xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 797a4c1f5b63602b963e066bfc425ce174087d0a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94 
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97 
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105 
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118 
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124 
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 				 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 			    struct ubi_wl_entry *e);
130 
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 	struct rb_node **p, *parent = NULL;
142 
143 	p = &root->rb_node;
144 	while (*p) {
145 		struct ubi_wl_entry *e1;
146 
147 		parent = *p;
148 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149 
150 		if (e->ec < e1->ec)
151 			p = &(*p)->rb_left;
152 		else if (e->ec > e1->ec)
153 			p = &(*p)->rb_right;
154 		else {
155 			ubi_assert(e->pnum != e1->pnum);
156 			if (e->pnum < e1->pnum)
157 				p = &(*p)->rb_left;
158 			else
159 				p = &(*p)->rb_right;
160 		}
161 	}
162 
163 	rb_link_node(&e->u.rb, parent, p);
164 	rb_insert_color(&e->u.rb, root);
165 }
166 
167 /**
168  * wl_entry_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 	ubi->lookuptbl[e->pnum] = NULL;
178 	kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180 
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  *
185  * This function returns zero in case of success and a negative error code in
186  * case of failure.
187  */
188 static int do_work(struct ubi_device *ubi)
189 {
190 	int err;
191 	struct ubi_work *wrk;
192 
193 	cond_resched();
194 
195 	/*
196 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 	 * it in read mode, so many of them may be doing works at a time. But
198 	 * the queue flush code has to be sure the whole queue of works is
199 	 * done, and it takes the mutex in write mode.
200 	 */
201 	down_read(&ubi->work_sem);
202 	spin_lock(&ubi->wl_lock);
203 	if (list_empty(&ubi->works)) {
204 		spin_unlock(&ubi->wl_lock);
205 		up_read(&ubi->work_sem);
206 		return 0;
207 	}
208 
209 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 	list_del(&wrk->list);
211 	ubi->works_count -= 1;
212 	ubi_assert(ubi->works_count >= 0);
213 	spin_unlock(&ubi->wl_lock);
214 
215 	/*
216 	 * Call the worker function. Do not touch the work structure
217 	 * after this call as it will have been freed or reused by that
218 	 * time by the worker function.
219 	 */
220 	err = wrk->func(ubi, wrk, 0);
221 	if (err)
222 		ubi_err(ubi, "work failed with error code %d", err);
223 	up_read(&ubi->work_sem);
224 
225 	return err;
226 }
227 
228 /**
229  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230  * @e: the wear-leveling entry to check
231  * @root: the root of the tree
232  *
233  * This function returns non-zero if @e is in the @root RB-tree and zero if it
234  * is not.
235  */
236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 	struct rb_node *p;
239 
240 	p = root->rb_node;
241 	while (p) {
242 		struct ubi_wl_entry *e1;
243 
244 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245 
246 		if (e->pnum == e1->pnum) {
247 			ubi_assert(e == e1);
248 			return 1;
249 		}
250 
251 		if (e->ec < e1->ec)
252 			p = p->rb_left;
253 		else if (e->ec > e1->ec)
254 			p = p->rb_right;
255 		else {
256 			ubi_assert(e->pnum != e1->pnum);
257 			if (e->pnum < e1->pnum)
258 				p = p->rb_left;
259 			else
260 				p = p->rb_right;
261 		}
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * in_pq - check if a wear-leveling entry is present in the protection queue.
269  * @ubi: UBI device description object
270  * @e: the wear-leveling entry to check
271  *
272  * This function returns non-zero if @e is in the protection queue and zero
273  * if it is not.
274  */
275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 	struct ubi_wl_entry *p;
278 	int i;
279 
280 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 		list_for_each_entry(p, &ubi->pq[i], u.list)
282 			if (p == e)
283 				return 1;
284 
285 	return 0;
286 }
287 
288 /**
289  * prot_queue_add - add physical eraseblock to the protection queue.
290  * @ubi: UBI device description object
291  * @e: the physical eraseblock to add
292  *
293  * This function adds @e to the tail of the protection queue @ubi->pq, where
294  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296  * be locked.
297  */
298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 	int pq_tail = ubi->pq_head - 1;
301 
302 	if (pq_tail < 0)
303 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308 
309 /**
310  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311  * @ubi: UBI device description object
312  * @root: the RB-tree where to look for
313  * @diff: maximum possible difference from the smallest erase counter
314  *
315  * This function looks for a wear leveling entry with erase counter closest to
316  * min + @diff, where min is the smallest erase counter.
317  */
318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 					  struct rb_root *root, int diff)
320 {
321 	struct rb_node *p;
322 	struct ubi_wl_entry *e;
323 	int max;
324 
325 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 	max = e->ec + diff;
327 
328 	p = root->rb_node;
329 	while (p) {
330 		struct ubi_wl_entry *e1;
331 
332 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 		if (e1->ec >= max)
334 			p = p->rb_left;
335 		else {
336 			p = p->rb_right;
337 			e = e1;
338 		}
339 	}
340 
341 	return e;
342 }
343 
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 					       struct rb_root *root)
355 {
356 	struct ubi_wl_entry *e, *first, *last;
357 
358 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360 
361 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363 
364 		/* If no fastmap has been written and this WL entry can be used
365 		 * as anchor PEB, hold it back and return the second best
366 		 * WL entry such that fastmap can use the anchor PEB later. */
367 		e = may_reserve_for_fm(ubi, e, root);
368 	} else
369 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370 
371 	return e;
372 }
373 
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 	struct ubi_wl_entry *e;
385 
386 	e = find_mean_wl_entry(ubi, &ubi->free);
387 	if (!e) {
388 		ubi_err(ubi, "no free eraseblocks");
389 		return NULL;
390 	}
391 
392 	self_check_in_wl_tree(ubi, e, &ubi->free);
393 
394 	/*
395 	 * Move the physical eraseblock to the protection queue where it will
396 	 * be protected from being moved for some time.
397 	 */
398 	rb_erase(&e->u.rb, &ubi->free);
399 	ubi->free_count--;
400 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401 
402 	return e;
403 }
404 
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 	struct ubi_wl_entry *e;
416 
417 	e = ubi->lookuptbl[pnum];
418 	if (!e)
419 		return -ENODEV;
420 
421 	if (self_check_in_pq(ubi, e))
422 		return -ENODEV;
423 
424 	list_del(&e->u.list);
425 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 	return 0;
427 }
428 
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 		      int torture)
440 {
441 	int err;
442 	struct ubi_ec_hdr *ec_hdr;
443 	unsigned long long ec = e->ec;
444 
445 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446 
447 	err = self_check_ec(ubi, e->pnum, e->ec);
448 	if (err)
449 		return -EINVAL;
450 
451 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 	if (!ec_hdr)
453 		return -ENOMEM;
454 
455 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 	if (err < 0)
457 		goto out_free;
458 
459 	ec += err;
460 	if (ec > UBI_MAX_ERASECOUNTER) {
461 		/*
462 		 * Erase counter overflow. Upgrade UBI and use 64-bit
463 		 * erase counters internally.
464 		 */
465 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 			e->pnum, ec);
467 		err = -EINVAL;
468 		goto out_free;
469 	}
470 
471 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472 
473 	ec_hdr->ec = cpu_to_be64(ec);
474 
475 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 	if (err)
477 		goto out_free;
478 
479 	e->ec = ec;
480 	spin_lock(&ubi->wl_lock);
481 	if (e->ec > ubi->max_ec)
482 		ubi->max_ec = e->ec;
483 	spin_unlock(&ubi->wl_lock);
484 
485 out_free:
486 	kfree(ec_hdr);
487 	return err;
488 }
489 
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 	struct ubi_wl_entry *e, *tmp;
501 	int count;
502 
503 	/*
504 	 * There may be several protected physical eraseblock to remove,
505 	 * process them all.
