xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 80483c3a)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107 
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110 
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118 
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131 
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137 
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 				 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 			    struct ubi_wl_entry *e);
143 
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154 	struct rb_node **p, *parent = NULL;
155 
156 	p = &root->rb_node;
157 	while (*p) {
158 		struct ubi_wl_entry *e1;
159 
160 		parent = *p;
161 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162 
163 		if (e->ec < e1->ec)
164 			p = &(*p)->rb_left;
165 		else if (e->ec > e1->ec)
166 			p = &(*p)->rb_right;
167 		else {
168 			ubi_assert(e->pnum != e1->pnum);
169 			if (e->pnum < e1->pnum)
170 				p = &(*p)->rb_left;
171 			else
172 				p = &(*p)->rb_right;
173 		}
174 	}
175 
176 	rb_link_node(&e->u.rb, parent, p);
177 	rb_insert_color(&e->u.rb, root);
178 }
179 
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190 	ubi->lookuptbl[e->pnum] = NULL;
191 	kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193 
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203 	int err;
204 	struct ubi_work *wrk;
205 
206 	cond_resched();
207 
208 	/*
209 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
210 	 * it in read mode, so many of them may be doing works at a time. But
211 	 * the queue flush code has to be sure the whole queue of works is
212 	 * done, and it takes the mutex in write mode.
213 	 */
214 	down_read(&ubi->work_sem);
215 	spin_lock(&ubi->wl_lock);
216 	if (list_empty(&ubi->works)) {
217 		spin_unlock(&ubi->wl_lock);
218 		up_read(&ubi->work_sem);
219 		return 0;
220 	}
221 
222 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
223 	list_del(&wrk->list);
224 	ubi->works_count -= 1;
225 	ubi_assert(ubi->works_count >= 0);
226 	spin_unlock(&ubi->wl_lock);
227 
228 	/*
229 	 * Call the worker function. Do not touch the work structure
230 	 * after this call as it will have been freed or reused by that
231 	 * time by the worker function.
232 	 */
233 	err = wrk->func(ubi, wrk, 0);
234 	if (err)
235 		ubi_err(ubi, "work failed with error code %d", err);
236 	up_read(&ubi->work_sem);
237 
238 	return err;
239 }
240 
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251 	struct rb_node *p;
252 
253 	p = root->rb_node;
254 	while (p) {
255 		struct ubi_wl_entry *e1;
256 
257 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258 
259 		if (e->pnum == e1->pnum) {
260 			ubi_assert(e == e1);
261 			return 1;
262 		}
263 
264 		if (e->ec < e1->ec)
265 			p = p->rb_left;
266 		else if (e->ec > e1->ec)
267 			p = p->rb_right;
268 		else {
269 			ubi_assert(e->pnum != e1->pnum);
270 			if (e->pnum < e1->pnum)
271 				p = p->rb_left;
272 			else
273 				p = p->rb_right;
274 		}
275 	}
276 
277 	return 0;
278 }
279 
280 /**
281  * prot_queue_add - add physical eraseblock to the protection queue.
282  * @ubi: UBI device description object
283  * @e: the physical eraseblock to add
284  *
285  * This function adds @e to the tail of the protection queue @ubi->pq, where
286  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288  * be locked.
289  */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292 	int pq_tail = ubi->pq_head - 1;
293 
294 	if (pq_tail < 0)
295 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
296 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300 
301 /**
302  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303  * @ubi: UBI device description object
304  * @root: the RB-tree where to look for
305  * @diff: maximum possible difference from the smallest erase counter
306  *
307  * This function looks for a wear leveling entry with erase counter closest to
308  * min + @diff, where min is the smallest erase counter.
309  */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311 					  struct rb_root *root, int diff)
312 {
313 	struct rb_node *p;
314 	struct ubi_wl_entry *e, *prev_e = NULL;
315 	int max;
316 
317 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318 	max = e->ec + diff;
319 
320 	p = root->rb_node;
321 	while (p) {
322 		struct ubi_wl_entry *e1;
323 
324 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325 		if (e1->ec >= max)
326 			p = p->rb_left;
327 		else {
328 			p = p->rb_right;
329 			prev_e = e;
330 			e = e1;
331 		}
332 	}
333 
334 	/* If no fastmap has been written and this WL entry can be used
335 	 * as anchor PEB, hold it back and return the second best WL entry
336 	 * such that fastmap can use the anchor PEB later. */
337 	if (prev_e && !ubi->fm_disabled &&
338 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
339 		return prev_e;
340 
341 	return e;
342 }
343 
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 					       struct rb_root *root)
355 {
356 	struct ubi_wl_entry *e, *first, *last;
357 
358 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360 
361 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363 
364 		/* If no fastmap has been written and this WL entry can be used
365 		 * as anchor PEB, hold it back and return the second best
366 		 * WL entry such that fastmap can use the anchor PEB later. */
367 		e = may_reserve_for_fm(ubi, e, root);
368 	} else
369 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370 
371 	return e;
372 }
373 
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 	struct ubi_wl_entry *e;
385 
386 	e = find_mean_wl_entry(ubi, &ubi->free);
387 	if (!e) {
388 		ubi_err(ubi, "no free eraseblocks");
389 		return NULL;
390 	}
391 
392 	self_check_in_wl_tree(ubi, e, &ubi->free);
393 
394 	/*
395 	 * Move the physical eraseblock to the protection queue where it will
396 	 * be protected from being moved for some time.
397 	 */
398 	rb_erase(&e->u.rb, &ubi->free);
399 	ubi->free_count--;
400 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401 
402 	return e;
403 }
404 
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 	struct ubi_wl_entry *e;
416 
417 	e = ubi->lookuptbl[pnum];
418 	if (!e)
419 		return -ENODEV;
420 
421 	if (self_check_in_pq(ubi, e))
422 		return -ENODEV;
423 
424 	list_del(&e->u.list);
425 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 	return 0;
427 }
428 
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 		      int torture)
440 {
441 	int err;
442 	struct ubi_ec_hdr *ec_hdr;
443 	unsigned long long ec = e->ec;
444 
445 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446 
447 	err = self_check_ec(ubi, e->pnum, e->ec);
448 	if (err)
449 		return -EINVAL;
450 
451 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 	if (!ec_hdr)
453 		return -ENOMEM;
454 
455 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 	if (err < 0)
457 		goto out_free;
458 
459 	ec += err;
460 	if (ec > UBI_MAX_ERASECOUNTER) {
461 		/*
462 		 * Erase counter overflow. Upgrade UBI and use 64-bit
463 		 * erase counters internally.
