 1236 dbg_wl("PEB %d", pnum); 1237 ubi_assert(pnum >= 0); 1238 ubi_assert(pnum < ubi->peb_count); 1239 1240 down_read(&ubi->fm_protect); 1241 1242 retry: 1243 spin_lock(&ubi->wl_lock); 1244 e = ubi->lookuptbl[pnum]; 1245 if (e == ubi->move_from) { 1246 /* 1247 * User is putting the physical eraseblock which was selected to 1248 * be moved. It will be scheduled for erasure in the 1249 * wear-leveling worker. 1250 */ 1251 dbg_wl("PEB %d is being moved, wait", pnum); 1252 spin_unlock(&ubi->wl_lock); 1253 1254 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1255 mutex_lock(&ubi->move_mutex); 1256 mutex_unlock(&ubi->move_mutex); 1257 goto retry; 1258 } else if (e == ubi->move_to) { 1259 /* 1260 * User is putting the physical eraseblock which was selected 1261 * as the target the data is moved to. It may happen if the EBA 1262 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1263 * but the WL sub-system has not put the PEB to the "used" tree 1264 * yet, but it is about to do this. So we just set a flag which 1265 * will tell the WL worker that the PEB is not needed anymore 1266 * and should be scheduled for erasure. 1267 */ 1268 dbg_wl("PEB %d is the target of data moving", pnum); 1269 ubi_assert(!ubi->move_to_put); 1270 ubi->move_to_put = 1; 1271 spin_unlock(&ubi->wl_lock); 1272 up_read(&ubi->fm_protect); 1273 return 0; 1274 } else { 1275 if (in_wl_tree(e, &ubi->used)) { 1276 self_check_in_wl_tree(ubi, e, &ubi->used); 1277 rb_erase(&e->u.rb, &ubi->used); 1278 } else if (in_wl_tree(e, &ubi->scrub)) { 1279 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1280 rb_erase(&e->u.rb, &ubi->scrub); 1281 } else if (in_wl_tree(e, &ubi->erroneous)) { 1282 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1283 rb_erase(&e->u.rb, &ubi->erroneous); 1284 ubi->erroneous_peb_count -= 1; 1285 ubi_assert(ubi->erroneous_peb_count >= 0); 1286 /* Erroneous PEBs should be tortured */ 1287 torture = 1; 1288 } else { 1289 err = prot_queue_del(ubi, e->pnum); 1290 if (err) { 1291 ubi_err(ubi, "PEB %d not found", pnum); 1292 ubi_ro_mode(ubi); 1293 spin_unlock(&ubi->wl_lock); 1294 up_read(&ubi->fm_protect); 1295 return err; 1296 } 1297 } 1298 } 1299 spin_unlock(&ubi->wl_lock); 1300 1301 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1302 if (err) { 1303 spin_lock(&ubi->wl_lock); 1304 wl_tree_add(e, &ubi->used); 1305 spin_unlock(&ubi->wl_lock); 1306 } 1307 1308 up_read(&ubi->fm_protect); 1309 return err; 1310 } 1311 1312 /** 1313 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1314 * @ubi: UBI device description object 1315 * @pnum: the physical eraseblock to schedule 1316 * 1317 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1318 * needs scrubbing. This function schedules a physical eraseblock for 1319 * scrubbing which is done in background. This function returns zero in case of 1320 * success and a negative error code in case of failure. 1321 */ 1322 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1323 { 1324 struct ubi_wl_entry *e; 1325 1326 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1327 1328 retry: 1329 spin_lock(&ubi->wl_lock); 1330 e = ubi->lookuptbl[pnum]; 1331 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1332 in_wl_tree(e, &ubi->erroneous)) { 1333 spin_unlock(&ubi->wl_lock); 1334 return 0; 1335 } 1336 1337 if (e == ubi->move_to) { 1338 /* 1339 * This physical eraseblock was used to move data to. The data 1340 * was moved but the PEB was not yet inserted to the proper 1341 * tree. We should just wait a little and let the WL worker 1342 * proceed. 