506 	 */
507 repeat:
508 	count = 0;
509 	spin_lock(&ubi->wl_lock);
510 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 		dbg_wl("PEB %d EC %d protection over, move to used tree",
512 			e->pnum, e->ec);
513 
514 		list_del(&e->u.list);
515 		wl_tree_add(e, &ubi->used);
516 		if (count++ > 32) {
517 			/*
518 			 * Let's be nice and avoid holding the spinlock for
519 			 * too long.
520 			 */
521 			spin_unlock(&ubi->wl_lock);
522 			cond_resched();
523 			goto repeat;
524 		}
525 	}
526 
527 	ubi->pq_head += 1;
528 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 		ubi->pq_head = 0;
530 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 	spin_unlock(&ubi->wl_lock);
532 }
533 
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 	spin_lock(&ubi->wl_lock);
545 	list_add_tail(&wrk->list, &ubi->works);
546 	ubi_assert(ubi->works_count >= 0);
547 	ubi->works_count += 1;
548 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 		wake_up_process(ubi->bgt_thread);
550 	spin_unlock(&ubi->wl_lock);
551 }
552 
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 	down_read(&ubi->work_sem);
564 	__schedule_ubi_work(ubi, wrk);
565 	up_read(&ubi->work_sem);
566 }
567 
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 			int shutdown);
570 
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  * @nested: denotes whether the work_sem is already held
579  *
580  * This function returns zero in case of success and a %-ENOMEM in case of
581  * failure.
582  */
583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 			  int vol_id, int lnum, int torture, bool nested)
585 {
586 	struct ubi_work *wl_wrk;
587 
588 	ubi_assert(e);
589 
590 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 	       e->pnum, e->ec, torture);
592 
593 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594 	if (!wl_wrk)
595 		return -ENOMEM;
596 
597 	wl_wrk->func = &erase_worker;
598 	wl_wrk->e = e;
599 	wl_wrk->vol_id = vol_id;
600 	wl_wrk->lnum = lnum;
601 	wl_wrk->torture = torture;
602 
603 	if (nested)
604 		__schedule_ubi_work(ubi, wl_wrk);
605 	else
606 		schedule_ubi_work(ubi, wl_wrk);
607 	return 0;
608 }
609 
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 /**
612  * do_sync_erase - run the erase worker synchronously.
613  * @ubi: UBI device description object
614  * @e: the WL entry of the physical eraseblock to erase
615  * @vol_id: the volume ID that last used this PEB
616  * @lnum: the last used logical eraseblock number for the PEB
617  * @torture: if the physical eraseblock has to be tortured
618  *
619  */
620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 			 int vol_id, int lnum, int torture)
622 {
623 	struct ubi_work wl_wrk;
624 
625 	dbg_wl("sync erase of PEB %i", e->pnum);
626 
627 	wl_wrk.e = e;
628 	wl_wrk.vol_id = vol_id;
629 	wl_wrk.lnum = lnum;
630 	wl_wrk.torture = torture;
631 
632 	return __erase_worker(ubi, &wl_wrk);
633 }
634 
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 /**
637  * wear_leveling_worker - wear-leveling worker function.
638  * @ubi: UBI device description object
639  * @wrk: the work object
640  * @shutdown: non-zero if the worker has to free memory and exit
641  * because the WL-subsystem is shutting down
642  *
643  * This function copies a more worn out physical eraseblock to a less worn out
644  * one. Returns zero in case of success and a negative error code in case of
645  * failure.
646  */
647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648 				int shutdown)
649 {
650 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 	struct ubi_wl_entry *e1, *e2;
653 	struct ubi_vid_io_buf *vidb;
654 	struct ubi_vid_hdr *vid_hdr;
655 	int dst_leb_clean = 0;
656 
657 	kfree(wrk);
658 	if (shutdown)
659 		return 0;
660 
661 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662 	if (!vidb)
663 		return -ENOMEM;
664 
665 	vid_hdr = ubi_get_vid_hdr(vidb);
666 
667 	down_read(&ubi->fm_eba_sem);
668 	mutex_lock(&ubi->move_mutex);
669 	spin_lock(&ubi->wl_lock);
670 	ubi_assert(!ubi->move_from && !ubi->move_to);
671 	ubi_assert(!ubi->move_to_put);
672 
673 #ifdef CONFIG_MTD_UBI_FASTMAP
674 	if (!next_peb_for_wl(ubi, true) ||
675 #else
676 	if (!ubi->free.rb_node ||
677 #endif
678 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
679 		/*
680 		 * No free physical eraseblocks? Well, they must be waiting in
681 		 * the queue to be erased. Cancel movement - it will be
682 		 * triggered again when a free physical eraseblock appears.
683 		 *
684 		 * No used physical eraseblocks? They must be temporarily
685 		 * protected from being moved. They will be moved to the
686 		 * @ubi->used tree later and the wear-leveling will be
687 		 * triggered again.
688 		 */
689 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
690 		       !ubi->free.rb_node, !ubi->used.rb_node);
691 		goto out_cancel;
692 	}
693 
694 #ifdef CONFIG_MTD_UBI_FASTMAP
695 	e1 = find_anchor_wl_entry(&ubi->used);
696 	if (e1 && ubi->fm_anchor &&
697 	    (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
698 		ubi->fm_do_produce_anchor = 1;
699 		/*
700 		 * fm_anchor is no longer considered a good anchor.
701 		 * NULL assignment also prevents multiple wear level checks
702 		 * of this PEB.
703 		 */
704 		wl_tree_add(ubi->fm_anchor, &ubi->free);
705 		ubi->fm_anchor = NULL;
706 		ubi->free_count++;
707 	}
708 
709 	if (ubi->fm_do_produce_anchor) {
710 		if (!e1)
711 			goto out_cancel;
712 		e2 = get_peb_for_wl(ubi);
713 		if (!e2)
714 			goto out_cancel;
715 
716 		self_check_in_wl_tree(ubi, e1, &ubi->used);
717 		rb_erase(&e1->u.rb, &ubi->used);
718 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
719 		ubi->fm_do_produce_anchor = 0;
720 	} else if (!ubi->scrub.rb_node) {
721 #else
722 	if (!ubi->scrub.rb_node) {
723 #endif
724 		/*
725 		 * Now pick the least worn-out used physical eraseblock and a
726 		 * highly worn-out free physical eraseblock. If the erase
727 		 * counters differ much enough, start wear-leveling.
728 		 */
729 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
730 		e2 = get_peb_for_wl(ubi);
731 		if (!e2)
732 			goto out_cancel;
733 
734 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
735 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
736 			       e1->ec, e2->ec);
737 
738 			/* Give the unused PEB back */
739 			wl_tree_add(e2, &ubi->free);
740 			ubi->free_count++;
741 			goto out_cancel;
742 		}
743 		self_check_in_wl_tree(ubi, e1, &ubi->used);
744 		rb_erase(&e1->u.rb, &ubi->used);
745 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
746 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
747 	} else {
748 		/* Perform scrubbing */
749 		scrubbing = 1;
750 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
751 		e2 = get_peb_for_wl(ubi);
752 		if (!e2)
753 			goto out_cancel;
754 
755 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
756 		rb_erase(&e1->u.rb, &ubi->scrub);
757 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
758 	}
759 
760 	ubi->move_from = e1;
761 	ubi->move_to = e2;
762 	spin_unlock(&ubi->wl_lock);
763 
764 	/*
765 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
766 	 * We so far do not know which logical eraseblock our physical
767 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
768 	 * header first.