464 		 */
465 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 			e->pnum, ec);
467 		err = -EINVAL;
468 		goto out_free;
469 	}
470 
471 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472 
473 	ec_hdr->ec = cpu_to_be64(ec);
474 
475 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 	if (err)
477 		goto out_free;
478 
479 	e->ec = ec;
480 	spin_lock(&ubi->wl_lock);
481 	if (e->ec > ubi->max_ec)
482 		ubi->max_ec = e->ec;
483 	spin_unlock(&ubi->wl_lock);
484 
485 out_free:
486 	kfree(ec_hdr);
487 	return err;
488 }
489 
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 	struct ubi_wl_entry *e, *tmp;
501 	int count;
502 
503 	/*
504 	 * There may be several protected physical eraseblock to remove,
505 	 * process them all.
506 	 */
507 repeat:
508 	count = 0;
509 	spin_lock(&ubi->wl_lock);
510 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 		dbg_wl("PEB %d EC %d protection over, move to used tree",
512 			e->pnum, e->ec);
513 
514 		list_del(&e->u.list);
515 		wl_tree_add(e, &ubi->used);
516 		if (count++ > 32) {
517 			/*
518 			 * Let's be nice and avoid holding the spinlock for
519 			 * too long.
520 			 */
521 			spin_unlock(&ubi->wl_lock);
522 			cond_resched();
523 			goto repeat;
524 		}
525 	}
526 
527 	ubi->pq_head += 1;
528 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 		ubi->pq_head = 0;
530 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 	spin_unlock(&ubi->wl_lock);
532 }
533 
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 	spin_lock(&ubi->wl_lock);
545 	list_add_tail(&wrk->list, &ubi->works);
546 	ubi_assert(ubi->works_count >= 0);
547 	ubi->works_count += 1;
548 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 		wake_up_process(ubi->bgt_thread);
550 	spin_unlock(&ubi->wl_lock);
551 }
552 
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 	down_read(&ubi->work_sem);
564 	__schedule_ubi_work(ubi, wrk);
565 	up_read(&ubi->work_sem);
566 }
567 
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 			int shutdown);
570 
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a %-ENOMEM in case of
580  * failure.
581  */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 			  int vol_id, int lnum, int torture)
584 {
585 	struct ubi_work *wl_wrk;
586 
587 	ubi_assert(e);
588 
589 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 	       e->pnum, e->ec, torture);
591 
592 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 	if (!wl_wrk)
594 		return -ENOMEM;
595 
596 	wl_wrk->func = &erase_worker;
597 	wl_wrk->e = e;
598 	wl_wrk->vol_id = vol_id;
599 	wl_wrk->lnum = lnum;
600 	wl_wrk->torture = torture;
601 
602 	schedule_ubi_work(ubi, wl_wrk);
603 	return 0;
604 }
605 
606 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
607 /**
608  * do_sync_erase - run the erase worker synchronously.
609  * @ubi: UBI device description object
610  * @e: the WL entry of the physical eraseblock to erase
611  * @vol_id: the volume ID that last used this PEB
612  * @lnum: the last used logical eraseblock number for the PEB
613  * @torture: if the physical eraseblock has to be tortured
614  *
615  */
616 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
617 			 int vol_id, int lnum, int torture)
618 {
619 	struct ubi_work wl_wrk;
620 
621 	dbg_wl("sync erase of PEB %i", e->pnum);
622 
623 	wl_wrk.e = e;
624 	wl_wrk.vol_id = vol_id;
625 	wl_wrk.lnum = lnum;
626 	wl_wrk.torture = torture;
627 
628 	return __erase_worker(ubi, &wl_wrk);
629 }
630 
631 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
632 /**
633  * wear_leveling_worker - wear-leveling worker function.
634  * @ubi: UBI device description object
635  * @wrk: the work object
636  * @shutdown: non-zero if the worker has to free memory and exit
637  * because the WL-subsystem is shutting down
638  *
639  * This function copies a more worn out physical eraseblock to a less worn out
640  * one. Returns zero in case of success and a negative error code in case of
641  * failure.
642  */
643 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
644 				int shutdown)
645 {
646 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
647 	int vol_id = -1, lnum = -1;
648 #ifdef CONFIG_MTD_UBI_FASTMAP
649 	int anchor = wrk->anchor;
650 #endif
651 	struct ubi_wl_entry *e1, *e2;
652 	struct ubi_vid_hdr *vid_hdr;
653 	int dst_leb_clean = 0;
654 
655 	kfree(wrk);
656 	if (shutdown)
657 		return 0;
658 
659 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
660 	if (!vid_hdr)
661 		return -ENOMEM;
662 
663 	mutex_lock(&ubi->move_mutex);
664 	spin_lock(&ubi->wl_lock);
665 	ubi_assert(!ubi->move_from && !ubi->move_to);
666 	ubi_assert(!ubi->move_to_put);
667 
668 	if (!ubi->free.rb_node ||
669 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
670 		/*
671 		 * No free physical eraseblocks? Well, they must be waiting in
672 		 * the queue to be erased. Cancel movement - it will be
673 		 * triggered again when a free physical eraseblock appears.
674 		 *
675 		 * No used physical eraseblocks? They must be temporarily
676 		 * protected from being moved. They will be moved to the
677 		 * @ubi->used tree later and the wear-leveling will be
678 		 * triggered again.
679 		 */
680 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
681 		       !ubi->free.rb_node, !ubi->used.rb_node);
682 		goto out_cancel;
683 	}
684 
685 #ifdef CONFIG_MTD_UBI_FASTMAP
686 	/* Check whether we need to produce an anchor PEB */
687 	if (!anchor)
688 		anchor = !anchor_pebs_avalible(&ubi->free);
689 
690 	if (anchor) {
691 		e1 = find_anchor_wl_entry(&ubi->used);
692 		if (!e1)
693 			goto out_cancel;
694 		e2 = get_peb_for_wl(ubi);
695 		if (!e2)
696 			goto out_cancel;
697 
698 		self_check_in_wl_tree(ubi, e1, &ubi->used);
699 		rb_erase(&e1->u.rb, &ubi->used);
700 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
701 	} else if (!ubi->scrub.rb_node) {
702 #else
703 	if (!ubi->scrub.rb_node) {
704 #endif
705 		/*
706 		 * Now pick the least worn-out used physical eraseblock and a
707 		 * highly worn-out free physical eraseblock. If the erase
708 		 * counters differ much enough, start wear-leveling.