1343 */ 1344 spin_unlock(&ubi->wl_lock); 1345 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1346 yield(); 1347 goto retry; 1348 } 1349 1350 if (in_wl_tree(e, &ubi->used)) { 1351 self_check_in_wl_tree(ubi, e, &ubi->used); 1352 rb_erase(&e->u.rb, &ubi->used); 1353 } else { 1354 int err; 1355 1356 err = prot_queue_del(ubi, e->pnum); 1357 if (err) { 1358 ubi_err(ubi, "PEB %d not found", pnum); 1359 ubi_ro_mode(ubi); 1360 spin_unlock(&ubi->wl_lock); 1361 return err; 1362 } 1363 } 1364 1365 wl_tree_add(e, &ubi->scrub); 1366 spin_unlock(&ubi->wl_lock); 1367 1368 /* 1369 * Technically scrubbing is the same as wear-leveling, so it is done 1370 * by the WL worker. 1371 */ 1372 return ensure_wear_leveling(ubi, 0); 1373 } 1374 1375 /** 1376 * ubi_wl_flush - flush all pending works. 1377 * @ubi: UBI device description object 1378 * @vol_id: the volume id to flush for 1379 * @lnum: the logical eraseblock number to flush for 1380 * 1381 * This function executes all pending works for a particular volume id / 1382 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1383 * acts as a wildcard for all of the corresponding volume numbers or logical 1384 * eraseblock numbers. It returns zero in case of success and a negative error 1385 * code in case of failure. 1386 */ 1387 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1388 { 1389 int err = 0; 1390 int found = 1; 1391 1392 /* 1393 * Erase while the pending works queue is not empty, but not more than 1394 * the number of currently pending works. 1395 */ 1396 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1397 vol_id, lnum, ubi->works_count); 1398 1399 while (found) { 1400 struct ubi_work *wrk, *tmp; 1401 found = 0; 1402 1403 down_read(&ubi->work_sem); 1404 spin_lock(&ubi->wl_lock); 1405 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1406 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1407 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1408 list_del(&wrk->list); 1409 ubi->works_count -= 1; 1410 ubi_assert(ubi->works_count >= 0); 1411 spin_unlock(&ubi->wl_lock); 1412 1413 err = wrk->func(ubi, wrk, 0); 1414 if (err) { 1415 up_read(&ubi->work_sem); 1416 return err; 1417 } 1418 1419 spin_lock(&ubi->wl_lock); 1420 found = 1; 1421 break; 1422 } 1423 } 1424 spin_unlock(&ubi->wl_lock); 1425 up_read(&ubi->work_sem); 1426 } 1427 1428 /* 1429 * Make sure all the works which have been done in parallel are 1430 * finished. 1431 */ 1432 down_write(&ubi->work_sem); 1433 up_write(&ubi->work_sem); 1434 1435 return err; 1436 } 1437 1438 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1439 { 1440 if (in_wl_tree(e, &ubi->scrub)) 1441 return false; 1442 else if (in_wl_tree(e, &ubi->erroneous)) 1443 return false; 1444 else if (ubi->move_from == e) 1445 return false; 1446 else if (ubi->move_to == e) 1447 return false; 1448 1449 return true; 1450 } 1451 1452 /** 1453 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1454 * @ubi: UBI device description object 1455 * @pnum: the physical eraseblock to schedule 1456 * @force: dont't read the block, assume bitflips happened and take action. 1457 * 1458 * This function reads the given eraseblock and checks if bitflips occured. 