769 	 *
770 	 * Note, we are protected from this PEB being unmapped and erased. The
771 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
772 	 * which is being moved was unmapped.
773 	 */
774 
775 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
776 	if (err && err != UBI_IO_BITFLIPS) {
777 		dst_leb_clean = 1;
778 		if (err == UBI_IO_FF) {
779 			/*
780 			 * We are trying to move PEB without a VID header. UBI
781 			 * always write VID headers shortly after the PEB was
782 			 * given, so we have a situation when it has not yet
783 			 * had a chance to write it, because it was preempted.
784 			 * So add this PEB to the protection queue so far,
785 			 * because presumably more data will be written there
786 			 * (including the missing VID header), and then we'll
787 			 * move it.
788 			 */
789 			dbg_wl("PEB %d has no VID header", e1->pnum);
790 			protect = 1;
791 			goto out_not_moved;
792 		} else if (err == UBI_IO_FF_BITFLIPS) {
793 			/*
794 			 * The same situation as %UBI_IO_FF, but bit-flips were
795 			 * detected. It is better to schedule this PEB for
796 			 * scrubbing.
797 			 */
798 			dbg_wl("PEB %d has no VID header but has bit-flips",
799 			       e1->pnum);
800 			scrubbing = 1;
801 			goto out_not_moved;
802 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
803 			/*
804 			 * While a full scan would detect interrupted erasures
805 			 * at attach time we can face them here when attached from
806 			 * Fastmap.
807 			 */
808 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
809 			       e1->pnum);
810 			erase = 1;
811 			goto out_not_moved;
812 		}
813 
814 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
815 			err, e1->pnum);
816 		goto out_error;
817 	}
818 
819 	vol_id = be32_to_cpu(vid_hdr->vol_id);
820 	lnum = be32_to_cpu(vid_hdr->lnum);
821 
822 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
823 	if (err) {
824 		if (err == MOVE_CANCEL_RACE) {
825 			/*
826 			 * The LEB has not been moved because the volume is
827 			 * being deleted or the PEB has been put meanwhile. We
828 			 * should prevent this PEB from being selected for
829 			 * wear-leveling movement again, so put it to the
830 			 * protection queue.
831 			 */
832 			protect = 1;
833 			dst_leb_clean = 1;
834 			goto out_not_moved;
835 		}
836 		if (err == MOVE_RETRY) {
837 			/*
838 			 * For source PEB:
839 			 * 1. The scrubbing is set for scrub type PEB, it will
840 			 *    be put back into ubi->scrub list.
841 			 * 2. Non-scrub type PEB will be put back into ubi->used
842 			 *    list.
843 			 */
844 			keep = 1;
845 			dst_leb_clean = 1;
846 			goto out_not_moved;
847 		}
848 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
849 		    err == MOVE_TARGET_RD_ERR) {
850 			/*
851 			 * Target PEB had bit-flips or write error - torture it.
852 			 */
853 			torture = 1;
854 			keep = 1;
855 			goto out_not_moved;
856 		}
857 
858 		if (err == MOVE_SOURCE_RD_ERR) {
859 			/*
860 			 * An error happened while reading the source PEB. Do
861 			 * not switch to R/O mode in this case, and give the
862 			 * upper layers a possibility to recover from this,
863 			 * e.g. by unmapping corresponding LEB. Instead, just
864 			 * put this PEB to the @ubi->erroneous list to prevent
865 			 * UBI from trying to move it over and over again.
866 			 */
867 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
868 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
869 					ubi->erroneous_peb_count);
870 				goto out_error;
871 			}
872 			dst_leb_clean = 1;
873 			erroneous = 1;
874 			goto out_not_moved;
875 		}
876 
877 		if (err < 0)
878 			goto out_error;
879 
880 		ubi_assert(0);
881 	}
882 
883 	/* The PEB has been successfully moved */
884 	if (scrubbing)
885 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
886 			e1->pnum, vol_id, lnum, e2->pnum);
887 	ubi_free_vid_buf(vidb);
888 
889 	spin_lock(&ubi->wl_lock);
890 	if (!ubi->move_to_put) {
891 		wl_tree_add(e2, &ubi->used);
892 		e2 = NULL;
893 	}
894 	ubi->move_from = ubi->move_to = NULL;
895 	ubi->move_to_put = ubi->wl_scheduled = 0;
896 	spin_unlock(&ubi->wl_lock);
897 
898 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
899 	if (err) {
900 		if (e2) {
901 			spin_lock(&ubi->wl_lock);
902 			wl_entry_destroy(ubi, e2);
903 			spin_unlock(&ubi->wl_lock);
904 		}
905 		goto out_ro;
906 	}
907 
908 	if (e2) {
909 		/*
910 		 * Well, the target PEB was put meanwhile, schedule it for
911 		 * erasure.
912 		 */
913 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
914 		       e2->pnum, vol_id, lnum);
915 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
916 		if (err)
917 			goto out_ro;
918 	}
919 
920 	dbg_wl("done");
921 	mutex_unlock(&ubi->move_mutex);
922 	up_read(&ubi->fm_eba_sem);
923 	return 0;
924 
925 	/*
926 	 * For some reasons the LEB was not moved, might be an error, might be
927 	 * something else. @e1 was not changed, so return it back. @e2 might
928 	 * have been changed, schedule it for erasure.
929 	 */
930 out_not_moved:
931 	if (vol_id != -1)
932 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
933 		       e1->pnum, vol_id, lnum, e2->pnum, err);
934 	else
935 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
936 		       e1->pnum, e2->pnum, err);
937 	spin_lock(&ubi->wl_lock);
938 	if (protect)
939 		prot_queue_add(ubi, e1);
940 	else if (erroneous) {
941 		wl_tree_add(e1, &ubi->erroneous);
942 		ubi->erroneous_peb_count += 1;
943 	} else if (scrubbing)
944 		wl_tree_add(e1, &ubi->scrub);
945 	else if (keep)
946 		wl_tree_add(e1, &ubi->used);
947 	if (dst_leb_clean) {
948 		wl_tree_add(e2, &ubi->free);
949 		ubi->free_count++;
950 	}
951 
952 	ubi_assert(!ubi->move_to_put);
953 	ubi->move_from = ubi->move_to = NULL;
954 	ubi->wl_scheduled = 0;
955 	spin_unlock(&ubi->wl_lock);
956 
957 	ubi_free_vid_buf(vidb);
958 	if (dst_leb_clean) {
959 		ensure_wear_leveling(ubi, 1);
960 	} else {
961 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
962 		if (err)
963 			goto out_ro;
964 	}
965 
966 	if (erase) {
967 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
968 		if (err)
969 			goto out_ro;
970 	}
971 
972 	mutex_unlock(&ubi->move_mutex);
973 	up_read(&ubi->fm_eba_sem);
974 	return 0;
975 
976 out_error:
977 	if (vol_id != -1)
978 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
979 			err, e1->pnum, e2->pnum);
980 	else
981 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
982 			err, e1->pnum, vol_id, lnum, e2->pnum);
983 	spin_lock(&ubi->wl_lock);
984 	ubi->move_from = ubi->move_to = NULL;
985 	ubi->move_to_put = ubi->wl_scheduled = 0;
986 	wl_entry_destroy(ubi, e1);
987 	wl_entry_destroy(ubi, e2);
988 	spin_unlock(&ubi->wl_lock);
989 
990 	ubi_free_vid_buf(vidb);
991 
992 out_ro:
993 	ubi_ro_mode(ubi);
994 	mutex_unlock(&ubi->move_mutex);
995 	up_read(&ubi->fm_eba_sem);
996 	ubi_assert(err != 0);
997 	return err < 0 ? err : -EIO;
998 
999 out_cancel:
1000 	ubi->wl_scheduled = 0;
1001 	spin_unlock(&ubi->wl_lock);
1002 	mutex_unlock(&ubi->move_mutex);
1003 	up_read(&ubi->fm_eba_sem);
1004 	ubi_free_vid_buf(vidb);
1005 	return 0;
1006 }
1007 
1008 /**
1009  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1010  * @ubi: UBI device description object
1011  * @nested: set to non-zero if this function is called from UBI worker
1012  *
1013  * This function checks if it is time to start wear-leveling and schedules it
1014  * if yes. This function returns zero in case of success and a negative error
1015  * code in case of failure.