709 		 */
710 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
711 		e2 = get_peb_for_wl(ubi);
712 		if (!e2)
713 			goto out_cancel;
714 
715 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
716 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
717 			       e1->ec, e2->ec);
718 
719 			/* Give the unused PEB back */
720 			wl_tree_add(e2, &ubi->free);
721 			ubi->free_count++;
722 			goto out_cancel;
723 		}
724 		self_check_in_wl_tree(ubi, e1, &ubi->used);
725 		rb_erase(&e1->u.rb, &ubi->used);
726 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
727 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
728 	} else {
729 		/* Perform scrubbing */
730 		scrubbing = 1;
731 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
732 		e2 = get_peb_for_wl(ubi);
733 		if (!e2)
734 			goto out_cancel;
735 
736 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
737 		rb_erase(&e1->u.rb, &ubi->scrub);
738 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
739 	}
740 
741 	ubi->move_from = e1;
742 	ubi->move_to = e2;
743 	spin_unlock(&ubi->wl_lock);
744 
745 	/*
746 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
747 	 * We so far do not know which logical eraseblock our physical
748 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
749 	 * header first.
750 	 *
751 	 * Note, we are protected from this PEB being unmapped and erased. The
752 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
753 	 * which is being moved was unmapped.
754 	 */
755 
756 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
757 	if (err && err != UBI_IO_BITFLIPS) {
758 		dst_leb_clean = 1;
759 		if (err == UBI_IO_FF) {
760 			/*
761 			 * We are trying to move PEB without a VID header. UBI
762 			 * always write VID headers shortly after the PEB was
763 			 * given, so we have a situation when it has not yet
764 			 * had a chance to write it, because it was preempted.
765 			 * So add this PEB to the protection queue so far,
766 			 * because presumably more data will be written there
767 			 * (including the missing VID header), and then we'll
768 			 * move it.
769 			 */
770 			dbg_wl("PEB %d has no VID header", e1->pnum);
771 			protect = 1;
772 			goto out_not_moved;
773 		} else if (err == UBI_IO_FF_BITFLIPS) {
774 			/*
775 			 * The same situation as %UBI_IO_FF, but bit-flips were
776 			 * detected. It is better to schedule this PEB for
777 			 * scrubbing.
778 			 */
779 			dbg_wl("PEB %d has no VID header but has bit-flips",
780 			       e1->pnum);
781 			scrubbing = 1;
782 			goto out_not_moved;
783 		}
784 
785 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
786 			err, e1->pnum);
787 		goto out_error;
788 	}
789 
790 	vol_id = be32_to_cpu(vid_hdr->vol_id);
791 	lnum = be32_to_cpu(vid_hdr->lnum);
792 
793 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
794 	if (err) {
795 		if (err == MOVE_CANCEL_RACE) {
796 			/*
797 			 * The LEB has not been moved because the volume is
798 			 * being deleted or the PEB has been put meanwhile. We
799 			 * should prevent this PEB from being selected for
800 			 * wear-leveling movement again, so put it to the
801 			 * protection queue.
802 			 */
803 			protect = 1;
804 			dst_leb_clean = 1;
805 			goto out_not_moved;
806 		}
807 		if (err == MOVE_RETRY) {
808 			scrubbing = 1;
809 			dst_leb_clean = 1;
810 			goto out_not_moved;
811 		}
812 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
813 		    err == MOVE_TARGET_RD_ERR) {
814 			/*
815 			 * Target PEB had bit-flips or write error - torture it.
816 			 */
817 			torture = 1;
818 			goto out_not_moved;
819 		}
820 
821 		if (err == MOVE_SOURCE_RD_ERR) {
822 			/*
823 			 * An error happened while reading the source PEB. Do
824 			 * not switch to R/O mode in this case, and give the
825 			 * upper layers a possibility to recover from this,
826 			 * e.g. by unmapping corresponding LEB. Instead, just
827 			 * put this PEB to the @ubi->erroneous list to prevent
828 			 * UBI from trying to move it over and over again.
829 			 */
830 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
831 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
832 					ubi->erroneous_peb_count);
833 				goto out_error;
834 			}
835 			dst_leb_clean = 1;
836 			erroneous = 1;
837 			goto out_not_moved;
838 		}
839 
840 		if (err < 0)
841 			goto out_error;
842 
843 		ubi_assert(0);
844 	}
845 
846 	/* The PEB has been successfully moved */
847 	if (scrubbing)
848 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
849 			e1->pnum, vol_id, lnum, e2->pnum);
850 	ubi_free_vid_hdr(ubi, vid_hdr);
851 
852 	spin_lock(&ubi->wl_lock);
853 	if (!ubi->move_to_put) {
854 		wl_tree_add(e2, &ubi->used);
855 		e2 = NULL;
856 	}
857 	ubi->move_from = ubi->move_to = NULL;
858 	ubi->move_to_put = ubi->wl_scheduled = 0;
859 	spin_unlock(&ubi->wl_lock);
860 
861 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
862 	if (err) {
863 		if (e2)
864 			wl_entry_destroy(ubi, e2);
865 		goto out_ro;
866 	}
867 
868 	if (e2) {
869 		/*
870 		 * Well, the target PEB was put meanwhile, schedule it for
871 		 * erasure.
872 		 */
873 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
874 		       e2->pnum, vol_id, lnum);
875 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
876 		if (err)
877 			goto out_ro;
878 	}
879 
880 	dbg_wl("done");
881 	mutex_unlock(&ubi->move_mutex);
882 	return 0;
883 
884 	/*
885 	 * For some reasons the LEB was not moved, might be an error, might be
886 	 * something else. @e1 was not changed, so return it back. @e2 might
887 	 * have been changed, schedule it for erasure.