1459 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1460 * If scrubbing is forced with @force, the eraseblock is not read, 1461 * but scheduled for scrubbing right away. 1462 * 1463 * Returns: 1464 * %EINVAL, PEB is out of range 1465 * %ENOENT, PEB is no longer used by UBI 1466 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1467 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1468 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1469 * %0, no bit flips detected 1470 */ 1471 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1472 { 1473 int err = 0; 1474 struct ubi_wl_entry *e; 1475 1476 if (pnum < 0 || pnum >= ubi->peb_count) { 1477 err = -EINVAL; 1478 goto out; 1479 } 1480 1481 /* 1482 * Pause all parallel work, otherwise it can happen that the 1483 * erase worker frees a wl entry under us. 1484 */ 1485 down_write(&ubi->work_sem); 1486 1487 /* 1488 * Make sure that the wl entry does not change state while 1489 * inspecting it. 1490 */ 1491 spin_lock(&ubi->wl_lock); 1492 e = ubi->lookuptbl[pnum]; 1493 if (!e) { 1494 spin_unlock(&ubi->wl_lock); 1495 err = -ENOENT; 1496 goto out_resume; 1497 } 1498 1499 /* 1500 * Does it make sense to check this PEB? 1501 */ 1502 if (!scrub_possible(ubi, e)) { 1503 spin_unlock(&ubi->wl_lock); 1504 err = -EBUSY; 1505 goto out_resume; 1506 } 1507 spin_unlock(&ubi->wl_lock); 1508 1509 if (!force) { 1510 mutex_lock(&ubi->buf_mutex); 1511 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1512 mutex_unlock(&ubi->buf_mutex); 1513 } 1514 1515 if (force || err == UBI_IO_BITFLIPS) { 1516 /* 1517 * Okay, bit flip happened, let's figure out what we can do. 1518 */ 1519 spin_lock(&ubi->wl_lock); 1520 1521 /* 1522 * Recheck. We released wl_lock, UBI might have killed the 1523 * wl entry under us. 1524 */ 1525 e = ubi->lookuptbl[pnum]; 1526 if (!e) { 1527 spin_unlock(&ubi->wl_lock); 1528 err = -ENOENT; 1529 goto out_resume; 1530 } 1531 1532 /* 1533 * Need to re-check state 1534 */ 1535 if (!scrub_possible(ubi, e)) { 1536 spin_unlock(&ubi->wl_lock); 1537 err = -EBUSY; 1538 goto out_resume; 1539 } 1540 1541 if (in_pq(ubi, e)) { 1542 prot_queue_del(ubi, e->pnum); 1543 wl_tree_add(e, &ubi->scrub); 1544 spin_unlock(&ubi->wl_lock); 1545 1546 err = ensure_wear_leveling(ubi, 1); 1547 } else if (in_wl_tree(e, &ubi->used)) { 1548 rb_erase(&e->u.rb, &ubi->used); 1549 wl_tree_add(e, &ubi->scrub); 1550 spin_unlock(&ubi->wl_lock); 1551 1552 err = ensure_wear_leveling(ubi, 1); 1553 } else if (in_wl_tree(e, &ubi->free)) { 1554 rb_erase(&e->u.rb, &ubi->free); 1555 ubi->free_count--; 1556 spin_unlock(&ubi->wl_lock); 1557 1558 /* 1559 * This PEB is empty we can schedule it for 1560 * erasure right away. No wear leveling needed. 1561 */ 1562 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1563 force ? 0 : 1, true); 1564 } else { 1565 spin_unlock(&ubi->wl_lock); 1566 err = -EAGAIN; 1567 } 1568 1569 if (!err && !force) 1570 err = -EUCLEAN; 1571 } else { 1572 err = 0; 1573 } 1574 1575 out_resume: 1576 up_write(&ubi->work_sem); 1577 out: 1578 1579 return err; 1580 } 1581 1582 /** 1583 * tree_destroy - destroy an RB-tree. 1584 * @ubi: UBI device description object 1585 * @root: the root of the tree to destroy 1586 */ 1587 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1588 { 1589 struct rb_node *rb; 1590 struct ubi_wl_entry *e; 1591 1592 rb = root->rb_node; 1593 while (rb) { 1594 if (rb->rb_left) 1595 rb = rb->rb_left; 1596 else if (rb->rb_right) 1597 rb = rb->rb_right; 1598 else { 1599 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1600 1601 rb = rb_parent(rb); 1602 if (rb) { 1603 if (rb->rb_left == &e->u.rb) 1604 rb->rb_left = NULL; 1605 else 1606 rb->rb_right = NULL; 1607 } 1608 1609 wl_entry_destroy(ubi, e); 1610 } 1611 } 1612 } 1613 1614 /** 1615 * ubi_thread - UBI background thread. 