1016  */
1017 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1018 {
1019 	int err = 0;
1020 	struct ubi_work *wrk;
1021 
1022 	spin_lock(&ubi->wl_lock);
1023 	if (ubi->wl_scheduled)
1024 		/* Wear-leveling is already in the work queue */
1025 		goto out_unlock;
1026 
1027 	/*
1028 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1029 	 * WL worker has to be scheduled anyway.
1030 	 */
1031 	if (!ubi->scrub.rb_node) {
1032 #ifdef CONFIG_MTD_UBI_FASTMAP
1033 		if (!need_wear_leveling(ubi))
1034 			goto out_unlock;
1035 #else
1036 		struct ubi_wl_entry *e1;
1037 		struct ubi_wl_entry *e2;
1038 
1039 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1040 			/* No physical eraseblocks - no deal */
1041 			goto out_unlock;
1042 
1043 		/*
1044 		 * We schedule wear-leveling only if the difference between the
1045 		 * lowest erase counter of used physical eraseblocks and a high
1046 		 * erase counter of free physical eraseblocks is greater than
1047 		 * %UBI_WL_THRESHOLD.
1048 		 */
1049 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1050 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1051 
1052 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1053 			goto out_unlock;
1054 #endif
1055 		dbg_wl("schedule wear-leveling");
1056 	} else
1057 		dbg_wl("schedule scrubbing");
1058 
1059 	ubi->wl_scheduled = 1;
1060 	spin_unlock(&ubi->wl_lock);
1061 
1062 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1063 	if (!wrk) {
1064 		err = -ENOMEM;
1065 		goto out_cancel;
1066 	}
1067 
1068 	wrk->func = &wear_leveling_worker;
1069 	if (nested)
1070 		__schedule_ubi_work(ubi, wrk);
1071 	else
1072 		schedule_ubi_work(ubi, wrk);
1073 	return err;
1074 
1075 out_cancel:
1076 	spin_lock(&ubi->wl_lock);
1077 	ubi->wl_scheduled = 0;
1078 out_unlock:
1079 	spin_unlock(&ubi->wl_lock);
1080 	return err;
1081 }
1082 
1083 /**
1084  * __erase_worker - physical eraseblock erase worker function.
1085  * @ubi: UBI device description object
1086  * @wl_wrk: the work object
1087  *
1088  * This function erases a physical eraseblock and perform torture testing if
1089  * needed. It also takes care about marking the physical eraseblock bad if
1090  * needed. Returns zero in case of success and a negative error code in case of
1091  * failure.
1092  */
1093 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1094 {
1095 	struct ubi_wl_entry *e = wl_wrk->e;
1096 	int pnum = e->pnum;
1097 	int vol_id = wl_wrk->vol_id;
1098 	int lnum = wl_wrk->lnum;
1099 	int err, available_consumed = 0;
1100 
1101 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1102 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1103 
1104 	err = sync_erase(ubi, e, wl_wrk->torture);
1105 	if (!err) {
1106 		spin_lock(&ubi->wl_lock);
1107 
1108 		if (!ubi->fm_disabled && !ubi->fm_anchor &&
1109 		    e->pnum < UBI_FM_MAX_START) {
1110 			/*
1111 			 * Abort anchor production, if needed it will be
1112 			 * enabled again in the wear leveling started below.
1113 			 */
1114 			ubi->fm_anchor = e;
1115 			ubi->fm_do_produce_anchor = 0;
1116 		} else {
1117 			wl_tree_add(e, &ubi->free);
1118 			ubi->free_count++;
1119 		}
1120 
1121 		spin_unlock(&ubi->wl_lock);
1122 
1123 		/*
1124 		 * One more erase operation has happened, take care about
1125 		 * protected physical eraseblocks.
1126 		 */
1127 		serve_prot_queue(ubi);
1128 
1129 		/* And take care about wear-leveling */
1130 		err = ensure_wear_leveling(ubi, 1);
1131 		return err;
1132 	}
1133 
1134 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1135 
1136 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1137 	    err == -EBUSY) {
1138 		int err1;
1139 
1140 		/* Re-schedule the LEB for erasure */
1141 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1142 		if (err1) {
1143 			spin_lock(&ubi->wl_lock);
1144 			wl_entry_destroy(ubi, e);
1145 			spin_unlock(&ubi->wl_lock);
1146 			err = err1;
1147 			goto out_ro;
1148 		}
1149 		return err;
1150 	}
1151 
1152 	spin_lock(&ubi->wl_lock);
1153 	wl_entry_destroy(ubi, e);
1154 	spin_unlock(&ubi->wl_lock);
1155 	if (err != -EIO)
1156 		/*
1157 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1158 		 * this physical eraseblock for erasure again would cause
1159 		 * errors again and again. Well, lets switch to R/O mode.
1160 		 */
1161 		goto out_ro;
1162 
1163 	/* It is %-EIO, the PEB went bad */
1164 
1165 	if (!ubi->bad_allowed) {
1166 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1167 		goto out_ro;
1168 	}
1169 
1170 	spin_lock(&ubi->volumes_lock);
1171 	if (ubi->beb_rsvd_pebs == 0) {
1172 		if (ubi->avail_pebs == 0) {
1173 			spin_unlock(&ubi->volumes_lock);
1174 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1175 			goto out_ro;
1176 		}
1177 		ubi->avail_pebs -= 1;
1178 		available_consumed = 1;
1179 	}
1180 	spin_unlock(&ubi->volumes_lock);
1181 
1182 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1183 	err = ubi_io_mark_bad(ubi, pnum);
1184 	if (err)
1185 		goto out_ro;
1186 
1187 	spin_lock(&ubi->volumes_lock);
1188 	if (ubi->beb_rsvd_pebs > 0) {
1189 		if (available_consumed) {
1190 			/*
1191 			 * The amount of reserved PEBs increased since we last
1192 			 * checked.
1193 			 */
1194 			ubi->avail_pebs += 1;
1195 			available_consumed = 0;
1196 		}
1197 		ubi->beb_rsvd_pebs -= 1;
1198 	}
1199 	ubi->bad_peb_count += 1;
1200 	ubi->good_peb_count -= 1;
1201 	ubi_calculate_reserved(ubi);
1202 	if (available_consumed)
1203 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1204 	else if (ubi->beb_rsvd_pebs)
1205 		ubi_msg(ubi, "%d PEBs left in the reserve",
1206 			ubi->beb_rsvd_pebs);
1207 	else
1208 		ubi_warn(ubi, "last PEB from the reserve was used");
1209 	spin_unlock(&ubi->volumes_lock);
1210 
1211 	return err;
1212 
1213 out_ro:
1214 	if (available_consumed) {
1215 		spin_lock(&ubi->volumes_lock);
1216 		ubi->avail_pebs += 1;
1217 		spin_unlock(&ubi->volumes_lock);
1218 	}
1219 	ubi_ro_mode(ubi);
1220 	return err;
1221 }
1222 
1223 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1224 			  int shutdown)
1225 {
1226 	int ret;
1227 
1228 	if (shutdown) {
1229 		struct ubi_wl_entry *e = wl_wrk->e;
1230 
1231 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1232 		kfree(wl_wrk);
1233 		wl_entry_destroy(ubi, e);
1234 		return 0;
1235 	}
1236 
1237 	ret = __erase_worker(ubi, wl_wrk);
1238 	kfree(wl_wrk);
1239 	return ret;
1240 }
1241 
1242 /**
1243  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1244  * @ubi: UBI device description object
1245  * @vol_id: the volume ID that last used this PEB
1246  * @lnum: the last used logical eraseblock number for the PEB
1247  * @pnum: physical eraseblock to return
1248  * @torture: if this physical eraseblock has to be tortured
1249  *
1250  * This function is called to return physical eraseblock @pnum to the pool of
1251  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1252  * occurred to this @pnum and it has to be tested. This function returns zero
1253  * in case of success, and a negative error code in case of failure.