888 	 */
889 out_not_moved:
890 	if (vol_id != -1)
891 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
892 		       e1->pnum, vol_id, lnum, e2->pnum, err);
893 	else
894 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
895 		       e1->pnum, e2->pnum, err);
896 	spin_lock(&ubi->wl_lock);
897 	if (protect)
898 		prot_queue_add(ubi, e1);
899 	else if (erroneous) {
900 		wl_tree_add(e1, &ubi->erroneous);
901 		ubi->erroneous_peb_count += 1;
902 	} else if (scrubbing)
903 		wl_tree_add(e1, &ubi->scrub);
904 	else
905 		wl_tree_add(e1, &ubi->used);
906 	if (dst_leb_clean) {
907 		wl_tree_add(e2, &ubi->free);
908 		ubi->free_count++;
909 	}
910 
911 	ubi_assert(!ubi->move_to_put);
912 	ubi->move_from = ubi->move_to = NULL;
913 	ubi->wl_scheduled = 0;
914 	spin_unlock(&ubi->wl_lock);
915 
916 	ubi_free_vid_hdr(ubi, vid_hdr);
917 	if (dst_leb_clean) {
918 		ensure_wear_leveling(ubi, 1);
919 	} else {
920 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
921 		if (err)
922 			goto out_ro;
923 	}
924 
925 	mutex_unlock(&ubi->move_mutex);
926 	return 0;
927 
928 out_error:
929 	if (vol_id != -1)
930 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
931 			err, e1->pnum, e2->pnum);
932 	else
933 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
934 			err, e1->pnum, vol_id, lnum, e2->pnum);
935 	spin_lock(&ubi->wl_lock);
936 	ubi->move_from = ubi->move_to = NULL;
937 	ubi->move_to_put = ubi->wl_scheduled = 0;
938 	spin_unlock(&ubi->wl_lock);
939 
940 	ubi_free_vid_hdr(ubi, vid_hdr);
941 	wl_entry_destroy(ubi, e1);
942 	wl_entry_destroy(ubi, e2);
943 
944 out_ro:
945 	ubi_ro_mode(ubi);
946 	mutex_unlock(&ubi->move_mutex);
947 	ubi_assert(err != 0);
948 	return err < 0 ? err : -EIO;
949 
950 out_cancel:
951 	ubi->wl_scheduled = 0;
952 	spin_unlock(&ubi->wl_lock);
953 	mutex_unlock(&ubi->move_mutex);
954 	ubi_free_vid_hdr(ubi, vid_hdr);
955 	return 0;
956 }
957 
958 /**
959  * ensure_wear_leveling - schedule wear-leveling if it is needed.
960  * @ubi: UBI device description object
961  * @nested: set to non-zero if this function is called from UBI worker
962  *
963  * This function checks if it is time to start wear-leveling and schedules it
964  * if yes. This function returns zero in case of success and a negative error
965  * code in case of failure.
966  */
967 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
968 {
969 	int err = 0;
970 	struct ubi_wl_entry *e1;
971 	struct ubi_wl_entry *e2;
972 	struct ubi_work *wrk;
973 
974 	spin_lock(&ubi->wl_lock);
975 	if (ubi->wl_scheduled)
976 		/* Wear-leveling is already in the work queue */
977 		goto out_unlock;
978 
979 	/*
980 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
981 	 * the WL worker has to be scheduled anyway.
982 	 */
983 	if (!ubi->scrub.rb_node) {
984 		if (!ubi->used.rb_node || !ubi->free.rb_node)
985 			/* No physical eraseblocks - no deal */
986 			goto out_unlock;
987 
988 		/*
989 		 * We schedule wear-leveling only if the difference between the
990 		 * lowest erase counter of used physical eraseblocks and a high
991 		 * erase counter of free physical eraseblocks is greater than
992 		 * %UBI_WL_THRESHOLD.
993 		 */
994 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
995 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
996 
997 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
998 			goto out_unlock;
999 		dbg_wl("schedule wear-leveling");
1000 	} else
1001 		dbg_wl("schedule scrubbing");
1002 
1003 	ubi->wl_scheduled = 1;
1004 	spin_unlock(&ubi->wl_lock);
1005 
1006 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1007 	if (!wrk) {
1008 		err = -ENOMEM;
1009 		goto out_cancel;
1010 	}
1011 
1012 	wrk->anchor = 0;
1013 	wrk->func = &wear_leveling_worker;
1014 	if (nested)
1015 		__schedule_ubi_work(ubi, wrk);
1016 	else
1017 		schedule_ubi_work(ubi, wrk);
1018 	return err;
1019 
1020 out_cancel:
1021 	spin_lock(&ubi->wl_lock);
1022 	ubi->wl_scheduled = 0;
1023 out_unlock:
1024 	spin_unlock(&ubi->wl_lock);
1025 	return err;
1026 }
1027 
1028 /**
1029  * __erase_worker - physical eraseblock erase worker function.
1030  * @ubi: UBI device description object
1031  * @wl_wrk: the work object
1032  * @shutdown: non-zero if the worker has to free memory and exit
1033  * because the WL sub-system is shutting down
1034  *
1035  * This function erases a physical eraseblock and perform torture testing if
1036  * needed. It also takes care about marking the physical eraseblock bad if
1037  * needed. Returns zero in case of success and a negative error code in case of
1038  * failure.
1039  */
1040 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1041 {
1042 	struct ubi_wl_entry *e = wl_wrk->e;
1043 	int pnum = e->pnum;
1044 	int vol_id = wl_wrk->vol_id;
1045 	int lnum = wl_wrk->lnum;
1046 	int err, available_consumed = 0;
1047 
1048 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1049 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1050 
1051 	err = sync_erase(ubi, e, wl_wrk->torture);
1052 	if (!err) {
1053 		spin_lock(&ubi->wl_lock);
1054 		wl_tree_add(e, &ubi->free);
1055 		ubi->free_count++;
1056 		spin_unlock(&ubi->wl_lock);
1057 
1058 		/*
1059 		 * One more erase operation has happened, take care about
1060 		 * protected physical eraseblocks.
1061 		 */
1062 		serve_prot_queue(ubi);
1063 
1064 		/* And take care about wear-leveling */
1065 		err = ensure_wear_leveling(ubi, 1);
1066 		return err;
1067 	}
1068 
1069 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1070 
1071 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1072 	    err == -EBUSY) {
1073 		int err1;
1074 
1075 		/* Re-schedule the LEB for erasure */
1076 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1077 		if (err1) {
1078 			wl_entry_destroy(ubi, e);
1079 			err = err1;
1080 			goto out_ro;
1081 		}
1082 		return err;
1083 	}
1084 
1085 	wl_entry_destroy(ubi, e);
1086 	if (err != -EIO)
1087 		/*
1088 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1089 		 * this physical eraseblock for erasure again would cause
1090 		 * errors again and again. Well, lets switch to R/O mode.