1616 * @u: the UBI device description object pointer 1617 */ 1618 int ubi_thread(void *u) 1619 { 1620 int failures = 0; 1621 struct ubi_device *ubi = u; 1622 1623 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1624 ubi->bgt_name, task_pid_nr(current)); 1625 1626 set_freezable(); 1627 for (;;) { 1628 int err; 1629 1630 if (kthread_should_stop()) 1631 break; 1632 1633 if (try_to_freeze()) 1634 continue; 1635 1636 spin_lock(&ubi->wl_lock); 1637 if (list_empty(&ubi->works) || ubi->ro_mode || 1638 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1639 set_current_state(TASK_INTERRUPTIBLE); 1640 spin_unlock(&ubi->wl_lock); 1641 1642 /* 1643 * Check kthread_should_stop() after we set the task 1644 * state to guarantee that we either see the stop bit 1645 * and exit or the task state is reset to runnable such 1646 * that it's not scheduled out indefinitely and detects 1647 * the stop bit at kthread_should_stop(). 1648 */ 1649 if (kthread_should_stop()) { 1650 set_current_state(TASK_RUNNING); 1651 break; 1652 } 1653 1654 schedule(); 1655 continue; 1656 } 1657 spin_unlock(&ubi->wl_lock); 1658 1659 err = do_work(ubi); 1660 if (err) { 1661 ubi_err(ubi, "%s: work failed with error code %d", 1662 ubi->bgt_name, err); 1663 if (failures++ > WL_MAX_FAILURES) { 1664 /* 1665 * Too many failures, disable the thread and 1666 * switch to read-only mode. 1667 */ 1668 ubi_msg(ubi, "%s: %d consecutive failures", 1669 ubi->bgt_name, WL_MAX_FAILURES); 1670 ubi_ro_mode(ubi); 1671 ubi->thread_enabled = 0; 1672 continue; 1673 } 1674 } else 1675 failures = 0; 1676 1677 cond_resched(); 1678 } 1679 1680 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1681 ubi->thread_enabled = 0; 1682 return 0; 1683 } 1684 1685 /** 1686 * shutdown_work - shutdown all pending works. 1687 * @ubi: UBI device description object 1688 */ 1689 static void shutdown_work(struct ubi_device *ubi) 1690 { 1691 while (!list_empty(&ubi->works)) { 1692 struct ubi_work *wrk; 1693 1694 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1695 list_del(&wrk->list); 1696 wrk->func(ubi, wrk, 1); 1697 ubi->works_count -= 1; 1698 ubi_assert(ubi->works_count >= 0); 1699 } 1700 } 1701 1702 /** 1703 * erase_aeb - erase a PEB given in UBI attach info PEB 1704 * @ubi: UBI device description object 1705 * @aeb: UBI attach info PEB 1706 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1707 */ 1708 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1709 { 1710 struct ubi_wl_entry *e; 1711 int err; 1712 1713 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1714 if (!e) 1715 return -ENOMEM; 1716 1717 e->pnum = aeb->pnum; 1718 e->ec = aeb->ec; 1719 ubi->lookuptbl[e->pnum] = e; 1720 1721 if (sync) { 1722 err = sync_erase(ubi, e, false); 1723 if (err) 1724 goto out_free; 1725 1726 wl_tree_add(e, &ubi->free); 1727 ubi->free_count++; 1728 } else { 1729 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1730 if (err) 1731 goto out_free; 1732 } 1733 1734 return 0; 1735 1736 out_free: 1737 wl_entry_destroy(ubi, e); 1738 1739 return err; 1740 } 1741 1742 /** 1743 * ubi_wl_init - initialize the WL sub-system using attaching information. 