1254  */
1255 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1256 		   int pnum, int torture)
1257 {
1258 	int err;
1259 	struct ubi_wl_entry *e;
1260 
1261 	dbg_wl("PEB %d", pnum);
1262 	ubi_assert(pnum >= 0);
1263 	ubi_assert(pnum < ubi->peb_count);
1264 
1265 	down_read(&ubi->fm_protect);
1266 
1267 retry:
1268 	spin_lock(&ubi->wl_lock);
1269 	e = ubi->lookuptbl[pnum];
1270 	if (!e) {
1271 		/*
1272 		 * This wl entry has been removed for some errors by other
1273 		 * process (eg. wear leveling worker), corresponding process
1274 		 * (except __erase_worker, which cannot concurrent with
1275 		 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1276 		 * just ignore this wl entry.
1277 		 */
1278 		spin_unlock(&ubi->wl_lock);
1279 		up_read(&ubi->fm_protect);
1280 		return 0;
1281 	}
1282 	if (e == ubi->move_from) {
1283 		/*
1284 		 * User is putting the physical eraseblock which was selected to
1285 		 * be moved. It will be scheduled for erasure in the
1286 		 * wear-leveling worker.
1287 		 */
1288 		dbg_wl("PEB %d is being moved, wait", pnum);
1289 		spin_unlock(&ubi->wl_lock);
1290 
1291 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1292 		mutex_lock(&ubi->move_mutex);
1293 		mutex_unlock(&ubi->move_mutex);
1294 		goto retry;
1295 	} else if (e == ubi->move_to) {
1296 		/*
1297 		 * User is putting the physical eraseblock which was selected
1298 		 * as the target the data is moved to. It may happen if the EBA
1299 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1300 		 * but the WL sub-system has not put the PEB to the "used" tree
1301 		 * yet, but it is about to do this. So we just set a flag which
1302 		 * will tell the WL worker that the PEB is not needed anymore
1303 		 * and should be scheduled for erasure.
1304 		 */
1305 		dbg_wl("PEB %d is the target of data moving", pnum);
1306 		ubi_assert(!ubi->move_to_put);
1307 		ubi->move_to_put = 1;
1308 		spin_unlock(&ubi->wl_lock);
1309 		up_read(&ubi->fm_protect);
1310 		return 0;
1311 	} else {
1312 		if (in_wl_tree(e, &ubi->used)) {
1313 			self_check_in_wl_tree(ubi, e, &ubi->used);
1314 			rb_erase(&e->u.rb, &ubi->used);
1315 		} else if (in_wl_tree(e, &ubi->scrub)) {
1316 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1317 			rb_erase(&e->u.rb, &ubi->scrub);
1318 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1319 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1320 			rb_erase(&e->u.rb, &ubi->erroneous);
1321 			ubi->erroneous_peb_count -= 1;
1322 			ubi_assert(ubi->erroneous_peb_count >= 0);
1323 			/* Erroneous PEBs should be tortured */
1324 			torture = 1;
1325 		} else {
1326 			err = prot_queue_del(ubi, e->pnum);
1327 			if (err) {
1328 				ubi_err(ubi, "PEB %d not found", pnum);
1329 				ubi_ro_mode(ubi);
1330 				spin_unlock(&ubi->wl_lock);
1331 				up_read(&ubi->fm_protect);
1332 				return err;
1333 			}
1334 		}
1335 	}
1336 	spin_unlock(&ubi->wl_lock);
1337 
1338 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1339 	if (err) {
1340 		spin_lock(&ubi->wl_lock);
1341 		wl_tree_add(e, &ubi->used);
1342 		spin_unlock(&ubi->wl_lock);
1343 	}
1344 
1345 	up_read(&ubi->fm_protect);
1346 	return err;
1347 }
1348 
1349 /**
1350  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1351  * @ubi: UBI device description object
1352  * @pnum: the physical eraseblock to schedule
1353  *
1354  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1355  * needs scrubbing. This function schedules a physical eraseblock for
1356  * scrubbing which is done in background. This function returns zero in case of
1357  * success and a negative error code in case of failure.
1358  */
1359 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1360 {
1361 	struct ubi_wl_entry *e;
1362 
1363 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1364 
1365 retry:
1366 	spin_lock(&ubi->wl_lock);
1367 	e = ubi->lookuptbl[pnum];
1368 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1369 				   in_wl_tree(e, &ubi->erroneous)) {
1370 		spin_unlock(&ubi->wl_lock);
1371 		return 0;
1372 	}
1373 
1374 	if (e == ubi->move_to) {
1375 		/*
1376 		 * This physical eraseblock was used to move data to. The data
1377 		 * was moved but the PEB was not yet inserted to the proper
1378 		 * tree. We should just wait a little and let the WL worker
1379 		 * proceed.
1380 		 */
1381 		spin_unlock(&ubi->wl_lock);
1382 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1383 		yield();
1384 		goto retry;
1385 	}
1386 
1387 	if (in_wl_tree(e, &ubi->used)) {
1388 		self_check_in_wl_tree(ubi, e, &ubi->used);
1389 		rb_erase(&e->u.rb, &ubi->used);
1390 	} else {
1391 		int err;
1392 
1393 		err = prot_queue_del(ubi, e->pnum);
1394 		if (err) {
1395 			ubi_err(ubi, "PEB %d not found", pnum);
1396 			ubi_ro_mode(ubi);
1397 			spin_unlock(&ubi->wl_lock);
1398 			return err;
1399 		}
1400 	}
1401 
1402 	wl_tree_add(e, &ubi->scrub);
1403 	spin_unlock(&ubi->wl_lock);
1404 
1405 	/*
1406 	 * Technically scrubbing is the same as wear-leveling, so it is done
1407 	 * by the WL worker.
1408 	 */
1409 	return ensure_wear_leveling(ubi, 0);
1410 }
1411 
1412 /**
1413  * ubi_wl_flush - flush all pending works.
1414  * @ubi: UBI device description object
1415  * @vol_id: the volume id to flush for
1416  * @lnum: the logical eraseblock number to flush for
1417  *
1418  * This function executes all pending works for a particular volume id /
1419  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1420  * acts as a wildcard for all of the corresponding volume numbers or logical
1421  * eraseblock numbers. It returns zero in case of success and a negative error
1422  * code in case of failure.
1423  */
1424 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1425 {
1426 	int err = 0;
1427 	int found = 1;
1428 
1429 	/*
1430 	 * Erase while the pending works queue is not empty, but not more than
1431 	 * the number of currently pending works.