1091 		 */
1092 		goto out_ro;
1093 
1094 	/* It is %-EIO, the PEB went bad */
1095 
1096 	if (!ubi->bad_allowed) {
1097 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1098 		goto out_ro;
1099 	}
1100 
1101 	spin_lock(&ubi->volumes_lock);
1102 	if (ubi->beb_rsvd_pebs == 0) {
1103 		if (ubi->avail_pebs == 0) {
1104 			spin_unlock(&ubi->volumes_lock);
1105 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1106 			goto out_ro;
1107 		}
1108 		ubi->avail_pebs -= 1;
1109 		available_consumed = 1;
1110 	}
1111 	spin_unlock(&ubi->volumes_lock);
1112 
1113 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1114 	err = ubi_io_mark_bad(ubi, pnum);
1115 	if (err)
1116 		goto out_ro;
1117 
1118 	spin_lock(&ubi->volumes_lock);
1119 	if (ubi->beb_rsvd_pebs > 0) {
1120 		if (available_consumed) {
1121 			/*
1122 			 * The amount of reserved PEBs increased since we last
1123 			 * checked.
1124 			 */
1125 			ubi->avail_pebs += 1;
1126 			available_consumed = 0;
1127 		}
1128 		ubi->beb_rsvd_pebs -= 1;
1129 	}
1130 	ubi->bad_peb_count += 1;
1131 	ubi->good_peb_count -= 1;
1132 	ubi_calculate_reserved(ubi);
1133 	if (available_consumed)
1134 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1135 	else if (ubi->beb_rsvd_pebs)
1136 		ubi_msg(ubi, "%d PEBs left in the reserve",
1137 			ubi->beb_rsvd_pebs);
1138 	else
1139 		ubi_warn(ubi, "last PEB from the reserve was used");
1140 	spin_unlock(&ubi->volumes_lock);
1141 
1142 	return err;
1143 
1144 out_ro:
1145 	if (available_consumed) {
1146 		spin_lock(&ubi->volumes_lock);
1147 		ubi->avail_pebs += 1;
1148 		spin_unlock(&ubi->volumes_lock);
1149 	}
1150 	ubi_ro_mode(ubi);
1151 	return err;
1152 }
1153 
1154 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1155 			  int shutdown)
1156 {
1157 	int ret;
1158 
1159 	if (shutdown) {
1160 		struct ubi_wl_entry *e = wl_wrk->e;
1161 
1162 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1163 		kfree(wl_wrk);
1164 		wl_entry_destroy(ubi, e);
1165 		return 0;
1166 	}
1167 
1168 	ret = __erase_worker(ubi, wl_wrk);
1169 	kfree(wl_wrk);
1170 	return ret;
1171 }
1172 
1173 /**
1174  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1175  * @ubi: UBI device description object
1176  * @vol_id: the volume ID that last used this PEB
1177  * @lnum: the last used logical eraseblock number for the PEB
1178  * @pnum: physical eraseblock to return
1179  * @torture: if this physical eraseblock has to be tortured
1180  *
1181  * This function is called to return physical eraseblock @pnum to the pool of
1182  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1183  * occurred to this @pnum and it has to be tested. This function returns zero
1184  * in case of success, and a negative error code in case of failure.
1185  */
1186 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1187 		   int pnum, int torture)
1188 {
1189 	int err;
1190 	struct ubi_wl_entry *e;
1191 
1192 	dbg_wl("PEB %d", pnum);
1193 	ubi_assert(pnum >= 0);
1194 	ubi_assert(pnum < ubi->peb_count);
1195 
1196 	down_read(&ubi->fm_protect);
1197 
1198 retry:
1199 	spin_lock(&ubi->wl_lock);
1200 	e = ubi->lookuptbl[pnum];
1201 	if (e == ubi->move_from) {
1202 		/*
1203 		 * User is putting the physical eraseblock which was selected to
1204 		 * be moved. It will be scheduled for erasure in the
1205 		 * wear-leveling worker.
1206 		 */
1207 		dbg_wl("PEB %d is being moved, wait", pnum);
1208 		spin_unlock(&ubi->wl_lock);
1209 
1210 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1211 		mutex_lock(&ubi->move_mutex);
1212 		mutex_unlock(&ubi->move_mutex);
1213 		goto retry;
1214 	} else if (e == ubi->move_to) {
1215 		/*
1216 		 * User is putting the physical eraseblock which was selected
1217 		 * as the target the data is moved to. It may happen if the EBA
1218 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1219 		 * but the WL sub-system has not put the PEB to the "used" tree
1220 		 * yet, but it is about to do this. So we just set a flag which
1221 		 * will tell the WL worker that the PEB is not needed anymore
1222 		 * and should be scheduled for erasure.
1223 		 */
1224 		dbg_wl("PEB %d is the target of data moving", pnum);
1225 		ubi_assert(!ubi->move_to_put);
1226 		ubi->move_to_put = 1;
1227 		spin_unlock(&ubi->wl_lock);
1228 		up_read(&ubi->fm_protect);
1229 		return 0;
1230 	} else {
1231 		if (in_wl_tree(e, &ubi->used)) {
1232 			self_check_in_wl_tree(ubi, e, &ubi->used);
1233 			rb_erase(&e->u.rb, &ubi->used);
1234 		} else if (in_wl_tree(e, &ubi->scrub)) {
1235 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1236 			rb_erase(&e->u.rb, &ubi->scrub);
1237 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1238 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1239 			rb_erase(&e->u.rb, &ubi->erroneous);
1240 			ubi->erroneous_peb_count -= 1;
1241 			ubi_assert(ubi->erroneous_peb_count >= 0);
1242 			/* Erroneous PEBs should be tortured */
1243 			torture = 1;
1244 		} else {
1245 			err = prot_queue_del(ubi, e->pnum);
1246 			if (err) {
1247 				ubi_err(ubi, "PEB %d not found", pnum);
1248 				ubi_ro_mode(ubi);
1249 				spin_unlock(&ubi->wl_lock);
1250 				up_read(&ubi->fm_protect);
1251 				return err;
1252 			}
1253 		}
1254 	}
1255 	spin_unlock(&ubi->wl_lock);
1256 
1257 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1258 	if (err) {
1259 		spin_lock(&ubi->wl_lock);
1260 		wl_tree_add(e, &ubi->used);
1261 		spin_unlock(&ubi->wl_lock);
1262 	}
1263 
1264 	up_read(&ubi->fm_protect);
1265 	return err;
1266 }
1267 
1268 /**
1269  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1270  * @ubi: UBI device description object
1271  * @pnum: the physical eraseblock to schedule
1272  *
1273  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1274  * needs scrubbing. This function schedules a physical eraseblock for
1275  * scrubbing which is done in background. This function returns zero in case of
1276  * success and a negative error code in case of failure.