1744 * @ubi: UBI device description object 1745 * @ai: attaching information 1746 * 1747 * This function returns zero in case of success, and a negative error code in 1748 * case of failure. 1749 */ 1750 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1751 { 1752 int err, i, reserved_pebs, found_pebs = 0; 1753 struct rb_node *rb1, *rb2; 1754 struct ubi_ainf_volume *av; 1755 struct ubi_ainf_peb *aeb, *tmp; 1756 struct ubi_wl_entry *e; 1757 1758 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1759 spin_lock_init(&ubi->wl_lock); 1760 mutex_init(&ubi->move_mutex); 1761 init_rwsem(&ubi->work_sem); 1762 ubi->max_ec = ai->max_ec; 1763 INIT_LIST_HEAD(&ubi->works); 1764 1765 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1766 1767 err = -ENOMEM; 1768 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1769 if (!ubi->lookuptbl) 1770 return err; 1771 1772 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1773 INIT_LIST_HEAD(&ubi->pq[i]); 1774 ubi->pq_head = 0; 1775 1776 ubi->free_count = 0; 1777 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1778 cond_resched(); 1779 1780 err = erase_aeb(ubi, aeb, false); 1781 if (err) 1782 goto out_free; 1783 1784 found_pebs++; 1785 } 1786 1787 list_for_each_entry(aeb, &ai->free, u.list) { 1788 cond_resched(); 1789 1790 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1791 if (!e) { 1792 err = -ENOMEM; 1793 goto out_free; 1794 } 1795 1796 e->pnum = aeb->pnum; 1797 e->ec = aeb->ec; 1798 ubi_assert(e->ec >= 0); 1799 1800 wl_tree_add(e, &ubi->free); 1801 ubi->free_count++; 1802 1803 ubi->lookuptbl[e->pnum] = e; 1804 1805 found_pebs++; 1806 } 1807 1808 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1809 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1810 cond_resched(); 1811 1812 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1813 if (!e) { 1814 err = -ENOMEM; 1815 goto out_free; 1816 } 1817 1818 e->pnum = aeb->pnum; 1819 e->ec = aeb->ec; 1820 ubi->lookuptbl[e->pnum] = e; 1821 1822 if (!aeb->scrub) { 1823 dbg_wl("add PEB %d EC %d to the used tree", 1824 e->pnum, e->ec); 1825 wl_tree_add(e, &ubi->used); 1826 } else { 1827 dbg_wl("add PEB %d EC %d to the scrub tree", 1828 e->pnum, e->ec); 1829 wl_tree_add(e, &ubi->scrub); 1830 } 1831 1832 found_pebs++; 1833 } 1834 } 1835 1836 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1837 cond_resched(); 1838 1839 e = ubi_find_fm_block(ubi, aeb->pnum); 1840 1841 if (e) { 1842 ubi_assert(!ubi->lookuptbl[e->pnum]); 1843 ubi->lookuptbl[e->pnum] = e; 1844 } else { 1845 bool sync = false; 1846 1847 /* 1848 * Usually old Fastmap PEBs are scheduled for erasure 1849 * and we don't have to care about them but if we face 1850 * an power cut before scheduling them we need to 1851 * take care of them here. 1852 */ 1853 if (ubi->lookuptbl[aeb->pnum]) 1854 continue; 1855 1856 /* 1857 * The fastmap update code might not find a free PEB for 1858 * writing the fastmap anchor to and then reuses the 1859 * current fastmap anchor PEB. When this PEB gets erased 1860 * and a power cut happens before it is written again we 1861 * must make sure that the fastmap attach code doesn't 1862 * find any outdated fastmap anchors, hence we erase the 1863 * outdated fastmap anchor PEBs synchronously here. 1864 */ 1865 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1866 sync = true; 1867 1868 err = erase_aeb(ubi, aeb, sync); 1869 if (err) 1870 goto out_free; 1871 } 1872 1873 found_pebs++; 1874 } 1875 