1432 	 */
1433 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1434 	       vol_id, lnum, ubi->works_count);
1435 
1436 	while (found) {
1437 		struct ubi_work *wrk, *tmp;
1438 		found = 0;
1439 
1440 		down_read(&ubi->work_sem);
1441 		spin_lock(&ubi->wl_lock);
1442 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1443 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1444 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1445 				list_del(&wrk->list);
1446 				ubi->works_count -= 1;
1447 				ubi_assert(ubi->works_count >= 0);
1448 				spin_unlock(&ubi->wl_lock);
1449 
1450 				err = wrk->func(ubi, wrk, 0);
1451 				if (err) {
1452 					up_read(&ubi->work_sem);
1453 					return err;
1454 				}
1455 
1456 				spin_lock(&ubi->wl_lock);
1457 				found = 1;
1458 				break;
1459 			}
1460 		}
1461 		spin_unlock(&ubi->wl_lock);
1462 		up_read(&ubi->work_sem);
1463 	}
1464 
1465 	/*
1466 	 * Make sure all the works which have been done in parallel are
1467 	 * finished.
1468 	 */
1469 	down_write(&ubi->work_sem);
1470 	up_write(&ubi->work_sem);
1471 
1472 	return err;
1473 }
1474 
1475 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1476 {
1477 	if (in_wl_tree(e, &ubi->scrub))
1478 		return false;
1479 	else if (in_wl_tree(e, &ubi->erroneous))
1480 		return false;
1481 	else if (ubi->move_from == e)
1482 		return false;
1483 	else if (ubi->move_to == e)
1484 		return false;
1485 
1486 	return true;
1487 }
1488 
1489 /**
1490  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1491  * @ubi: UBI device description object
1492  * @pnum: the physical eraseblock to schedule
1493  * @force: don't read the block, assume bitflips happened and take action.
1494  *
1495  * This function reads the given eraseblock and checks if bitflips occured.
1496  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1497  * If scrubbing is forced with @force, the eraseblock is not read,
1498  * but scheduled for scrubbing right away.
1499  *
1500  * Returns:
1501  * %EINVAL, PEB is out of range
1502  * %ENOENT, PEB is no longer used by UBI
1503  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1504  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1505  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1506  * %0, no bit flips detected
1507  */
1508 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1509 {
1510 	int err = 0;
1511 	struct ubi_wl_entry *e;
1512 
1513 	if (pnum < 0 || pnum >= ubi->peb_count) {
1514 		err = -EINVAL;
1515 		goto out;
1516 	}
1517 
1518 	/*
1519 	 * Pause all parallel work, otherwise it can happen that the
1520 	 * erase worker frees a wl entry under us.
1521 	 */
1522 	down_write(&ubi->work_sem);
1523 
1524 	/*
1525 	 * Make sure that the wl entry does not change state while
1526 	 * inspecting it.
1527 	 */
1528 	spin_lock(&ubi->wl_lock);
1529 	e = ubi->lookuptbl[pnum];
1530 	if (!e) {
1531 		spin_unlock(&ubi->wl_lock);
1532 		err = -ENOENT;
1533 		goto out_resume;
1534 	}
1535 
1536 	/*
1537 	 * Does it make sense to check this PEB?
1538 	 */
1539 	if (!scrub_possible(ubi, e)) {
1540 		spin_unlock(&ubi->wl_lock);
1541 		err = -EBUSY;
1542 		goto out_resume;
1543 	}
1544 	spin_unlock(&ubi->wl_lock);
1545 
1546 	if (!force) {
1547 		mutex_lock(&ubi->buf_mutex);
1548 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1549 		mutex_unlock(&ubi->buf_mutex);
1550 	}
1551 
1552 	if (force || err == UBI_IO_BITFLIPS) {
1553 		/*
1554 		 * Okay, bit flip happened, let's figure out what we can do.
1555 		 */
1556 		spin_lock(&ubi->wl_lock);
1557 
1558 		/*
1559 		 * Recheck. We released wl_lock, UBI might have killed the
1560 		 * wl entry under us.
1561 		 */
1562 		e = ubi->lookuptbl[pnum];
1563 		if (!e) {
1564 			spin_unlock(&ubi->wl_lock);
1565 			err = -ENOENT;
1566 			goto out_resume;
1567 		}
1568 
1569 		/*
1570 		 * Need to re-check state
1571 		 */
1572 		if (!scrub_possible(ubi, e)) {
1573 			spin_unlock(&ubi->wl_lock);
1574 			err = -EBUSY;
1575 			goto out_resume;
1576 		}
1577 
1578 		if (in_pq(ubi, e)) {
1579 			prot_queue_del(ubi, e->pnum);
1580 			wl_tree_add(e, &ubi->scrub);
1581 			spin_unlock(&ubi->wl_lock);
1582 
1583 			err = ensure_wear_leveling(ubi, 1);
1584 		} else if (in_wl_tree(e, &ubi->used)) {
1585 			rb_erase(&e->u.rb, &ubi->used);
1586 			wl_tree_add(e, &ubi->scrub);
1587 			spin_unlock(&ubi->wl_lock);
1588 
1589 			err = ensure_wear_leveling(ubi, 1);
1590 		} else if (in_wl_tree(e, &ubi->free)) {
1591 			rb_erase(&e->u.rb, &ubi->free);
1592 			ubi->free_count--;
1593 			spin_unlock(&ubi->wl_lock);
1594 
1595 			/*
1596 			 * This PEB is empty we can schedule it for
1597 			 * erasure right away. No wear leveling needed.
1598 			 */
1599 			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1600 					     force ? 0 : 1, true);
1601 		} else {
1602 			spin_unlock(&ubi->wl_lock);
1603 			err = -EAGAIN;
1604 		}
1605 
1606 		if (!err && !force)
1607 			err = -EUCLEAN;
1608 	} else {
1609 		err = 0;
1610 	}
1611 
1612 out_resume:
1613 	up_write(&ubi->work_sem);
1614 out:
1615 
1616 	return err;
1617 }
1618 
1619 /**
1620  * tree_destroy - destroy an RB-tree.
1621  * @ubi: UBI device description object
1622  * @root: the root of the tree to destroy
1623  */
1624 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1625 {
1626 	struct rb_node *rb;
1627 	struct ubi_wl_entry *e;
1628 
1629 	rb = root->rb_node;
1630 	while (rb) {
1631 		if (rb->rb_left)
1632 			rb = rb->rb_left;
1633 		else if (rb->rb_right)
1634 			rb = rb->rb_right;
1635 		else {
1636 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1637 
1638 			rb = rb_parent(rb);
1639 			if (rb) {
1640 				if (rb->rb_left == &e->u.rb)
1641 					rb->rb_left = NULL;
1642 				else
1643 					rb->rb_right = NULL;
1644 			}
1645 
1646 			wl_entry_destroy(ubi, e);
1647 		}
1648 	}
1649 }
1650 
1651 /**
1652  * ubi_thread - UBI background thread.
1653  * @u: the UBI device description object pointer
1654  */
1655 int ubi_thread(void *u)
1656 {
1657 	int failures = 0;
1658 	struct ubi_device *ubi = u;
1659 
1660 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1661 		ubi->bgt_name, task_pid_nr(current));
1662 
1663 	set_freezable();
1664 	for (;;) {
1665 		int err;
1666 
1667 		if (kthread_should_stop())
1668 			break;
1669 
1670 		if (try_to_freeze())
1671 			continue;
1672 
1673 		spin_lock(&ubi->wl_lock);
1674 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1675 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1676 			set_current_state(TASK_INTERRUPTIBLE);
1677 			spin_unlock(&ubi->wl_lock);
1678 
1679 			/*
1680 			 * Check kthread_should_stop() after we set the task
1681 			 * state to guarantee that we either see the stop bit
1682 			 * and exit or the task state is reset to runnable such
1683 			 * that it's not scheduled out indefinitely and detects
1684 			 * the stop bit at kthread_should_stop().