1277  */
1278 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1279 {
1280 	struct ubi_wl_entry *e;
1281 
1282 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1283 
1284 retry:
1285 	spin_lock(&ubi->wl_lock);
1286 	e = ubi->lookuptbl[pnum];
1287 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1288 				   in_wl_tree(e, &ubi->erroneous)) {
1289 		spin_unlock(&ubi->wl_lock);
1290 		return 0;
1291 	}
1292 
1293 	if (e == ubi->move_to) {
1294 		/*
1295 		 * This physical eraseblock was used to move data to. The data
1296 		 * was moved but the PEB was not yet inserted to the proper
1297 		 * tree. We should just wait a little and let the WL worker
1298 		 * proceed.
1299 		 */
1300 		spin_unlock(&ubi->wl_lock);
1301 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1302 		yield();
1303 		goto retry;
1304 	}
1305 
1306 	if (in_wl_tree(e, &ubi->used)) {
1307 		self_check_in_wl_tree(ubi, e, &ubi->used);
1308 		rb_erase(&e->u.rb, &ubi->used);
1309 	} else {
1310 		int err;
1311 
1312 		err = prot_queue_del(ubi, e->pnum);
1313 		if (err) {
1314 			ubi_err(ubi, "PEB %d not found", pnum);
1315 			ubi_ro_mode(ubi);
1316 			spin_unlock(&ubi->wl_lock);
1317 			return err;
1318 		}
1319 	}
1320 
1321 	wl_tree_add(e, &ubi->scrub);
1322 	spin_unlock(&ubi->wl_lock);
1323 
1324 	/*
1325 	 * Technically scrubbing is the same as wear-leveling, so it is done
1326 	 * by the WL worker.
1327 	 */
1328 	return ensure_wear_leveling(ubi, 0);
1329 }
1330 
1331 /**
1332  * ubi_wl_flush - flush all pending works.
1333  * @ubi: UBI device description object
1334  * @vol_id: the volume id to flush for
1335  * @lnum: the logical eraseblock number to flush for
1336  *
1337  * This function executes all pending works for a particular volume id /
1338  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1339  * acts as a wildcard for all of the corresponding volume numbers or logical
1340  * eraseblock numbers. It returns zero in case of success and a negative error
1341  * code in case of failure.
1342  */
1343 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1344 {
1345 	int err = 0;
1346 	int found = 1;
1347 
1348 	/*
1349 	 * Erase while the pending works queue is not empty, but not more than
1350 	 * the number of currently pending works.
1351 	 */
1352 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1353 	       vol_id, lnum, ubi->works_count);
1354 
1355 	while (found) {
1356 		struct ubi_work *wrk, *tmp;
1357 		found = 0;
1358 
1359 		down_read(&ubi->work_sem);
1360 		spin_lock(&ubi->wl_lock);
1361 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1362 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1363 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1364 				list_del(&wrk->list);
1365 				ubi->works_count -= 1;
1366 				ubi_assert(ubi->works_count >= 0);
1367 				spin_unlock(&ubi->wl_lock);
1368 
1369 				err = wrk->func(ubi, wrk, 0);
1370 				if (err) {
1371 					up_read(&ubi->work_sem);
1372 					return err;
1373 				}
1374 
1375 				spin_lock(&ubi->wl_lock);
1376 				found = 1;
1377 				break;
1378 			}
1379 		}
1380 		spin_unlock(&ubi->wl_lock);
1381 		up_read(&ubi->work_sem);
1382 	}
1383 
1384 	/*
1385 	 * Make sure all the works which have been done in parallel are
1386 	 * finished.
1387 	 */
1388 	down_write(&ubi->work_sem);
1389 	up_write(&ubi->work_sem);
1390 
1391 	return err;
1392 }
1393 
1394 /**
1395  * tree_destroy - destroy an RB-tree.
1396  * @ubi: UBI device description object
1397  * @root: the root of the tree to destroy
1398  */
1399 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1400 {
1401 	struct rb_node *rb;
1402 	struct ubi_wl_entry *e;
1403 
1404 	rb = root->rb_node;
1405 	while (rb) {
1406 		if (rb->rb_left)
1407 			rb = rb->rb_left;
1408 		else if (rb->rb_right)
1409 			rb = rb->rb_right;
1410 		else {
1411 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1412 
1413 			rb = rb_parent(rb);
1414 			if (rb) {
1415 				if (rb->rb_left == &e->u.rb)
1416 					rb->rb_left = NULL;
1417 				else
1418 					rb->rb_right = NULL;
1419 			}
1420 
1421 			wl_entry_destroy(ubi, e);
1422 		}
1423 	}
1424 }
1425 
1426 /**
1427  * ubi_thread - UBI background thread.
1428  * @u: the UBI device description object pointer
1429  */
1430 int ubi_thread(void *u)
1431 {
1432 	int failures = 0;
1433 	struct ubi_device *ubi = u;
1434 
1435 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1436 		ubi->bgt_name, task_pid_nr(current));
1437 
1438 	set_freezable();
1439 	for (;;) {
1440 		int err;
1441 
1442 		if (kthread_should_stop())
1443 			break;
1444 
1445 		if (try_to_freeze())
1446 			continue;
1447 
1448 		spin_lock(&ubi->wl_lock);
1449 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1450 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1451 			set_current_state(TASK_INTERRUPTIBLE);
1452 			spin_unlock(&ubi->wl_lock);
1453 			schedule();
1454 			continue;
1455 		}
1456 		spin_unlock(&ubi->wl_lock);
1457 
1458 		err = do_work(ubi);
1459 		if (err) {
1460 			ubi_err(ubi, "%s: work failed with error code %d",
1461 				ubi->bgt_name, err);
1462 			if (failures++ > WL_MAX_FAILURES) {
1463 				/*
1464 				 * Too many failures, disable the thread and
1465 				 * switch to read-only mode.
1466 				 */
1467 				ubi_msg(ubi, "%s: %d consecutive failures",
1468 					ubi->bgt_name, WL_MAX_FAILURES);
1469 				ubi_ro_mode(ubi);
1470 				ubi->thread_enabled = 0;
1471 				continue;
1472 			}
1473 		} else
1474 			failures = 0;
1475 
1476 		cond_resched();
1477 	}
1478 
1479 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1480 	return 0;
1481 }
1482 
1483 /**
1484  * shutdown_work - shutdown all pending works.