1876 dbg_wl("found %i PEBs", found_pebs); 1877 1878 ubi_assert(ubi->good_peb_count == found_pebs); 1879 1880 reserved_pebs = WL_RESERVED_PEBS; 1881 ubi_fastmap_init(ubi, &reserved_pebs); 1882 1883 if (ubi->avail_pebs < reserved_pebs) { 1884 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1885 ubi->avail_pebs, reserved_pebs); 1886 if (ubi->corr_peb_count) 1887 ubi_err(ubi, "%d PEBs are corrupted and not used", 1888 ubi->corr_peb_count); 1889 err = -ENOSPC; 1890 goto out_free; 1891 } 1892 ubi->avail_pebs -= reserved_pebs; 1893 ubi->rsvd_pebs += reserved_pebs; 1894 1895 /* Schedule wear-leveling if needed */ 1896 err = ensure_wear_leveling(ubi, 0); 1897 if (err) 1898 goto out_free; 1899 1900 #ifdef CONFIG_MTD_UBI_FASTMAP 1901 if (!ubi->ro_mode && !ubi->fm_disabled) 1902 ubi_ensure_anchor_pebs(ubi); 1903 #endif 1904 return 0; 1905 1906 out_free: 1907 shutdown_work(ubi); 1908 tree_destroy(ubi, &ubi->used); 1909 tree_destroy(ubi, &ubi->free); 1910 tree_destroy(ubi, &ubi->scrub); 1911 kfree(ubi->lookuptbl); 1912 return err; 1913 } 1914 1915 /** 1916 * protection_queue_destroy - destroy the protection queue. 1917 * @ubi: UBI device description object 1918 */ 1919 static void protection_queue_destroy(struct ubi_device *ubi) 1920 { 1921 int i; 1922 struct ubi_wl_entry *e, *tmp; 1923 1924 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1925 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1926 list_del(&e->u.list); 1927 wl_entry_destroy(ubi, e); 1928 } 1929 } 1930 } 1931 1932 /** 1933 * ubi_wl_close - close the wear-leveling sub-system. 1934 * @ubi: UBI device description object 1935 */ 1936 void ubi_wl_close(struct ubi_device *ubi) 1937 { 1938 dbg_wl("close the WL sub-system"); 1939 ubi_fastmap_close(ubi); 1940 shutdown_work(ubi); 1941 protection_queue_destroy(ubi); 1942 tree_destroy(ubi, &ubi->used); 1943 tree_destroy(ubi, &ubi->erroneous); 1944 tree_destroy(ubi, &ubi->free); 1945 tree_destroy(ubi, &ubi->scrub); 1946 kfree(ubi->lookuptbl); 1947 } 1948 1949 /** 1950 * self_check_ec - make sure that the erase counter of a PEB is correct. 1951 * @ubi: UBI device description object 1952 * @pnum: the physical eraseblock number to check 1953 * @ec: the erase counter to check 1954 * 1955 * This function returns zero if the erase counter of physical eraseblock @pnum 1956 * is equivalent to @ec, and a negative error code if not or if an error 1957 * occurred. 1958 */ 1959 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1960 { 1961 int err; 1962 long long read_ec; 1963 struct ubi_ec_hdr *ec_hdr; 1964 1965 if (!ubi_dbg_chk_gen(ubi)) 1966 return 0; 1967 1968 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1969 if (!ec_hdr) 1970 return -ENOMEM; 1971 1972 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1973 if (err && err != UBI_IO_BITFLIPS) { 1974 /* The header does not have to exist */ 1975 err = 0; 1976 goto out_free; 1977 } 1978 1979 read_ec = be64_to_cpu(ec_hdr->ec); 1980 if (ec != read_ec && read_ec - ec > 1) { 1981 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1982 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1983 dump_stack(); 1984 err = 1; 1985 } else 1986 err = 0; 1987 1988 out_free: 1989 kfree(ec_hdr); 1990 return err; 1991 } 1992 1993 /** 1994 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1995 * @ubi: UBI device description object 1996 * @e: the wear-leveling entry to check 1997 * @root: the root of the tree 1998 * 1999 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2000 * is not. 2001 */ 2002 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2003 struct ubi_wl_entry *e, struct rb_root *root) 2004 { 2005 if (!ubi_dbg_chk_gen(ubi)) 2006 return 0; 2007 2008 if (in_wl_tree(e, root)) 2009 return 0; 2010 2011 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 2012 e->pnum, e->ec, root); 2013 dump_stack(); 2014 return -EINVAL; 2015 } 2016 2017 /** 2018 * self_check_in_pq - check if wear-leveling entry is in the protection 2019 * queue. 2020 * @ubi: UBI device description object 2021 * @e: the wear-leveling entry to check 2022 * 2023 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2024 */ 2025 static int self_check_in_pq(const struct ubi_device *ubi, 2026 struct ubi_wl_entry *e) 2027 { 2028 if (!ubi_dbg_chk_gen(ubi)) 2029 return 0; 2030 2031 if (in_pq(ubi, e)) 2032 return 0; 2033 2034 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2035 e->pnum, e->ec); 2036 dump_stack(); 2037 return -EINVAL; 2038 } 2039 #ifndef CONFIG_MTD_UBI_FASTMAP 2040 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2041 { 2042 struct ubi_wl_entry *e; 2043 2044 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2045 self_check_in_wl_tree(ubi, e, &ubi->free); 2046 ubi->free_count--; 2047 ubi_assert(ubi->free_count >= 0); 2048 rb_erase(&e->u.rb, &ubi->free); 2049 2050 return e; 2051 } 2052 2053 /** 2054 * produce_free_peb - produce a free physical eraseblock. 2055 * @ubi: UBI device description object 2056 * 2057 * This function tries to make a free PEB by means of synchronous execution of 2058 * pending works. This may be needed if, for example the background thread is 2059 * disabled. Returns zero in case of success and a negative error code in case 2060 * of failure. 2061 */ 2062 static int produce_free_peb(struct ubi_device *ubi) 2063 { 2064 int err; 2065 2066 while (!ubi->free.rb_node && ubi->works_count) { 2067 spin_unlock(&ubi->wl_lock); 2068 2069 dbg_wl("do one work synchronously"); 2070 err = do_work(ubi); 2071 2072 spin_lock(&ubi->wl_lock); 2073 if (err) 2074 return err; 2075 } 2076 2077 return 0; 2078 } 2079 2080 /** 2081 * ubi_wl_get_peb - get a physical eraseblock. 2082 * @ubi: UBI device description object 2083 * 2084 * This function returns a physical eraseblock in case of success and a 2085 * negative error code in case of failure. 2086 * Returns with ubi->fm_eba_sem held in read mode! 2087 */ 2088 int ubi_wl_get_peb(struct ubi_device *ubi) 2089 { 2090 int err; 2091 struct ubi_wl_entry *e; 2092 2093 retry: 2094 down_read(&ubi->fm_eba_sem); 2095 spin_lock(&ubi->wl_lock); 2096 if (!ubi->free.rb_node) { 2097 if (ubi->works_count == 0) { 2098 ubi_err(ubi, "no free eraseblocks"); 2099 ubi_assert(list_empty(&ubi->works)); 2100 spin_unlock(&ubi->wl_lock); 2101 return -ENOSPC; 2102 } 2103 2104 err = produce_free_peb(ubi); 2105 if (err < 0) { 2106 spin_unlock(&ubi->wl_lock); 2107 return err; 2108 } 2109 spin_unlock(&ubi->wl_lock); 2110 up_read(&ubi->fm_eba_sem); 2111 goto retry; 2112 2113 } 2114 e = wl_get_wle(ubi); 2115 prot_queue_add(ubi, e); 2116 spin_unlock(&ubi->wl_lock); 2117 2118 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2119 ubi->peb_size - ubi->vid_hdr_aloffset); 2120 if (err) { 2121 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2122 return err; 2123 } 2124 2125 return e->pnum; 2126 } 2127 #else 2128 #include "fastmap-wl.c" 2129 #endif 2130