1685 			 */
1686 			if (kthread_should_stop()) {
1687 				set_current_state(TASK_RUNNING);
1688 				break;
1689 			}
1690 
1691 			schedule();
1692 			continue;
1693 		}
1694 		spin_unlock(&ubi->wl_lock);
1695 
1696 		err = do_work(ubi);
1697 		if (err) {
1698 			ubi_err(ubi, "%s: work failed with error code %d",
1699 				ubi->bgt_name, err);
1700 			if (failures++ > WL_MAX_FAILURES) {
1701 				/*
1702 				 * Too many failures, disable the thread and
1703 				 * switch to read-only mode.
1704 				 */
1705 				ubi_msg(ubi, "%s: %d consecutive failures",
1706 					ubi->bgt_name, WL_MAX_FAILURES);
1707 				ubi_ro_mode(ubi);
1708 				ubi->thread_enabled = 0;
1709 				continue;
1710 			}
1711 		} else
1712 			failures = 0;
1713 
1714 		cond_resched();
1715 	}
1716 
1717 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1718 	ubi->thread_enabled = 0;
1719 	return 0;
1720 }
1721 
1722 /**
1723  * shutdown_work - shutdown all pending works.
1724  * @ubi: UBI device description object
1725  */
1726 static void shutdown_work(struct ubi_device *ubi)
1727 {
1728 	while (!list_empty(&ubi->works)) {
1729 		struct ubi_work *wrk;
1730 
1731 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1732 		list_del(&wrk->list);
1733 		wrk->func(ubi, wrk, 1);
1734 		ubi->works_count -= 1;
1735 		ubi_assert(ubi->works_count >= 0);
1736 	}
1737 }
1738 
1739 /**
1740  * erase_aeb - erase a PEB given in UBI attach info PEB
1741  * @ubi: UBI device description object
1742  * @aeb: UBI attach info PEB
1743  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1744  */
1745 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1746 {
1747 	struct ubi_wl_entry *e;
1748 	int err;
1749 
1750 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1751 	if (!e)
1752 		return -ENOMEM;
1753 
1754 	e->pnum = aeb->pnum;
1755 	e->ec = aeb->ec;
1756 	ubi->lookuptbl[e->pnum] = e;
1757 
1758 	if (sync) {
1759 		err = sync_erase(ubi, e, false);
1760 		if (err)
1761 			goto out_free;
1762 
1763 		wl_tree_add(e, &ubi->free);
1764 		ubi->free_count++;
1765 	} else {
1766 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1767 		if (err)
1768 			goto out_free;
1769 	}
1770 
1771 	return 0;
1772 
1773 out_free:
1774 	wl_entry_destroy(ubi, e);
1775 
1776 	return err;
1777 }
1778 
1779 /**
1780  * ubi_wl_init - initialize the WL sub-system using attaching information.
1781  * @ubi: UBI device description object
1782  * @ai: attaching information
1783  *
1784  * This function returns zero in case of success, and a negative error code in
1785  * case of failure.
1786  */
1787 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1788 {
1789 	int err, i, reserved_pebs, found_pebs = 0;
1790 	struct rb_node *rb1, *rb2;
1791 	struct ubi_ainf_volume *av;
1792 	struct ubi_ainf_peb *aeb, *tmp;
1793 	struct ubi_wl_entry *e;
1794 
1795 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1796 	spin_lock_init(&ubi->wl_lock);
1797 	mutex_init(&ubi->move_mutex);
1798 	init_rwsem(&ubi->work_sem);
1799 	ubi->max_ec = ai->max_ec;
1800 	INIT_LIST_HEAD(&ubi->works);
1801 
1802 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1803 
1804 	err = -ENOMEM;
1805 	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1806 	if (!ubi->lookuptbl)
1807 		return err;
1808 
1809 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1810 		INIT_LIST_HEAD(&ubi->pq[i]);
1811 	ubi->pq_head = 0;
1812 
1813 	ubi->free_count = 0;
1814 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1815 		cond_resched();
1816 
1817 		err = erase_aeb(ubi, aeb, false);
1818 		if (err)
1819 			goto out_free;
1820 
1821 		found_pebs++;
1822 	}
1823 
1824 	list_for_each_entry(aeb, &ai->free, u.list) {
1825 		cond_resched();
1826 
1827 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1828 		if (!e) {
1829 			err = -ENOMEM;
1830 			goto out_free;
1831 		}
1832 
1833 		e->pnum = aeb->pnum;
1834 		e->ec = aeb->ec;
1835 		ubi_assert(e->ec >= 0);
1836 
1837 		wl_tree_add(e, &ubi->free);
1838 		ubi->free_count++;
1839 
1840 		ubi->lookuptbl[e->pnum] = e;
1841 
1842 		found_pebs++;
1843 	}
1844 
1845 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1846 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1847 			cond_resched();
1848 
1849 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1850 			if (!e) {
1851 				err = -ENOMEM;
1852 				goto out_free;
1853 			}
1854 
1855 			e->pnum = aeb->pnum;
1856 			e->ec = aeb->ec;
1857 			ubi->lookuptbl[e->pnum] = e;
1858 
1859 			if (!aeb->scrub) {
1860 				dbg_wl("add PEB %d EC %d to the used tree",
1861 				       e->pnum, e->ec);
1862 				wl_tree_add(e, &ubi->used);
1863 			} else {
1864 				dbg_wl("add PEB %d EC %d to the scrub tree",
1865 				       e->pnum, e->ec);
1866 				wl_tree_add(e, &ubi->scrub);
1867 			}
1868 
1869 			found_pebs++;
1870 		}
1871 	}
1872 
1873 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1874 		cond_resched();
1875 
1876 		e = ubi_find_fm_block(ubi, aeb->pnum);
1877 
1878 		if (e) {
1879 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1880 			ubi->lookuptbl[e->pnum] = e;
1881 		} else {
1882 			bool sync = false;
1883 
1884 			/*
1885 			 * Usually old Fastmap PEBs are scheduled for erasure
1886 			 * and we don't have to care about them but if we face
1887 			 * an power cut before scheduling them we need to
1888 			 * take care of them here.
1889 			 */
1890 			if (ubi->lookuptbl[aeb->pnum])
1891 				continue;
1892 
1893 			/*
1894 			 * The fastmap update code might not find a free PEB for
1895 			 * writing the fastmap anchor to and then reuses the
1896 			 * current fastmap anchor PEB. When this PEB gets erased
1897 			 * and a power cut happens before it is written again we
1898 			 * must make sure that the fastmap attach code doesn't
1899 			 * find any outdated fastmap anchors, hence we erase the
1900 			 * outdated fastmap anchor PEBs synchronously here.