1485  * @ubi: UBI device description object
1486  */
1487 static void shutdown_work(struct ubi_device *ubi)
1488 {
1489 #ifdef CONFIG_MTD_UBI_FASTMAP
1490 	flush_work(&ubi->fm_work);
1491 #endif
1492 	while (!list_empty(&ubi->works)) {
1493 		struct ubi_work *wrk;
1494 
1495 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1496 		list_del(&wrk->list);
1497 		wrk->func(ubi, wrk, 1);
1498 		ubi->works_count -= 1;
1499 		ubi_assert(ubi->works_count >= 0);
1500 	}
1501 }
1502 
1503 /**
1504  * ubi_wl_init - initialize the WL sub-system using attaching information.
1505  * @ubi: UBI device description object
1506  * @ai: attaching information
1507  *
1508  * This function returns zero in case of success, and a negative error code in
1509  * case of failure.
1510  */
1511 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1512 {
1513 	int err, i, reserved_pebs, found_pebs = 0;
1514 	struct rb_node *rb1, *rb2;
1515 	struct ubi_ainf_volume *av;
1516 	struct ubi_ainf_peb *aeb, *tmp;
1517 	struct ubi_wl_entry *e;
1518 
1519 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1520 	spin_lock_init(&ubi->wl_lock);
1521 	mutex_init(&ubi->move_mutex);
1522 	init_rwsem(&ubi->work_sem);
1523 	ubi->max_ec = ai->max_ec;
1524 	INIT_LIST_HEAD(&ubi->works);
1525 
1526 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1527 
1528 	err = -ENOMEM;
1529 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1530 	if (!ubi->lookuptbl)
1531 		return err;
1532 
1533 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1534 		INIT_LIST_HEAD(&ubi->pq[i]);
1535 	ubi->pq_head = 0;
1536 
1537 	ubi->free_count = 0;
1538 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1539 		cond_resched();
1540 
1541 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1542 		if (!e)
1543 			goto out_free;
1544 
1545 		e->pnum = aeb->pnum;
1546 		e->ec = aeb->ec;
1547 		ubi->lookuptbl[e->pnum] = e;
1548 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1549 			wl_entry_destroy(ubi, e);
1550 			goto out_free;
1551 		}
1552 
1553 		found_pebs++;
1554 	}
1555 
1556 	list_for_each_entry(aeb, &ai->free, u.list) {
1557 		cond_resched();
1558 
1559 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1560 		if (!e)
1561 			goto out_free;
1562 
1563 		e->pnum = aeb->pnum;
1564 		e->ec = aeb->ec;
1565 		ubi_assert(e->ec >= 0);
1566 
1567 		wl_tree_add(e, &ubi->free);
1568 		ubi->free_count++;
1569 
1570 		ubi->lookuptbl[e->pnum] = e;
1571 
1572 		found_pebs++;
1573 	}
1574 
1575 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1576 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1577 			cond_resched();
1578 
1579 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1580 			if (!e)
1581 				goto out_free;
1582 
1583 			e->pnum = aeb->pnum;
1584 			e->ec = aeb->ec;
1585 			ubi->lookuptbl[e->pnum] = e;
1586 
1587 			if (!aeb->scrub) {
1588 				dbg_wl("add PEB %d EC %d to the used tree",
1589 				       e->pnum, e->ec);
1590 				wl_tree_add(e, &ubi->used);
1591 			} else {
1592 				dbg_wl("add PEB %d EC %d to the scrub tree",
1593 				       e->pnum, e->ec);
1594 				wl_tree_add(e, &ubi->scrub);
1595 			}
1596 
1597 			found_pebs++;
1598 		}
1599 	}
1600 
1601 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1602 		cond_resched();
1603 
1604 		e = ubi_find_fm_block(ubi, aeb->pnum);
1605 
1606 		if (e) {
1607 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1608 			ubi->lookuptbl[e->pnum] = e;
1609 		} else {
1610 			/*
1611 			 * Usually old Fastmap PEBs are scheduled for erasure
1612 			 * and we don't have to care about them but if we face
1613 			 * an power cut before scheduling them we need to
1614 			 * take care of them here.
1615 			 */
1616 			if (ubi->lookuptbl[aeb->pnum])
1617 				continue;
1618 
1619 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1620 			if (!e)
1621 				goto out_free;
1622 
1623 			e->pnum = aeb->pnum;
1624 			e->ec = aeb->ec;
1625 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1626 			ubi->lookuptbl[e->pnum] = e;
1627 			if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1628 				wl_entry_destroy(ubi, e);
1629 				goto out_free;
1630 			}
1631 		}
1632 
1633 		found_pebs++;
1634 	}
1635 
1636 	dbg_wl("found %i PEBs", found_pebs);
1637 
1638 	ubi_assert(ubi->good_peb_count == found_pebs);
1639 
1640 	reserved_pebs = WL_RESERVED_PEBS;
1641 	ubi_fastmap_init(ubi, &reserved_pebs);
1642 
1643 	if (ubi->avail_pebs < reserved_pebs) {
1644 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1645 			ubi->avail_pebs, reserved_pebs);
1646 		if (ubi->corr_peb_count)
1647 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1648 				ubi->corr_peb_count);
1649 		err = -ENOSPC;
1650 		goto out_free;
1651 	}
1652 	ubi->avail_pebs -= reserved_pebs;
1653 	ubi->rsvd_pebs += reserved_pebs;
1654 
1655 	/* Schedule wear-leveling if needed */
1656 	err = ensure_wear_leveling(ubi, 0);
1657 	if (err)
1658 		goto out_free;
1659 
1660 	return 0;
1661 
1662 out_free:
1663 	shutdown_work(ubi);
1664 	tree_destroy(ubi, &ubi->used);
1665 	tree_destroy(ubi, &ubi->free);
1666 	tree_destroy(ubi, &ubi->scrub);
1667 	kfree(ubi->lookuptbl);
1668 	return err;
1669 }
1670 
1671 /**
1672  * protection_queue_destroy - destroy the protection queue.
1673  * @ubi: UBI device description object
1674  */
1675 static void protection_queue_destroy(struct ubi_device *ubi)
1676 {
1677 	int i;
1678 	struct ubi_wl_entry *e, *tmp;
1679 
1680 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1681 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1682 			list_del(&e->u.list);
1683 			wl_entry_destroy(ubi, e);
1684 		}
1685 	}
1686 }
1687 
1688 /**
1689  * ubi_wl_close - close the wear-leveling sub-system.