1901 			 */
1902 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1903 				sync = true;
1904 
1905 			err = erase_aeb(ubi, aeb, sync);
1906 			if (err)
1907 				goto out_free;
1908 		}
1909 
1910 		found_pebs++;
1911 	}
1912 
1913 	dbg_wl("found %i PEBs", found_pebs);
1914 
1915 	ubi_assert(ubi->good_peb_count == found_pebs);
1916 
1917 	reserved_pebs = WL_RESERVED_PEBS;
1918 	ubi_fastmap_init(ubi, &reserved_pebs);
1919 
1920 	if (ubi->avail_pebs < reserved_pebs) {
1921 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1922 			ubi->avail_pebs, reserved_pebs);
1923 		if (ubi->corr_peb_count)
1924 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1925 				ubi->corr_peb_count);
1926 		err = -ENOSPC;
1927 		goto out_free;
1928 	}
1929 	ubi->avail_pebs -= reserved_pebs;
1930 	ubi->rsvd_pebs += reserved_pebs;
1931 
1932 	/* Schedule wear-leveling if needed */
1933 	err = ensure_wear_leveling(ubi, 0);
1934 	if (err)
1935 		goto out_free;
1936 
1937 #ifdef CONFIG_MTD_UBI_FASTMAP
1938 	if (!ubi->ro_mode && !ubi->fm_disabled)
1939 		ubi_ensure_anchor_pebs(ubi);
1940 #endif
1941 	return 0;
1942 
1943 out_free:
1944 	shutdown_work(ubi);
1945 	tree_destroy(ubi, &ubi->used);
1946 	tree_destroy(ubi, &ubi->free);
1947 	tree_destroy(ubi, &ubi->scrub);
1948 	kfree(ubi->lookuptbl);
1949 	return err;
1950 }
1951 
1952 /**
1953  * protection_queue_destroy - destroy the protection queue.
1954  * @ubi: UBI device description object
1955  */
1956 static void protection_queue_destroy(struct ubi_device *ubi)
1957 {
1958 	int i;
1959 	struct ubi_wl_entry *e, *tmp;
1960 
1961 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1962 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1963 			list_del(&e->u.list);
1964 			wl_entry_destroy(ubi, e);
1965 		}
1966 	}
1967 }
1968 
1969 /**
1970  * ubi_wl_close - close the wear-leveling sub-system.
1971  * @ubi: UBI device description object
1972  */
1973 void ubi_wl_close(struct ubi_device *ubi)
1974 {
1975 	dbg_wl("close the WL sub-system");
1976 	ubi_fastmap_close(ubi);
1977 	shutdown_work(ubi);
1978 	protection_queue_destroy(ubi);
1979 	tree_destroy(ubi, &ubi->used);
1980 	tree_destroy(ubi, &ubi->erroneous);
1981 	tree_destroy(ubi, &ubi->free);
1982 	tree_destroy(ubi, &ubi->scrub);
1983 	kfree(ubi->lookuptbl);
1984 }
1985 
1986 /**
1987  * self_check_ec - make sure that the erase counter of a PEB is correct.
1988  * @ubi: UBI device description object
1989  * @pnum: the physical eraseblock number to check
1990  * @ec: the erase counter to check
1991  *
1992  * This function returns zero if the erase counter of physical eraseblock @pnum
1993  * is equivalent to @ec, and a negative error code if not or if an error
1994  * occurred.
1995  */
1996 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1997 {
1998 	int err;
1999 	long long read_ec;
2000 	struct ubi_ec_hdr *ec_hdr;
2001 
2002 	if (!ubi_dbg_chk_gen(ubi))
2003 		return 0;
2004 
2005 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2006 	if (!ec_hdr)
2007 		return -ENOMEM;
2008 
2009 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2010 	if (err && err != UBI_IO_BITFLIPS) {
2011 		/* The header does not have to exist */
2012 		err = 0;
2013 		goto out_free;
2014 	}
2015 
2016 	read_ec = be64_to_cpu(ec_hdr->ec);
2017 	if (ec != read_ec && read_ec - ec > 1) {
2018 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2019 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2020 		dump_stack();
2021 		err = 1;
2022 	} else
2023 		err = 0;
2024 
2025 out_free:
2026 	kfree(ec_hdr);
2027 	return err;
2028 }
2029 
2030 /**
2031  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2032  * @ubi: UBI device description object
2033  * @e: the wear-leveling entry to check
2034  * @root: the root of the tree
2035  *
2036  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2037  * is not.
2038  */
2039 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2040 				 struct ubi_wl_entry *e, struct rb_root *root)
2041 {
2042 	if (!ubi_dbg_chk_gen(ubi))
2043 		return 0;
2044 
2045 	if (in_wl_tree(e, root))
2046 		return 0;
2047 
2048 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2049 		e->pnum, e->ec, root);
2050 	dump_stack();
2051 	return -EINVAL;
2052 }
2053 
2054 /**
2055  * self_check_in_pq - check if wear-leveling entry is in the protection
2056  *                        queue.
2057  * @ubi: UBI device description object
2058  * @e: the wear-leveling entry to check
2059  *
2060  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2061  */
2062 static int self_check_in_pq(const struct ubi_device *ubi,
2063 			    struct ubi_wl_entry *e)
2064 {
2065 	if (!ubi_dbg_chk_gen(ubi))
2066 		return 0;
2067 
2068 	if (in_pq(ubi, e))
2069 		return 0;
2070 
2071 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2072 		e->pnum, e->ec);
2073 	dump_stack();
2074 	return -EINVAL;
2075 }
2076 #ifndef CONFIG_MTD_UBI_FASTMAP
2077 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2078 {
2079 	struct ubi_wl_entry *e;
2080 
2081 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2082 	self_check_in_wl_tree(ubi, e, &ubi->free);
2083 	ubi->free_count--;
2084 	ubi_assert(ubi->free_count >= 0);
2085 	rb_erase(&e->u.rb, &ubi->free);
2086 
2087 	return e;
2088 }
2089 
2090 /**
2091  * produce_free_peb - produce a free physical eraseblock.
2092  * @ubi: UBI device description object
2093  *
2094  * This function tries to make a free PEB by means of synchronous execution of
2095  * pending works. This may be needed if, for example the background thread is
2096  * disabled. Returns zero in case of success and a negative error code in case
2097  * of failure.
2098  */
2099 static int produce_free_peb(struct ubi_device *ubi)
2100 {
2101 	int err;
2102 
2103 	while (!ubi->free.rb_node && ubi->works_count) {
2104 		spin_unlock(&ubi->wl_lock);
2105 
2106 		dbg_wl("do one work synchronously");
2107 		err = do_work(ubi);
2108 
2109 		spin_lock(&ubi->wl_lock);
2110 		if (err)
2111 			return err;
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 /**
2118  * ubi_wl_get_peb - get a physical eraseblock.
2119  * @ubi: UBI device description object
2120  *
2121  * This function returns a physical eraseblock in case of success and a
2122  * negative error code in case of failure.
2123  * Returns with ubi->fm_eba_sem held in read mode!
2124  */
2125 int ubi_wl_get_peb(struct ubi_device *ubi)
2126 {
2127 	int err;
2128 	struct ubi_wl_entry *e;
2129 
2130 retry:
2131 	down_read(&ubi->fm_eba_sem);
2132 	spin_lock(&ubi->wl_lock);
2133 	if (!ubi->free.rb_node) {
2134 		if (ubi->works_count == 0) {
2135 			ubi_err(ubi, "no free eraseblocks");
2136 			ubi_assert(list_empty(&ubi->works));
2137 			spin_unlock(&ubi->wl_lock);
2138 			return -ENOSPC;
2139 		}
2140 
2141 		err = produce_free_peb(ubi);
2142 		if (err < 0) {
2143 			spin_unlock(&ubi->wl_lock);
2144 			return err;
2145 		}
2146 		spin_unlock(&ubi->wl_lock);
2147 		up_read(&ubi->fm_eba_sem);
2148 		goto retry;
2149 
2150 	}
2151 	e = wl_get_wle(ubi);
2152 	prot_queue_add(ubi, e);
2153 	spin_unlock(&ubi->wl_lock);
2154 
2155 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2156 				    ubi->peb_size - ubi->vid_hdr_aloffset);
2157 	if (err) {
2158 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2159 		return err;
2160 	}
2161 
2162 	return e->pnum;
2163 }
2164 #else
2165 #include "fastmap-wl.c"
2166 #endif
2167