1690  * @ubi: UBI device description object
1691  */
1692 void ubi_wl_close(struct ubi_device *ubi)
1693 {
1694 	dbg_wl("close the WL sub-system");
1695 	ubi_fastmap_close(ubi);
1696 	shutdown_work(ubi);
1697 	protection_queue_destroy(ubi);
1698 	tree_destroy(ubi, &ubi->used);
1699 	tree_destroy(ubi, &ubi->erroneous);
1700 	tree_destroy(ubi, &ubi->free);
1701 	tree_destroy(ubi, &ubi->scrub);
1702 	kfree(ubi->lookuptbl);
1703 }
1704 
1705 /**
1706  * self_check_ec - make sure that the erase counter of a PEB is correct.
1707  * @ubi: UBI device description object
1708  * @pnum: the physical eraseblock number to check
1709  * @ec: the erase counter to check
1710  *
1711  * This function returns zero if the erase counter of physical eraseblock @pnum
1712  * is equivalent to @ec, and a negative error code if not or if an error
1713  * occurred.
1714  */
1715 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1716 {
1717 	int err;
1718 	long long read_ec;
1719 	struct ubi_ec_hdr *ec_hdr;
1720 
1721 	if (!ubi_dbg_chk_gen(ubi))
1722 		return 0;
1723 
1724 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1725 	if (!ec_hdr)
1726 		return -ENOMEM;
1727 
1728 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1729 	if (err && err != UBI_IO_BITFLIPS) {
1730 		/* The header does not have to exist */
1731 		err = 0;
1732 		goto out_free;
1733 	}
1734 
1735 	read_ec = be64_to_cpu(ec_hdr->ec);
1736 	if (ec != read_ec && read_ec - ec > 1) {
1737 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1738 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1739 		dump_stack();
1740 		err = 1;
1741 	} else
1742 		err = 0;
1743 
1744 out_free:
1745 	kfree(ec_hdr);
1746 	return err;
1747 }
1748 
1749 /**
1750  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1751  * @ubi: UBI device description object
1752  * @e: the wear-leveling entry to check
1753  * @root: the root of the tree
1754  *
1755  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1756  * is not.
1757  */
1758 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1759 				 struct ubi_wl_entry *e, struct rb_root *root)
1760 {
1761 	if (!ubi_dbg_chk_gen(ubi))
1762 		return 0;
1763 
1764 	if (in_wl_tree(e, root))
1765 		return 0;
1766 
1767 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1768 		e->pnum, e->ec, root);
1769 	dump_stack();
1770 	return -EINVAL;
1771 }
1772 
1773 /**
1774  * self_check_in_pq - check if wear-leveling entry is in the protection
1775  *                        queue.
1776  * @ubi: UBI device description object
1777  * @e: the wear-leveling entry to check
1778  *
1779  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1780  */
1781 static int self_check_in_pq(const struct ubi_device *ubi,
1782 			    struct ubi_wl_entry *e)
1783 {
1784 	struct ubi_wl_entry *p;
1785 	int i;
1786 
1787 	if (!ubi_dbg_chk_gen(ubi))
1788 		return 0;
1789 
1790 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1791 		list_for_each_entry(p, &ubi->pq[i], u.list)
1792 			if (p == e)
1793 				return 0;
1794 
1795 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1796 		e->pnum, e->ec);
1797 	dump_stack();
1798 	return -EINVAL;
1799 }
1800 #ifndef CONFIG_MTD_UBI_FASTMAP
1801 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1802 {
1803 	struct ubi_wl_entry *e;
1804 
1805 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1806 	self_check_in_wl_tree(ubi, e, &ubi->free);
1807 	ubi->free_count--;
1808 	ubi_assert(ubi->free_count >= 0);
1809 	rb_erase(&e->u.rb, &ubi->free);
1810 
1811 	return e;
1812 }
1813 
1814 /**
1815  * produce_free_peb - produce a free physical eraseblock.
1816  * @ubi: UBI device description object
1817  *
1818  * This function tries to make a free PEB by means of synchronous execution of
1819  * pending works. This may be needed if, for example the background thread is
1820  * disabled. Returns zero in case of success and a negative error code in case
1821  * of failure.
1822  */
1823 static int produce_free_peb(struct ubi_device *ubi)
1824 {
1825 	int err;
1826 
1827 	while (!ubi->free.rb_node && ubi->works_count) {
1828 		spin_unlock(&ubi->wl_lock);
1829 
1830 		dbg_wl("do one work synchronously");
1831 		err = do_work(ubi);
1832 
1833 		spin_lock(&ubi->wl_lock);
1834 		if (err)
1835 			return err;
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * ubi_wl_get_peb - get a physical eraseblock.
1843  * @ubi: UBI device description object
1844  *
1845  * This function returns a physical eraseblock in case of success and a
1846  * negative error code in case of failure.
1847  * Returns with ubi->fm_eba_sem held in read mode!
1848  */
1849 int ubi_wl_get_peb(struct ubi_device *ubi)
1850 {
1851 	int err;
1852 	struct ubi_wl_entry *e;
1853 
1854 retry:
1855 	down_read(&ubi->fm_eba_sem);
1856 	spin_lock(&ubi->wl_lock);
1857 	if (!ubi->free.rb_node) {
1858 		if (ubi->works_count == 0) {
1859 			ubi_err(ubi, "no free eraseblocks");
1860 			ubi_assert(list_empty(&ubi->works));
1861 			spin_unlock(&ubi->wl_lock);
1862 			return -ENOSPC;
1863 		}
1864 
1865 		err = produce_free_peb(ubi);
1866 		if (err < 0) {
1867 			spin_unlock(&ubi->wl_lock);
1868 			return err;
1869 		}
1870 		spin_unlock(&ubi->wl_lock);
1871 		up_read(&ubi->fm_eba_sem);
1872 		goto retry;
1873 
1874 	}
1875 	e = wl_get_wle(ubi);
1876 	prot_queue_add(ubi, e);
1877 	spin_unlock(&ubi->wl_lock);
1878 
1879 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1880 				    ubi->peb_size - ubi->vid_hdr_aloffset);
1881 	if (err) {
1882 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1883 		return err;
1884 	}
1885 
1886 	return e->pnum;
1887 }
1888 #else
1889 #include "fastmap-wl.c"
1890 #endif
1891